lheuveline
commited on
Commit
·
b073070
1
Parent(s):
813cd99
dataset translation notebook
Browse files
notebooks/DatasetTranslation.ipynb
ADDED
@@ -0,0 +1,837 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "f5e0b745",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from transformers import T5Tokenizer, T5ForConditionalGeneration\n",
|
11 |
+
"from transformers import AutoModel, AutoTokenizer\n",
|
12 |
+
"from transformers import MarianMTModel\n",
|
13 |
+
"from transformers import XLMRobertaForSequenceClassification\n",
|
14 |
+
"\n",
|
15 |
+
"\n",
|
16 |
+
"import os\n",
|
17 |
+
"import pandas as pd\n",
|
18 |
+
"from tqdm import tqdm\n",
|
19 |
+
"\n",
|
20 |
+
"tqdm.pandas()"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 2,
|
26 |
+
"id": "6e228528",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"def detect_language(model, tokenizer, text):\n",
|
31 |
+
" \n",
|
32 |
+
" token_dict = tokenizer(text, return_tensors=\"pt\").to(\"cuda\")\n",
|
33 |
+
" outputs = model(token_dict.input_ids)\n",
|
34 |
+
" decoded = outputs.logits.argmax(-1).item()\n",
|
35 |
+
" lang = model.config.id2label[decoded]\n",
|
36 |
+
" return lang\n",
|
37 |
+
"\n",
|
38 |
+
"def translate(model, tokenizer, text):\n",
|
39 |
+
" input_ids = tokenizer(text, return_tensors=\"pt\").input_ids.to(\"cuda\")\n",
|
40 |
+
" outputs = model.generate(input_ids)\n",
|
41 |
+
" decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
42 |
+
" return decoded"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 24,
|
48 |
+
"id": "454ae3b6",
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [
|
51 |
+
{
|
52 |
+
"data": {
|
53 |
+
"text/html": [
|
54 |
+
"<div>\n",
|
55 |
+
"<style scoped>\n",
|
56 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
57 |
+
" vertical-align: middle;\n",
|
58 |
+
" }\n",
|
59 |
+
"\n",
|
60 |
+
" .dataframe tbody tr th {\n",
|
61 |
+
" vertical-align: top;\n",
|
62 |
+
" }\n",
|
63 |
+
"\n",
|
64 |
+
" .dataframe thead th {\n",
|
65 |
+
" text-align: right;\n",
|
66 |
+
" }\n",
|
67 |
+
"</style>\n",
|
68 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
69 |
+
" <thead>\n",
|
70 |
+
" <tr style=\"text-align: right;\">\n",
|
71 |
+
" <th></th>\n",
|
72 |
+
" <th>text</th>\n",
|
73 |
+
" <th>label</th>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>INDEX</th>\n",
|
77 |
+
" <th></th>\n",
|
78 |
+
" <th></th>\n",
|
79 |
+
" </tr>\n",
|
80 |
+
" </thead>\n",
|
81 |
+
" <tbody>\n",
|
82 |
+
" <tr>\n",
|
83 |
+
" <th>0</th>\n",
|
84 |
+
" <td>Maybe the UN could talk to those asian and afr...</td>\n",
|
85 |
+
" <td>1</td>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>1</th>\n",
|
89 |
+
" <td>‘Juice (Jews) are worse that nukes.’ Caption t...</td>\n",
|
90 |
+
" <td>1</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" <tr>\n",
|
93 |
+
" <th>2</th>\n",
|
94 |
+
" <td>Foreigners on UK benefits leaps 41% in 5 years...</td>\n",
|
95 |
+
" <td>1</td>\n",
|
96 |
+
" </tr>\n",
|
97 |
+
" <tr>\n",
|
98 |
+
" <th>3</th>\n",
|
99 |
+
" <td>Jews cannot be patriots, since their allegianc...</td>\n",
|
100 |
+
" <td>1</td>\n",
|
101 |
+
" </tr>\n",
|
102 |
+
" <tr>\n",
|
103 |
+
" <th>4</th>\n",
|
104 |
+
" <td>Israel, Zionism and Jewish Supremacist control...</td>\n",
|
105 |
+
" <td>1</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" <tr>\n",
|
108 |
+
" <th>...</th>\n",
|
109 |
+
" <td>...</td>\n",
|
110 |
+
" <td>...</td>\n",
|
111 |
+
" </tr>\n",
|
112 |
+
" <tr>\n",
|
113 |
+
" <th>4998</th>\n",
|
114 |
+
" <td>Woman are basically childlike.</td>\n",
|
115 |
+
" <td>1</td>\n",
|
116 |
+
" </tr>\n",
|
117 |
+
" <tr>\n",
|
118 |
+
" <th>4999</th>\n",
|
119 |
+
" <td>women should be submissive to men.</td>\n",
|
120 |
+
" <td>1</td>\n",
|
121 |
+
" </tr>\n",
|
122 |
+
" <tr>\n",
|
123 |
+
" <th>5000</th>\n",
|
124 |
+
" <td>Women are essentially childlike, unable to und...</td>\n",
|
125 |
