File size: 848 Bytes
f6c1e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
---
language:
- en
pretty_name: clip-ViT-V-32 embeddings of the Wolt food images
task_categories:
- feature-extraction
size_categories:
- 1M<n<10M
---

# wolt-food-clip-ViT-B-32-embeddings

Qdrant's [Food Discovery](https://food-discovery.qdrant.tech/) demo relies on the dataset of food images from the Wolt 
app. Each point in the collection represents a dish with a single image. The image is represented as a vector of 512 
float numbers. 

## Generation process

The embeddings generated with clip-ViT-B-32 model have been generated using the following code snippet:

```python
from PIL import Image
from sentence_transformers import SentenceTransformer

image_path = "5dbfd216-5cce-11eb-8122-de94874ad1c8_ns_takeaway_seelachs_ei_baguette.jpeg"

model = SentenceTransformer("clip-ViT-B-32")
embedding = model.encode(Image.open(image_path))
```