Datasets:
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts""" | |
import csv | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{soares-etal-2020-parapat, | |
title = "{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts", | |
author = "Soares, Felipe and | |
Stevenson, Mark and | |
Bartolome, Diego and | |
Zaretskaya, Anna", | |
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference", | |
month = may, | |
year = "2020", | |
address = "Marseille, France", | |
publisher = "European Language Resources Association", | |
url = "https://www.aclweb.org/anthology/2020.lrec-1.465", | |
pages = "3769--3774", | |
language = "English", | |
ISBN = "979-10-95546-34-4", | |
} | |
""" | |
_DESCRIPTION = """\ | |
ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts | |
This dataset contains the developed parallel corpus from the open access Google | |
Patents dataset in 74 language pairs, comprising more than 68 million sentences | |
and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm | |
for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned. | |
""" | |
_HOMEPAGE = ( | |
"https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632" | |
) | |
_LICENSE = "CC BY 4.0" | |
type1_datasets_file = ["el-en", "cs-en", "en-hu", "en-ro", "en-sk", "en-uk", "es-fr", "fr-ru"] | |
type2_datasets_file = [ | |
"de-fr", | |
"en-ja", | |
"en-es", | |
"en-fr", | |
"de-en", | |
"en-ko", | |
"fr-ja", | |
"en-zh", | |
"en-ru", | |
"fr-ko", | |
"ru-uk", | |
"en-pt", | |
] | |
type1_datasets_features = [ | |
"el-en", | |
"cs-en", | |
"en-hu", | |
"en-ro", | |
"en-sk", | |
"en-uk", | |
"es-fr", | |
"fr-ru", | |
"fr-ko", | |
"ru-uk", | |
"en-pt", | |
] | |
type2_datasets_features = ["de-fr", "en-ja", "en-es", "en-fr", "de-en", "en-ko", "fr-ja", "en-zh", "en-ru"] | |
class ParaPatConfig(datasets.BuilderConfig): | |
"""BuilderConfig for ParaPat.""" | |
def __init__(self, language_pair=(None, None), url=None, **kwargs): | |
"""BuilderConfig for ParaPat.""" | |
name = "%s-%s" % (language_pair[0], language_pair[1]) | |
description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1]) | |
source, target = language_pair | |
super(ParaPatConfig, self).__init__( | |
name=name, | |
description=description, | |
version=datasets.Version("1.1.0", ""), | |
**kwargs, | |
) | |
self.language_pair = language_pair | |
self.url = url | |
class ParaPat(datasets.GeneratorBasedBuilder): | |
"""ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
ParaPatConfig( | |
language_pair=("el", "en"), | |
url="https://ndownloader.figshare.com/files/23748818", | |
), | |
ParaPatConfig( | |
language_pair=("cs", "en"), | |
url="https://ndownloader.figshare.com/files/23748821", | |
), | |
ParaPatConfig( | |
language_pair=("en", "hu"), | |
url="https://ndownloader.figshare.com/files/23748827", | |
), | |
ParaPatConfig( | |
language_pair=("en", "ro"), | |
url="https://ndownloader.figshare.com/files/23748842", | |
), | |
ParaPatConfig( | |
language_pair=("en", "sk"), | |
url="https://ndownloader.figshare.com/files/23748848", | |
), | |
ParaPatConfig( | |
language_pair=("en", "uk"), | |
url="https://ndownloader.figshare.com/files/23748851", | |
), | |
ParaPatConfig( | |
language_pair=("es", "fr"), | |
url="https://ndownloader.figshare.com/files/23748857", | |
), | |
ParaPatConfig( | |
language_pair=("fr", "ru"), | |
url="https://ndownloader.figshare.com/files/23748863", | |
), | |
ParaPatConfig( | |
language_pair=("de", "fr"), | |
url="https://ndownloader.figshare.com/files/23748872", | |
), | |
ParaPatConfig( | |
language_pair=("en", "ja"), | |
url="https://ndownloader.figshare.com/files/23748626", | |
), | |
ParaPatConfig( | |
language_pair=("en", "es"), | |
url="https://ndownloader.figshare.com/files/23748896", | |
), | |
ParaPatConfig( | |
language_pair=("en", "fr"), | |
url="https://ndownloader.figshare.com/files/23748944", | |
), | |
ParaPatConfig( | |
language_pair=("de", "en"), | |
url="https://ndownloader.figshare.com/files/23855657", | |
), | |
ParaPatConfig( | |
language_pair=("en", "ko"), | |
url="https://ndownloader.figshare.com/files/23748689", | |
), | |
ParaPatConfig( | |
language_pair=("fr", "ja"), | |
url="https://ndownloader.figshare.com/files/23748866", | |
), | |
ParaPatConfig( | |
language_pair=("en", "zh"), | |
url="https://ndownloader.figshare.com/files/23748779", | |
), | |
ParaPatConfig( | |
language_pair=("en", "ru"), | |
url="https://ndownloader.figshare.com/files/23748704", | |
), | |
ParaPatConfig( | |
language_pair=("fr", "ko"), | |
url="https://ndownloader.figshare.com/files/23855408", | |
), | |
ParaPatConfig( | |
language_pair=("ru", "uk"), | |
url="https://ndownloader.figshare.com/files/23855465", | |
), | |
ParaPatConfig( | |
language_pair=("en", "pt"), | |
url="https://ndownloader.figshare.com/files/23855441", | |
), | |
] | |
BUILDER_CONFIG_CLASS = ParaPatConfig | |
def _info(self): | |
source, target = self.config.language_pair | |
if self.config.name in type1_datasets_features: | |
features = datasets.Features( | |
{ | |
"index": datasets.Value("int32"), | |
"family_id": datasets.Value("int32"), | |
"translation": datasets.features.Translation(languages=(source, target)), | |
} | |
) | |
elif self.config.name in type2_datasets_features: | |
features = datasets.Features( | |
{ | |
"translation": datasets.features.Translation(languages=(source, target)), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=(source, target), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
source, target = self.config.language_pair | |
data_dir = dl_manager.download_and_extract(self.config.url) | |
if self.config.name in type1_datasets_file: | |
_TRAIN_FILE_NAME = data_dir | |
else: | |
name = self.config.name.replace("-", "_") | |
_TRAIN_FILE_NAME = os.path.join(data_dir, f"{name}.tsv") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": _TRAIN_FILE_NAME, | |
"split": "train", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
""" Yields examples. """ | |
source, target = self.config.language_pair | |
with open(filepath, encoding="utf-8") as f: | |
if self.config.name in type1_datasets_features: | |
data = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for id_, row in enumerate(data): | |
if row["src_lang"] + "-" + row["tgt_lang"] != self.config.name: | |
continue | |
yield id_, { | |
"index": row["index"], | |
"family_id": row["family_id"], | |
"translation": {source: row["src_abs"], target: row["tgt_abs"]}, | |
} | |
else: | |
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for id_, row in enumerate(data): | |
yield id_, { | |
"translation": {source: row[0], target: row[1]}, | |
} | |