FROM nvidia/cuda:12.1.0-base-ubuntu22.04 RUN apt-get update -y \ && apt-get install -y python3-pip RUN ldconfig /usr/local/cuda-12.1/compat/ # Install Python dependencies COPY builder/requirements.txt /requirements.txt RUN --mount=type=cache,target=/root/.cache/pip \ python3 -m pip install --upgrade pip && \ python3 -m pip install --upgrade -r /requirements.txt # Install vLLM (switching back to pip installs since issues that required building fork are fixed and space optimization is not as important since caching) and FlashInfer RUN python3 -m pip install vllm==0.6.3 && \ python3 -m pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3 # Setup for Option 2: Building the Image with the Model included ARG MODEL_NAME="" ARG TOKENIZER_NAME="" ARG BASE_PATH="/runpod-volume" ARG QUANTIZATION="" ARG MODEL_REVISION="" ARG TOKENIZER_REVISION="" ENV MODEL_NAME=$MODEL_NAME \ MODEL_REVISION=$MODEL_REVISION \ TOKENIZER_NAME=$TOKENIZER_NAME \ TOKENIZER_REVISION=$TOKENIZER_REVISION \ BASE_PATH=$BASE_PATH \ QUANTIZATION=$QUANTIZATION \ HF_DATASETS_CACHE="${BASE_PATH}/huggingface-cache/datasets" \ HUGGINGFACE_HUB_CACHE="${BASE_PATH}/huggingface-cache/hub" \ HF_HOME="${BASE_PATH}/huggingface-cache/hub" \ HF_HUB_ENABLE_HF_TRANSFER=1 ENV PYTHONPATH="/:/vllm-workspace" COPY src /src RUN --mount=type=secret,id=HF_TOKEN,required=false \ if [ -f /run/secrets/HF_TOKEN ]; then \ export HF_TOKEN=$(cat /run/secrets/HF_TOKEN); \ fi && \ if [ -n "$MODEL_NAME" ]; then \ python3 /src/download_model.py; \ fi # Start the handler CMD ["python3", "/src/handler.py"]