status
stringclasses
1 value
repo_name
stringclasses
31 values
repo_url
stringclasses
31 values
issue_id
int64
1
104k
title
stringlengths
4
233
body
stringlengths
0
186k
โŒ€
issue_url
stringlengths
38
56
pull_url
stringlengths
37
54
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
updated_file
stringlengths
7
188
chunk_content
stringlengths
1
1.03M
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,720
AttributeError: 'GPT4All' object has no attribute 'model_type' (langchain 0.0.190)
### System Info Hi, this is related to #5651 but (on my machine ;) ) the issue is still there. ## Versions * Intel Mac with latest OSX * Python 3.11.2 * langchain 0.0.190, includes fix for #5651 * ggml-mpt-7b-instruct.bin, downloaded at June 5th from https://gpt4all.io/models/ggml-mpt-7b-instruct.bin ### Who can help? @pakcheera @bwv988 First of all: thanks for the report and the fix :). Did this issues disappear on you machines? ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ## Error message ```shell โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Traceback (most recent call last) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/chat.py:30 in โ”‚ โ”‚ <module> โ”‚ โ”‚ โ”‚ โ”‚ 27 โ”‚ model_name="all-mpnet-base-v2") โ”‚ โ”‚ 28 โ”‚ โ”‚ 29 # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin โ”‚ โ”‚ โฑ 30 llm = GPT4All( โ”‚ โ”‚ 31 โ”‚ model="./ggml-mpt-7b-instruct.bin", โ”‚ โ”‚ 32 โ”‚ #backend='gptj', โ”‚ โ”‚ 33 โ”‚ top_p=0.5, โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.BaseModel.__init__:339 โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.validate_model:1102 โ”‚ โ”‚ โ”‚ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/venv/lib/python3.1 โ”‚ โ”‚ 1/site-packages/langchain/llms/gpt4all.py:156 in validate_environment โ”‚ โ”‚ โ”‚ โ”‚ 153 โ”‚ โ”‚ if values["n_threads"] is not None: โ”‚ โ”‚ 154 โ”‚ โ”‚ โ”‚ # set n_threads โ”‚ โ”‚ 155 โ”‚ โ”‚ โ”‚ values["client"].model.set_thread_count(values["n_threads"]) โ”‚ โ”‚ โฑ 156 โ”‚ โ”‚ values["backend"] = values["client"].model_type โ”‚ โ”‚ 157 โ”‚ โ”‚ โ”‚ โ”‚ 158 โ”‚ โ”‚ return values โ”‚ โ”‚ 159 โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ ``` As you can see in _gpt4all.py:156_ contains the changed from the fix of #5651 ## Code ```python from langchain.llms import GPT4All # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin llm = GPT4All( model="./ggml-mpt-7b-instruct.bin", #backend='gptj', top_p=0.5, top_k=0, temp=0.1, repeat_penalty=0.8, n_threads=12, n_batch=16, n_ctx=2048) ``` FYI I am following [this example in a blog post](https://dev.to/akshayballal/beyond-openai-harnessing-open-source-models-to-create-your-personalized-ai-companion-1npb). ### Expected behavior I expect an instance of _GPT4All_ instead of a stacktrace.
https://github.com/langchain-ai/langchain/issues/5720
https://github.com/langchain-ai/langchain/pull/5743
d0d89d39efb5f292f72e70973f3b70c4ca095047
74f8e603d942ca22ed07bf0ea23a57ed67b36b2c
"2023-06-05T09:44:08Z"
python
"2023-06-05T19:45:29Z"
langchain/llms/gpt4all.py
"""Configuration for this pydantic object.""" extra = Extra.forbid @staticmethod def _model_param_names() -> Set[str]: return { "n_ctx", "n_predict", "top_k", "top_p", "temp", "n_batch", "repeat_penalty", "repeat_last_n", "context_erase", } def _default_params(self) -> Dict[str, Any]: return { "n_ctx": self.n_ctx, "n_predict": self.n_predict, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, "n_batch": self.n_batch, "repeat_penalty": self.repeat_penalty, "repeat_last_n": self.repeat_last_n, "context_erase": self.context_erase, } @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,720
AttributeError: 'GPT4All' object has no attribute 'model_type' (langchain 0.0.190)
### System Info Hi, this is related to #5651 but (on my machine ;) ) the issue is still there. ## Versions * Intel Mac with latest OSX * Python 3.11.2 * langchain 0.0.190, includes fix for #5651 * ggml-mpt-7b-instruct.bin, downloaded at June 5th from https://gpt4all.io/models/ggml-mpt-7b-instruct.bin ### Who can help? @pakcheera @bwv988 First of all: thanks for the report and the fix :). Did this issues disappear on you machines? ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ## Error message ```shell โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Traceback (most recent call last) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/chat.py:30 in โ”‚ โ”‚ <module> โ”‚ โ”‚ โ”‚ โ”‚ 27 โ”‚ model_name="all-mpnet-base-v2") โ”‚ โ”‚ 28 โ”‚ โ”‚ 29 # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin โ”‚ โ”‚ โฑ 30 llm = GPT4All( โ”‚ โ”‚ 31 โ”‚ model="./ggml-mpt-7b-instruct.bin", โ”‚ โ”‚ 32 โ”‚ #backend='gptj', โ”‚ โ”‚ 33 โ”‚ top_p=0.5, โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.BaseModel.__init__:339 โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.validate_model:1102 โ”‚ โ”‚ โ”‚ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/venv/lib/python3.1 โ”‚ โ”‚ 1/site-packages/langchain/llms/gpt4all.py:156 in validate_environment โ”‚ โ”‚ โ”‚ โ”‚ 153 โ”‚ โ”‚ if values["n_threads"] is not None: โ”‚ โ”‚ 154 โ”‚ โ”‚ โ”‚ # set n_threads โ”‚ โ”‚ 155 โ”‚ โ”‚ โ”‚ values["client"].model.set_thread_count(values["n_threads"]) โ”‚ โ”‚ โฑ 156 โ”‚ โ”‚ values["backend"] = values["client"].model_type โ”‚ โ”‚ 157 โ”‚ โ”‚ โ”‚ โ”‚ 158 โ”‚ โ”‚ return values โ”‚ โ”‚ 159 โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ ``` As you can see in _gpt4all.py:156_ contains the changed from the fix of #5651 ## Code ```python from langchain.llms import GPT4All # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin llm = GPT4All( model="./ggml-mpt-7b-instruct.bin", #backend='gptj', top_p=0.5, top_k=0, temp=0.1, repeat_penalty=0.8, n_threads=12, n_batch=16, n_ctx=2048) ``` FYI I am following [this example in a blog post](https://dev.to/akshayballal/beyond-openai-harnessing-open-source-models-to-create-your-personalized-ai-companion-1npb). ### Expected behavior I expect an instance of _GPT4All_ instead of a stacktrace.
https://github.com/langchain-ai/langchain/issues/5720
https://github.com/langchain-ai/langchain/pull/5743
d0d89d39efb5f292f72e70973f3b70c4ca095047
74f8e603d942ca22ed07bf0ea23a57ed67b36b2c
"2023-06-05T09:44:08Z"
python
"2023-06-05T19:45:29Z"
langchain/llms/gpt4all.py
"""Validate that the python package exists in the environment.""" try: from gpt4all import GPT4All as GPT4AllModel except ImportError: raise ImportError( "Could not import gpt4all python package. " "Please install it with `pip install gpt4all`." ) full_path = values["model"] model_path, delimiter, model_name = full_path.rpartition("/") model_path += delimiter values["client"] = GPT4AllModel( model_name, model_path=model_path or None, model_type=values["backend"], allow_download=values["allow_download"], ) if values["n_threads"] is not None: values["client"].model.set_thread_count(values["n_threads"]) values["backend"] = values["client"].model_type return values @property def _identifying_params(self) -> Mapping[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,720
AttributeError: 'GPT4All' object has no attribute 'model_type' (langchain 0.0.190)
### System Info Hi, this is related to #5651 but (on my machine ;) ) the issue is still there. ## Versions * Intel Mac with latest OSX * Python 3.11.2 * langchain 0.0.190, includes fix for #5651 * ggml-mpt-7b-instruct.bin, downloaded at June 5th from https://gpt4all.io/models/ggml-mpt-7b-instruct.bin ### Who can help? @pakcheera @bwv988 First of all: thanks for the report and the fix :). Did this issues disappear on you machines? ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ## Error message ```shell โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Traceback (most recent call last) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/chat.py:30 in โ”‚ โ”‚ <module> โ”‚ โ”‚ โ”‚ โ”‚ 27 โ”‚ model_name="all-mpnet-base-v2") โ”‚ โ”‚ 28 โ”‚ โ”‚ 29 # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin โ”‚ โ”‚ โฑ 30 llm = GPT4All( โ”‚ โ”‚ 31 โ”‚ model="./ggml-mpt-7b-instruct.bin", โ”‚ โ”‚ 32 โ”‚ #backend='gptj', โ”‚ โ”‚ 33 โ”‚ top_p=0.5, โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.BaseModel.__init__:339 โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.validate_model:1102 โ”‚ โ”‚ โ”‚ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/venv/lib/python3.1 โ”‚ โ”‚ 1/site-packages/langchain/llms/gpt4all.py:156 in validate_environment โ”‚ โ”‚ โ”‚ โ”‚ 153 โ”‚ โ”‚ if values["n_threads"] is not None: โ”‚ โ”‚ 154 โ”‚ โ”‚ โ”‚ # set n_threads โ”‚ โ”‚ 155 โ”‚ โ”‚ โ”‚ values["client"].model.set_thread_count(values["n_threads"]) โ”‚ โ”‚ โฑ 156 โ”‚ โ”‚ values["backend"] = values["client"].model_type โ”‚ โ”‚ 157 โ”‚ โ”‚ โ”‚ โ”‚ 158 โ”‚ โ”‚ return values โ”‚ โ”‚ 159 โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ ``` As you can see in _gpt4all.py:156_ contains the changed from the fix of #5651 ## Code ```python from langchain.llms import GPT4All # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin llm = GPT4All( model="./ggml-mpt-7b-instruct.bin", #backend='gptj', top_p=0.5, top_k=0, temp=0.1, repeat_penalty=0.8, n_threads=12, n_batch=16, n_ctx=2048) ``` FYI I am following [this example in a blog post](https://dev.to/akshayballal/beyond-openai-harnessing-open-source-models-to-create-your-personalized-ai-companion-1npb). ### Expected behavior I expect an instance of _GPT4All_ instead of a stacktrace.
