File size: 9,245 Bytes
ce587a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import json
import logging
from torch.cuda import device_count
from vllm import AsyncEngineArgs
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig

RENAME_ARGS_MAP = {
    "MODEL_NAME": "model",
    "MODEL_REVISION": "revision",
    "TOKENIZER_NAME": "tokenizer",
    "MAX_CONTEXT_LEN_TO_CAPTURE": "max_seq_len_to_capture"
}

DEFAULT_ARGS = {
    "disable_log_stats": os.getenv('DISABLE_LOG_STATS', 'False').lower() == 'true',
    "disable_log_requests": os.getenv('DISABLE_LOG_REQUESTS', 'False').lower() == 'true',
    "gpu_memory_utilization": float(os.getenv('GPU_MEMORY_UTILIZATION', 0.95)),
    "pipeline_parallel_size": int(os.getenv('PIPELINE_PARALLEL_SIZE', 1)),
    "tensor_parallel_size": int(os.getenv('TENSOR_PARALLEL_SIZE', 1)),
    "served_model_name": os.getenv('SERVED_MODEL_NAME', None),
    "tokenizer": os.getenv('TOKENIZER', None),
    "skip_tokenizer_init": os.getenv('SKIP_TOKENIZER_INIT', 'False').lower() == 'true',
    "tokenizer_mode": os.getenv('TOKENIZER_MODE', 'auto'),
    "trust_remote_code": os.getenv('TRUST_REMOTE_CODE', 'False').lower() == 'true',
    "download_dir": os.getenv('DOWNLOAD_DIR', None),
    "load_format": os.getenv('LOAD_FORMAT', 'auto'),
    "dtype": os.getenv('DTYPE', 'auto'),
    "kv_cache_dtype": os.getenv('KV_CACHE_DTYPE', 'auto'),
    "quantization_param_path": os.getenv('QUANTIZATION_PARAM_PATH', None),
    "seed": int(os.getenv('SEED', 0)),
    "max_model_len": int(os.getenv('MAX_MODEL_LEN', 0)) or None,
    "worker_use_ray": os.getenv('WORKER_USE_RAY', 'False').lower() == 'true',
    "distributed_executor_backend": os.getenv('DISTRIBUTED_EXECUTOR_BACKEND', None),
    "max_parallel_loading_workers": int(os.getenv('MAX_PARALLEL_LOADING_WORKERS', 0)) or None,
    "block_size": int(os.getenv('BLOCK_SIZE', 16)),
    "enable_prefix_caching": os.getenv('ENABLE_PREFIX_CACHING', 'False').lower() == 'true',
    "disable_sliding_window": os.getenv('DISABLE_SLIDING_WINDOW', 'False').lower() == 'true',
    "use_v2_block_manager": os.getenv('USE_V2_BLOCK_MANAGER', 'False').lower() == 'true',
    "swap_space": int(os.getenv('SWAP_SPACE', 4)),  # GiB
    "cpu_offload_gb": int(os.getenv('CPU_OFFLOAD_GB', 0)),  # GiB
    "max_num_batched_tokens": int(os.getenv('MAX_NUM_BATCHED_TOKENS', 0)) or None,
    "max_num_seqs": int(os.getenv('MAX_NUM_SEQS', 256)),
    "max_logprobs": int(os.getenv('MAX_LOGPROBS', 20)),  # Default value for OpenAI Chat Completions API
    "revision": os.getenv('REVISION', None),
    "code_revision": os.getenv('CODE_REVISION', None),
    "rope_scaling": os.getenv('ROPE_SCALING', None),
    "rope_theta": float(os.getenv('ROPE_THETA', 0)) or None,
    "tokenizer_revision": os.getenv('TOKENIZER_REVISION', None),
    "quantization": os.getenv('QUANTIZATION', None),
    "enforce_eager": os.getenv('ENFORCE_EAGER', 'False').lower() == 'true',
    "max_context_len_to_capture": int(os.getenv('MAX_CONTEXT_LEN_TO_CAPTURE', 0)) or None,
    "max_seq_len_to_capture": int(os.getenv('MAX_SEQ_LEN_TO_CAPTURE', 8192)),
    "disable_custom_all_reduce": os.getenv('DISABLE_CUSTOM_ALL_REDUCE', 'False').lower() == 'true',
