blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
871e2a48a189968cac97002cfa27a51d1f9daccb
b2ed893d04f04eeaf7209187133de7431c476a96
/user_net/gender_class.py
c62093ef4ce48cc8a023d0c95a5f5f11497668c8
[]
no_license
liruikaiyao/workshop
4b5221259f59ad504d87d73c31f5fa0e58d4a1f0
6dbde74e35ef02f5e92c76dcdd1909f1d0afb89e
refs/heads/master
2021-01-17T16:09:13.248109
2015-08-05T09:43:21
2015-08-05T09:43:21
23,420,887
0
0
null
null
null
null
UTF-8
Python
false
false
1,550
py
# coding=utf-8 __author__ = 'Carry lee' from collections import Counter import datetime import urllib2 import json from config.db import ICCv1, sh, utc, mapreduce # 获取用户性别数据 class Gender(object): def __init__(self, collection_name, begin_name, end_name): self.collection_name = collection_name self.begin = begin_name self.end = end_name self.detail = ICCv1[self.collection_name] self.begin_utc = self.begin.astimezone(utc) self.end_utc = self.end.astimezone(utc) self.activity_info_db = mapreduce['gender_info_db'] def get_gender(self): gender_info = dict() male = 0 female = 0 for elem in self.detail.find({'__REMOVED__': False, '__CREATE_TIME__': {'$gt': self.begin_utc, '$lt': self.end_utc}}): if 'sex' in elem: if elem['sex'] == 1: male += 1 elif elem['sex'] == 2: female += 1 else: pass gender_info['begin'] = self.begin_utc gender_info['end'] = self.end_utc gender_info['male'] = male gender_info['female'] = female gender_info['__CREATE_TIME__'] = datetime.datetime.now(utc) gender_info['__REMOVED__'] = False gender_info['__MODIFY_TIME__'] = datetime.datetime.now(utc) self.activity_info_db.insert(gender_info) return 'work finished'
87b11d42b884e37cf9618016f3c796bffb40d792
96cb70018587f32d8498a5b3bd98703b3bb10495
/pymeasure/instruments/anapico/apsin12G.py
1ac6df64e4565d4bcedb2e534ff58b0995868e03
[ "MIT" ]
permissive
StevenSiegl/pymeasure
724a8d48db7aaf97fd4d2b19e201d425f8918b28
1565c67d5507a61711a4f63e8235900081ee41d7
refs/heads/master
2021-05-22T20:07:15.255255
2021-01-17T16:15:07
2021-01-17T16:15:07
253,072,625
1
1
MIT
2020-12-21T17:53:34
2020-04-04T18:36:49
Python
UTF-8
Python
false
false
3,078
py
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2020 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # from pymeasure.instruments import Instrument from pymeasure.instruments.validators import strict_range, strict_discrete_set class APSIN12G(Instrument): """ Represents the Anapico APSIN12G Signal Generator with option 9K, HP and GPIB. """ FREQ_LIMIT = [9e3, 12e9] POW_LIMIT = [-30, 27] power = Instrument.control( "SOUR:POW:LEV:IMM:AMPL?;", "SOUR:POW:LEV:IMM:AMPL %gdBm;", """ A floating point property that represents the output power in dBm. This property can be set. """, validator=strict_range, values=POW_LIMIT ) frequency = Instrument.control( "SOUR:FREQ:CW?;", "SOUR:FREQ:CW %eHz;", """ A floating point property that represents the output frequency in Hz. This property can be set. """, validator=strict_range, values=FREQ_LIMIT ) blanking = Instrument.control( ":OUTP:BLAN:STAT?", ":OUTP:BLAN:STAT %s", """ A string property that represents the blanking of output power when frequency is changed. ON makes the output to be blanked (off) while changing frequency. This property can be set. """, validator=strict_discrete_set, values=['ON','OFF'] ) reference_output = Instrument.control( "SOUR:ROSC:OUTP:STAT?", "SOUR:ROSC:OUTP:STAT %s", """ A string property that represents the 10MHz reference output from the synth. This property can be set. """, validator=strict_discrete_set, values=['ON','OFF'] ) def __init__(self, resourceName, **kwargs): super(APSIN12G, self).__init__( resourceName, "Anapico APSIN12G Signal Generator", **kwargs ) def enable_rf(self): """ Enables the RF output. """ self.write("OUTP:STAT 1") def disable_rf(self): """ Disables the RF output. """ self.write("OUTP:STAT 0")
b66d57a519311e8f0a4f226ea6a3f5a9d8595aa8
8fcae139173f216eba1eaa01fd055e647d13fd4e
/.history/scraper_20191220161655.py
f1703b47ad7e8f00adc89277b1d03b707bd4eb9d
[]
no_license
EnriqueGalindo/backend-web-scraper
68fdea5430a0ffb69cc7fb0e0d9bcce525147e53
895d032f4528d88d68719838a45dae4078ebcc82
refs/heads/master
2020-11-27T14:02:59.989697
2019-12-21T19:47:34
2019-12-21T19:47:34
229,475,085
0
0
null
null
null
null
UTF-8
Python
false
false
2,261
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module docstring: One line description of what your program does. There should be a blank line in between description above, and this more detailed description. In this section you should put any caveats, environment variable expectations, gotchas, and other notes about running the program. Author tag (below) helps instructors keep track of who wrote what, when grading. """ __author__ = "Enrique Galindo" # Imports go at the top of your file, after the module docstring. # One module per import line. These are for example only. import sys import requests import re import pprint from html.parser import HTMLParser regex_email = r'''(?:[a-z0-9!#$%&‘*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&‘*+/=?^_`{|}~-]+)*|“(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*“)@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])''' regex_phone = r'''(1?\W*([2-9][0-8][0-9])\W*([2-9][0-9]{2})\W*([0-9]{4})(\se?x?t?(\d*))?)''' class MyHTMLParser(HTMLParser): a_list = [] def handle_starttag(self, tag, attrs): link_list = [] if tag == 'a' and "http://": for attr, value in attrs: if attr == 'href' and value.startswith("http"): self.a_list.append(value) def main(args): """Main function is declared as standalone, for testability""" good_phone_list = [] url = args[0] response = requests.get(url) response.raise_for_status() url_list = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', response.text) email_list = set(re.findall(regex_email, response.text)) bad_phone_list = set(re.findall(regex_phone, response.text)) for number in bad_phone_list: good_phone_list.append(number[1] + number[2] + number[3]) print(email_list) pprint.pprint(good_phone_list) parser = MyHTMLParser() print(parser.a_list) if __name__ == '__main__': """Docstring goes here""" main(sys.argv[1:])
a08e6d319ca3c3bf996f96299b7a1988523708b4
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/KCB_MM/YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_108.py
3b6c2efda3954622e0d4679be0aa3586e9e884dc
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,305
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test//xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test//service") from ServiceConfig import * from mainService import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test//mysql") from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test//utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_108(xtp_test_case): def setUp(self): pass # YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_108 def test_YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_108(self): title = '上海A股股票交易日五档即成转撤销卖——输入的保护价格四舍五入后>保护价格上限(9999.995)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11010122, 'errorMSG': queryOrderErrorMsg(11010122), '是否生成报单': '是', '是否是撤废': '否', # '是否是新股申购': '', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('688000', '1', '4', '2', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } print(stkparm['错误原因']) self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_CANCEL'], 'price': 9999.995, 'quantity': 300, 'position_effect':Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 201 if __name__ == '__main__': unittest.main()
c27f0888bbcb61d88c852dc4101cc460b2e025fb
a50a4e874d3d203344a47bc7ad9c317b213eab90
/optimise/submitJob.py
a51a218a60c530524478ad2e55045ee87b4b4c26
[]
no_license
fjl121029xx/yarn-api-python
d5b61ca0695d5fdc4f8923d5814f6576c3c87509
4468609dea2d7630fd9fc3dabbe7c02ded7aa4a1
refs/heads/master
2020-12-04T02:02:40.913088
2020-02-27T08:08:18
2020-02-27T08:08:18
231,563,622
0
0
null
null
null
null
UTF-8
Python
false
false
857
py
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'fjl' import json import requests from urllib import request import time headers = { 'Content-Type': 'application/json', 'X-Requested-By': 'admin' } data = { 'code': "SELECT count(*) FROM `db_yqs_b_777777777`.`livy_watcher`", 'kind': "sql" } # 172.20.44.6 # bi-olap1.sm02 sid = 8894 response = requests.post("http://bi-olap1.sm02:8999/sessions/" + str(sid) + '/statements', data=json.dumps(data), headers=headers) print(response.text) id = response.json()['id'] print(id) time.sleep(10) response = request.urlopen('http://bi-olap1.sm02:8999/sessions/%d/statements/%d' % (sid, id)) statements = json.loads(response.read()) print(statements) stmt = statements['state'] print('getStatements %s' % (statements['state'])) if 'available' == stmt: print(111)
f9d96bee14be78d6e39e6381b8587843e94a81be
dcbdea089e2b4df2a1933169b1d792dd3fa85835
/tests/library/client_test.py
6d5553516e2cc389cf0af09a918d57d842ba45eb
[ "Apache-2.0" ]
permissive
mahmud83/ibm-analytics-engine-python
3cdaa1eb90d20798285a5e66e1fa29313e7ec996
ed02832b63cbe2981af5b44917f78da539e1a950
refs/heads/master
2020-04-07T06:11:33.741937
2018-09-29T18:59:28
2018-09-29T18:59:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,136
py
from unittest import TestCase from mock import Mock, patch import sys import tempfile import os import json import requests from requests.exceptions import RequestException from ibm_analytics_engine import AnalyticsEngine, AnalyticsEngineException class TestAnalyticsEngine(TestCase): def test_invalid_api_key_file(self): try: error_class = IOError except BaseException: error_class = FileNotFoundError with self.assertRaises(error_class): cf = AnalyticsEngine(api_key_filename='does_not_exist') def test_api_key_file(self): # delete=True means the file will be deleted on close tmp = tempfile.NamedTemporaryFile(delete=True) try: data = json.dumps({ "name": "iae-key", "description": "", "createdAt": "2017-11-14T12:30+0000", "apiKey": "" }).encode('utf-8') tmp.write(data) tmp.flush() cf = AnalyticsEngine(api_key_filename=tmp.name) finally: tmp.close() # deletes the file
425d525054de4ed30057775581035a612747caa0
57422dc8cc8e9fa7e6cf8602fb3799ed3869d685
/helper.py
8a3d9cd6e0fc951ad2cb76838a49af21f83406aa
[]
no_license
kamakshidasan/cricket-topology
6a9996e06fdc95f8ae12a5b6204c14525b64ea37
9482bc5963cd6081801342e9daaa6907fd5fb67d
refs/heads/master
2020-03-24T23:57:18.933323
2018-08-02T09:52:40
2018-08-02T09:52:40
143,162,475
4
0
null
null
null
null
UTF-8
Python
false
false
2,956
py
import os, re, shutil, pickle, inspect, csv, sys, math import urllib, json from urlparse import urljoin ############################ ## Identifiers for scrapping cricket ############################ # List of constants CSV_EXTENSION = '.csv' PYTHON_COMMAND = 'python' PAGE = 'page' IDENTIFIER = 'id' CONTENT = 'content' NAME = 'name' PAGE_INFORMATION = 'pageInfo' PAGE_NUMBER = 'numPages' SCHEDULE_ENTRY = 'scheduleEntry' TOURNAMENT_IDENTIFIER = 'tournamentId' MATCH_TYPE = 'matchType' MATCH_IDENTIFIER = 'matchId' DATABASE = 'uds' STATISTICS = 'stats' TRAJECTORY = 'traj' METADATA = 'meta' PLAYERS = 'players' FIXTURES = 'fixtures' COMMENTARY = 'commentary' META = 'meta' META_COMMENTARY = 'meta-commentary' CUSTOMER = 'customer' ICC = 'icc' FEEDS = 'feeds' CUSTOMER_INFORMATION = {CUSTOMER: ICC} DATA_DIRECTORY = 'data/' CLEANED_BOWLERS_DIRECTORY = 'cleaned-bowlers/' CLEANED_BATSMAN_DIRECTORY = 'cleaned-batsman/' TOURNAMENT_TYPES = 'tournamentTypes' MATCH_TYPES = 'matchTypes' STARTING_DATE = 'startDate' ENDING_DATE = 'endDate' TEST_MATCH = 'TEST' ODI_MATCH = 'ODI' TWENTY_INTERNATIONAL_MATCH = 'T20I' INTERNATIONAL_TOURNAMENT = 'I' JSON_EXTENSION = '.json' ICC_API_URL = 'http://cricketapi-icc.pulselive.com' bowlers_list = [ 'Harbhajan Singh', 'Bhuvneshwar Kumar', 'Sunil Narine', 'Umesh Yadav', 'Amit Mishra', 'Lasith Malinga', 'Ravichandran Ashwin', 'Mohit Sharma', 'Ravindra Jadeja', 'Piyush Chawla', 'Praveen Kumar', 'Dwayne Bravo', 'Morne Morkel', 'Ashish Nehra', 'Axar Patel', 'James Faulkner', 'Sandeep Sharma', 'Vinay Kumar', 'Shane Watson', 'Yuzvendra Chahal', 'Zaheer Khan', 'Dale Steyn', 'Mitchell Johnson', 'Rajat Bhatia', 'Jasprit Bumrah', 'Karn Sharma', 'Chris Morris', 'Shahbaz Nadeem', 'Mitchell McClenaghan', 'Dhawal Kulkarni', 'Ashok Dinda' ] batsman_list = [ 'AB de Villiers', 'David Warner', 'Chris Gayle', 'Kieron Pollard', 'David Miller', 'Suresh Raina', 'Yusuf Pathan', 'Dwayne Smith', 'MS Dhoni', 'Shane Watson', 'Virat Kohli', 'Rohit Sharma', 'Robin Uthappa', 'Steve Smith', 'Aaron Finch', 'Brendon McCullum', 'Yuvraj Singh', 'Faf du Plessis', 'Ambati Rayudu', 'Shaun Marsh', 'Dinesh Karthik', 'Sanju Samson', 'Gautam Gambhir', 'Shikhar Dhawan', 'Parthiv Patel', 'Manish Pandey', 'Ajinkya Rahane', 'Michael Hussey', 'Murali Vijay' ] def save_data(data_url, folder_name, file_arguments, file_extension): file_name = join_strings(file_arguments) + file_extension #urllib.urlretrieve(data_url, folder_name + '/' + file_name) #return folder_name + '/' + file_name urllib.urlretrieve(data_url, 'data/' + file_name) return 'data/' + file_name def get_data_url(arguments): return '/'.join(str(argument) for argument in arguments) # get working directory and add '/' at the end def cwd(): return os.path.join(os.getcwd(), '') # get path of current file def current_path(): return os.path.abspath(inspect.getfile(inspect.currentframe())) # join two strings def join_strings(strings): return '-'.join(strings)
cf2eaf7e00ed5e442bcb2e5cec7034e2037df6a7
d73cb659066925e17f35a084458a6418e851b6fd
/Bill Lubanovich - Introducing Python/04_exception_create.py
3e79eaf14b8a08d1f50174a60a842e5ccd298f19
[]
no_license
artag/Training
11095dd67ae90f434666b156c4f778c54a754985
5ee29f5a77d33f682d8cf714a56cc4b0dfe40473
refs/heads/master
2023-08-31T08:10:21.535860
2023-08-30T21:32:16
2023-08-30T21:32:16
173,268,460
0
0
null
2023-03-06T20:03:34
2019-03-01T08:54:36
C#
UTF-8
Python
false
false
171
py
class UppercaseException(Exception): pass words = ('eeenie', 'meenie', 'miny', 'MO') for word in words: if word.isupper(): raise UppercaseException(word)
5fc3b805f173861239b6139fb22c85e5c1597b16
66559f752758913c3b741f764cb3316b64f821f6
/NewsPortal/settings.py
9e7aec79643886a818e117cfc0599b3c9fe8441c
[]
no_license
Dapucla/NewsPortal
7d58c0c6515ee0ebac03bb9764a94791578cdd45
83cd0093b33bb249db08b26f0a65ab200f87e0eb
refs/heads/main
2023-07-02T13:20:27.131750
2021-08-12T23:09:56
2021-08-12T23:09:56
375,814,449
0
0
null
null
null
null
UTF-8
Python
false
false
4,134
py
""" Django settings for NewsPortal project. Generated by 'django-admin startproject' using Django 3.2.3. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-9_cd#3d^^mce8x#0$%7w_9jnxjy_8hbvippi%cxi-1%otysa8)' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'news', 'django.contrib.sites', 'django.contrib.flatpages', # 'django_filters' 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'NewsPortal.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.request', ], }, }, ] AUTHENTICATION_BACKENDS = [ # Needed to login by username in Django admin, regardless of `allauth` 'django.contrib.auth.backends.ModelBackend', # `allauth` specific authentication methods, such as login by e-mail 'allauth.account.auth_backends.AuthenticationBackend', ] ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_UNIQUE_EMAIL = True ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_EMAIL_VERIFICATION = 'none' LOGIN_URL = '/accounts/login/' LOGIN_REDIRECT_URL = 'search' WSGI_APPLICATION = 'NewsPortal.wsgi.application' SITE_ID = 1 # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' STATICFILES_DIRS = [ BASE_DIR / "static" ]
133e210f76872cc81160091bd693b155d285992a
fec543880620228a1e6e5f326d7b06d6a5c25a75
/Tutorial_2_3.py
ce78a7d350877de6cd49aea6cc0d5ac438f090f3
[]
no_license
andriyantohalim/PySide2_Tutorial
f6bf30b13d8bb150e41745f68e62e4ab525b5459
9317d252cfb1ec3067102b7e0dbf03e564ab8eda
refs/heads/master
2020-04-22T05:49:35.658069
2019-02-14T15:05:41
2019-02-14T15:05:41
170,169,131
3
3
null
null
null
null
UTF-8
Python
false
false
974
py
################################################## # TUTORIAL 2_3. Toolbar # @TODO: No Icon displayed, maybe on Mac OS only ################################################## import sys from PySide2.QtWidgets import QMainWindow, QApplication, QAction from PySide2.QtGui import QIcon class Example(QMainWindow): def initUI(self): # exitAction = QAction(QIcon('exit24.png'), 'Exit', self) exitAction = QAction('Exit', self) exitAction.setShortcut('Ctrl+Q') # CMD + Q in Mac OS exitAction.triggered.connect(self.close) self.toolbar = self.addToolBar('Exit') self.toolbar.addAction(exitAction) self.setGeometry(300, 300, 350, 250) self.setWindowTitle('Toolbar') self.show() def __init__(self): super(Example, self).__init__() self.initUI() def main(): app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_()) if __name__ == '__main__': main()
