import os import json import logging import glob from shutil import rmtree from huggingface_hub import snapshot_download from utils import timer_decorator BASE_DIR = "/" TOKENIZER_PATTERNS = [["*.json", "tokenizer*"]] MODEL_PATTERNS = [["*.safetensors"], ["*.bin"], ["*.pt"]] def setup_env(): if os.getenv("TESTING_DOWNLOAD") == "1": BASE_DIR = "tmp" os.makedirs(BASE_DIR, exist_ok=True) os.environ.update({ "HF_HOME": f"{BASE_DIR}/hf_cache", "MODEL_NAME": "openchat/openchat-3.5-0106", "HF_HUB_ENABLE_HF_TRANSFER": "1", "TENSORIZE": "1", "TENSORIZER_NUM_GPUS": "1", "DTYPE": "auto" }) @timer_decorator def download(name, revision, type, cache_dir): if type == "model": pattern_sets = [model_pattern + TOKENIZER_PATTERNS[0] for model_pattern in MODEL_PATTERNS] elif type == "tokenizer": pattern_sets = TOKENIZER_PATTERNS else: raise ValueError(f"Invalid type: {type}") try: for pattern_set in pattern_sets: path = snapshot_download(name, revision=revision, cache_dir=cache_dir, allow_patterns=pattern_set) for pattern in pattern_set: if glob.glob(os.path.join(path, pattern)): logging.info(f"Successfully downloaded {pattern} model files.") return path except ValueError: raise ValueError(f"No patterns matching {pattern_sets} found for download.") # @timer_decorator # def tensorize_model(model_path): TODO: Add back once tensorizer is ready # from vllm.engine.arg_utils import EngineArgs # from vllm.model_executor.model_loader.tensorizer import TensorizerConfig, tensorize_vllm_model # from torch.cuda import device_count # tensorizer_num_gpus = int(os.getenv("TENSORIZER_NUM_GPUS", "1")) # if tensorizer_num_gpus > device_count(): # raise ValueError(f"TENSORIZER_NUM_GPUS ({tensorizer_num_gpus}) exceeds available GPUs ({device_count()})") # dtype = os.getenv("DTYPE", "auto") # serialized_dir = f"{BASE_DIR}/serialized_model" # os.makedirs(serialized_dir, exist_ok=True) # serialized_uri = f"{serialized_dir}/model{'-%03d' if tensorizer_num_gpus > 1 else ''}.tensors" # tensorize_vllm_model( # EngineArgs(model=model_path, tensor_parallel_size=tensorizer_num_gpus, dtype=dtype), # TensorizerConfig(tensorizer_uri=serialized_uri) # ) # logging.info("Successfully serialized model to %s", str(serialized_uri)) # logging.info("Removing HF Model files after serialization") # rmtree("/".join(model_path.split("/")[:-2])) # return serialized_uri, tensorizer_num_gpus, dtype if __name__ == "__main__": setup_env() cache_dir = os.getenv("HF_HOME") model_name, model_revision = os.getenv("MODEL_NAME"), os.getenv("MODEL_REVISION") or None tokenizer_name, tokenizer_revision = os.getenv("TOKENIZER_NAME") or model_name, os.getenv("TOKENIZER_REVISION") or model_revision model_path = download(model_name, model_revision, "model", cache_dir) metadata = { "MODEL_NAME": model_path, "MODEL_REVISION": os.getenv("MODEL_REVISION"), "QUANTIZATION": os.getenv("QUANTIZATION"), } # if os.getenv("TENSORIZE") == "1": TODO: Add back once tensorizer is ready # serialized_uri, tensorizer_num_gpus, dtype = tensorize_model(model_path) # metadata.update({ # "MODEL_NAME": serialized_uri, # "TENSORIZER_URI": serialized_uri, # "TENSOR_PARALLEL_SIZE": tensorizer_num_gpus, # "DTYPE": dtype # }) tokenizer_path = download(tokenizer_name, tokenizer_revision, "tokenizer", cache_dir) metadata.update({ "TOKENIZER_NAME": tokenizer_path, "TOKENIZER_REVISION": tokenizer_revision }) with open(f"{BASE_DIR}/local_model_args.json", "w") as f: json.dump({k: v for k, v in metadata.items() if v not in (None, "")}, f)