Datasets:
Size:
10K<n<100K
License:
File size: 15,787 Bytes
bd1467e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The Multilingual dIalogAct benchMark."""
import textwrap
import pandas as pd
import datasets
_MIAM_CITATION = """\
@unpublished{
anonymous2021cross-lingual,
title={Cross-Lingual Pretraining Methods for Spoken Dialog},
author={Anonymous},
journal={OpenReview Preprint},
year={2021},
url{https://openreview.net/forum?id=c1oDhu_hagR},
note={anonymous preprint under review}
}
"""
_MIAM_DESCRIPTION = """\
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. Some datasets additionally include
emotion and/or sentimant labels.
"""
_URL = "https://raw.githubusercontent.com/eusip/MIAM/main"
DIHANA_DA_DESCRIPTION = {
"Afirmacion": "Feedback_positive",
"Apertura": "Opening",
"Cierre": "Closing",
"Confirmacion": "Acknowledge",
"Espera": "Hold",
"Indefinida": "Undefined",
"Negacion": "Feedback_negative",
"No_entendido": "Request_clarify",
"Nueva_consulta": "New_request",
"Pregunta": "Request",
"Respuesta": "Reply",
}
class MiamConfig(datasets.BuilderConfig):
"""BuilderConfig for MIAM."""
def __init__(
self,
text_features,
label_column,
data_url,
citation,
url,
label_classes=None,
**kwargs,
):
"""BuilderConfig for MIAM.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the csv/txt file corresponding
to the label
data_url: `string`, url to download the csv/text file from
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
**kwargs: keyword arguments forwarded to super.
"""
super(MiamConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class Miam(datasets.GeneratorBasedBuilder):
"""The Multilingual dIalogAct benchMark."""
BUILDER_CONFIGS = [
MiamConfig(
name="dihana",
description=textwrap.dedent(
"""\
The Dihana corpus primarily consists of spontaneous speech. The corpus is annotated
using three different levels of labels. The first level is dedicated to the generic
task-independent DA and the two additional are made with task-specific information. We
focus on the 11 first level tags."""
),
text_features={
"Speaker": "Speaker",
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
"Dialogue_ID": "Dialogue_ID",
"File_ID": "File_ID",
},
label_classes=list(DIHANA_DA_DESCRIPTION.keys()),
label_column="Dialogue_Act",
data_url={
"train": _URL + "/dihana/train.csv",
"dev": _URL + "/dihana/dev.csv",
"test": _URL + "/dihana/test.csv",
},
citation=textwrap.dedent(
"""\
@inproceedings{benedi2006design,
title={Design and acquisition of a telephone spontaneous speech dialogue corpus in Spanish: DIHANA},
author={Bened{\'i}, Jos{\'e}-Miguel and Lleida, Eduardo and Varona, Amparo and Castro, Mar{\'i}a-Jos{\'e} and Galiano, Isabel and Justo, Raquel and L{\'o}pez, I and Miguel, Antonio},
booktitle={Fifth International Conference on Language Resources and Evaluation (LREC)},
pages={1636--1639},
year={2006}
}
@inproceedings{post2013improved,
title={Improved speech-to-text translation with the Fisher and Callhome Spanish--English speech translation corpus},
author={Post, Matt and Kumar, Gaurav and Lopez, Adam and Karakos, Damianos and Callison-Burch, Chris and Khudanpur, Sanjeev},
booktitle={Proc. IWSLT},
year={2013}
}
@article{coria2005predicting,
title={Predicting obligation dialogue acts from prosodic and speaker infomation},
author={Coria, S and Pineda, L},
journal={Research on Computing Science (ISSN 1665-9899), Centro de Investigacion en Computacion, Instituto Politecnico Nacional, Mexico City},
year={2005}
}"""
),
url="",
),
MiamConfig(
name="ilisten",
description=textwrap.dedent(
"""\
"itaLIan Speech acT labEliNg" (iLISTEN) is a corpus of annotated dialogue turns labeled
for speech acts."""
),
text_features={
"Speaker": "Speaker",
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
"Dialogue_ID": "Dialogue_ID",
},
label_classes=[
"AGREE",
"ANSWER",
"CLOSING",
"ENCOURAGE-SORRY",
"GENERIC-ANSWER",
"INFO-REQUEST",
"KIND-ATTITUDE_SMALL-TALK",
"OFFER-GIVE-INFO",
"OPENING",
"PERSUASION-SUGGEST",
"QUESTION",
"REJECT",
"SOLICITATION-REQ_CLARIFICATION",
"STATEMENT",
"TALK-ABOUT-SELF",
],
label_column="Dialogue_Act",
data_url={
"train": _URL + "/ilisten/train.csv",
"dev": _URL + "/ilisten/dev.csv",
"test": _URL + "/ilisten/test.csv",
},
citation=textwrap.dedent(
"""\
@article{basile2018overview,
title={Overview of the Evalita 2018itaLIan Speech acT labEliNg (iLISTEN) Task},
author={Basile, Pierpaolo and Novielli, Nicole},
journal={EVALITA Evaluation of NLP and Speech Tools for Italian},
volume={12},
pages={44},
year={2018}
}"""
),
url="",
),
MiamConfig(
name="loria",
description=textwrap.dedent(
"""\
The LORIA Nancy dialog corpus is derived from human-machine interactions in a serious
game setting."""