ad139485701a6ef5cc4b1afc855f9bdbdfcb39fb
aa91bc5be73b742d37a726d2599ece7e45e6b82a
/tests/sentry/quotas/redis/tests.py
fd73a945c13ea3f506802b16cfe4d79fe2039e59
[ "BSD-2-Clause" ]
permissive
vaginessa/BurntVeggies
8f5f18d008bbe1bf0736b4adfb373624a83a9cf8
0bc4fe9bf0aa301e8314612cb8e56c50e1feab4a
refs/heads/master
2020-07-12T09:55:30.669118
2014-02-04T01:34:05
2014-02-04T01:34:05
37,351,359
0
0
BSD-3-Clause
2019-01-18T06:17:33
2015-06-13T00:36:52
Python
UTF-8
Python
false
false
2,623
py
# -*- coding: utf-8 -*- from __future__ import absolute_import import mock from exam import fixture, patcher from sentry.quotas.redis import RedisQuota from sentry.testutils import TestCase class RedisQuotaTest(TestCase): @fixture def quota(self): inst = RedisQuota(hosts={ 0: {'db': 9} }) inst.conn.flushdb() return inst @patcher.object(RedisQuota, 'get_system_quota') def get_system_quota(self): inst = mock.MagicMock() inst.return_value = 0 return inst @patcher.object(RedisQuota, 'get_team_quota') def get_team_quota(self): inst = mock.MagicMock() inst.return_value = 0 return inst @patcher.object(RedisQuota, 'get_project_quota') def get_project_quota(self): inst = mock.MagicMock() inst.return_value = 0 return inst @patcher.object(RedisQuota, '_incr_project') def _incr_project(self): inst = mock.MagicMock() inst.return_value = (0, 0, 0) return inst def test_default_host_is_local(self): quota = RedisQuota() self.assertEquals(len(quota.conn.hosts), 1) self.assertEquals(quota.conn.hosts[0].host, 'localhost') def test_bails_immediately_without_any_quota(self): self._incr_project.return_value = (0, 0, 0) result = self.quota.is_rate_limited(self.project) assert not self._incr_project.called assert result is False def test_enforces_project_quota(self): self.get_project_quota.return_value = 100 self._incr_project.return_value = (0, 0, 101) result = self.quota.is_rate_limited(self.project) assert result is True self._incr_project.return_value = (0, 0, 99) result = self.quota.is_rate_limited(self.project) assert result is False def test_enforces_team_quota(self): self.get_team_quota.return_value = 100 self._incr_project.return_value = (0, 101, 0) result = self.quota.is_rate_limited(self.project) assert result is True self._incr_project.return_value = (0, 99, 0) result = self.quota.is_rate_limited(self.project) assert result is False def test_enforces_system_quota(self): self.get_system_quota.return_value = 100 self._incr_project.return_value = (101, 0, 0) result = self.quota.is_rate_limited(self.project) assert result is True self._incr_project.return_value = (99, 0, 0) result = self.quota.is_rate_limited(self.project) assert result is False
f601c9bb6fd53fe0bef6a60838676b07583a7dda
64290261c1466f0bcac0c302f59783cccad740a9
/googletest/googletest/scripts/gen_gtest_pred_impl.py
7cee3c7f7815849dcb2831dd5ed530a4457ca8ec
[ "BSD-3-Clause" ]
permissive
qinlang3/LaplacianFilter
49560ec7933658db99710699448fd08f8f3c990f
dd5c1b150b14ff218b8c5d6cbf1a4bb644f13e04
refs/heads/main
2023-03-27T00:44:56.166409
2021-03-27T06:55:00
2021-03-27T06:55:00
347,609,035
0
1
null
null
null
null
UTF-8
Python
false
false
22,618
py
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """gen_gtest_pred_impl.py v0.1 Generates the implementation of Google Test predicate assertions and accompanying tests. Usage: gen_gtest_pred_impl.py MAX_ARITY where MAX_ARITY is a positive integer. The command generates the implementation of up-to MAX_ARITY-ary predicate assertions, and writes it to file gtest_pred_impl.h in the directory where the script is. It also generates the accompanying unit test in file gtest_pred_impl_unittest.cc. """ __author__ = '[email protected] (Zhanyong Wan)' import os import sys import time # Where this script is. SCRIPT_DIR = os.path.dirname(sys.argv[0]) # Where to store the generated header. HEADER = os.path.join(SCRIPT_DIR, '../include/gtest/gtest_pred_impl.h') # Where to store the generated unit test. UNIT_TEST = os.path.join(SCRIPT_DIR, '../test/gtest_pred_impl_unittest.cc') def HeaderPreamble(n): """Returns the preamble for the header file. Args: n: the maximum arity of the predicate macros to be generated. """ # A map that defines the values used in the preamble template. DEFS = { 'today' : time.strftime('%m/%d/%Y'), 'year' : time.strftime('%Y'), 'command' : '%s %s' % (os.path.basename(sys.argv[0]), n), 'n' : n } return ( """// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file is AUTOMATICALLY GENERATED on %(today)s by command // '%(command)s'. DO NOT EDIT BY HAND! // // Implements a family of generic predicate assertion macros. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ #define GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ #include "gtest/gtest.h" namespace testing { // This header implements a family of generic predicate assertion // macros: // // ASSERT_PRED_FORMAT1(pred_format, v1) // ASSERT_PRED_FORMAT2(pred_format, v1, v2) // ... // // where pred_format is a function or functor that takes n (in the // case of ASSERT_PRED_FORMATn) values and their source expression // text, and returns a testing::AssertionResult. See the definition // of ASSERT_EQ in gtest.h for an example. // // If you don't care about formatting, you can use the more // restrictive version: // // ASSERT_PRED1(pred, v1) // ASSERT_PRED2(pred, v1, v2) // ... // // where pred is an n-ary function or functor that returns bool, // and the values v1, v2, ..., must support the << operator for // streaming to std::ostream. // // We also define the EXPECT_* variations. // // For now we only support predicates whose arity is at most %(n)s. // Please email [email protected] if you need // support for higher arities. // GTEST_ASSERT_ is the basic statement to which all of the assertions // in this file reduce. Don't use this in your code. #define GTEST_ASSERT_(expression, on_failure) \\ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \\ if (const ::testing::AssertionResult gtest_ar = (expression)) \\ ; \\ else \\ on_failure(gtest_ar.failure_message()) """ % DEFS) def Arity(n): """Returns the English name of the given arity.""" if n < 0: return None elif n <= 3: return ['nullary', 'unary', 'binary', 'ternary'][n] else: return '%s-ary' % n def Title(word): """Returns the given word in title case. The difference between this and string's title() method is that Title('4-ary') is '4-ary' while '4-ary'.title() is '4-Ary'.""" return word[0].upper() + word[1:] def OneTo(n): """Returns the list [1, 2, 3, ..., n].""" return range(1, n + 1) def Iter(n, format, sep=''): """Given a positive integer n, a format string that contains 0 or more '%s' format specs, and optionally a separator string, returns the join of n strings, each formatted with the format string on an iterator ranged from 1 to n. Example: Iter(3, 'v%s', sep=', ') returns 'v1, v2, v3'. """ # How many '%s' specs are in format? spec_count = len(format.split('%s')) - 1 return sep.join([format % (spec_count * (i,)) for i in OneTo(n)]) def ImplementationForArity(n): """Returns the implementation of n-ary predicate assertions.""" # A map the defines the values used in the implementation template. DEFS = { 'n' : str(n), 'vs' : Iter(n, 'v%s', sep=', '), 'vts' : Iter(n, '#v%s', sep=', '), 'arity' : Arity(n), 'Arity' : Title(Arity(n)) } impl = """ // Helper function for implementing {EXPECT|ASSERT}_PRED%(n)s. Don't use // this in your code. template <typename Pred""" % DEFS impl += Iter(n, """, typename T%s""") impl += """> AssertionResult AssertPred%(n)sHelper(const char* pred_text""" % DEFS impl += Iter(n, """, const char* e%s""") impl += """, Pred pred""" impl += Iter(n, """, const T%s& v%s""") impl += """) { if (pred(%(vs)s)) return AssertionSuccess(); """ % DEFS impl += ' return AssertionFailure() << pred_text << "("' impl += Iter(n, """ << e%s""", sep=' << ", "') impl += ' << ") evaluates to false, where"' impl += Iter( n, """ << "\\n" << e%s << " evaluates to " << ::testing::PrintToString(v%s)""" ) impl += """; } // Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT%(n)s. // Don't use this in your code. #define GTEST_PRED_FORMAT%(n)s_(pred_format, %(vs)s, on_failure)\\ GTEST_ASSERT_(pred_format(%(vts)s, %(vs)s), \\ on_failure) // Internal macro for implementing {EXPECT|ASSERT}_PRED%(n)s. Don't use // this in your code. #define GTEST_PRED%(n)s_(pred, %(vs)s, on_failure)\\ GTEST_ASSERT_(::testing::AssertPred%(n)sHelper(#pred""" % DEFS impl += Iter(n, """, \\ #v%s""") impl += """, \\ pred""" impl += Iter(n, """, \\ v%s""") impl += """), on_failure) // %(Arity)s predicate assertion macros. #define EXPECT_PRED_FORMAT%(n)s(pred_format, %(vs)s) \\ GTEST_PRED_FORMAT%(n)s_(pred_format, %(vs)s, GTEST_NONFATAL_FAILURE_) #define EXPECT_PRED%(n)s(pred, %(vs)s) \\ GTEST_PRED%(n)s_(pred, %(vs)s, GTEST_NONFATAL_FAILURE_) #define ASSERT_PRED_FORMAT%(n)s(pred_format, %(vs)s) \\ GTEST_PRED_FORMAT%(n)s_(pred_format, %(vs)s, GTEST_FATAL_FAILURE_) #define ASSERT_PRED%(n)s(pred, %(vs)s) \\ GTEST_PRED%(n)s_(pred, %(vs)s, GTEST_FATAL_FAILURE_) """ % DEFS return impl def HeaderPostamble(): """Returns the postamble for the header file.""" return """ } // namespace testing #endif // GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ """ def GenerateFile(path, content): """Given a file path and a content string overwrites it with the given content. """ print 'Updating file %s . . .' % path f = file(path, 'w+') print >>f, content, f.close() print 'File %s has been updated.' % path def GenerateHeader(n): """Given the maximum arity n, updates the header file that implements the predicate assertions. """ GenerateFile(HEADER, HeaderPreamble(n) + ''.join([ImplementationForArity(i) for i in OneTo(n)]) + HeaderPostamble()) def UnitTestPreamble(): """Returns the preamble for the unit test file.""" # A map that defines the values used in the preamble template. DEFS = { 'today' : time.strftime('%m/%d/%Y'), 'year' : time.strftime('%Y'), 'command' : '%s %s' % (os.path.basename(sys.argv[0]), sys.argv[1]), } return ( """// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file is AUTOMATICALLY GENERATED on %(today)s by command // '%(command)s'. DO NOT EDIT BY HAND! // Regression test for gtest_pred_impl.h // // This file is generated by a script and quite long. If you intend to // learn how Google Test works by reading its unit tests, read // gtest_unittest.cc instead. // // This is intended as a regression test for the Google Test predicate // assertions. We compile it as part of the gtest_unittest target // only to keep the implementation tidy and compact, as it is quite // involved to set up the stage for testing Google Test using Google // Test itself. // // Currently, gtest_unittest takes ~11 seconds to run in the testing // daemon. In the future, if it grows too large and needs much more // time to finish, we should consider separating this file into a // stand-alone regression test. #include <iostream> #include "gtest/gtest.h" #include "gtest/gtest-spi.h" // A user-defined data type. struct Bool { explicit Bool(int val) : value(val != 0) {} bool operator>(int n) const { return value > Bool(n).value; } Bool operator+(const Bool& rhs) const { return Bool(value + rhs.value); } bool operator==(const Bool& rhs) const { return value == rhs.value; } bool value; }; // Enables Bool to be used in assertions. std::ostream& operator<<(std::ostream& os, const Bool& x) { return os << (x.value ? "true" : "false"); } """ % DEFS) def TestsForArity(n): """Returns the tests for n-ary predicate assertions.""" # A map that defines the values used in the template for the tests. DEFS = { 'n' : n, 'es' : Iter(n, 'e%s', sep=', '), 'vs' : Iter(n, 'v%s', sep=', '), 'vts' : Iter(n, '#v%s', sep=', '), 'tvs' : Iter(n, 'T%s v%s', sep=', '), 'int_vs' : Iter(n, 'int v%s', sep=', '), 'Bool_vs' : Iter(n, 'Bool v%s', sep=', '), 'types' : Iter(n, 'typename T%s', sep=', '), 'v_sum' : Iter(n, 'v%s', sep=' + '), 'arity' : Arity(n), 'Arity' : Title(Arity(n)), } tests = ( """// Sample functions/functors for testing %(arity)s predicate assertions. // A %(arity)s predicate function. template <%(types)s> bool PredFunction%(n)s(%(tvs)s) { return %(v_sum)s > 0; } // The following two functions are needed to circumvent a bug in // gcc 2.95.3, which sometimes has problem with the above template // function. bool PredFunction%(n)sInt(%(int_vs)s) { return %(v_sum)s > 0; } bool PredFunction%(n)sBool(%(Bool_vs)s) { return %(v_sum)s > 0; } """ % DEFS) tests += """ // A %(arity)s predicate functor. struct PredFunctor%(n)s { template <%(types)s> bool operator()(""" % DEFS tests += Iter(n, 'const T%s& v%s', sep=""", """) tests += """) { return %(v_sum)s > 0; } }; """ % DEFS tests += """ // A %(arity)s predicate-formatter function. template <%(types)s> testing::AssertionResult PredFormatFunction%(n)s(""" % DEFS tests += Iter(n, 'const char* e%s', sep=""", """) tests += Iter(n, """, const T%s& v%s""") tests += """) { if (PredFunction%(n)s(%(vs)s)) return testing::AssertionSuccess(); return testing::AssertionFailure() << """ % DEFS tests += Iter(n, 'e%s', sep=' << " + " << ') tests += """ << " is expected to be positive, but evaluates to " << %(v_sum)s << "."; } """ % DEFS tests += """ // A %(arity)s predicate-formatter functor. struct PredFormatFunctor%(n)s { template <%(types)s> testing::AssertionResult operator()(""" % DEFS tests += Iter(n, 'const char* e%s', sep=""", """) tests += Iter(n, """, const T%s& v%s""") tests += """) const { return PredFormatFunction%(n)s(%(es)s, %(vs)s); } }; """ % DEFS tests += """ // Tests for {EXPECT|ASSERT}_PRED_FORMAT%(n)s. class Predicate%(n)sTest : public testing::Test { protected: void SetUp() override { expected_to_finish_ = true; finished_ = false;""" % DEFS tests += """ """ + Iter(n, 'n%s_ = ') + """0; } """ tests += """ void TearDown() override { // Verifies that each of the predicate's arguments was evaluated // exactly once.""" tests += ''.join([""" EXPECT_EQ(1, n%s_) << "The predicate assertion didn't evaluate argument %s " "exactly once.";""" % (i, i + 1) for i in OneTo(n)]) tests += """ // Verifies that the control flow in the test function is expected. if (expected_to_finish_ && !finished_) { FAIL() << "The predicate assertion unexpactedly aborted the test."; } else if (!expected_to_finish_ && finished_) { FAIL() << "The failed predicate assertion didn't abort the test " "as expected."; } } // true iff the test function is expected to run to finish. static bool expected_to_finish_; // true iff the test function did run to finish. static bool finished_; """ % DEFS tests += Iter(n, """ static int n%s_;""") tests += """ }; bool Predicate%(n)sTest::expected_to_finish_; bool Predicate%(n)sTest::finished_; """ % DEFS tests += Iter(n, """int Predicate%%(n)sTest::n%s_; """) % DEFS tests += """ typedef Predicate%(n)sTest EXPECT_PRED_FORMAT%(n)sTest; typedef Predicate%(n)sTest ASSERT_PRED_FORMAT%(n)sTest; typedef Predicate%(n)sTest EXPECT_PRED%(n)sTest; typedef Predicate%(n)sTest ASSERT_PRED%(n)sTest; """ % DEFS def GenTest(use_format, use_assert, expect_failure, use_functor, use_user_type): """Returns the test for a predicate assertion macro. Args: use_format: true iff the assertion is a *_PRED_FORMAT*. use_assert: true iff the assertion is a ASSERT_*. expect_failure: true iff the assertion is expected to fail. use_functor: true iff the first argument of the assertion is a functor (as opposed to a function) use_user_type: true iff the predicate functor/function takes argument(s) of a user-defined type. Example: GenTest(1, 0, 0, 1, 0) returns a test that tests the behavior of a successful EXPECT_PRED_FORMATn() that takes a functor whose arguments have built-in types.""" if use_assert: assrt = 'ASSERT' # 'assert' is reserved, so we cannot use # that identifier here. else: assrt = 'EXPECT' assertion = assrt + '_PRED' if use_format: pred_format = 'PredFormat' assertion += '_FORMAT' else: pred_format = 'Pred' assertion += '%(n)s' % DEFS if use_functor: pred_format_type = 'functor' pred_format += 'Functor%(n)s()' else: pred_format_type = 'function' pred_format += 'Function%(n)s' if not use_format: if use_user_type: pred_format += 'Bool' else: pred_format += 'Int' test_name = pred_format_type.title() if use_user_type: arg_type = 'user-defined type (Bool)' test_name += 'OnUserType' if expect_failure: arg = 'Bool(n%s_++)' else: arg = 'Bool(++n%s_)' else: arg_type = 'built-in type (int)' test_name += 'OnBuiltInType' if expect_failure: arg = 'n%s_++' else: arg = '++n%s_' if expect_failure: successful_or_failed = 'failed' expected_or_not = 'expected.' test_name += 'Failure' else: successful_or_failed = 'successful' expected_or_not = 'UNEXPECTED!' test_name += 'Success' # A map that defines the values used in the test template. defs = DEFS.copy() defs.update({ 'assert' : assrt, 'assertion' : assertion, 'test_name' : test_name, 'pf_type' : pred_format_type, 'pf' : pred_format, 'arg_type' : arg_type, 'arg' : arg, 'successful' : successful_or_failed, 'expected' : expected_or_not, }) test = """ // Tests a %(successful)s %(assertion)s where the // predicate-formatter is a %(pf_type)s on a %(arg_type)s. TEST_F(%(assertion)sTest, %(test_name)s) {""" % defs indent = (len(assertion) + 3)*' ' extra_indent = '' if expect_failure: extra_indent = ' ' if use_assert: test += """ expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT""" else: test += """ EXPECT_NONFATAL_FAILURE({ // NOLINT""" test += '\n' + extra_indent + """ %(assertion)s(%(pf)s""" % defs test = test % defs test += Iter(n, ',\n' + indent + extra_indent + '%(arg)s' % defs) test += ');\n' + extra_indent + ' finished_ = true;\n' if expect_failure: test += ' }, "");\n' test += '}\n' return test # Generates tests for all 2**6 = 64 combinations. tests += ''.join([GenTest(use_format, use_assert, expect_failure, use_functor, use_user_type) for use_format in [0, 1] for use_assert in [0, 1] for expect_failure in [0, 1] for use_functor in [0, 1] for use_user_type in [0, 1] ]) return tests def UnitTestPostamble(): """Returns the postamble for the tests.""" return '' def GenerateUnitTest(n): """Returns the tests for up-to n-ary predicate assertions.""" GenerateFile(UNIT_TEST, UnitTestPreamble() + ''.join([TestsForArity(i) for i in OneTo(n)]) + UnitTestPostamble()) def _Main(): """The entry point of the script. Generates the header file and its unit test.""" if len(sys.argv) != 2: print __doc__ print 'Author: ' + __author__ sys.exit(1) n = int(sys.argv[1]) GenerateHeader(n) GenerateUnitTest(n) if __name__ == '__main__': _Main()
