Datasets:
File size: 27,993 Bytes
f124f0d 2fa14ef 2af00a8 bbe1906 4a66734 90778b4 051d306 2e360ab fd34894 d661111 479701b 2421b5b a29438b e210beb d8ba132 e210beb d8ba132 e210beb fcaea10 e6bc8d8 2064e73 e6bc8d8 f124f0d 2fa14ef 2af00a8 bbe1906 4a66734 2f4142f 90778b4 051d306 2e360ab fd34894 d661111 479701b 2421b5b a29438b e210beb fcaea10 e6bc8d8 b4bf111 cf92055 2854848 6914cbf 2854848 6914cbf 2854848 6914cbf 2854848 6914cbf 2854848 6914cbf 2854848 96debd9 2854848 6914cbf 2854848 6914cbf 2854848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
---
dataset_info:
- config_name: eng-ces.both_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: ces_context
dtype: string
- name: ces
dtype: string
splits:
- name: train
num_bytes: 99249281542
num_examples: 16312023
download_size: 50311612769
dataset_size: 99249281542
- config_name: eng-ces.src_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: ces
dtype: string
splits:
- name: train
num_bytes: 55783391633
num_examples: 18718104
download_size: 27949833416
dataset_size: 55783391633
- config_name: eng-ces.trg_contexts
features:
- name: eng
dtype: string
- name: ces_context
dtype: string
- name: ces
dtype: string
splits:
- name: train
num_bytes: 67790203254
num_examples: 21000099
download_size: 35682681930
dataset_size: 67790203254
- config_name: eng-deu.both_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: deu_context
dtype: string
- name: deu
dtype: string
splits:
- name: train
num_bytes: 544626482766
num_examples: 92066559
download_size: 287393903524
dataset_size: 544626482766
- config_name: eng-deu.src_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: deu
dtype: string
splits:
- name: train
num_bytes: 305555617347
num_examples: 105641972
download_size: 163549986986
dataset_size: 305555617347
- config_name: eng-deu.trg_contexts
features:
- name: eng
dtype: string
- name: deu_context
dtype: string
- name: deu
dtype: string
splits:
- name: train
num_bytes: 355001902675
num_examples: 110317948
download_size: 189296787255
dataset_size: 355001902675
- config_name: eng-fra.both_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: fra_context
dtype: string
- name: fra
dtype: string
splits:
- name: train
num_bytes: 426893899212
num_examples: 72236079
download_size: 230871109132
dataset_size: 426893899212
- config_name: eng-fra.src_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: fra
dtype: string
splits:
- name: train
num_bytes: 249628324881
num_examples: 83450135
download_size: 137168157896
dataset_size: 249628324881
- config_name: eng-fra.trg_contexts
features:
- name: eng
dtype: string
- name: fra_context
dtype: string
- name: fra
dtype: string
splits:
- name: train
num_bytes: 270469945796
num_examples: 86300028
download_size: 146946754213
dataset_size: 270469945796
- config_name: eng-pol.both_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: pol_context
dtype: string
- name: pol
dtype: string
splits:
- name: train
num_bytes: 89716407201
num_examples: 14889498
download_size: 46321869504
dataset_size: 89716407201
- config_name: eng-pol.src_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: pol
dtype: string
splits:
- name: train
num_bytes: 49301775564
num_examples: 16803950
download_size: 25270022217
dataset_size: 49301775564
- config_name: eng-pol.trg_contexts
features:
- name: eng
dtype: string
- name: pol_context
dtype: string
- name: pol
dtype: string
splits:
- name: train
num_bytes: 59562532908
num_examples: 18395174
download_size: 31681850576
dataset_size: 59562532908
- config_name: eng-rus.both_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: rus_context
dtype: string
- name: rus
dtype: string
splits:
- name: train
num_bytes: 18867292434
num_examples: 2433874
download_size: 9061303586
dataset_size: 18867292434
- config_name: eng-rus.src_contexts
features:
- name: eng
dtype: string
- name: eng_context
dtype: string
- name: rus
dtype: string
splits:
- name: train
num_bytes: 9242442932
num_examples: 3104195
download_size: 4903481579
dataset_size: 9242442932
- config_name: eng-rus.trg_contexts
features:
- name: eng
dtype: string
- name: rus_context
dtype: string
- name: rus
dtype: string
