File size: 15,515 Bytes
bd1467e
 
 
 
 
2299233
0eec43a
 
 
 
 
2299233
0eec43a
bd1467e
 
 
 
 
 
 
52d1191
 
bd1467e
 
0eec43a
 
 
5643636
fbfe12f
0eec43a
 
 
 
 
 
c4beb7f
 
da15931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9754187
 
 
da15931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9754187
 
 
da15931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9754187
 
 
da15931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9754187
 
 
da15931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9754187
 
 
da15931
 
bd1467e
 
 
 
 
5643636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1467e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d9f85
bd1467e
23d9f85
bd1467e
 
 
 
 
 
 
 
23d9f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1467e
fbfe12f
23d9f85
 
 
c4beb7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- de
- en
- es
- fr
- it
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-classification
task_ids:
- dialogue-modeling
- language-modeling
- masked-language-modeling
paperswithcode_id: null
pretty_name: MIAM
configs:
- dihana
- ilisten
- loria
- maptask
- vm2
tags:
- dialogue-act-classification
dataset_info:
- config_name: dihana
  features:
  - name: Speaker
    dtype: string
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: File_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: Afirmacion
          1: Apertura
          2: Cierre
          3: Confirmacion
          4: Espera
          5: Indefinida
          6: Negacion
          7: No_entendido
          8: Nueva_consulta
          9: Pregunta
          10: Respuesta
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 1946735
    num_examples: 19063
  - name: validation
    num_bytes: 216498
    num_examples: 2123
  - name: test
    num_bytes: 238446
    num_examples: 2361
  download_size: 1777267
  dataset_size: 2401679
- config_name: ilisten
  features:
  - name: Speaker
    dtype: string
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: AGREE
          1: ANSWER
          2: CLOSING
          3: ENCOURAGE-SORRY
          4: GENERIC-ANSWER
          5: INFO-REQUEST
          6: KIND-ATTITUDE_SMALL-TALK
          7: OFFER-GIVE-INFO
          8: OPENING
          9: PERSUASION-SUGGEST
          10: QUESTION
          11: REJECT
          12: SOLICITATION-REQ_CLARIFICATION
          13: STATEMENT
          14: TALK-ABOUT-SELF
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 244336
    num_examples: 1986
  - name: validation
    num_bytes: 33988
    num_examples: 230
  - name: test
    num_bytes: 145376
    num_examples: 971
  download_size: 349993
  dataset_size: 423700
- config_name: loria
  features:
  - name: Speaker
    dtype: string
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: File_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: ack
          1: ask
          2: find_mold
          3: find_plans
          4: first_step
          5: greet
          6: help
          7: inform
          8: inform_engine
          9: inform_job
          10: inform_material_space
          11: informer_conditioner
          12: informer_decoration
          13: informer_elcomps
          14: informer_end_manufacturing
          15: kindAtt
          16: manufacturing_reqs
          17: next_step
          18: 'no'
          19: other
          20: quality_control
          21: quit
          22: reqRep
          23: security_policies
          24: staff_enterprise
          25: staff_job
          26: studies_enterprise
          27: studies_job
          28: todo_failure
          29: todo_irreparable
          30: 'yes'
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 1208730
    num_examples: 8465
  - name: validation
    num_bytes: 133829
    num_examples: 942
  - name: test
    num_bytes: 149855
    num_examples: 1047
  download_size: 1221132
  dataset_size: 1492414
- config_name: maptask
  features:
  - name: Speaker
    dtype: string
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: File_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: acknowledge
          1: align
          2: check
          3: clarify
          4: explain
          5: instruct
          6: query_w
          7: query_yn
          8: ready
          9: reply_n
          10: reply_w
          11: reply_y
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 1910120
    num_examples: 25382
  - name: validation
    num_bytes: 389879
    num_examples: 5221
  - name: test
    num_bytes: 396947
    num_examples: 5335
  download_size: 1729021
  dataset_size: 2696946
- config_name: vm2
  features:
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Speaker
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: ACCEPT
          1: BACKCHANNEL
          2: BYE
          3: CLARIFY
          4: CLOSE
          5: COMMIT
          6: CONFIRM
          7: DEFER
          8: DELIBERATE
          9: DEVIATE_SCENARIO
          10: EXCLUDE
          11: EXPLAINED_REJECT
          12: FEEDBACK
          13: FEEDBACK_NEGATIVE
          14: FEEDBACK_POSITIVE
          15: GIVE_REASON
          16: GREET
          17: INFORM
          18: INIT
          19: INTRODUCE
          20: NOT_CLASSIFIABLE
          21: OFFER
          22: POLITENESS_FORMULA
          23: REJECT
          24: REQUEST
          25: REQUEST_CLARIFY
          26: REQUEST_COMMENT
          27: REQUEST_COMMIT
          28: REQUEST_SUGGEST
          29: SUGGEST
          30: THANK
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 1869254
    num_examples: 25060
  - name: validation
    num_bytes: 209390
    num_examples: 2860
  - name: test
    num_bytes: 209032
    num_examples: 2855
  download_size: 1641453
  dataset_size: 2287676
---

