diksha
Runpod model testing
ce587a5
import os
import logging
from http import HTTPStatus
from functools import wraps
from time import time
from vllm.entrypoints.openai.protocol import RequestResponseMetadata
try:
from vllm.utils import random_uuid
from vllm.entrypoints.openai.protocol import ErrorResponse
from vllm import SamplingParams
except ImportError:
logging.warning("Error importing vllm, skipping related imports. This is ONLY expected when baking model into docker image from a machine without GPUs")
pass
logging.basicConfig(level=logging.INFO)
def count_physical_cores():
with open('/proc/cpuinfo') as f:
content = f.readlines()
cores = set()
current_physical_id = None
current_core_id = None
for line in content:
if 'physical id' in line:
current_physical_id = line.strip().split(': ')[1]
elif 'core id' in line:
current_core_id = line.strip().split(': ')[1]
cores.add((current_physical_id, current_core_id))
return len(cores)
class JobInput:
def __init__(self, job):
self.llm_input = job.get("messages", job.get("prompt"))
self.stream = job.get("stream", False)
self.max_batch_size = job.get("max_batch_size")
self.apply_chat_template = job.get("apply_chat_template", False)
self.use_openai_format = job.get("use_openai_format", False)
self.sampling_params = SamplingParams(**job.get("sampling_params", {}))
self.request_id = random_uuid()
batch_size_growth_factor = job.get("batch_size_growth_factor")
self.batch_size_growth_factor = float(batch_size_growth_factor) if batch_size_growth_factor else None
min_batch_size = job.get("min_batch_size")
self.min_batch_size = int(min_batch_size) if min_batch_size else None
self.openai_route = job.get("openai_route")
self.openai_input = job.get("openai_input")
class DummyState:
def __init__(self):
self.request_metadata = None
class DummyRequest:
def __init__(self):
self.headers = {}
self.state = DummyState()
async def is_disconnected(self):
return False
class BatchSize:
def __init__(self, max_batch_size, min_batch_size, batch_size_growth_factor):
self.max_batch_size = max_batch_size
self.batch_size_growth_factor = batch_size_growth_factor
self.min_batch_size = min_batch_size
self.is_dynamic = batch_size_growth_factor > 1 and min_batch_size >= 1 and max_batch_size > min_batch_size
if self.is_dynamic:
self.current_batch_size = min_batch_size
else:
self.current_batch_size = max_batch_size
def update(self):
if self.is_dynamic:
self.current_batch_size = min(self.current_batch_size*self.batch_size_growth_factor, self.max_batch_size)
def create_error_response(message: str, err_type: str = "BadRequestError", status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
return ErrorResponse(message=message,
type=err_type,
code=status_code.value)
def get_int_bool_env(env_var: str, default: bool) -> bool:
return int(os.getenv(env_var, int(default))) == 1
def timer_decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time()
result = func(*args, **kwargs)
end = time()
logging.info(f"{func.__name__} completed in {end - start:.2f} seconds")
return result
return wrapper