Datasets:

Modalities:
Text
Formats:
text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
ETBench / evaluation /compute_metrics.py
yeliudev's picture
Fix mapping error in GVQ evaluation
2d7bce9 verified
# ---------------------------------------------
# Evaluation code for E.T. Bench
# Copyright (c) 2024 Ye Liu
# Licensed under CC BY-NC-SA 4.0 license
# ---------------------------------------------
import argparse
import copy
import random
import re
import string
import nncore
import numpy as np
import torch
from nncore.ops import temporal_iou
from tabulate import tabulate
import sentence_transformers
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.cider.cider import Cider
from pycocoevalcap.meteor.meteor import Meteor
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
from sentence_transformers.util import dot_score
class SentenceTransformerSimilarity(object):
def __init__(self):
self.model = sentence_transformers.SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def compute_sim(self, a, b):
a_emb = self.model.encode([a])
b_emb = self.model.encode([b])
score = dot_score(a_emb, b_emb)[0, 0].cpu()
return float(score)
def compute_score(self, a, b):
assert len(a) == len(b)
keys = list(a.keys())
aa, bb = [], []
for key in keys:
assert len(a[key]) == len(b[key]) == 1
aa.append(a[key][0])
bb.append(b[key][0])
a_emb = self.model.encode(aa)
b_emb = self.model.encode(bb)
score = dot_score(a_emb, b_emb).cpu()
assert score.shape[0] == score.shape[1]
score = [score[i, i].item() for i in range(score.shape[0])]
score = sum(score) / len(score)
return float(score), None
def random_string(string_length):
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for i in range(string_length))
def remove_nonascii(text):
return ''.join([i if ord(i) < 128 else ' ' for i in text])
class DVCEval(object):
def __init__(self, ground_truth, prediction, tious=None, max_proposals=1000, sentsim=None):
self.tious = tious
self.max_proposals = max_proposals
self.ground_truths = [ground_truth]
self.prediction = self.import_prediction(prediction)
self.ground_truths_keys = list(ground_truth.keys())
self.tokenizer = PTBTokenizer(verbose=False)
self.scorers = [(Bleu(4), ['Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']), (Meteor(), 'METEOR'), (Rouge(), 'ROUGE_L'),
(Cider(), 'CIDEr'), (sentsim, 'SentSim')]
def import_prediction(self, prediction):
results = dict()
for vid_id in prediction['results']:
results[vid_id] = prediction['results'][vid_id][:self.max_proposals]
return results
def iou(self, interval_1, interval_2):
start_i, end_i = interval_1[0], interval_1[1]
start, end = interval_2[0], interval_2[1]
intersection = max(0, min(end, end_i) - max(start, start_i))
union = min(max(end, end_i) - min(start, start_i), end - start + end_i - start_i)
iou = float(intersection) / (union + 1e-8)
return iou
def get_gt_vid_ids(self):
vid_ids = set([])
for gt in self.ground_truths:
vid_ids |= set(gt.keys())
return list(vid_ids)
def evaluate(self):
self.scores = dict()
for tiou in self.tious:
scores = self.evaluate_tiou(tiou)
for metric, score in scores.items():
if metric not in self.scores:
self.scores[metric] = []
self.scores[metric].append(score)
self.scores['Recall'] = []
self.scores['Precision'] = []
