Datasets:

Modalities:
Text
ArXiv:
License:
File size: 5,098 Bytes
701efb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import nibabel as nib
import pandas as pd
import numpy as np
import torch
import monai
import torch.nn.functional as F
from multiprocessing import Pool
from tqdm import tqdm

def read_nii_files(directory):
    """
    Retrieve paths of all NIfTI files in the given directory.

    Args:
    directory (str): Path to the directory containing NIfTI files.

    Returns:
    list: List of paths to NIfTI files.
    """
    nii_files = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith('1.nii.gz'):
                # /mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train_preprocessed
                # preprocessed_file = file.replace('/mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train','/mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train_preprocessed')
                nii_files.append(os.path.join(root, file))
    return nii_files

def read_nii_data(file_path):
    """
    Read NIfTI file data.

    Args:
    file_path (str): Path to the NIfTI file.

    Returns:
    np.ndarray: NIfTI file data.
    """
    try:
        nii_img = nib.load(file_path)
        nii_data = nii_img.get_fdata()
        return nii_data
    except Exception as e:
        print(f"Error reading file {file_path}: {e}")
        return None

def resize_array(array, current_spacing, target_spacing):
    """
    Resize the array to match the target spacing.

    Args:
    array (torch.Tensor): Input array to be resized.
    current_spacing (tuple): Current voxel spacing (z_spacing, xy_spacing, xy_spacing).
    target_spacing (tuple): Target voxel spacing (target_z_spacing, target_x_spacing, target_y_spacing).

    Returns:
    np.ndarray: Resized array.
    """
    # Calculate new dimensions
    original_shape = array.shape[2:]
    scaling_factors = [
        current_spacing[i] / target_spacing[i] for i in range(len(original_shape))
    ]
    new_shape = [
        int(original_shape[i] * scaling_factors[i]) for i in range(len(original_shape))
    ]
    # Resize the array
    resized_array = F.interpolate(array, size=new_shape, mode='trilinear', align_corners=False).cpu().numpy()
    return resized_array

def process_file(file_path):
    """
    Process a single NIfTI file.

    Args:
    file_path (str): Path to the NIfTI file.

    Returns:
    None
    """
    monai_loader = monai.transforms.Compose(
            [
                monai.transforms.LoadImaged(keys=['image']),
                monai.transforms.AddChanneld(keys=['image']),
                monai.transforms.Orientationd(axcodes="LPS", keys=['image']),   # zyx
                # monai.transforms.Spacingd(keys=["image"], pixdim=(1, 1, 3), mode=("bilinear")),
                monai.transforms.CropForegroundd(keys=["image"], source_key="image"),
                monai.transforms.ToTensord(keys=["image"]),
            ]
        )
    
    dictionary = monai_loader({'image':file_path})
    img_data = dictionary['image']

    file_name = os.path.basename(file_path)
    row = df[df['VolumeName'] == file_name]
    slope = float(row["RescaleSlope"].iloc[0])
    intercept = float(row["RescaleIntercept"].iloc[0])
    xy_spacing = float(row["XYSpacing"].iloc[0][1:][:-2].split(",")[0])
    z_spacing = float(row["ZSpacing"].iloc[0])

    # Define the target spacing values for SAT segmentation
    target_x_spacing = 1.0
    target_y_spacing = 1.0
    target_z_spacing = 3.0

    current = (z_spacing, xy_spacing, xy_spacing)
    target = (target_z_spacing, target_x_spacing, target_y_spacing)
    img_data = slope * img_data + intercept

    img_data = img_data[0].numpy()
    img_data = img_data.transpose(2, 0, 1)
    tensor = torch.tensor(img_data)
    tensor = tensor.unsqueeze(0).unsqueeze(0)

    resized_array = resize_array(tensor, current, target)
    resized_array = resized_array[0][0]
    resized_array = resized_array.transpose(1,2,0)
    # print('resized:',resized_array.shape)
    # resized: (231, 387, 387)
    
    save_folder = "../upload_data/train_preprocessed/" #save folder for preprocessed
    folder_path_new = os.path.join(save_folder, "train_" + file_name.split("_")[1], "train_" + file_name.split("_")[1] + file_name.split("_")[2]) #folder name for train or validation
    os.makedirs(folder_path_new, exist_ok=True)
    save_path = os.path.join(folder_path_new, file_name)
    # np.savez(save_path, resized_array)
    # Create an identity matrix

    image_nifti = nib.Nifti1Image(resized_array,affine = np.eye(4))
    nib.save(image_nifti, save_path)
    
        
    

# Example usage:
if __name__ == "__main__":
    split_to_preprocess = '../src_data/train' #select the validation or test split
    nii_files = read_nii_files(split_to_preprocess)
    print(len(nii_files))  
    
    df = pd.read_csv("../src_data/metadata/train_metadata.csv") #select the metadata

    num_workers = 18  # Number of worker processes

    # # # Process files using multiprocessing with tqdm progress bar
    with Pool(num_workers) as pool:
        list(tqdm(pool.imap(process_file, nii_files), total=len(nii_files)))