0e1c61643756a0babee382e35dc2724271ea21a6
3785be3d8f6e852cfdd46e426747e7aaad1461ed
/for_format.py
88c09c863a33eeb2c9a22caabaeb1b21b682625c
[]
no_license
ONOentrepreneur/python-code
d18a6f1beabcc8a4eedd1077a49458fc8593a16d
7246f48b65d8d2e18291debd376796afaf88c6ec
refs/heads/master
2021-10-19T18:58:48.506357
2019-02-23T09:14:34
2019-02-23T09:14:34
93,308,042
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
v=0 for i in range(1,10): v+=i print("{0}を足すと{1}".format(i,v)) print("1から10を足すと...{0}".format(v))
287dd1a5e3fdc62d41b3076b4cad6580e6f9daca
e62b02d6c028612a7dce488344a0246abd5a7433
/src/point_plane_net/conv_onet/scripts/dataset_scannet_depth/check_max_depth_value.py
86ab749ac585ddc87dc7925f085fefe690c32b91
[ "MIT" ]
permissive
daniil-777/dynamic_geo_convolutional_onet
335688016870c14ea08af676fa768d5c1175c348
c4db94a64c8b2f2c83ecb507b02b9aecd4c7bb62
refs/heads/main
2023-02-24T14:26:45.772083
2021-01-30T20:36:12
2021-01-30T20:36:12
322,916,712
1
0
null
null
null
null
UTF-8
Python
false
false
693
py
import os import numpy as np import trimesh import glob import imageio import sys import torch from tqdm import tqdm from os.path import join item_path = '/is/rg/avg/mniemeyer/project_data/2020/scalable_onet/data/ScanNet_depth14/scenes' item_path = os.path.join(item_path, os.listdir(item_path)[0]) depth_path = join(item_path, 'depth') depth_files = glob.glob(join(depth_path, '*.png')) depth_files.sort() fmin = np.inf fmax = -np.inf for f in tqdm(depth_files): img = imageio.imread(f).astype(np.float32) / 1000. mmin, mmax = img.min(), img.max() if mmin < fmin: fmin = mmin if mmax > fmax: fmax = mmax print('Final numbers: %.6f, %.6f' % (fmin, fmax))
9c1700b52b12a939eb75cda0d99d195d51d4f086
a6df69adeda3c2b08c988e023ca5cac63a0d03cf
/tests/multiviewica/test_mvica.py
0119b3e63c90fbf91db1d0ae90e39c1c05e56d90
[ "MIT" ]
permissive
hugorichard/mvlearn
89cf575070e847b7002cbecc185ddfa4431511b6
688548b55ca3b61ea4bcc3b339cee140d03c0adc
refs/heads/main
2023-04-03T00:42:45.017104
2021-03-18T14:50:21
2021-03-18T14:50:21
294,060,397
0
0
Apache-2.0
2020-09-09T09:06:43
2020-09-09T09:06:43
null
UTF-8
Python
false
false
5,545
py
# BSD 3-Clause License # Copyright (c) 2020, Hugo RICHARD and Pierre ABLIN # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Modified from source package https://github.com/hugorichard/multiviewica import pytest import numpy as np import scipy from sklearn.decomposition import PCA from mvlearn.decomposition import MultiviewICA from mvlearn.compose import ViewTransformer from mvlearn.utils import requires_multiviewica def hungarian(M): u, order = scipy.optimize.linear_sum_assignment(-abs(M)) vals = M[u, order] return order, np.sign(vals) def normalize(A): A_ = A - np.mean(A, axis=1, keepdims=True) A_ = A_ / np.linalg.norm(A_, axis=1, keepdims=True) return A_ def amari_d(W, A): P = np.dot(W, A) def s(r): return np.sum(np.sum(r ** 2, axis=1) / np.max(r ** 2, axis=1) - 1) return (s(np.abs(P)) + s(np.abs(P.T))) / (2 * P.shape[0]) def error(M): order, _ = hungarian(M) return 1 - M[np.arange(M.shape[0]), order] # Initialize data @pytest.fixture(scope="module") def Xs(): np.random.seed(0) view1 = np.random.random((10, 9)) view2 = np.random.random((10, 9)) Xs = [view1, view2] return np.asarray(Xs) @requires_multiviewica @pytest.mark.parametrize( ("algo", "init"), [(MultiviewICA, "permica"), (MultiviewICA, "groupica"),], ) def test_ica(algo, init): # Test that all algo can recover the sources sigma = 1e-4 n, v, p, t = 3, 10, 5, 1000 # Generate signals rng = np.random.RandomState(0) S_true = rng.laplace(size=(p, t)) S_true = normalize(S_true) A_list = rng.randn(n, v, p) noises = rng.randn(n, v, t) Xs = [A.dot(S_true) for A in A_list] Xs = [X + sigma * N for X, A, N in zip(Xs, A_list, noises)] # Run ICA if init is None: algo = algo(n_components=5, tol=1e-5, multiview_output=False).fit( np.swapaxes(Xs, 1, 2) ) else: algo = algo( n_components=5, tol=1e-5, init=init, multiview_output=False ).fit(np.swapaxes(Xs, 1, 2)) K = algo.pca_components_ W = algo.components_ S = algo.transform(np.swapaxes(Xs, 1, 2)).T dist = np.mean( [ amari_d(W[i], np.linalg.pinv(K[i]).T.dot(A_list[i])) for i in range(n) ] ) S = normalize(S) err = np.mean(error(np.abs(S.dot(S_true.T)))) assert dist < 0.01 assert err < 0.01 @requires_multiviewica def test_transform(Xs): ica = MultiviewICA(n_components=2) with pytest.raises(ValueError): ica.transform(Xs) assert ica.fit_transform(Xs).shape == (Xs.shape[0], Xs.shape[1], 2) ica = MultiviewICA() assert ica.fit_transform(Xs).shape == Xs.shape @requires_multiviewica @pytest.mark.parametrize("multiview_output", [True, False]) def test_inverse_transform(Xs, multiview_output): ica = MultiviewICA(n_components=2, multiview_output=multiview_output) with pytest.raises(ValueError): ica.inverse_transform(Xs) S = ica.fit_transform(Xs) Xs_mixed = ica.inverse_transform(S) avg_mixed = np.mean( [X @ np.linalg.pinv(C) for X, C in zip(Xs, ica.pca_components_)], axis=0, ) avg_mixed2 = np.mean( [X @ np.linalg.pinv(C) for X, C in zip(Xs_mixed, ica.pca_components_)], axis=0, ) assert np.linalg.norm(avg_mixed2 - avg_mixed) < 0.2 @requires_multiviewica def test_inverse_transform_no_preproc(Xs): ica = MultiviewICA() S = ica.fit_transform(Xs) Xs_mixed = ica.inverse_transform(S) assert np.mean((Xs_mixed - Xs) ** 2) / np.mean(Xs ** 2) < 0.05 @requires_multiviewica def test_fit_errors(Xs): with pytest.raises(ValueError): ica = MultiviewICA() ica.fit(Xs[:, :5, :]) with pytest.raises(ValueError): ica = MultiviewICA(init="WRONG") ica.fit(Xs) with pytest.raises(TypeError): ica = MultiviewICA(init=list()) ica.fit(Xs) @requires_multiviewica def test_fit(Xs, capfd): ica = MultiviewICA(verbose=True) ica.fit(Xs) out, err = capfd.readouterr() assert out[:2] == "it"
c02215ad3b73954a6dbd3a4c1899a46d2ae927eb
45cd72d5f000f25c5efcd31bbe4547008d944c24
/AlgoProjectLatest/venv/Scripts/easy_install-3.7-script.py
5b7e22c5741d52a3e96b10adeae227b2d69659d4
[]
no_license
fatinqnahar/Best-Flight
2b09fa1b7a34bc218d9b0c1b64ce6a7775093409
419bbfc568a9279903c48882a4910772b79777f0
refs/heads/master
2023-04-24T11:45:51.239479
2021-05-04T14:11:03
2021-05-04T14:11:03
364,277,356
0
0
null
null
null
null
UTF-8
Python
false
false
463
py
#!C:\Users\Amirah\PycharmProjects\AlgoProject\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.7')() )
52cbb065169570a9caa1dc72b04b06eb5949d804
8c59093c20719903cee2ddc348544a224f6ecf47
/mongo_rest_django/bricks_rest_api/bricks_rest_api/wsgi.py
6b91726d25fc59366b4ed1dab1ad0d8c90a4a33e
[]
no_license
anhuaxiang/django_rest_test
6679e12470048deda546c5061edc677271046266
bc946d50ef8f85d78de67d9ca84430e6a50d1ade
refs/heads/master
2020-03-27T04:30:17.749535
2018-08-24T10:16:58
2018-08-24T10:16:58
145,946,140
2
0
null
null
null
null
UTF-8
Python
false
false
407
py
""" WSGI config for bricks_rest_api project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bricks_rest_api.settings') application = get_wsgi_application()
6b067f8119195dc5b8ec6b3d534aebb0b9424bb5
3a9f2b3d79cf214704829427ee280f4b49dca70a
/saigon/rat/RuckusAutoTest/scripts/zd/ats_ZD_Combo_Saigon_Comparison_Smart_Redundancy.py
0e22c37e3a9aa75eeee259cd6893243d98da5d95
[]
no_license
jichunwei/MyGitHub-1
ae0c1461fe0a337ef459da7c0d24d4cf8d4a4791
f826fc89a030c6c4e08052d2d43af0b1b4b410e3
refs/heads/master
2021-01-21T10:19:22.900905
2016-08-20T03:34:52
2016-08-20T03:34:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,411
py
''' Udpate @2011/9/8, by [email protected] Update Content: 1) Append TCID to test cases so that report to test link directly. 2) Update Level hierarchical for test cases. ''' import sys import random import libZD_TestSuite as testsuite from RuckusAutoTest.common import lib_KwList as kwlist def defineTestConfiguration(): test_cfgs = [] input_cfg = defineInputConfig() test_name = 'CB_ZD_SR_Init_Env' common_name = 'Initial Test Environment' test_cfgs.append(({'zd1_ip_addr':input_cfg['zd1_ip_addr'], 'zd2_ip_addr':\ input_cfg['zd2_ip_addr'],'share_secret':input_cfg['share_secret'], 'sw_ip':input_cfg['sw_ip']},test_name, common_name, 0, False)) test_name = 'CB_ZD_SR_Disable' common_name = 'Disable Smart Redundancy before test' test_cfgs.append(({}, test_name, common_name, 0, False)) test_name = 'CB_ZD_Disable_Given_Mac_Switch_Port' common_name = '[Testing choice Active ZD rule by MAC]Disable switch port connectet to all ap' test_cfgs.append(({'ap_tag':'all','device':'ap'},test_name, common_name, 1, False)) test_name = 'CB_ZD_SR_Enable' common_name = '[Testing choice Active ZD rule by MAC]Enable Smart Redundancy' test_cfgs.append(({},test_name,common_name, 2,False)) test_name = 'CB_ZD_SR_Check_Lower_Mac_State' common_name = '[Testing choice Active ZD rule by MAC]ZD with lower MAC address is Active when the ZDs have no APs.' test_cfgs.append(({'except_state':'active'},test_name,common_name,2,False)) test_name = 'CB_ZD_Enable_Sw_Port_Connect_To_Given_Device' common_name = '[Testing choice Active ZD rule by MAC]Enable sw port connected to all ap' test_cfgs.append(({},test_name, common_name, 2, True)) test_name = 'CB_ZD_SR_Disable' common_name = '[Testing choice Active ZD rule by MAC]Disable Smart Redundancy for comparison with same AP test' test_cfgs.append(({}, test_name, common_name, 2, False)) test_name = 'CB_ZD_SR_Adjust_To_Same_AP' common_name = '[Testing choice Active ZD rule by MAC]Adjust the 2 ZDs to have the same APs' test_cfgs.append(({}, test_name, common_name, 2, False)) test_name = 'CB_ZD_SR_Enable' common_name = '[Testing choice Active ZD rule by MAC]Enable Smart Redundancy for comparison with same AP test' test_cfgs.append(({},test_name,common_name, 2,False)) test_name = 'CB_ZD_SR_Check_Lower_Mac_State' common_name = '[Testing choice Active ZD rule by MAC]ZD with lower MAC address is Active when the ZDs have the same APs.' test_cfgs.append(({'except_state':'active'},test_name,common_name,1,False)) test_name = 'CB_ZD_SR_Disable' common_name = '[Testing choice Active ZD rule by MAC]Disable Smart Redundancy after test' test_cfgs.append(({}, test_name, common_name, 2, True)) test_name = 'CB_ZD_SR_Enable' common_name = '[Testing choice Acitve ZD rule by AP Number]Enable Smart Redundancy' test_cfgs.append(({},test_name,common_name, 1,False)) test_name = 'CB_ZD_SR_Get_Active_ZD' common_name = '[Testing choice Acitve ZD rule by AP Number]Get the Active ZD' test_cfgs.append(({},test_name,common_name,2,False)) test_name = 'CB_ZD_SR_Set_Active_ZD' common_name = '[Testing choice Acitve ZD rule by AP Number]set active zd as high mac zd' test_cfgs.append(({'zd':'higher_mac_zd'},test_name,common_name,2,False)) test_name = 'CB_Scaling_Waiting' common_name = '[Testing choice Acitve ZD rule by AP Number]Waiting ap connect for %d mins ' % 1 test_cfgs.append(({'timeout':1*60}, test_name, common_name, 2, False)) test_name = 'CB_ZD_SR_Disable' common_name = '[Testing choice Acitve ZD rule by AP Number]Disable Smart Redundancy for comparison with different APs test' test_cfgs.append(({}, test_name, common_name, 2, False)) test_name = 'CB_ZD_SR_Check_High_Mac_Has_More_AP' common_name = '[Testing choice Acitve ZD rule by AP Number]Make sure the higher MAC address has more AP.' test_cfgs.append(({}, test_name, common_name, 2, False)) test_name = 'CB_ZD_SR_Enable' common_name = '[Testing choice Acitve ZD rule by AP Number]Enable Smart Redundancy for comparison with different APs test' test_cfgs.append(({},test_name,common_name, 2,False)) test_name = 'CB_ZD_SR_Check_Lower_Mac_State' common_name = '[Testing choice Acitve ZD rule by AP Number]Make sure the ZD with lower MAC address is Standby when the ZD has less APs.' test_cfgs.append(({'except_state':'standby'},test_name,common_name, 2,False)) test_name = 'CB_ZD_SR_Disable' common_name = '[Testing choice Acitve ZD rule by AP Number]Disable Smart Redundancy after test' test_cfgs.append(({}, test_name, common_name, 2, True)) test_name = 'CB_ZD_SR_Clear_Up' common_name = "Clear up the Smart Redundancy test environment" test_cfgs.append(({},test_name, common_name,0,True)) return test_cfgs def defineInputConfig(): test_conf = {'zd1_ip_addr':'192.168.0.2', 'zd2_ip_addr':'192.168.0.3', 'sw_ip':'192.168.0.253' } test_conf['share_secret'] = _generate_secret_key(random.randint(5,15)) return test_conf def _generate_secret_key(n): al=list('abcdefghijklmnopqrstuvwxyz0123456789') st='' for i in range(n): index = random.randint(0,35) st = st + al[index] return st def createTestSuite(**kwargs): tb = testsuite.getTestbed2(**kwargs) tb_cfg = testsuite.getTestbedConfig(tb) ts_name = 'Smart Redundancy Active ZD selection Rule' ts = testsuite.get_testsuite(ts_name, 'Verify ZDs Comparison(AP and MAC)', combotest=True) test_cfgs = defineTestConfiguration() test_order = 1 test_added = 0 for test_params, testname, common_name, exc_level, is_cleanup in test_cfgs: if testsuite.addTestCase(ts, testname, common_name, test_params, test_order, exc_level, is_cleanup) > 0: test_added += 1 test_order += 1 print "Add test case with test name: %s\n\t\common name: %s" % (testname, common_name) print "\n-- Summary: added %d test cases into test suite '%s'" % (test_added, ts.name) if __name__ == "__main__": _dict = kwlist.as_dict(sys.argv[1:]) createTestSuite(**_dict)
5de0c3ecbd041cd5a3bda07015a1c63b74c5eff3
be1c1bb17f267b5fb2c440f70e97c6442ebde819
/componentes_basicos/botao.py
100b15105c196a30f6cfb2f8efa5c8f88e636afa
[]
no_license
leuribeiru/QtforPhyton
2fb4edebcee00c6acda55d87bb8d0359e3c3c1b7
ee3ca119d03ae09012e2a564b66b6f0703727978
refs/heads/main
2023-01-11T01:17:32.731045
2020-11-14T02:46:02
2020-11-14T02:46:02
311,734,424
1
0
null
null
null
null
UTF-8
Python
false
false
624
py
import sys from PySide2.QtWidgets import QApplication, QMainWindow, QPushButton aplicacao = QApplication(sys.argv) janela = QMainWindow() # setGeometry(esquerda, topo, largura, altura) janela.setGeometry( 100, 50, 300, 200 ) janela.setWindowTitle("Primeira Janela") # instância de um botão dentro da janela botao = QPushButton("Meu Botão", janela) # posição dentro da janela (esquerda, topo) botao.move(50,50) # tamanho (largura, altura) botao.resize(200,100) # estilo do botão botao.setStyleSheet("QPushButton \ {background-color: blue; color: white; font-size: 32px}") janela.show() aplicacao.exec_() sys.exit()
