open-australian-legal-embeddings-openai / open_australian_legal_embeddings_openai.py
Rob Kopel
added dataset loader
4c1155b
# Copyright 2024 Rob Kopel.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An extension of Umar Butler's open-australian-legal-corpus dataset to include 1024 long embeddings from OpenAI's text-embedding-3-large model"""
import json
import datasets
_CITATION = """\
@misc{open-australian-legal-embeddings-openai,
title = {Open Australian Legal Embeddings OpenAI},
author={Rob Kopel},
year={2024},
version={1.0}
url={https://huggingface.co/datasets/R0bk/open-australian-legal-embeddings-openai}
}
"""
_DESCRIPTION = """\
An extension of Umar Butler's open-australian-legal-corpus dataset to include 1024 long embeddings from OpenAI's text-embedding-3-large model.
If you wish to explore or deploy in your environment it can be used with open-australian-legal-explorer on github.
"""
_HOMEPAGE = "https://huggingface.co/datasets/R0bk/open-australian-legal-embeddings-openai"
_LICENSE = """
Please see the open-australian-legal-corpus licence [Open Australian Legal Corpus](https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus/blob/main/LICENCE.md).
"""
_URLS = {
'metadatas' : 'data/metadatas.jsonl',
'texts' : 'data/texts.jsonl',
'embeddings' : 'data/embeddings.jsonl',
}
class OpenAustralianLegalEmbeddingsOpenai(datasets.GeneratorBasedBuilder):
"""An extension of Umar Butler's open-australian-legal-corpus dataset to include 1024 long embeddings from OpenAI's text-embedding-3-large model"""
VERSION = datasets.Version("1.0.0")
DEFAULT_CONFIG_NAME = "train"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'version_id' : datasets.Value('string'),
'type' : datasets.Value('string'),
'jurisdiction' : datasets.Value('string'),
'source' : datasets.Value('string'),
'citation' : datasets.Value('string'),
'url' : datasets.Value('string'),
'is_last_chunk' : datasets.Value('bool'),
'chunk_index' : datasets.Value('int'),
'text' : datasets.Value('string'),
'embedding' : [datasets.Value('float32')]
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
'metadatas_path' : dl_files['metadatas'],
'texts_path' : dl_files['texts'],
'embeddings_path' : dl_files['embeddings'],
}
)
]
def _generate_examples(self, embed_path, metas_path, texts_path):
with open(embed_path, 'r') as embeds, \
open(metas_path, 'r') as metas, \
open(texts_path, 'r') as texts:
for key, (embed, meta, text) in enumerate(zip(embeds, metas, texts)):
yield key, {
**json.loads(meta),
'text': json.loads(text),
'embedding': json.loads(embed)
}