File size: 10,241 Bytes
a7b4daa
 
 
 
 
 
 
bc930e6
a7b4daa
9dc6f37
a7b4daa
 
 
 
 
 
 
 
bc930e6
 
a7b4daa
 
 
 
 
 
 
a143984
a7b4daa
a143984
a7b4daa
dd87767
59b9b43
9e0c67f
59b9b43
 
 
 
 
 
 
 
 
3c73f12
59b9b43
93d57ef
3c73f12
93d57ef
 
3c73f12
93d57ef
3c73f12
 
9e0c67f
59b9b43
 
 
 
 
 
 
 
 
9e0c67f
59b9b43
93d57ef
9e0c67f
93d57ef
 
9e0c67f
93d57ef
9e0c67f
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
 
 
 
 
 
 
 
 
 
 
 
 
93d57ef
 
 
 
 
 
59b9b43
 
9e0c67f
3c73f12
 
 
 
 
 
 
 
9e0c67f
 
 
 
 
 
 
 
a7b4daa
 
 
 
 
c182ae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b4daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b9b43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- found
- machine-generated
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
license:
- other
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-sts-b
task_categories:
- text-classification
task_ids:
- text-scoring
- semantic-similarity-scoring
pretty_name: STSb Multi MT
dataset_info:
- config_name: de
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 867465
    num_examples: 5749
  - name: test
    num_bytes: 193325
    num_examples: 1379
  - name: dev
    num_bytes: 247069
    num_examples: 1500
  download_size: 823156
  dataset_size: 1307859
- config_name: en
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 731795
    num_examples: 5749
  - name: test
    num_bytes: 164458
    num_examples: 1379
  - name: dev
    num_bytes: 210064
    num_examples: 1500
  download_size: 720594
  dataset_size: 1106317
- config_name: es
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 887101
    num_examples: 5749
  - name: test
    num_bytes: 194616
    num_examples: 1379
  - name: dev
    num_bytes: 245250
    num_examples: 1500
  download_size: 1294160
  dataset_size: 1326967
- config_name: fr
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 910195
    num_examples: 5749
  - name: test
    num_bytes: 200446
    num_examples: 1379
  - name: dev
    num_bytes: 254083
    num_examples: 1500
  download_size: 1332515
  dataset_size: 1364724
- config_name: it
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 871526
    num_examples: 5749
  - name: test
    num_bytes: 191647
    num_examples: 1379
  - name: dev
    num_bytes: 243144
    num_examples: 1500
  download_size: 1273630
  dataset_size: 1306317
- config_name: nl
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 833667
    num_examples: 5749
  - name: test
    num_bytes: 182904
    num_examples: 1379
  - name: dev
    num_bytes: 234887
    num_examples: 1500
  download_size: 1217753
  dataset_size: 1251458
- config_name: pl
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 828433
    num_examples: 5749
  - name: test
    num_bytes: 181266
    num_examples: 1379
  - name: dev
    num_bytes: 231758
    num_examples: 1500
  download_size: 1212336
  dataset_size: 1241457
- config_name: pt
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 854356
    num_examples: 5749
  - name: test
    num_bytes: 189163
    num_examples: 1379
  - name: dev
    num_bytes: 240559
    num_examples: 1500
  download_size: 1251508
  dataset_size: 1284078
- config_name: ru
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 1391674
    num_examples: 5749
  - name: test
    num_bytes: 300007
    num_examples: 1379
  - name: dev
    num_bytes: 386268
    num_examples: 1500
  download_size: 2051645
  dataset_size: 2077949
- config_name: zh
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: similarity_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 694424
    num_examples: 5749
  - name: test
    num_bytes: 154834
    num_examples: 1379
  - name: dev
    num_bytes: 195821
    num_examples: 1500
  download_size: 1006892
  dataset_size: 1045079
configs:
- config_name: de
  data_files:
  - split: train
    path: de/train-*
  - split: test
    path: de/test-*
  - split: dev
    path: de/dev-*
- config_name: en
  data_files:
  - split: train
    path: en/train-*
  - split: test
    path: en/test-*
  - split: dev
    path: en/dev-*
---

# Dataset Card for STSb Multi MT

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository**: https://github.com/PhilipMay/stsb-multi-mt
- **Homepage (original dataset):** https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
- **Paper about original dataset:** https://arxiv.org/abs/1708.00055
- **Leaderboard:** https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark#Results
- **Point of Contact:** [Open an issue on GitHub](https://github.com/PhilipMay/stsb-multi-mt/issues/new)

### Dataset Summary

> STS Benchmark comprises a selection of the English datasets used in the STS tasks organized
> in the context of SemEval between 2012 and 2017. The selection of datasets include text from
> image captions, news headlines and user forums. ([source](https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark))

These are different multilingual translations and the English original of the [STSbenchmark dataset](https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark). Translation has been done with [deepl.com](https://www.deepl.com/). It can be used to train [sentence embeddings](https://github.com/UKPLab/sentence-transformers) like [T-Systems-onsite/cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer).


**Examples of Use**

Load German dev Dataset:
```python
from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="de", split="dev")
```

Load English train Dataset:
```python
from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="en", split="train")
```

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

Available languages are: de, en, es, fr, it, nl, pl, pt, ru, zh

## Dataset Structure

### Data Instances

This dataset provides pairs of sentences and a score of their similarity.

score | 2 example sentences | explanation
------|---------|------------
5 | *The bird is bathing in the sink.<br/>Birdie is washing itself in the water basin.* | The two sentences are completely equivalent, as they mean the same thing.
4 | *Two boys on a couch are playing video games.<br/>Two boys are playing a video game.* | The two sentences are mostly equivalent, but some unimportant details differ.
3 | *John said he is considered a witness but not a suspect.<br/>“He is not a suspect anymore.” John said.* | The two sentences are roughly equivalent, but some important information differs/missing.
2 | *They flew out of the nest in groups.<br/>They flew into the nest together.* | The two sentences are not equivalent, but share some details.
1 | *The woman is playing the violin.<br/>The young lady enjoys listening to the guitar.* | The two sentences are not equivalent, but are on the same topic.
0 | *The black dog is running through the snow.<br/>A race car driver is driving his car through the mud.* | The two sentences are completely dissimilar.

An example:
```
{
    "sentence1": "A man is playing a large flute.",
    "sentence2": "A man is playing a flute.",
    "similarity_score": 3.8
}
```

### Data Fields

- `sentence1`: The 1st sentence as a `str`.
- `sentence2`: The 2nd sentence as a `str`.
- `similarity_score`: The similarity score as a `float` which is `<= 5.0` and `>= 0.0`.

### Data Splits

- train with 5749 samples
- dev with 1500 samples
- test with 1379 sampples

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

See [LICENSE](https://github.com/PhilipMay/stsb-multi-mt/blob/main/LICENSE) and [download at original dataset](https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark).

### Citation Information

```
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}
```

### Contributions

Thanks to [@PhilipMay](https://github.com/PhilipMay) for adding this dataset.