|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import copy |
|
import random |
|
import re |
|
import string |
|
|
|
import nncore |
|
import numpy as np |
|
import torch |
|
from nncore.ops import temporal_iou |
|
from tabulate import tabulate |
|
|
|
import sentence_transformers |
|
from pycocoevalcap.bleu.bleu import Bleu |
|
from pycocoevalcap.cider.cider import Cider |
|
from pycocoevalcap.meteor.meteor import Meteor |
|
from pycocoevalcap.rouge.rouge import Rouge |
|
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer |
|
from sentence_transformers.util import dot_score |
|
|
|
|
|
class SentenceTransformerSimilarity(object): |
|
|
|
def __init__(self): |
|
self.model = sentence_transformers.SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
def compute_sim(self, a, b): |
|
a_emb = self.model.encode([a]) |
|
b_emb = self.model.encode([b]) |
|
score = dot_score(a_emb, b_emb)[0, 0].cpu() |
|
return float(score) |
|
|
|
def compute_score(self, a, b): |
|
assert len(a) == len(b) |
|
keys = list(a.keys()) |
|
aa, bb = [], [] |
|
for key in keys: |
|
assert len(a[key]) == len(b[key]) == 1 |
|
aa.append(a[key][0]) |
|
bb.append(b[key][0]) |
|
a_emb = self.model.encode(aa) |
|
b_emb = self.model.encode(bb) |
|
score = dot_score(a_emb, b_emb).cpu() |
|
assert score.shape[0] == score.shape[1] |
|
score = [score[i, i].item() for i in range(score.shape[0])] |
|
score = sum(score) / len(score) |
|
return float(score), None |
|
|
|
|
|
def random_string(string_length): |
|
letters = string.ascii_lowercase |
|
return ''.join(random.choice(letters) for i in range(string_length)) |
|
|
|
|
|
def remove_nonascii(text): |
|
return ''.join([i if ord(i) < 128 else ' ' for i in text]) |
|
|
|
|
|
class DVCEval(object): |
|
|
|
def __init__(self, ground_truth, prediction, tious=None, max_proposals=1000, sentsim=None): |
|
self.tious = tious |
|
self.max_proposals = max_proposals |
|
self.ground_truths = [ground_truth] |
|
self.prediction = self.import_prediction(prediction) |
|
self.ground_truths_keys = list(ground_truth.keys()) |
|
|
|
self.tokenizer = PTBTokenizer(verbose=False) |
|
self.scorers = [(Bleu(4), ['Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']), (Meteor(), 'METEOR'), (Rouge(), 'ROUGE_L'), |
|
(Cider(), 'CIDEr'), (sentsim, 'SentSim')] |
|
|
|
def import_prediction(self, prediction): |
|
results = dict() |
|
for vid_id in prediction['results']: |
|
results[vid_id] = prediction['results'][vid_id][:self.max_proposals] |
|
return results |
|
|
|
def iou(self, interval_1, interval_2): |
|
start_i, end_i = interval_1[0], interval_1[1] |
|
start, end = interval_2[0], interval_2[1] |
|
intersection = max(0, min(end, end_i) - max(start, start_i)) |
|
union = min(max(end, end_i) - min(start, start_i), end - start + end_i - start_i) |
|
iou = float(intersection) / (union + 1e-8) |
|
return iou |
|
|
|
def get_gt_vid_ids(self): |
|
vid_ids = set([]) |
|
for gt in self.ground_truths: |
|
vid_ids |= set(gt.keys()) |
|
return list(vid_ids) |
|
|
|
def evaluate(self): |
|
self.scores = dict() |
|
for tiou in self.tious: |
|
scores = self.evaluate_tiou(tiou) |
|
for metric, score in scores.items(): |
|
if metric not in self.scores: |
|
self.scores[metric] = [] |
|
self.scores[metric].append(score) |
|
self.scores['Recall'] = [] |
|
self.scores['Precision'] = [] |
|
for tiou in self.tious: |
|
precision, recall = self.evaluate_detection(tiou) |
|
self.scores['Recall'].append(recall) |
|
self.scores['Precision'].append(precision) |
|
|
|
def evaluate_detection(self, tiou): |
|
gt_vid_ids = self.get_gt_vid_ids() |
|
recall = [0] * len(gt_vid_ids) |
|
precision = [0] * len(gt_vid_ids) |
|
for vid_i, vid_id in enumerate(gt_vid_ids): |
|
best_recall = 0 |