splits:
- name: train
num_bytes: 14244166125
num_examples: 2813181
download_size: 6539469805
dataset_size: 14244166125
configs:
- config_name: eng-ces.both_contexts
data_files:
- split: train
path: both_contexts/eng-ces/train-*
- config_name: eng-ces.src_contexts
data_files:
- split: train
path: src_contexts/eng-ces/train-*
- config_name: eng-ces.trg_contexts
data_files:
- split: train
path: trg_contexts/eng-ces/train-*
- config_name: eng-deu.both_contexts
data_files:
- split: train
path: both_contexts/eng-deu/train-*
default: true
- config_name: eng-deu.src_contexts
data_files:
- split: train
path: src_contexts/eng-deu/train-*
- config_name: eng-deu.trg_contexts
data_files:
- split: train
path: trg_contexts/eng-deu/train-*
- config_name: eng-fra.both_contexts
data_files:
- split: train
path: both_contexts/eng-fra/train-*
- config_name: eng-fra.src_contexts
data_files:
- split: train
path: src_contexts/eng-fra/train-*
- config_name: eng-fra.trg_contexts
data_files:
- split: train
path: trg_contexts/eng-fra/train-*
- config_name: eng-pol.both_contexts
data_files:
- split: train
path: both_contexts/eng-pol/train-*
- config_name: eng-pol.src_contexts
data_files:
- split: train
path: src_contexts/eng-pol/train-*
- config_name: eng-pol.trg_contexts
data_files:
- split: train
path: trg_contexts/eng-pol/train-*
- config_name: eng-rus.both_contexts
data_files:
- split: train
path: both_contexts/eng-rus/train-*
- config_name: eng-rus.src_contexts
data_files:
- split: train
path: src_contexts/eng-rus/train-*
- config_name: eng-rus.trg_contexts
data_files:
- split: train
path: trg_contexts/eng-rus/train-*
task_categories:
- translation
language:
- en
- de
- fr
- cs
- pl
- ru
size_categories:
- 100M<n<1B
license: cc0-1.0
pretty_name: ParaCrawl_Context
---
# Dataset Card for ParaCrawl_Context
<!-- Provide a quick summary of the dataset. -->
This is a dataset for document-level machine translation introduced in the ACL 2024 paper [**Document-Level Machine Translation with Large-Scale Public Parallel Data**](https://aclanthology.org/2024.acl-long.712/). It is a dataset consisting of parallel sentence pairs from the [ParaCrawl](https://paracrawl.eu/) dataset along with corresponding preceding context extracted from the webpages the sentences were crawled from.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
This dataset adds document-level context to parallel corpora released by [ParaCrawl](https://paracrawl.eu/). This is useful for training document-level (context-aware) machine translation models, for which very few large-scale datasets exist in public. While the ParaCrawl project released large-scale parallel corpora at the sentence level, they did not preserve document context from the webpages they were originally extracted from. We used additional data sources to retrieve the contexts from the original web text, and thus create datasets that can be used to train document-level MT models.
- **Curated by:** Proyag Pal, Alexandra Birch, Kenneth Heafield, from data released by ParaCrawl
- **Language pairs:** eng-deu, eng-fra, eng-ces, eng-pol, eng-rus
- **License:** Creative Commons Zero v1.0 Universal (CC0)
- **Repository:** https://github.com/Proyag/ParaCrawl-Context
- **Paper:** https://aclanthology.org/2024.acl-long.712/
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
This dataset is intended for document-level (context-aware) machine translation.
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
The ideal usage of this dataset is to use the sentence fields as the source and target translations, and provide the contexts as additional information to a model. This could be done, for example, with a dual-encoder model, where one encoder encodes the source sentence, while the second encoder encodes the source/target context. For an example, see our associated [paper](https://aclanthology.org/2024.acl-long.712/).
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
We expect that this dataset will not work very well for the document-level translation scenario where an entire concatenated document is provided as input and a full translation is produced by the model.