+
" <td>1</td>\n",
|
126 |
+
" </tr>\n",
|
127 |
+
" <tr>\n",
|
128 |
+
" <th>5001</th>\n",
|
129 |
+
" <td>Women should be submissive to men.</td>\n",
|
130 |
+
" <td>1</td>\n",
|
131 |
+
" </tr>\n",
|
132 |
+
" <tr>\n",
|
133 |
+
" <th>5002</th>\n",
|
134 |
+
" <td>Women should not be allowed to vote, this is a...</td>\n",
|
135 |
+
" <td>1</td>\n",
|
136 |
+
" </tr>\n",
|
137 |
+
" </tbody>\n",
|
138 |
+
"</table>\n",
|
139 |
+
"<p>5003 rows × 2 columns</p>\n",
|
140 |
+
"</div>"
|
141 |
+
],
|
142 |
+
"text/plain": [
|
143 |
+
" text label\n",
|
144 |
+
"INDEX \n",
|
145 |
+
"0 Maybe the UN could talk to those asian and afr... 1\n",
|
146 |
+
"1 ‘Juice (Jews) are worse that nukes.’ Caption t... 1\n",
|
147 |
+
"2 Foreigners on UK benefits leaps 41% in 5 years... 1\n",
|
148 |
+
"3 Jews cannot be patriots, since their allegianc... 1\n",
|
149 |
+
"4 Israel, Zionism and Jewish Supremacist control... 1\n",
|
150 |
+
"... ... ...\n",
|
151 |
+
"4998 Woman are basically childlike. 1\n",
|
152 |
+
"4999 women should be submissive to men. 1\n",
|
153 |
+
"5000 Women are essentially childlike, unable to und... 1\n",
|
154 |
+
"5001 Women should be submissive to men. 1\n",
|
155 |
+
"5002 Women should not be allowed to vote, this is a... 1\n",
|
156 |
+
"\n",
|
157 |
+
"[5003 rows x 2 columns]"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
"execution_count": 24,
|
161 |
+
"metadata": {},
|
162 |
+
"output_type": "execute_result"
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"source": [
|
166 |
+
"DATASET_PATH = \"../data/processed/\"\n",
|
167 |
+
"\n",
|
168 |
+
"df = pd.read_csv(DATASET_PATH, index_col=[0])\n",
|
169 |
+
"df"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 9,
|
175 |
+
"id": "f2db3a80",
|
176 |
+
"metadata": {
|
177 |
+
"scrolled": true
|
178 |
+
},
|
179 |
+
"outputs": [
|
180 |
+
{
|
181 |
+
"data": {
|
182 |
+
"text/plain": [
|
183 |
+
"0 2.0\n",
|
184 |
+
"1 2.0\n",
|
185 |
+
"2 4.0\n",
|
186 |
+
"3 2.0\n",
|
187 |
+
"4 4.0\n",
|
188 |
+
" ... \n",
|
189 |
+
"135551 2.0\n",
|
190 |
+
"135552 2.0\n",
|
191 |
+
"135553 1.0\n",
|
192 |
+
"135554 2.0\n",
|
193 |
+
"135555 2.0\n",
|
194 |
+
"Name: status, Length: 135556, dtype: float64"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
"execution_count": 9,
|
198 |
+
"metadata": {},
|
199 |
+
"output_type": "execute_result"
|
200 |
+
}
|
201 |
+
],
|
202 |
+
"source": [
|
203 |
+
"# PREPROCESSING\n",
|
204 |
+
"# Need more preprocessing :\n",
|
205 |
+
"# - stopwords : Name, URL\n",
|
206 |
+
"\n",
|
207 |
+
"# Worst 10%\n",
|
208 |
+
"# df = df.loc[df.hate_speech_score > df.hate_speech_score.quantile(0.90)]\n",
|
209 |
+
"\n",
|
210 |
+
"# Get negative examples\n",
|
211 |
+
"# n = 12785 # = number of gathered worst examples\n",
|
212 |
+
"# df = df.loc[df.hate_speech_score < df.hate_speech_score.quantile(0.1)].iloc[:n]\n"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "markdown",
|
217 |
+
"id": "5ca78b94",
|
218 |
+
"metadata": {},
|
219 |
+
"source": [
|
220 |
+
"#### Language detection"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": 21,
|
226 |
+
"id": "69fc7f94",
|
227 |
+
"metadata": {},
|
228 |
+
"outputs": [],
|
229 |
+
"source": [
|
230 |
+
"# Language detection model\n",
|
231 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"papluca/xlm-roberta-base-language-detection\")\n",
|
232 |
+
"model = XLMRobertaForSequenceClassification.from_pretrained(\"papluca/xlm-roberta-base-language-detection\").to(\"cuda\")"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 59,
|
238 |
+
"id": "f05bbff2",
|
239 |
+
"metadata": {
|
240 |
+
"scrolled": false
|
241 |
+
},
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"name": "stderr",
|
245 |
+
"output_type": "stream",
|
246 |
+
"text": [
|
247 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 135556/135556 [18:54<00:00, 119.45it/s]\n"
|
248 |
+
]
|
249 |
+
}
|
250 |
+
],
|