|
best_precision = 0 |
|
for gt in self.ground_truths: |
|
if vid_id not in gt: |
|
continue |
|
refs = gt[vid_id] |
|
ref_set_covered = set([]) |
|
pred_set_covered = set([]) |
|
if vid_id in self.prediction: |
|
for pred_i, pred in enumerate(self.prediction[vid_id]): |
|
pred_timestamp = pred['timestamp'] |
|
for ref_i, ref_timestamp in enumerate(refs['timestamps']): |
|
if self.iou(pred_timestamp, ref_timestamp) > tiou: |
|
ref_set_covered.add(ref_i) |
|
pred_set_covered.add(pred_i) |
|
|
|
new_precision = float(len(pred_set_covered)) / (pred_i + 1) |
|
best_precision = max(best_precision, new_precision) |
|
new_recall = float(len(ref_set_covered)) / len(refs['timestamps']) |
|
best_recall = max(best_recall, new_recall) |
|
recall[vid_i] = best_recall |
|
precision[vid_i] = best_precision |
|
return sum(precision) / len(precision), sum(recall) / len(recall) |
|
|
|
def evaluate_tiou(self, tiou): |
|
vid2capid, res, gts, cur_res, cur_gts = dict(), dict(), dict(), dict(), dict() |
|
unique_index = 0 |
|
gt_vid_ids = self.get_gt_vid_ids() |
|
|
|
for vid_id in gt_vid_ids: |
|
vid2capid[vid_id] = [] |
|
|
|
if vid_id not in self.prediction: |
|
pass |
|
|
|
else: |
|
for pred in self.prediction[vid_id]: |
|
has_added = False |
|
for gt in self.ground_truths: |
|
if vid_id not in gt: |
|
continue |
|
gt_captions = gt[vid_id] |
|
for caption_idx, caption_timestamp in enumerate(gt_captions['timestamps']): |
|
if self.iou(pred['timestamp'], caption_timestamp) >= tiou: |
|
cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}] |
|
cur_gts[unique_index] = [{ |
|
'caption': |
|
remove_nonascii(gt_captions['sentences'][caption_idx]) |
|
}] |
|
vid2capid[vid_id].append(unique_index) |
|
unique_index += 1 |
|
has_added = True |
|
|
|
if not has_added: |
|
cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}] |
|
cur_gts[unique_index] = [{'caption': random_string(random.randint(10, 20))}] |
|
vid2capid[vid_id].append(unique_index) |
|
unique_index += 1 |
|
|
|
output = dict() |
|
for scorer, method in self.scorers: |
|
all_scores = dict() |
|
|
|
tokenize_res = self.tokenizer.tokenize(cur_res) |
|
tokenize_gts = self.tokenizer.tokenize(cur_gts) |
|
|
|
for vid in vid2capid.keys(): |
|
res[vid] = {index: tokenize_res[index] for index in vid2capid[vid]} |
|
gts[vid] = {index: tokenize_gts[index] for index in vid2capid[vid]} |
|
|
|
for vid_id in gt_vid_ids: |
|
if len(res[vid_id]) == 0 or len(gts[vid_id]) == 0: |
|
if isinstance(method, list): |
|
score = [0] * len(method) |
|
else: |
|
score = 0 |
|
else: |
|
if isinstance(method, list): |
|
score, scores = scorer.compute_score(gts[vid_id], res[vid_id], verbose=0) |
|
else: |
|
score, scores = scorer.compute_score(gts[vid_id], res[vid_id]) |
|
|
|
all_scores[vid_id] = score |
|
|
|
if isinstance(method, list): |
|
scores = np.mean(list(all_scores.values()), axis=0) |
|
for m in range(len(method)): |
|
output[method[m]] = scores[m] |
|
else: |
|
output[method] = np.mean(list(all_scores.values())) |
|
|
|
return output |
|
|
|
|
|
def extract_time_part(time_part): |
|
radius = 20 |
|
extracted_time_part = re.compile(r"\d+\.*\d*\s*-\s*\d+\.*\d*").findall(time_part) |
|
|
|
if len(extracted_time_part) == 0: |
|
if time_part.count(':') == 1: |
|
extracted_time = re.compile(r"\d+\.*\d*:\d+\.*\d*").findall(time_part)[0] |
|
extracted_time = int(extracted_time.split(':')[0]) * 60 + int(extracted_time.split(':')[1]) |
|
if extracted_time > radius: |
|
extracted_time_part = [f'{extracted_time - radius} - {extracted_time + radius}'] |
|
else: |
|
extracted_time_part = [f'{extracted_time} - {extracted_time + 2*radius}'] |
|
elif time_part.count(':') == 2: |
|
start, end = re.compile(r"\d+\.*\d*:\d+\.*\d*").findall(time_part) |
