|
|
|
|
|
import datasets |
|
import json |
|
import os |
|
from .classes import IMAGENET2012_CLASSES |
|
|
|
|
|
_URL_BASE = "https://huggingface.co/datasets/Prisma-Multimodal/segmented-imagenet1k-subset/resolve/main/" |
|
_URLS = { |
|
"img_data": _URL_BASE + "images.tar.gz", |
|
"mask_data": _URL_BASE + "masks.tar.gz", |
|
"train_json": _URL_BASE + "train.json", |
|
"val_json": _URL_BASE + "val.json", |
|
"test_json": _URL_BASE + "test.json", |
|
} |
|
|
|
|
|
class SegmentedImagenet1kDataset(datasets.GeneratorBasedBuilder): |
|
|
|
datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="Machine generated instance segmentation results of subset of ImageNet-1k", |
|
homepage="https://huggingface.co/datasets/Prisma-Multimodal/segmented-imagenet1k-subset", |
|
features = datasets.Features({ |
|
"image": datasets.Image(), |
|
"imagenet_label": datasets.Value("string"), |
|
"boxes": datasets.Sequence(datasets.Sequence(datasets.Value('int32'))), |
|
"labels": datasets.Sequence(datasets.Value("string")), |
|
"scores": datasets.Sequence(datasets.Value("float32")) , |
|
"masks": datasets.Sequence(datasets.Image()), |
|
|
|
}), |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
|
|
dirs = dl_manager.download_and_extract(_URLS) |
|
root_folder_kwargs = {"image_root": dirs["img_data"], "mask_root": dirs["mask_data"]} |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={"json_path": dirs["train_json"], "get_imagenet_string": True, **root_folder_kwargs}), |
|
|
|
datasets.SplitGenerator(name=datasets.Split.TEST, |
|
gen_kwargs={"json_path": dirs["test_json"], "get_imagenet_string": False, **root_folder_kwargs}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, |
|
gen_kwargs={"json_path": dirs["val_json"], "get_imagenet_string": True, **root_folder_kwargs}), |
|
] |
|
|
|
def _generate_examples(self, json_path, image_root, mask_root, get_imagenet_string): |
|
with open(json_path, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for id, item in enumerate(data): |
|
|
|
|
|
if get_imagenet_string: |
|
imagenet_label = IMAGENET2012_CLASSES[os.path.basename(item['image']).replace(".JPEG", "").rsplit("_", 1)[1]] |
|
pass |
|
else: |
|
imagenet_label = "None" |
|
|
|
yield id, { |
|
"image" : os.path.join(image_root,item['image']), |
|
"imagenet_label": imagenet_label, |
|
"boxes": item['boxes'], |
|
"scores": item['scores'], |
|
"labels": item['labels'], |
|
"masks": [os.path.join(mask_root, p) for p in item['masks']] |
|
} |
|
|
|
|