251 |
+
"source": [
|
252 |
+
"# Add language prediction for later filtering before applying language-dependent translation model\n",
|
253 |
+
"df[\"lang\"] = df.text.progress_apply(lambda text: detect_language(model, tokenizer, text))"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "markdown",
|
258 |
+
"id": "05d07356",
|
259 |
+
"metadata": {},
|
260 |
+
"source": [
|
261 |
+
"#### Text translation\n",
|
262 |
+
"\n",
|
263 |
+
"- Process requires long processing time\n",
|
264 |
+
"- Process should be run multiple times to complete"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": 19,
|
270 |
+
"id": "a82a5eb3",
|
271 |
+
"metadata": {},
|
272 |
+
"outputs": [
|
273 |
+
{
|
274 |
+
"name": "stdout",
|
275 |
+
"output_type": "stream",
|
276 |
+
"text": [
|
277 |
+
"zsh:1: no matches found: temp/*\r\n"
|
278 |
+
]
|
279 |
+
}
|
280 |
+
],
|
281 |
+
"source": [
|
282 |
+
"! rm -rf temp/*"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 25,
|
288 |
+
"id": "3f3f1bfb",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [],
|
291 |
+
"source": [
|
292 |
+
"def write_file(path, text):\n",
|
293 |
+
" with open(path, \"w\") as f:\n",
|
294 |
+
" f.write(text)\n",
|
295 |
+
"\n",
|
296 |
+
"LANGUAGE = \"en\"\n",
|
297 |
+
"OUTPUT_DIR = \"../data/translated\"\n",
|
298 |
+
"TEMP_DIR = \"../data/temp\"\n",
|
299 |
+
"IN_MEMORY = True\n",
|
300 |
+
"\n",
|
301 |
+
"output_dir = os.path.join(OUTPUT_DIR, LANGUAGE)\n",
|
302 |
+
"if not os.path.exists(OUTPUT_DIR):\n",
|
303 |
+
" os.makedirs(output_dir)\n",
|
304 |
+
"# os.mkdir(OUTPUT_DIR)\n",
|
305 |
+
"if not os.path.exists(TEMP_DIR):\n",
|
306 |
+
" os.mkdir(TEMP_DIR)"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": 7,
|
312 |
+
"id": "b8122256",
|
313 |
+
"metadata": {},
|
314 |
+
"outputs": [],
|
315 |
+
"source": [
|
316 |
+
"# Translation model\n",
|
317 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"Abelll/marian-finetuned-kde4-en-to-fr\")\n",
|
318 |
+
"model = MarianMTModel.from_pretrained(\"Abelll/marian-finetuned-kde4-en-to-fr\").to(\"cuda\")"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": 26,
|
324 |
+
"id": "b9ef106d",
|
325 |
+
"metadata": {
|
326 |
+
"scrolled": true
|
327 |
+
},
|
328 |
+
"outputs": [
|
329 |
+
{
|
330 |
+
"name": "stderr",
|
331 |
+
"output_type": "stream",
|
332 |
+
"text": [
|
333 |
+
" 0%| | 0/5003 [00:00<?, ?it/s]/home/louis/miniconda3/envs/sexism_detection/lib/python3.9/site-packages/transformers/generation/utils.py:1387: UserWarning: Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to 512 (`self.config.max_length`). Controlling `max_length` via the config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
|
334 |
+
" warnings.warn(\n",
|
335 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████| 5003/5003 [10:27<00:00, 7.97it/s]\n"
|
336 |
+
]
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"source": [
|
340 |
+
"translated_texts = []\n",
|
341 |
+
"for i, row in tqdm(df.iterrows(), total=df.shape[0]):\n",
|
342 |
+
" output_path = os.path.join(TEMP_DIR, str(i) + \".txt\")\n",
|
343 |
+
" if not IN_MEMORY:\n",
|
344 |
+
" if os.path.exists(output_path):\n",
|
345 |
+
" print(\"Already translated !\")\n",
|
346 |
+
" continue\n",
|
347 |
+
" translated = translate(model, tokenizer, row.text)\n",
|
348 |
+
" if IN_MEMORY:\n",
|
349 |
+
" translated_texts.append((i, translated))\n",
|
350 |
+
" else:\n",
|
351 |
+
" write_file(output_path, translated)"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": 29,
|
357 |
+
"id": "0ecc3000",
|
358 |
+
"metadata": {},
|
359 |
+
"outputs": [],
|
360 |
+
"source": [
|
361 |
+
"import glob\n",
|
362 |
+
"\n",
|
363 |
+
"output_filename = DATASET_PATH\n",
|
364 |
+
"\n",
|
365 |
+
"if not IN_MEMORY:\n",
|
366 |
+
" filelist = glob.glob(TEMP_DIR + \"/*\")\n",
|
367 |
+
" print(f\"Found {len(filelist)}\")\n",
|
368 |
+
