File size: 2,585 Bytes
3692ebf d732111 3692ebf 129d0bd 3692ebf 129d0bd 3692ebf d25006f 129d0bd d25006f 3692ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
"""Dataset class for image dataset."""
import datasets
import os
from datasets.tasks import ImageClassification
_URL = "http://https://huggingface.co/datasets/Racso777/AncientMortar/tree/main/metadata"
_HOMEPAGE = "http://https://huggingface.co/datasets/Racso777/AncientMortar"
_DESCRIPTION = (
"This dataset consists of test dataset of ancient mortar and with only obsidian images as zip file in it"
)
_NAMES = [
"Obsidian-1to2mm",
]
class AncientMortarConfig(datasets.BuilderConfig):
"""BuilderConfig for COCO cats image."""
def __init__(
self,
data_url,
url,
task_templates=None,
**kwargs,
):
super(AncientMortarConfig, self).__init__(
version=datasets.Version("1.9.0", ""), **kwargs
)
self.data_url = data_url
self.url = url
self.task_templates = task_templates
class AncientMortar(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
AncientMortarConfig(
name="image",
url="",
data_url="",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager):
#data_files = dl_manager.download_and_extract(_URL)
archive_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"archive_path": archive_path},
),
]
def _generate_examples(self, images, metadata_path):
"""Generate images and labels for splits."""
with open(metadata_path, encoding="utf-8") as f:
files_to_keep = set(f.read().split("\n"))
for file_path, file_obj in images:
if file_path.startswith(_IMAGES_DIR):
if file_path[len(_IMAGES_DIR) : -len(".bmp")] in files_to_keep:
label = file_path.split("/")[2]
yield file_path, {
"image": {"path": file_path, "bytes": file_obj.read()},
"label": label,
} |