ProgramComputer commited on
Commit
de6574e
·
1 Parent(s): 2434f73

Create VGGFace2-HQ

Browse files
Files changed (1) hide show
  1. VGGFace2-HQ +187 -0
VGGFace2-HQ ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and ProgramComputer.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """VGGFace2-HQ audio-visual human speech dataset."""
18
+
19
+ import json
20
+ import os
21
+ import re
22
+ from urllib.parse import urlparse, parse_qs
23
+ from getpass import getpass
24
+ from hashlib import sha256
25
+ from itertools import repeat
26
+ from multiprocessing import Manager, Pool, Process
27
+ from pathlib import Path
28
+ from shutil import copyfileobj
29
+ from warnings import catch_warnings, filterwarnings
30
+ from urllib3.exceptions import InsecureRequestWarning
31
+
32
+ import pandas as pd
33
+ import requests
34
+
35
+ import datasets
36
+
37
+ _DESCRIPTION = "VGGFace2-HQ is a large-scale face recognition dataset. Images are downloaded from Google Image Search and have large variations in pose, age, illumination, ethnicity and profession."
38
+ _CITATION = """\
39
+ @article{DBLP:journals/corr/abs-1710-08092,
40
+ author = {Qiong Cao and
41
+ Li Shen and
42
+ Weidi Xie and
43
+ Omkar M. Parkhi and
44
+ Andrew Zisserman},
45
+ title = {VGGFace2-HQ: {A} dataset for recognising faces across pose and age},
46
+ journal = {CoRR},
47
+ volume = {abs/1710.08092},
48
+ year = {2017},
49
+ url = {http://arxiv.org/abs/1710.08092},
50
+ eprinttype = {arXiv},
51
+ eprint = {1710.08092},
52
+ timestamp = {Wed, 04 Aug 2021 07:50:14 +0200},
53
+ biburl = {https://dblp.org/rec/journals/corr/abs-1710-08092.bib},
54
+ bibsource = {dblp computer science bibliography, https://dblp.org}
55
+ }
56
+ """
57
+
58
+
59
+
60
+ _URLS = {
61
+ "default": {
62
+ "train": ("https://huggingface.co/datasets/ProgramComputer/VGGFace2-HQ/resolve/main/data/VGGFace2-HQ_train.tar.gz",
63
+ "test": "https://huggingface.co/datasets/ProgramComputer/VGGFace2-HQ/resolve/main/data/VGGFace2-HQ_test.tar.gz",
64
+ }
65
+ }
66
+
67
+
68
+
69
+ class VGGFace2-HQ(datasets.GeneratorBasedBuilder):
70
+ """VGGFace2-HQ is dataset contains faces from Google Search"""
71
+
72
+ VERSION = datasets.Version("1.0.0")
73
+
74
+ BUILDER_CONFIGS = [
75
+ datasets.BuilderConfig( version=VERSION
76
+ )
77
+ ]
78
+
79
+ def _info(self):
80
+ features = {
81
+ "image": datasets.Image(),
82
+ "image_id": datasets.Value("string"),
83
+ "class_id": datasets.Value("string"),
84
+ "identity": datasets.Value("string"),
85
+ 'gender': datasets.Value("string"),
86
+ 'sample_num':datasets.Value("uint64"),
87
+ 'flag':datasets.Value("bool"),
88
+ "male": datasets.Value("bool"),
89
+ "black_hair": datasets.Value("bool"),
90
+ "gray_hair": datasets.Value("bool"),
91
+ "blond_hair": datasets.Value("bool"),
92
+ "long_hair": datasets.Value("bool"),
93
+ "mustache_or_beard": datasets.Value("bool"),
94
+ "wearing_hat": datasets.Value("bool"),
95
+ "eyeglasses": datasets.Value("bool"),
96
+ "sunglasses": datasets.Value("bool"),
97
+ "mouth_open": datasets.Value("bool"),