" filelist = sorted(filelist, key=lambda x: int(x.split(\"/\")[-1].split(\".\")[0]))\n",
|
369 |
+
" translated_texts = []\n",
|
370 |
+
" for text_file in tqdm(filelist):\n",
|
371 |
+
" with open(text_file) as f:\n",
|
372 |
+
" translated_text = f.read().splitlines()\n",
|
373 |
+
" translated_texts.append(translated_text)\n",
|
374 |
+
" translated_texts = pd.DataFrame(translated_texts)\n",
|
375 |
+
" df[\"translated\"] = translated_texts\n",
|
376 |
+
"\n",
|
377 |
+
"df[\"translated\"] = translated_texts\n",
|
378 |
+
"df.translated = df.translated.apply(lambda x: x[1])\n",
|
379 |
+
"df.dropna().to_csv(output_filename)"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "code",
|
384 |
+
"execution_count": 30,
|
385 |
+
"id": "88c69fd0",
|
386 |
+
"metadata": {},
|
387 |
+
"outputs": [
|
388 |
+
{
|
389 |
+
"data": {
|
390 |
+
"text/html": [
|
391 |
+
"<div>\n",
|
392 |
+
"<style scoped>\n",
|
393 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
394 |
+
" vertical-align: middle;\n",
|
395 |
+
" }\n",
|
396 |
+
"\n",
|
397 |
+
" .dataframe tbody tr th {\n",
|
398 |
+
" vertical-align: top;\n",
|
399 |
+
" }\n",
|
400 |
+
"\n",
|
401 |
+
" .dataframe thead th {\n",
|
402 |
+
" text-align: right;\n",
|
403 |
+
" }\n",
|
404 |
+
"</style>\n",
|
405 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
406 |
+
" <thead>\n",
|
407 |
+
" <tr style=\"text-align: right;\">\n",
|
408 |
+
" <th></th>\n",
|
409 |
+
" <th>text</th>\n",
|
410 |
+
" <th>label</th>\n",
|
411 |
+
" <th>translated</th>\n",
|
412 |
+
" </tr>\n",
|
413 |
+
" <tr>\n",
|
414 |
+
" <th>INDEX</th>\n",
|
415 |
+
" <th></th>\n",
|
416 |
+
" <th></th>\n",
|
417 |
+
" <th></th>\n",
|
418 |
+
" </tr>\n",
|
419 |
+
" </thead>\n",
|
420 |
+
" <tbody>\n",
|
421 |
+
" <tr>\n",
|
422 |
+
" <th>0</th>\n",
|
423 |
+
" <td>Maybe the UN could talk to those asian and afr...</td>\n",
|
424 |
+
" <td>1</td>\n",
|
425 |
+
" <td>Peut-être que l'Onu pourrait parler aux nation...</td>\n",
|
426 |
+
" </tr>\n",
|
427 |
+
" <tr>\n",
|
428 |
+
" <th>1</th>\n",
|
429 |
+
" <td>‘Juice (Jews) are worse that nukes.’ Caption t...</td>\n",
|
430 |
+
" <td>1</td>\n",
|
431 |
+
" <td>« Juice (Juifs) sont pire que les nuées. « & #...</td>\n",
|
432 |
+
" </tr>\n",
|
433 |
+
" <tr>\n",
|
434 |
+
" <th>2</th>\n",
|
435 |
+
" <td>Foreigners on UK benefits leaps 41% in 5 years...</td>\n",
|
436 |
+
" <td>1</td>\n",
|
437 |
+
" <td>Les étrangers au Royaume-Uni bénéficient d'un ...</td>\n",
|
438 |
+
" </tr>\n",
|
439 |
+
" <tr>\n",
|
440 |
+
" <th>3</th>\n",
|
441 |
+
" <td>Jews cannot be patriots, since their allegianc...</td>\n",
|
442 |
+
" <td>1</td>\n",
|
443 |
+
" <td>Les Juifs ne peuvent pas être patriotes, car l...</td>\n",
|
444 |
+
" </tr>\n",
|
445 |
+
" <tr>\n",
|
446 |
+
" <th>4</th>\n",
|
447 |
+
" <td>Israel, Zionism and Jewish Supremacist control...</td>\n",
|
448 |
+
" <td>1</td>\n",
|
449 |
+
" <td>Israël, le sionisme et le contrôle suprémacist...</td>\n",
|
450 |
+
" </tr>\n",
|
451 |
+
" <tr>\n",
|
452 |
+
" <th>...</th>\n",
|
453 |
+
" <td>...</td>\n",
|
454 |
+
" <td>...</td>\n",
|
455 |
+
" <td>...</td>\n",
|
456 |
+
" </tr>\n",
|
457 |
+
" <tr>\n",
|
458 |
+
" <th>4998</th>\n",
|
459 |
+
" <td>Woman are basically childlike.</td>\n",
|
460 |
+
" <td>1</td>\n",
|
461 |
+
" <td>La femme ressemble à un enfant.</td>\n",
|
462 |
+
" </tr>\n",
|
463 |
+
" <tr>\n",
|
464 |
+
" <th>4999</th>\n",
|
465 |
+
" <td>women should be submissive to men.</td>\n",
|
466 |
+
" <td>1</td>\n",
|
467 |
+
" <td>Les filles doivent être soumises aux hommes.</td>\n",
|
468 |
+
" </tr>\n",
|
469 |
+
" <tr>\n",
|
470 |
+
" <th>5000</th>\n",
|
471 |
+
" <td>Women are essentially childlike, unable to und...</td>\n",
|
472 |
+
" <td>1</td>\n",
|
473 |
+
" <td>Les filles sont pour l'essentiel des filles, i...</td>\n",
|
474 |
+
" </tr>\n",
|
475 |
+
" <tr>\n",
|
476 |
+
" <th>5001</th>\n",
|
477 |
+
" <td>Women should be submissive to men.</td>\n",