    "tokenizer_pool_size": int(os.getenv('TOKENIZER_POOL_SIZE', 0)),
    "tokenizer_pool_type": os.getenv('TOKENIZER_POOL_TYPE', 'ray'),
    "tokenizer_pool_extra_config": os.getenv('TOKENIZER_POOL_EXTRA_CONFIG', None),
    "enable_lora": os.getenv('ENABLE_LORA', 'False').lower() == 'true',
    "max_loras": int(os.getenv('MAX_LORAS', 1)),
    "max_lora_rank": int(os.getenv('MAX_LORA_RANK', 16)),
    "enable_prompt_adapter": os.getenv('ENABLE_PROMPT_ADAPTER', 'False').lower() == 'true',
    "max_prompt_adapters": int(os.getenv('MAX_PROMPT_ADAPTERS', 1)),
    "max_prompt_adapter_token": int(os.getenv('MAX_PROMPT_ADAPTER_TOKEN', 0)),
    "fully_sharded_loras": os.getenv('FULLY_SHARDED_LORAS', 'False').lower() == 'true',
    "lora_extra_vocab_size": int(os.getenv('LORA_EXTRA_VOCAB_SIZE', 256)),
    "long_lora_scaling_factors": tuple(map(float, os.getenv('LONG_LORA_SCALING_FACTORS', '').split(','))) if os.getenv('LONG_LORA_SCALING_FACTORS') else None,
    "lora_dtype": os.getenv('LORA_DTYPE', 'auto'),
    "max_cpu_loras": int(os.getenv('MAX_CPU_LORAS', 0)) or None,
    "device": os.getenv('DEVICE', 'auto'),
    "ray_workers_use_nsight": os.getenv('RAY_WORKERS_USE_NSIGHT', 'False').lower() == 'true',
    "num_gpu_blocks_override": int(os.getenv('NUM_GPU_BLOCKS_OVERRIDE', 0)) or None,
    "num_lookahead_slots": int(os.getenv('NUM_LOOKAHEAD_SLOTS', 0)),
    "model_loader_extra_config": os.getenv('MODEL_LOADER_EXTRA_CONFIG', None),
    "ignore_patterns": os.getenv('IGNORE_PATTERNS', None),
    "preemption_mode": os.getenv('PREEMPTION_MODE', None),
    "scheduler_delay_factor": float(os.getenv('SCHEDULER_DELAY_FACTOR', 0.0)),
    "enable_chunked_prefill": os.getenv('ENABLE_CHUNKED_PREFILL', None),
    "guided_decoding_backend": os.getenv('GUIDED_DECODING_BACKEND', 'outlines'),
    "speculative_model": os.getenv('SPECULATIVE_MODEL', None),
    "speculative_draft_tensor_parallel_size": int(os.getenv('SPECULATIVE_DRAFT_TENSOR_PARALLEL_SIZE', 0)) or None,
    "num_speculative_tokens": int(os.getenv('NUM_SPECULATIVE_TOKENS', 0)) or None,
    "speculative_max_model_len": int(os.getenv('SPECULATIVE_MAX_MODEL_LEN', 0)) or None,
    "speculative_disable_by_batch_size": int(os.getenv('SPECULATIVE_DISABLE_BY_BATCH_SIZE', 0)) or None,
    "ngram_prompt_lookup_max": int(os.getenv('NGRAM_PROMPT_LOOKUP_MAX', 0)) or None,
    "ngram_prompt_lookup_min": int(os.getenv('NGRAM_PROMPT_LOOKUP_MIN', 0)) or None,
    "spec_decoding_acceptance_method": os.getenv('SPEC_DECODING_ACCEPTANCE_METHOD', 'rejection_sampler'),
    "typical_acceptance_sampler_posterior_threshold": float(os.getenv('TYPICAL_ACCEPTANCE_SAMPLER_POSTERIOR_THRESHOLD', 0)) or None,
    "typical_acceptance_sampler_posterior_alpha": float(os.getenv('TYPICAL_ACCEPTANCE_SAMPLER_POSTERIOR_ALPHA', 0)) or None,
    "qlora_adapter_name_or_path": os.getenv('QLORA_ADAPTER_NAME_OR_PATH', None),
    "disable_logprobs_during_spec_decoding": os.getenv('DISABLE_LOGPROBS_DURING_SPEC_DECODING', None),
    "otlp_traces_endpoint": os.getenv('OTLP_TRACES_ENDPOINT', None),
    "use_v2_block_manager": os.getenv('USE_V2_BLOCK_MANAGER', 'true')
}