|
start_seconds = int(start.split(':')[0]) * 60 + int(start.split(':')[1]) |
|
end_seconds = int(end.split(':')[0]) * 60 + int(end.split(':')[1]) |
|
extracted_time_part = [f'{start_seconds} - {end_seconds}'] |
|
|
|
if len(extracted_time_part) == 0: |
|
extracted_time_part = re.compile(r"\d+\.*\d*(?!\.)").findall(time_part) |
|
if len(extracted_time_part) == 1: |
|
extracted_time = float(extracted_time_part[0]) |
|
if extracted_time > radius: |
|
extracted_time_part = [f'{extracted_time - radius} - {extracted_time + radius}'] |
|
else: |
|
extracted_time_part = [f'{extracted_time} - {extracted_time + 2 * radius}'] |
|
elif len(extracted_time_part) == 2: |
|
extracted_time_part = [f'{extracted_time_part[0]} - {extracted_time_part[1]}'] |
|
|
|
return extracted_time_part |
|
|
|
|
|
def extract_time_from_paragraph(paragraph): |
|
paragraph = paragraph.lower() |
|
patterns = [(r"(\d+\.*\d*)\s*-\s*(\d+\.*\d*)", r"(\d+\.*\d*\s*-\s*\d+\.*\d*)")] |
|
timestamps, captions = [], [] |
|
|
|
for time_pattern, string_pattern in patterns: |
|
time_matches = re.findall(time_pattern, paragraph) |
|
string_matches = re.findall(string_pattern, paragraph) |
|
|
|
if time_matches: |
|
timestamps = [[float(start), float(end)] for start, end in time_matches] |
|
rest_para = paragraph |
|
for time_string in string_matches: |
|
rest_para = rest_para.replace(time_string, '\n') |
|
captions = rest_para.replace('seconds', '').split('\n') |
|
if len(timestamps) > 0: |
|
break |
|
|
|
if len(timestamps) == 0: |
|
start_time_pattern = r"(?:start(?:ing)? time: (\d+\.*\d*)(?:s| seconds)?)" |
|
end_time_pattern = r"(?:end(?:ing)? time: (\d+\.*\d*)(?:s| seconds)?)" |
|
end_matches = re.findall(end_time_pattern, paragraph, re.DOTALL | re.IGNORECASE) |
|
start_matches = re.findall(start_time_pattern, paragraph, re.DOTALL | re.IGNORECASE) |
|
|
|
if start_matches and end_matches: |
|
timestamps = [[float(start), float(end)] for start, end in zip(start_matches, end_matches)] |
|
captions = re.findall(r"description: (.*)", paragraph) |
|
if len(captions) == 0: |
|
captions = re.findall(r"\*\s*(.*)", paragraph) |
|
|
|
if len(timestamps) == 0: |
|
start_end_matches = re.findall(r"start time (\d+\.*\d*), end time (\d+\.*\d*)", paragraph) |
|
if start_end_matches: |
|
timestamps = list(start_end_matches) |
|
for (start, end) in start_end_matches: |
|
paragraph = paragraph.replace(f'start time {start}, end time {end}', '\n') |
|
captions = paragraph.split('\n') |
|
assert len(timestamps) <= 0 |
|
|
|
captions = [c.strip().strip(', ').rstrip() for c in captions if len(c) > 5] |
|
min_len = min(len(timestamps), len(captions)) |
|
timestamps = timestamps[:min_len] |
|
captions = captions[:min_len] |
|
|
|
assert len(timestamps) == len(captions) |
|
return timestamps, captions |
|
|
|
|
|
def dvc_format(caption): |
|
timestamps = [] |
|
sents = [] |
|
paras = caption |
|
|
|
try: |
|
timestamps, sents = extract_time_from_paragraph(paras) |
|
except Exception: |
|
return None, None |
|
|
|
if len(timestamps) == 0: |
|
if '\n' in caption: |
|
caps = caption.split('\n') |
|
caps = [c for c in caps if len(c) > 7] |
|
else: |
|
raw_caps = caption.split('.') |
|
caps = [c for c in raw_caps if len(c) > 7] |
|
caps = [c + '.' for c in caps] |
|
for cap in caps: |
|
try: |
|
if len(timestamps) == 0: |
|
parts = cap.split('seconds') |
|
parts = [p.strip(',') for p in parts] |
|
time_part = parts[0] |
|
extracted_time_part = extract_time_part(time_part) |
|
if len(extracted_time_part) == 0: |
|
continue |
|
else: |
|
time_part = extracted_time_part[0] |
|
sent_part = parts[-1] |
|
stime = round(float(time_part.split('-')[0].strip()), 2) |
|
etime = round(float(time_part.split('-')[1].strip()), 2) |