for tiou in self.tious:
precision, recall = self.evaluate_detection(tiou)
self.scores['Recall'].append(recall)
self.scores['Precision'].append(precision)
def evaluate_detection(self, tiou):
gt_vid_ids = self.get_gt_vid_ids()
recall = [0] * len(gt_vid_ids)
precision = [0] * len(gt_vid_ids)
for vid_i, vid_id in enumerate(gt_vid_ids):
best_recall = 0
best_precision = 0
for gt in self.ground_truths:
if vid_id not in gt:
continue
refs = gt[vid_id]
ref_set_covered = set([])
pred_set_covered = set([])
if vid_id in self.prediction:
for pred_i, pred in enumerate(self.prediction[vid_id]):
pred_timestamp = pred['timestamp']
for ref_i, ref_timestamp in enumerate(refs['timestamps']):
if self.iou(pred_timestamp, ref_timestamp) > tiou:
ref_set_covered.add(ref_i)
pred_set_covered.add(pred_i)
new_precision = float(len(pred_set_covered)) / (pred_i + 1)
best_precision = max(best_precision, new_precision)
new_recall = float(len(ref_set_covered)) / len(refs['timestamps'])
best_recall = max(best_recall, new_recall)
recall[vid_i] = best_recall
precision[vid_i] = best_precision
return sum(precision) / len(precision), sum(recall) / len(recall)
def evaluate_tiou(self, tiou):
vid2capid, res, gts, cur_res, cur_gts = dict(), dict(), dict(), dict(), dict()
unique_index = 0
gt_vid_ids = self.get_gt_vid_ids()
for vid_id in gt_vid_ids:
vid2capid[vid_id] = []
if vid_id not in self.prediction:
pass
else:
for pred in self.prediction[vid_id]:
has_added = False
for gt in self.ground_truths:
if vid_id not in gt:
continue
gt_captions = gt[vid_id]
for caption_idx, caption_timestamp in enumerate(gt_captions['timestamps']):
if self.iou(pred['timestamp'], caption_timestamp) >= tiou:
cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}]
cur_gts[unique_index] = [{
'caption':
remove_nonascii(gt_captions['sentences'][caption_idx])
}]
vid2capid[vid_id].append(unique_index)
unique_index += 1
has_added = True
if not has_added:
cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}]
cur_gts[unique_index] = [{'caption': random_string(random.randint(10, 20))}]
vid2capid[vid_id].append(unique_index)
unique_index += 1
output = dict()
for scorer, method in self.scorers:
all_scores = dict()
tokenize_res = self.tokenizer.tokenize(cur_res)
tokenize_gts = self.tokenizer.tokenize(cur_gts)
for vid in vid2capid.keys():
res[vid] = {index: tokenize_res[index] for index in vid2capid[vid]}
gts[vid] = {index: tokenize_gts[index] for index in vid2capid[vid]}
for vid_id in gt_vid_ids:
if len(res[vid_id]) == 0 or len(gts[vid_id]) == 0:
if isinstance(method, list):
score = [0] * len(method)
else:
score = 0
else:
if isinstance(method, list):
score, scores = scorer.compute_score(gts[vid_id], res[vid_id], verbose=0)
else:
score, scores = scorer.compute_score(gts[vid_id], res[vid_id])
all_scores[vid_id] = score
if isinstance(method, list):
scores = np.mean(list(all_scores.values()), axis=0)
for m in range(len(method)):
output[method[m]] = scores[m]
else:
output[method] = np.mean(list(all_scores.values()))
return output
def extract_time_part(time_part):
radius = 20
extracted_time_part = re.compile(r"\d+\.*\d*\s*-\s*\d+\.*\d*").findall(time_part)
if len(extracted_time_part) == 0:
if time_part.count(':') == 1:
extracted_time = re.compile(r"\d+\.*\d*:\d+\.*\d*").findall(time_part)[0]
