Datasets:
File size: 2,667 Bytes
d323a32 7f7be6e bc314a3 79e15de bc35806 c5c3a0e 79e15de 08da4b3 79e15de b4dfacf f93e55e 79e15de 5c918be b4dfacf 5cbf752 b4dfacf 2d55e63 f93e55e 553cb25 f93e55e 5a414f5 62ea27e e5d628e 08da4b3 b4dfacf f06d5d3 b4dfacf 407feb4 46a6aff b4dfacf 08da4b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
---
A collection of regularization / class instance datasets for the [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) model to use for DreamBooth prior preservation loss training. Files labeled with "mse vae" used the [stabilityai/sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse) VAE. For ease of use, datasets are stored as zip files containing 512x512 PNG images. The number of images in each zip file is specified at the end of the filename.
There is currently a bug where HuggingFace is incorrectly reporting that the datasets are pickled. They are not picked, they are simple ZIP files containing the images.
Currently this repository contains the following datasets (datasets are named after the prompt they used):
Art Styles
* "**artwork style**": 4125 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**illustration style**": 3050 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**erotic photography**": 2760 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
People
* "**person**": 2115 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**woman**": 4420 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**guy**": 4820 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**supermodel**": 4411 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**bikini model**": 4260 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**sexy athlete**": 5020 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
Animals
* "**kitty**": 5100 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**cat**": 2050 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
Vehicles
* "**fighter jet**": 1600 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
* "**train**": 2669 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.
I used the "Generate Forever" feature in [AUTOMATIC1111's WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to create thousands of images for each dataset. Every image in a particular dataset uses the exact same settings, with only the seed value being different.
You can use my regularization / class image datasets with: https://github.com/ShivamShrirao/diffusers, https://github.com/JoePenna/Dreambooth-Stable-Diffusion, https://github.com/TheLastBen/fast-stable-diffusion, and any other DreamBooth projects that have support for prior preservation loss.
|