|
timestamps.append([stime, etime]) |
|
sents.append(sent_part.strip()) |
|
except Exception: |
|
continue |
|
|
|
assert len(timestamps) == len(sents) |
|
|
|
if len(timestamps) == 0: |
|
return None, None |
|
|
|
for i in range(len(timestamps)): |
|
assert isinstance(timestamps[i], list) and len(timestamps[i]) == 2 and isinstance( |
|
timestamps[i][0], (int, float)) and isinstance(timestamps[i][1], (int, float)) |
|
timestamps[i] = [min(timestamps[i]), max(timestamps[i])] |
|
|
|
return timestamps, sents |
|
|
|
|
|
def tvg_format(ans): |
|
ans = ans.lower() |
|
sentences = re.split(r'[!?\n]', ans) |
|
|
|
keywords = ['starts', 'ends', 'happens in', 'start time', 'end time', 'start', 'end', 'happen'] |
|
candidates = [] |
|
for sentence in sentences: |
|
if any(keyword in sentence for keyword in keywords): |
|
candidates.append(sentence) |
|
|
|
timestamps = [] |
|
patterns = [r"(\d+\.*\d*)\s*-\s*(\d+\.*\d*)"] |
|
|
|
for time_pattern in patterns: |
|
time_matches = re.findall(time_pattern, ans) |
|
if time_matches: |
|
timestamps = [[float(start), float(end)] for start, end in time_matches] |
|
|
|
if len(timestamps) == 0: |
|
pattern = r"(\d+\.*\d*)\s* to \s*(\d+\.*\d*)" |
|
time_matches = re.findall(pattern, ans) |
|
if time_matches: |
|
timestamps = [[float(start), float(end)] for start, end in time_matches] |
|
|
|
if len(sentences) == 0: |
|
return None |
|
|
|
if len(timestamps) == 0: |
|
times = [] |
|
time_regex = re.compile(r'\b(\d+\.\d+\b|\b\d+)\b') |
|
for sentence in candidates: |
|
time = re.findall(time_regex, sentence) |
|
if time: |
|
time_in_sec = float(time[0]) |
|
times.append(time_in_sec) |
|
times = times[:len(times) // 2 * 2] |
|
timestamps = [(times[i], times[i + 1]) for i in range(0, len(times), 2)] |
|
if len(timestamps) == 0: |
|
times = [] |
|
time_regex = re.compile(r'\b((\d{1,2}:\d{2}:\d{2}))\b') |
|
for sentence in candidates: |
|
time = re.findall(time_regex, sentence) |
|
if time: |
|
t = time[0] |
|
else: |
|
continue |
|
if t.count(':') == 2: |
|
h, m, s = map(int, t.split(':')) |
|
time_in_sec = h * 3600 + m * 60 + s |
|
elif t.count(':') == 1: |
|
m, s = map(int, t.split(':')) |
|
time_in_sec = m * 60 + s |
|
times.append(time_in_sec) |
|
times = times[:len(times) // 2 * 2] |
|
timestamps = [(times[i], times[i + 1]) for i in range(0, len(times), 2)] |
|
results = [] |
|
for (start, end) in timestamps: |
|
if end > start: |
|
results.append([start, end]) |
|
else: |
|
results.append([end, start]) |
|
|
|
if len(results) == 0: |
|
results = None |
|
|
|
if results is not None: |
|
assert isinstance(results, list) |
|
for item in results: |
|
assert isinstance(item, list) |
|
assert len(item) == 2 |
|
assert isinstance(item[0], (int, float)) |
|
assert isinstance(item[1], (int, float)) |
|
|
|
return results |
|
|
|
|
|
def tvg_eval(samples): |
|
iou_thr = [0.1, 0.3, 0.5, 0.7] |
|
hit = [0 for _ in iou_thr] |
|
cnt, sum_iou = 0, 0 |
|
for sample in samples: |
|
gt = sample['tgt'] |
|
|
|
pred = tvg_format(sample['a']) |
|
if pred is None: |
|
cnt += 1 |
|
continue |
|
|
|
pred = pred[0] |
|
gt = torch.Tensor([gt]) |
|
pred = torch.Tensor([pred]) |
|
iou = temporal_iou(gt, pred).item() |
|
sum_iou += iou |
|
|
|
for i, thr in enumerate(iou_thr): |
|
if iou >= thr: |
|
hit[i] += 1 |
|
|
|
recall = [h / len(samples) for h in hit] |
|
miou = sum_iou / len(samples) |
|
|
|
out = dict(Total=len(samples), Failed=cnt, mIoU=round(miou, 5)) |
|
for rec, thr in zip(recall, iou_thr): |
|
out[f'F1@{thr}'] = round(rec, 5) |
|
out['F1'] = round(sum(recall) / len(recall), 5) |
|
return out |
|
|
|
|
|
def vhd_eval(samples): |
|
hit, cnt = 0, 0 |
|
for sample in samples: |
|
gt = sample['tgt'] |
|
if not isinstance(gt[0][0], (list, tuple)): |
