Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,611 Bytes
df57a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a87d90
 
df57a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a87d90
df57a76
4a87d90
df57a76
 
 
 
4a87d90
df57a76
 
4a87d90
df57a76
 
4a87d90
df57a76
 
4a87d90
df57a76
 
 
 
 
 
 
 
 
 
 
 
4a87d90
df57a76
 
4a87d90
df57a76
4a87d90
df57a76
 
 
 
 
4a87d90
df57a76
4a87d90
df57a76
 
 
 
 
4a87d90
df57a76
 
4a87d90
 
df57a76
 
 
 
4a87d90
df57a76
4a87d90
df57a76
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import bz2
from typing import Iterator, Dict, Any, List, Optional
import pandas as pd
import os
import hashlib
import json
from sklearn.model_selection import StratifiedKFold
import numpy as np
from multiprocessing import Pool, cpu_count
from functools import partial
import subprocess

from .utils import (
    read_jsonl_fields_fast,
    process_answer_types,
    create_stratified_subsets,
    subset_jsonl_file,
)


class CragSampler:
    """Main class for handling CRAG dataset sampling operations."""

    def __init__(
        self,
        input_file: str,
        required_fields: Optional[List[str]] = None,
        use_cache: bool = True,
    ):
        """Initialize CragSampler.

        Args:
            input_file: Path to input JSONL file (can be bz2 compressed)
            required_fields: List of field names to extract. If None, uses default fields
            use_cache: Whether to use/create cache file
        """
        self.input_file = input_file
        self.required_fields = required_fields or [
            "domain",
            "answer",
            "question_type",
            "static_or_dynamic",
        ]
        self.use_cache = use_cache
        self.df = self._load_data()

    def _load_data(self) -> pd.DataFrame:
        """Load and process data from JSONL file."""
        df = read_jsonl_fields_fast(
            self.input_file, self.required_fields, self.use_cache
        )
        return process_answer_types(df)

    def create_subsets(
        self,
        n_subsets: int = 5,
        stratify_columns: Optional[List[str]] = None,
        output_path: Optional[str] = None,
        force_compute: bool = False,
    ) -> Dict:
        """Create stratified subsets of the dataset.

        Args:
            n_subsets: Number of subsets to create
            stratify_columns: Columns to use for stratification. If None, uses defaults
            output_path: Path to save/load the JSON output
            force_compute: If True, always compute subsets even if file exists

        Returns:
            Dictionary containing the subsets information
        """
        if stratify_columns is None:
            stratify_columns = [
                "domain",
                "answer_type",
                "question_type",
                "static_or_dynamic",
            ]

        if output_path is None:
            output_path = os.path.join(
                os.path.dirname(self.input_file),
                f"{os.path.splitext(os.path.basename(self.input_file))[0]}_subsets.json",
            )

        return create_stratified_subsets(
            self.df,
            n_subsets=n_subsets,
            stratify_columns=stratify_columns,
            output_path=output_path,
            force_compute=force_compute,
        )

    def write_subsets(
        self,
        subsets_file: str,
        output_dir: Optional[str] = None,
        compress: bool = True,
        n_processes: Optional[int] = None,
        overwrite: bool = False,
    ) -> None:
        """Write subsets to separate files.

        Args:
            subsets_file: Path to JSON file containing subset indices
            output_dir: Directory to save subset files
            compress: Whether to compress output files with bz2
            n_processes: Number of processes to use
            overwrite: If False, skip existing output files
        """
        subset_jsonl_file(
            self.input_file,
            subsets_file,
            output_dir=output_dir,
            compress=compress,
            n_processes=n_processes,
            overwrite=overwrite,
        )