a6d3629bd67191a216b820d9cbbab017175d10e4
4f725d021518117851cb4607c8dda0346abbcaf2
/bigdata_moretv/bigdata/bigdata/settings.py
ca016cc2af514b0908f8c9dcc471e47ddd1df6e3
[]
no_license
milespeng/mydjango
424515d38cd4aeeb2baaa87a955f514134b80d6e
d6b9f5a21bdfb08e077905cce81dc156ee71de83
refs/heads/master
2020-03-08T03:24:44.085175
2018-04-04T09:24:26
2018-04-04T09:24:26
127,890,147
0
0
null
null
null
null
UTF-8
Python
false
false
3,124
py
""" Django settings for bigdata project. Generated by 'django-admin startproject' using Django 1.11.2. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '@=!4oy_r*)oibzp2-v@ojc(ii%8j7mzh_un9-m=7#5h31*to5#' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'bigdata_service', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'bigdata.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bigdata.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
e85a4f334cd6cde981e33cfde51223548351b8c6
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2008-EOL/applications/games/openarena-data/actions.py
a3a100c26fc8ba76e36b5d9c0ce8e1bd9ef8e90c
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
869
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt from pisi.actionsapi import shelltools from pisi.actionsapi import pisitools from pisi.actionsapi import get import os NoStrip = "/" WorkDir = "openarena-%s" % get.srcVERSION() docs = ["CHANGES", "COPYING", "CREDITS", "LINUXNOTES", "README", "WENEED"] datadir = "/usr/share/openarena" def fixperms(d): for root, dirs, files in os.walk(d): for name in dirs: shelltools.chmod(os.path.join(root, name), 0755) for name in files: shelltools.chmod(os.path.join(root, name), 0644) def install(): for data in ("missionpack", "baseoa"): fixperms(data) pisitools.insinto(datadir, data) for doc in docs: pisitools.dodoc(doc)
5aae8e966b5c54cd412a07b852f046b196f7080b
77311ad9622a7d8b88707d7cee3f44de7c8860cb
/res/scripts/client/gui/shared/fortifications/controls.py
5b33b5497ab7e2d68156385958d6c1d445f7bd76
[]
no_license
webiumsk/WOT-0.9.14-CT
9b193191505a4560df4e872e022eebf59308057e
cfe0b03e511d02c36ce185f308eb48f13ecc05ca
refs/heads/master
2021-01-10T02:14:10.830715
2016-02-14T11:59:59
2016-02-14T11:59:59
51,606,676
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
40,137
py
# 2016.02.14 12:41:27 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/shared/fortifications/controls.py import BigWorld from functools import partial from operator import attrgetter from debug_utils import LOG_ERROR, LOG_DEBUG import fortified_regions from gui.shared import g_eventBus, events, EVENT_BUS_SCOPE from gui.shared.fortifications import getClientFort, getClientFortMgr from gui.shared.fortifications.FortFinder import FortFinder from gui.shared.fortifications.context import FortRequestCtx from gui.shared.fortifications.fort_ext import FortCooldownManager from gui.shared.fortifications.fort_ext import PlayerFortRequester from gui.game_control.battle_availability import SortiesCurfewController from gui.shared.fortifications.fort_seqs import SortiesCache, PublicInfoCache, FortBattlesCache from gui.shared.fortifications.interfaces import IFortController from gui.shared.fortifications.restrictions import FortPermissions, NoFortLimits, IntroFortLimits, NoFortValidators, FortValidators from gui.shared.fortifications.restrictions import FortLimits from gui.shared.fortifications.settings import FORT_REQUEST_TYPE, CLIENT_FORT_STATE from helpers import time_utils class _FortController(IFortController): _TIME_OUT = 45 def __init__(self, handlers): super(_FortController, self).__init__() self._requester = None self._limits = None self._validators = None self._sortiesCache = None self._sortiesCurfewCtrl = None self._fortBattlesCache = None self._publicInfoCache = None self._handlers = handlers self._cooldown = FortCooldownManager() self.clear() return def clear(self): self._clan = None self._listeners = None self._waiters = None return def init(self, clan, listeners, prevController = None): self._requester = PlayerFortRequester() self._requester.init() self._setLimits() self._setValidators() self._clan = clan self._listeners = listeners self._addFortListeners() self._waiters = {} def fini(self, clearCache = True): self._removeFortListeners() self.stopProcessing() if self._requester: self._requester.fini() self._requester = None if self._limits: self._limits = None if self._validators: self._validators.fini() self._validators = None self.clear() self._handlers.clear() return def stopProcessing(self): self._clearWaiters() if self._requester is not None: self._requester.stopProcessing() return def getFort(self): return getClientFort() def getPermissions(self): if self._clan: roles = self._clan.clanRole else: roles = 0 return FortPermissions(roles) def getLimits(self): return self._limits def getValidators(self): return self._validators def getSortiesCache(self): return self._sortiesCache def getFortBattlesCache(self): return self._fortBattlesCache def getSortiesCurfewCtrl(self): return self._sortiesCurfewCtrl def getPublicInfoCache(self): return self._publicInfoCache def removeSortiesCache(self): SortiesCache._removeStoredData() def removeFortBattlesCache(self): FortBattlesCache._removeStoredData() def request(self, ctx, callback = None): if self._clan is None: return self._failChecking('Clan is not defined', ctx, callback) else: requestType = ctx.getRequestType() if requestType in self._handlers: cooldown = ctx.getCooldown() if self._cooldown.validate(requestType, cooldown): if callback: callback(False) else: LOG_DEBUG('Fort request', ctx) if self._handlers[requestType](ctx, callback=partial(self._callbackWrapper, requestType, callback, cooldown)): self._waiters[requestType] = BigWorld.callback(self._TIME_OUT, self._onTimeout) self._cooldown.process(requestType, cooldown) else: self._failChecking('Handler not found', ctx, callback) return def subscribe(self, callback = None): def _doRequest(): LOG_DEBUG('Fort request to subscribe') result = self._requester.doRequestEx(FortRequestCtx(), callback, 'subscribe') if result: self._waiters[FORT_REQUEST_TYPE.SUBSCRIBE] = BigWorld.callback(self._TIME_OUT, self._onTimeout) self._cooldown.process(FORT_REQUEST_TYPE.SUBSCRIBE) if self._cooldown.validate(FORT_REQUEST_TYPE.SUBSCRIBE): BigWorld.callback(self._cooldown.getTime(FORT_REQUEST_TYPE.SUBSCRIBE), _doRequest) else: _doRequest() def unsubscribe(self, callback = None): LOG_DEBUG('Fort request to unsubscribe') self._requester.doRequestEx(FortRequestCtx(), callback, 'unsubscribe') return False def _failChecking(self, ctx, msg, callback = None): if callback: callback(False) LOG_ERROR(msg, ctx) return False def _addFortListeners(self): pass def _removeFortListeners(self): pass def _setLimits(self): self._limits = NoFortLimits() def _setValidators(self): self._validators = NoFortValidators() def _callbackWrapper(self, requestType, callback, cooldown, *args): callbackID = self._waiters.pop(requestType, None) if callbackID is not None: BigWorld.cancelCallback(callbackID) self._cooldown.adjust(requestType, cooldown) callback(*args) return def _clearWaiters(self): if self._waiters is not None: while len(self._waiters): _, callbackID = self._waiters.popitem() BigWorld.cancelCallback(callbackID) return def _onTimeout(self): LOG_ERROR('Fort request time out!') self.stopProcessing() g_eventBus.handleEvent(events.FortEvent(events.FortEvent.REQUEST_TIMEOUT), scope=EVENT_BUS_SCOPE.FORT) class NoFortController(_FortController): def __init__(self): super(NoFortController, self).__init__({}) @classmethod def isNext(cls, stateID, isLeader): if stateID in [CLIENT_FORT_STATE.NO_CLAN, CLIENT_FORT_STATE.UNSUBSCRIBED]: return True if not isLeader and stateID == CLIENT_FORT_STATE.NO_FORT: return True def request(self, ctx, callback = None): self._failChecking('Has been invoked NoFortController.request', ctx, callback) def init(self, clan, listeners, prevController = None): super(NoFortController, self).init(clan, listeners, prevController) self._sortiesCurfewCtrl = SortiesCurfewController() self._sortiesCurfewCtrl.start() def fini(self, clearCache = True): if self._sortiesCurfewCtrl: self._sortiesCurfewCtrl.stop() self._sortiesCurfewCtrl = None super(NoFortController, self).fini(clearCache) return class CenterUnavailableController(_FortController): def __init__(self): super(CenterUnavailableController, self).__init__({}) @classmethod def isNext(cls, stateID, isLeader): if stateID in [CLIENT_FORT_STATE.CENTER_UNAVAILABLE]: return True if not isLeader and stateID == CLIENT_FORT_STATE.NO_FORT: return True def init(self, clan, listeners, prevController = None): super(CenterUnavailableController, self).init(clan, listeners, prevController) if prevController is not None: self._sortiesCache = prevController.getSortiesCache() if self._sortiesCache is not None: self._sortiesCache.setController(self) return def fini(self, clearCache = True): if self._sortiesCache and clearCache: self._sortiesCache.stop() self._sortiesCache = None super(CenterUnavailableController, self).fini() return def request(self, ctx, callback = None): self._failChecking('Has been invoked CenterUnavailableController.request', ctx, callback) class IntroController(_FortController): def __init__(self): super(IntroController, self).__init__({FORT_REQUEST_TYPE.CREATE_FORT: self.create}) @classmethod def isNext(cls, stateID, isLeader): return isLeader and stateID == CLIENT_FORT_STATE.NO_FORT def create(self, ctx, callback = None): perm = self.getPermissions() if not perm.canCreate(): return self._failChecking('Player can not create fort', ctx, callback) fort = self.getFort() if not fort.isEmpty(): return self._failChecking('Fort is already created', ctx, callback) limits = self.getLimits() valid, reason = limits.isCreationValid() if not valid: return self._failChecking('Creation is not valid: {0}'.format(reason), ctx, callback) return self._requester.doRequestEx(ctx, callback, 'create') def _setLimits(self): self._limits = IntroFortLimits() class FortController(_FortController): def __init__(self): super(FortController, self).__init__({FORT_REQUEST_TYPE.OPEN_DIRECTION: self.openDirection, FORT_REQUEST_TYPE.CLOSE_DIRECTION: self.closeDirection, FORT_REQUEST_TYPE.ADD_BUILDING: self.addBuilding, FORT_REQUEST_TYPE.DELETE_BUILDING: self.deleteBuilding, FORT_REQUEST_TYPE.TRANSPORTATION: self.transport, FORT_REQUEST_TYPE.ADD_ORDER: self.addOrder, FORT_REQUEST_TYPE.ACTIVATE_ORDER: self.activateOrder, FORT_REQUEST_TYPE.ATTACH: self.attach, FORT_REQUEST_TYPE.UPGRADE: self.upgrade, FORT_REQUEST_TYPE.CREATE_SORTIE: self.createSortie, FORT_REQUEST_TYPE.REQUEST_SORTIE_UNIT: self.requestSortieUnit, FORT_REQUEST_TYPE.CHANGE_DEF_HOUR: self.changeDefHour, FORT_REQUEST_TYPE.CHANGE_OFF_DAY: self.changeOffDay, FORT_REQUEST_TYPE.CHANGE_PERIPHERY: self.changePeriphery, FORT_REQUEST_TYPE.CHANGE_VACATION: self.changeVacation, FORT_REQUEST_TYPE.CHANGE_SETTINGS: self.changeSettings, FORT_REQUEST_TYPE.SHUTDOWN_DEF_HOUR: self.shutDownDefHour, FORT_REQUEST_TYPE.CANCEL_SHUTDOWN_DEF_HOUR: self.cancelShutDownDefHour, FORT_REQUEST_TYPE.REQUEST_PUBLIC_INFO: self.requestFortPublicInfo, FORT_REQUEST_TYPE.REQUEST_CLAN_CARD: self.requestClanCard, FORT_REQUEST_TYPE.ADD_FAVORITE: self.addFavorite, FORT_REQUEST_TYPE.REMOVE_FAVORITE: self.removeFavorite, FORT_REQUEST_TYPE.PLAN_ATTACK: self.planAttack, FORT_REQUEST_TYPE.CREATE_OR_JOIN_FORT_BATTLE: self.createOrJoinFortBattle, FORT_REQUEST_TYPE.ACTIVATE_CONSUMABLE: self.activateConsumable, FORT_REQUEST_TYPE.RETURN_CONSUMABLE: self.returnConsumable}) self.__cooldownCallback = None self.__cooldownBuildings = [] self.__cooldownPassed = False self._upgradeVisitedBuildings = set() self._finder = None self.__defencePeriodCallback = None return @classmethod def isNext(cls, stateID, _): return stateID in [CLIENT_FORT_STATE.WIZARD, CLIENT_FORT_STATE.HAS_FORT] def init(self, clan, listeners, prevController = None): super(FortController, self).init(clan, listeners, prevController) self._sortiesCache = SortiesCache(self) self._sortiesCache.start() self._sortiesCurfewCtrl = SortiesCurfewController() self._sortiesCurfewCtrl.start() self._fortBattlesCache = FortBattlesCache(self) self._fortBattlesCache.start() self._finder = FortFinder() self._finder.init() self._publicInfoCache = PublicInfoCache(self) self._publicInfoCache.start() def fini(self, clearCache = True): if self._sortiesCache and clearCache: self._sortiesCache.stop() self._sortiesCache = None if self._sortiesCurfewCtrl: self._sortiesCurfewCtrl.stop() self._sortiesCurfewCtrl = None if self._fortBattlesCache: self._fortBattlesCache.stop() self._fortBattlesCache = None if self._publicInfoCache: self._publicInfoCache.stop() self._publicInfoCache = None super(FortController, self).fini() return def stopProcessing(self): if self._finder is not None: self._finder.stopProcessing() super(FortController, self).stopProcessing() return def openDirection(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() direction = ctx.getDirection() if fort.isDirectionOpened(direction): return self._failChecking('Direction already is opened', ctx, callback) if not perm.canOpenDirection(): return self._failChecking('Player can not open direction', ctx, callback) limits = self.getLimits() valid, reason = limits.isDirectionValid(direction) if not valid: return self._failChecking('Direction is invalid: {0}'.format(reason), ctx, callback) return self._requester.doRequestEx(ctx, callback, 'openDir', direction) def closeDirection(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() direction = ctx.getDirection() if not fort.isDirectionOpened(direction): return self._failChecking('Direction is not opened', ctx, callback) if not perm.canCloseDirection(): return self._failChecking('Player can not open direction', ctx, callback) limits = self.getLimits() valid, reason = limits.isDirectionValid(direction, open=False) if not valid: return self._failChecking('Direction is invalid: {0}'.format(reason), ctx, callback) return self._requester.doRequestEx(ctx, callback, 'closeDir', direction) def addBuilding(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() buildingTypeID = ctx.getBuildingTypeID() direction = ctx.getDirection() position = ctx.getPosition() if not fort.isPositionAvailable(direction, position): return self._failChecking('Positions is not available', ctx, callback) if fort.isBuildingBuilt(buildingTypeID): return self._failChecking('Building is already built', ctx, callback) if not perm.canAddBuilding(): return self._failChecking('Player can not build buildings', ctx, callback) limits = self.getLimits() valid, reason = limits.canBuild(buildingTypeID) if not valid: return self._failChecking('Building is invalid: {0}'.format(reason), ctx, callback) return self._requester.doRequestEx(ctx, callback, 'addBuilding', buildingTypeID, direction, position) def deleteBuilding(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() buildingTypeID = ctx.getBuildingTypeID() if not fort.isBuildingBuilt(buildingTypeID): return self._failChecking('Building is not built', ctx, callback) if not perm.canDeleteBuilding(): return self._failChecking('Player can not build buildings', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'delBuilding', buildingTypeID) def transport(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() fromBuildingID = ctx.getFromBuildingTypeID() toBuildingID = ctx.getToBuildingTypeID() resCount = ctx.getResCount() if not fort.isBuildingBuilt(fromBuildingID): return self._failChecking('Exporting building is not built', ctx, callback) if not fort.isBuildingBuilt(toBuildingID): return self._failChecking('Importing building is not built', ctx, callback) fromBuilding = fort.getBuilding(fromBuildingID) if not fromBuilding.isReady() or not fromBuilding.isExportAvailable(resCount): return self._failChecking('Exporting from building is not available', ctx, callback) toBuilding = fort.getBuilding(toBuildingID) if not toBuilding.isImportAvailable(resCount): return self._failChecking('Importing into building is not available', ctx, callback) if not perm.canTransport(): return self._failChecking('Player can not transport', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'transport', fromBuildingID, toBuildingID, resCount) def attach(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() buildingTypeID = ctx.getBuildingTypeID() if not