https://github.com/langchain-ai/langchain/issues/5720
https://github.com/langchain-ai/langchain/pull/5743
d0d89d39efb5f292f72e70973f3b70c4ca095047
74f8e603d942ca22ed07bf0ea23a57ed67b36b2c
"2023-06-05T09:44:08Z"
python
"2023-06-05T19:45:29Z"
langchain/llms/gpt4all.py
"""Get the identifying parameters.""" return { "model": self.model, **self._default_params(), **{ k: v for k, v in self.__dict__.items() if k in self._model_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,720
AttributeError: 'GPT4All' object has no attribute 'model_type' (langchain 0.0.190)
### System Info Hi, this is related to #5651 but (on my machine ;) ) the issue is still there. ## Versions * Intel Mac with latest OSX * Python 3.11.2 * langchain 0.0.190, includes fix for #5651 * ggml-mpt-7b-instruct.bin, downloaded at June 5th from https://gpt4all.io/models/ggml-mpt-7b-instruct.bin ### Who can help? @pakcheera @bwv988 First of all: thanks for the report and the fix :). Did this issues disappear on you machines? ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ## Error message ```shell โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Traceback (most recent call last) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/chat.py:30 in โ”‚ โ”‚ <module> โ”‚ โ”‚ โ”‚ โ”‚ 27 โ”‚ model_name="all-mpnet-base-v2") โ”‚ โ”‚ 28 โ”‚ โ”‚ 29 # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin โ”‚ โ”‚ โฑ 30 llm = GPT4All( โ”‚ โ”‚ 31 โ”‚ model="./ggml-mpt-7b-instruct.bin", โ”‚ โ”‚ 32 โ”‚ #backend='gptj', โ”‚ โ”‚ 33 โ”‚ top_p=0.5, โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.BaseModel.__init__:339 โ”‚ โ”‚ โ”‚ โ”‚ in pydantic.main.validate_model:1102 โ”‚ โ”‚ โ”‚ โ”‚ /Users/christoph/src/sandstorm-labs/development-tools/ai-support-chat/gpt4all/venv/lib/python3.1 โ”‚ โ”‚ 1/site-packages/langchain/llms/gpt4all.py:156 in validate_environment โ”‚ โ”‚ โ”‚ โ”‚ 153 โ”‚ โ”‚ if values["n_threads"] is not None: โ”‚ โ”‚ 154 โ”‚ โ”‚ โ”‚ # set n_threads โ”‚ โ”‚ 155 โ”‚ โ”‚ โ”‚ values["client"].model.set_thread_count(values["n_threads"]) โ”‚ โ”‚ โฑ 156 โ”‚ โ”‚ values["backend"] = values["client"].model_type โ”‚ โ”‚ 157 โ”‚ โ”‚ โ”‚ โ”‚ 158 โ”‚ โ”‚ return values โ”‚ โ”‚ 159 โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ ``` As you can see in _gpt4all.py:156_ contains the changed from the fix of #5651 ## Code ```python from langchain.llms import GPT4All # see https://gpt4all.io/models/ggml-mpt-7b-instruct.bin llm = GPT4All( model="./ggml-mpt-7b-instruct.bin", #backend='gptj', top_p=0.5, top_k=0, temp=0.1, repeat_penalty=0.8, n_threads=12, n_batch=16, n_ctx=2048) ``` FYI I am following [this example in a blog post](https://dev.to/akshayballal/beyond-openai-harnessing-open-source-models-to-create-your-personalized-ai-companion-1npb). ### Expected behavior I expect an instance of _GPT4All_ instead of a stacktrace.
https://github.com/langchain-ai/langchain/issues/5720
https://github.com/langchain-ai/langchain/pull/5743
d0d89d39efb5f292f72e70973f3b70c4ca095047
74f8e603d942ca22ed07bf0ea23a57ed67b36b2c
"2023-06-05T09:44:08Z"
python
"2023-06-05T19:45:29Z"
langchain/llms/gpt4all.py
self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text_callback = None if run_manager: text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose) text = "" for token in self.client.generate(prompt, **self._default_params()): if text_callback: text_callback(token) text += token if stop is not None: text = enforce_stop_tokens(text, stop) return text
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,699
Sitemap filters not working due to lack of stripping whitespace and newlines
https://github.com/hwchase17/langchain/blob/8d9e9e013ccfe72d839dcfa37a3f17c340a47a88/langchain/document_loaders/sitemap.py#L83 if ``` <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml"> <url> <loc> https://tatum.com/ </loc> <xhtml:link rel="alternate" hreflang="x-default" href="https://tatum.com/"/> </url> ``` then ` re.match(r, loc.text) for r in self.filter_urls` Comparison to filter here will be comparing against a value that includes those whitespaces and newlines. What worked for me: ``` def parse_sitemap(self, soup: Any) -> List[dict]: """Parse sitemap xml and load into a list of dicts.""" els = [] for url in soup.find_all("url"): loc = url.find("loc") if not loc: continue loc_text = loc.text.strip() if self.filter_urls and not any( re.match(r, loc_text) for r in self.filter_urls ): continue```
https://github.com/langchain-ai/langchain/issues/5699
https://github.com/langchain-ai/langchain/pull/5728
98dd6d068a67c2ac1c14785ea189c2e4c8882bf5
2dcda8a8aca4c427ff5716e6ac37ab0c24a7f2e5
"2023-06-04T22:49:54Z"
python
"2023-06-05T23:33:55Z"
langchain/document_loaders/sitemap.py
"""Loader that fetches a sitemap and loads those URLs.""" import itertools import re from typing import Any, Callable, Generator, Iterable, List, Optional from langchain.document_loaders.web_base import WebBaseLoader from langchain.schema import Document def _default_parsing_function(content: Any) -> str: return str(content.get_text()) def _default_meta_function(meta: dict, _content: Any) -> dict: return {"source": meta["loc"], **meta} def _batch_block(iterable: Iterable, size: int) -> Generator[List[dict], None, None]: it = iter(iterable) while item := list(itertools.islice(it, size)): yield item class SitemapLoader(WebBaseLoader): """Loader that fetches a sitemap and loads those URLs.""" def __init__( self, web_path: str, filter_urls: Optional[List[str]] = None, parsing_function: Optional[Callable] = None, blocksize: Optional[int] = None, blocknum: int = 0, meta_function: Optional[Callable] = None, is_local: bool = False, ): """Initialize with webpage path and optional filter URLs.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,699
Sitemap filters not working due to lack of stripping whitespace and newlines
https://github.com/hwchase17/langchain/blob/8d9e9e013ccfe72d839dcfa37a3f17c340a47a88/langchain/document_loaders/sitemap.py#L83 if ``` <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml"> <url> <loc> https://tatum.com/ </loc> <xhtml:link rel="alternate" hreflang="x-default" href="https://tatum.com/"/> </url> ``` then ` re.match(r, loc.text) for r in self.filter_urls` Comparison to filter here will be comparing against a value that includes those whitespaces and newlines. What worked for me: ``` def parse_sitemap(self, soup: Any) -> List[dict]: """Parse sitemap xml and load into a list of dicts.""" els = [] for url in soup.find_all("url"): loc = url.find("loc") if not loc: continue loc_text = loc.text.strip() if self.filter_urls and not any( re.match(r, loc_text) for r in self.filter_urls ): continue```
https://github.com/langchain-ai/langchain/issues/5699
https://github.com/langchain-ai/langchain/pull/5728
98dd6d068a67c2ac1c14785ea189c2e4c8882bf5
2dcda8a8aca4c427ff5716e6ac37ab0c24a7f2e5
"2023-06-04T22:49:54Z"
python
"2023-06-05T23:33:55Z"
langchain/document_loaders/sitemap.py
Args: web_path: url of the sitemap. can also be a local path filter_urls: list of strings or regexes that will be applied to filter the urls that are parsed and loaded parsing_function: Function to parse bs4.Soup output blocksize: number of sitemap locations per block blocknum: the number of the block that should be loaded - zero indexed meta_function: Function to parse bs4.Soup output for metadata remember when setting this method to also copy metadata["loc"] to metadata["source"] if you are using this field is_local: whether the sitemap is a local file """ if blocksize is not None and blocksize < 1: raise ValueError("Sitemap blocksize should be at least 1") if blocknum < 0: raise ValueError("Sitemap blocknum can not be lower then 0") try: import lxml except ImportError: raise ImportError( "lxml package not found, please install it with " "`pip install lxml`" ) super().__init__(web_path) self.filter_urls = filter_urls self.parsing_function = parsing_function or _default_parsing_function self.meta_function = meta_function or _default_meta_function self.blocksize = blocksize self.blocknum = blocknum self.is_local = is_local def parse_sitemap(self, soup: Any) -> List[dict]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,699
Sitemap filters not working due to lack of stripping whitespace and newlines
https://github.com/hwchase17/langchain/blob/8d9e9e013ccfe72d839dcfa37a3f17c340a47a88/langchain/document_loaders/sitemap.py#L83 if ``` <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml"> <url> <loc> https://tatum.com/ </loc> <xhtml:link rel="alternate" hreflang="x-default" href="https://tatum.com/"/> </url> ``` then ` re.match(r, loc.text) for r in self.filter_urls` Comparison to filter here will be comparing against a value that includes those whitespaces and newlines. What worked for me: ``` def parse_sitemap(self, soup: Any) -> List[dict]: """Parse sitemap xml and load into a list of dicts.""" els = [] for url in soup.find_all("url"): loc = url.find("loc") if not loc: continue loc_text = loc.text.strip() if self.filter_urls and not any( re.match(r, loc_text) for r in self.filter_urls ): continue```
https://github.com/langchain-ai/langchain/issues/5699
https://github.com/langchain-ai/langchain/pull/5728
98dd6d068a67c2ac1c14785ea189c2e4c8882bf5
2dcda8a8aca4c427ff5716e6ac37ab0c24a7f2e5
"2023-06-04T22:49:54Z"
python
"2023-06-05T23:33:55Z"
langchain/document_loaders/sitemap.py
"""Parse sitemap xml and load into a list of dicts.""" els = [] for url in soup.find_all("url"): loc = url.find("loc") if not loc: continue if self.filter_urls and not any( re.match(r, loc.text) for r in self.filter_urls ): continue els.append( { tag: prop.text for tag in ["loc", "lastmod", "changefreq", "priority"] if (prop := url.find(tag)) } ) for sitemap in soup.find_all("sitemap"): loc = sitemap.find("loc") if not loc: continue soup_child = self.scrape_all([loc.text], "xml")[0] els.extend(self.parse_sitemap(soup_child)) return els def load(self) -> List[Document]: """Load sitemap.""" if self.is_local:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,699
Sitemap filters not working due to lack of stripping whitespace and newlines
https://github.com/hwchase17/langchain/blob/8d9e9e013ccfe72d839dcfa37a3f17c340a47a88/langchain/document_loaders/sitemap.py#L83 if ``` <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml"> <url> <loc> https://tatum.com/ </loc> <xhtml:link rel="alternate" hreflang="x-default" href="https://tatum.com/"/> </url> ``` then ` re.match(r, loc.text) for r in self.filter_urls` Comparison to filter here will be comparing against a value that includes those whitespaces and newlines. What worked for me: ``` def parse_sitemap(self, soup: Any) -> List[dict]: """Parse sitemap xml and load into a list of dicts.""" els = [] for url in soup.find_all("url"): loc = url.find("loc") if not loc: continue loc_text = loc.text.strip() if self.filter_urls and not any( re.match(r, loc_text) for r in self.filter_urls ): continue```
https://github.com/langchain-ai/langchain/issues/5699
https://github.com/langchain-ai/langchain/pull/5728
98dd6d068a67c2ac1c14785ea189c2e4c8882bf5
2dcda8a8aca4c427ff5716e6ac37ab0c24a7f2e5
"2023-06-04T22:49:54Z"
python
"2023-06-05T23:33:55Z"
langchain/document_loaders/sitemap.py