),
text_features={
"Speaker": "Speaker",
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
"Dialogue_ID": "Dialogue_ID",
"File_ID": "File_ID",
},
label_classes=[
"ack",
"ask",
"find_mold",
"find_plans",
"first_step",
"greet",
"help",
"inform",
"inform_engine",
"inform_job",
"inform_material_space",
"informer_conditioner",
"informer_decoration",
"informer_elcomps",
"informer_end_manufacturing",
"kindAtt",
"manufacturing_reqs",
"next_step",
"no",
"other",
"quality_control",
"quit",
"reqRep",
"security_policies",
"staff_enterprise",
"staff_job",
"studies_enterprise",
"studies_job",
"todo_failure",
"todo_irreparable",
"yes",
],
label_column="Dialogue_Act",
data_url={
"train": _URL + "/loria/train.csv",
"dev": _URL + "/loria/dev.csv",
"test": _URL + "/loria/test.csv",
},
citation=textwrap.dedent(
"""\
@inproceedings{barahona2012building,
title={Building and exploiting a corpus of dialog interactions between french speaking virtual and human agents},
author={Barahona, Lina Maria Rojas and Lorenzo, Alejandra and Gardent, Claire},
booktitle={The eighth international conference on Language Resources and Evaluation (LREC)},
pages={1428--1435},
year={2012}
}"""
),
url="",
),
MiamConfig(
name="maptask",
description=textwrap.dedent(
"""\
The HCRC MapTask Corpus was constructed through the verbal collaboration of participants
in order to construct a map route. This corpus is small (27k utterances). As there is
no standard train/dev/test split performance depends on the split."""
),
text_features={
"Speaker": "Speaker",
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
"Dialogue_ID": "Dialogue_ID",
"File_ID": "File_ID",
},
label_classes=[
"acknowledge",
"align",
"check",
"clarify",
"explain",
"instruct",
"query_w",
"query_yn",
"ready",
"reply_n",
"reply_w",
"reply_y",
],
label_column="Dialogue_Act",
data_url={
"train": _URL + "/maptask/train.csv",
"dev": _URL + "/maptask/dev.csv",
"test": _URL + "/maptask/test.csv",
},
citation=textwrap.dedent(
"""\
@inproceedings{thompson1993hcrc,
title={The HCRC map task corpus: natural dialogue for speech recognition},
author={Thompson, Henry S and Anderson, Anne H and Bard, Ellen Gurman and Doherty-Sneddon,
Gwyneth and Newlands, Alison and Sotillo, Cathy},
booktitle={HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993},
year={1993}
}"""
),
url="http://groups.inf.ed.ac.uk/maptask/",
),
MiamConfig(
name="vm2",
description=textwrap.dedent(
"""\
The VERBMOBIL corpus consist of transcripts of multi-party meetings hand-annotated with
dialog acts. It is the second biggest dataset with around 110k utterances."""
),
text_features={
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
"Speaker": "Speaker",
"Dialogue_ID": "Dialogue_ID",
},
label_classes=[
"ACCEPT",
"BACKCHANNEL",
"BYE",
"CLARIFY",
"CLOSE",
"COMMIT",
"CONFIRM",
"DEFER",
"DELIBERATE",
"DEVIATE_SCENARIO",
"EXCLUDE",
"EXPLAINED_REJECT",
"FEEDBACK",
"FEEDBACK_NEGATIVE",
"FEEDBACK_POSITIVE",
"GIVE_REASON",
"GREET",
"INFORM",
"INIT",
"INTRODUCE",
"NOT_CLASSIFIABLE",
"OFFER",
"POLITENESS_FORMULA",
"REJECT",
"REQUEST",
"REQUEST_CLARIFY",
"REQUEST_COMMENT",
"REQUEST_COMMIT",
"REQUEST_SUGGEST",
"SUGGEST",
"THANK",
],
label_column="Dialogue_Act",
data_url={
"train": _URL + "/vm2/train.csv",
"dev": _URL + "/vm2/dev.csv",
"test": _URL + "/vm2/test.csv",
},
citation=textwrap.dedent(
"""\
@book{kay1992verbmobil,
title={Verbmobil: A translation system for face-to-face dialog},
author={Kay, Martin},
year={1992},
publisher={University of Chicago Press}
}"""
),
url="",
),
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
if self.config.label_classes:
features["Label"] = datasets.features.ClassLabel(names=self.config.label_classes)
features["Idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_MIAM_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _MIAM_CITATION,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download(self.config.data_url)
splits = []
splits.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": data_files["train"],
"split": "train",
},
)
)
splits.append(
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": data_files["dev"],
"split": "dev",
},
)
)
splits.append(
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": data_files["test"],
"split": "test",
},
)
)
return splits
def _generate_examples(self, data_file, split):
df = pd.read_csv(data_file, delimiter=",", header=0, quotechar='"', dtype=str)[
self.config.text_features.keys()
]
rows = df.to_dict(orient="records")
for n, row in enumerate(rows):
example = row
example["Idx"] = n
if self.config.label_column in example:
label = example[self.config.label_column]
example["Label"] = label
yield example["Idx"], example
|