from transformers import AutoTokenizer import os from typing import Union class TokenizerWrapper: def __init__(self, tokenizer_name_or_path, tokenizer_revision, trust_remote_code): print(f"tokenizer_name_or_path: {tokenizer_name_or_path}, tokenizer_revision: {tokenizer_revision}, trust_remote_code: {trust_remote_code}") self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, revision=tokenizer_revision or "main", trust_remote_code=trust_remote_code) self.custom_chat_template = os.getenv("CUSTOM_CHAT_TEMPLATE") self.has_chat_template = bool(self.tokenizer.chat_template) or bool(self.custom_chat_template) if self.custom_chat_template and isinstance(self.custom_chat_template, str): self.tokenizer.chat_template = self.custom_chat_template def apply_chat_template(self, input: Union[str, list[dict[str, str]]]) -> str: if isinstance(input, list): if not self.has_chat_template: raise ValueError( "Chat template does not exist for this model, you must provide a single string input instead of a list of messages" ) elif isinstance(input, str): input = [{"role": "user", "content": input}] else: raise ValueError("Input must be a string or a list of messages") return self.tokenizer.apply_chat_template( input, tokenize=False, add_generation_prompt=True )