import os import torch import pandas as pd import torchaudio from torch.utils.data import Dataset from typing import List, Optional class Libris2sDataset(torch.utils.data.Dataset): def __init__(self, data_dir: str, split: str, transform=None, book_ids: Optional[List[str]]=None): """ Initialize the LibriS2S dataset. Args: data_dir (str): Root directory containing the dataset split (str): Path to the CSV file containing alignments transform (callable, optional): Optional transform to be applied on the audio book_ids (List[str], optional): List of book IDs to include. If None, includes all books. Example: ['9', '10', '11'] will only load these books. """ self.data_dir = data_dir self.transform = transform self.book_ids = set(book_ids) if book_ids is not None else None # Load alignment CSV file self.alignments = pd.read_csv(split) # Create lists to store paths and metadata self.de_audio_paths = [] self.en_audio_paths = [] self.de_transcripts = [] self.en_transcripts = [] self.alignment_scores = [] # Process each entry in the alignments for _, row in self.alignments.iterrows(): # Get book ID from the path book_id = str(row['book_id']) # Skip if book_id is not in the filtered set if self.book_ids is not None and book_id not in self.book_ids: continue # Get full paths from CSV de_audio = os.path.join(data_dir, row['DE_audio']) en_audio = os.path.join(data_dir, row['EN_audio']) # Only add if both audio files exist if os.path.exists(de_audio) and os.path.exists(en_audio): self.de_audio_paths.append(de_audio) self.en_audio_paths.append(en_audio) self.de_transcripts.append(row['DE_transcript']) self.en_transcripts.append(row['EN_transcript']) self.alignment_scores.append(float(row['score'])) else: print(f"Skipping {de_audio} or {en_audio} because they don't exist") def __len__(self): """Return the number of items in the dataset.""" return len(self.de_audio_paths) def __getitem__(self, idx): """ Get a single item from the dataset. Args: idx (int): Index of the item to get Returns: dict: A dictionary containing: - de_audio: German audio waveform - de_sample_rate: German audio sample rate - en_audio: English audio waveform - en_sample_rate: English audio sample rate - de_transcript: German transcript - en_transcript: English transcript - alignment_score: Alignment score between the pair """ # Load audio files de_audio, de_sr = torchaudio.load(self.de_audio_paths[idx]) en_audio, en_sr = torchaudio.load(self.en_audio_paths[idx]) # Apply transforms if specified if self.transform: de_audio = self.transform(de_audio) en_audio = self.transform(en_audio) return { 'de_audio': de_audio, 'de_sample_rate': de_sr, 'en_audio': en_audio, 'en_sample_rate': en_sr, 'de_transcript': self.de_transcripts[idx], 'en_transcript': self.en_transcripts[idx], 'alignment_score': self.alignment_scores[idx] }