Datasets:
Upload 4 files
Browse filesuploaded some new files:
- clean_up_csv.py to clean up the original allignment csv for easier use
- libris2s_dataset.py: a pytorch dataset class as a starting point for easy loading
- a notebook to test the dataset class
- clean_up_csv.py +42 -0
- data_example.ipynb +0 -0
- libris2s_dataset.py +95 -0
- requirements.txt +8 -5
clean_up_csv.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
|
4 |
+
# Read the original CSV
|
5 |
+
alignment = pd.read_csv("alignments/all_de_en_alligned.csv", index_col=0)
|
6 |
+
|
7 |
+
# Create mapping of book numbers to English folder names
|
8 |
+
en_folder_map = {}
|
9 |
+
for folder in os.listdir("EN"):
|
10 |
+
book_id = folder.split('.')[0]
|
11 |
+
en_folder_map[book_id] = folder
|
12 |
+
|
13 |
+
# Function to construct full German audio path
|
14 |
+
def get_de_path(row):
|
15 |
+
if "67" in row['book']:
|
16 |
+
return os.path.join("DE","67.frankenstein_de_1211_librivox_newly_alligned", "sentence_level_audio", row['DE_audio'])
|
17 |
+
return os.path.join("DE", row['book'], "sentence_level_audio", row['DE_audio'])
|
18 |
+
|
19 |
+
# Function to construct full English audio path
|
20 |
+
def get_en_path(row):
|
21 |
+
book_id = str(row['book_id'])
|
22 |
+
if book_id in en_folder_map:
|
23 |
+
return os.path.join("EN", en_folder_map[book_id], "sentence_level_audio", row['EN_audio'] + ".wav")
|
24 |
+
return None
|
25 |
+
|
26 |
+
# Update paths in the DataFrame
|
27 |
+
alignment['DE_audio'] = alignment.apply(get_de_path, axis=1)
|
28 |
+
alignment['EN_audio'] = alignment.apply(get_en_path, axis=1)
|
29 |
+
|
30 |
+
# Drop the 'book' column since paths are now complete
|
31 |
+
alignment = alignment.drop('book', axis=1)
|
32 |
+
|
33 |
+
# Drop rows where EN_audio path couldn't be constructed (book_id not found)
|
34 |
+
alignment = alignment.dropna(subset=['EN_audio'])
|
35 |
+
|
36 |
+
# Save the cleaned up csv
|
37 |
+
alignment.to_csv("alignments/all_de_en_alligned_cleaned.csv", index=False)
|
38 |
+
|
39 |
+
print(f"Saved cleaned CSV with {len(alignment)} rows")
|
40 |
+
print("\nFirst few rows of cleaned CSV:")
|
41 |
+
print(alignment.head())
|
42 |
+
|
data_example.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
libris2s_dataset.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pandas as pd
|
4 |
+
import torchaudio
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from typing import List, Optional
|
7 |
+
|
8 |
+
class Libris2sDataset(torch.utils.data.Dataset):
|
9 |
+
def __init__(self, data_dir: str, split: str, transform=None, book_ids: Optional[List[str]]=None):
|
10 |
+
"""
|
11 |
+
Initialize the LibriS2S dataset.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
data_dir (str): Root directory containing the dataset
|
15 |
+
split (str): Path to the CSV file containing alignments
|
16 |
+
transform (callable, optional): Optional transform to be applied on the audio
|
17 |
+
book_ids (List[str], optional): List of book IDs to include. If None, includes all books.
|
18 |
+
Example: ['9', '10', '11'] will only load these books.
