"""Dataset class for image dataset.""" import datasets import os from datasets.tasks import ImageClassification _URL = "http://https://huggingface.co/datasets/Racso777/AncientMortar/tree/main/metadata" _HOMEPAGE = "http://https://huggingface.co/datasets/Racso777/AncientMortar" _DESCRIPTION = ( "This dataset consists of test dataset of ancient mortar and with only obsidian images as zip file in it" ) _NAMES = [ "Obsidian-1to2mm", ] class AncientMortarConfig(datasets.BuilderConfig): """BuilderConfig for COCO cats image.""" def __init__( self, data_url, url, task_templates=None, **kwargs, ): super(AncientMortarConfig, self).__init__( version=datasets.Version("1.9.0", ""), **kwargs ) self.data_url = data_url self.url = url self.task_templates = task_templates class AncientMortar(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ AncientMortarConfig( name="image", url="", data_url="", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel(), } ), supervised_keys=("image", "label"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="label")], ) def _split_generators(self, dl_manager): #data_files = dl_manager.download_and_extract(_URL) archive_path = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path}, ), ] def _generate_examples(self, images, metadata_path): """Generate images and labels for splits.""" with open(metadata_path, encoding="utf-8") as f: files_to_keep = set(f.read().split("\n")) for file_path, file_obj in images: if file_path.startswith(_IMAGES_DIR): if file_path[len(_IMAGES_DIR) : -len(".bmp")] in files_to_keep: label = file_path.split("/")[2] yield file_path, { "image": {"path": file_path, "bytes": file_obj.read()}, "label": label, }