File size: 2,667 Bytes
d323a32
 
 
7f7be6e
bc314a3
79e15de
bc35806
c5c3a0e
79e15de
08da4b3
79e15de
b4dfacf
 
f93e55e
79e15de
5c918be
 
b4dfacf
5cbf752
b4dfacf
2d55e63
f93e55e
553cb25
f93e55e
5a414f5
62ea27e
 
e5d628e
08da4b3
b4dfacf
 
f06d5d3
 
b4dfacf
 
407feb4
 
46a6aff
 
b4dfacf
 
 
 
 
 
08da4b3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: mit
---

A collection of regularization / class instance datasets for the [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) model to use for DreamBooth prior preservation loss training. Files labeled with "mse vae" used the [stabilityai/sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse) VAE. For ease of use, datasets are stored as zip files containing 512x512 PNG images. The number of images in each zip file is specified at the end of the filename.

There is currently a bug where HuggingFace is incorrectly reporting that the datasets are pickled. They are not picked, they are simple ZIP files containing the images.


Currently this repository contains the following datasets (datasets are named after the prompt they used):

Art Styles

* "**artwork style**": 4125 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**illustration style**": 3050 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**erotic photography**": 2760 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

People

* "**person**": 2115 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**woman**": 4420 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**guy**": 4820 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**supermodel**": 4411 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**bikini model**": 4260 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**sexy athlete**": 5020 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

Animals

* "**kitty**": 5100 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**cat**": 2050 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

Vehicles

* "**fighter jet**": 1600 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**train**": 2669 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.


I used the "Generate Forever" feature in [AUTOMATIC1111's WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to create thousands of images for each dataset. Every image in a particular dataset uses the exact same settings, with only the seed value being different.

You can use my regularization / class image datasets with: https://github.com/ShivamShrirao/diffusers, https://github.com/JoePenna/Dreambooth-Stable-Diffusion, https://github.com/TheLastBen/fast-stable-diffusion, and any other DreamBooth projects that have support for prior preservation loss.