|
gt = [gt] |
|
|
|
match = re.search(r"[-+]?\d*\.\d+|[-+]?\d+", sample['a']) |
|
if not match: |
|
cnt += 1 |
|
continue |
|
|
|
pred = float(match.group(0)) |
|
matched = False |
|
for annotator in gt: |
|
for g in annotator: |
|
if pred >= g[0] and pred <= g[1]: |
|
matched = True |
|
break |
|
if matched: |
|
hit += 1 |
|
|
|
out = dict(Total=len(samples), Failed=cnt) |
|
out['F1'] = round(hit / len(samples), 5) |
|
return out |
|
|
|
|
|
def tem_eval(samples): |
|
iou_thr = [0.1, 0.3, 0.5, 0.7] |
|
hit = [0 for _ in iou_thr] |
|
cnt, sum_iou = 0, 0 |
|
for sample in samples: |
|
gt = sample['tgt'] |
|
|
|
pred = tvg_format(sample['a']) |
|
if pred is None: |
|
cnt += 1 |
|
continue |
|
|
|
pred = pred[0] |
|
gt = torch.Tensor(gt) |
|
pred = torch.Tensor([pred]) |
|
iou = temporal_iou(gt, pred).max().item() |
|
sum_iou += iou |
|
|
|
for i, thr in enumerate(iou_thr): |
|
if iou >= thr: |
|
hit[i] += 1 |
|
|
|
recall = [h / len(samples) for h in hit] |
|
miou = sum_iou / len(samples) |
|
|
|
out = dict(Total=len(samples), Failed=cnt, mIoU=round(miou, 5)) |
|
for rec, thr in zip(recall, iou_thr): |
|
out[f'R@{thr}'] = round(rec, 5) |
|
out['mRec'] = round(sum(recall) / len(recall), 5) |
|
return out |
|
|
|
|
|
def tal_eval(samples): |
|
iou_thr = [0.1, 0.3, 0.5, 0.7] |
|
f1_score = [0 for _ in iou_thr] |
|
cnt = 0 |
|
for sample in samples: |
|
gt = sample['tgt'] |
|
|
|
pred = tvg_format(sample['a']) |
|
if pred is None: |
|
cnt += 1 |
|
continue |
|
|
|
gt = torch.Tensor(gt) |
|
pred = torch.Tensor(pred) |
|
iou = temporal_iou(gt, pred) |
|
|
|
for i, thr in enumerate(iou_thr): |
|
if iou.max() < thr: |
|
continue |
|
else: |
|
rec = (iou.amax(dim=1) >= thr).float().mean().item() |
|
prc = (iou.amax(dim=0) >= thr).float().mean().item() |
|
f1_score[i] += 2 * prc * rec / (prc + rec) |
|
|
|
f1_score = [f / len(samples) for f in f1_score] |
|
|
|
out = dict(Total=len(samples), Failed=cnt) |
|
for f1, thr in zip(f1_score, iou_thr): |
|
out[f'F1@{thr}'] = round(f1, 5) |
|
out['F1'] = round(sum(f1_score) / len(f1_score), 5) |
|
return out |
|
|
|
|
|
def evs_eval(samples): |
|
f1_score = [] |
|
cnt = 0 |
|
for sample in samples: |
|
gt = sample['tgt'] |
|
|
|
pred = tvg_format(sample['a']) |
|
if pred is None: |
|
cnt += 1 |
|
continue |
|
|
|
gt_map = torch.zeros(1000) |
|
gt_len = 0 |
|
for g in gt: |
|
s = max(0, round(g[0])) |
|
e = round(g[1]) |
|
gt_map[s:e] = 1 |
|
gt_len += e - s |
|
|
|
pred_map = torch.zeros(1000) |
|
pred_len = 0 |
|
for p in pred: |
|
s = max(0, round(p[0])) |
|
e = round(p[1]) |
|
pred_map[s:e] = 2 |
|
pred_len += e - s |
|
|
|
com_map = gt_map + pred_map |
|
|
|
tp = (com_map == 3).sum().item() |
|
fp = (com_map == 2).sum().item() |
|
fn = (com_map == 1).sum().item() |
|
|
|
if tp == 0: |
|
f1 = 0 |
|
else: |
|
rec = tp / (tp + fn) |
|
prc = tp / (tp + fp) |
|
f1 = 2 * prc * rec / (prc + rec) |
|
|
|
f1_score.append(f1) |
|
|
|
f1_score = round(sum(f1_score) / len(f1_score), 5) if len(f1_score) > 0 else 0 |
|
|
|
out = dict(Total=len(samples), Failed=cnt) |
|
out['F1'] = f1_score |
|
return out |
|
|
|
|
|
def rvq_eval(samples, st): |
|
if len(samples[0]['o']) == 4: |
|
match_map = dict(a=0, b=1, c=2, d=3) |
|
elif len(samples[0]['o']) == 5: |
|
match_map = dict(a=0, b=1, c=2, d=3, e=4) |
|
else: |
|
raise NotImplementedError |
|
|
|
hit, cnt = 0, 0 |
|
for sample in samples: |
|
gt = sample['p'] |
|
pred = sample['a'] |
|
|
|
ever_matched = False |
|
match = re.search(r'\(([A-Za-z])\)', pred) |
|
if match: |
|
ever_matched = True |
|
choice = match.group(1).lower() |
|
if choice in match_map and gt == match_map[choice]: |
|
hit += 1 |
|
continue |
|
|
|
pred = pred.lower() |
|
