Datasets:

Modalities:
Text
Libraries:
Datasets
License:
File size: 4,936 Bytes
cc0bc04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os

import datasets
from datasets.tasks import QuestionAnsweringExtractive

logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """\
Duconv is a chinese convolution \
dataset, designed to evaluate the dialogue models.
"""

_URL = "https://bj.bcebos.com/paddlenlp/datasets/DuConv.zip"


class DuconvConfig(datasets.BuilderConfig):
    """BuilderConfig for Duconv."""

    def __init__(self, **kwargs):
        """BuilderConfig for Duconv.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(DuconvConfig, self).__init__(**kwargs)


class Duconv(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        DuconvConfig(
            name="DuConv",
            version=datasets.Version("1.0.0", ""),
            description=_DESCRIPTION,
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "id":
                datasets.Value("string"),
                "goal":
                datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                "knowledge":
                datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                "conversation":
                datasets.Sequence(datasets.Value("string")),
                "history":
                datasets.Sequence(datasets.Value("string")),
                "response":
                datasets.Value("string"),
            }),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://arxiv.org/pdf/1906.05572.pdf",
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(name="train",
                                    gen_kwargs={
                                        "filepath":
                                        os.path.join(dl_dir, 'DuConv',
                                                     'train.txt'),
                                    }),
            datasets.SplitGenerator(name="dev",
                                    gen_kwargs={
                                        "filepath":
                                        os.path.join(dl_dir, 'DuConv',
                                                     'dev.txt'),
                                    }),
            datasets.SplitGenerator(name="test_1",
                                    gen_kwargs={
                                        "filepath":
                                        os.path.join(dl_dir, 'DuConv',
                                                     'test_1.txt'),
                                    }),
            datasets.SplitGenerator(name="test_2",
                                    gen_kwargs={
                                        "filepath":
                                        os.path.join(dl_dir, 'DuConv',
                                                     'test_2.txt'),
                                    }),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, 'r', encoding="utf-8") as fin:
            for line in fin:
                duconv = json.loads(line)

                goal = duconv["goal"] if "goal" in duconv.keys() else [[]]
                knowledge = duconv["knowledge"] if "knowledge" in duconv.keys(
                ) else [[]]
                conversation = duconv[
                    "conversation"] if "conversation" in duconv.keys() else []
                history = duconv["history"] if "history" in duconv.keys(
                ) else []
                response = duconv["response"] if "response" in duconv.keys(
                ) else ""

                yield key, {
                    "id": str(key),
                    "goal": goal,
                    "knowledge": knowledge,
                    "conversation": conversation,
                    "history": history,
                    "response": response,
                }
                key += 1