Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
Arabic
ArXiv:
Libraries:
Datasets
pandas
License:
AliShahroor commited on
Commit
e5be8a6
·
verified ·
1 Parent(s): 8985513

update table

Browse files
Files changed (1) hide show
  1. README.md +32 -31
README.md CHANGED
@@ -518,41 +518,42 @@ This repo includes scripts needed to run our full pipeline, including data prepr
518
 
519
  ## Results
520
 
521
- Below, we present the performance of **LlamaLens** in **Arabic** compared to existing SOTA (if available) and the Llama-Instruct baseline, The “Δ” (Delta) column here is
522
- calculated as **(LLamalens – SOTA)**.
523
 
524
  ---
525
 
526
- | **Task** | **Dataset** | **Metric** | **SOTA** | **Llama3.1-instruct** | **Llamalens-English** | **Δ (LLamalens - SOTA)** |
527
- |:-----------------------------:|:----------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:------------------------:|
528
- | Attentionworthiness Detection | CT22Attentionworthy | W-F1 | 0.412 | 0.158 | 0.425 | 0.013 |
529
- | Checkworthiness Detection | CT24_checkworthy | F1_Pos | 0.569 | 0.610 | 0.502 | -0.067 |
530
- | Claim Detection | CT22Claim | Acc | 0.703 | 0.581 | 0.734 | 0.031 |
531
- | Cyberbullying Detection | ArCyc_CB | Acc | 0.863 | 0.766 | 0.870 | 0.007 |
532
- | Emotion Detection | Emotional-Tone | W-F1 | 0.658 | 0.358 | 0.705 | 0.047 |
533
- | Emotion Detection | NewsHeadline | Acc | 1.000 | 0.406 | 0.480 | -0.520 |
534
- | Factuality | Arafacts | Mi-F1 | 0.850 | 0.210 | 0.771 | -0.079 |
535
- | Factuality | COVID19Factuality | W-F1 | 0.831 | 0.492 | 0.800 | -0.031 |
536
- | Harmfulness Detection | CT22Harmful | F1_Pos | 0.557 | 0.507 | 0.523 | -0.034 |
537
- | Hate Speech Detection | annotated-hatetweets-4-classes | W-F1 | 0.630 | 0.257 | 0.526 | -0.104 |
538
- | Hate Speech Detection | OSACT4SubtaskB | Mi-F1 | 0.950 | 0.819 | 0.955 | 0.005 |
539
- | News Categorization | ASND | Ma-F1 | 0.770 | 0.587 | 0.919 | 0.149 |
540
- | News Categorization | SANADAkhbarona-news-categorization | Acc | 0.940 | 0.784 | 0.954 | 0.014 |
541
- | News Categorization | SANADAlArabiya-news-categorization | Acc | 0.974 | 0.893 | 0.987 | 0.013 |
542
- | News Categorization | SANADAlkhaleej-news-categorization | Acc | 0.986 | 0.865 | 0.984 | -0.002 |
543
- | News Categorization | UltimateDataset | Ma-F1 | 0.970 | 0.376 | 0.865 | -0.105 |
544
- | News Credibility | NewsCredibilityDataset | Acc | 0.899 | 0.455 | 0.935 | 0.036 |
545
- | News Summarization | xlsum | R-2 | 0.137 | 0.034 | 0.129 | -0.009 |
546
- | Offensive Language Detection | ArCyc_OFF | Ma-F1 | 0.878 | 0.489 | 0.877 | -0.001 |
547
- | Offensive Language Detection | OSACT4SubtaskA | Ma-F1 | 0.905 | 0.782 | 0.896 | -0.009 |
548
- | Propaganda Detection | ArPro | Mi-F1 | 0.767 | 0.597 | 0.747 | -0.020 |
549
- | Sarcasm Detection | ArSarcasm-v2 | F1_Pos | 0.584 | 0.477 | 0.520 | -0.064 |
550
- | Sentiment Classification | ar_reviews_100k | F1_Pos | -- | 0.681 | 0.785 | -- |
551
- | Sentiment Classification | ArSAS | Acc | 0.920 | 0.603 | 0.800 | -0.120 |
552
- | Stance Detection | stance | Ma-F1 | 0.767 | 0.608 | 0.926 | 0.159 |
553
- | Stance Detection | Mawqif-Arabic-Stance-main | Ma-F1 | 0.789 | 0.764 | 0.853 | 0.065 |
554
- | Subjectivity Detection | ThatiAR | f1_pos | 0.800 | 0.562 | 0.441 | -0.359 |
555
 
