Datasets:
File size: 4,039 Bytes
201b47d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: mit
pretty_name: "Bridges"
tags: ["image", "computer-vision", "bridge", "bridges", "landmarks", "high-resolution"]
task_categories: ["image-classification"]
language: ["en"]
configs:
- config_name: default
data_files: "train/**/*.arrow"
features:
- name: image
dtype: image
- name: unique_id
dtype: string
- name: width
dtype: int32
- name: height
dtype: int32
- name: image_mode_on_disk
dtype: string
- name: original_file_format
dtype: string
---
# Bridges
High resolution image subset from the Aesthetic-Train-V2 dataset, contains a collection of bridges from various parts of the world including many iconic landmark bridges.
## Dataset Details
* **Curator:** Roscosmos
* **Version:** 1.0.0
* **Total Images:** 760
* **Average Image Size (on disk):** ~5.7 MB compressed
* **Primary Content:** Bridges
* **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
## Dataset Creation & Provenance
### 1. Original Master Dataset
This dataset is a subset derived from:
**`zhang0jhon/Aesthetic-Train-V2`**
* **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
* **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
* **Original License:** MIT
### 2. Iterative Curation Methodology
CLIP retrieval / manual curation.
## Dataset Structure & Content
This dataset offers the following configurations/subsets:
* **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
Each example (row) in the dataset contains the following fields:
* `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
* `unique_id`: A unique identifier assigned to each image.
* `width`: The width of the image in pixels (from the full-resolution image).
* `height`: The height of the image in pixels (from the full-resolution image).
## Usage
To download and load this dataset from the Hugging Face Hub:
```python
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Bridges", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
```
## Citation
```bibtex
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
```
## Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
## Contact
N/A
|