PedroDKE commited on
Commit
f0d6662
·
1 Parent(s): aa9d7d4

upload hf dataset and rename py dataset

Browse files
dataset.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split, Features, Value, Audio
3
+
4
+ class Libris2s(GeneratorBasedBuilder):
5
+ def _info(self):
6
+ return DatasetInfo(
7
+ features=Features({
8
+ "book_id": Value("int64"),
9
+ "DE_audio": Audio(),
10
+ "EN_audio": Audio(),
11
+ "score": Value("float32"),
12
+ "DE_transcript": Value("string"),
13
+ "EN_transcript": Value("string"),
14
+ }),
15
+ )
16
+
17
+ def _split_generators(self, dl_manager):
18
+ return [
19
+ SplitGenerator(
20
+ name=Split.TRAIN,
21
+ gen_kwargs={"filepath": "alignments/all_de_en_alligned_cleaned.csv"}
22
+ ),
23
+ ]
24
+
25
+ def _generate_examples(self, filepath):
26
+ with open(filepath, encoding="utf-8") as f:
27
+ reader = csv.DictReader(f)
28
+ for idx, row in enumerate(reader):
29
+ yield idx, {
30
+ "book_id": int(row["book_id"]),
31
+ "DE_audio": row["DE_audio"],
32
+ "EN_audio": row["EN_audio"],
33
+ "score": float(row["score"]),
34
+ "DE_transcript": row["DE_transcript"],
35
+ "EN_transcript": row["EN_transcript"],
36
+ }
libris2s_dataset.py → libris2s_dataset_pt.py RENAMED
@@ -1,95 +1,95 @@
1
- import os
2
- import torch
3
- import pandas as pd
4
- import torchaudio
5
- from torch.utils.data import Dataset
6
- from typing import List, Optional
7
-
8
- class Libris2sDataset(torch.utils.data.Dataset):
9
- def __init__(self, data_dir: str, split: str, transform=None, book_ids: Optional[List[str]]=None):
10
- """
11
- Initialize the LibriS2S dataset.
12
-
13
- Args:
14
- data_dir (str): Root directory containing the dataset
15
- split (str): Path to the CSV file containing alignments
16
- transform (callable, optional): Optional transform to be applied on the audio
17
- book_ids (List[str], optional): List of book IDs to include. If None, includes all books.
18
- Example: ['9', '10', '11'] will only load these books.
19
- """
20
- self.data_dir = data_dir
21
- self.transform = transform
22
- self.book_ids = set(book_ids) if book_ids is not None else None
23
-
24
- # Load alignment CSV file
25
- self.alignments = pd.read_csv(split)
26
-
27
- # Create lists to store paths and metadata
28
- self.de_audio_paths = []
29
- self.en_audio_paths = []
30
- self.de_transcripts = []
31
- self.en_transcripts = []
32
- self.alignment_scores = []
33
-
34
- # Process each entry in the alignments
35
- for _, row in self.alignments.iterrows():
36
- # Get book ID from the path
37
- book_id = str(row['book_id'])
38
-
39
- # Skip if book_id is not in the filtered set
40
- if self.book_ids is not None and book_id not in self.book_ids:
41
- continue
42
-
43
- # Get full paths from CSV
44
- de_audio = os.path.join(data_dir, row['DE_audio'])
45
- en_audio = os.path.join(data_dir, row['EN_audio'])
46
-
47
- # Only add if both audio files exist
48
- if os.path.exists(de_audio) and os.path.exists(en_audio):
49
- self.de_audio_paths.append(de_audio)
50
- self.en_audio_paths.append(en_audio)
51
- self.de_transcripts.append(row['DE_transcript'])
52
- self.en_transcripts.append(row['EN_transcript'])
53
- self.alignment_scores.append(float(row['score']))
54
- else:
55
- print(f"Skipping {de_audio} or {en_audio} because they don't exist")
56
-
57
- def __len__(self):
58
- """Return the number of items in the dataset."""
59
- return len(self.de_audio_paths)
60
-
61
- def __getitem__(self, idx):
62
- """
63
- Get a single item from the dataset.
64
-
65
- Args:
66
- idx (int): Index of the item to get
67
-
68
- Returns:
69
- dict: A dictionary containing:
70
- - de_audio: German audio waveform
71
- - de_sample_rate: German audio sample rate
72
- - en_audio: English audio waveform
73
- - en_sample_rate: English audio sample rate
74
- - de_transcript: German transcript
75
- - en_transcript: English transcript
76
- - alignment_score: Alignment score between the pair
77
- """
78
- # Load audio files
79
- de_audio, de_sr = torchaudio.load(self.de_audio_paths[idx])
80
- en_audio, en_sr = torchaudio.load(self.en_audio_paths[idx])
81
-
82
- # Apply transforms if specified
83
- if self.transform:
84
- de_audio = self.transform(de_audio)
85
- en_audio = self.transform(en_audio)
86
-
87
- return {
88
- 'de_audio': de_audio,
89
- 'de_sample_rate': de_sr,
90
- 'en_audio': en_audio,
91
- 'en_sample_rate': en_sr,
92
- 'de_transcript': self.de_transcripts[idx],
93
- 'en_transcript': self.en_transcripts[idx],
94
- 'alignment_score': self.alignment_scores[idx]
95
  }
 