This is because of how the data was extracted - by matching sentences to their originating URLs and extracting the preceding context from - which means:
* There is no guarantee that the preceding context automatically extracted from the originating URL is related to the sentence pair at all.
* Many sentences came from multiple URLs and thus multiple contexts, so source and target contexts concatenated with source and target sentences may not produce parallel "documents" at all in many cases.
However, most examples in our datasets have a unique context, so concatenation might work better if only those examples are used.
We have not validated this experimentally, and you are encouraged to try and let us know if it works!
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
There are three versions of the dataset for each language pair. For a language pair SRC-TRG, they are:
- `SRC-TRG.src_contexts` - which has preceding context for only the SRC side
- `SRC-TRG.trg_contexts` - which has preceding context for only the TRG side
- `SRC-TRG.both_contexts` - which has preceding context for both SRC and TRG sides
### Data Instances
Example from `eng-deu.both_contexts`:
```yaml
{
'eng': 'This stage is 32.8 km long and can be accomplished in 8 hours and 30 minutes.',
'eng_context': "Cars <docline> Glungezer chair lift <docline> Patscherkofel cable cars <docline> Service <docline> Classifications of Hiking Routes <docline> Safety in the Mountains <docline> Mountain huts and alpine restaurants <docline> Guides <docline> Sport Shops <docline> Brochures and Maps <docline> Hiking <docline> Free hiking programme <docline> Hiking <docline> Hikes <docline> Long-distance walking trails <docline> Summit Tours <docline> Family hikes <docline> Education and nature trails <docline> Nature reserves <docline> Geocaching <docline> Lifts & cable cars <docline> Axamer Lizum <docline> Innsbruck Nordkette cable cars <docline> Drei-Seen-Bahn in Kühtai <docline> Muttereralm <docline> Oberperfuss Cable Cars <docline> Glungezer chair lift <docline> Patscherkofel cable cars <docline> Service <docline> Classifications of Hiking Routes <docline> Safety in the Mountains <docline> Mountain huts and alpine restaurants <docline> Guides <docline> Sport Shops <docline> Brochures and Maps <docline> today <docline> 12°C/54°F <docline> 70% Fineweather <docline> 2500mm <docline> Frostborder <docline> Tuesday <docline> 17°C/63°F <docline> 50% Fineweather <docline> 3100mm <docline> Frostborder <docline> Wednesday <docline> 18°C/64°F <docline> 40% Fineweather <docline> 3400mm <docline> Frostborder <docline> Forecast <docline> We will see a nice start to the day with sunshine. Clouds will however gradually increase at all levels producing showers in the afternoon. <docline> Tendency <docline> Air pressure will rise over Central Europe and there will be some clearer spells at times. A period of fine weather is not forecast, however. Until Thursday, sunny spells will alternate with showers in the afternoon. <docline> Need help? Contact us! <docline> Innsbruck Tourism <docline> +43 512 / 59 850 <docline> [email protected] <docline> Mon - Fri: 8.00 am - 5.00 pm <docline> Hotel- and group reservations <docline> +43 512 / 56 2000 <docline> [email protected] <docline> Mon - Fri: 9.00 am - 5.00 pm <docline> Tourist info <docline> +43 512 / 53 56-0 <docline> [email protected] <docline> Mon - Sat: 9.00 am - 5.00 pm <docline> DE <docline> EN <docline> IT <docline> FR <docline> NL <docline> ES <docline> Hikes <docline> innsbruck.info <docline> Hiking <docline> Hiking <docline> Hikes <docline> Hike with the family, as a couple or alone, short or long, to the summit or on the flat. Search out the correct route for you around Innsbruck. The filter below is here to help. Choose the length of walk, the difficulty level, duration and much more. The results will then deliver tailor-made hiking tips for your holiday. <docline> The