Datasets:
Tasks:
Text Classification
Sub-tasks:
topic-classification
Languages:
English
Size:
10K<n<100K
License:
"""`prachathai-67k`: News Article Corpus and Multi-label Text Classificdation from Prachathai.com""" | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@misc{prachathai67k, | |
author = {cstorm125, lukkiddd }, | |
title = {prachathai67k}, | |
year = {2019}, | |
publisher = {GitHub}, | |
journal = {GitHub repository}, | |
howpublished={\\url{https://github.com/PyThaiNLP/prachathai-67k}}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
`prachathai-67k`: News Article Corpus and Multi-label Text Classificdation from Prachathai.com | |
The prachathai-67k dataset was scraped from the news site Prachathai. | |
We filtered out those articles with less than 500 characters of body text, mostly images and cartoons. | |
It contains 67,889 articles wtih 12 curated tags from August 24, 2004 to November 15, 2018. | |
The dataset was originally scraped by @lukkiddd and cleaned by @cstorm125. | |
You can also see preliminary exploration at https://github.com/PyThaiNLP/prachathai-67k/blob/master/exploration.ipynb | |
""" | |
class Prachathai67kConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Prachathai.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Prachathai. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(Prachathai67kConfig, self).__init__(**kwargs) | |
class Prachathai67k(datasets.GeneratorBasedBuilder): | |
"""`prachathai-67k`: News Article Corpus and Multi-label Text Classificdation from Prachathai.com""" | |
_DOWNLOAD_URL = "https://archive.org/download/prachathai67k/data.zip" | |
_TRAIN_FILE = "train.jsonl" | |
_VAL_FILE = "valid.jsonl" | |
_TEST_FILE = "test.jsonl" | |
BUILDER_CONFIGS = [ | |
Prachathai67kConfig( | |
name="prachathai67k", | |
version=datasets.Version("1.1.0"), | |
description="`prachathai-67k`: News Article Corpus and Multi-label Text Classificdation from Prachathai.com", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"url": datasets.Value("string"), | |
"date": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"body_text": datasets.Value("string"), | |
"politics": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"human_rights": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"quality_of_life": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"international": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"social": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"environment": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"economics": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"culture": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"labor": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"national_security": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"ict": datasets.features.ClassLabel(names=["neg", "pos"]), | |
"education": datasets.features.ClassLabel(names=["neg", "pos"]), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/PyThaiNLP/prachathai-67k/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL) | |
data_dir = os.path.join(arch_path, "data") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FILE)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(data_dir, self._VAL_FILE)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FILE)}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
yield id_, { | |
"url": data["url"], | |
"date": data["date"], | |
"title": data["title"], | |
"body_text": data["body_text"], | |
"politics": data["politics"], | |
"human_rights": data["human_rights"], | |
"quality_of_life": data["quality_of_life"], | |
"international": data["international"], | |
"social": data["social"], | |
"environment": data["environment"], | |
"economics": data["economics"], | |
"culture": data["culture"], | |
"labor": data["labor"], | |
"national_security": data["national_security"], | |
"ict": data["ict"], | |
"education": data["education"], | |
} | |