1
+ import os
2
+ import torch
3
+ import pandas as pd
4
+ import torchaudio
5
+ from torch.utils.data import Dataset
6
+ from typing import List, Optional
7
+
8
+ class Libris2sDataset(torch.utils.data.Dataset):
9
+ def __init__(self, data_dir: str, split: str, transform=None, book_ids: Optional[List[str]]=None):
10
+ """
11
+ Initialize the LibriS2S dataset.
12
+
13
+ Args:
14
+ data_dir (str): Root directory containing the dataset
15
+ split (str): Path to the CSV file containing alignments
16
+ transform (callable, optional): Optional transform to be applied on the audio
17
+ book_ids (List[str], optional): List of book IDs to include. If None, includes all books.
18
+ Example: ['9', '10', '11'] will only load these books.
19
+ """
20
+ self.data_dir = data_dir
21
+ self.transform = transform
22
+ self.book_ids = set(book_ids) if book_ids is not None else None
23
+
24
+ # Load alignment CSV file
25
+ self.alignments = pd.read_csv(split)
26
+
27
+ # Create lists to store paths and metadata
28
+ self.de_audio_paths = []
29
+ self.en_audio_paths = []
30
+ self.de_transcripts = []
31
+ self.en_transcripts = []
32
+ self.alignment_scores = []
33
+
34
+ # Process each entry in the alignments
35
+ for _, row in self.alignments.iterrows():
36
+ # Get book ID from the path
37
+ book_id = str(row['book_id'])
38
+
39
+ # Skip if book_id is not in the filtered set
40
+ if self.book_ids is not None and book_id not in self.book_ids:
41
+ continue
42
+
43
+ # Get full paths from CSV
44
+ de_audio = os.path.join(data_dir, row['DE_audio'])
45
+ en_audio = os.path.join(data_dir, row['EN_audio'])
46
+
47
+ # Only add if both audio files exist
48
+ if os.path.exists(de_audio) and os.path.exists(en_audio):
49
+ self.de_audio_paths.append(de_audio)
50
+ self.en_audio_paths.append(en_audio)
51
+ self.de_transcripts.append(row['DE_transcript'])
52
+ self.en_transcripts.append(row['EN_transcript'])
53
+ self.alignment_scores.append(float(row['score']))
54
+ else:
55
+ print(f"Skipping {de_audio} or {en_audio} because they don't exist")
56
+
57
+ def __len__(self):
58
+ """Return the number of items in the dataset."""
59
+ return len(self.de_audio_paths)
60
+
61
+ def __getitem__(self, idx):
62
+ """
63
+ Get a single item from the dataset.
64
+
65
+ Args:
66
+ idx (int): Index of the item to get
67
+
68
+ Returns:
69
+ dict: A dictionary containing:
70
+ - de_audio: German audio waveform
71
+ - de_sample_rate: German audio sample rate
72
+ - en_audio: English audio waveform
73
+ - en_sample_rate: English audio sample rate
74
+ - de_transcript: German transcript
75
+ - en_transcript: English transcript
76
+ - alignment_score: Alignment score between the pair
77
+ """
78
+ # Load audio files
79
+ de_audio, de_sr = torchaudio.load(self.de_audio_paths[idx])
80
+ en_audio, en_sr = torchaudio.load(self.en_audio_paths[idx])
81
+
82
+ # Apply transforms if specified
83
+ if self.transform:
84
+ de_audio = self.transform(de_audio)
85
+ en_audio = self.transform(en_audio)
86
+
87
+ return {
88
+ 'de_audio': de_audio,
89
+ 'de_sample_rate': de_sr,
90
+ 'en_audio': en_audio,
91
+ 'en_sample_rate': en_sr,
92
+ 'de_transcript': self.de_transcripts[idx],
93
+ 'en_transcript': self.en_transcripts[idx],
94
+ 'alignment_score': self.alignment_scores[idx]
95
  }