extracted_time = int(extracted_time.split(':')[0]) * 60 + int(extracted_time.split(':')[1])
if extracted_time > radius:
extracted_time_part = [f'{extracted_time - radius} - {extracted_time + radius}']
else:
extracted_time_part = [f'{extracted_time} - {extracted_time + 2*radius}']
elif time_part.count(':') == 2:
start, end = re.compile(r"\d+\.*\d*:\d+\.*\d*").findall(time_part)
start_seconds = int(start.split(':')[0]) * 60 + int(start.split(':')[1])
end_seconds = int(end.split(':')[0]) * 60 + int(end.split(':')[1])
extracted_time_part = [f'{start_seconds} - {end_seconds}']
if len(extracted_time_part) == 0:
extracted_time_part = re.compile(r"\d+\.*\d*(?!\.)").findall(time_part)
if len(extracted_time_part) == 1:
extracted_time = float(extracted_time_part[0])
if extracted_time > radius:
extracted_time_part = [f'{extracted_time - radius} - {extracted_time + radius}']
else:
extracted_time_part = [f'{extracted_time} - {extracted_time + 2 * radius}']
elif len(extracted_time_part) == 2:
extracted_time_part = [f'{extracted_time_part[0]} - {extracted_time_part[1]}']
return extracted_time_part
def extract_time_from_paragraph(paragraph):
paragraph = paragraph.lower()
patterns = [(r"(\d+\.*\d*)\s*-\s*(\d+\.*\d*)", r"(\d+\.*\d*\s*-\s*\d+\.*\d*)")]
timestamps, captions = [], []
for time_pattern, string_pattern in patterns:
time_matches = re.findall(time_pattern, paragraph)
string_matches = re.findall(string_pattern, paragraph)
if time_matches:
timestamps = [[float(start), float(end)] for start, end in time_matches]
rest_para = paragraph
for time_string in string_matches:
rest_para = rest_para.replace(time_string, '\n')
captions = rest_para.replace('seconds', '').split('\n')
if len(timestamps) > 0:
break
if len(timestamps) == 0:
start_time_pattern = r"(?:start(?:ing)? time: (\d+\.*\d*)(?:s| seconds)?)"
end_time_pattern = r"(?:end(?:ing)? time: (\d+\.*\d*)(?:s| seconds)?)"
end_matches = re.findall(end_time_pattern, paragraph, re.DOTALL | re.IGNORECASE)
start_matches = re.findall(start_time_pattern, paragraph, re.DOTALL | re.IGNORECASE)
if start_matches and end_matches:
timestamps = [[float(start), float(end)] for start, end in zip(start_matches, end_matches)]
captions = re.findall(r"description: (.*)", paragraph)
if len(captions) == 0:
captions = re.findall(r"\*\s*(.*)", paragraph)
if len(timestamps) == 0:
start_end_matches = re.findall(r"start time (\d+\.*\d*), end time (\d+\.*\d*)", paragraph)
if start_end_matches:
timestamps = list(start_end_matches)
for (start, end) in start_end_matches:
paragraph = paragraph.replace(f'start time {start}, end time {end}', '\n')
captions = paragraph.split('\n')
assert len(timestamps) <= 0
captions = [c.strip().strip(', ').rstrip() for c in captions if len(c) > 5]
min_len = min(len(timestamps), len(captions))
timestamps = timestamps[:min_len]
captions = captions[:min_len]
assert len(timestamps) == len(captions)
return timestamps, captions
def dvc_format(caption):
timestamps = []
sents = []
paras = caption
try:
timestamps, sents = extract_time_from_paragraph(paras)
except Exception:
return None, None
if len(timestamps) == 0:
if '\n' in caption:
caps = caption.split('\n')
caps = [c for c in caps if len(c) > 7]
else:
raw_caps = caption.split('.')
