Datasets:
File size: 2,806 Bytes
2c5aa12 f84d4d6 2c5aa12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- id
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
task_categories:
- feature-extraction
- sentence-similarity
tags:
- sentence-transformers
pretty_name: stsb-indo-edu
dataset_info:
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 914517
num_examples: 6198
- name: validation
num_bytes: 246862
num_examples: 1536
- name: test
num_bytes: 209681
num_examples: 1417
download_size: 720899
dataset_size: 1141149
configs:
- config_name: default
data_files:
- split: train
path: data/train.*
- split: validation
path: data/validation.*
- split: test
path: data/test.*
---
# Dataset Card for STSB
This dataset is sourced from the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) repository.
The content has been translated using DeepL machine translation.
The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence pairs drawn from news headlines, video and image captions, and natural language inference data.
Each pair is human-annotated with a similarity score from 1 to 5. However, for this variant, the similarity scores are normalized to between 0 and 1.
## Dataset Details
This dataset improved with new dataset focus on Indonesian Education related from official government website, indonesian news article:
```csv
* Ministry of Education, Culture, Research, and Technology (Kemendikbudristek): https://www.kemdikbud.go.id
* National Research and Innovation Agency (BRIN): https://www.brin.go.id
* Lembaga Tes Masuk Perguruan Tinggi (LTMPT): https://www.ltmpt.ac.id
* Indonesia National Qualifications Framework (KKNI): https://kkni.kemdikbud.go.id
* Indonesian Accreditation Board for Higher Education (BAN-PT): https://www.banpt.or.id
* Indonesia Endowment Fund for Education (LPDP): https://www.lpdp.kemenkeu.go.id
* Beasiswa Unggulan Kemendikbudristek: https://beasiswaunggulan.kemdikbud.go.id
* Indonesian International Student Mobility Awards (IISMA): https://iisma.kemdikbud.go.id
* Pangkalan Data Pendidikan Tinggi (PDDikti): https://pddikti.kemdikbud.go.id
* Sistem Seleksi Masuk Perguruan Tinggi Negeri (SSCASN & SNPMB): https://snpmb.bppp.kemdikbud.go.id
```
## Dataset specification
* Columns: "sentence1", "sentence2", "score"
* Column types: `str`, `str`, `float`
* Examples:
```python
{
'sentence1': 'Penggunaan papan tulis digital mulai diterapkan di beberapa SD.',
'sentence2': 'Media belajar modern ini memudahkan interaksi siswa dan guru.',
'score': 0.77,
}
```
* Collection strategy: Reading the sentences and score from STSB dataset and dividing the score by 5.
* Deduplified: No |