fort.isBuildingBuilt(buildingTypeID): return self._failChecking('Building is not built', ctx, callback) if not perm.canAttach(): return self._failChecking('Player can not attach', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'attach', buildingTypeID) def upgrade(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() buildingTypeID = ctx.getBuildingTypeID() if not fort.isBuildingBuilt(buildingTypeID): return self._failChecking('Building is not built', ctx, callback) building = fort.getBuilding(buildingTypeID) if not building.isReady(): return self._failChecking('Building is not available', ctx, callback) if not perm.canUpgradeBuilding(): return self._failChecking('Player can not upgrade building', ctx, callback) limits = self.getLimits() valid, reason = limits.canUpgrade(buildingTypeID) if not valid: return self._failChecking('Building is invalid: {0}'.format(reason), ctx, callback) self.removeUpgradeVisitedBuilding(buildingTypeID) return self._requester.doRequestEx(ctx, callback, 'upgrade', buildingTypeID) def addOrder(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() orderTypeID = ctx.getOrderTypeID() count = ctx.getCount() order = fort.getOrder(orderTypeID) if not order.hasBuilding: return self._failChecking('Order building is not built', ctx, callback) orderBuilding = fort.getBuilding(order.buildingID) if not orderBuilding.isReady() and not orderBuilding.orderInProduction: return self._failChecking('Building is not ready to add order', ctx, callback) if not perm.canAddOrder(): return self._failChecking('Player can not add order', ctx, callback) limits = self.getLimits() valid, reason = limits.isOrderValid(orderTypeID, add=False) if not valid: return self._failChecking('Orded is invalid: {0}'.format(reason), ctx, callback) return self._requester.doRequestEx(ctx, callback, 'addOrder', order.buildingID, count) def activateOrder(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() orderTypeID = ctx.getOrderTypeID() order = fort.getOrder(orderTypeID) if not order.hasBuilding: return self._failChecking('Order building is not built', ctx, callback) orderBuilding = fort.getBuilding(order.buildingID) if not orderBuilding.isReady(): return self._failChecking('Building is not ready to add order', ctx, callback) if not perm.canActivateOrder(): return self._failChecking('Player can not add order', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'activateOrder', orderTypeID) def createSortie(self, ctx, callback = None): level = ctx.getDivisionLevel() perm = self.getPermissions() if not perm.canCreateSortie(): return self._failChecking('Player can not create sortie, no permission', ctx, callback) limits = self.getLimits() valid, reason = limits.isSortieCreationValid(level) if not valid: return self._failChecking('Player can not create sortie: {0}'.format(reason), ctx, callback) return self._requester.doRequestEx(ctx, callback, 'createSortie', level) def requestSortieUnit(self, ctx, callback = None): unitMgrID = ctx.getUnitMgrID() peripheryID = ctx.getPeripheryID() fort = self.getFort() if not fort: return self._failChecking('Client fort is not found', ctx, callback) if (unitMgrID, peripheryID) not in fort.sorties: return self._failChecking('Sortie does not exists on client', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'getSortieData', unitMgrID, peripheryID) def getUpgradeVisitedBuildings(self): return self._upgradeVisitedBuildings def addUpgradeVisitedBuildings(self, buildingID): if buildingID not in self._upgradeVisitedBuildings: self._upgradeVisitedBuildings.add(buildingID) self._listeners.notify('onUpgradeVisitedBuildingChanged', buildingID) def removeUpgradeVisitedBuilding(self, buildingID): if buildingID in self._upgradeVisitedBuildings: self._upgradeVisitedBuildings.remove(buildingID) self._listeners.notify('onUpgradeVisitedBuildingChanged', buildingID) def changeDefHour(self, ctx, callback = None): perm = self.getPermissions() defHour = ctx.getDefenceHour() if not perm.canChangeDefHour(): return self._failChecking('Player can not change defence hour', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'changeDefHour', defHour) def changeOffDay(self, ctx, callback = None): perm = self.getPermissions() offDay = ctx.getOffDay() if not perm.canChangeOffDay(): return self._failChecking('Player can not change off day', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'changeOffDay', offDay) def changePeriphery(self, ctx, callback = None): perm = self.getPermissions() peripheryID = ctx.getPeripheryID() if not perm.canChangePeriphery(): return self._failChecking('Player can not change periphery', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'changePeriphery', peripheryID) def changeVacation(self, ctx, callback = None): perm = self.getPermissions() timeVacationStart = ctx.getTimeVacationStart() timeVacationDuration = ctx.getTimeVacationDuration() if not perm.canChangeVacation(): return self._failChecking('Player can not change vacation', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'changeVacation', timeVacationStart, timeVacationDuration) def changeSettings(self, ctx, callback = None): perm = self.getPermissions() fort = self.getFort() chain = [] defHour = ctx.getDefenceHour() if defHour != fort.defenceHour: if not perm.canChangeDefHour(): return self._failChecking('Player can not change defence hour', ctx, callback) chain.append(('changeDefHour', (defHour,), {})) offDay = ctx.getOffDay() if offDay != fort.offDay: if not perm.canChangeOffDay(): return self._failChecking('Player can not change off day', ctx, callback) chain.append(('changeOffDay', (offDay,), {})) peripheryID = ctx.getPeripheryID() if peripheryID != fort.peripheryID: if not perm.canChangePeriphery(): return self._failChecking('Player can not change periphery', ctx, callback) chain.append(('changePeriphery', (peripheryID,), {})) if not chain: return self._failChecking('No requests to process', ctx, callback) return self._requester.doRequestChainEx(ctx, callback, chain) def shutDownDefHour(self, ctx, callback = None): perm = self.getPermissions() if not perm.canShutDownDefHour(): return self._failChecking('Player can not shut down def hour', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'shutdownDefHour') def cancelShutDownDefHour(self, ctx, callback = None): perm = self.getPermissions() if not perm.canCancelShutDownDefHour(): return self._failChecking('Player can not cancel shut down def hour', ctx, callback) return self._requester.doRequestEx(ctx, callback, 'cancelDefHourShutdown') def requestFortPublicInfo(self, ctx, callback = None): fort = self.getFort() perm = self.getPermissions() if not perm.canRequestPublicInfo(): return self._failChecking('Player can not request public info', ctx, callback) filterType = ctx.getFilterType() abbrevPattern = ctx.getAbbrevPattern() homePeripheryID = fort.peripheryID limit = ctx.getLimit() lvlFrom = ctx.getLvlFrom() lvlTo = ctx.getLvlTo() ownStartDefHourFrom = fort.defenceHour nextOwnStartDefHourFrom, defHourChangeDay = fort.getNextDefenceHourData() extStartDefHourFrom = ctx.getStartDefHourFrom() extStartDefHourTo = ctx.getStartDefHourTo() attackDay = ctx.getAttackDay() ownFortLvl = fort.level battleStats = fort.getFortDossier().getBattlesStats() ownProfitFactor10 = int(battleStats.getProfitFactor() * 10) buildingLevels = map(attrgetter('level'), fort.getBuildings().itervalues()) minLevel = fortified_regions.g_cache.defenceConditions.minRegionLevel validBuildingLevels = filter(lambda x: x >= minLevel, buildingLevels) avgBuildingLevel10 = 0 if validBuildingLevels: avgBuildingLevel10 = int(float(sum(validBuildingLevels)) / len(validBuildingLevels) * 10) ownBattleCountForFort = battleStats.getBattlesCount() firstDefaultQuery = ctx.isFirstDefaultQuery() electedClanDBIDs = tuple(fort.favorites) val = self.getValidators() validationResult, validationReason = val.validate(ctx.getRequestType(), filterType, abbrevPattern) if not validationResult: self._listeners.notify('onFortPublicInfoValidationError', validationReason) return self._failChecking('Player input is invalid', ctx, callback) return self._finder.request(filterType, abbrevPattern, homePeripheryID, limit, lvlFrom, lvlTo, ownStartDefHourFrom, ownStartDefHourFrom + 1, nextOwnStartDefHourFrom, nextOwnStartDefHourFrom + 1, defHourChangeDay, extStartDefHourFrom, extStartDefHourTo, attackDay, ownFortLvl, ownProfitFactor10, avgBuildingLevel10, ownBattleCountForFort, firstDefaultQuery, electedClanDBIDs, callback) def requestClanCard(self, ctx, callback = None): perm = self.getPermissions() if not perm.canRequestClanCard(): return self._failChecking('Player can not request clan card', ctx, callback) clanDBID = ctx.getClanDBID() return self._requester.doRequestEx(ctx, callback, 'getEnemyClanCard', clanDBID) def addFavorite(self, ctx, callback = None): perm = self.getPermissions() if not perm.canAddToFavorite(): return self._failChecking('Player can not add favorite', ctx, callback) clanDBID = ctx.getClanDBID() return self._requester.doRequestEx(ctx, callback, 'addFavorite', clanDBID) def removeFavorite(self, ctx, callback = None): perm = self.getPermissions() if not perm.canRemoveFavorite(): return self._failChecking('Player can not remove favorite', ctx, callback) clanDBID = ctx.getClanDBID() return self._requester.doRequestEx(ctx, callback, 'removeFavorite', clanDBID) def planAttack(self, ctx, callback = None): perm = self.getPermissions() if not perm.canPlanAttack(): return self._failChecking('Player can not plan attack', ctx, callback) clanDBID = ctx.getClanDBID() timeAttack = ctx.getTimeAttack() dirFrom = ctx.getDirFrom() dirTo = ctx.getDirTo() return self._requester.doRequestEx(ctx, callback, 'planAttack', clanDBID, timeAttack, dirFrom, dirTo) def createOrJoinFortBattle(self, ctx, callback = None): perm = self.getPermissions() if not perm.canCreateFortBattle(): return self._failChecking('Player can not plan attack', ctx, callback) battleID = ctx.getBattleID() slotIdx = ctx.getSlotIdx() return self._requester.doRequestEx(ctx, callback, 'createOrJoinFortBattle', battleID, slotIdx) def activateConsumable(self, ctx, callback = None): perm = self.getPermissions() if not perm.canActivateConsumable(): return self._failChecking('Player can not activate consumable', ctx, callback) orderTypeID = ctx.getConsumableOrderTypeID() slotIdx = ctx.getSlotIdx() return self._requester.doRequestEx(ctx, callback, 'activateConsumable', orderTypeID, slotIdx) def returnConsumable(self, ctx, callback = None): perm = self.getPermissions() if not perm.canReturnConsumable(): return self._failChecking('Player can not return consumable', ctx, callback) orderTypeID = ctx.getConsumableOrderTypeID() return self._requester.doRequestEx(ctx, callback, 'returnConsumable', orderTypeID) def _setLimits(self): self._limits = FortLimits() def _setValidators(self): self._validators = FortValidators() def _addFortListeners(self): super(FortController, self)._addFortListeners() fort = self.getFort() if not fort: LOG_ERROR('No fort to subscribe') return fort.onBuildingChanged += self.__fort_onBuildingChanged fort.onTransport += self.__fort_onTransport fort.onDirectionOpened += self.__fort_onDirectionOpened fort.onDirectionClosed += self.__fort_onDirectionClosed fort.onDirectionLockChanged += self.__fort_onDirectionLockChanged fort.onStateChanged += self.__fort_onStateChanged fort.onOrderChanged += self.__fort_onOrderChanged fort.onDossierChanged += self.__fort_onDossierChanged fort.onPlayerAttached += self.__fort_onPlayerAttached fort.onSettingCooldown += self.__fort_onSettingCooldown fort.onPeripheryChanged += self.__fort_onPeripheryChanged fort.onDefenceHourChanged += self.__fort_onDefenceHourChanged fort.onOffDayChanged += self.__fort_onOffDayChanged fort.onVacationChanged += self.__fort_onVacationChanged fort.onFavoritesChanged += self.__fort_onFavoritesChanged fort.onEnemyClanCardReceived += self.__fort_onEnemyClanCardReceived fort.onShutdownDowngrade += self.__fort_onShutdownDowngrade fort.onDefenceHourShutdown += self.__fort_onDefenceHourShutdown fort.onEmergencyRestore += self.__fort_onEmergencyRestore fort.onConsumablesChanged += self.__fort_onConsumablesChanged fort.onDefenceHourActivated += self.__fort_onDefenceHourActivated fortMgr = getClientFortMgr() if not fortMgr: LOG_ERROR('No fort manager to subscribe') return fortMgr.onFortUpdateReceived += self.__fortMgr_onFortUpdateReceived fortMgr.onFortPublicInfoReceived += self.__fortMgr_onFortPublicInfoReceived self.__refreshCooldowns(False) self.__processDefencePeriodCallback() def _removeFortListeners(self): self.__cancelCooldownCallback() self.__cancelDefencePeriodCallback() fort = self.getFort() if fort: fort.onBuildingChanged -= self.__fort_onBuildingChanged fort.onTransport -= self.__fort_onTransport fort.onDirectionOpened -= self.__fort_onDirectionOpened fort.onDirectionClosed -= self.__fort_onDirectionClosed fort.onDirectionLockChanged -= self.__fort_onDirectionLockChanged fort.onStateChanged -= self.__fort_onStateChanged fort.onOrderChanged -= self.__fort_onOrderChanged fort.onDossierChanged -= self.__fort_onDossierChanged fort.onPlayerAttached -= self.__fort_onPlayerAttached fort.onSettingCooldown -= self.__fort_onSettingCooldown fort.onPeripheryChanged -= self.__fort_onPeripheryChanged fort.onDefenceHourChanged -= self.__fort_onDefenceHourChanged fort.onOffDayChanged -= self.__fort_onOffDayChanged fort.onVacationChanged -= self.__fort_onVacationChanged fort.onFavoritesChanged -= self.__fort_onFavoritesChanged fort.onEnemyClanCardReceived -= self.__fort_onEnemyClanCardReceived fort.onShutdownDowngrade -= self.__fort_onShutdownDowngrade fort.onDefenceHourShutdown -= self.__fort_onDefenceHourShutdown fort.onEmergencyRestore -= self.__fort_onEmergencyRestore fort.onConsumablesChanged -= self.__fort_onConsumablesChanged fort.onDefenceHourActivated -= self.__fort_onDefenceHourActivated fortMgr = getClientFortMgr() if fortMgr: fortMgr.onFortUpdateReceived -= self.__fortMgr_onFortUpdateReceived fortMgr.onFortPublicInfoReceived -= self.__fortMgr_onFortPublicInfoReceived super(FortController, self)._removeFortListeners() def __refreshCooldowns(self, doNotify = True): self.__cancelCooldownCallback() if self.__cooldownBuildings and doNotify: self._listeners.notify('onBuildingsUpdated', self.__cooldownBuildings, self.__cooldownPassed) fort = self.getFort() self.__cooldownBuildings = fort.getBuildingsOnCooldown() if self.__cooldownBuildings: time = 30 self.__cooldownPassed = False for buildingID in self.__cooldownBuildings: building = fort.getBuilding(buildingID) estimatedCooldown = building.getEstimatedCooldown() if 0 < estimatedCooldown <= time: time = estimatedCooldown self.__cooldownPassed = True productionCooldown = building.getProductionCooldown() if 0 < productionCooldown < time: time = productionCooldown self.__cooldownCallback = BigWorld.callback(time, self.__refreshCooldowns) def __cancelCooldownCallback(self): if self.__cooldownCallback is not None: LOG_DEBUG('Cooldown callback cancelling: ', self.__cooldownCallback) BigWorld.cancelCallback(self.__cooldownCallback) self.__cooldownCallback = None self.__cooldownBuildings = [] self.__cooldownPassed = False return def __processDefencePeriodCallback(self): self.__cancelDefencePeriodCallback() fort = self.getFort() self._listeners.notify('onDefenceHourStateChanged') start, finish = fort.getClosestDefencePeriod() if fort.isOnDefenceHour(): timer = time_utils.getTimeDeltaFromNow(finish) else: timer = time_utils.getTimeDeltaFromNow(start) if timer > 0: self.__defencePeriodCallback = BigWorld.callback(timer, self.__processDefencePeriodCallback) def __cancelDefencePeriodCallback(self): if self.__defencePeriodCallback is not None: BigWorld.cancelCallback(self.__defencePeriodCallback) self.__defencePeriodCallback = None return def __fort_onBuildingChanged(self, buildingTypeID, reason, ctx = None): self._listeners.notify('onBuildingChanged', buildingTypeID, reason, ctx) def __fort_onBuildingRemoved(self, buildingTypeID): self._listeners.notify('onBuildingRemoved', buildingTypeID) def __fort_onTransport(self): self._listeners.notify('onTransport') def __fort_onDirectionOpened(self, dir): self._listeners.notify('onDirectionOpened', dir) def __fort_onDirectionClosed(self, dir): self._listeners.notify('onDirectionClosed', dir) def __fort_onDirectionLockChanged(self): self._listeners.notify('onDirectionLockChanged') def __fort_onStateChanged(self, state): self._listeners.notify('onStateChanged', state) def __fort_onOrderChanged(self, orderTypeID, reason): self._listeners.notify('onOrderChanged', orderTypeID, reason) def __fort_onDossierChanged(self, compDossierDescr): self._listeners.notify('onDossierChanged', compDossierDescr) def __fort_onPlayerAttached(self, buildingTypeID): self._listeners.notify('onPlayerAttached', buildingTypeID) def __fort_onSettingCooldown(self, eventTypeID): self._listeners.notify('onSettingCooldown', eventTypeID) def __fort_onPeripheryChanged(self, peripheryID): self._listeners.notify('onPeripheryChanged', peripheryID) def __fort_onDefenceHourChanged(self, hour): self._listeners.notify('onDefenceHourChanged', hour) self.