system HF staff commited on
Commit
68c1778
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - cs
8
+ - de
9
+ - el
10
+ - en
11
+ - es
12
+ - fr
13
+ - hu
14
+ - ja
15
+ - ko
16
+ - pt
17
+ - ro
18
+ - ru
19
+ - sk
20
+ - uk
21
+ - zh
22
+ - hu
23
+ licenses:
24
+ - cc-by-4-0
25
+ multilinguality:
26
+ - translation
27
+ size_categories:
28
+ - 10K<n<100K
29
+ source_datasets:
30
+ - original
31
+ task_categories:
32
+ - sequence-modeling
33
+ task_ids:
34
+ - language-modeling
35
+ ---
36
+
37
+ # Dataset Card Creation Guide
38
+
39
+ ## Table of Contents
40
+ - [Dataset Description](#dataset-description)
41
+ - [Dataset Summary](#dataset-summary)
42
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
43
+ - [Languages](#languages)
44
+ - [Dataset Structure](#dataset-structure)
45
+ - [Data Instances](#data-instances)
46
+ - [Data Fields](#data-fields)
47
+ - [Data Splits](#data-splits)
48
+ - [Dataset Creation](#dataset-creation)
49
+ - [Curation Rationale](#curation-rationale)
50
+ - [Source Data](#source-data)
51
+ - [Annotations](#annotations)
52
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
53
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
54
+ - [Social Impact of Dataset](#social-impact-of-dataset)
55
+ - [Discussion of Biases](#discussion-of-biases)
56
+ - [Other Known Limitations](#other-known-limitations)
57
+ - [Additional Information](#additional-information)
58
+ - [Dataset Curators](#dataset-curators)
59
+ - [Licensing Information](#licensing-information)
60
+ - [Citation Information](#citation-information)
61
+
62
+ ## Dataset Description
63
+
64
+ - **Homepage:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632)
65
+ - **Repository:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://github.com/soares-f/parapat)
66
+ - **Paper:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://www.aclweb.org/anthology/2020.lrec-1.465/)
67
+ - **Point of Contact:** [Felipe Soares]([email protected])
68
+
69
+ ### Dataset Summary
70
+
71
+ ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts
72
+
73
+ This dataset contains the developed parallel corpus from the open access Google Patents dataset in 74 language pairs, comprising more than 68 million sentences and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.
74
+
75
+ ### Supported Tasks and Leaderboards
76
+
77
+ [More Information Needed]
78
+
79
+ ### Languages
80
+
81
+ The dataset contains samples in cs, de, el, en, es, fr, hu, ja, ko, pt, ro, ru, sk, uk, zh, hu
82
+
83
+ ## Dataset Structure
84
+
85
+ ### Data Instances
86
+
87
+ They are of 2 types depending on the dataset:
88
+
89
+ First type
90
+ {
91
+ "translation":{
92
+ "en":"A method for converting a series of m-bit information words to a modulated signal is described.",
93
+ "es":"Se describe un método para convertir una serie de palabras de informacion de bits m a una señal modulada."
94
+ }
95
+ }
96
+
97
+ Second type
98
+ {
99
+ "family_id":10944407,
100
+ "index":844,
101
+ "translation":{
102
+ "el":"αφές ο οποίος παρασκευάζεται με χαρμάνι ελληνικού καφέ είτε σε συσκευή καφέ εσπρέσο είτε σε συσκευή γαλλικού καφέ (φίλτρου) είτε κατά τον παραδοσιακό τρόπο του ελληνικού καφέ και διυλίζεται, κτυπιέται στη συνέχεια με πάγο σε χειροκίνητο ή ηλεκτρικόμίξερ ώστε να παγώσει ομοιόμορφα και να αποκτήσει πλούσιο αφρό και σερβίρεται σε ποτήρι. ΰ",
103
+ "en":"offee prepared using the mix for Greek coffee either in an espresso - type coffee making machine, or in a filter coffee making machine or in the traditional way for preparing Greek coffee and is then filtered , shaken with ice manually or with an electric mixer so that it freezes homogeneously, obtains a rich froth and is served in a glass."