caps = [c for c in raw_caps if len(c) > 7]
caps = [c + '.' for c in caps]
for cap in caps:
try:
if len(timestamps) == 0:
parts = cap.split('seconds')
parts = [p.strip(',') for p in parts]
time_part = parts[0]
extracted_time_part = extract_time_part(time_part)
if len(extracted_time_part) == 0:
continue
else:
time_part = extracted_time_part[0]
sent_part = parts[-1]
stime = round(float(time_part.split('-')[0].strip()), 2)
etime = round(float(time_part.split('-')[1].strip()), 2)
timestamps.append([stime, etime])
sents.append(sent_part.strip())
except Exception:
continue
assert len(timestamps) == len(sents)
if len(timestamps) == 0:
return None, None
for i in range(len(timestamps)):
assert isinstance(timestamps[i], list) and len(timestamps[i]) == 2 and isinstance(
timestamps[i][0], (int, float)) and isinstance(timestamps[i][1], (int, float))
timestamps[i] = [min(timestamps[i]), max(timestamps[i])]
return timestamps, sents
def tvg_format(ans):
ans = ans.lower()
sentences = re.split(r'[!?\n]', ans)
keywords = ['starts', 'ends', 'happens in', 'start time', 'end time', 'start', 'end', 'happen']
candidates = []
for sentence in sentences:
if any(keyword in sentence for keyword in keywords):
candidates.append(sentence)
timestamps = []
patterns = [r"(\d+\.*\d*)\s*-\s*(\d+\.*\d*)"]
for time_pattern in patterns:
time_matches = re.findall(time_pattern, ans)
if time_matches:
timestamps = [[float(start), float(end)] for start, end in time_matches]
if len(timestamps) == 0:
pattern = r"(\d+\.*\d*)\s* to \s*(\d+\.*\d*)"
time_matches = re.findall(pattern, ans)
if time_matches:
timestamps = [[float(start), float(end)] for start, end in time_matches]
if len(sentences) == 0:
return None
if len(timestamps) == 0:
times = []
time_regex = re.compile(r'\b(\d+\.\d+\b|\b\d+)\b')
for sentence in candidates:
time = re.findall(time_regex, sentence)
if time:
time_in_sec = float(time[0])
times.append(time_in_sec)
times = times[:len(times) // 2 * 2]
timestamps = [(times[i], times[i + 1]) for i in range(0, len(times), 2)]
if len(timestamps) == 0:
times = []
time_regex = re.compile(r'\b((\d{1,2}:\d{2}:\d{2}))\b')
for sentence in candidates:
time = re.findall(time_regex, sentence)
if time:
t = time[0]
else:
continue
if t.count(':') == 2:
h, m, s = map(int, t.split(':'))
time_in_sec = h * 3600 + m * 60 + s
elif t.count(':') == 1:
m, s = map(int, t.split(':'))
time_in_sec = m * 60 + s
times.append(time_in_sec)
times = times[:len(times) // 2 * 2]
timestamps = [(times[i], times[i + 1]) for i in range(0, len(times), 2)]
results = []
for (start, end) in timestamps:
if end > start:
results.append([start, end])
else:
results.append([end, start])
if len(results) == 0:
results = None
if results is not None:
assert isinstance(results, list)
for item in results:
assert isinstance(item, list)
assert len(item) == 2
assert isinstance(item[0], (int, float))
assert isinstance(item[1], (int, float))
return results
def tvg_eval(samples):
iou_thr = [0.1, 0.3, 0.5, 0.7]
hit = [0 for _ in iou_thr]
cnt, sum_iou = 0, 0
for sample in samples:
gt = sample['tgt']
pred = tvg_format(sample['a'])
if pred is None:
cnt += 1
continue
pred = pred[0]
gt = torch.Tensor([gt])
pred = torch.Tensor([pred])
iou = temporal_iou(gt, pred).item()
sum_iou += iou
for i, thr in enumerate(iou_thr):
if iou >= thr:
hit[i] += 1