try: import bs4 except ImportError: raise ImportError( "beautifulsoup4 package not found, please install it" " with `pip install beautifulsoup4`" ) fp = open(self.web_path) soup = bs4.BeautifulSoup(fp, "xml") else: soup = self.scrape("xml") els = self.parse_sitemap(soup) if self.blocksize is not None: elblocks = list(_batch_block(els, self.blocksize)) blockcount = len(elblocks) if blockcount - 1 < self.blocknum: raise ValueError( "Selected sitemap does not contain enough blocks for given blocknum" ) else: els = elblocks[self.blocknum] results = self.scrape_all([el["loc"].strip() for el in els if "loc" in el]) return [ Document( page_content=self.parsing_function(results[i]), metadata=self.meta_function(els[i], results[i]), ) for i in range(len(results)) ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Functionality for splitting text.""" from __future__ import annotations import copy import logging import re from abc import ABC, abstractmethod from dataclasses import dataclass from enum import Enum from typing import ( AbstractSet, Any, Callable, Collection, Iterable, List, Literal, Optional, Sequence, Type, TypeVar, Union, ) from langchain.docstore.document import Document from langchain.schema import BaseDocumentTransformer logger = logging.getLogger(__name__) TS = TypeVar("TS", bound="TextSplitter") def _split_text(text: str, separator: str, keep_separator: bool) -> List[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
if separator: if keep_separator: _splits = re.split(f"({separator})", text) splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)] if len(_splits) % 2 == 0: splits += _splits[-1:] splits = [_splits[0]] + splits else: splits = text.split(separator) else: splits = list(text) return [s for s in splits if s != ""] class TextSplitter(BaseDocumentTransformer, ABC):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Interface for splitting text into chunks.""" def __init__( self, chunk_size: int = 4000, chunk_overlap: int = 200, length_function: Callable[[str], int] = len, keep_separator: bool = False, ): """Create a new TextSplitter. Args: chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks length_function: Function that measures the length of given chunks keep_separator: Whether or not to keep the separator in the chunks """ if chunk_overlap > chunk_size: raise ValueError( f"Got a larger chunk overlap ({chunk_overlap}) than chunk size " f"({chunk_size}), should be smaller." ) self._chunk_size = chunk_size self._chunk_overlap = chunk_overlap self._length_function = length_function self._keep_separator = keep_separator @abstractmethod def split_text(self, text: str) -> List[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Split text into multiple components.""" def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = [] for i, text in enumerate(texts): for chunk in self.split_text(text): new_doc = Document( page_content=chunk, metadata=copy.deepcopy(_metadatas[i]) ) documents.append(new_doc) return documents def split_documents(self, documents: Iterable[Document]) -> List[Document]: """Split documents.""" texts, metadatas = [], [] for doc in documents: texts.append(doc.page_content) metadatas.append(doc.metadata) return self.create_documents(texts, metadatas=metadatas) def _join_docs(self, docs: List[str], separator: str) -> Optional[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
text = separator.join(docs) text = text.strip() if text == "": return None else: return text def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]: separator_len = self._length_function(separator) docs = [] current_doc: List[str] = [] total = 0 for d in splits: _len = self._length_function(d) if ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size ): if total > self._chunk_size: logger.warning( f"Created a chunk of size {total}, " f"which is longer than the specified {self._chunk_size}" ) if len(current_doc) > 0: doc = self._join_docs(current_doc, separator)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
if doc is not None: docs.append(doc) while total > self._chunk_overlap or ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0 ): total -= self._length_function(current_doc[0]) + ( separator_len if len(current_doc) > 1 else 0 ) current_doc = current_doc[1:] current_doc.append(d) total += _len + (separator_len if len(current_doc) > 1 else 0) doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) return docs @classmethod def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: """Text splitter that uses HuggingFace tokenizer to count length.""" try: from transformers import PreTrainedTokenizerBase if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( "Tokenizer received was not an instance of PreTrainedTokenizerBase" ) def _huggingface_tokenizer_length(text: str) -> int:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
return len(tokenizer.encode(text)) except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) return cls(length_function=_huggingface_tokenizer_length, **kwargs) @classmethod def from_tiktoken_encoder( cls: Type[TS], encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> TS: """Text splitter that uses tiktoken encoder to count length.""" try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate max_tokens_for_prompt. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) def _tiktoken_encoder(text: str) -> int:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
return len( enc.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special, ) ) if issubclass(cls, TokenTextSplitter): extra_kwargs = { "encoding_name": encoding_name, "model_name": model_name, "allowed_special": allowed_special, "disallowed_special": disallowed_special, } kwargs = {**kwargs, **extra_kwargs} return cls(length_function=_tiktoken_encoder, **kwargs) def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform sequence of documents by splitting them.""" return self.split_documents(list(documents)) async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a sequence of documents by splitting them.""" raise NotImplementedError class CharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Create a new TextSplitter.""" super().__init__(**kwargs) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = _split_text(text, self._separator, self._keep_separator) _separator = "" if self._keep_separator else self._separator return self._merge_splits(splits, _separator) @dataclass(frozen=True) class Tokenizer: chunk_overlap: int tokens_per_chunk: int decode: Callable[[list[int]], str] encode: Callable[[str], List[int]] def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]: """Split incoming text and return chunks.""" splits = [] input_ids = tokenizer.encode(text) start_idx = 0 cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] while start_idx < len(input_ids): splits.append(tokenizer.decode(chunk_ids)) start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] return splits class TokenTextSplitter(TextSplitter):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Implementation of splitting text that looks at tokens.""" def __init__( self, encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(**kwargs) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for TokenTextSplitter. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) self._tokenizer = enc self._allowed_special = allowed_special self._disallowed_special = disallowed_special def split_text(self, text: str) -> List[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
def _encode(_text: str) -> List[int]: return self._tokenizer.encode( _text, allowed_special=self._allowed_special, disallowed_special=self._disallowed_special, ) tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self._chunk_size, decode=self._tokenizer.decode, encode=_encode, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) class SentenceTransformersTokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, chunk_overlap: int = 50, model_name: str = "sentence-transformers/all-mpnet-base-v2", tokens_per_chunk: Optional[int] = None, **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(**kwargs, chunk_overlap=chunk_overlap) from transformers import AutoTokenizer self.model_name = model_name self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk) def _initialize_chunk_configuration(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
self, *, tokens_per_chunk: Optional[int] ) -> None: self.maximum_tokens_per_chunk = self.tokenizer.max_len_single_sentence if tokens_per_chunk is None: self.tokens_per_chunk = self.maximum_tokens_per_chunk else: self.tokens_per_chunk = tokens_per_chunk if self.tokens_per_chunk > self.maximum_tokens_per_chunk: raise ValueError( f"The token limit of the models '{self.model_name}'" f" is: {self.maximum_tokens_per_chunk}." f" Argument tokens_per_chunk={self.tokens_per_chunk}" f" > maximum token limit." ) def split_text(self, text: str) -> List[str]: def encode_strip_start_and_stop_token_ids(text: str) -> List[int]: return self._encode(text)[1:-1] tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self.tokens_per_chunk, decode=self.tokenizer.decode, encode=encode_strip_start_and_stop_token_ids, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) def count_tokens(self, *, text: str) -> int:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
return len(self._encode(text)) _max_length_equal_32_bit_integer = 2**32 def _encode(self, text: str) -> List[int]: token_ids_with_start_and_end_token_ids = self.tokenizer.encode( text, max_length=self._max_length_equal_32_bit_integer, truncation="do_not_truncate", ) return token_ids_with_start_and_end_token_ids class Language(str, Enum): CPP = "cpp" GO = "go" JAVA = "java" JS = "js" PHP = "php" PROTO = "proto" PYTHON = "python" RST = "rst" RUBY = "ruby" RUST = "rust" SCALA = "scala" SWIFT = "swift" MARKDOWN = "markdown" LATEX = "latex" HTML = "html" class RecursiveCharacterTextSplitter(TextSplitter):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. """ def __init__( self, separators: Optional[List[str]] = None, keep_separator: bool = True, **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(keep_separator=keep_separator, **kwargs) self._separators = separators or ["\n\n", "\n", " ", ""] def _split_text(self, text: str, separators: List[str]) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] separator = separators[-1] new_separators = None for i, _s in enumerate(separators): if _s == "": separator = _s break if _s in text: separator = _s new_separators = separators[i + 1 :] break splits = _split_text(text, separator, self._keep_separator)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
_good_splits = [] _separator = "" if self._keep_separator else separator for s in splits: if self._length_function(s) < self._chunk_size: _good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) _good_splits = [] if new_separators is None: final_chunks.append(s) else: other_info = self._split_text(s, new_separators) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) return final_chunks def split_text(self, text: str) -> List[str]: return self._split_text(text, self._separators) @classmethod def from_language( cls, language: Language, **kwargs: Any ) -> RecursiveCharacterTextSplitter: separators = cls.get_separators_for_language(language) return cls(separators=separators, **kwargs) @staticmethod def get_separators_for_language(language: Language) -> List[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
