import os import logging from http import HTTPStatus from functools import wraps from time import time from vllm.entrypoints.openai.protocol import RequestResponseMetadata try: from vllm.utils import random_uuid from vllm.entrypoints.openai.protocol import ErrorResponse from vllm import SamplingParams except ImportError: logging.warning("Error importing vllm, skipping related imports. This is ONLY expected when baking model into docker image from a machine without GPUs") pass logging.basicConfig(level=logging.INFO) def count_physical_cores(): with open('/proc/cpuinfo') as f: content = f.readlines() cores = set() current_physical_id = None current_core_id = None for line in content: if 'physical id' in line: current_physical_id = line.strip().split(': ')[1] elif 'core id' in line: current_core_id = line.strip().split(': ')[1] cores.add((current_physical_id, current_core_id)) return len(cores) class JobInput: def __init__(self, job): self.llm_input = job.get("messages", job.get("prompt")) self.stream = job.get("stream", False) self.max_batch_size = job.get("max_batch_size") self.apply_chat_template = job.get("apply_chat_template", False) self.use_openai_format = job.get("use_openai_format", False) self.sampling_params = SamplingParams(**job.get("sampling_params", {})) self.request_id = random_uuid() batch_size_growth_factor = job.get("batch_size_growth_factor") self.batch_size_growth_factor = float(batch_size_growth_factor) if batch_size_growth_factor else None min_batch_size = job.get("min_batch_size") self.min_batch_size = int(min_batch_size) if min_batch_size else None self.openai_route = job.get("openai_route") self.openai_input = job.get("openai_input") class DummyState: def __init__(self): self.request_metadata = None class DummyRequest: def __init__(self): self.headers = {} self.state = DummyState() async def is_disconnected(self): return False class BatchSize: def __init__(self, max_batch_size, min_batch_size, batch_size_growth_factor): self.max_batch_size = max_batch_size self.batch_size_growth_factor = batch_size_growth_factor self.min_batch_size = min_batch_size self.is_dynamic = batch_size_growth_factor > 1 and min_batch_size >= 1 and max_batch_size > min_batch_size if self.is_dynamic: self.current_batch_size = min_batch_size else: self.current_batch_size = max_batch_size def update(self): if self.is_dynamic: self.current_batch_size = min(self.current_batch_size*self.batch_size_growth_factor, self.max_batch_size) def create_error_response(message: str, err_type: str = "BadRequestError", status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse: return ErrorResponse(message=message, type=err_type, code=status_code.value) def get_int_bool_env(env_var: str, default: bool) -> bool: return int(os.getenv(env_var, int(default))) == 1 def timer_decorator(func): @wraps(func) def wrapper(*args, **kwargs): start = time() result = func(*args, **kwargs) end = time() logging.info(f"{func.__name__} completed in {end - start:.2f} seconds") return result return wrapper