# Dataset Card for MIAM

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [N/A]
- **Repository:** [N/A]
- **Paper:** [N/A]
- **Leaderboard:** [N/A]
- **Point of Contact:** [N/A]

### Dataset Summary

Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. All datasets contain dialogue act
labels.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English, French, German, Italian, Spanish.

## Dataset Structure

### Data Instances

#### Dihana Corpus
For the `dihana` configuration one example from the dataset is:
```
{
  'Speaker': 'U',
  'Utterance': 'Hola , quería obtener el horario para ir a Valencia',
  'Dialogue_Act': 9,  # 'Pregunta' ('Request')
  'Dialogue_ID': '0',
  'File_ID': 'B209_BA5c3',
}
```

#### iLISTEN Corpus
For the `ilisten` configuration one example from the dataset is:
```
{
  'Speaker': 'T_11_U11',
  'Utterance': 'ok, grazie per le informazioni',
  'Dialogue_Act': 6,  # 'KIND-ATTITUDE_SMALL-TALK'
  'Dialogue_ID': '0',
}
```

#### LORIA Corpus
For the `loria` configuration one example from the dataset is:
```
{
  'Speaker': 'Samir',
  'Utterance': 'Merci de votre visite, bonne chance, et à la prochaine !',
  'Dialogue_Act': 21,  # 'quit'
  'Dialogue_ID': '5',
  'File_ID': 'Dial_20111128_113927',
}
```

#### HCRC MapTask Corpus
For the `maptask` configuration one example from the dataset is:
```
{
  'Speaker': 'f',
  'Utterance': 'is it underneath the rope bridge or to the left',
  'Dialogue_Act': 6,  # 'query_w'
  'Dialogue_ID': '0',
  'File_ID': 'q4ec1',
}
```

#### VERBMOBIL
For the `vm2` configuration one example from the dataset is:
```
{
  'Utterance': 'ja was sind viereinhalb Stunden Bahngerüttel gegen siebzig Minuten Turbulenzen im Flugzeug',
  'Utterance': 'Utterance',
  'Dialogue_Act': 'Dialogue_Act',  # 'INFORM'
  'Speaker': 'A',
  'Dialogue_ID': '66',
}
```

### Data Fields

For the `dihana` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'Afirmacion' (0) [Feedback_positive], 'Apertura' (1) [Opening], 'Cierre' (2) [Closing], 'Confirmacion' (3) [Acknowledge], 'Espera' (4) [Hold], 'Indefinida' (5) [Undefined], 'Negacion' (6) [Feedback_negative], 'No_entendido' (7) [Request_clarify], 'Nueva_consulta' (8) [New_request], 'Pregunta' (9) [Request] or 'Respuesta' (10) [Reply].
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.

For the `ilisten` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'AGREE' (0), 'ANSWER' (1), 'CLOSING' (2), 'ENCOURAGE-SORRY' (3), 'GENERIC-ANSWER' (4), 'INFO-REQUEST' (5), 'KIND-ATTITUDE_SMALL-TALK' (6), 'OFFER-GIVE-INFO' (7), 'OPENING' (8), 'PERSUASION-SUGGEST' (9), 'QUESTION' (10), 'REJECT' (11), 'SOLICITATION-REQ_CLARIFICATION' (12), 'STATEMENT' (13) or 'TALK-ABOUT-SELF' (14).
- `Dialogue_ID`: identifier of the dialogue as a string.