recall = [h / len(samples) for h in hit]
miou = sum_iou / len(samples)
out = dict(Total=len(samples), Failed=cnt, mIoU=round(miou, 5))
for rec, thr in zip(recall, iou_thr):
out[f'F1@{thr}'] = round(rec, 5)
out['F1'] = round(sum(recall) / len(recall), 5)
return out
def vhd_eval(samples):
hit, cnt = 0, 0
for sample in samples:
gt = sample['tgt']
if not isinstance(gt[0][0], (list, tuple)):
gt = [gt]
match = re.search(r"[-+]?\d*\.\d+|[-+]?\d+", sample['a'])
if not match:
cnt += 1
continue
pred = float(match.group(0))
matched = False
for annotator in gt:
for g in annotator:
if pred >= g[0] and pred <= g[1]:
matched = True
break
if matched:
hit += 1
out = dict(Total=len(samples), Failed=cnt)
out['F1'] = round(hit / len(samples), 5)
return out
def tem_eval(samples):
iou_thr = [0.1, 0.3, 0.5, 0.7]
hit = [0 for _ in iou_thr]
cnt, sum_iou = 0, 0
for sample in samples:
gt = sample['tgt']
pred = tvg_format(sample['a'])
if pred is None:
cnt += 1
continue
pred = pred[0]
gt = torch.Tensor(gt)
pred = torch.Tensor([pred])
iou = temporal_iou(gt, pred).max().item()
sum_iou += iou
for i, thr in enumerate(iou_thr):
if iou >= thr:
hit[i] += 1
recall = [h / len(samples) for h in hit]
miou = sum_iou / len(samples)
out = dict(Total=len(samples), Failed=cnt, mIoU=round(miou, 5))
for rec, thr in zip(recall, iou_thr):
out[f'R@{thr}'] = round(rec, 5)
out['mRec'] = round(sum(recall) / len(recall), 5)
return out
def tal_eval(samples):
iou_thr = [0.1, 0.3, 0.5, 0.7]
f1_score = [0 for _ in iou_thr]
cnt = 0
for sample in samples:
gt = sample['tgt']
pred = tvg_format(sample['a'])
if pred is None:
cnt += 1
continue
gt = torch.Tensor(gt)
pred = torch.Tensor(pred)
iou = temporal_iou(gt, pred)
for i, thr in enumerate(iou_thr):
if iou.max() < thr:
continue
else:
rec = (iou.amax(dim=1) >= thr).float().mean().item()
prc = (iou.amax(dim=0) >= thr).float().mean().item()
f1_score[i] += 2 * prc * rec / (prc + rec)
f1_score = [f / len(samples) for f in f1_score]
out = dict(Total=len(samples), Failed=cnt)
for f1, thr in zip(f1_score, iou_thr):
out[f'F1@{thr}'] = round(f1, 5)
out['F1'] = round(sum(f1_score) / len(f1_score), 5)
return out
def evs_eval(samples):
f1_score = []
cnt = 0
for sample in samples:
gt = sample['tgt']
pred = tvg_format(sample['a'])
if pred is None:
cnt += 1
continue
gt_map = torch.zeros(1000)
gt_len = 0
for g in gt:
s = max(0, round(g[0]))
e = round(g[1])
gt_map[s:e] = 1
gt_len += e - s
pred_map = torch.zeros(1000)
pred_len = 0
for p in pred:
s = max(0, round(p[0]))
e = round(p[1])
pred_map[s:e] = 2
pred_len += e - s
com_map = gt_map + pred_map
tp = (com_map == 3).sum().item()
fp = (com_map == 2).sum().item()
fn = (com_map == 1).sum().item()
if tp == 0:
f1 = 0
else:
rec = tp / (tp + fn)
prc = tp / (tp + fp)
f1 = 2 * prc * rec / (prc + rec)
f1_score.append(f1)
f1_score = round(sum(f1_score) / len(f1_score), 5) if len(f1_score) > 0 else 0
out = dict(Total=len(samples), Failed=cnt)
out['F1'] = f1_score
return out
def rvq_eval(samples, st):
if len(samples[0]['o']) == 4:
match_map = dict(a=0, b=1, c=2, d=3)
elif len(samples[0]['o']) == 5:
match_map = dict(a=0, b=1, c=2, d=3, e=4)
else:
raise NotImplementedError
hit, cnt = 0, 0
for sample in samples:
gt = sample['p']
pred = sample['a']
ever_matched = False
match = re.search(r'\(([A-Za-z])\)', pred)
if match:
ever_matched = True
