File size: 10,086 Bytes
ce587a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import logging
import json
import asyncio

from dotenv import load_dotenv
from typing import AsyncGenerator
import time

from vllm import AsyncLLMEngine
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.protocol import ChatCompletionRequest, CompletionRequest, ErrorResponse
from vllm.entrypoints.openai.serving_engine import BaseModelPath, LoRAModulePath


from utils import DummyRequest, JobInput, BatchSize, create_error_response
from constants import DEFAULT_MAX_CONCURRENCY, DEFAULT_BATCH_SIZE, DEFAULT_BATCH_SIZE_GROWTH_FACTOR, DEFAULT_MIN_BATCH_SIZE
from tokenizer import TokenizerWrapper
from engine_args import get_engine_args

class vLLMEngine:
    def __init__(self, engine = None):
        load_dotenv() # For local development
        self.engine_args = get_engine_args()
        logging.info(f"Engine args: {self.engine_args}")
        self.tokenizer = TokenizerWrapper(self.engine_args.tokenizer or self.engine_args.model, 
                                          self.engine_args.tokenizer_revision, 
                                          self.engine_args.trust_remote_code)
        self.llm = self._initialize_llm() if engine is None else engine.llm
        self.max_concurrency = int(os.getenv("MAX_CONCURRENCY", DEFAULT_MAX_CONCURRENCY))
        self.default_batch_size = int(os.getenv("DEFAULT_BATCH_SIZE", DEFAULT_BATCH_SIZE))
        self.batch_size_growth_factor = int(os.getenv("BATCH_SIZE_GROWTH_FACTOR", DEFAULT_BATCH_SIZE_GROWTH_FACTOR))
        self.min_batch_size = int(os.getenv("MIN_BATCH_SIZE", DEFAULT_MIN_BATCH_SIZE))

    def dynamic_batch_size(self, current_batch_size, batch_size_growth_factor):
        return min(current_batch_size*batch_size_growth_factor, self.default_batch_size)
                           
    async def generate(self, job_input: JobInput):
        try:
            async for batch in self._generate_vllm(
                llm_input=job_input.llm_input,
                validated_sampling_params=job_input.sampling_params,
                batch_size=job_input.max_batch_size,
                stream=job_input.stream,
                apply_chat_template=job_input.apply_chat_template,
                request_id=job_input.request_id,
                batch_size_growth_factor=job_input.batch_size_growth_factor,
                min_batch_size=job_input.min_batch_size
            ):
                yield batch
        except Exception as e:
            yield {"error": create_error_response(str(e)).model_dump()}

    async def _generate_vllm(self, llm_input, validated_sampling_params, batch_size, stream, apply_chat_template, request_id, batch_size_growth_factor, min_batch_size: str) -> AsyncGenerator[dict, None]:
        if apply_chat_template or isinstance(llm_input, list):
            llm_input = self.tokenizer.apply_chat_template(llm_input)
        results_generator = self.llm.generate(llm_input, validated_sampling_params, request_id)
        n_responses, n_input_tokens, is_first_output = validated_sampling_params.n, 0, True
        last_output_texts, token_counters = ["" for _ in range(n_responses)], {"batch": 0, "total": 0}

        batch = {
            "choices": [{"tokens": []} for _ in range(n_responses)],
        }
        
        max_batch_size = batch_size or self.default_batch_size
        batch_size_growth_factor, min_batch_size = batch_size_growth_factor or self.batch_size_growth_factor, min_batch_size or self.min_batch_size
        batch_size = BatchSize(max_batch_size, min_batch_size, batch_size_growth_factor)
    

        async for request_output in results_generator:
            if is_first_output:  # Count input tokens only once
                n_input_tokens = len(request_output.prompt_token_ids)
                is_first_output = False

            for output in request_output.outputs:
                output_index = output.index
                token_counters["total"] += 1
                if stream:
                    new_output = output.text[len(last_output_texts[output_index]):]
                    batch["choices"][output_index]["tokens"].append(new_output)
                    token_counters["batch"] += 1

                    if token_counters["batch"] >= batch_size.current_batch_size:
                        batch["usage"] = {
                            "input": n_input_tokens,
                            "output": token_counters["total"],
                        }
                        yield batch
                        batch = {
                            "choices": [{"tokens": []} for _ in range(n_responses)],
                        }
                        token_counters["batch"] = 0
                        batch_size.update()