104
+ }
105
+ }
106
+
107
+ ### Data Fields
108
+
109
+ **index:** position in the corpus
110
+ **family id:** for each abstract, such that researchers can use that information for other text mining purposes.
111
+ **translation:** distionary containing source and target sentence for that example
112
+
113
+ ### Data Splits
114
+
115
+ No official train/val/test splits given.
116
+
117
+ Parallel corpora aligned into sentence level
118
+
119
+ |Language Pair|# Sentences|# Unique Tokens|
120
+ |--------|-----|------|
121
+ |EN/ZH|4.9M|155.8M|
122
+ |EN/JA|6.1M|189.6M|
123
+ |EN/FR|12.2M|455M|
124
+ |EN/KO|2.3M|91.4M|
125
+ |EN/DE|2.2M|81.7M|
126
+ |EN/RU|4.3M|107.3M|
127
+ |DE/FR|1.2M|38.8M|
128
+ |FR/JA|0.3M|9.9M|
129
+ |EN/ES|0.6M|24.6M|
130
+
131
+ Parallel corpora aligned into abstract level
132
+
133
+ |Language Pair|# Abstracts|
134
+ |--------|-----|
135
+ |FR/KO|120,607|
136
+ |EN/UK|89,227|
137
+ |RU/UK|85,963|
138
+ |CS/EN|78,978|
139
+ |EN/RO|48,789|
140
+ |EN/HU|42,629|
141
+ |ES/FR|32,553|
142
+ |EN/SK|23,410|
143
+ |EN/PT|23,122|
144
+ |BG/EN|16,177|
145
+ |FR/RU|10,889|
146
+
147
+
148
+ ## Dataset Creation
149
+
150
+ ### Curation Rationale
151
+
152
+ The availability of parallel corpora is required by current Statistical and Neural Machine Translation systems (SMT and NMT). Acquiring a high-quality parallel corpus that is large enough to train MT systems, particularly NMT ones, is not a trivial task due to the need for correct alignment and, in many cases, human curation. In this context, the automated creation of parallel corpora from freely available resources is extremely important in Natural Language Pro- cessing (NLP).
153
+
154
+ ### Source Data
155
+
156
+ #### Initial Data Collection and Normalization
157
+
158
+ Google makes patents data available under the Google Cloud Public Datasets. BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases. For instance, filtering the September 2019 release of the dataset, which contains more than 119 million rows, can take less than 1 minute for text fields. The on-demand billing for BigQuery is based on the amount of data processed by each query run, thus for a single query that performs a full-scan, the cost can be over USD 15.00, since the cost per TB is currently USD 5.00.
159
+
160
+ #### Who are the source language producers?
161
+
162
+ BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases.
163
+
164
+ ### Annotations
165
+
166
+ #### Annotation process
167
+
168
+ The following steps describe the process of producing patent aligned abstracts:
169
+
170
+ 1. Load the nth individual file
171
+ 2. Remove rows where the number of abstracts with more than one language is less than 2 for a given family id. The family id attribute is used to group patents that refers to the same invention. By removing these rows, we remove abstracts that are available only in one language.
172
+ 3. From the resulting set, create all possible parallel abstracts from the available languages. For instance, an abstract may be available in English, French and German, thus, the possible language pairs are English/French, English/German, and French/German.
173
+ 4. Store the parallel patents into an SQL database for easier future handling and sampling.
174
+
175
+ #### Who are the annotators?
176
+
177
+ [More Information Needed]
178
+
179
+ ### Personal and Sensitive Information
180
+
181
+ [More Information Needed]
182
+
183
+ ## Considerations for Using the Data
184
+
185
+ ### Social Impact of Dataset
186
+
187
+ [More Information Needed]
188
+
189
+ ### Discussion of Biases
190
+
191
+ [More Information Needed]
192
+
193
+ ### Other Known Limitations
194
+
195
+ [More Information Needed]
196
+
197
+ ## Additional Information
198
+
199
+ ### Dataset Curators
200
+
201
+ Funded by Google Tensorflow Research Cloud.