__processDefencePeriodCallback() def __fort_onDefenceHourActivated(self, hour, initiatorDBID): self._listeners.notify('onDefenceHourActivated', hour, initiatorDBID) self.__processDefencePeriodCallback() def __fort_onOffDayChanged(self, offDay): self._listeners.notify('onOffDayChanged', offDay) self.__processDefencePeriodCallback() def __fort_onVacationChanged(self, vacationStart, vacationEnd): self._listeners.notify('onVacationChanged', vacationStart, vacationEnd) self.__processDefencePeriodCallback() def __fort_onFavoritesChanged(self, clanDBID): self._listeners.notify('onFavoritesChanged', clanDBID) def __fort_onEnemyClanCardReceived(self, card): if self._publicInfoCache is not None: self._publicInfoCache.storeSelectedClanCard(card) self._listeners.notify('onEnemyClanCardReceived', card) return def __fort_onShutdownDowngrade(self): self._listeners.notify('onShutdownDowngrade') def __fort_onDefenceHourShutdown(self): self._listeners.notify('onDefenceHourShutdown') def __fortMgr_onFortUpdateReceived(self, isFullUpdate = False): self.__refreshCooldowns(isFullUpdate) def __fortMgr_onFortPublicInfoReceived(self, requestID, errorID, resultSet): self._finder.response(requestID, errorID, resultSet) self._listeners.notify('onFortPublicInfoReceived', bool(resultSet)) def __fort_onEmergencyRestore(self): self.stopProcessing() def __fort_onConsumablesChanged(self, unitMgrID): self._listeners.notify('onConsumablesChanged', unitMgrID) def createInitial(): return NoFortController() def createByState(state, isLeader = False, exclude = None): all = [NoFortController, IntroController, FortController, CenterUnavailableController] if exclude: if exclude in all: all.remove(exclude) else: LOG_ERROR('Fort controller is not found', exclude) return None stateID = state.getStateID() for clazz in all: if clazz.isNext(stateID, isLeader): return clazz() return None # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\shared\fortifications\controls.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.02.14 12:41:28 Střední Evropa (běžný čas)
ca21b5945e98da6ee90e624bc7ccd1fd01b3f5bd
a43e6385ae9128ff5eb9850161f2015dcf1c95ac
/count_letter.py
77f3b66e4f920fe4ed4313b8d6afcd1699d5eac8
[]
no_license
Alymbekov/tasks_of_python_crash_course
18289ac99e3751cdc691c15492630f67388737dd
e0a58b23b2b89ee01c40a96661e50a63cf1513ca
refs/heads/master
2020-04-21T03:00:16.846204
2019-02-05T16:27:55
2019-02-05T16:27:55
169,271,507
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
for x in range(1,21): print('Считаем %s' % x) list_of_numbers = [] for x in range(1,1000001): list_of_numbers.append(x) print(max(list_of_numbers)) print(min(list_of_numbers)) print(sum(list_of_numbers)) for i in range(1,21,2): print(i) for x in range(1,21,3): print(x)
79fae613f8a13fe0d22c0c35588c39344289dbd1
0561900bf01598e6c453131952fe4f62b2f9c6e9
/week1/1-IO-Simple-Problems/n_dice.py
61db22c92341f0586f24b2693d212ecc08e2f9da
[]
no_license
Rositsazz/HackBulgaria-Programming0
497f40eefa373b024389c58e7d83aff3ffc547ac
0590d7430ff0aadfb737593a04d3ab1eb894f8d3
refs/heads/master
2016-09-06T09:09:19.416648
2015-08-11T10:02:49
2015-08-11T10:02:49
30,868,430
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
from random import randint number = input ('Enter sides:') number = int(number) print ('The dice rolled:') rolled =randint(1,number) print(rolled)
2453c6123ee35125969e723e32bbc3ab9182653d
b00f7fe6fef51ac814baae7327c5e5fd13419d98
/PyGameGameRefactor/data/Widgets/Button.py
25a6bf1ebceec5821b2292cc45dfe48749e44026
[]
no_license
JamesCollison/current_projects
3cdfb304f6f3b65298a2245692e95b41e14bfbd6
b2462eeaf13eb5a50c7c6c822a3819727c1f7118
refs/heads/main
2023-03-29T01:41:55.527547
2021-03-24T22:53:07
2021-03-24T22:53:07
351,235,704
0
0
null
null
null
null
UTF-8
Python
false
false
4,586
py
from .Widget import * class Button(Widget): def __init__(self, rect, command, **kwargs): Widget.__init__(self) # TODO for later... self.text = None # to make warning go away... self.rect = pg.Rect(rect) self.command = command self.clicked = False self.hovered = False self.hover_text = None self.clicked_text = None self.process_kwargs(kwargs) self.render_text() def get_event(self, event): if event.type == pg.MOUSEBUTTONDOWN and event.button == 1: self.on_click(event) elif event.type == pg.MOUSEBUTTONUP and event.button == 1: self.on_release() def update(self): self.check_hover() def draw(self, surface): color = self.color text = self.text border_color = self.border_color if not self.disabled: if self.clicked and self.clicked_color: color, text = self.get_clicked_color(text) elif self.hovered: border_color, color, text = self.get_hover_color(color, text) else: color = self.disabled_color self.draw_button(surface, self.rect, border_color, color) self.draw_text(surface, text) def process_kwargs(self, kwargs): settings = { "font" : pg.font.Font(None, 16), "text" : None, "call_on_release" : True, 'disabled' : False, "click_sound" : None, "hover_sound" : None, 'border_width' : 2, "color" : pg.Color('white'), "font_color" : pg.Color("black"), "hover_color" : None, "hover_font_color" : None, "clicked_color" : None, "clicked_font_color" : None, "border_color" : pg.Color("white"), "border_hover_color" : pg.Color("white"), "disabled_color" : pg.Color("grey"), } self.update_dict(kwargs, settings) def update_dict(self, kwargs, settings): for arg in kwargs: if arg in settings: settings[arg] = kwargs[arg] else: raise AttributeError(f"{self.__class__.__name__} has no keyword: {arg}") self.__dict__.update(settings) def render_text(self): if self.text: if self.hover_font_color: color = self.hover_font_color self.hover_text = self.font.render(self.text, True, color) if self.clicked_font_color: color = self.clicked_font_color self.clicked_text = self.font.render(self.text, True, color) self.text = self.font.render(self.text, True, self.font_color) def on_click(self, event): if self.rect.collidepoint(event.pos): self.clicked = True if not self.call_on_release: self.command() def on_release(self): if self.clicked and self.call_on_release: if self.rect.collidepoint(pg.mouse.get_pos()): self.command() self.clicked = False def check_hover(self): if self.rect.collidepoint(pg.mouse.get_pos()): if not self.hovered: self.hovered = True if self.hover_sound: self.hover_sound.play() else: self.hovered = False def get_hover_color(self, color, text): if self.hover_color: color = self.hover_color if self.hover_font_color: text = self.hover_text border_color = self.border_hover_color return border_color, color, text def get_clicked_color(self, text): color = self.clicked_color if self.clicked_font_color: text = self.clicked_text return color, text def draw_text(self, surface, text): if self.text: text_rect = text.get_rect(center=self.rect.center) surface.blit(text, text_rect) def draw_button(self, surface, rect, border_color, inside): button_surface = pg.Surface(rect.size).convert_alpha() button_rect = pg.Rect(0, 0, *rect.size) if True: button_surface.fill(border_color) button_rect.inflate_ip(-self.border_width, -self.border_width) button_surface.fill(inside, button_rect) surface.blit(button_surface, rect)
2fbd773bb02f8799eaaf4f2ac52581d52e45f694
df92d6ad9c776320a597a574bd75f3aab2982de0
/output/html5/deleted/users/fushman/cd978a337d71/Run_test_6c/out_ani.py
571a72e2dfc680039afc833dc54cee04420f5237
[]
no_license
TracyYXChen/SES_web
fa6eb41c5c18562508f9d1eb2d14c07f58f93b3c
016dae4260c07398a9824e552b97c07ff6060f7d
refs/heads/master
2020-04-28T18:53:07.640170
2019-03-13T20:21:36
2019-03-13T20:21:36
175,492,506
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
# axes plot script from pymol.cgo import * from pymol import cmd from pymol.vfont import plain #create the axes object, draw axes with cylinders colored red (Dx), green (Dy), blue (Dz) obj = [ CYLINDER, 16.09, 0.40, 1.66, -14.52, -1.12, -1.52, 0.2, 1.0, 1.0, 1.0, 1.0, 0.0, 0., CYLINDER, 1.79, 4.15, -18.15, -1.32, -4.37, 15.87, 0.2, 1.0, 1.0, 1.0, 0., 1.0, 0., CYLINDER, 1.68, -20.91, -5.00, -1.61, 22.85, 5.66, 0.2, 1.0, 1.0, 1.0, 0., 0.0, 1.0, ] # then we load it into PyMOL cmd.load_cgo(obj,'out_ani')
4c9daf4e8525bebebfa29428d85d4ccaa95340bc
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02911/s147801842.py
38b45ab7d54781bdfa0d8f3c43ca05b08b88ac90
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
import numpy as np N,K,Q = map(int, input().split()) n = [0]*N for _ in range(Q): n[int(input())-1] +=1 nn = np.array(n) ans = K - Q + nn for an in ans: if an > 0: print('Yes') else: print("No")
941655e62c7eee31262492505c51c5a69db54a1c
61336264d1b3662d59f59a7a5b8ba69ea2aa6c19
/src/util/drishti.py
0b04ca1eb58c5eadb8bfa91ad0da06de8d8991e0
[ "MIT" ]
permissive
dermatologist/drishti-plan
6d8cbb34ea0c19cb5c1e35a54665feb3641ad338
35e8a493ffcb754efdef374a610257c2aee75e11
refs/heads/develop
2023-05-10T16:39:38.625918
2018-12-30T02:55:06
2018-12-30T02:55:06
155,443,971
1
0
MIT
2023-05-01T20:13:48
2018-10-30T19:25:48
Python
UTF-8
Python
false
false
3,228
py
import os import fhirclient.models.bundle as bundle import fhirclient.models.careplan as careplan import fhirclient.models.codeableconcept as codeconcept import fhirclient.models.fhirreference as reference import fhirclient.models.identifier as identifier import fhirclient.models.patient as patient from fhirclient import client class Drishti(): api_base = os.getenv('VUE_APP_omhOnFhirAPIBase', 'http://tomcat.nuchange.ca') + os.getenv('VUE_APP_omhOnFhirPath', '/fhir') settings = { 'app_id': 'drishti_plan', 'api_base': api_base } search = None def __init__(self): try: self.smart = client.FHIRClient(settings=self.settings) self.smart.prepare() if not self.smart.ready: print ("Smart Client Error") except: print ("Smart Client Error") def get_bundle(self, uuid="d4970147-dff5-43e7-a7c8-a326f98874a6"): self.search = bundle.Bundle.where(struct={"identifier": uuid}) return self.search.perform(self.smart.server) def create_bundle(self, uuid="d4970147-dff5-43e7-a7c8-a326f98874a6"): b = bundle.Bundle() p = patient.Patient() c = careplan.CarePlan() ca = careplan.CarePlanActivity() cad = careplan.CarePlanActivityDetail() concept = codeconcept.CodeableConcept() concept.text = "6397004" cad.code = concept cad.status = 'scheduled' ca.detail = cad i = identifier.Identifier() i.system = os.getenv('IDENTIFIER_SYSTEM', 'urn:system') i.value = uuid c.identifier = [i] if self.get_steps(uuid) < 8000: c.activity = [ca] p.identifier = [i] b.identifier = i patient_dict = p.create(self.smart.server) this_patient = patient.Patient.read(patient_dict['id'], self.smart.server) patient_ref = reference.FHIRReference() patient_ref.reference = u'Patient/' + patient_dict['id'] c.description = 'Drishti Plan' c.status = 'active' c.intent = 'plan' c.subject = patient_ref p_entry = bundle.BundleEntry() p_entry.resource = p c_entry = bundle.BundleEntry() c_entry.resource = c b.entry = [p_entry, c_entry] b.type = "document" b.create(self.smart.server) def get_steps(self, uuid="d4970147-dff5-43e7-a7c8-a326f98874a6"): b = self.get_bundle(uuid) # Take the first bundle resources = [] if b.entry is not None: for entry in b.entry: resources.append(entry.resource) # Second iteration steps = 0 if len(resources) > 1: b = resources[0] resources = [] if b.entry is not None: for entry in b.entry: resources.append(entry.resource) for resource in resources: try: o = resource.component steps += o[0].valueQuantity.value except: steps += 0 return steps
507fbf29090596be9011733ac8e20583dd595808
6b60ddc66bf37de64a8171b505cb18660a3a54e0
/manage.py
27fcc9c0c3553fe440d0f7a44c04915081745316
[]
no_license
RyoJ/DBcalc
5a864420ad1e09d20c740dc30de755bf13b6c92c
be256ebadd9fbd2d714b6b86c3b6df3062b0b4bd
refs/heads/master
2020-06-12T02:59:27.193323
2019-06-27T23:38:24
2019-06-27T23:38:24
194,175,923
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dentaku.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
fbad7f40d93d3c5b698af8539c64109640c6c720
6b82695358c309bd09da9153dbedf26720fa7dc6
/2021/17.py
8c9b69721eb351fd8c9f057d381518f75890eeac
[]
no_license
viliampucik/adventofcode
0e7b4cca7d7aaed86bdc2b8c57d1056b4620e625
e7e0ab44ace3cf762b796730e582ab222a45f7d0
refs/heads/master
2023-01-04T18:19:07.064653
2022-12-26T19:42:59
2022-12-26T19:42:59
226,700,744
33
3
null
null
null
null
UTF-8
Python
false
false
1,616
py
#!/usr/bin/env python from collections import defaultdict import re xmin, xmax, ymin, ymax = map(int, re.findall(r"-?\d+", input())) print((ymin + 1) * ymin // 2) v, n = 0, int((xmin * 2) ** 0.5 - 1) # n-th member of arithmetic progression # Fast, precomputed steps version dxs = defaultdict(set) for dx_init in range(n, xmax + 1): x, dx, step = 0, dx_init, 0 while x <= xmax and (dx == 0 and xmin <= x or dx != 0): x += dx # fmt:off if dx > 0: dx -= 1 # fmt:on step += 1 if xmin <= x <= xmax: dxs[dx_init].add(step) if dx == 0: dxs[dx_init] = min(dxs[dx_init]) break dys = defaultdict(set) for dy_init in range(ymin, -ymin): y, dy, step = 0, dy_init, 0 while ymin <= y: y += dy dy -= 1 step += 1 if ymin <= y <= ymax: dys[dy_init].add(step) for xsteps in dxs.values(): for ysteps in dys.values(): if type(xsteps) is int: if xsteps <= max(ysteps): v += 1 elif xsteps & ysteps: v += 1 # Slower, brute force version # # for dy_init in range(ymin, -ymin): # for dx_init in range(n, xmax + 1): # x, y, dx, dy = 0, 0, dx_init, dy_init # while x <= xmax and y >= ymin and (dx == 0 and xmin <= x or dx != 0): # x += dx # y += dy # # fmt:off # if dx > 0: dx -= 1 # # fmt:on # dy -= 1 # if xmin <= x <= xmax and ymin <= y <= ymax: # v += 1 # break print(v)
9a9a23998e7101a9cf5bc48aa9e53961e5bb0c4b
f9821e7200c1be14a8d15fd148c35fe36c2c9f15
/task3/map.py
f0949fbeabbe5da51d79458ed6be86a465f9beb3
[]
no_license
fducau/BD_A_01
b3ae7d137ebd28693fb9f633645d56bb80f32f81
7860a792aaecb96d2b389eac0558303e21dbcd21
refs/heads/master
2021-01-21T05:14:31.257829
2017-02-26T22:06:30
2017-02-26T22:06:30
83,157,344
0
0
null
null
null
null
UTF-8
Python
false
false
915
py
#!/usr/bin/python # Call: # hjs -D mapreduce.job.reduces=2 -files \ # /home/fnd212/BD/BD_A_01/task3 -mapper task3/map.py \ # -reducer task3/reduce.py -input \ # /user/ecc290/HW1data/open-violations.csv \ # -output /user/fnd212/task3/task3.out import sys import csv o_header = ['summons_number', 'plate', 'license_type', 'county', 'state', 'prescint', 'issuing_agency', 'violation', 'violation_status', 'issue_date', 'violation_time', 'judgment_entry_date', 'amount_due', 'payment_amount', 'penalty_amount', 'fine_amount', 'interest_amount', 'reduction_amount'] # input comes from STDIN (stream data that goes to the program) for entry in csv.reader(sys.stdin, delimiter=','): key = entry[o_header.index('license_type')] value = entry[o_header.index('amount_due')] print('{0}\t{1}'.format(key, value))
808c56f1953e3dff10b5545f5077b54d924b733f
b3ce05ef8d01f2a656639075cb7da987a19fa43b
/posts_app/migrations/0014_auto_20200621_2337.py
2b9e51eadfd8d00d456a431eb28517c726fe4ccd
[]
no_license
Deltapimol/posts
79113377fb13088256b0999dd2f6180f3aef214f
a4fed07af11a2916479c5372c41f702b338d772f
refs/heads/master
2022-11-07T02:31:36.843042
2020-06-28T18:30:50
2020-06-28T18:30:50
268,334,764
0
0
null
null
null
null
UTF-8
Python
false
false
544
py
# Generated by Django 2.2.12 on 2020-06-21 18:07 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('posts_app', '0013_auto_20200621_1844'), ] operations = [ migrations.RenameField( model_name='replytoreply', old_name='this_reply', new_name='reply_reply', ), migrations.RenameField( model_name='replytoreply', old_name='this_respondent', new_name='reply_respondent', ), ]
37bbb126df8bb723e3a9447667d805ec0a4da682
f434c6057ae15568f2c6c2971259a9eaee46d918
/pulse_API_3.py
99c74242fdb4e95c8e00d41b7ae7a5f2b0b9b146
[]
no_license
jwatson-CO-edu/py_music_mgmt
3542f5e93b223f7c314678c80230a86efeff61d9
1dd31fd5d07b2c15034b6f3cd27e512acecedd5a