if pred.startswith('best option:'): |
|
pred = pred[12:] |
|
|
|
pred = pred.lstrip().lstrip('(').lstrip() |
|
if len(pred) == 0: |
|
cnt += 1 |
|
continue |
|
|
|
if len(pred) == 1 or pred[1] in ('.', ',', ' ', ')'): |
|
ever_matched = True |
|
if pred[0] in match_map and gt == match_map[pred[0]]: |
|
hit += 1 |
|
continue |
|
|
|
hit_idx, max_score = 0, float('-inf') |
|
_map = ['A', 'B', 'C', 'D', 'E'] |
|
for idx, option in enumerate(sample['o']): |
|
if isinstance(option, (list, tuple)): |
|
opt = f'{option[0]} - {option[1]}' |
|
else: |
|
opt = option |
|
opt = f'({_map[idx]}) {opt}' |
|
sim = st.compute_sim(pred, opt) |
|
if sim > max_score: |
|
hit_idx = idx |
|
max_score = sim |
|
|
|
assert max_score != float('-inf') |
|
if not ever_matched: |
|
cnt += 1 |
|
|
|
if gt == hit_idx: |
|
hit += 1 |
|
|
|
acc = hit / len(samples) |
|
out = dict(Total=len(samples), Failed=cnt, Acc=round(acc, 5)) |
|
return out |
|
|
|
|
|
def gvq_eval(samples, st): |
|
acc_hit_idx, acc_cnt = [], 0 |
|
_samples = copy.deepcopy(samples) |
|
for sample_idx, sample in enumerate(_samples): |
|
gt = sample['p'] |
|
pred = sample['a'] |
|
|
|
if pred.lower().startswith('best option:'): |
|
pred = pred[12:] |
|
|
|
pred = pred.lstrip().lstrip('(').lstrip() |
|
if len(pred) == 0: |
|
acc_cnt += 1 |
|
continue |
|
|
|
if len(sample['o']) == 4: |
|
match_map = dict(a=0, b=1, c=2, d=3) |
|
elif len(sample['o']) == 5: |
|
match_map = dict(a=0, b=1, c=2, d=3, e=4) |
|
else: |
|
raise NotImplementedError |
|
|
|
if len(pred) == 1 or pred[1] in ('.', ',', ' ', ')'): |
|
if pred[0].lower() in match_map: |
|
if gt == match_map[pred[0].lower()]: |
|
acc_hit_idx.append(sample_idx) |
|
continue |
|
|
|
hit_idx, max_score = 0, float('-inf') |
|
_map = ['A', 'B', 'C', 'D', 'E'] |
|
for idx, option in enumerate(sample['o']): |
|
if isinstance(option, (list, tuple)): |
|
opt = f'{option[0]} - {option[1]}' |
|
else: |
|
opt = option |
|
opt = f'({_map[idx]}) {opt}' |
|
sim = st.compute_sim(pred, opt) |
|
if sim > max_score: |
|
hit_idx = idx |
|
max_score = sim |
|
if max_score == float('-inf'): |
|
acc_cnt += 1 |
|
continue |
|
|
|
if gt == hit_idx: |
|
acc_hit_idx.append(sample_idx) |
|
|
|
acc_hit_idx = set(acc_hit_idx) |
|
iou_thr = [0.1, 0.3, 0.5, 0.7] |
|
hit = [0 for _ in iou_thr] |
|
rec_cnt, sum_iou = 0, 0 |
|
for sample_idx, sample in enumerate(samples): |
|
if sample_idx not in acc_hit_idx: |
|
continue |
|
|
|
gt = sample['tgt'] |
|
|
|
pred = tvg_format(sample['a']) |
|
if pred is None: |
|
rec_cnt += 1 |
|
continue |
|
|
|
pred = pred[0] |
|
gt = torch.Tensor([gt]) |
|
pred = torch.Tensor([pred]) |
|
iou = temporal_iou(gt, pred).item() |
|
sum_iou += iou |
|
|
|
for i, thr in enumerate(iou_thr): |
|
if iou >= thr: |
|
hit[i] += 1 |
|
|
|
recall = [h / len(samples) for h in hit] |
|
miou = sum_iou / len(samples) |
|
|
|
out = dict(Total=len(samples), Failed=rec_cnt + acc_cnt, mIoU=round(miou, 5)) |
|
for rec, thr in zip(recall, iou_thr): |
|
out[f'R@{thr}'] = round(rec, 5) |
|
out['mRec'] = round(sum(recall) / len(recall), 5) |
|
out['Acc'] = round(len(acc_hit_idx) / len(samples), 5) |
|
return out |
|
|
|
|
|
def dvc_eval(samples, st): |
|
iou_thr = [0.1, 0.3, 0.5, 0.7] |
|
gt_dict, pred = dict(), dict(results=dict()) |
|
cnt = 0 |
|
for sample in samples: |
|
gt = sample['tgt'] |
|
gt_cap = sample['g'] |
|
|
|
time, cap = dvc_format(sample['a']) |
|
if time is None or cap is None: |
|
cnt += 1 |
|
continue |
|
|
|
gt_dict[sample['video']] = dict(timestamps=gt, sentences=gt_cap) |
|
pred['results'][sample['video']] = [dict(sentence=c, timestamp=t) for t, c in zip(time, cap)] |
|
|
|
scale = len(pred['results']) / len(samples) |
|
|
|
if gt_dict: |
|