|
478 |
+
" <td>1</td>\n",
|
479 |
+
" <td>Les filles doivent être soumises aux hommes.</td>\n",
|
480 |
+
" </tr>\n",
|
481 |
+
" <tr>\n",
|
482 |
+
" <th>5002</th>\n",
|
483 |
+
" <td>Women should not be allowed to vote, this is a...</td>\n",
|
484 |
+
" <td>1</td>\n",
|
485 |
+
" <td>Les femmes ne devraient pas être autorisées à ...</td>\n",
|
486 |
+
" </tr>\n",
|
487 |
+
" </tbody>\n",
|
488 |
+
"</table>\n",
|
489 |
+
"<p>5003 rows × 3 columns</p>\n",
|
490 |
+
"</div>"
|
491 |
+
],
|
492 |
+
"text/plain": [
|
493 |
+
" text label \\\n",
|
494 |
+
"INDEX \n",
|
495 |
+
"0 Maybe the UN could talk to those asian and afr... 1 \n",
|
496 |
+
"1 ‘Juice (Jews) are worse that nukes.’ Caption t... 1 \n",
|
497 |
+
"2 Foreigners on UK benefits leaps 41% in 5 years... 1 \n",
|
498 |
+
"3 Jews cannot be patriots, since their allegianc... 1 \n",
|
499 |
+
"4 Israel, Zionism and Jewish Supremacist control... 1 \n",
|
500 |
+
"... ... ... \n",
|
501 |
+
"4998 Woman are basically childlike. 1 \n",
|
502 |
+
"4999 women should be submissive to men. 1 \n",
|
503 |
+
"5000 Women are essentially childlike, unable to und... 1 \n",
|
504 |
+
"5001 Women should be submissive to men. 1 \n",
|
505 |
+
"5002 Women should not be allowed to vote, this is a... 1 \n",
|
506 |
+
"\n",
|
507 |
+
" translated \n",
|
508 |
+
"INDEX \n",
|
509 |
+
"0 Peut-être que l'Onu pourrait parler aux nation... \n",
|
510 |
+
"1 « Juice (Juifs) sont pire que les nuées. « & #... \n",
|
511 |
+
"2 Les étrangers au Royaume-Uni bénéficient d'un ... \n",
|
512 |
+
"3 Les Juifs ne peuvent pas être patriotes, car l... \n",
|
513 |
+
"4 Israël, le sionisme et le contrôle suprémacist... \n",
|
514 |
+
"... ... \n",
|
515 |
+
"4998 La femme ressemble à un enfant. \n",
|
516 |
+
"4999 Les filles doivent être soumises aux hommes. \n",
|
517 |
+
"5000 Les filles sont pour l'essentiel des filles, i... \n",
|
518 |
+
"5001 Les filles doivent être soumises aux hommes. \n",
|
519 |
+
"5002 Les femmes ne devraient pas être autorisées à ... \n",
|
520 |
+
"\n",
|
521 |
+
"[5003 rows x 3 columns]"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
"execution_count": 30,
|
525 |
+
"metadata": {},
|
526 |
+
"output_type": "execute_result"
|
527 |
+
}
|
528 |
+
],
|
529 |
+
"source": [
|
530 |
+
"df"
|
531 |
+
]
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"cell_type": "code",
|
535 |
+
"execution_count": 12,
|
536 |
+
"id": "885ebb18",
|
537 |
+
"metadata": {},
|
538 |
+
"outputs": [],
|
539 |
+
"source": [
|
540 |
+
"df.to_csv(\"../data/ucberkeley-dlab_measuring-hate-speech_translated_positive.csv\")"
|
541 |
+
]
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"cell_type": "code",
|
545 |
+
"execution_count": 65,
|
546 |
+
"id": "576a76f1",
|
547 |
+
"metadata": {},
|
548 |
+
"outputs": [
|
549 |
+
{
|
550 |
+
"name": "stdout",
|
551 |
+
"output_type": "stream",
|
552 |
+
"text": [
|
553 |
+
"translate English to French: for starters bend over the one in pink and kick that ass and pussy to get a taste until she's begging for a dick inside her.\n"
|
554 |
+
]
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"data": {
|
558 |
+
"text/plain": [
|
559 |
+
"\"j'ai lu cette vidéo et j'ai\""
|
560 |
+
]
|
561 |
+
},
|
562 |
+
"execution_count": 65,
|
563 |
+
"metadata": {},
|
564 |
+
"output_type": "execute_result"
|
565 |
+
}
|
566 |
+
],
|
567 |
+
"source": [
|
568 |
+
"def translate(text):\n",
|
569 |
+
" input_text = f\"translate {BASE_LANGUAGE} to French: \" + text.lower()\n",
|
570 |
+
" print(input_text)\n",
|
571 |
+
" input_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids\n",
|
572 |
+
" outputs = model.generate(input_ids)\n",
|
573 |
+
" decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
574 |
+
" return decoded\n",
|
575 |
+
"\n",
|
576 |
+
"translate(df.text[4])"
|
577 |
+
]
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "code",
|
581 |
+