202
+
203
+ ### Licensing Information
204
+
205
+ CC BY 4.0
206
+
207
+ ### Citation Information
208
+
209
+ ```
210
+ @inproceedings{soares-etal-2020-parapat,
211
+ title = "{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts",
212
+ author = "Soares, Felipe and
213
+ Stevenson, Mark and
214
+ Bartolome, Diego and
215
+ Zaretskaya, Anna",
216
+ booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
217
+ month = may,
218
+ year = "2020",
219
+ address = "Marseille, France",
220
+ publisher = "European Language Resources Association",
221
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.465",
222
+ pages = "3769--3774",
223
+ language = "English",
224
+ ISBN = "979-10-95546-34-4",
225
+ }
226
+ ```
227
+
228
+ [DOI](https://doi.org/10.6084/m9.figshare.12627632)
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"el-en": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["el", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "el", "output": "en"}, "builder_name": "para_pat", "config_name": "el-en", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 24818840, "num_examples": 10855, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748818": {"num_bytes": 24894705, "checksum": "61122af21fbb51967dfa0e4f13c56c78259a8bed8d74a1be1bfd16f1f618f073"}}, "download_size": 24894705, "post_processing_size": null, "dataset_size": 24818840, "size_in_bytes": 49713545}, "cs-en": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["cs", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "cs", "output": "en"}, "builder_name": "para_pat", "config_name": "cs-en", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 117555722, "num_examples": 78977, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748821": {"num_bytes": 118010340, "checksum": "732deb6a3994ae8839bd2e5b7ef6530a015f560fdc3d11c59f1d3e2ca43181da"}}, "download_size": 118010340, "post_processing_size": null, "dataset_size": 117555722, "size_in_bytes": 235566062}, "en-hu": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["en", "hu"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "hu"}, "builder_name": "para_pat", "config_name": "en-hu", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 80637157, "num_examples": 42629, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748827": {"num_bytes": 80893995, "checksum": "0090f3dc744ad6cb4e0f68c153a2ea4eb0b070e79be1fe826da194c49eba0a39"}}, "download_size": 80893995, "post_processing_size": null, "dataset_size": 80637157, "size_in_bytes": 161531152}, "en-ro": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["en", "ro"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "ro"}, "builder_name": "para_pat", "config_name": "en-ro", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 80290819, "num_examples": 48789, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748842": {"num_bytes": 80562562, "checksum": "4b749a0a778ce438334a354651e48e6e24fb132022d28ec35f2de564658b9528"}}, "download_size": 80562562, "post_processing_size": null, "dataset_size": 80290819, "size_in_bytes": 160853381}, "en-sk": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["en", "sk"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "sk"}, "builder_name": "para_pat", "config_name": "en-sk", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 31510348, "num_examples": 23410, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748848": {"num_bytes": 31707728, "checksum": "d180f2d49fd948cb56a181059db6ebb9ab56535279be32634b4443c7d433c213"}}, "download_size": 31707728, "post_processing_size": null, "dataset_size": 31510348, "size_in_bytes": 63218076}, "en-uk": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["en", "uk"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "uk"}, "builder_name": "para_pat", "config_name": "en-uk", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 136808871, "num_examples": 89226, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748851": {"num_bytes": 137391928, "checksum": "1b5d2b829d97ec7e1870a5017b5b6666ed4cfc677abae7be6104760edecdbb4c"}}, "download_size": 137391928, "post_processing_size": null, "dataset_size": 136808871, "size_in_bytes": 274200799}, "es-fr": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["es", "fr"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "es", "output": "fr"}, "builder_name": "para_pat", "config_name": "es-fr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 53767035, "num_examples": 32553, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748857": {"num_bytes": 