Tyrolean section of The Way of St. James through Innsbruck <docline> https://www.innsbruck.info/fileadmin/userdaten/contwise/poi-28003079-jakobsweg_sterbach_in_muehlau_42027886.jpg <docline> Back Overview <docline> Difficulty <docline> easy <docline> Altitude up <docline> 900 METER <docline> Max. route length <docline> 81.4 KM <docline> Best season <docline> April - October <docline> Information/food <docline> GPX Download Route to start <docline> Three of the sections along the main route of The Way of St. James pass through the Innsbruck holiday region. <docline> From Terfens to Innsbruck: <docline> This stage is 24.2 kilometres long and is possible in 6 hours and 15 minutes. The Way of St. James leads from the medieval town of Hall in Tirol via the villages of Absam and Thaur, through the market town of Rum and on to the city of Innsbruck. Once in Innsbruck, the route continues to St. James' Cathedral. <docline> From Innsbruck to Pfaffenhofen: <docline>",
'deu_context': 'mit Kindern <docline> Webcams <docline> Prospekte <docline> Aktuelle Top-Themen auf Innsbruck.info <docline> Welcome Card <docline> Innsbruck Card <docline> Bräuche im Sommer <docline> Walks to explore <docline> Innsbruck Webcams <docline> Hiking <docline> Bergwanderprogramm <docline> Wandern <docline> Wanderungen <docline> Weitwanderungen <docline> Gipfeltouren <docline> Familienwanderungen <docline> Themen- und Naturlehrpfade <docline> Naturschauplätze <docline> Geocaching <docline> Bergbahnen und Lifte <docline> Axamer Lizum <docline> Innsbrucker Nordkettenbahnen <docline> Dreiseenbahn Kühtai <docline> Muttereralm <docline> Bergbahn Oberperfuss <docline> Glungezerbahn <docline> Patscherkofelbahn <docline> Service <docline> Klassifizierung der Wanderwege <docline> Sicherheit am Berg <docline> Almhütten und Bergrestaurants <docline> Bergführer und Guides <docline> Sportshops <docline> Prospekte und Karten <docline> Hiking <docline> Bergwanderprogramm <docline> Wandern <docline> Wanderungen <docline> Weitwanderungen <docline> Gipfeltouren <docline> Familienwanderungen <docline> Themen- und Naturlehrpfade <docline> Naturschauplätze <docline> Geocaching <docline> Bergbahnen und Lifte <docline> Axamer Lizum <docline> Innsbrucker Nordkettenbahnen <docline> Dreiseenbahn Kühtai <docline> Muttereralm <docline> Bergbahn Oberperfuss <docline> Glungezerbahn <docline> Patscherkofelbahn <docline> Service <docline> Klassifizierung der Wanderwege <docline> Sicherheit am Berg <docline> Almhütten und Bergrestaurants <docline> Bergführer und Guides <docline> Sportshops <docline> Prospekte und Karten <docline> Heute <docline> 18°C <docline> 30% Sonne <docline> 3610mm <docline> Frostgrenze <docline> Dienstag <docline> 17°C <docline> 50% Sonne <docline> 3100mm <docline> Frostgrenze <docline> Mittwoch <docline> 18°C <docline> 40% Sonne <docline> 3400mm <docline> Frostgrenze <docline> Vorhersage <docline> Der Tag beginnt zunächst noch recht beschaulich und die Sonne scheint. Allerdings nimmt die Bewölkung nach und nach in allen Schichten zu und am Nachmittag kommt es dann zu Schauern. <docline> Tendenz <docline> Über Mitteleuropa steigt in der Folge der Luftdruck und zeitweise lockert es auf. Dauerhaftes Schönwetter stellt sich jedoch noch nicht ein: Bis zum Donnerstag gibt es neben Sonne vor allem jeweils nachmittags auch Schauer. <docline> Können wir helfen? Kontaktieren Sie uns! <docline> Innsbruck Tourismus <docline> +43 512 / 59 850 <docline> [email protected] <docline> Mo - Fr: 8:00 - 17:00 Uhr <docline> Hotel- u. Gruppenreservierung <docline> +43 512 / 56 2000 <docline> [email protected] <docline> Mo - Fr: 9:00 - 17:00 Uhr <docline> Tourismus Information <docline> +43 512 / 53 56-0 <docline> [email protected] <docline> Mo - Sa: 9:00 - 17:00 Uhr <docline> DE <docline> EN <docline> IT <docline> FR <docline> NL <docline> ES <docline> Wanderungen <docline> innsbruck.info <docline> Wandern <docline> Wandern <docline> Wanderungen <docline> Wandern mit Familie, zu zweit oder solo, weit oder kurz, zum Gipfelkreuz oder entspannt ohne viel Steigung. Suchen Sie sich die passende Wanderung rund um Innsbruck aus. Die Filter oberhalb der Ergebnisliste helfen dabei: Wählen Sie Streckenlänge, Schwierigkeitsgrad, Gehzeit und einiges mehr. Die Ergebnisse darunter liefern maßgeschneiderte Wandertipps für Ihren Urlaub. <docline> Tiroler Jakobsweg durch Innsbruck <docline> https://www.innsbruck.info/fileadmin/userdaten/contwise/poi-28003079-jakobsweg_sterbach_in_muehlau_42027886.jpg <docline> Zurück Zur Übersicht <docline> Schwierigkeit <docline> leicht <docline> Höhenmeter bergauf <docline> 900 METER <docline> Streckenlänge <docline> 81.4 KM <docline> Beste Jahreszeit <docline> April bis Oktober <docline> Mit Einkehrmöglichkeit <docline> GPX Download Route zum Startpunkt <docline> Drei Abschnitte der Hauptroute des Jakobswegs verlaufen durch die Ferienregion Innsbruck. <docline> Von Terfens nach Innsbruck: <docline> In 6 Stunden 15 Minuten sind die 24,2 Kilometer dieses Abschnittes zu schaffen. Von der mittelalterlichen Stadt Hall über Absam und Thaur führt der Jakobsweg durch die Marktgemeinde Rum und weiter nach Innsbruck. Dort angelangt kommt man zum Dom St.Jakob. <docline> Von Innsbruck bis Pfaffenhofen: <docline>',
'deu': 'Der Abschnitt ist 32,8 Kilometer lang und in einer Zeit von 8 Stunden und 30 Minuten zu schaffen.'
}
```
`eng-deu.src_contexts` will have the `eng`, `eng_context`, and `deu` fields, while `eng-deu.trg_contexts` will have the `eng`, `deu_context`, and `deu` fields.
This example only has one context one each side, but there may be one or more alternative contexts separated by `|||` delimiters.
### Data Fields
For `SRC-TRG.src_contexts` or `SRC-TRG.trg_contexts`, there are 3 fields:
- `SRC` - containing the source (English) sentence.
- `TRG` - containing the target language sentence.
- `SRC_context` or `TRG_context` - containing the source/target context(s). There may be multiple contexts from multiple webpages separated by the delimiter `|||`. Within each context, line breaks have been replaced with a `<docline>` token.
`SRC-TRG.both_contexts` contains 4 fields, since it has both the `SRC_context` and `TRG_context` fields.
Remember to replace `SRC` and `TRG` in these examples with the actual language codes in each case. `SRC` is always `eng`, while `TRG` can be `deu`, `fra`, `ces`, `pol`, or `rus`.
### Data Splits
This dataset does not contain any validation or test sets; all the provided data is intended to be used for training.
If you need document-level validation/test sets for use while training models with this data, it should be quite simple to construct them in the same format from other readily available test sets with document information such as [WMT](https://www2.statmt.org/wmt24/translation-task.html) test sets.
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
While document-level machine translation has inherent advantages over sentence-level approaches, there are very few large-scale document-level parallel corpora available publicly. Parallel corpora constructed from web crawls often discard document context in the process of extracting sentence pairs. ParaCrawl released sentence-level parallel corpora with their source URLs, and separately also released raw web text, so we are able to match the URLs to recover the context that the sentences originally occurred in. This enables us to create large-scale parallel corpora for training document-level machine translation models.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
This dataset was extracted entirely from [parallel corpora](https://paracrawl.eu/) and [raw web text](https://paracrawl.eu/moredata) released by ParaCrawl. Please refer to the [ParaCrawl paper](https://aclanthology.org/2020.acl-main.417/) for more information about the source of the data.