if language == Language.CPP: return [ "\nclass ", "\nvoid ", "\nint ", "\nfloat ", "\ndouble ", "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", "\n\n", "\n", " ", "", ] elif language == Language.GO: return [ "\nfunc ", "\nvar ", "\nconst ", "\ntype ", "\nif ",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"\nfor ", "\nswitch ", "\ncase ", "\n\n", "\n", " ", "", ] elif language == Language.JAVA: return [ "\nclass ", "\npublic ", "\nprotected ", "\nprivate ", "\nstatic ", "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", "\n\n", "\n", " ", "", ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
elif language == Language.JS: return [ "\nfunction ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", "\ndefault ", "\n\n", "\n", " ", "", ] elif language == Language.PHP: return [ "\nfunction ", "\nclass ", "\nif ", "\nforeach ",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"\nwhile ", "\ndo ", "\nswitch ", "\ncase ", "\n\n", "\n", " ", "", ] elif language == Language.PROTO: return [ "\nmessage ", "\nservice ", "\nenum ", "\noption ", "\nimport ", "\nsyntax ", "\n\n", "\n", " ", "", ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
elif language == Language.PYTHON: return [ "\nclass ", "\ndef ", "\n\tdef ", "\n\n", "\n", " ", "", ] elif language == Language.RST: return [ "\n===\n", "\n---\n", "\n***\n", "\n.. ", "\n\n", "\n", " ", "", ] elif language == Language.RUBY: return [ "\ndef ",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"\nclass ", "\nif ", "\nunless ", "\nwhile ", "\nfor ", "\ndo ", "\nbegin ", "\nrescue ", "\n\n", "\n", " ", "", ] elif language == Language.RUST: return [ "\nfn ", "\nconst ", "\nlet ", "\nif ", "\nwhile ", "\nfor ", "\nloop ", "\nmatch ", "\nconst ", "\n\n",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"\n", " ", "", ] elif language == Language.SCALA: return [ "\nclass ", "\nobject ", "\ndef ", "\nval ", "\nvar ", "\nif ", "\nfor ", "\nwhile ", "\nmatch ", "\ncase ", "\n\n", "\n", " ", "", ] elif language == Language.SWIFT: return [ "\nfunc ",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"\nclass ", "\nstruct ", "\nenum ", "\nif ", "\nfor ", "\nwhile ", "\ndo ", "\nswitch ", "\ncase ", "\n\n", "\n", " ", "", ] elif language == Language.MARKDOWN: return [ "\n## ", "\n### ", "\n#### ", "\n##### ", "\n###### ", "```\n\n",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"\n\n***\n\n", "\n\n---\n\n", "\n\n___\n\n", "\n\n", "\n", " ", "", ] elif language == Language.LATEX: return [ "\n\\chapter{", "\n\\section{", "\n\\subsection{", "\n\\subsubsection{", "\n\\begin{enumerate}", "\n\\begin{itemize}", "\n\\begin{description}", "\n\\begin{list}", "\n\\begin{quote}", "\n\\begin{quotation}", "\n\\begin{verse}", "\n\\begin{verbatim}", "\n\\begin{align}", "$$", "$",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
" ", "", ] elif language == Language.HTML: return [ "<body>", "<div>", "<p>", "<br>", "<li>", "<h1>", "<h2>", "<h3>", "<h4>", "<h5>", "<h6>", "<span>", "<table>", "<tr>", "<td>", "<th>", "<ul>", "<ol>", "<header>", "<footer>", "<nav>", "<head>",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"<style>", "<script>", "<meta>", "<title>", "", ] else: raise ValueError( f"Language {language} is not supported! " f"Please choose from {list(Language)}" ) class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) class SpacyTextSplitter(TextSplitter):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ): """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator) class PythonCodeTextSplitter(RecursiveCharacterTextSplitter):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
langchain/text_splitter.py
"""Attempts to split the text along Python syntax.""" def __init__(self, **kwargs: Any): """Initialize a PythonCodeTextSplitter.""" separators = self.get_separators_for_language(Language.PYTHON) super().__init__(separators=separators, **kwargs) class MarkdownTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Markdown-formatted headings.""" def __init__(self, **kwargs: Any): """Initialize a MarkdownTextSplitter.""" separators = self.get_separators_for_language(Language.MARKDOWN) super().__init__(separators=separators, **kwargs) class LatexTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Latex-formatted layout elements.""" def __init__(self, **kwargs: Any): """Initialize a LatexTextSplitter.""" separators = self.get_separators_for_language(Language.LATEX) super().__init__(separators=separators, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
"""Test text splitting functionality.""" import pytest from langchain.docstore.document import Document from langchain.text_splitter import ( CharacterTextSplitter, Language, PythonCodeTextSplitter, RecursiveCharacterTextSplitter, ) FAKE_PYTHON_TEXT = """ class Foo: def bar(): def foo(): def testing_func(): def bar(): """ def test_character_text_splitter() -> None: """Test splitting by character count.""" text = "foo bar baz 123" splitter = CharacterTextSplitter(separator=" ", chunk_size=7, chunk_overlap=3) output = splitter.split_text(text) expected_output = ["foo bar", "bar baz", "baz 123"] assert output == expected_output def test_character_text_splitter_empty_doc() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
"""Test splitting by character count doesn't create empty documents.""" text = "foo bar" splitter = CharacterTextSplitter(separator=" ", chunk_size=2, chunk_overlap=0) output = splitter.split_text(text) expected_output = ["foo", "bar"] assert output == expected_output def test_character_text_splitter_separtor_empty_doc() -> None: """Test edge cases are separators.""" text = "f b" splitter = CharacterTextSplitter(separator=" ", chunk_size=2, chunk_overlap=0) output = splitter.split_text(text) expected_output = ["f", "b"] assert output == expected_output def test_character_text_splitter_long() -> None: """Test splitting by character count on long words.""" text = "foo bar baz a a" splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=1) output = splitter.split_text(text) expected_output = ["foo", "bar", "baz", "a a"] assert output == expected_output def test_character_text_splitter_short_words_first() -> None: """Test splitting by character count when shorter words are first.""" text = "a a foo bar baz" splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=1) output = splitter.split_text(text) expected_output = ["a a", "foo", "bar", "baz"] assert output == expected_output def test_character_text_splitter_longer_words() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
"""Test splitting by characters when splits not found easily.""" text = "foo bar baz 123" splitter = CharacterTextSplitter(separator=" ", chunk_size=1, chunk_overlap=1) output = splitter.split_text(text) expected_output = ["foo", "bar", "baz", "123"] assert output == expected_output def test_character_text_splitting_args() -> None: """Test invalid arguments.""" with pytest.raises(ValueError): CharacterTextSplitter(chunk_size=2, chunk_overlap=4) def test_merge_splits() -> None: """Test merging splits with a given separator.""" splitter = CharacterTextSplitter(separator=" ", chunk_size=9, chunk_overlap=2) splits = ["foo", "bar", "baz"] expected_output = ["foo bar", "baz"] output = splitter._merge_splits(splits, separator=" ") assert output == expected_output def test_create_documents() -> None: """Test create documents method.""" texts = ["foo bar", "baz"] splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts) expected_docs = [ Document(page_content="foo"), Document(page_content="bar"), Document(page_content="baz"), ] assert docs == expected_docs def test_create_documents_with_metadata() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
"""Test create documents with metadata method.""" texts = ["foo bar", "baz"] splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts, [{"source": "1"}, {"source": "2"}]) expected_docs = [ Document(page_content="foo", metadata={"source": "1"}), Document(page_content="bar", metadata={"source": "1"}), Document(page_content="baz", metadata={"source": "2"}), ] assert docs == expected_docs def test_metadata_not_shallow() -> None: """Test that metadatas are not shallow.""" texts = ["foo bar"] splitter = CharacterTextSplitter(separator=" ", chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts, [{"source": "1"}]) expected_docs = [ Document(page_content="foo", metadata={"source": "1"}), Document(page_content="bar", metadata={"source": "1"}), ] assert docs == expected_docs docs[0].metadata["foo"] = 1 assert docs[0].metadata == {"source": "1", "foo": 1} assert docs[1].metadata == {"source": "1"} def test_iterative_text_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
"""Test iterative text splitter.""" text = """Hi.\n\nI'm Harrison.\n\nHow? Are? You?\nOkay then f f f f. This is a weird text to write, but gotta test the splittingggg some how. Bye!\n\n-H.""" splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=1) output = splitter.split_text(text) expected_output = [ "Hi.", "I'm", "Harrison.", "How? Are?", "You?", "Okay then", "f f f f.", "This is a", "weird", "text to", "write,", "but gotta", "test the", "splitting", "gggg", "some how.", "Bye!", "-H.", ] assert output == expected_output def test_split_documents() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
"""Test split_documents.""" splitter = CharacterTextSplitter(separator="", chunk_size=1, chunk_overlap=0) docs = [ Document(page_content="foo", metadata={"source": "1"}), Document(page_content="bar", metadata={"source": "2"}), Document(page_content="baz", metadata={"source": "1"}), ] expected_output = [ Document(page_content="f", metadata={"source": "1"}), Document(page_content="o", metadata={"source": "1"}), Document(page_content="o", metadata={"source": "1"}), Document(page_content="b", metadata={"source": "2"}), Document(page_content="a", metadata={"source": "2"}), Document(page_content="r", metadata={"source": "2"}), Document(page_content="b", metadata={"source": "1"}), Document(page_content="a", metadata={"source": "1"}), Document(page_content="z", metadata={"source": "1"}), ] assert splitter.split_documents(docs) == expected_output def test_python_text_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = PythonCodeTextSplitter(chunk_size=30, chunk_overlap=0) splits = splitter.split_text(FAKE_PYTHON_TEXT) split_0 = """class Foo:\n\n def bar():""" split_1 = """def foo():""" split_2 = """def testing_func():""" split_3 = """def bar():""" expected_splits = [split_0, split_1, split_2, split_3] assert splits == expected_splits CHUNK_SIZE = 16 def test_python_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.PYTHON, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ def hello_world(): print("Hello, World!") # Call the function hello_world() """ chunks = splitter.split_text(code) assert chunks == [ "def", "hello_world():", 'print("Hello,', 'World!")', "# Call the", "function", "hello_world()", ] def test_golang_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.GO, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ package main import "fmt" func helloWorld() { fmt.Println("Hello, World!") } func main() { helloWorld() } """ chunks = splitter.split_text(code) assert chunks == [ "package main", 'import "fmt"', "func", "helloWorld() {", 