53989438, "checksum": "08d2464c27559204791e48782738c829b484d8cd7cbdcab6fcf78789e6cecf20"}}, "download_size": 53989438, "post_processing_size": null, "dataset_size": 53767035, "size_in_bytes": 107756473}, "fr-ru": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["fr", "ru"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "fr", "output": "ru"}, "builder_name": "para_pat", "config_name": "fr-ru", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 33915203, "num_examples": 10889, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748863": {"num_bytes": 33994490, "checksum": "0b478cd0eacab72c484a55fe7a4c93c234a2a7707237b7752815d8282f923fd3"}}, "download_size": 33994490, "post_processing_size": null, "dataset_size": 33915203, "size_in_bytes": 67909693}, "de-fr": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["de", "fr"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "de", "output": "fr"}, "builder_name": "para_pat", "config_name": "de-fr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 655742822, "num_examples": 1167988, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748872": {"num_bytes": 204094654, "checksum": "6476bb81ce117e7df4d2cf0d7dd2680b7271ae05a74f9ef46be926377139d91a"}}, "download_size": 204094654, "post_processing_size": null, "dataset_size": 655742822, "size_in_bytes": 859837476}, "en-ja": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["en", "ja"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "ja"}, "builder_name": "para_pat", "config_name": "en-ja", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3100002828, "num_examples": 6170339, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748626": {"num_bytes": 1093334863, "checksum": "4234bb5a07f09b2615c09ce9014a221a0c6859472b244d6b752f33ddf9d32c5c"}}, "download_size": 1093334863, "post_processing_size": null, "dataset_size": 3100002828, "size_in_bytes": 4193337691}, "en-es": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["en", "es"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "es"}, "builder_name": "para_pat", "config_name": "en-es", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 337690858, "num_examples": 649396, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748896": {"num_bytes": 105202237, "checksum": "dc9e7e6ca8bef81a3e560a9270565578ca99759ed0f714f720c516a105168849"}}, "download_size": 105202237, "post_processing_size": null, "dataset_size": 337690858, "size_in_bytes": 442893095}, "en-fr": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["en", "fr"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "fr"}, "builder_name": "para_pat", "config_name": "en-fr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6103179552, "num_examples": 12223525, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748944": {"num_bytes": 1846098331, "checksum": "527c34c760f9187e1630fce4bb33d830251b01d3b08147242d873b4d0493cbe9"}}, "download_size": 1846098331, "post_processing_size": null, "dataset_size": 6103179552, "size_in_bytes": 7949277883}, "de-en": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["de", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "de", "output": "en"}, "builder_name": "para_pat", "config_name": "de-en", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1059631418, "num_examples": 2165054, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23855657": {"num_bytes": 339299130, "checksum": "d165c3312c7218817d2c5afedfad68ebc8aee08f36ef4b798f7e620d055e4ea1"}}, "download_size": 339299130, "post_processing_size": null, "dataset_size": 1059631418, "size_in_bytes": 1398930548}, "en-ko": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["en", "ko"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "ko"}, "builder_name": "para_pat", "config_name": "en-ko", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1466703472, "num_examples": 2324357, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748689": {"num_bytes": 475152089, "checksum": "4518f4c65391bf90fd153ade6eb23ca1393211852b9cc9d9e07c88d6a9ef2d04"}}, "download_size": 475152089, "post_processing_size": null, "dataset_size": 1466703472, "size_in_bytes": 1941855561}, "fr-ja": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["fr", "ja"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "fr", "output": "ja"}, "builder_name": "para_pat", "config_name": "fr-ja", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 211127021, "num_examples": 313422, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748866": {"num_bytes": 