 
556
 
557
  ## File Format
558
 
 
518
 
519
  ## Results
520
 
521
+ Below, we present the performance of **L-Lens: LlamaLens** , where *"Eng"* refers to the English-instructed model and *"Native"* refers to the model trained with native language instructions. The results are compared against the SOTA (where available) and the Base: **Llama-Instruct 3.1 baseline**. The **Δ** (Delta) column indicates the difference between LlamaLens and the SOTA performance, calculated as (LlamaLens – SOTA).
522
+
523
 
524
  ---
525
 
526
+ | **Task** | **Dataset** | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
527
+ |:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
528
+ | Attentionworthiness Detection | CT22Attentionworthy | W-F1 | 0.412 | 0.158 | 0.425 | 0.454 | 0.013 |
529
+ | Checkworthiness Detection | CT24_checkworthy | F1_Pos | 0.569 | 0.610 | 0.502 | 0.509 | -0.067 |
530
+ | Claim Detection | CT22Claim | Acc | 0.703 | 0.581 | 0.734 | 0.756 | 0.031 |
531
+ | Cyberbullying Detection | ArCyc_CB | Acc | 0.863 | 0.766 | 0.870 | 0.833 | 0.007 |
532
+ | Emotion Detection | Emotional-Tone | W-F1 | 0.658 | 0.358 | 0.705 | 0.736 | 0.047 |
533
+ | Emotion Detection | NewsHeadline | Acc | 1.000 | 0.406 | 0.480 | 0.458 | -0.520 |
534
+ | Factuality | Arafacts | Mi-F1 | 0.850 | 0.210 | 0.771 | 0.738 | -0.079 |
535
+ | Factuality | COVID19Factuality | W-F1 | 0.831 | 0.492 | 0.800 | 0.840 | -0.031 |
536
+ | Harmfulness Detection | CT22Harmful | F1_Pos | 0.557 | 0.507 | 0.523 | 0.535 | -0.034 |
537
+ | Hate Speech Detection | annotated-hatetweets-4-classes | W-F1 | 0.630 | 0.257 | 0.526 | 0.517 | -0.104 |
538
+ | Hate Speech Detection | OSACT4SubtaskB | Mi-F1 | 0.950 | 0.819 | 0.955 | 0.955 | 0.005 |
539
+ | News Categorization | ASND | Ma-F1 | 0.770 | 0.587 | 0.919 | 0.929 | 0.149 |
540
+ | News Categorization | SANADAkhbarona-news-categorization | Acc | 0.940 | 0.784 | 0.954 | 0.953 | 0.014 |
541
+ | News Categorization | SANADAlArabiya-news-categorization | Acc | 0.974 | 0.893 | 0.987 | 0.985 | 0.013 |
542
+ | News Categorization | SANADAlkhaleej-news-categorization | Acc | 0.986 | 0.865 | 0.984 | 0.982 | -0.002 |
543
+ | News Categorization | UltimateDataset | Ma-F1 | 0.970 | 0.376 | 0.865 | 0.880 | -0.105 |
544
+ | News Credibility | NewsCredibilityDataset | Acc | 0.899 | 0.455 | 0.935 | 0.933 | 0.036 |
545
+ | News Summarization | xlsum | R-2 | 0.137 | 0.034 | 0.129 | 0.130 | -0.009 |
546
+ | Offensive Language Detection | ArCyc_OFF | Ma-F1 | 0.878 | 0.489 | 0.877 | 0.879 | -0.001 |
547
+ | Offensive Language Detection | OSACT4SubtaskA | Ma-F1 | 0.905 | 0.782 | 0.896 | 0.882 | -0.009 |
548
+ | Propaganda Detection | ArPro | Mi-F1 | 0.767 | 0.597 | 0.747 | 0.731 | -0.020 |
549
+ | Sarcasm Detection | ArSarcasm-v2 | F1_Pos | 0.584 | 0.477 | 0.520 | 0.542 | -0.064 |
550
+ | Sentiment Classification | ar_reviews_100k | F1_Pos | -- | 0.681 | 0.785 | 0.779 | -- |
551
+ | Sentiment Classification | ArSAS | Acc | 0.920 | 0.603 | 0.800 | 0.804 | -0.120 |
552
+ | Stance Detection | stance | Ma-F1 | 0.767 | 0.608 | 0.926 | 0.881 | 0.159 |
553
+ | Stance Detection | Mawqif-Arabic-Stance-main | Ma-F1 | 0.789 | 0.764 | 0.853 | 0.826 | 0.065 |
554
+ | Subjectivity Detection | ThatiAR | f1_pos | 0.800 | 0.562 | 0.441 | 0.383 | -0.359 |
555
 
556
+ ---
557
 
558
  ## File Format
559