'fmt.Println("He', "llo,", 'World!")', "}", "func main() {", "helloWorld()", "}", ] def test_rst_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.RST, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ Sample Document =============== Section ------- This is the content of the section. Lists ----- - Item 1 - Item 2 - Item 3 """ chunks = splitter.split_text(code) assert chunks == [ "Sample Document", "===============", "Section", "-------", "This is the", "content of the", "section.", "Lists\n-----", "- Item 1", "- Item 2", "- Item 3", ] def test_proto_file_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.PROTO, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ syntax = "proto3"; package example; message Person { string name = 1; int32 age = 2; repeated string hobbies = 3; } """ chunks = splitter.split_text(code) assert chunks == [ "syntax =", '"proto3";', "package", "example;", "message Person", "{", "string name", "= 1;", "int32 age =", "2;", "repeated", "string hobbies", "= 3;", "}", ] def test_javascript_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.JS, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ function helloWorld() { console.log("Hello, World!"); } // Call the function helloWorld(); """ chunks = splitter.split_text(code) assert chunks == [ "function", "helloWorld() {", 'console.log("He', "llo,", 'World!");', "}", "// Call the", "function", "helloWorld();", ] def test_java_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.JAVA, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ public class HelloWorld { public static void main(String[] args) { System.out.println("Hello, World!"); } } """ chunks = splitter.split_text(code) assert chunks == [ "public class", "HelloWorld {", "public", "static void", "main(String[]", "args) {", "System.out.prin", 'tln("Hello,', 'World!");', "}\n}", ] def test_cpp_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.CPP, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ #include <iostream> int main() { std::cout << "Hello, World!" << std::endl; return 0; } """ chunks = splitter.split_text(code) assert chunks == [ "#include", "<iostream>", "int main() {", "std::cout", '<< "Hello,', 'World!" <<', "std::endl;", "return 0;\n}", ] def test_scala_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.SCALA, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ object HelloWorld { def main(args: Array[String]): Unit = { println("Hello, World!") } } """ chunks = splitter.split_text(code) assert chunks == [ "object", "HelloWorld {", "def", "main(args:", "Array[String]):", "Unit = {", 'println("Hello,', 'World!")', "}\n}", ] def test_ruby_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.RUBY, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ def hello_world puts "Hello, World!" end hello_world """ chunks = splitter.split_text(code) assert chunks == [ "def hello_world", 'puts "Hello,', 'World!"', "end", "hello_world", ] def test_php_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.PHP, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ <?php function hello_world() { echo "Hello, World!"; } hello_world(); ?> """ chunks = splitter.split_text(code) assert chunks == [ "<?php", "function", "hello_world() {", "echo", '"Hello,', 'World!";', "}", "hello_world();", "?>", ] def test_swift_code_splitter() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,614
MarkdownTextSplitter: multiple repeat at position 4 (line 3, column 2)
### System Info langchain 0.0.188 python 3.8.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.docstore.document import Document from langchain.text_splitter import MarkdownTextSplitter # of course this is part of a larger markdown document, but this is the minimal string to reproduce txt = "\n\n***\n\n" doc = Document(page_content=txt) markdown_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) splitted = markdown_splitter.split_documents([doc]) ``` ``` Traceback (most recent call last): File "t.py", line 9, in <module> splitted = markdown_splitter.split_documents([doc]) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 101, in split_documents return self.create_documents(texts, metadatas=metadatas) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 88, in create_documents for chunk in self.split_text(text): File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 369, in split_text return self._split_text(text, self._separators) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 346, in _split_text splits = _split_text(text, separator, self._keep_separator) File "/home/richard/.local/lib/python3.8/site-packages/langchain/text_splitter.py", line 37, in _split_text _splits = re.split(f"({separator})", text) File "/usr/lib/python3.8/re.py", line 231, in split return _compile(pattern, flags).split(string, maxsplit) File "/usr/lib/python3.8/re.py", line 304, in _compile p = sre_compile.compile(pattern, flags) File "/usr/lib/python3.8/sre_compile.py", line 764, in compile p = sre_parse.parse(p, flags) File "/usr/lib/python3.8/sre_parse.py", line 948, in parse p = _parse_sub(source, state, flags & SRE_FLAG_VERBOSE, 0) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 834, in _parse p = _parse_sub(source, state, sub_verbose, nested + 1) File "/usr/lib/python3.8/sre_parse.py", line 443, in _parse_sub itemsappend(_parse(source, state, verbose, nested + 1, File "/usr/lib/python3.8/sre_parse.py", line 671, in _parse raise source.error("multiple repeat", re.error: multiple repeat at position 4 (line 3, column 2) ``` ### Expected behavior splitted contains splitted markdown and no errors occur
https://github.com/langchain-ai/langchain/issues/5614
https://github.com/langchain-ai/langchain/pull/5625
25487fa5ee38710d2f0edd0672fdd83557b3d0da
d5b160821641df77df447e6dfce21b58fbb13d75
"2023-06-02T12:20:41Z"
python
"2023-06-05T23:40:26Z"
tests/unit_tests/test_text_splitter.py
splitter = RecursiveCharacterTextSplitter.from_language( Language.SWIFT, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ func helloWorld() { print("Hello, World!") } helloWorld() """ chunks = splitter.split_text(code) assert chunks == [ "func", "helloWorld() {", 'print("Hello,', 'World!")', "}", "helloWorld()", ] def test_rust_code_splitter() -> None: splitter = RecursiveCharacterTextSplitter.from_language( Language.RUST, chunk_size=CHUNK_SIZE, chunk_overlap=0 ) code = """ fn main() { println!("Hello, World!"); } """ chunks = splitter.split_text(code) assert chunks == ["fn main() {", 'println!("Hello', ",", 'World!");', "}"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,535
Add Tigris vectorstore for vector search
### Feature request Support Tigris as a vector search backend ### Motivation Tigris is a Serverless NoSQL Database and Search Platform and have their [vector search](https://www.tigrisdata.com/docs/concepts/vector-search/python/) product. It will be great option for users to use an integrated database and search product. ### Your contribution I can submit a a PR
https://github.com/langchain-ai/langchain/issues/5535
https://github.com/langchain-ai/langchain/pull/5703
38dabdbb3a900ae60e4b503cd48c26903b2d4673
233b52735e77121849b0fc9f8eaf6170222f0ac7
"2023-06-01T03:18:00Z"
python
"2023-06-06T03:39:16Z"
langchain/vectorstores/__init__.py
"""Wrappers on top of vector stores.""" from langchain.vectorstores.analyticdb import AnalyticDB from langchain.vectorstores.annoy import Annoy from langchain.vectorstores.atlas import AtlasDB from langchain.vectorstores.base import VectorStore from langchain.vectorstores.chroma import Chroma from langchain.vectorstores.clickhouse import Clickhouse, ClickhouseSettings from langchain.vectorstores.deeplake import DeepLake from langchain.vectorstores.docarray import DocArrayHnswSearch, DocArrayInMemorySearch from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch from langchain.vectorstores.faiss import FAISS from langchain.vectorstores.lancedb import LanceDB from langchain.vectorstores.milvus import Milvus from langchain.vectorstores.mongodb_atlas import MongoDBAtlasVectorSearch from langchain.vectorstores.myscale import MyScale, MyScaleSettings from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch from langchain.vectorstores.pinecone import Pinecone from langchain.vectorstores.qdrant import Qdrant from langchain.vectorstores.redis import Redis from langchain.vectorstores.sklearn import SKLearnVectorStore from langchain.vectorstores.supabase import SupabaseVectorStore from langchain.vectorstores.tair import Tair from langchain.vectorstores.typesense import Typesense from langchain.vectorstores.vectara import Vectara from langchain.vectorstores.weaviate import Weaviate from langchain.vectorstores.zilliz import Zilliz __all__ = [
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,535
Add Tigris vectorstore for vector search
### Feature request Support Tigris as a vector search backend ### Motivation Tigris is a Serverless NoSQL Database and Search Platform and have their [vector search](https://www.tigrisdata.com/docs/concepts/vector-search/python/) product. It will be great option for users to use an integrated database and search product. ### Your contribution I can submit a a PR
https://github.com/langchain-ai/langchain/issues/5535
https://github.com/langchain-ai/langchain/pull/5703
38dabdbb3a900ae60e4b503cd48c26903b2d4673
233b52735e77121849b0fc9f8eaf6170222f0ac7
"2023-06-01T03:18:00Z"
python
"2023-06-06T03:39:16Z"
langchain/vectorstores/__init__.py
"Redis", "ElasticVectorSearch", "FAISS", "VectorStore", "Pinecone", "Weaviate", "Qdrant", "Milvus", "Zilliz", "Chroma", "OpenSearchVectorSearch", "AtlasDB", "DeepLake", "Annoy", "MongoDBAtlasVectorSearch", "MyScale", "MyScaleSettings", "SKLearnVectorStore", "SupabaseVectorStore", "AnalyticDB", "Vectara", "Tair", "LanceDB", "DocArrayHnswSearch", "DocArrayInMemorySearch", "Typesense", "Clickhouse", "ClickhouseSettings", ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
"""Wrapper around OpenAI embedding models.""" from __future__ import annotations import logging from typing import ( Any, Callable, Dict, List, Literal, Optional, Sequence, Set, Tuple, Union, ) import numpy as np from pydantic import BaseModel, Extra, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
import openai min_seconds = 4 max_seconds = 10 return retry( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: return embeddings.client.create(**kwargs) return _embed_with_retry(**kwargs) class OpenAIEmbeddings(BaseModel, Embeddings):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
"""Wrapper around OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. The OPENAI_API_TYPE must be set to 'azure' and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example: .. code-block:: python import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080" from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