69038401, "checksum": "87376daa3e67806909122a2d102e8566eb25ea8523d7a24a95e15e1ec2dd4242"}}, "download_size": 69038401, "post_processing_size": null, "dataset_size": 211127021, "size_in_bytes": 280165422}, "en-zh": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["en", "zh"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "zh"}, "builder_name": "para_pat", "config_name": "en-zh", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2297993338, "num_examples": 4897841, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748779": {"num_bytes": 899568201, "checksum": "cd8bed4124f7b6294e66aca5a31712f722be5bf2b28b908c054ad8d5c2e80fac"}}, "download_size": 899568201, "post_processing_size": null, "dataset_size": 2297993338, "size_in_bytes": 3197561539}, "en-ru": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"translation": {"languages": ["en", "ru"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "ru"}, "builder_name": "para_pat", "config_name": "en-ru", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1974874480, "num_examples": 4296399, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23748704": {"num_bytes": 567240359, "checksum": "976656d19ecf009dbf9dbf733c69ba0730c21b30b0a0545e1b0f3f22a0de0504"}}, "download_size": 567240359, "post_processing_size": null, "dataset_size": 1974874480, "size_in_bytes": 2542114839}, "fr-ko": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["fr", "ko"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "fr", "output": "ko"}, "builder_name": "para_pat", "config_name": "fr-ko", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 222006786, "num_examples": 120607, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23855408": {"num_bytes": 64621605, "checksum": "6a33d0d1194afd005daacd82baf9305d71673d40b2db999fcd9f55c09175ca23"}}, "download_size": 64621605, "post_processing_size": null, "dataset_size": 222006786, "size_in_bytes": 286628391}, "ru-uk": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["ru", "uk"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "ru", "output": "uk"}, "builder_name": "para_pat", "config_name": "ru-uk", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 163442529, "num_examples": 85963, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23855465": {"num_bytes": 38709524, "checksum": "7c4cf896fac4df9f8a5b0b434b435be65136ecd017168833b1648ad035971890"}}, "download_size": 38709524, "post_processing_size": null, "dataset_size": 163442529, "size_in_bytes": 202152053}, "en-pt": {"description": "ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\n\nThis dataset contains the developed parallel corpus from the open access Google\nPatents dataset in 74 language pairs, comprising more than 68 million sentences\nand 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm\nfor the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.\n\nWe demonstrate the capabilities of our corpus by training Neural Machine Translation\n(NMT) models for the main 9 language pairs, with a total of 18 models.\n", "citation": "@inproceedings{soares-etal-2020-parapat,\n title = \"{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts\",\n author = \"Soares, Felipe and\n Stevenson, Mark and\n Bartolome, Diego and\n Zaretskaya, Anna\",\n booktitle = \"Proceedings of The 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.465\",\n pages = \"3769--3774\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632", "license": "CC BY 4.0", "features": {"index": {"dtype": "int32", "id": null, "_type": "Value"}, "family_id": {"dtype": "int32", "id": null, "_type": "Value"}, "translation": {"languages": ["en", "pt"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "en", "output": "pt"}, "builder_name": "para_pat", "config_name": "en-pt", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 37372555, "num_examples": 23121, "dataset_name": "para_pat"}}, "download_checksums": {"https://ndownloader.figshare.com/files/23855441": {"num_bytes": 12781082, "checksum": "8cf90b1c45f20d4d9e0336cb77f1c200b932327f8ff9b82c9b9db329cf681c58"}}, "download_size": 12781082, "post_processing_size": null, "dataset_size": 37372555, "size_in_bytes": 50153637}}
dummy/cs-en/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2800903baf50d71f21b1363a69e8067e30e7f4675d0459a29561ea266e567d79
3
+ size 3501
dummy/de-en/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7532216f1b397ee0d4883c402b54c85e9f085635294ca87f4672fbace134a6d3
3
+ size 1044
