File size: 5,545 Bytes
6df3a2d f9928e8 6df3a2d 97149b5 6df3a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Loading script for the SQAC dataset.
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
bibtex
@article{DBLP:journals/corr/abs-2107-07253,
author = {Asier Guti{\'{e}}rrez{-}Fandi{\~{n}}o and
Jordi Armengol{-}Estap{\'{e}} and
Marc P{\`{a}}mies and
Joan Llop{-}Palao and
Joaqu{\'{\i}}n Silveira{-}Ocampo and
Casimiro Pio Carrino and
Aitor Gonzalez{-}Agirre and
Carme Armentano{-}Oller and
Carlos Rodr{\'{\i}}guez Penagos and
Marta Villegas},
title = {Spanish Language Models},
journal = {CoRR},
volume = {abs/2107.07253},
year = {2021},
url = {https://arxiv.org/abs/2107.07253},
archivePrefix = {arXiv},
eprint = {2107.07253},
timestamp = {Wed, 21 Jul 2021 15:55:35 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2107-07253.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """
This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment.
The sources of the contexts are:
* Encyclopedic articles from [Wikipedia in Spanish](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode).
* News from [Wikinews in Spanish](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/).
* Text from the Spanish corpus [AnCora](http://clic.ub.edu/corpus/en), which is a mix from diferent newswire and literature sources, used under [CC-by licence] (https://creativecommons.org/licenses/by/4.0/legalcode).
This dataset can be used to build extractive-QA.
"""
_HOMEPAGE = """"""
_URL = "https://huggingface.co/datasets/PlanTL-GOB-ES/SQAC/tree/main"
_TRAINING_FILE = "train.json"
_DEV_FILE = "dev.json"
_TEST_FILE = "test.json"
class SQACConfig(datasets.BuilderConfig):
""" Builder config for the SQAC dataset """
def __init__(self, **kwargs):
"""BuilderConfig for SQAC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SQACConfig, self).__init__(**kwargs)
class SQAC(datasets.GeneratorBasedBuilder):
"""SQAC Dataset."""
BUILDER_CONFIGS = [
SQACConfig(
name="SQAC",
#version=datasets.Version("1.0.1"),
description="SQAC dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
sqac_data = json.load(f)
for article in sqac_data["data"]:
title = article.get("title", "").strip()
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
|