"execution_count": 8,
|
582 |
+
"id": "1bbc6dab",
|
583 |
+
"metadata": {},
|
584 |
+
"outputs": [
|
585 |
+
{
|
586 |
+
"data": {
|
587 |
+
"text/plain": [
|
588 |
+
"MarianMTModel(\n",
|
589 |
+
" (model): MarianModel(\n",
|
590 |
+
" (shared): Embedding(59514, 512, padding_idx=59513)\n",
|
591 |
+
" (encoder): MarianEncoder(\n",
|
592 |
+
" (embed_tokens): Embedding(59514, 512, padding_idx=59513)\n",
|
593 |
+
" (embed_positions): MarianSinusoidalPositionalEmbedding(512, 512)\n",
|
594 |
+
" (layers): ModuleList(\n",
|
595 |
+
" (0): MarianEncoderLayer(\n",
|
596 |
+
" (self_attn): MarianAttention(\n",
|
597 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
598 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
599 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
600 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
601 |
+
" )\n",
|
602 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
603 |
+
" (activation_fn): SiLUActivation()\n",
|
604 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
605 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
606 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
607 |
+
" )\n",
|
608 |
+
" (1): MarianEncoderLayer(\n",
|
609 |
+
" (self_attn): MarianAttention(\n",
|
610 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
611 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
612 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
613 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
614 |
+
" )\n",
|
615 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
616 |
+
" (activation_fn): SiLUActivation()\n",
|
617 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
618 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
619 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
620 |
+
" )\n",
|
621 |
+
" (2): MarianEncoderLayer(\n",
|
622 |
+
" (self_attn): MarianAttention(\n",
|
623 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
624 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
625 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
626 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
627 |
+
" )\n",
|
628 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
629 |
+
" (activation_fn): SiLUActivation()\n",
|
630 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
631 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
632 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
633 |
+
" )\n",
|
634 |
+
" (3): MarianEncoderLayer(\n",
|
635 |
+
" (self_attn): MarianAttention(\n",
|
636 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
637 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
638 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
639 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
640 |
+
" )\n",
|
641 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
642 |
+
" (activation_fn): SiLUActivation()\n",
|
643 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
644 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
645 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
646 |
+
" )\n",
|
647 |
+
" (4): MarianEncoderLayer(\n",
|
648 |
+
" (self_attn): MarianAttention(\n",
|
649 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
650 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
651 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
652 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
653 |
+
" )\n",
|
654 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
655 |
+
" (activation_fn): SiLUActivation()\n",
|
656 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
657 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
658 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
659 |
+
" )\n",
|
660 |
+
" (5): MarianEncoderLayer(\n",
|
661 |
+
" (self_attn): MarianAttention(\n",
|
662 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
663 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