dummy/de-fr/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4a8051ba70ed856259c279e8179655db6a08022601d0369f17b31f22bcb4bd3
3
+ size 700
dummy/el-en/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de265102868f25964277995eb2b7f470793df6a606cc4c9b464120154c587b4e
3
+ size 4308
dummy/en-es/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:922602ced668658233c215e6d8ae5cdd01b245ed784133a851a9ba9feb28f062
3
+ size 747
dummy/en-fr/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaafbeff86b26f4cbda20db2b982e604187b29c6ab1181ccc9f265ef5e33f728
3
+ size 1287
dummy/en-hu/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0930d2e13da3de5dba5cc021a467132cf70973db0b303934f1c9f6cbce52487
3
+ size 4067
dummy/en-ja/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0780bc7640b45108fd46f2316c1052a994d894b96c6f8caf57f2b259f74c0bc
3
+ size 1075
dummy/en-ko/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ec5f61d2b527fbb786ce10e669828f554435de37093909e287e9db36f4f985e
3
+ size 1097
dummy/en-pt/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7668706a94546a1c846fd0096bb40bb3c3ef904ef39d8013390d53b02b0e5ed7
3
+ size 3137
dummy/en-ro/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e88443b7d79cf3600ef877b80695bde5f50ef6d053c43319dd8caef163abbf37
3
+ size 4366
dummy/en-ru/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e33eed0371072bdb8faf0614dd863fd3b19998dc8a45f406cf627a3d1073300
3
+ size 460
dummy/en-sk/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0613525625758455f7e857eb14f5da49ea1fd4fc5697ff555c5bc2fedb635f47
3
+ size 2996
dummy/en-uk/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:201b65acb78ccc03c6914a3a9d92b8ee369e64fd8db6857adce5a8100fd18b65
3
+ size 1874
dummy/en-zh/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53d099a62cafc659f95407be5095c83fd6c8813c991d19820fc95b0f08907c1f
3
+ size 1166
dummy/es-fr/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:850fd2b02c8f5d91434ff6e2d1274eb54e12a2e81d5effede5454f7afdd6f36e
3
+ size 3094
dummy/fr-ja/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69c72c2573d24ee307c317e1bfc42bc00d1755a590ae6505b51a8e6e8f6349bd
3
+ size 1612
dummy/fr-ko/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d65aa77bc887d4318ca8e730025095ef55bba8eb5be6bc1a66a08cf8188e4ed5
3
+ size 3562
dummy/fr-ru/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46af81ac197cfd15009d382c1a8907e17f37f9ce8a5661e4b7f5cad7179d43eb
3
+ size 5919
dummy/ru-uk/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c986594c50834f01adeedc69ad1ae550b7b8df7fa8a5958baca92c2980e5ba22
3
+ size 1979
para_pat.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import csv
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """\
26
+ @inproceedings{soares-etal-2020-parapat,
27
+ title = "{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts",
28
+ author = "Soares, Felipe and
29
+ Stevenson, Mark and
30
+ Bartolome, Diego and
31
+ Zaretskaya, Anna",
32
+ booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
33
+ month = may,
34
+ year = "2020",
35
+ address = "Marseille, France",
36
+ publisher = "European Language Resources Association",
37
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.465",
38
+ pages = "3769--3774",
39
+ language = "English",
40
+ ISBN = "979-10-95546-34-4",
41
+ }
42
+ """
43
+
44
+ _DESCRIPTION = """\
45
+ ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts
46
+
47
+ This dataset contains the developed parallel corpus from the open access Google
48
+ Patents dataset in 74 language pairs, comprising more than 68 million sentences
49
+ and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm
50
+ for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.
51
+
52
+ """
53
+
54
+ _HOMEPAGE = (
55
+ "https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632"
56
+ )
57
+
58
+ _LICENSE = "CC BY 4.0"
59
+
60
+ type1_datasets_file = ["el-en", "cs-en", "en-hu", "en-ro", "en-sk", "en-uk", "es-fr", "fr-ru"]
61
+ type2_datasets_file = [
62
+ "de-fr",
63
+ "en-ja",
64
+ "en-es",
65
+ "en-fr",
66
+ "de-en",
67
+ "en-ko",
68
+ "fr-ja",
69
+ "en-zh",
70
+ "en-ru",
71
+ "fr-ko",
72
+ "ru-uk",
73
+ "en-pt",
74
+ ]
75
+
76
+ type1_datasets_features = [
77
+ "el-en",
78
+ "cs-en",
79
+ "en-hu",
80
+ "en-ro",
81
+ "en-sk",
82
+ "en-uk",
83
+ "es-fr",
84
+ "fr-ru",
85
+ "fr-ko",
86
+ "ru-uk",
87
+ "en-pt",
88
+ ]
89
+ type2_datasets_features = ["de-fr", "en-ja", "en-es", "en-fr", "de-en", "en-ko", "fr-ja", "en-zh", "en-ru"]
90
+
91
+
92
+ class ParaPatConfig(datasets.BuilderConfig):
93
+ """BuilderConfig for ParaPat."""