                last_output_texts[output_index] = output.text

        if not stream:
            for output_index, output in enumerate(last_output_texts):
                batch["choices"][output_index]["tokens"] = [output]
            token_counters["batch"] += 1

        if token_counters["batch"] > 0:
            batch["usage"] = {"input": n_input_tokens, "output": token_counters["total"]}
            yield batch

    def _initialize_llm(self):
        try:
            start = time.time()
            engine = AsyncLLMEngine.from_engine_args(self.engine_args)
            end = time.time()
            logging.info(f"Initialized vLLM engine in {end - start:.2f}s")
            return engine
        except Exception as e:
            logging.error("Error initializing vLLM engine: %s", e)
            raise e


class OpenAIvLLMEngine(vLLMEngine):
    def __init__(self, vllm_engine):
        super().__init__(vllm_engine)
        self.served_model_name = os.getenv("OPENAI_SERVED_MODEL_NAME_OVERRIDE") or self.engine_args.model
        self.response_role = os.getenv("OPENAI_RESPONSE_ROLE") or "assistant"
        asyncio.run(self._initialize_engines())
        self.raw_openai_output = bool(int(os.getenv("RAW_OPENAI_OUTPUT", 1)))
        
    async def _initialize_engines(self):
        self.model_config = await self.llm.get_model_config()
        self.base_model_paths = [
            BaseModelPath(name=self.engine_args.model, model_path=self.engine_args.model)
        ]

        lora_modules = os.getenv('LORA_MODULES', None)
        if lora_modules is not None:
            try:
                lora_modules = json.loads(lora_modules)
                lora_modules = [LoRAModulePath(**lora_modules)]
            except:
                lora_modules = None



        self.chat_engine = OpenAIServingChat(
            engine_client=self.llm, 
            model_config=self.model_config,
            base_model_paths=self.base_model_paths,
            response_role=self.response_role,
            chat_template=self.tokenizer.tokenizer.chat_template,
            lora_modules=lora_modules,
            prompt_adapters=None,
            request_logger=None
        )
        self.completion_engine = OpenAIServingCompletion(
            engine_client=self.llm, 
            model_config=self.model_config,
            base_model_paths=self.base_model_paths,
            lora_modules=lora_modules,
            prompt_adapters=None,
            request_logger=None
        )
    
    async def generate(self, openai_request: JobInput):
        if openai_request.openai_route == "/v1/models":
            yield await self._handle_model_request()
        elif openai_request.openai_route in ["/v1/chat/completions", "/v1/completions"]:
            async for response in self._handle_chat_or_completion_request(openai_request):
                yield response
        else:
            yield create_error_response("Invalid route").model_dump()
    
    async def _handle_model_request(self):
        models = await self.chat_engine.show_available_models()
        return models.model_dump()
    
    async def _handle_chat_or_completion_request(self, openai_request: JobInput):
        if openai_request.openai_route == "/v1/chat/completions":
            request_class = ChatCompletionRequest
            generator_function = self.chat_engine.create_chat_completion
        elif openai_request.openai_route == "/v1/completions":
            request_class = CompletionRequest
            generator_function = self.completion_engine.create_completion
        
        try:
            request = request_class(
                **openai_request.openai_input
            )
        except Exception as e:
            yield create_error_response(str(e)).model_dump()
            return
        
        dummy_request = DummyRequest()
        response_generator = await generator_function(request, raw_request=dummy_request)

        if not openai_request.openai_input.get("stream") or isinstance(response_generator, ErrorResponse):
            yield response_generator.model_dump()
        else:
            batch = []
            batch_token_counter = 0
            batch_size = BatchSize(self.default_batch_size, self.min_batch_size, self.batch_size_growth_factor)
        
            async for chunk_str in response_generator:
                if "data" in chunk_str:
                    if self.raw_openai_output:
                        data = chunk_str
                    elif "[DONE]" in chunk_str:
                        continue
                    else:
                        data = json.loads(chunk_str.removeprefix("data: ").rstrip("\n\n")) if not self.raw_openai_output else chunk_str
                    batch.append(data)
                    batch_token_counter += 1
                    if batch_token_counter >= batch_size.current_batch_size:
                        if self.raw_openai_output:
                            batch = "".join(batch)
                        yield batch
                        batch = []
                        batch_token_counter = 0
                        batch_size.update()
            if batch:
                if self.raw_openai_output:
                    batch = "".join(batch)
                yield batch