File size: 2,806 Bytes
2c5aa12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84d4d6
 
2c5aa12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- id
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
task_categories:
- feature-extraction
- sentence-similarity
tags:
- sentence-transformers
pretty_name: stsb-indo-edu
dataset_info:
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 914517
    num_examples: 6198
  - name: validation
    num_bytes: 246862
    num_examples: 1536
  - name: test
    num_bytes: 209681
    num_examples: 1417
  download_size: 720899
  dataset_size: 1141149
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train.*
  - split: validation
    path: data/validation.*
  - split: test
    path: data/test.*
---



# Dataset Card for STSB

This dataset is sourced from the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) repository. 
The content has been translated using DeepL machine translation.

The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence pairs drawn from news headlines, video and image captions, and natural language inference data.
Each pair is human-annotated with a similarity score from 1 to 5. However, for this variant, the similarity scores are normalized to between 0 and 1. 

## Dataset Details

This dataset improved with new dataset focus on Indonesian Education related from official government website, indonesian news article:

```csv
* Ministry of Education, Culture, Research, and Technology (Kemendikbudristek): https://www.kemdikbud.go.id
* National Research and Innovation Agency (BRIN): https://www.brin.go.id
* Lembaga Tes Masuk Perguruan Tinggi (LTMPT): https://www.ltmpt.ac.id
* Indonesia National Qualifications Framework (KKNI): https://kkni.kemdikbud.go.id
* Indonesian Accreditation Board for Higher Education (BAN-PT): https://www.banpt.or.id
* Indonesia Endowment Fund for Education (LPDP): https://www.lpdp.kemenkeu.go.id
* Beasiswa Unggulan Kemendikbudristek: https://beasiswaunggulan.kemdikbud.go.id
* Indonesian International Student Mobility Awards (IISMA): https://iisma.kemdikbud.go.id
* Pangkalan Data Pendidikan Tinggi (PDDikti): https://pddikti.kemdikbud.go.id
* Sistem Seleksi Masuk Perguruan Tinggi Negeri (SSCASN & SNPMB): https://snpmb.bppp.kemdikbud.go.id
```

## Dataset specification

* Columns: "sentence1", "sentence2", "score"
* Column types: `str`, `str`, `float`
* Examples:
    ```python
    {
      'sentence1': 'Penggunaan papan tulis digital mulai diterapkan di beberapa SD.',
      'sentence2': 'Media belajar modern ini memudahkan interaksi siswa dan guru.',
      'score': 0.77,
    }
    ```
* Collection strategy: Reading the sentences and score from STSB dataset and dividing the score by 5.
* Deduplified: No