File size: 3,611 Bytes
df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 4a87d90 df57a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import bz2
from typing import Iterator, Dict, Any, List, Optional
import pandas as pd
import os
import hashlib
import json
from sklearn.model_selection import StratifiedKFold
import numpy as np
from multiprocessing import Pool, cpu_count
from functools import partial
import subprocess
from .utils import (
read_jsonl_fields_fast,
process_answer_types,
create_stratified_subsets,
subset_jsonl_file,
)
class CragSampler:
"""Main class for handling CRAG dataset sampling operations."""
def __init__(
self,
input_file: str,
required_fields: Optional[List[str]] = None,
use_cache: bool = True,
):
"""Initialize CragSampler.
Args:
input_file: Path to input JSONL file (can be bz2 compressed)
required_fields: List of field names to extract. If None, uses default fields
use_cache: Whether to use/create cache file
"""
self.input_file = input_file
self.required_fields = required_fields or [
"domain",
"answer",
"question_type",
"static_or_dynamic",
]
self.use_cache = use_cache
self.df = self._load_data()
def _load_data(self) -> pd.DataFrame:
"""Load and process data from JSONL file."""
df = read_jsonl_fields_fast(
self.input_file, self.required_fields, self.use_cache
)
return process_answer_types(df)
def create_subsets(
self,
n_subsets: int = 5,
stratify_columns: Optional[List[str]] = None,
output_path: Optional[str] = None,
force_compute: bool = False,
) -> Dict:
"""Create stratified subsets of the dataset.
Args:
n_subsets: Number of subsets to create
stratify_columns: Columns to use for stratification. If None, uses defaults
output_path: Path to save/load the JSON output
force_compute: If True, always compute subsets even if file exists
Returns:
Dictionary containing the subsets information
"""
if stratify_columns is None:
stratify_columns = [
"domain",
"answer_type",
"question_type",
"static_or_dynamic",
]
if output_path is None:
output_path = os.path.join(
os.path.dirname(self.input_file),
f"{os.path.splitext(os.path.basename(self.input_file))[0]}_subsets.json",
)
return create_stratified_subsets(
self.df,
n_subsets=n_subsets,
stratify_columns=stratify_columns,
output_path=output_path,
force_compute=force_compute,
)
def write_subsets(
self,
subsets_file: str,
output_dir: Optional[str] = None,
compress: bool = True,
n_processes: Optional[int] = None,
overwrite: bool = False,
) -> None:
"""Write subsets to separate files.
Args:
subsets_file: Path to JSON file containing subset indices
output_dir: Directory to save subset files
compress: Whether to compress output files with bz2
n_processes: Number of processes to use
overwrite: If False, skip existing output files
"""
subset_jsonl_file(
self.input_file,
subsets_file,
output_dir=output_dir,
compress=compress,
n_processes=n_processes,
overwrite=overwrite,
)
|