choice = match.group(1).lower()
if choice in match_map and gt == match_map[choice]:
hit += 1
continue
pred = pred.lower()
if pred.startswith('best option:'):
pred = pred[12:]
pred = pred.lstrip().lstrip('(').lstrip()
if len(pred) == 0:
cnt += 1
continue
if len(pred) == 1 or pred[1] in ('.', ',', ' ', ')'):
ever_matched = True
if pred[0] in match_map and gt == match_map[pred[0]]:
hit += 1
continue
hit_idx, max_score = 0, float('-inf')
_map = ['A', 'B', 'C', 'D', 'E']
for idx, option in enumerate(sample['o']):
if isinstance(option, (list, tuple)):
opt = f'{option[0]} - {option[1]}'
else:
opt = option
opt = f'({_map[idx]}) {opt}'
sim = st.compute_sim(pred, opt)
if sim > max_score:
hit_idx = idx
max_score = sim
assert max_score != float('-inf')
if not ever_matched:
cnt += 1
if gt == hit_idx:
hit += 1
acc = hit / len(samples)
out = dict(Total=len(samples), Failed=cnt, Acc=round(acc, 5))
return out
def gvq_eval(samples, st):
acc_hit_idx, acc_cnt = [], 0
_samples = copy.deepcopy(samples)
for sample_idx, sample in enumerate(_samples):
gt = sample['p']
pred = sample['a']
if pred.lower().startswith('best option:'):
pred = pred[12:]
pred = pred.lstrip().lstrip('(').lstrip()
if len(pred) == 0:
acc_cnt += 1
continue
if len(sample['o']) == 4:
match_map = dict(a=0, b=1, c=2, d=3)
elif len(sample['o']) == 5:
match_map = dict(a=0, b=1, c=2, d=3, e=4)
else:
raise NotImplementedError
if len(pred) == 1 or pred[1] in ('.', ',', ' ', ')'):
if pred[0].lower() in match_map:
if gt == match_map[pred[0].lower()]:
acc_hit_idx.append(sample_idx)
continue
hit_idx, max_score = 0, float('-inf')
_map = ['A', 'B', 'C', 'D', 'E']
for idx, option in enumerate(sample['o']):
if isinstance(option, (list, tuple)):
opt = f'{option[0]} - {option[1]}'
else:
opt = option
opt = f'({_map[idx]}) {opt}'
sim = st.compute_sim(pred, opt)
if sim > max_score:
hit_idx = idx
max_score = sim
if max_score == float('-inf'):
acc_cnt += 1
continue
if gt == hit_idx:
acc_hit_idx.append(sample_idx)
acc_hit_idx = set(acc_hit_idx)
iou_thr = [0.1, 0.3, 0.5, 0.7]
hit = [0 for _ in iou_thr]
rec_cnt, sum_iou = 0, 0
for sample_idx, sample in enumerate(samples):
if sample_idx not in acc_hit_idx:
continue
gt = sample['tgt']
pred = tvg_format(sample['a'])
if pred is None:
rec_cnt += 1
continue
pred = pred[0]
gt = torch.Tensor([gt])
pred = torch.Tensor([pred])
iou = temporal_iou(gt, pred).item()
sum_iou += iou
for i, thr in enumerate(iou_thr):
if iou >= thr:
hit[i] += 1
recall = [h / len(samples) for h in hit]
miou = sum_iou / len(samples)
out = dict(Total=len(samples), Failed=rec_cnt + acc_cnt, mIoU=round(miou, 5))
for rec, thr in zip(recall, iou_thr):
out[f'R@{thr}'] = round(rec, 5)
out['mRec'] = round(sum(recall) / len(recall), 5)
out['Acc'] = round(len(acc_hit_idx) / len(samples), 5)
return out
def dvc_eval(samples, st):
iou_thr = [0.1, 0.3, 0.5, 0.7]
gt_dict, pred = dict(), dict(results=dict())
cnt = 0
for sample in samples:
gt = sample['tgt']
gt_cap = sample['g']
time, cap = dvc_format(sample['a'])
if time is None or cap is None:
cnt += 1
continue
gt_dict[sample['video']] = dict(timestamps=gt, sentences=gt_cap)
pred['results'][sample['video']] = [dict(sentence=c, timestamp=t) for t, c in zip(time, cap)]
scale = len(pred['results']) / len(samples)
if gt_dict:
evaluator = DVCEval(ground_truth=gt_dict, prediction=pred, tious=iou_thr, sentsim=st)
evaluator.evaluate()
scores = evaluator.scores
else:
scores = dict()
for key in ('Recall', 'Precision', 'Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4', 'METEOR', 'ROUGE_L', 'CIDEr',
'SentSim'):
scores[key] = [0] * len(iou_thr)
out = dict(Total=len(samples), Failed=cnt)
f1_score = []
for rec, prc, thr in zip(scores['Recall'], scores['Precision'], iou_thr):
rec = rec * scale
prc = prc * scale
f1 = 0 if prc + rec == 0 else 2 * prc * rec / (prc + rec)
out[f'F1@{thr}'] = round(f1, 5)
f1_score.append(f1)
out['F1'] = round(sum(f1_score) / len(f1_score), 5)
for key in ('Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4', 'METEOR', 'ROUGE_L', 'CIDEr', 'SentSim'):
out[key] = round(sum(scores[key]) / len(scores[key]), 5)
return out
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('pred_path')
parser.add_argument('--subset', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if args.pred_path.endswith('.json') or args.pred_path.endswith('.jsonl'):
pred_paths = [args.pred_path]
dir_name = nncore.dir_name(args.pred_path)
else:
pred_paths = nncore.ls(args.pred_path, ext=['json', 'jsonl'], join_path=True)
pred_paths = [path for path in pred_paths if path != 'metrics.json']
dir_name = args.pred_path
log_file = nncore.join(dir_name, 'metrics.log')
nncore.set_default_logger('etbench', fmt=None, log_file=log_file)
nncore.log(f'Total number of files: {len(pred_paths)}')
all_samples = []
for path in pred_paths:
nncore.log(f'Loading {path}...')
all_samples += nncore.load(path)
nncore.log(f'Total number of samples: {len(all_samples)}')
if args.subset:
subset = nncore.load(nncore.same_dir(__file__, 'subset.json'))
pred = dict()
for sample in all_samples:
task, source, idx = sample['task'], sample['source'], sample['idx']
if task not in pred:
pred[task] = dict()
if source not in pred[task]:
pred[task][source] = []
if not args.subset or (source in subset[task] and idx in subset[task][source]):
pred[task][source].append(sample)
if args.subset:
cnt = sum(len(d) for t in pred.values() for d in t.values())
nncore.log(f'Evaluating on a subset with {cnt} samples')
print('==========================================')
print('Start evaluation...')
st = SentenceTransformerSimilarity()
collected = dict()
for task in pred:
for source in pred[task]:
print(f'{task}_{source}: {len(pred[task][source])}')
if task in ('tvg', 'epm'):
out = tvg_eval(pred[task][source])
elif task in ('vhd', ):
out = vhd_eval(pred[task][source])
elif task in ('tem', ):
out = tem_eval(pred[task][source])
elif task in ('tal', ):
out = tal_eval(pred[task][source])
elif task in ('evs', ):
out = evs_eval(pred[task][source])
elif task in ('dvc', 'slc'):
out = dvc_eval(pred[task][source], st)
elif task in ('rar', 'rvq', 'eca'):
out = rvq_eval(pred[task][source], st)
elif task in ('gvq', ):
out = gvq_eval(pred[task][source], st)
else:
raise NotImplementedError
if task not in collected:
collected[task] = dict()
collected[task][source] = out
nncore.log('==========================================')
met = []
tasks = ['rar', 'eca', 'rvq']
if any(t in collected for t in tasks):
nncore.log('\nReferring\n')
out = [('Task', 'Source', 'Total', 'Failed', 'Acc')]
mean_acc = []
for task in tasks:
if task not in collected:
continue
task_acc = []