refs/heads/master
2021-07-14T09:02:20.381122
2021-01-29T01:11:49
2021-01-29T01:11:49
230,323,268
0
0
null
null
null
null
UTF-8
Python
false
false
2,943
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ~~ Future First ~~ from __future__ import division # Future imports must be called before everything else, including triple-quote docs! __progname__ = "pulse_API.py" __version__ = "2019.05" __desc__ = "Query the API to keep it from dying" """ James Watson , Template Version: 2019-05-12 Built on Wing 101 IDE for Python 2.7 Dependencies: numpy """ """ ~~~ Developmnent Plan ~~~ [ ] ITEM1 [ ] ITEM2 """ # === Init Environment ===================================================================================================================== # ~~~ Prepare Paths ~~~ import sys, os.path SOURCEDIR = os.path.dirname( os.path.abspath( __file__ ) ) # URL, dir containing source file: http://stackoverflow.com/a/7783326 PARENTDIR = os.path.dirname( SOURCEDIR ) # ~~ Path Utilities ~~ def prepend_dir_to_path( pathName ): sys.path.insert( 0 , pathName ) # Might need this to fetch a lib in a parent directory from math import sqrt # ~~ Local ~~ from API_session import Session , open_all_APIs from retrieve_yt import fetch_metadata_by_yt_video_ID # ~~ Constants , Shortcuts , Aliases ~~ EPSILON = 1e-7 infty = 1e309 # URL: http://stackoverflow.com/questions/1628026/python-infinity-any-caveats#comment31860436_1628026 endl = os.linesep sqt2 = sqrt(2) # ~~ Script Signature ~~ def __prog_signature__(): return __progname__ + " , Version " + __version__ # Return a string representing program name and verions # ___ End Init _____________________________________________________________________________________________________________________________ # === Main Program ========================================================================================================================= # === Program Classes === # ___ End Class ___ # === Program Functions === # __ End Func __ # === Program Vars === # ___ End Vars ___ # === Main Func === if __name__ == "__main__": print( __prog_signature__() ) termArgs = sys.argv[1:] # Terminal arguments , if they exist # 1. Open the API sssn = Session() open_all_APIs( sssn ) # 2. Query a video discard = fetch_metadata_by_yt_video_ID( sssn.youtube , sssn.METADATA_SPEC , "PG1R9OPofEg" ) # 3. Close session if 0: # WARNING: Calling this MAY overwrite the current session file close_session( sssn ) # ___ End Main ___ # ___ End Program __________________________________________________________________________________________________________________________ # === Spare Parts ========================================================================================================================== # ___ End Spare ____________________________________________________________________________________________________________________________
6305cc21beb1ececb54b6951ddd244b010d33513
677002b757c0a1a00b450d9710a8ec6aeb9b9e9a
/tiago_public_ws/build/demo_motions/catkin_generated/generate_cached_setup.py
bf8cec67fb5fb8b4e4d0c897fb4496c08f278078
[]
no_license
mrrocketraccoon/tiago_development
ce686c86459dbfe8623aa54cf4279021342887fb
a0539bdcf21b67ab902a4649b516dcb929c54042
refs/heads/main
2023-06-16T19:39:33.391293
2021-07-08T21:20:03
2021-07-08T21:20:03
384,249,894
0
0
null
null
null
null
UTF-8
Python
false
false
1,306
py
# -*- coding: utf-8 -*- from __future__ import print_function import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in '/tiago_public_ws/devel;/opt/ros/melodic'.split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/tiago_public_ws/devel/.private/demo_motions/env.sh') output_filename = '/tiago_public_ws/build/demo_motions/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: # print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
87f4145d63f887989e347080608661feabbb110a
80d2edd9a88f43b8cac6db3dcff765eec70ae742
/src/registration/contrib/autologin/tests.py
e0d4c246b0f7f97e935af61ac7af5d3ebfeff1ca
[]
no_license
lambdalisue/django-inspectional-registration
e66004e66cd3255af25706556ebc0b748122cf32
9a4adc6587d343f553f41e570508bc6f4ee0a5c5
refs/heads/master
2021-06-26T10:55:29.980298
2016-11-15T04:02:52
2016-11-15T04:02:52
3,525,101
28
22
null
2020-04-09T07:40:36
2012-02-23T12:23:56
Python
UTF-8
Python
false
false
2,937
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals """ """ __author__ = 'Alisue <[email protected]>' from django.test import TestCase from django.contrib.auth.models import AnonymousUser from registration.backends.default import DefaultRegistrationBackend from registration.tests.mock import mock_request from registration.tests.compat import override_settings @override_settings( ACCOUNT_ACTIVATION_DAYS=7, REGISTRATION_OPEN=True, REGISTRATION_SUPPLEMENT_CLASS=None, REGISTRATION_BACKEND_CLASS=( 'registration.backends.default.DefaultRegistrationBackend'), REGISTRATION_AUTO_LOGIN=True, _REGISTRATION_AUTO_LOGIN_IN_TESTS=True, ) class RegistrationAutoLoginTestCase(TestCase): backend = DefaultRegistrationBackend() mock_request = mock_request() def test_no_auto_login_with_setting(self): """Auto login feature should be able to off with ``REGISTRATION_AUTO_LOGIN = False``""" self.mock_request.user = AnonymousUser() with override_settings(REGISTRATION_AUTO_LOGIN = False): new_user = self.backend.register( 'bob', '[email protected]', request=self.mock_request, ) self.backend.accept( new_user.registration_profile, request=self.mock_request, ) self.backend.activate( new_user.registration_profile.activation_key, password='password',request=self.mock_request, ) self.failIf(self.mock_request.user.is_authenticated()) def test_no_auto_login_with_no_password(self): """Auto login feature should not be occur with no password (programatically activated by Django Admin action) """ self.mock_request.user = AnonymousUser() new_user = self.backend.register( 'bob', '[email protected]', request=self.mock_request, ) self.backend.accept( new_user.registration_profile, request=self.mock_request, ) self.backend.activate( new_user.registration_profile.activation_key, request=self.mock_request, ) self.failIf(self.mock_request.user.is_authenticated()) def test_auto_login(self): """Wheather auto login feature works correctly""" self.mock_request.user = AnonymousUser() new_user = self.backend.register( 'bob', '[email protected]', request=self.mock_request, ) self.backend.accept( new_user.registration_profile, request=self.mock_request, ) self.backend.activate( new_user.registration_profile.activation_key, password='password',request=self.mock_request, ) self.failUnless(self.mock_request.user.is_authenticated())
41c72df5a5313f6f791caee351821355ddf7853f
59f16317714656f40f4ef2b5dbaf84e8a42316e9
/get_clear_sky_days.py
5982604115bb80e38d1d63b5328e2addb423a152
[]
no_license
mssamhan31/CANVAS
b6820464dc3ce9ac60af1df63a782c50cd84e152
71e6e04e39cbb2ae222f84e8e088375589ab97ed
refs/heads/main
2023-05-17T10:33:20.689432
2021-06-07T07:26:28
2021-06-07T07:26:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,445
py
# Useful functions # Import required things import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns import numpy as np # Get clear sky days # def get_clear_sky_days() # Get first month of data # df = pd.read_csv('F:/irradiance_data/1_min_solar/adelaide/sl_023034_2020_01.txt') # 2019 data df = pd.read_csv('F:/irradiance_data/1_min_solar/adelaide/sl_023034_2019_01.txt') # List rest of months # list=['02','03','04','05','06','07'] # 2019 list=['02','03','04','05','06','07', '08', '09', '10', '11', '12'] # Concat on rest of months for i in list: # df_temp = pd.read_csv('F:/irradiance_data/1_min_solar/adelaide/sl_023034_2020_'+i+'.txt') # 2019 df_temp = pd.read_csv('F:/irradiance_data/1_min_solar/adelaide/sl_023034_2019_'+i+'.txt') df = pd.concat([df, df_temp]) # Make sure numeric df['min_1s_global_irr'] = pd.to_numeric(df["Minimum 1 second global irradiance (over 1 minute) in W/sq m"], errors='coerce') df['min_1s_global_irr'] = df['min_1s_global_irr'].fillna(0) # Also get mean for plotting df['mean_1s_global_irr'] = pd.to_numeric(df["Mean global irradiance (over 1 minute) in W/sq m"], errors='coerce') # df['mean_1s_global_irr'] = df['mean_1s_global_irr'].fillna(0) # Get change in irradiance for "Minimum 1 second global irradiance (over 1 minute) in W/sq m" df["min_1s_global_irr_SHIFTED"] = df["min_1s_global_irr"].shift(periods=-1) # Set fill value to 0 (from nan) since fill_value arg is giving an error. df["min_1s_global_irr_SHIFTED"] = df["min_1s_global_irr_SHIFTED"].fillna(0) # Calculate change in irradiance df['change_in_irr'] = (df['min_1s_global_irr'] - df["min_1s_global_irr_SHIFTED"])/df['min_1s_global_irr'] df['abs_change_in_irr'] = df['change_in_irr'].abs() # Get times df['year'] = pd.to_numeric(df["Year Month Day Hours Minutes in YYYY"], errors='coerce') df['month'] = pd.to_numeric(df["MM"], errors='coerce') df['day'] = pd.to_numeric(df["DD"], errors='coerce') df['hour'] = pd.to_numeric(df["HH24"], errors='coerce') df['minute'] = pd.to_numeric(df["MI format in Local standard time"], errors='coerce') df['date'] = pd.to_datetime(df[["year","month","day"]]) df['date_time'] = pd.to_datetime(df[["year","month","day","hour","minute"]]) # Set index to date_time and filter VERY ROUGHLY for solar hours # TODO would be great to instead find start and end pts for ecah day and filter for about an hour 'inside' this range, # see prevoius attempts on 23 March 2021. # OR try using Astral package to get sunrise/set times: https://astral.readthedocs.io/en/latest/index.html df = df.set_index('date_time') df_approx_solar_hours = df.between_time('07:00', '17:00') # ------------------------------------- Factor 1: max absolute variation in irradiance per day # Get max absolute variation on each date. df_max_abs_change_in_irr = pd.DataFrame(df_approx_solar_hours.groupby('date')['abs_change_in_irr'].max()) # Identify possible clear sky days df_clear_sky_days = df_max_abs_change_in_irr[df_max_abs_change_in_irr['abs_change_in_irr']<=0.15] print(len(df_clear_sky_days)) clear_sky_day_list = df_clear_sky_days.index.tolist() df_clear_sky_days = df[df['date'].isin(clear_sky_day_list)] # ------------------------------------- Factor 2: 95th and 99th percentile of change per day # NOTE does NOT need to use the approx solar hours df_temp_2 = df[['date','abs_change_in_irr']] df_95th_percentile_abs_change_in_irr = pd.DataFrame(df_temp_2.groupby('date').quantile(0.95)) df_95th_percentile_abs_change_in_irr = df_95th_percentile_abs_change_in_irr.rename(columns={'abs_change_in_irr' : '95th percentile'}) df_99th_percentile_abs_change_in_irr = pd.DataFrame(df_temp_2.groupby('date').quantile(0.99)) df_99th_percentile_abs_change_in_irr = df_99th_percentile_abs_change_in_irr.rename(columns={'abs_change_in_irr' : '99th percentile'}) # Identify possible clear sky days df_clear_sky_days_method_2 = df_95th_percentile_abs_change_in_irr[df_95th_percentile_abs_change_in_irr['95th percentile']<=0.1] print(len(df_clear_sky_days_method_2)) # ------------------------------------- Factor 3: Total energy # TODO access online at: # ------------------------------------- Export by date df_export = pd.concat([df_max_abs_change_in_irr, df_95th_percentile_abs_change_in_irr, df_99th_percentile_abs_change_in_irr], axis=1) # df_export.to_csv('F:/irradiance_data/1_min_solar/adelaide/2020_adelaide_irradiance_summary_statistics_for_clear_sky_day_analysis.csv') # 2019 df_export.to_csv('F:/irradiance_data/1_min_solar/adelaide/2019_adelaide_irradiance_summary_statistics_for_clear_sky_day_analysis.csv') # ------------------------------------- Plotting # Plot the min irradiance fig, ax = plt.subplots() ax.plot(df['min_1s_global_irr'], c='purple', label='Minimum 1s global irradiance over 1min (W/sq m)') ax.plot(df['mean_1s_global_irr'], c='blue', label='Mean global irradiance over 1min (W/sq m)') ax1 = ax.twinx() ax1.plot(df['change_in_irr']) ax.legend(loc='upper right') plt.show() # Plot the min irradiance for approx solar hours fig, ax = plt.subplots() ax.plot(df_clear_sky_days['min_1s_global_irr']) ax1 = ax.twinx() ax1.plot(df_clear_sky_days['change_in_irr']) plt.show() # Plot the min irradiance for clear sky days fig, ax = plt.subplots() ax.plot(df_approx_solar_hours['min_1s_global_irr']) ax1 = ax.twinx() ax1.plot(df_approx_solar_hours['change_in_irr']) plt.show() # TODO - currently this funcationality doesn't work and I don't know why # Plot the manually identified clear sky days clear_sky_manual_check = pd.Series(['1/01/2020','2/01/2020','6/01/2020','7/01/2020','8/01/2020','12/01/2020','13/01/2020', '14/01/2020','29/01/2020','30/01/2020','4/02/2020','5/02/2020','6/02/2020','10/02/2020', '11/02/2020','22/02/2020','9/03/2020','15/03/2020','25/03/2020','26/03/2020','9/04/2020', '13/04/2020','24/04/2020','15/05/2020','16/05/2020','17/05/2020','29/05/2020','5/06/2020', '10/06/2020','28/06/2020','29/06/2020','15/07/2020','16/07/2020','17/07/2020','23/07/2020', '25/07/2020']) # Filter df_clear_sky_days_manual = df[df['date'].isin(clear_sky_manual_check)] # Plot fig, ax = plt.subplots() ax.plot(df_clear_sky_days_manual['min_1s_global_irr'], c='purple') ax.plot(df_clear_sky_days_manual['mean_1s_global_irr'], c='blue') ax1 = ax.twinx() ax1.plot(df_clear_sky_days_manual['change_in_irr']) plt.show()
0fce58ebe41868e1449864353d86af15ba8d3c30
a4d0be7303a3cf40ef83e912ec5d8ed06ac55eb2
/2020_10_01_tictactoe_AI.py
acf4e79bb1956e505dd927448eddc1f1eeea5959
[]
no_license
wezmiolem/TicTacToe-AI
2c9e00826436f527abc0a270f5bc955afc9963c9
f450a04edde4b3a6acde7fac8e1bf3dce03879e5
refs/heads/main
2023-08-04T23:35:55.983231
2021-09-14T08:27:46
2021-09-14T08:27:46
406,285,431
0
0
null
null
null
null
UTF-8
Python
false
false
6,689
py
import os init_board = [['.','.','.'],['.','.','.'],['.','.','.']] ABC = ["A","B","C"] A123 = ["1","2","3"] a_len_init_board = len(init_board) def game_board(): os.system('cls' if os.name == 'nt' else 'clear') print(" "," ".join(A123)) for i in range(a_len_init_board): print(ABC[i],' | '.join(init_board[i])) if i < 2: print(" ---+---+---") print() def assign(row, column): row = row.upper() if row in ABC: if column in A123: return (ABC.index(row), A123.index(column)) else: return False else: return False def mark_the_spot(spot, mark): a = int(spot[0]) b = int(spot[1]) init_board[a][b] = mark def win_set(): win_set = [] for i in init_board: win_set.append(set(i)) for i in range(0,3): col = [init_board[0][i],init_board[1][i],init_board[2][i]] win_set.append(set(col)) diag1 = [] for i in range(0,3): diag1.append(init_board[i][i]) win_set.append(set(diag1)) diag2 = [] for i in range(0,3): diag2.append(init_board[i][2-i]) win_set.append(set(diag2)) return win_set def check_for_winners(win_set): x = set("X") o = set("O") if x in win_set: return True elif o in win_set: return True else: return False def check_if_full(): symbols = [] for i in range(0,3): for j in range(0,3): symbols.append(init_board[i][j]) if "." in symbols: return False else: return True def moves_available(init_board): avail_moves = [] for i in range(0,3): for j in range(0,3): if init_board[i][j] == ".": avail_moves.append([i, j]) return avail_moves def best_move(mark): avail_moves = moves_available(init_board) if mark == "X": best_score = -100 for move in avail_moves: mark_the_spot(move, mark) score = minimax(init_board, 0, False) mark_the_spot(move, ".") if score > best_score: best_score = score chosen_move = move return chosen_move elif mark == "O": best_score = 100 for move in avail_moves: mark_the_spot(move, mark) score = minimax(init_board, 0, True) mark_the_spot(move, ".") if score < best_score: best_score = score chosen_move = move return chosen_move def minimax(init_board, depth, is_maxin): a = win_set() avail_moves = moves_available(init_board) if is_maxin == True: if check_for_winners(a) == True: return -10 elif check_if_full() == True: return 0 else: best_score = -100 mark = "X" for move in avail_moves: mark_the_spot(move, mark) score = minimax(init_board, depth+1, False) mark_the_spot(move, ".") best_score = max(score, best_score) return best_score - depth if is_maxin == False: if check_for_winners(a) == True: return 10 elif check_if_full() == True: return 0 else: best_score = 100 mark = "O" for move in avail_moves: mark_the_spot(move, mark) score = minimax(init_board, depth+1, True) mark_the_spot(move, ".") best_score = min(score, best_score) return best_score + depth def game_play(): counter = 1 in_list = [] while True: if counter % 2 == 1: mark = "X" else: mark = "O" game_board() print(f'{mark} player turn!!\n') coords = input("your move: e.g A1 or B2 \n") if len(coords) < 2: continue elif assign(coords[0],coords[1]) == False: continue place = assign(coords[0],coords[1]) if place in in_list: print("Already choosen") continue else: in_list.append(place) mark_the_spot(place,mark) a = win_set() counter += 1 if check_for_winners(a) == True: game_board() print(f'congratulation {mark} won\n') break elif check_if_full() == True: game_board() print(f'Unfortunately it is a draw') break else: continue def single_player(): counter = 0 in_list = [] while True: if counter % 2 == 0: mark = "X" game_board() print(f'{mark} player turn!!\n') coords = input("your move: e.g A1 or B2 \n") if len(coords) < 2: continue elif assign(coords[0],coords[1]) == False: continue place = assign(coords[0],coords[1]) if place in in_list: print("Already choosen") continue else: in_list.append(place) mark_the_spot(place,mark) a = win_set() counter += 1 if check_for_winners(a) == True: game_board() print(f'congratulation {mark} won\n') break elif check_if_full() == True: game_board() print('Unfortunately it is a draw') break else: continue else: mark = "O" choice = best_move(mark) mark_the_spot(choice, mark) in_list.append(tuple(choice)) a = win_set() counter += 1 a = win_set() if check_for_winners(a) == True: game_board() print(f'unfortunately you lost') break elif check_if_full() == True: game_board() print('its a tie') break else: continue def main(): a = input('''choose: 1 for singleplayer 2 for multiplayer\n''') if a == "1": single_player() elif a == "2": game_play() if __name__ == "__main__": main()
