Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Formats:
parquet
Sub-tasks:
instance-segmentation
Languages:
English
Size:
1K - 10K
ArXiv:
License:
File size: 3,773 Bytes
b9a02ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
from collections.abc import Generator
from pathlib import Path
from typing import Any
import datasets
import numpy as np
from datasets import Dataset
from datasets.splits import NamedSplit
from numpy.typing import NDArray
from PIL import Image
from tqdm import tqdm
tissue_map = {
"Bile-duct": "Bile Duct",
"HeadNeck": "Head & Neck",
"Adrenal_gland": "Adrenal Gland",
}
features = datasets.Features(
{
"image": datasets.Image(mode="RGB"),
"instances": datasets.Sequence(datasets.Image(mode="1")),
"categories": datasets.Sequence(
datasets.ClassLabel(
num_classes=5,
names=[
"Neoplastic",
"Inflammatory",
"Connective",
"Dead",
"Epithelial",
],
)
),
"tissue": datasets.ClassLabel(
num_classes=19,
names=[
"Adrenal Gland",
"Bile Duct",
"Bladder",
"Breast",
"Cervix",
"Colon",
"Esophagus",
"Head & Neck",
"Kidney",
"Liver",
"Lung",
"Ovarian",
"Pancreatic",
"Prostate",
"Skin",
"Stomach",
"Testis",
"Thyroid",
"Uterus",
],
),
}
)
def one_hot_mask(
mask: NDArray[np.float64],
) -> tuple[NDArray[np.bool], NDArray[np.uint8]]:
"""Converts a mask to one-hot encoding.
Returns:
A dictionary with the following keys:
- masks: A 3D array with shape (num_masks, height, width) containing the
one-hot encoded masks.
- labels: A 1D array with shape (num_masks,) containing the class labels.
"""
masks: list[NDArray[np.bool]] = []
labels: list[NDArray[np.uint8]] = []
for c in range(mask.shape[-1] - 1):
masks.append(mask[..., c] == np.unique(mask[..., c])[1:, None, None])
labels.append(np.full(masks[-1].shape[0], c, dtype=np.uint8))
return np.concatenate(masks), np.concatenate(labels)
def process(path: str, subfolder: str) -> Generator[dict[str, Any], None, None]:
images = np.load(Path(path, "images", subfolder, "images.npy"), mmap_mode="r")
masks = np.load(Path(path, "masks", subfolder, "masks.npy"), mmap_mode="r")
types = np.load(Path(path, "images", subfolder, "types.npy"))
for image, mask, tissue in tqdm(
zip(images, masks, types, strict=True), total=len(images)
):
mask, labels = one_hot_mask(mask)
yield {
"image": Image.fromarray(image.astype(np.uint8)),
"instances": [Image.fromarray(m) for m in mask],
"categories": labels,
"tissue": tissue_map.get(tissue, tissue),
}
if __name__ == "__main__":
fold1 = Dataset.from_generator(
process,
gen_kwargs={"path": "PanNuke/Fold 1", "subfolder": "fold1"},
features=features,
split=NamedSplit("fold1"),
keep_in_memory=True,
)
fold1.push_to_hub("RationAI/PanNuke")
fold2 = Dataset.from_generator(
process,
gen_kwargs={"path": "PanNuke/Fold 2", "subfolder": "fold2"},
features=features,
split=NamedSplit("fold2"),
keep_in_memory=True,
)
fold2.push_to_hub("RationAI/PanNuke")
fold3 = Dataset.from_generator(
process,
gen_kwargs={"path": "PanNuke/Fold 3", "subfolder": "fold3"},
features=features,
split=NamedSplit("fold3"),
keep_in_memory=True,
)
fold3.push_to_hub("RationAI/PanNuke")
|