Datasets:
Size:
10K<n<100K
License:
File size: 8,763 Bytes
bd1467e 2299233 0eec43a 2299233 0eec43a bd1467e 52d1191 bd1467e 0eec43a 5643636 fbfe12f 0eec43a bd1467e 5643636 bd1467e fbfe12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- de
- en
- es
- fr
- it
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-classification
task_ids:
- dialogue-modeling
- language-modeling
- masked-language-modeling
- text-classification-other-dialogue-act-classification
paperswithcode_id: null
pretty_name: MIAM
configs:
- dihana
- ilisten
- loria
- maptask
- vm2
---
# Dataset Card for MIAM
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [N/A]
- **Repository:** [N/A]
- **Paper:** [N/A]
- **Leaderboard:** [N/A]
- **Point of Contact:** [N/A]
### Dataset Summary
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. All datasets contain dialogue act
labels.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English, French, German, Italian, Spanish.
## Dataset Structure
### Data Instances
#### Dihana Corpus
For the `dihana` configuration one example from the dataset is:
```
{
'Speaker': 'U',
'Utterance': 'Hola , quería obtener el horario para ir a Valencia',
'Dialogue_Act': 9, # 'Pregunta' ('Request')
'Dialogue_ID': '0',
'File_ID': 'B209_BA5c3',
}
```
#### iLISTEN Corpus
For the `ilisten` configuration one example from the dataset is:
```
{
'Speaker': 'T_11_U11',
'Utterance': 'ok, grazie per le informazioni',
'Dialogue_Act': 6, # 'KIND-ATTITUDE_SMALL-TALK'
'Dialogue_ID': '0',
}
```
#### LORIA Corpus
For the `loria` configuration one example from the dataset is:
```
{
'Speaker': 'Samir',
'Utterance': 'Merci de votre visite, bonne chance, et à la prochaine !',
'Dialogue_Act': 21, # 'quit'
'Dialogue_ID': '5',
'File_ID': 'Dial_20111128_113927',
}
```
#### HCRC MapTask Corpus
For the `maptask` configuration one example from the dataset is:
```
{
'Speaker': 'f',
'Utterance': 'is it underneath the rope bridge or to the left',
'Dialogue_Act': 6, # 'query_w'
'Dialogue_ID': '0',
'File_ID': 'q4ec1',
}
```
#### VERBMOBIL
For the `vm2` configuration one example from the dataset is:
```
{
'Utterance': 'ja was sind viereinhalb Stunden Bahngerüttel gegen siebzig Minuten Turbulenzen im Flugzeug',
'Utterance': 'Utterance',
'Dialogue_Act': 'Dialogue_Act', # 'INFORM'
'Speaker': 'A',
'Dialogue_ID': '66',
}
```
### Data Fields
For the `dihana` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'Afirmacion' (0) [Feedback_positive], 'Apertura' (1) [Opening], 'Cierre' (2) [Closing], 'Confirmacion' (3) [Acknowledge], 'Espera' (4) [Hold], 'Indefinida' (5) [Undefined], 'Negacion' (6) [Feedback_negative], 'No_entendido' (7) [Request_clarify], 'Nueva_consulta' (8) [New_request], 'Pregunta' (9) [Request] or 'Respuesta' (10) [Reply].
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.
For the `ilisten` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'AGREE' (0), 'ANSWER' (1), 'CLOSING' (2), 'ENCOURAGE-SORRY' (3), 'GENERIC-ANSWER' (4), 'INFO-REQUEST' (5), 'KIND-ATTITUDE_SMALL-TALK' (6), 'OFFER-GIVE-INFO' (7), 'OPENING' (8), 'PERSUASION-SUGGEST' (9), 'QUESTION' (10), 'REJECT' (11), 'SOLICITATION-REQ_CLARIFICATION' (12), 'STATEMENT' (13) or 'TALK-ABOUT-SELF' (14).
- `Dialogue_ID`: identifier of the dialogue as a string.
For the `loria` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'ack' (0), 'ask' (1), 'find_mold' (2), 'find_plans' (3), 'first_step' (4), 'greet' (5), 'help' (6), 'inform' (7), 'inform_engine' (8), 'inform_job' (9), 'inform_material_space' (10), 'informer_conditioner' (11), 'informer_decoration' (12), 'informer_elcomps' (13), 'informer_end_manufacturing' (14), 'kindAtt' (15), 'manufacturing_reqs' (16), 'next_step' (17), 'no' (18), 'other' (19), 'quality_control' (20), 'quit' (21), 'reqRep' (22), 'security_policies' (23), 'staff_enterprise' (24), 'staff_job' (25), 'studies_enterprise' (26), 'studies_job' (27), 'todo_failure' (28), 'todo_irreparable' (29), 'yes' (30)
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.
For the `maptask` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'acknowledge' (0), 'align' (1), 'check' (2), 'clarify' (3), 'explain' (4), 'instruct' (5), 'query_w' (6), 'query_yn' (7), 'ready' (8), 'reply_n' (9), 'reply_w' (10) or 'reply_y' (11).
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.
For the `vm2` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialogue act label of the utterance. It can be one of 'ACCEPT' (0), 'BACKCHANNEL' (1), 'BYE' (2), 'CLARIFY' (3), 'CLOSE' (4), 'COMMIT' (5), 'CONFIRM' (6), 'DEFER' (7), 'DELIBERATE' (8), 'DEVIATE_SCENARIO' (9), 'EXCLUDE' (10), 'EXPLAINED_REJECT' (11), 'FEEDBACK' (12), 'FEEDBACK_NEGATIVE' (13), 'FEEDBACK_POSITIVE' (14), 'GIVE_REASON' (15), 'GREET' (16), 'INFORM' (17), 'INIT' (18), 'INTRODUCE' (19), 'NOT_CLASSIFIABLE' (20), 'OFFER' (21), 'POLITENESS_FORMULA' (22), 'REJECT' (23), 'REQUEST' (24), 'REQUEST_CLARIFY' (25), 'REQUEST_COMMENT' (26), 'REQUEST_COMMIT' (27), 'REQUEST_SUGGEST' (28), 'SUGGEST' (29), 'THANK' (30).
- `Speaker`: Speaker as a string.
- `Dialogue_ID`: identifier of the dialogue as a string.
### Data Splits
| Dataset name | Train | Valid | Test |
| ------------ | ----- | ----- | ---- |
| dihana | 19063 | 2123 | 2361 |
| ilisten | 1986 | 230 | 971 |
| loria | 8465 | 942 | 1047 |
| maptask | 25382 | 5221 | 5335 |
| vm2 | 25060 | 2860 | 2855 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Benchmark Curators
Anonymous
### Licensing Information
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License](https://creativecommons.org/licenses/by-sa/4.0/).
### Citation Information
```
@unpublished{
anonymous2021cross-lingual,
title={Cross-Lingual Pretraining Methods for Spoken Dialog},
author={Anonymous},
journal={OpenReview Preprint},
year={2021},
url{https://openreview.net/forum?id=c1oDhu_hagR},
note={anonymous preprint under review}
}
```
|