def match_vllm_args(args):
    """Rename args to match vllm by:
    1. Renaming keys to lower case
    2. Renaming keys to match vllm
    3. Filtering args to match vllm's AsyncEngineArgs

    Args:
        args (dict): Dictionary of args

    Returns:
        dict: Dictionary of args with renamed keys
    """
    renamed_args = {RENAME_ARGS_MAP.get(k, k): v for k, v in args.items()}
    matched_args = {k: v for k, v in renamed_args.items() if k in AsyncEngineArgs.__dataclass_fields__}
    return {k: v for k, v in matched_args.items() if v not in [None, ""]}
def get_local_args():
    """
    Retrieve local arguments from a JSON file.

    Returns:
        dict: Local arguments.
    """
    if not os.path.exists("/local_model_args.json"):
        return {}

    with open("/local_model_args.json", "r") as f:
        local_args = json.load(f)

    if local_args.get("MODEL_NAME") is None:
        raise ValueError("Model name not found in /local_model_args.json. There was a problem when baking the model in.")

    logging.info(f"Using baked in model with args: {local_args}")
    os.environ["TRANSFORMERS_OFFLINE"] = "1"
    os.environ["HF_HUB_OFFLINE"] = "1"

    return local_args
def get_engine_args():
    # Start with default args
    args = DEFAULT_ARGS
    
    # Get env args that match keys in AsyncEngineArgs
    args.update(os.environ)
    
    # Get local args if model is baked in and overwrite env args
    args.update(get_local_args())
    
    # if args.get("TENSORIZER_URI"): TODO: add back once tensorizer is ready
    #     args["load_format"] = "tensorizer"
    #     args["model_loader_extra_config"] = TensorizerConfig(tensorizer_uri=args["TENSORIZER_URI"], num_readers=None)
    #     logging.info(f"Using tensorized model from {args['TENSORIZER_URI']}")
    
    
    # Rename and match to vllm args
    args = match_vllm_args(args)
    
    # Set tensor parallel size and max parallel loading workers if more than 1 GPU is available
    num_gpus = device_count()
    if num_gpus > 1:
        args["tensor_parallel_size"] = num_gpus
        args["max_parallel_loading_workers"] = None
        if os.getenv("MAX_PARALLEL_LOADING_WORKERS"):
            logging.warning("Overriding MAX_PARALLEL_LOADING_WORKERS with None because more than 1 GPU is available.")
    
    # Deprecated env args backwards compatibility
    if args.get("kv_cache_dtype") == "fp8_e5m2":
        args["kv_cache_dtype"] = "fp8"
        logging.warning("Using fp8_e5m2 is deprecated. Please use fp8 instead.")
    if os.getenv("MAX_CONTEXT_LEN_TO_CAPTURE"):
        args["max_seq_len_to_capture"] = int(os.getenv("MAX_CONTEXT_LEN_TO_CAPTURE"))
        logging.warning("Using MAX_CONTEXT_LEN_TO_CAPTURE is deprecated. Please use MAX_SEQ_LEN_TO_CAPTURE instead.")
        
    # if "gemma-2" in args.get("model", "").lower():
    #     os.environ["VLLM_ATTENTION_BACKEND"] = "FLASHINFER"
    #     logging.info("Using FLASHINFER for gemma-2 model.")
        
    return AsyncEngineArgs(**args)