94
+
95
+ def __init__(self, language_pair=(None, None), url=None, **kwargs):
96
+ """BuilderConfig for ParaPat."""
97
+ name = "%s-%s" % (language_pair[0], language_pair[1])
98
+
99
+ description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1])
100
+
101
+ source, target = language_pair
102
+ super(ParaPatConfig, self).__init__(
103
+ name=name,
104
+ description=description,
105
+ version=datasets.Version("1.1.0", ""),
106
+ **kwargs,
107
+ )
108
+
109
+ self.language_pair = language_pair
110
+ self.url = url
111
+
112
+
113
+ class ParaPat(datasets.GeneratorBasedBuilder):
114
+ """ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts"""
115
+
116
+ VERSION = datasets.Version("1.1.0")
117
+
118
+ BUILDER_CONFIGS = [
119
+ ParaPatConfig(
120
+ language_pair=("el", "en"),
121
+ url="https://ndownloader.figshare.com/files/23748818",
122
+ ),
123
+ ParaPatConfig(
124
+ language_pair=("cs", "en"),
125
+ url="https://ndownloader.figshare.com/files/23748821",
126
+ ),
127
+ ParaPatConfig(
128
+ language_pair=("en", "hu"),
129
+ url="https://ndownloader.figshare.com/files/23748827",
130
+ ),
131
+ ParaPatConfig(
132
+ language_pair=("en", "ro"),
133
+ url="https://ndownloader.figshare.com/files/23748842",
134
+ ),
135
+ ParaPatConfig(
136
+ language_pair=("en", "sk"),
137
+ url="https://ndownloader.figshare.com/files/23748848",
138
+ ),
139
+ ParaPatConfig(
140
+ language_pair=("en", "uk"),
141
+ url="https://ndownloader.figshare.com/files/23748851",
142
+ ),
143
+ ParaPatConfig(
144
+ language_pair=("es", "fr"),
145
+ url="https://ndownloader.figshare.com/files/23748857",
146
+ ),
147
+ ParaPatConfig(
148
+ language_pair=("fr", "ru"),
149
+ url="https://ndownloader.figshare.com/files/23748863",
150
+ ),
151
+ ParaPatConfig(
152
+ language_pair=("de", "fr"),
153
+ url="https://ndownloader.figshare.com/files/23748872",
154
+ ),
155
+ ParaPatConfig(
156
+ language_pair=("en", "ja"),
157
+ url="https://ndownloader.figshare.com/files/23748626",
158
+ ),
159
+ ParaPatConfig(
160
+ language_pair=("en", "es"),
161
+ url="https://ndownloader.figshare.com/files/23748896",
162
+ ),
163
+ ParaPatConfig(
164
+ language_pair=("en", "fr"),
165
+ url="https://ndownloader.figshare.com/files/23748944",
166
+ ),
167
+ ParaPatConfig(
168
+ language_pair=("de", "en"),
169
+ url="https://ndownloader.figshare.com/files/23855657",
170
+ ),
171
+ ParaPatConfig(
172
+ language_pair=("en", "ko"),
173
+ url="https://ndownloader.figshare.com/files/23748689",
174
+ ),
175
+ ParaPatConfig(
176
+ language_pair=("fr", "ja"),
177
+ url="https://ndownloader.figshare.com/files/23748866",
178
+ ),
179
+ ParaPatConfig(
180
+ language_pair=("en", "zh"),
181
+ url="https://ndownloader.figshare.com/files/23748779",
182
+ ),
183
+ ParaPatConfig(
184
+ language_pair=("en", "ru"),
185
+ url="https://ndownloader.figshare.com/files/23748704",
186
+ ),
187
+ ParaPatConfig(
188
+ language_pair=("fr", "ko"),
189
+ url="https://ndownloader.figshare.com/files/23855408",
190
+ ),
191
+ ParaPatConfig(
192