664 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
665 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
666 |
+
" )\n",
|
667 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
668 |
+
" (activation_fn): SiLUActivation()\n",
|
669 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
670 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
671 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
672 |
+
" )\n",
|
673 |
+
" )\n",
|
674 |
+
" )\n",
|
675 |
+
" (decoder): MarianDecoder(\n",
|
676 |
+
" (embed_tokens): Embedding(59514, 512, padding_idx=59513)\n",
|
677 |
+
" (embed_positions): MarianSinusoidalPositionalEmbedding(512, 512)\n",
|
678 |
+
" (layers): ModuleList(\n",
|
679 |
+
" (0): MarianDecoderLayer(\n",
|
680 |
+
" (self_attn): MarianAttention(\n",
|
681 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
682 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
683 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
684 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
685 |
+
" )\n",
|
686 |
+
" (activation_fn): SiLUActivation()\n",
|
687 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
688 |
+
" (encoder_attn): MarianAttention(\n",
|
689 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
690 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
691 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
692 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
693 |
+
" )\n",
|
694 |
+
" (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
695 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
696 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
697 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
698 |
+
" )\n",
|
699 |
+
" (1): MarianDecoderLayer(\n",
|
700 |
+
" (self_attn): MarianAttention(\n",
|
701 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
702 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
703 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
704 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
705 |
+
" )\n",
|
706 |
+
" (activation_fn): SiLUActivation()\n",
|
707 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
708 |
+
" (encoder_attn): MarianAttention(\n",
|
709 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
710 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
711 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
712 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
713 |
+
" )\n",
|
714 |
+
" (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
715 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
716 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
717 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
718 |
+
" )\n",
|
719 |
+
" (2): MarianDecoderLayer(\n",
|
720 |
+
" (self_attn): MarianAttention(\n",
|
721 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
722 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
723 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
724 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
725 |
+
" )\n",
|
726 |
+
" (activation_fn): SiLUActivation()\n",
|
727 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
728 |
+
" (encoder_attn): MarianAttention(\n",
|
729 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
730 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
731 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
732 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
733 |
+
" )\n",
|
734 |
+
" (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
735 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
736 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
737 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
738 |
+
" )\n",
|
739 |
+
" (3): MarianDecoderLayer(\n",
|
740 |
+
" (self_attn): MarianAttention(\n",
|
741 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
742 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
