Datasets:
File size: 7,305 Bytes
ea95213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BANKING77 dataset."""
import csv
import datasets
from datasets.tasks import TextClassification
_CITATION = """\
@inproceedings{Casanueva2020,
author = {I{\~{n}}igo Casanueva and Tadas Temcinas and Daniela Gerz and Matthew Henderson and Ivan Vulic},
title = {Efficient Intent Detection with Dual Sentence Encoders},
year = {2020},
month = {mar},
note = {Data available at https://github.com/PolyAI-LDN/task-specific-datasets},
url = {https://arxiv.org/abs/2003.04807},
booktitle = {Proceedings of the 2nd Workshop on NLP for ConvAI - ACL 2020}
}
""" # noqa: W605
_DESCRIPTION = """\
BANKING77 dataset provides a very fine-grained set of intents in a banking domain.
It comprises 13,083 customer service queries labeled with 77 intents.
It focuses on fine-grained single-domain intent detection.
"""
_HOMEPAGE = "https://github.com/PolyAI-LDN/task-specific-datasets"
_LICENSE = "Creative Commons Attribution 4.0 International"
_TRAIN_DOWNLOAD_URL = (
"https://raw.githubusercontent.com/PolyAI-LDN/task-specific-datasets/master/banking_data/train.csv"
)
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/PolyAI-LDN/task-specific-datasets/master/banking_data/test.csv"
class Banking77(datasets.GeneratorBasedBuilder):
"""BANKING77 dataset."""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=[
"activate_my_card",
"age_limit",
"apple_pay_or_google_pay",
"atm_support",
"automatic_top_up",
"balance_not_updated_after_bank_transfer",
"balance_not_updated_after_cheque_or_cash_deposit",
"beneficiary_not_allowed",
"cancel_transfer",
"card_about_to_expire",
"card_acceptance",
"card_arrival",
"card_delivery_estimate",
"card_linking",
"card_not_working",
"card_payment_fee_charged",
"card_payment_not_recognised",
"card_payment_wrong_exchange_rate",
"card_swallowed",
"cash_withdrawal_charge",
"cash_withdrawal_not_recognised",
"change_pin",
"compromised_card",
"contactless_not_working",
"country_support",
"declined_card_payment",
"declined_cash_withdrawal",
"declined_transfer",
"direct_debit_payment_not_recognised",
"disposable_card_limits",
"edit_personal_details",
"exchange_charge",
"exchange_rate",
"exchange_via_app",
"extra_charge_on_statement",
"failed_transfer",
"fiat_currency_support",
"get_disposable_virtual_card",
"get_physical_card",
"getting_spare_card",
"getting_virtual_card",
"lost_or_stolen_card",
"lost_or_stolen_phone",
"order_physical_card",
"passcode_forgotten",
"pending_card_payment",
"pending_cash_withdrawal",
"pending_top_up",
"pending_transfer",
"pin_blocked",
"receiving_money",
"Refund_not_showing_up",
"request_refund",
"reverted_card_payment?",
"supported_cards_and_currencies",
"terminate_account",
"top_up_by_bank_transfer_charge",
"top_up_by_card_charge",
"top_up_by_cash_or_cheque",
"top_up_failed",
"top_up_limits",
"top_up_reverted",
"topping_up_by_card",
"transaction_charged_twice",
"transfer_fee_charged",
"transfer_into_account",
"transfer_not_received_by_recipient",
"transfer_timing",
"unable_to_verify_identity",
"verify_my_identity",
"verify_source_of_funds",
"verify_top_up",
"virtual_card_not_working",
"visa_or_mastercard",
"why_verify_identity",
"wrong_amount_of_cash_received",
"wrong_exchange_rate_for_cash_withdrawal",
]
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
]
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
# call next to skip header
next(csv_reader)
for id_, row in enumerate(csv_reader):
text, label = row
yield id_, {"text": text, "label": label}
|