For the `loria` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'ack' (0), 'ask' (1), 'find_mold' (2), 'find_plans' (3), 'first_step' (4), 'greet' (5), 'help' (6), 'inform' (7), 'inform_engine' (8), 'inform_job' (9), 'inform_material_space' (10), 'informer_conditioner' (11), 'informer_decoration' (12), 'informer_elcomps' (13), 'informer_end_manufacturing' (14), 'kindAtt' (15), 'manufacturing_reqs' (16), 'next_step' (17), 'no' (18), 'other' (19), 'quality_control' (20), 'quit' (21), 'reqRep' (22), 'security_policies' (23), 'staff_enterprise' (24), 'staff_job' (25), 'studies_enterprise' (26), 'studies_job' (27), 'todo_failure' (28), 'todo_irreparable' (29), 'yes' (30)
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.

For the `maptask` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'acknowledge' (0), 'align' (1), 'check' (2), 'clarify' (3), 'explain' (4), 'instruct' (5), 'query_w' (6), 'query_yn' (7), 'ready' (8), 'reply_n' (9), 'reply_w' (10) or 'reply_y' (11).
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.

For the `vm2` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialogue act label of the utterance. It can be one of 'ACCEPT' (0), 'BACKCHANNEL' (1), 'BYE' (2), 'CLARIFY' (3), 'CLOSE' (4), 'COMMIT' (5), 'CONFIRM' (6), 'DEFER' (7), 'DELIBERATE' (8), 'DEVIATE_SCENARIO' (9), 'EXCLUDE' (10), 'EXPLAINED_REJECT' (11), 'FEEDBACK' (12), 'FEEDBACK_NEGATIVE' (13), 'FEEDBACK_POSITIVE' (14), 'GIVE_REASON' (15), 'GREET' (16), 'INFORM' (17), 'INIT' (18), 'INTRODUCE' (19), 'NOT_CLASSIFIABLE' (20), 'OFFER' (21), 'POLITENESS_FORMULA' (22), 'REJECT' (23), 'REQUEST' (24), 'REQUEST_CLARIFY' (25), 'REQUEST_COMMENT' (26), 'REQUEST_COMMIT' (27), 'REQUEST_SUGGEST' (28), 'SUGGEST' (29), 'THANK' (30).
- `Speaker`: Speaker as a string.
- `Dialogue_ID`: identifier of the dialogue as a string.

### Data Splits

| Dataset name | Train | Valid | Test |
| ------------ | ----- | ----- | ---- |
| dihana       | 19063 | 2123  | 2361 |
| ilisten      | 1986  | 230   | 971  |
| loria        | 8465  | 942   | 1047 |
| maptask      | 25382 | 5221  | 5335 |
| vm2          | 25060 | 2860  | 2855 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Anonymous.

### Licensing Information

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License](https://creativecommons.org/licenses/by-sa/4.0/).

### Citation Information

```
@inproceedings{colombo-etal-2021-code,
    title = "Code-switched inspired losses for spoken dialog representations",
    author = "Colombo, Pierre  and
      Chapuis, Emile  and
      Labeau, Matthieu  and
      Clavel, Chlo{\'e}",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.656",
    doi = "10.18653/v1/2021.emnlp-main.656",
    pages = "8320--8337",
    abstract = "Spoken dialogue systems need to be able to handle both multiple languages and multilinguality inside a conversation (\textit{e.g} in case of code-switching). In this work, we introduce new pretraining losses tailored to learn generic multilingual spoken dialogue representations. The goal of these losses is to expose the model to code-switched language. In order to scale up training, we automatically build a pretraining corpus composed of multilingual conversations in five different languages (French, Italian, English, German and Spanish) from OpenSubtitles, a huge multilingual corpus composed of 24.3G tokens. We test the generic representations on MIAM, a new benchmark composed of five dialogue act corpora on the same aforementioned languages as well as on two novel multilingual tasks (\textit{i.e} multilingual mask utterance retrieval and multilingual inconsistency identification). Our experiments show that our new losses achieve a better performance in both monolingual and multilingual settings.",
}
```

### Contributions

Thanks to [@eusip](https://github.com/eusip) and [@PierreColombo](https://github.com/PierreColombo) for adding this dataset.