+ language_pair=("ru", "uk"),
193
+ url="https://ndownloader.figshare.com/files/23855465",
194
+ ),
195
+ ParaPatConfig(
196
+ language_pair=("en", "pt"),
197
+ url="https://ndownloader.figshare.com/files/23855441",
198
+ ),
199
+ ]
200
+ BUILDER_CONFIG_CLASS = ParaPatConfig
201
+
202
+ def _info(self):
203
+ source, target = self.config.language_pair
204
+
205
+ if self.config.name in type1_datasets_features:
206
+ features = datasets.Features(
207
+ {
208
+ "index": datasets.Value("int32"),
209
+ "family_id": datasets.Value("int32"),
210
+ "translation": datasets.features.Translation(languages=(source, target)),
211
+ }
212
+ )
213
+ elif self.config.name in type2_datasets_features:
214
+ features = datasets.Features(
215
+ {
216
+ "translation": datasets.features.Translation(languages=(source, target)),
217
+ }
218
+ )
219
+ return datasets.DatasetInfo(
220
+ # This is the description that will appear on the datasets page.
221
+ description=_DESCRIPTION,
222
+ # This defines the different columns of the dataset and their types
223
+ features=features, # Here we define them above because they are different between the two configurations
224
+ # If there's a common (input, target) tuple from the features,
225
+ # specify them here. They'll be used if as_supervised=True in
226
+ # builder.as_dataset.
227
+ supervised_keys=(source, target),
228
+ # Homepage of the dataset for documentation
229
+ homepage=_HOMEPAGE,
230
+ # License for the dataset if available
231
+ license=_LICENSE,
232
+ # Citation for the dataset
233
+ citation=_CITATION,
234
+ )
235
+
236
+ def _split_generators(self, dl_manager):
237
+ """Returns SplitGenerators."""
238
+ source, target = self.config.language_pair
239
+
240
+ data_dir = dl_manager.download_and_extract(self.config.url)
241
+
242
+ if self.config.name in type1_datasets_file:
243
+ _TRAIN_FILE_NAME = data_dir
244
+ else:
245
+ name = self.config.name.replace("-", "_")
246
+ _TRAIN_FILE_NAME = os.path.join(data_dir, f"{name}.tsv")
247
+
248
+ return [
249
+ datasets.SplitGenerator(
250
+ name=datasets.Split.TRAIN,
251
+ # These kwargs will be passed to _generate_examples
252
+ gen_kwargs={
253
+ "filepath": _TRAIN_FILE_NAME,
254
+ "split": "train",
255
+ },
256
+ ),
257
+ ]
258
+
259
+ def _generate_examples(self, filepath, split):
260
+ """ Yields examples. """
261
+ source, target = self.config.language_pair
262
+ with open(filepath, encoding="utf-8") as f:
263
+ if self.config.name in type1_datasets_features:
264
+ data = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
265
+ for id_, row in enumerate(data):
266
+ if row["src_lang"] + "-" + row["tgt_lang"] != self.config.name:
267
+ continue
268
+ yield id_, {
269
+ "index": row["index"],
270
+ "family_id": row["family_id"],
271
+ "translation": {source: row["src_abs"], target: row["tgt_abs"]},
272
+ }
273
+ else:
274
+ data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
275
+ for id_, row in enumerate(data):
276
+ yield id_, {
277
+ "translation": {source: row[0], target: row[1]},
278
+ }