model="your-embeddings-model-name", api_base="https://your-endpoint.openai.azure.com/", api_type="azure", ) text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any model: str = "text-embedding-ada-002" deployment: str = model openai_api_version: Optional[str] = None openai_api_base: Optional[str] = None openai_api_type: Optional[str] = None openai_proxy: Optional[str] = None embedding_ctx_length: int = 8191 openai_api_key: Optional[str] = None openai_organization: Optional[str] = None allowed_special: Union[Literal["all"], Set[str]] = set() disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all" chunk_size: int = 1000 """Maximum number of texts to embed in each batch""" max_retries: int = 6 """Maximum number of retries to make when generating.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout in seconds for the OpenAPI request.""" headers: Any = None class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
"""Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
"OPENAI_PROXY", default="", ) if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): default_api_version = "2022-12-01" else: default_api_version = "" values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", default=default_api_version, ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Embedding except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def _invocation_params(self) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
openai_args = { "engine": self.deployment, "request_timeout": self.request_timeout, "headers": self.headers, "api_key": self.openai_api_key, "organization": self.openai_organization, "api_base": self.openai_api_base, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } if self.openai_proxy: openai_args["proxy"] = { "http": self.openai_proxy, "https": self.openai_proxy, } return openai_args def _get_len_safe_embeddings(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: embeddings: List[List[float]] = [[] for _ in range(len(texts))] try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) tokens = [] indices = [] encoding = tiktoken.model.encoding_for_model(self.model) for i, text in enumerate(texts): if self.model.endswith("001"): text = text.replace("\n", " ") token = encoding.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) for j in range(0, len(token), self.embedding_ctx_length): tokens += [token[j : j + self.embedding_ctx_length]]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
indices += [i] batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size for i in range(0, len(tokens), _chunk_size): response = embed_with_retry( self, input=tokens[i : i + _chunk_size], **self._invocation_params, ) batched_embeddings += [r["embedding"] for r in response["data"]] results: List[List[List[float]]] = [[] for _ in range(len(texts))] num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): results[indices[i]].append(batched_embeddings[i]) num_tokens_in_batch[indices[i]].append(len(tokens[i])) for i in range(len(texts)): _result = results[i] if len(_result) == 0: average = embed_with_retry( self, input="", engine=self.deployment, request_timeout=self.request_timeout, headers=self.headers, )["data"][0]["embedding"] else: average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings def _embedding_func(self, text: str, *, engine: str) -> List[float]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
"""Call out to OpenAI's embedding endpoint.""" if len(text) > self.embedding_ctx_length: return self._get_len_safe_embeddings([text], engine=engine)[0] else: if self.model.endswith("001"): text = text.replace("\n", " ") return embed_with_retry( self, input=[text], engine=engine, request_timeout=self.request_timeout, headers=self.headers, )["data"][0]["embedding"] def embed_documents(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,822
skip openai params when embedding
### System Info [email protected] I upgrade my langchain lib by execute pip install -U langchain, and the verion is 0.0.192ใ€‚But i found that openai.api_base not working. I use azure openai service as openai backend, the openai.api_base is very import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure out that: ![image](https://github.com/hwchase17/langchain/assets/6478745/cfa96128-da8a-4339-a92c-5e9031953763) openai params is moved inside _invocation_params function๏ผŒand used in some openai invoke: ![image](https://github.com/hwchase17/langchain/assets/6478745/e81e41e2-0ac0-4658-9d0d-57d2b347e026) ![image](https://github.com/hwchase17/langchain/assets/6478745/b5f4b9f5-5535-4026-9817-b1046751907a) but still some case not covered like: ![image](https://github.com/hwchase17/langchain/assets/6478745/2c907b5d-81f7-4bf2-9e46-8ab409f99e60) ### Who can help? @hwchase17 i have debug langchain and make a pr, plz review the pr:https://github.com/hwchase17/langchain/pull/5821, thanks ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install -U langchain 2. exeucte code next: ```python from langchain.embeddings import OpenAIEmbeddings def main(): embeddings = OpenAIEmbeddings( openai_api_key="OPENAI_API_KEY", openai_api_base="OPENAI_API_BASE", ) text = "This is a test document." query_result = embeddings.embed_query(text) print(query_result) if __name__ == "__main__": main() ``` ### Expected behavior same effect as [email protected]๏ผŒ
https://github.com/langchain-ai/langchain/issues/5822
https://github.com/langchain-ai/langchain/pull/5821
b3ae6bcd3f42ec85ee65eb29c922ab22a17a0210
5a207cce8f026e32c93bf271f80b73570d4b2844
"2023-06-07T08:36:23Z"
python
"2023-06-07T14:32:57Z"
langchain/embeddings/openai.py
self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ return self._get_len_safe_embeddings(texts, engine=self.deployment) def embed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embedding = self._embedding_func(text, engine=self.deployment) return embedding
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
"""Functionality for loading chains.""" import json from pathlib import Path from typing import Any, Union import yaml from langchain.chains.api.base import APIChain from langchain.chains.base import Chain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.chains.combine_documents.refine import RefineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.llm import LLMChain from langchain.chains.llm_bash.base import LLMBashChain from langchain.chains.llm_checker.base import LLMCheckerChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.llm_requests import LLMRequestsChain from langchain.chains.pal.base import PALChain from langchain.chains.qa_with_sources.base import QAWithSourcesChain from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain from langchain.chains.retrieval_qa.base import VectorDBQA from langchain.chains.sql_database.base import SQLDatabaseChain from langchain.llms.loading import load_llm, load_llm_from_config from langchain.prompts.loading import load_prompt, load_prompt_from_config from langchain.utilities.loading import try_load_from_hub URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/" def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
"""Load LLM chain from config dict.""" if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return LLMChain(llm=llm, prompt=prompt, **config) def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
"""Load hypothetical document embedder chain from config dict.""" if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "embeddings" in kwargs: embeddings = kwargs.pop("embeddings") else: raise ValueError("`embeddings` must be present.") return HypotheticalDocumentEmbedder( llm_chain=llm_chain, base_embeddings=embeddings, **config ) def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) else: raise ValueError( "One of `document_prompt` or `document_prompt_path` must be present." ) return StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, **config ) def _load_map_reduce_documents_chain( config: dict, **kwargs: Any ) -> MapReduceDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "combine_document_chain" in config: combine_document_chain_config = config.pop("combine_document_chain") combine_document_chain = load_chain_from_config(combine_document_chain_config) elif "combine_document_chain_path" in config: combine_document_chain = load_chain(config.pop("combine_document_chain_path")) else: raise ValueError( "One of `combine_document_chain` or " "`combine_document_chain_path` must be present." ) if "collapse_document_chain" in config: collapse_document_chain_config = config.pop("collapse_document_chain") if collapse_document_chain_config is None: collapse_document_chain = None else: collapse_document_chain = load_chain_from_config( collapse_document_chain_config ) elif "collapse_document_chain_path" in config: collapse_document_chain = load_chain(config.pop("collapse_document_chain_path")) return MapReduceDocumentsChain( llm_chain=llm_chain, combine_document_chain=combine_document_chain, collapse_document_chain=collapse_document_chain, **config, ) def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) if llm_chain: return LLMBashChain(llm_chain=llm_chain, prompt=prompt, **config) else: return LLMBashChain(llm=llm, prompt=prompt, **config) def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "create_draft_answer_prompt" in config: create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt") create_draft_answer_prompt = load_prompt_from_config( create_draft_answer_prompt_config ) elif "create_draft_answer_prompt_path" in config: create_draft_answer_prompt = load_prompt(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
config.pop("create_draft_answer_prompt_path") ) if "list_assertions_prompt" in config: list_assertions_prompt_config = config.pop("list_assertions_prompt") list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config) elif "list_assertions_prompt_path" in config: list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path")) if "check_assertions_prompt" in config: check_assertions_prompt_config = config.pop("check_assertions_prompt") check_assertions_prompt = load_prompt_from_config( check_assertions_prompt_config ) elif "check_assertions_prompt_path" in config: check_assertions_prompt = load_prompt( config.pop("check_assertions_prompt_path") ) if "revised_answer_prompt" in config: revised_answer_prompt_config = config.pop("revised_answer_prompt") revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config) elif "revised_answer_prompt_path" in config: revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path")) return LLMCheckerChain( llm=llm, create_draft_answer_prompt=create_draft_answer_prompt, list_assertions_prompt=list_assertions_prompt, check_assertions_prompt=check_assertions_prompt, revised_answer_prompt=revised_answer_prompt, **config, ) def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) if llm_chain: return LLMMathChain(llm_chain=llm_chain, prompt=prompt, **config) else: return LLMMathChain(llm=llm, prompt=prompt, **config) def _load_map_rerank_documents_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
config: dict, **kwargs: Any ) -> MapRerankDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") return MapRerankDocumentsChain(llm_chain=llm_chain, **config) def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") if llm_chain: return PALChain(llm_chain=llm_chain, prompt=prompt, **config) else: return PALChain(llm=llm, prompt=prompt, **config) def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
