Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
multi-hop
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""WikiHop: Reading Comprehension with Multiple Hops""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@misc{welbl2018constructing, | |
title={Constructing Datasets for Multi-hop Reading Comprehension Across Documents}, | |
author={Johannes Welbl and Pontus Stenetorp and Sebastian Riedel}, | |
year={2018}, | |
eprint={1710.06481}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
_DESCRIPTION = """\ | |
WikiHop is open-domain and based on Wikipedia articles; the goal is to recover Wikidata information by hopping through documents. \ | |
The goal is to answer text understanding queries by combining multiple facts that are spread across different documents. | |
""" | |
_URL = "https://drive.google.com/uc?export=download&id=1ytVZ4AhubFDOEL7o7XrIRIyhU8g9wvKA" | |
class WikiHopConfig(datasets.BuilderConfig): | |
"""BuilderConfig for WikiHop.""" | |
def __init__(self, masked=False, **kwargs): | |
"""BuilderConfig for WikiHop. | |
Args: | |
masked: `bool`, original or maksed data. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(WikiHopConfig, self).__init__(**kwargs) | |
self.masked = masked | |
class WikiHop(datasets.GeneratorBasedBuilder): | |
"""WikiHop: Reading Comprehension with Multiple Hops""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
WikiHopConfig( | |
name="original", | |
version=datasets.Version("1.0.0"), | |
description="The un-maksed WikiHop dataset", | |
masked=False, | |
), | |
WikiHopConfig( | |
name="masked", version=datasets.Version("1.0.0"), description="Masked WikiHop dataset", masked=True | |
), | |
] | |
BUILDER_CONFIG_CLASS = WikiHopConfig | |
DEFAULT_CONFIG_NAME = "original" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"candidates": datasets.Sequence(datasets.Value("string")), | |
"supports": datasets.Sequence(datasets.Value("string")), | |
"annotations": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), | |
} | |
), | |
supervised_keys=None, | |
homepage="http://qangaroo.cs.ucl.ac.uk/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
extracted_path = dl_manager.download_and_extract(_URL) | |
wikihop_path = os.path.join(extracted_path, "qangaroo_v1.1", "wikihop") | |
train_file = "train.json" if self.config.name == "original" else "train.masked.json" | |
dev_file = "dev.json" if self.config.name == "original" else "dev.masked.json" | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(wikihop_path, train_file), "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(wikihop_path, dev_file), "split": "dev"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
with open(filepath, encoding="utf-8") as f: | |
examples = json.load(f) | |
for i, example in enumerate(examples): | |
# there are no annotations for train split, setting it to empty list | |
if split == "train": | |
example["annotations"] = [] | |
example["question"] = example.pop("query") | |
yield example["id"], example | |