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
To extract the contexts for ParaCrawl sentence pairs, we used the following method (copied from the [paper](https://aclanthology.org/2024.acl-long.712/)):
1. Extract the source URLs and corresponding sentences from the TMX files from [ParaCrawl release 9](https://paracrawl.eu/releases) (or the bonus release in the case of eng-rus). Each sentence is usually associated with many different source URLs, and we keep all of them.
2. Match the extracted URLs with the URLs from all the raw text data and get the corresponding base64-encoded webpage/document, if available.
3. Decode the base64 documents and try to match the original sentence. If the sentence is not found in the document, discard the document. Otherwise, keep the 512 tokens preceding the sentence (where a token is anything separated by a space), replace line breaks with a special `<docline>` token, and store it as the document context. Since some very common sentences correspond to huge numbers of source URLs, we keep a maximum of 1000 unique contexts per sentence separated by a delimiter `|||` in the final dataset.
4. Finally, we compile three different files per language pair – a dataset with all sentence pairs where we have one or more source contexts (`*.src_contexts`), one with all sentence pairs with target contexts (`*.trg_contexts`), and a third dataset with both contexts (`*.both_contexts`).
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
See the [ParaCrawl paper](https://aclanthology.org/2020.acl-main.417/).
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
This dataset is constructed from web crawled data, and thus may contain sensitive or harmful data. The ParaCrawl datasets were released after some filtering at the sentence pair level, but please note that the contexts we extracted from the original webpages have not been filtered in any way.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
\[This section has been copied from the [paper](https://aclanthology.org/2024.acl-long.712/), which you can refer to for details.\]
**Relevance of context**: Our work assumes that any extracted text preceding a given sentence on a webpage is relevant “document context” for that sentence. However, it is likely in many cases that the extracted context is unrelated to the sentence, since most webpages are not formatted as a coherent “document”. As a result, the dataset often includes irrelevant context like lists of products, UI elements, or video titles extracted from webpages which will not be directly helpful to document-level translation models.
**Unaligned contexts**: For sentences with multiple matching contexts, the source and target contexts may not always be aligned. However, the vast majority of sentence pairs have exactly one source/target context, and should therefore have aligned contexts. We recommend filtering on this basis if aligned contexts are required.
**Language coverage**: ParaCrawl was focused on European Union languages with only a few “bonus” releases for other languages. Moreover, most of the corpora were for English-centric language pairs. Due to the high computational requirements to extract these corpora, our work further chose only a subset of these languages, resulting in corpora for only a few European languages, some of them closely related. Given the availability of raw data and tools to extract such corpora for many more languages from all over the world, we hope the community is encouraged to build such resources for a much larger variety of language pairs.
**Harmful content**: The main released corpora from ParaCrawl were filtered to remove sensitive content, particularly pornography. Due to pornographic websites typically containing large amounts of machine translated text, this filtering also improved the quality of the resulting corpora. However, when we match sentences with their source URLs, it often happens that an innocuous sentence was extracted from a webpage with harmful content, and this content is present in our document contexts. We may release filtered versions of these corpora in the future, pending further work to filter harmful content at the document level.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Please be aware that this contains unfiltered data from the internet, and may contain harmful content. For details about the content and limitations of this dataset, read this dataset card as well as [our paper](https://aclanthology.org/2024.acl-long.712/) before using the data for anything where the translated content or its usage might be sensitive.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
Please cite the paper if you use this dataset.
Until the ACL Anthology is updated with ACL 2024 papers, you can use the following BibTeX:
<!-- Update with ACL Anthology bibtex-->
```
@inproceedings{pal-etal-2024-document,
title = "Document-Level Machine Translation with Large-Scale Public Parallel Corpora",
author = "Pal, Proyag and
Birch, Alexandra and
Heafield, Kenneth",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.712",
pages = "13185--13197",
}
```
## Dataset Card Authors
This dataset card was written by [Proyag Pal](https://proyag.github.io/). The [paper](https://aclanthology.org/2024.acl-long.712/) this dataset was created for was written by Proyag Pal, Alexandra Birch, and Kenneth Heafield at the University of Edinburgh.
## Dataset Card Contact
If you have any comments or questions, contact [Proyag Pal](mailto:[email protected]). |