if "initial_llm_chain" in config: initial_llm_chain_config = config.pop("initial_llm_chain") initial_llm_chain = load_chain_from_config(initial_llm_chain_config) elif "initial_llm_chain_path" in config: initial_llm_chain = load_chain(config.pop("initial_llm_chain_path")) else: raise ValueError( "One of `initial_llm_chain` or `initial_llm_chain_config` must be present." ) if "refine_llm_chain" in config: refine_llm_chain_config = config.pop("refine_llm_chain") refine_llm_chain = load_chain_from_config(refine_llm_chain_config) elif "refine_llm_chain_path" in config: refine_llm_chain = load_chain(config.pop("refine_llm_chain_path")) else: raise ValueError( "One of `refine_llm_chain` or `refine_llm_chain_config` must be present." ) if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) return RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, **config, ) def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config) def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain: if "database" in kwargs: database = kwargs.pop("database") else: raise ValueError("`database` must be present.") if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) else: prompt = None return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config) def _load_vector_db_qa_with_sources_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
config: dict, **kwargs: Any ) -> VectorDBQAWithSourcesChain: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQAWithSourcesChain( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQA( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_api_chain(config: dict, **kwargs: Any) -> APIChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
if "api_request_chain" in config: api_request_chain_config = config.pop("api_request_chain") api_request_chain = load_chain_from_config(api_request_chain_config) elif "api_request_chain_path" in config: api_request_chain = load_chain(config.pop("api_request_chain_path")) else: raise ValueError( "One of `api_request_chain` or `api_request_chain_path` must be present." ) if "api_answer_chain" in config: api_answer_chain_config = config.pop("api_answer_chain") api_answer_chain = load_chain_from_config(api_answer_chain_config) elif "api_answer_chain_path" in config: api_answer_chain = load_chain(config.pop("api_answer_chain_path")) else: raise ValueError( "One of `api_answer_chain` or `api_answer_chain_path` must be present." ) if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") else: raise ValueError("`requests_wrapper` must be present.") return APIChain( api_request_chain=api_request_chain, api_answer_chain=api_answer_chain, requests_wrapper=requests_wrapper, **config, ) def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") return LLMRequestsChain( llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config ) else: return LLMRequestsChain(llm_chain=llm_chain, **config) type_to_loader_dict = { "api_chain": _load_api_chain, "hyde_chain": _load_hyde_chain, "llm_chain": _load_llm_chain, "llm_bash_chain": _load_llm_bash_chain, "llm_checker_chain": _load_llm_checker_chain,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
"llm_math_chain": _load_llm_math_chain, "llm_requests_chain": _load_llm_requests_chain, "pal_chain": _load_pal_chain, "qa_with_sources_chain": _load_qa_with_sources_chain, "stuff_documents_chain": _load_stuff_documents_chain, "map_reduce_documents_chain": _load_map_reduce_documents_chain, "map_rerank_documents_chain": _load_map_rerank_documents_chain, "refine_documents_chain": _load_refine_documents_chain, "sql_database_chain": _load_sql_database_chain, "vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain, "vector_db_qa": _load_vector_db_qa, } def load_chain_from_config(config: dict, **kwargs: Any) -> Chain: """Load chain from Config Dict.""" if "_type" not in config: raise ValueError("Must specify a chain Type in config") config_type = config.pop("_type") if config_type not in type_to_loader_dict: raise ValueError(f"Loading {config_type} chain not supported") chain_loader = type_to_loader_dict[config_type] return chain_loader(config, **kwargs) def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain: """Unified method for loading a chain from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs ): return hub_result else: return _load_chain_from_file(path, **kwargs) def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/loading.py
"""Load chain from file.""" if isinstance(file, str): file_path = Path(file) else: file_path = file if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") if "verbose" in kwargs: config["verbose"] = kwargs.pop("verbose") if "memory" in kwargs: config["memory"] = kwargs.pop("memory") return load_chain_from_config(config, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Chain for question-answering against a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR from langchain.prompts import PromptTemplate from langchain.schema import BaseRetriever, Document from langchain.vectorstores.base import VectorStore class BaseRetrievalQA(Chain):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" output_key: str = "result" return_source_documents: bool = False """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Initialize from LLM.""" _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) llm_chain = LLMChain(llm=llm, prompt=_prompt) document_prompt = PromptTemplate( input_variables=["page_content"], template="Context:\n{page_content}" ) combine_documents_chain = StuffDocumentsChain( llm_chain=llm_chain, document_variable_name="context", document_prompt=document_prompt, ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @classmethod def from_chain_type(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Load chain from chain type.""" _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @abstractmethod def _get_docs(self, question: str) -> List[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Get documents to do question answering over.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = self._get_docs(question) answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} @abstractmethod async def _aget_docs(self, question: str) -> List[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Get documents to do question answering over.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = await self._aget_docs(question) answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} class RetrievalQA(BaseRetrievalQA):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Chain for question-answering against an index. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS from langchain.vectorstores.base import VectorStoreRetriever retriever = VectorStoreRetriever(vectorstore=FAISS(...)) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever) """ retriever: BaseRetriever = Field(exclude=True) def _get_docs(self, question: str) -> List[Document]: return self.retriever.get_relevant_documents(question) async def _aget_docs(self, question: str) -> List[Document]: return await self.retriever.aget_relevant_documents(question) class VectorDBQA(BaseRetrievalQA):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Chain for question-answering against a vector database.""" vectorstore: VectorStore = Field(exclude=True, alias="vectorstore") """Vector Database to connect to.""" k: int = 4 """Number of documents to query for.""" search_type: str = "similarity" """Search type to use over vectorstore. `similarity` or `mmr`.""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQA` is deprecated - " "please use `from langchain.chains import RetrievalQA`" ) return values @root_validator() def validate_search_type(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,983
RetrievalQA & RetrievalQAWithSourcesChain chains cannot be serialized/saved or loaded
`VectorDBQA` is being deprecated in favour of `RetrievalQA` & similarly, `VectorDBQAWithSourcesChain` is being deprecated for `RetrievalQAWithSourcesChain`. Currently, `VectorDBQA` & `VectorDBQAWithSourcesChain` chains can be serialized using `vec_chain.save(...)` because they have `_chain_type` property - https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/qa_with_sources/vector_db.py#L67 However, `RetrievalQA` & `RetrievalQAWithSourcesChain` do not have that property and raise the following error when trying to save with `ret_chain.save("ret_chain.yaml")`: ``` File [~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45](https://file+.vscode-resource.vscode-cdn.net/Users/smohammed/Development/hackweek-internalqa/~/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py:45), in Chain._chain_type(self) [43](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=42) @property [44](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=43) def _chain_type(self) -> str: ---> [45](file:///Users/smohammed/.pyenv/versions/3.8.15/envs/internalqa/lib/python3.8/site-packages/langchain/chains/base.py?line=44) raise NotImplementedError("Saving not supported for this chain type.") NotImplementedError: Saving not supported for this chain type. ``` There isn't any functions to support loading RetrievalQA either, unlike the VectorQA counterparts: https://github.com/hwchase17/langchain/blob/3bd5a99b835fa320d02aa733cb0c0bc4a87724fa/langchain/chains/loading.py#L313-L356
https://github.com/langchain-ai/langchain/issues/3983
https://github.com/langchain-ai/langchain/pull/5818
b93638ef1ef683dfbb46e8e7654e96325324a98c
5518f24ec38654510bada81025fe4e96c26556a7
"2023-05-02T16:17:48Z"
python
"2023-06-08T04:07:13Z"
langchain/chains/retrieval_qa/base.py
"""Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def _get_docs(self, question: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( question, k=self.k, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_docs(self, question: str) -> List[Document]: raise NotImplementedError("VectorDBQA does not support async") @property def _chain_type(self) -> str: """Return the chain type.""" return "vector_db_qa"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,713
Inference parameters for Bedrock titan models not working
### System Info LangChain version 0.0.190 Python 3.9 ### Who can help? @seanpmorgan @3coins ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried the following to provide the `temperature` and `maxTokenCount` parameters when using the `Bedrock` class for the `amazon.titan-tg1-large` model. ``` import boto3 import botocore from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from langchain.prompts import PromptTemplate from langchain.embeddings import BedrockEmbeddings prompt = PromptTemplate( input_variables=["text"], template="{text}", ) llm = Bedrock(model_id="amazon.titan-tg1-large") llmchain = LLMChain(llm=llm, prompt=prompt) llm.model_kwargs = {'temperature': 0.3, "maxTokenCount": 512} text = "Write a blog explaining Generative AI in ELI5 style." response = llmchain.run(text=text) print(f"prompt={text}\n\nresponse={response}") ``` This results in the following exception ``` ValueError: Error raised by bedrock service: An error occurred (ValidationException) when calling the InvokeModel operation: The provided inference configurations are invalid ``` This happens because https://github.com/hwchase17/langchain/blob/d0d89d39efb5f292f72e70973f3b70c4ca095047/langchain/llms/bedrock.py#L20 passes these params as key value pairs rather than putting them in the `textgenerationConfig` structure as the Titan model expects them to be, The proposed fix is as follows: ``` def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body ``` ``` ### Expected behavior Support the inference config parameters.