evaluator = DVCEval(ground_truth=gt_dict, prediction=pred, tious=iou_thr, sentsim=st) |
|
evaluator.evaluate() |
|
scores = evaluator.scores |
|
else: |
|
scores = dict() |
|
for key in ('Recall', 'Precision', 'Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4', 'METEOR', 'ROUGE_L', 'CIDEr', |
|
'SentSim'): |
|
scores[key] = [0] * len(iou_thr) |
|
|
|
out = dict(Total=len(samples), Failed=cnt) |
|
f1_score = [] |
|
for rec, prc, thr in zip(scores['Recall'], scores['Precision'], iou_thr): |
|
rec = rec * scale |
|
prc = prc * scale |
|
f1 = 0 if prc + rec == 0 else 2 * prc * rec / (prc + rec) |
|
out[f'F1@{thr}'] = round(f1, 5) |
|
f1_score.append(f1) |
|
out['F1'] = round(sum(f1_score) / len(f1_score), 5) |
|
for key in ('Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4', 'METEOR', 'ROUGE_L', 'CIDEr', 'SentSim'): |
|
out[key] = round(sum(scores[key]) / len(scores[key]), 5) |
|
return out |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('pred_path') |
|
parser.add_argument('--subset', action='store_true') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
|
|
if args.pred_path.endswith('.json') or args.pred_path.endswith('.jsonl'): |
|
pred_paths = [args.pred_path] |
|
dir_name = nncore.dir_name(args.pred_path) |
|
else: |
|
pred_paths = nncore.ls(args.pred_path, ext=['json', 'jsonl'], join_path=True) |
|
pred_paths = [path for path in pred_paths if path != 'metrics.json'] |
|
dir_name = args.pred_path |
|
|
|
log_file = nncore.join(dir_name, 'metrics.log') |
|
nncore.set_default_logger('etbench', fmt=None, log_file=log_file) |
|
|
|
nncore.log(f'Total number of files: {len(pred_paths)}') |
|
|
|
all_samples = [] |
|
for path in pred_paths: |
|
nncore.log(f'Loading {path}...') |
|
all_samples += nncore.load(path) |
|
|
|
nncore.log(f'Total number of samples: {len(all_samples)}') |
|
|
|
if args.subset: |
|
subset = nncore.load(nncore.same_dir(__file__, 'subset.json')) |
|
|
|
pred = dict() |
|
for sample in all_samples: |
|
task, source, idx = sample['task'], sample['source'], sample['idx'] |
|
|
|
if task not in pred: |
|
pred[task] = dict() |
|
|
|
if source not in pred[task]: |
|
pred[task][source] = [] |
|
|
|
if not args.subset or (source in subset[task] and idx in subset[task][source]): |
|
pred[task][source].append(sample) |
|
|
|
if args.subset: |
|
cnt = sum(len(d) for t in pred.values() for d in t.values()) |
|
nncore.log(f'Evaluating on a subset with {cnt} samples') |
|
|
|
print('==========================================') |
|
print('Start evaluation...') |
|
|
|
st = SentenceTransformerSimilarity() |
|
|
|
collected = dict() |
|
for task in pred: |
|
for source in pred[task]: |
|
print(f'{task}_{source}: {len(pred[task][source])}') |
|
if task in ('tvg', 'epm'): |
|
out = tvg_eval(pred[task][source]) |
|
elif task in ('vhd', ): |
|
out = vhd_eval(pred[task][source]) |
|
elif task in ('tem', ): |
|
out = tem_eval(pred[task][source]) |
|
elif task in ('tal', ): |
|
out = tal_eval(pred[task][source]) |
|
elif task in ('evs', ): |
|
out = evs_eval(pred[task][source]) |
|
elif task in ('dvc', 'slc'): |
|
out = dvc_eval(pred[task][source], st) |
|
elif task in ('rar', 'rvq', 'eca'): |
|
out = rvq_eval(pred[task][source], st) |
|
elif task in ('gvq', ): |
|
out = gvq_eval(pred[task][source], st) |
|
else: |
|
raise NotImplementedError |
|
|
|
if task not in collected: |
|
collected[task] = dict() |
|
|
|
collected[task][source] = out |
|
|
|
nncore.log('==========================================') |
|
|
|
met = [] |
|
|
|
tasks = ['rar', 'eca', 'rvq'] |
|
if any(t in collected for t in tasks): |
|
nncore.log('\nReferring\n') |
|
out = [('Task', 'Source', 'Total', 'Failed', 'Acc')] |
|
mean_acc = [] |
|
for task in tasks: |
|
if task not in collected: |
|
continue |