|
19 |
+
"""
|
20 |
+
self.data_dir = data_dir
|
21 |
+
self.transform = transform
|
22 |
+
self.book_ids = set(book_ids) if book_ids is not None else None
|
23 |
+
|
24 |
+
# Load alignment CSV file
|
25 |
+
self.alignments = pd.read_csv(split)
|
26 |
+
|
27 |
+
# Create lists to store paths and metadata
|
28 |
+
self.de_audio_paths = []
|
29 |
+
self.en_audio_paths = []
|
30 |
+
self.de_transcripts = []
|
31 |
+
self.en_transcripts = []
|
32 |
+
self.alignment_scores = []
|
33 |
+
|
34 |
+
# Process each entry in the alignments
|
35 |
+
for _, row in self.alignments.iterrows():
|
36 |
+
# Get book ID from the path
|
37 |
+
book_id = str(row['book_id'])
|
38 |
+
|
39 |
+
# Skip if book_id is not in the filtered set
|
40 |
+
if self.book_ids is not None and book_id not in self.book_ids:
|
41 |
+
continue
|
42 |
+
|
43 |
+
# Get full paths from CSV
|
44 |
+
de_audio = os.path.join(data_dir, row['DE_audio'])
|
45 |
+
en_audio = os.path.join(data_dir, row['EN_audio'])
|
46 |
+
|
47 |
+
# Only add if both audio files exist
|
48 |
+
if os.path.exists(de_audio) and os.path.exists(en_audio):
|
49 |
+
self.de_audio_paths.append(de_audio)
|
50 |
+
self.en_audio_paths.append(en_audio)
|
51 |
+
self.de_transcripts.append(row['DE_transcript'])
|
52 |
+
self.en_transcripts.append(row['EN_transcript'])
|
53 |
+
self.alignment_scores.append(float(row['score']))
|
54 |
+
else:
|
55 |
+
print(f"Skipping {de_audio} or {en_audio} because they don't exist")
|
56 |
+
|
57 |
+
def __len__(self):
|
58 |
+
"""Return the number of items in the dataset."""
|
59 |
+
return len(self.de_audio_paths)
|
60 |
+
|
61 |
+
def __getitem__(self, idx):
|
62 |
+
"""
|
63 |
+
Get a single item from the dataset.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
idx (int): Index of the item to get
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
dict: A dictionary containing:
|
70 |
+
- de_audio: German audio waveform
|
71 |
+
- de_sample_rate: German audio sample rate
|
72 |
+
- en_audio: English audio waveform
|
73 |
+
- en_sample_rate: English audio sample rate
|
74 |
+
- de_transcript: German transcript
|
75 |
+
- en_transcript: English transcript
|
76 |
+
- alignment_score: Alignment score between the pair
|
77 |
+
"""
|
78 |
+
# Load audio files
|
79 |
+
de_audio, de_sr = torchaudio.load(self.de_audio_paths[idx])
|
80 |
+
en_audio, en_sr = torchaudio.load(self.en_audio_paths[idx])
|
81 |
+
|
82 |
+
# Apply transforms if specified
|
83 |
+
if self.transform:
|
84 |
+
de_audio = self.transform(de_audio)
|
85 |
+
en_audio = self.transform(en_audio)
|
86 |
+
|
87 |
+
return {
|
88 |
+
'de_audio': de_audio,
|
89 |
+
'de_sample_rate': de_sr,
|
90 |
+
'en_audio': en_audio,
|
91 |
+
'en_sample_rate': en_sr,
|
92 |
+
'de_transcript': self.de_transcripts[idx],
|
93 |
+
'en_transcript': self.en_transcripts[idx],
|
94 |
+
'alignment_score': self.alignment_scores[idx]
|
95 |
+
}
|
requirements.txt
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
-
aeneas=1.7.3.0
|
2 |
-
pandas>=1.1.4
|
3 |
-
pydub=0.24.1
|
4 |
-
beautifulsoup4=4.9.3
|
5 |
-
requests=2.25.1
|
|
|
|
|
|
|
|
1 |
+
aeneas=1.7.3.0
|
2 |
+
pandas>=1.1.4
|
3 |
+
pydub=0.24.1
|
4 |
+
beautifulsoup4=4.9.3
|
5 |
+
requests=2.25.1
|
6 |
+
torch>=2.0.0
|
7 |
+
torchaudio>=2.0.0
|
8 |
+
soundfile
|