public class Recurssion { | |
static int n1=0, n2=1,n3=0; | |
static void fibonaci(int count){ | |
if(count>0){ | |
n3 = n1+n2; | |
n1=n2; | |
n2=n3; | |
System.out.print(" "+n3); | |
fibonaci(count-1); | |
} | |
} | |
static int factorial(int n){ | |
if(n==1 || n==0){ | |
return 1; | |
} | |
else{ | |
return n*factorial(n-1); | |
} | |
} | |
static int factorial_Alternative(int n){ | |
if(n==1 || n==0){ | |
return 1; | |
} | |
else{ | |
int product =1; | |
for(int i=1;i<=n;i++){ | |
product *= i; | |
} | |
return product; | |
} | |
} | |
public static void main(String[] args) { | |
// Code For Factorial using Recurssion | |
int x=5; | |
System.out.println("The factorial of given value is "+factorial(x)); | |
System.out.println("The factorial of given value is "+factorial_Alternative(x)); | |
// Code for Fibonacci Series using Recurrsion | |
int count=10; | |
System.out.print(n1+" "+n2); | |
fibonaci(count-2); | |
} | |
} | |