https://github.com/langchain-ai/langchain/issues/5713
https://github.com/langchain-ai/langchain/pull/5896
767fa91eae3455050d85a594fededddff3311dbe
a6ebffb69504576a805f3b9f09732ad344751b89
"2023-06-05T06:48:57Z"
python
"2023-06-08T21:16:01Z"
langchain/llms/bedrock.py
import json from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class LLMInputOutputAdapter: """Adapter class to prepare the inputs from Langchain to a format that LLM model expects. Also, provides helper function to extract the generated text from the model response.""" @classmethod def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body @classmethod def prepare_output(cls, provider: str, response: Any) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,713
Inference parameters for Bedrock titan models not working
### System Info LangChain version 0.0.190 Python 3.9 ### Who can help? @seanpmorgan @3coins ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried the following to provide the `temperature` and `maxTokenCount` parameters when using the `Bedrock` class for the `amazon.titan-tg1-large` model. ``` import boto3 import botocore from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from langchain.prompts import PromptTemplate from langchain.embeddings import BedrockEmbeddings prompt = PromptTemplate( input_variables=["text"], template="{text}", ) llm = Bedrock(model_id="amazon.titan-tg1-large") llmchain = LLMChain(llm=llm, prompt=prompt) llm.model_kwargs = {'temperature': 0.3, "maxTokenCount": 512} text = "Write a blog explaining Generative AI in ELI5 style." response = llmchain.run(text=text) print(f"prompt={text}\n\nresponse={response}") ``` This results in the following exception ``` ValueError: Error raised by bedrock service: An error occurred (ValidationException) when calling the InvokeModel operation: The provided inference configurations are invalid ``` This happens because https://github.com/hwchase17/langchain/blob/d0d89d39efb5f292f72e70973f3b70c4ca095047/langchain/llms/bedrock.py#L20 passes these params as key value pairs rather than putting them in the `textgenerationConfig` structure as the Titan model expects them to be, The proposed fix is as follows: ``` def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body ``` ``` ### Expected behavior Support the inference config parameters.
https://github.com/langchain-ai/langchain/issues/5713
https://github.com/langchain-ai/langchain/pull/5896
767fa91eae3455050d85a594fededddff3311dbe
a6ebffb69504576a805f3b9f09732ad344751b89
"2023-06-05T06:48:57Z"
python
"2023-06-08T21:16:01Z"
langchain/llms/bedrock.py
if provider == "anthropic": response_body = json.loads(response.get("body").read().decode()) return response_body.get("completion") else: response_body = json.loads(response.get("body").read()) if provider == "ai21": return response_body.get("completions")[0].get("data").get("text") else: return response_body.get("results")[0].get("outputText") class Bedrock(LLM): """LLM provider to invoke Bedrock models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """ """
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,713
Inference parameters for Bedrock titan models not working
### System Info LangChain version 0.0.190 Python 3.9 ### Who can help? @seanpmorgan @3coins ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried the following to provide the `temperature` and `maxTokenCount` parameters when using the `Bedrock` class for the `amazon.titan-tg1-large` model. ``` import boto3 import botocore from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from langchain.prompts import PromptTemplate from langchain.embeddings import BedrockEmbeddings prompt = PromptTemplate( input_variables=["text"], template="{text}", ) llm = Bedrock(model_id="amazon.titan-tg1-large") llmchain = LLMChain(llm=llm, prompt=prompt) llm.model_kwargs = {'temperature': 0.3, "maxTokenCount": 512} text = "Write a blog explaining Generative AI in ELI5 style." response = llmchain.run(text=text) print(f"prompt={text}\n\nresponse={response}") ``` This results in the following exception ``` ValueError: Error raised by bedrock service: An error occurred (ValidationException) when calling the InvokeModel operation: The provided inference configurations are invalid ``` This happens because https://github.com/hwchase17/langchain/blob/d0d89d39efb5f292f72e70973f3b70c4ca095047/langchain/llms/bedrock.py#L20 passes these params as key value pairs rather than putting them in the `textgenerationConfig` structure as the Titan model expects them to be, The proposed fix is as follows: ``` def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body ``` ``` ### Expected behavior Support the inference config parameters.
https://github.com/langchain-ai/langchain/issues/5713
https://github.com/langchain-ai/langchain/pull/5896
767fa91eae3455050d85a594fededddff3311dbe
a6ebffb69504576a805f3b9f09732ad344751b89
"2023-06-05T06:48:57Z"
python
"2023-06-08T21:16:01Z"
langchain/llms/bedrock.py
Example: .. code-block:: python from bedrock_langchain.bedrock_llm import BedrockLLM llm = BedrockLLM( credentials_profile_name="default", model_id="amazon.titan-tg1-large" ) """ client: Any region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """ credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ model_id: str """Id of the model to call, e.g., amazon.titan-tg1-large, this is equivalent to the modelId property in the list-foundation-models api""" model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,713
Inference parameters for Bedrock titan models not working
### System Info LangChain version 0.0.190 Python 3.9 ### Who can help? @seanpmorgan @3coins ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried the following to provide the `temperature` and `maxTokenCount` parameters when using the `Bedrock` class for the `amazon.titan-tg1-large` model. ``` import boto3 import botocore from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from langchain.prompts import PromptTemplate from langchain.embeddings import BedrockEmbeddings prompt = PromptTemplate( input_variables=["text"], template="{text}", ) llm = Bedrock(model_id="amazon.titan-tg1-large") llmchain = LLMChain(llm=llm, prompt=prompt) llm.model_kwargs = {'temperature': 0.3, "maxTokenCount": 512} text = "Write a blog explaining Generative AI in ELI5 style." response = llmchain.run(text=text) print(f"prompt={text}\n\nresponse={response}") ``` This results in the following exception ``` ValueError: Error raised by bedrock service: An error occurred (ValidationException) when calling the InvokeModel operation: The provided inference configurations are invalid ``` This happens because https://github.com/hwchase17/langchain/blob/d0d89d39efb5f292f72e70973f3b70c4ca095047/langchain/llms/bedrock.py#L20 passes these params as key value pairs rather than putting them in the `textgenerationConfig` structure as the Titan model expects them to be, The proposed fix is as follows: ``` def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body ``` ``` ### Expected behavior Support the inference config parameters.
https://github.com/langchain-ai/langchain/issues/5713
https://github.com/langchain-ai/langchain/pull/5896
767fa91eae3455050d85a594fededddff3311dbe
a6ebffb69504576a805f3b9f09732ad344751b89
"2023-06-05T06:48:57Z"
python
"2023-06-08T21:16:01Z"
langchain/llms/bedrock.py
"""Validate that AWS credentials to and python package exists in environment.""" if values["client"] is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: session = boto3.Session() client_params = {} if values["region_name"]: client_params["region_name"] = values["region_name"] values["client"] = session.client("bedrock", **client_params) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e return values @property def _identifying_params(self) -> Mapping[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,713
Inference parameters for Bedrock titan models not working
### System Info LangChain version 0.0.190 Python 3.9 ### Who can help? @seanpmorgan @3coins ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried the following to provide the `temperature` and `maxTokenCount` parameters when using the `Bedrock` class for the `amazon.titan-tg1-large` model. ``` import boto3 import botocore from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from langchain.prompts import PromptTemplate from langchain.embeddings import BedrockEmbeddings prompt = PromptTemplate( input_variables=["text"], template="{text}", ) llm = Bedrock(model_id="amazon.titan-tg1-large") llmchain = LLMChain(llm=llm, prompt=prompt) llm.model_kwargs = {'temperature': 0.3, "maxTokenCount": 512} text = "Write a blog explaining Generative AI in ELI5 style." response = llmchain.run(text=text) print(f"prompt={text}\n\nresponse={response}") ``` This results in the following exception ``` ValueError: Error raised by bedrock service: An error occurred (ValidationException) when calling the InvokeModel operation: The provided inference configurations are invalid ``` This happens because https://github.com/hwchase17/langchain/blob/d0d89d39efb5f292f72e70973f3b70c4ca095047/langchain/llms/bedrock.py#L20 passes these params as key value pairs rather than putting them in the `textgenerationConfig` structure as the Titan model expects them to be, The proposed fix is as follows: ``` def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body ``` ``` ### Expected behavior Support the inference config parameters.
https://github.com/langchain-ai/langchain/issues/5713
https://github.com/langchain-ai/langchain/pull/5896
767fa91eae3455050d85a594fededddff3311dbe
a6ebffb69504576a805f3b9f09732ad344751b89
"2023-06-05T06:48:57Z"
python
"2023-06-08T21:16:01Z"
langchain/llms/bedrock.py
"""Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "amazon_bedrock" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,713
Inference parameters for Bedrock titan models not working
### System Info LangChain version 0.0.190 Python 3.9 ### Who can help? @seanpmorgan @3coins ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried the following to provide the `temperature` and `maxTokenCount` parameters when using the `Bedrock` class for the `amazon.titan-tg1-large` model. ``` import boto3 import botocore from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from langchain.prompts import PromptTemplate from langchain.embeddings import BedrockEmbeddings prompt = PromptTemplate( input_variables=["text"], template="{text}", ) llm = Bedrock(model_id="amazon.titan-tg1-large") llmchain = LLMChain(llm=llm, prompt=prompt) llm.model_kwargs = {'temperature': 0.3, "maxTokenCount": 512} text = "Write a blog explaining Generative AI in ELI5 style." response = llmchain.run(text=text) print(f"prompt={text}\n\nresponse={response}") ``` This results in the following exception ``` ValueError: Error raised by bedrock service: An error occurred (ValidationException) when calling the InvokeModel operation: The provided inference configurations are invalid ``` This happens because https://github.com/hwchase17/langchain/blob/d0d89d39efb5f292f72e70973f3b70c4ca095047/langchain/llms/bedrock.py#L20 passes these params as key value pairs rather than putting them in the `textgenerationConfig` structure as the Titan model expects them to be, The proposed fix is as follows: ``` def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body ``` ``` ### Expected behavior Support the inference config parameters.
https://github.com/langchain-ai/langchain/issues/5713
https://github.com/langchain-ai/langchain/pull/5896
767fa91eae3455050d85a594fededddff3311dbe
a6ebffb69504576a805f3b9f09732ad344751b89
"2023-06-05T06:48:57Z"
python
"2023-06-08T21:16:01Z"
langchain/llms/bedrock.py
) -> str: """Call out to Bedrock service model. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} provider = self.model_id.split(".")[0] input_body = LLMInputOutputAdapter.prepare_input( provider, prompt, _model_kwargs ) body = json.dumps(input_body) accept = "application/json" contentType = "application/json" try: response = self.client.invoke_model( body=body, modelId=self.model_id, accept=accept, contentType=contentType ) text = LLMInputOutputAdapter.prepare_output(provider, response) except Exception as e: raise ValueError(f"Error raised by bedrock service: {e}") if stop is not None: text = enforce_stop_tokens(text, stop) return text