98
+ }
99
+
100
+ return datasets.DatasetInfo(
101
+ description=_DESCRIPTION,
102
+ supervised_keys=datasets.info.SupervisedKeysData("file", "class_id"),
103
+ features=datasets.Features(features),
104
+ citation=_CITATION,
105
+ )
106
+
107
+ def _split_generators(self, dl_manager):
108
+ targets = (
109
+ ["01-Male.txt", "02-Black_Hair.txt","03-Brown_Hair.txt","04-Gray_Hair.txt","05-Blond_Hair.txt","06-Long_Hair.txt","07-Mustache_or_Beard.txt","08-Wearing_Hat.txt","09-Eyeglasses.txt","10-Sunglasses.txt","11-Mouth_Open.txt"]
110
+ )
111
+ target_dict = dict(
112
+ (
113
+ re.sub(r"^\d+-|\.txt$","",target),
114
+ f"https://raw.githubusercontent.com/ox-vgg/vgg_face2/master/attributes/{target}",
115
+ )
116
+ for target in targets
117
+ )
118
+ target_dict['identity'] = "https://huggingface.co/datasets/ProgramComputer/VGGFace2-HQ/raw/main/meta/identity_meta.csv"
119
+ metadata = dl_manager.download(
120
+ target_dict
121
+ )
122
+
123
+ mapped_paths_train = dl_manager.download_and_extract(
124
+ _URLS["default"]["train"]
125
+ )
126
+ mapped_paths_test = dl_manager.download_and_extract(
127
+ _URLS["default"]["test"]
128
+ )
129
+ return [
130
+ datasets.SplitGenerator(
131
+ name="train",
132
+ gen_kwargs={
133
+ "paths": mapped_paths_train,
134
+ "meta_paths": metadata,
135
+ },
136
+ ),
137
+ datasets.SplitGenerator(
138
+ name="test",
139
+ gen_kwargs={
140
+ "paths": mapped_paths_test,
141
+ "meta_paths": metadata,
142
+ },
143
+ ),
144
+ ]
145
+
146
+ def _generate_examples(self, paths, meta_paths):
147
+ key = 0
148
+ meta = pd.read_csv(
149
+ meta_paths["identity"],
150
+ sep=", "
151
+ )
152
+ for key,conf in [(k,v) for (k,v) in meta_paths.items() if k != "identity"]:
153
+
154
+ temp = pd.read_csv(conf,sep='\t', header=None)
155
+ temp.columns = ['Image_Path', key]
156
+
157
+ temp['Class_ID'] = temp['Image_Path'].str.split('/').str[0]
158
+ #temp['Image_Name'] = temp['Image_Path'].str.split('/').str[1]
159
+
160
+ temp.drop(columns=['Image_Path'], inplace=True)
161
+
162
+ meta = meta.merge(temp, on='Class_ID', how='left')
163
+ raise Exception(meta)
164
+ for file_path, file_obj in paths:
165
+
166
+ label = file_path.split("/")[2]
167
+ yield file_path, {
168
+ "image": {"path": file_path, "bytes": file_obj.read()},
169
+ # "image_id": datasets.Value("string"),
170
+ # "class_id": datasets.Value("string"),
171
+ # "identity": datasets.Value("string"),
172
+ # 'gender': dataset.Value("string"),
173
+ # 'sample_num':dataset.Value("uint64"),
174
+ # 'flag':dataset.Value("bool"),
175
+ # "male": datasets.Value("bool"),
176
+ # "black_hair": datasets.Value("bool"),
177
+ # "gray_hair": datasets.Value("bool"),
178
+ # "blond_hair": datasets.Value("bool"),
179
+ # "long_hair": datasets.Value("bool"),
180
+ # "mustache_or_beard": datasets.Value("bool"),
181
+ # "wearing_hat": datasets.Value("bool"),
182
+ # "eyeglasses": datasets.Value("bool"),
183
+ # "sunglasses": datasets.Value("bool"),
184
+ #"mouth_open": datasets.Value("bool")
185
+ }
186
+ key+= 1
187
+