for source in collected[task]:
d = collected[task][source]
out.append((task, source, d['Total'], d['Failed'], d['Acc']))
mean_acc.append(d['Acc'])
task_acc.append(d['Acc'])
met.append(round(sum(task_acc) / len(task_acc), 5))
nncore.log(tabulate(out))
nncore.log(f'Mean Acc: {round(sum(mean_acc) / len(mean_acc), 5)}')
tasks = ['tvg', 'epm', 'tal', 'evs', 'vhd']
if any(t in collected for t in tasks):
nncore.log('\nGrounding\n')
out = [('Task', 'Source', 'Total', 'Failed', '[email protected]', '[email protected]', '[email protected]', '[email protected]', 'F1')]
mean_rec = []
for task in tasks:
if task not in collected:
continue
task_rec = []
for source in collected[task]:
d = collected[task][source]
o = [task, source, d['Total'], d['Failed']]
for thr in [0.1, 0.3, 0.5, 0.7]:
o.append(d.get(f'F1@{thr}', '-'))
o.append(d.get('F1', '-'))
out.append(tuple(o))
mean_rec.append(o[-1])
task_rec.append(o[-1])
met.append(round(sum(task_rec) / len(task_rec), 5))
nncore.log(tabulate(out))
nncore.log(f'Mean F1: {round(sum(mean_rec) / len(mean_rec), 5)}')
tasks = ['dvc', 'slc']
if any(t in collected for t in tasks):
nncore.log('\nCaptioning\n')
out = [('Task', 'Source', 'Total', 'Failed', '[email protected]', '[email protected]', '[email protected]', '[email protected]', 'F1', 'METEOR', 'ROUGE_L',
'CIDEr', 'SentSim')]
mean_rec, mean_sim = [], []
for task in tasks:
if task not in collected:
continue
task_rec, task_sim = [], []
for source in collected[task]:
d = collected[task][source]
o = [task, source]
for key in out[0][2:]:
o.append(d[key])
out.append(tuple(o))
mean_rec.append(d['F1'])
task_rec.append(d['F1'])
mean_sim.append(d['SentSim'])
task_sim.append(d['SentSim'])
met.append(round(sum(task_rec) / len(task_rec), 5))
met.append(round(sum(task_sim) / len(task_sim), 5))
nncore.log(tabulate(out))
nncore.log(f'Mean F1: {round(sum(mean_rec) / len(mean_rec), 5)}')
nncore.log(f'Mean SentSim: {round(sum(mean_sim) / len(mean_sim), 5)}')
tasks = ['tem', 'gvq']
if any(t in collected for t in tasks):
nncore.log('\nComplex\n')
out = [('Task', 'Source', 'Total', 'Failed', '[email protected]', '[email protected]', '[email protected]', '[email protected]', 'mRec', 'Acc')]
for task in tasks:
if task not in collected:
continue
task_rec = []
for source in collected[task]:
d = collected[task][source]
o = [task, source]
for key in out[0][2:]:
o.append(d.get(key, '-'))
out.append(tuple(o))
task_rec.append(o[-2])
met.append(round(sum(task_rec) / len(task_rec), 5))
nncore.log(tabulate(out))
nncore.log(f'TEM Mean Rec: {met[-2]}')
nncore.log(f'GVQ Mean Rec: {met[-1]}')
nncore.log('\nOverall\n')
out = [('RAR (Acc)', 'EVC (Acc)', 'RVQ (Acc)', 'TVG (F1)', 'EPM (F1)', 'TAL (F1)', 'EVS (F1)', 'VHD (F1)',
'DVC (F1)', 'DVC (Sim)', 'SLC (F1)', 'SLC (Sim)', 'TEM (Rec)', 'GVQ (Rec)')]
out.append(tuple([str(round(m * 100, 1)) for m in met]))
nncore.log(tabulate(out))
nncore.log('\nMerged\n')
out = [('Acc (ref)', 'F1 (gnd)', 'F1 (cap)', 'Sim (cap)', 'Rec (com)')]
out.append(
tuple([
str(round(sum(met[:3]) * 100 / 3, 1)),
str(round(sum(met[3:8]) * 100 / 5, 1)),
str(round((met[8] + met[10]) * 100 / 2, 1)),
str(round((met[9] + met[11]) * 100 / 2, 1)),
str(round(sum(met[12:]) * 100 / 2, 1))
]))
nncore.log(tabulate(out))
path = nncore.join(dir_name, 'metrics.json')
nncore.dump(collected, path, indent=4)