743 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
744 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
745 |
+
" )\n",
|
746 |
+
" (activation_fn): SiLUActivation()\n",
|
747 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
748 |
+
" (encoder_attn): MarianAttention(\n",
|
749 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
750 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
751 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
752 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
753 |
+
" )\n",
|
754 |
+
" (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
755 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
756 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
757 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
758 |
+
" )\n",
|
759 |
+
" (4): MarianDecoderLayer(\n",
|
760 |
+
" (self_attn): MarianAttention(\n",
|
761 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
762 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
763 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
764 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
765 |
+
" )\n",
|
766 |
+
" (activation_fn): SiLUActivation()\n",
|
767 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
768 |
+
" (encoder_attn): MarianAttention(\n",
|
769 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
770 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
771 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
772 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
773 |
+
" )\n",
|
774 |
+
" (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
775 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
776 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
777 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
778 |
+
" )\n",
|
779 |
+
" (5): MarianDecoderLayer(\n",
|
780 |
+
" (self_attn): MarianAttention(\n",
|
781 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
782 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
783 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
784 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
785 |
+
" )\n",
|
786 |
+
" (activation_fn): SiLUActivation()\n",
|
787 |
+
" (self_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
788 |
+
" (encoder_attn): MarianAttention(\n",
|
789 |
+
" (k_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
790 |
+
" (v_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
791 |
+
" (q_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
792 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
793 |
+
" )\n",
|
794 |
+
" (encoder_attn_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
795 |
+
" (fc1): Linear(in_features=512, out_features=2048, bias=True)\n",
|
796 |
+
" (fc2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
797 |
+
" (final_layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
798 |
+
" )\n",
|
799 |
+
" )\n",
|
800 |
+
" )\n",
|
801 |
+
" )\n",
|
802 |
+
" (lm_head): Linear(in_features=512, out_features=59514, bias=False)\n",
|
803 |
+
")"
|
804 |
+
]
|
805 |
+
},
|
806 |
+
"execution_count": 8,
|
807 |
+
"metadata": {},
|
808 |
+
"output_type": "execute_result"
|
809 |
+
}
|
810 |
+
],
|
811 |
+
"source": [
|
812 |
+
"model"
|
813 |
+
]
|
814 |
+
}
|
815 |
+
],
|
816 |
+
"metadata": {
|
817 |
+
"kernelspec": {
|
818 |
+
"display_name": "sexism_detection",
|
819 |
+
"language": "python",
|
820 |
+
"name": "sexism_detection"
|
821 |
+
},
|
822 |
+
"language_info": {
|
823 |
+
"codemirror_mode": {
|
824 |
+
"name": "ipython",
|
825 |
+
"version": 3
|
826 |
+
},
|
827 |
+
"file_extension": ".py",
|
828 |
+
"mimetype": "text/x-python",
|
829 |
+
"name": "python",
|
830 |
+
"nbconvert_exporter": "python",
|
831 |
+
"pygments_lexer": "ipython3",
|
832 |
+
"version": "3.9.15"
|
833 |
+
}
|
834 |
+
},
|
835 |
+
"nbformat": 4,
|
836 |
+
"nbformat_minor": 5
|
837 |
+
}
|