|
task_acc = [] |
|
for source in collected[task]: |
|
d = collected[task][source] |
|
out.append((task, source, d['Total'], d['Failed'], d['Acc'])) |
|
mean_acc.append(d['Acc']) |
|
task_acc.append(d['Acc']) |
|
met.append(round(sum(task_acc) / len(task_acc), 5)) |
|
nncore.log(tabulate(out)) |
|
nncore.log(f'Mean Acc: {round(sum(mean_acc) / len(mean_acc), 5)}') |
|
|
|
tasks = ['tvg', 'epm', 'tal', 'evs', 'vhd'] |
|
if any(t in collected for t in tasks): |
|
nncore.log('\nGrounding\n') |
|
out = [('Task', 'Source', 'Total', 'Failed', '[email protected]', '[email protected]', '[email protected]', '[email protected]', 'F1')] |
|
mean_rec = [] |
|
for task in tasks: |
|
if task not in collected: |
|
continue |
|
task_rec = [] |
|
for source in collected[task]: |
|
d = collected[task][source] |
|
o = [task, source, d['Total'], d['Failed']] |
|
for thr in [0.1, 0.3, 0.5, 0.7]: |
|
o.append(d.get(f'F1@{thr}', '-')) |
|
o.append(d.get('F1', '-')) |
|
out.append(tuple(o)) |
|
mean_rec.append(o[-1]) |
|
task_rec.append(o[-1]) |
|
met.append(round(sum(task_rec) / len(task_rec), 5)) |
|
nncore.log(tabulate(out)) |
|
nncore.log(f'Mean F1: {round(sum(mean_rec) / len(mean_rec), 5)}') |
|
|
|
tasks = ['dvc', 'slc'] |
|
if any(t in collected for t in tasks): |
|
nncore.log('\nCaptioning\n') |
|
out = [('Task', 'Source', 'Total', 'Failed', '[email protected]', '[email protected]', '[email protected]', '[email protected]', 'F1', 'METEOR', 'ROUGE_L', |
|
'CIDEr', 'SentSim')] |
|
mean_rec, mean_sim = [], [] |
|
for task in tasks: |
|
if task not in collected: |
|
continue |
|
task_rec, task_sim = [], [] |
|
for source in collected[task]: |
|
d = collected[task][source] |
|
o = [task, source] |
|
for key in out[0][2:]: |
|
o.append(d[key]) |
|
out.append(tuple(o)) |
|
mean_rec.append(d['F1']) |
|
task_rec.append(d['F1']) |
|
mean_sim.append(d['SentSim']) |
|
task_sim.append(d['SentSim']) |
|
met.append(round(sum(task_rec) / len(task_rec), 5)) |
|
met.append(round(sum(task_sim) / len(task_sim), 5)) |
|
nncore.log(tabulate(out)) |
|
nncore.log(f'Mean F1: {round(sum(mean_rec) / len(mean_rec), 5)}') |
|
nncore.log(f'Mean SentSim: {round(sum(mean_sim) / len(mean_sim), 5)}') |
|
|
|
tasks = ['tem', 'gvq'] |
|
if any(t in collected for t in tasks): |
|
nncore.log('\nComplex\n') |
|
out = [('Task', 'Source', 'Total', 'Failed', '[email protected]', '[email protected]', '[email protected]', '[email protected]', 'mRec', 'Acc')] |
|
for task in tasks: |
|
if task not in collected: |
|
continue |
|
task_rec = [] |
|
for source in collected[task]: |
|
d = collected[task][source] |
|
o = [task, source] |
|
for key in out[0][2:]: |
|
o.append(d.get(key, '-')) |
|
out.append(tuple(o)) |
|
task_rec.append(o[-2]) |
|
met.append(round(sum(task_rec) / len(task_rec), 5)) |
|
nncore.log(tabulate(out)) |
|
nncore.log(f'TEM Mean Rec: {met[-2]}') |
|
nncore.log(f'GVQ Mean Rec: {met[-1]}') |
|
|
|
nncore.log('\nOverall\n') |
|
out = [('RAR (Acc)', 'EVC (Acc)', 'RVQ (Acc)', 'TVG (F1)', 'EPM (F1)', 'TAL (F1)', 'EVS (F1)', 'VHD (F1)', |
|
'DVC (F1)', 'DVC (Sim)', 'SLC (F1)', 'SLC (Sim)', 'TEM (Rec)', 'GVQ (Rec)')] |
|
out.append(tuple([str(round(m * 100, 1)) for m in met])) |
|
nncore.log(tabulate(out)) |
|
|
|
nncore.log('\nMerged\n') |
|
out = [('Acc (ref)', 'F1 (gnd)', 'F1 (cap)', 'Sim (cap)', 'Rec (com)')] |
|
out.append( |
|
tuple([ |
|
str(round(sum(met[:3]) * 100 / 3, 1)), |
|
str(round(sum(met[3:8]) * 100 / 5, 1)), |
|
str(round((met[8] + met[10]) * 100 / 2, 1)), |
|
str(round((met[9] + met[11]) * 100 / 2, 1)), |
|
str(round(sum(met[12:]) * 100 / 2, 1)) |
|
])) |
|
nncore.log(tabulate(out)) |
|
|
|
path = nncore.join(dir_name, 'metrics.json') |
|
nncore.dump(collected, path, indent=4) |
|
|