bb3e9bf5343bd336e788fc1b9d8d633f5f747b2b
dd3229c9a5ccf936e72d4e624e07ffdaf821cf5b
/tests/unit/test_table_creation.py
c17adcba9b8d32aa5cc31d590e6c06ef25109bd1
[]
no_license
AndriiShchur/Github-Repository-Analysis
ba9aee94d6031c2875d4aa20501fb4a9e9b2724e
270f4257832ed50a62fdb19d58f94ca31caedc22
refs/heads/main
2023-02-08T10:34:39.318288
2020-12-23T09:01:30
2020-12-23T09:01:30
323,592,569
0
0
null
2020-12-23T09:01:31
2020-12-22T10:23:24
Python
UTF-8
Python
false
false
2,211
py
import pytest import getpass import pyodbc import pandas as pd from dotenv import load_dotenv import os import math print("Load env variables") project_folder = os.getcwd() # adjust as appropriate load_dotenv(os.path.join(project_folder, 'env.dist')) server = os.getenv("SERVER") database = os.getenv("DB_NAME_TEST") username = os.getenv("USER") password = os.getenv("PASSWORD") print ("Connecting via ODBC") cnxn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};SERVER='+server+';DATABASE='+database+';UID='+username+';PWD='+ password) cursor = cnxn.cursor() print ("Connected!\n") query = ("SELECT DISTINCT TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS") tables_df = pd.read_sql(query,con=cnxn) tables = ["RepoMain", "PRMain", "PRFiles", "RepoAnalytics"] @pytest.mark.unittesttableexc def test_tables_exc(): for table in tables: assert table in tables_df.TABLE_NAME.values query = ("SELECT TABLE_NAME, COLUMN_NAME, IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH \ FROM INFORMATION_SCHEMA.COLUMNS \ WHERE TABLE_NAME NOT IN ('database_firewall_rules','sysdiagrams')") tables_df = pd.read_sql(query,con=cnxn) tables_str = pd.read_csv(os.path.join(os.getcwd(), "scr\\tables_str\\tables_str.csv")) @pytest.mark.unittesttablestr def test_tables_exc(): for table in tables: tmp_df1 = tables_df[tables_df.TABLE_NAME==table] tmp_str1 = tables_str[tables_str.TABLE_NAME==table] for column in tmp_str1.COLUMN_NAME: print(column in tmp_df1.COLUMN_NAME.values) tmp_df2 = tmp_df1[tmp_df1.COLUMN_NAME==column] tmp_str2 = tmp_str1[tmp_str1.COLUMN_NAME==column] print(tmp_str2.IS_NULLABLE.values == tmp_df2.IS_NULLABLE.values) print(tmp_str2.DATA_TYPE.values == tmp_df2.DATA_TYPE.values) if(math.isnan(tmp_str2.CHARACTER_MAXIMUM_LENGTH.values[0]) and math.isnan(tmp_df2.CHARACTER_MAXIMUM_LENGTH.values[0])): print(True) else: print(tmp_str2.CHARACTER_MAXIMUM_LENGTH.values == tmp_df2.CHARACTER_MAXIMUM_LENGTH.values)
b3acc2c2f86299eaca7b23f8d1a00c35a3b61d33
252c2fee3bc8b4dd092fc3203bb9f76c51c8e4f1
/tests/testData/visualTest.py
1111b3544bede89f6d38fecc277a86838454ec56
[ "MIT" ]
permissive
typemytype/booleanOperations
d9711e212c99921c23900c6fd0f18d8520100b61
25f709175b471508a169be790778b80ec328da7d
refs/heads/master
2022-11-14T22:20:31.913043
2022-06-05T16:40:59
2022-06-05T16:40:59
14,314,043
34
23
MIT
2022-10-24T08:03:32
2013-11-11T21:35:22
Python
UTF-8
Python
false
false
2,005
py
# run in DrawBot RoboFont extension border = 20 dotSize = 10 offDotSize = dotSize * .5 try: CurrentFont except NameError: class CurrentFont(dict): glyphOrder = [] def save(self, path=None): pass try: saveImage except NameError: def saveImage(*args, **kwargs): pass f = CurrentFont() def drawOffCurve(anchor, off): x, y = anchor offx, offy = off if offx or offy: offx += x offy += y with savedState(): stroke(1, 0, 0) fill(1, 0, 0) line((x, y), (offx, offy)) oval(offx - offDotSize, offy - offDotSize, offDotSize * 2, offDotSize * 2) def drawGlyphWithPoints(glyph): fill(0, .1) stroke(0) drawGlyph(glyph) stroke(None) for contour in glyph: fill(0, 1, 0) for point in contour.bPoints: x, y = point.anchor drawOffCurve((x, y), point.bcpIn) drawOffCurve((x, y), point.bcpOut) oval(x - dotSize, y - dotSize, dotSize * 2, dotSize * 2) fill(1, 0, 0) for glyphName in f.glyphOrder: if glyphName not in f: continue g = f[glyphName] bounds = g.bounds if not bounds: continue minx, miny, maxx, maxy = bounds w = maxx - minx h = maxy - miny layerCount = len(f.layers) newPage((w + border) * layerCount + border, h + border * 2 + 100) translate(border, border + 100) translate(-minx, -miny) fontSize(20) stroke() text("%s" % g.name, (w * .5, -100 + miny), align="center") drawGlyphWithPoints(g) translate(w + border, 0) for layer in f.layers: if layer.name == "foreground": continue fill(0) text(layer.name, (w * .5, -100 + miny), align="center") if g.name not in layer: translate(w + border) continue lg = layer[g.name] drawGlyphWithPoints(lg) translate(w + border) saveImage("visualTest.pdf")
ee87e6aa5b95880e017fd14693c6070a0ad7a835
bca5c9f713629f478512735eb7696982fe75b7f8
/jacobian.py
eb6c944e52faea78da5ba28e18488246fbdfa27b
[]
no_license
karabutov/robot-3RRR
e994e7e47ee34d05546ece50b077edbd1c445366
6cbef2fd9b30b4c1ee554bd2ee54a99bbfda8799
refs/heads/master
2021-04-06T20:36:19.428472
2019-05-12T20:45:53
2019-05-12T20:45:53
125,269,500
0
0
null
null
null
null
UTF-8
Python
false
false
4,737
py
import math import numpy as np import scipy.optimize as so size_side = 1. k = (2./3.) * (size_side * math.sqrt(3.) / 2.) l = 1. a_phi = 0.; gamma1 = math.pi * (0.5 + 1. * 2./3.) gamma2 = math.pi * (0.5 + 2. * 2./3.) gamma3 = math.pi * (0.5 + 3. * 2./3.) x1 = 0.0 y1 = 0.0 x2 = 3.4 y2 = 0.33 x3 = 2.0 y3 = 3.0 def jacobian_matrix(x, y, phi, theta1, theta2, theta3): def dx1(x, y, phi, theta1, theta2, theta3): xB1 = x1 + l * math.cos(theta1) return 2*(x + k*math.cos(gamma1+phi) - xB1) def dy1(x, y, phi, theta1, theta2, theta3): yB1 = y1 + l * math.sin(theta1) return 2*(y + k*math.sin(gamma1+phi) - yB1) def dphi1(x, y, phi, theta1, theta2, theta3): xB1 = x1 + l * math.cos(theta1) yB1 = y1 + l * math.sin(theta1) return 2*k*math.cos(gamma1+phi) * (y + k*math.sin(gamma1+phi) - yB1) - 2*k*math.sin(gamma1+phi) * (x + k*math.cos(gamma1+phi) - xB1) def dx2(x, y, phi, theta1, theta2, theta3): xB2 = x2 + l * math.cos(theta2) return 2*(x + k*math.cos(gamma2+phi) - xB2) def dy2(x, y, phi, theta1, theta2, theta3): yB2 = y2 + l * math.sin(theta2) return 2*(y + k*math.sin(gamma2+phi) - yB2) def dphi2(x, y, phi, theta1, theta2, theta3): xB2 = x2 + l * math.cos(theta2) yB2 = y2 + l * math.sin(theta2) return 2*k*math.cos(gamma2+phi) * (y + k*math.sin(gamma2+phi) - yB2) - 2*k*math.sin(gamma2+phi) * (x + k*math.cos(gamma2+phi) - xB2) def dx3(x, y, phi, theta1, theta2, theta3): xB3 = x3 + l * math.cos(theta3) return 2*(x + k*math.cos(gamma3+phi) - xB3) def dy3(x, y, phi, theta1, theta2, theta3): yB3 = y3 + l * math.sin(theta3) return 2*(y + k*math.sin(gamma3+phi) - yB3) def dphi3(x, y, phi, theta1, theta2, theta3): xB3 = x3 + l * math.cos(theta3) yB3 = y3 + l * math.sin(theta3) return 2*k*math.cos(gamma3+phi) * (y + k*math.sin(gamma3+phi) - yB3) - 2*k*math.sin(gamma3+phi) * (x + k*math.cos(gamma3+phi) - xB3) return np.array([[dx1(x, y, phi, theta1, theta2, theta3), dy1(x, y, phi, theta1, theta2, theta3), dphi1(x, y, phi, theta1, theta2, theta3)], [dx2(x, y, phi, theta1, theta2, theta3), dy2(x, y, phi, theta1, theta2, theta3), dphi2(x, y, phi, theta1, theta2, theta3)], [dx3(x, y, phi, theta1, theta2, theta3), dy3(x, y, phi, theta1, theta2, theta3), dphi3(x, y, phi, theta1, theta2, theta3)]]) def constr1(t): x = t[0] y = t[1] phi = t[2] theta1 = t[3] xB1 = x1 + l * math.cos(theta1) yB1 = y1 + l * math.sin(theta1) return (x + k * math.cos(gamma1 + phi) - xB1)**2 + (y + k * math.sin(gamma1 + phi) - yB1)**2 - l**2 def constr2(t): x = t[0] y = t[1] phi = t[2] theta2 = t[3] xB2 = x2 + l * math.cos(theta2) yB2 = y2 + l * math.sin(theta2) return (x + k * math.cos(gamma2 + phi) - xB2)**2 + (y + k * math.sin(gamma2 + phi) - yB2)**2 - l**2 def constr3(t): x = t[0] y = t[1] phi = t[2] theta3 = t[3] xB3 = x3 + l * math.cos(theta3) yB3 = y3 + l * math.sin(theta3) return (x + k * math.cos(gamma3 + phi) - xB3)**2 + (y + k * math.sin(gamma3 + phi) - yB3)**2 - l**2 def det_jacobian_func(args): x = args[0] y = args[1] phi = args[2] theta1 = args[3] theta2 = args[4] theta3 = args[5] j = np.array(jacobian_matrix(x, y, phi, theta1, theta2, theta3)) return j[0][0] * j[1][1] * j[2][2] + j[0][2] * j[1][0] * j[2][1] + j[2][0] * j[0][1] * j[1][2] - j[0][2] * j[1][1] * j[2][0] - j[0][0] * j[2][1] * j[1][2] - j[2][2] * j[1][0] * j[0][1] def minus_det_jacobian_func(args): return -1 * det_jacobian_func(args) def is_jacobian_deg(aria): args_b = np.array([aria[0][0], aria[1][0], 0., 0., 0., 0.]) args_e = np.array([aria[0][1], aria[1][1], 2 * math.pi, 2 * math.pi, 2 * math.pi, 2 * math.pi]) bnd = ((args_b[0], args_e[0]), (args_b[1], args_e[1]), (args_b[2], args_e[2]), (args_b[3], args_e[3]), (args_b[4], args_e[4]), (args_b[5], args_e[5])) cons = ({'type': 'eq', 'fun': constr1}, {'type': 'eq', 'fun': constr2}, {'type': 'eq', 'fun': constr3}) min_solut = so.minimize(det_jacobian_func, (args_e + args_b) / 2., method="SLSQP", bounds = bnd, constraints=cons) max_solut = so.minimize(minus_det_jacobian_func, (args_e + args_b) / 2., method="SLSQP", bounds = bnd, constraints=cons) max_of_f = -max_solut.fun min_of_f = min_solut.fun if max_of_f >= 0. and min_of_f <= 0.: return True return False
c7236d2392d3e52ec8473bc9b970f3634cb1872a
a408222d976dde673e941e14a53e7ecd1ec1b974
/test/test_client_async.py
4047ce2154fb05419f35415f728afa63fff8e772
[ "MIT" ]
permissive
yangliping-ql/python-snap7
12686c02e46b932aec8230ac10f72076a067bd7b
0731267a025c6ac7a7b02ba574ddcb132a52e925
refs/heads/master
2023-01-04T04:01:17.107334
2020-10-28T08:56:12
2020-10-28T08:56:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,214
py
import logging import time import unittest from multiprocessing import Process from os import kill import snap7 from snap7.server import mainloop logging.basicConfig(level=logging.WARNING) ip = '127.0.0.1' tcpport = 1102 db_number = 1 rack = 1 slot = 1 class TestClient(unittest.TestCase): @classmethod def setUpClass(cls): cls.process = Process(target=mainloop) cls.process.start() time.sleep(2) # wait for server to start @classmethod def tearDownClass(cls): kill(cls.server_pid, 1) def setUp(self): self.client = snap7.client.Client() self.client.connect(ip, rack, slot, tcpport) def tearDown(self): self.client.disconnect() self.client.destroy() @unittest.skip("TODO: RuntimeWarning: coroutine 'TestClient.test_as_db_read' was never awaited") async def test_as_db_read(self): size = 40 start = 0 db = 1 data = bytearray(40) self.client.db_write(db_number=db, start=start, data=data) result = await self.client.as_db_read(db_number=db, start=start, size=size) self.assertEqual(data, result) @unittest.skip("TODO: RuntimeWarning: coroutine 'TestClient.test_as_db_write' was never awaited") async def test_as_db_write(self): size = 40 data = bytearray(size) check = await self.client.as_db_write(db_number=1, start=0, data=data) self.assertEqual(check, 0) @unittest.skip("TODO: crash client: FATAL: exception not rethrown") async def test_as_ab_read(self): start = 1 size = 1 await self.client.as_ab_read(start=start, size=size) @unittest.skip("TODO: not yet fully implemented") async def test_as_ab_write(self): start = 1 size = 10 data = bytearray(size) await self.client.as_ab_write(start=start, data=data) async def test_as_db_get(self): await self.client.db_get(db_number=db_number) @unittest.skip("TODO: RuntimeWarning: coroutine 'TestClient.test_as_download' was never awaited") async def test_as_download(self): data = bytearray(128) await self.client.as_download(block_num=-1, data=data)
1668a7aae7090c8534830f2e645e2471e2e7873f
b06c6847089ff73dcf1e6094b048bc312022a156
/utility.py
0261478127e3fe477868be94cb907e28add1b6c4
[]
no_license
yqli-ds/Recurrent-DirBN
743fb93b8a30dc713a76ad1b6f181eb8e80889ab
68f89d200230f4ab443a4c41249487c0337cd18d
refs/heads/main
2023-04-08T16:57:07.360221
2021-04-11T06:30:11
2021-04-11T06:30:11
356,785,824
0
0
null
null
null
null
UTF-8
Python
false
false
19,360
py
import numpy as np import scipy import copy import scipy.io as scio from sklearn.metrics import mean_squared_error from math import sqrt from scipy.stats import poisson, norm, gamma, dirichlet, uniform, beta import math def load_data_fan(data, dataNum_1, dataNum_2, Times): # Input: # data: Original data T*N*N # dataNum, Times: N,T # Output: # relation_matrix: T*N*N, training relation matrix, Rii = 0, test relation = -1 # test_matrix: T*N*N, test relation matrix, Rii = 0, training relation = -1 # Initialize the the relation Rij to 0 and 1 relation_matrix = data.astype(int) relation_matrix[relation_matrix>1] = 1 relation_matrix[relation_matrix<0] = 0 # Initialize the relation Rii to 0 for tt in range(Times): relation_matrix[tt][(np.arange(dataNum_1), np.arange(dataNum_2))] = 0 # Initialization size of training = test, with the relation =-1 in each other's matrix test_matrix = (np.ones((Times, dataNum_1, dataNum_2))*(-1)).astype(int) test_ratio = 0.1 # test relation chose from the relation from each column with the set test_ratio # only choose the N*N' N'*0.1 for tt in range(Times): for ii in range(dataNum_1): test_index_i = np.random.choice(dataNum_2, int(dataNum_2*test_ratio), replace=False) test_matrix[tt, ii, test_index_i] = copy.copy(relation_matrix[tt, ii, test_index_i]) relation_matrix[tt, ii, test_index_i] = -1 return relation_matrix, test_matrix def initialize_model(whole_dataR, dataNum_1, dataNum_2, Times, KK, LL): # Input: # dataR_T1/T2: the list locations of Rij=1 for training data: T arrays with L(positive edges) x 2 # KK: number of communities # LL: number of features # dataNum_1, dataNum_2, Times: N, N', T # Output: # M: Poisson distribution parameter in generating X_{ik} # X_i: T X N X K, latent counts for node i # Z_ik: T X N X K, latent integers summary, calculating as \sum_{j,k_2} Z_{ij,kk_2}/Z_{ji,kk_2} # Z_k1k2: K X K latent integers summary, calculating as \sum_{i,j k_1,k_2} Z_{ij,kk_2} # pis: LL X T X N X KK: layer-wise mixed-membership distributions # betas: LL-1 X T X N' X N: layer-wise information propagation coefficient # gammas: LL X T-1 X N' X N: layer-wise information propagation coefficient # Lambdas: K*K community compatibility matrix #### Pis pis = np.zeros((LL, Times, dataNum_1, KK)) ####### LL*T*N*KK ### Pis layer 0 ## Pis layer 0, Times 0 for ii in range(dataNum_1): pis[0, 0, ii] = dirichlet.rvs(0.1 * np.ones(KK)) ## Pis layer 0, Times 1 to t gammas = gamma.rvs(1, 1, size=(LL, Times-1, dataNum_2, dataNum_1)) ####### LL*(T-1)*N'*N psi_0 = np.zeros((Times-1, dataNum_1, KK)) ####### (T-1)*N*KK for tt in range(1, Times): psi_0[tt-1] = np.dot(gammas[0, tt-1].T, pis[0, tt-1]) # (N'*N).T * N'*K for ii in range(dataNum_1): pis[0, tt, ii] = dirichlet.rvs(0.1 + psi_0[tt-1, ii]) ### Pis layer 1 to L betas = gamma.rvs(1, 1, size=(LL - 1, Times, dataNum_2, dataNum_1)) for ll in range(1, LL): ## Pis layer ll, Times 0 psi_ll_t0 = np.dot(betas[ll-1, 0].T, pis[ll-1, 0]) psi_ll_t0 += 1e-16 for ii in range(dataNum_1): pis[ll, 0, ii] = dirichlet.rvs(psi_ll_t0[ii]) ## Pis layer ll, Times 1 to t psi_ll_tt1 = np.zeros((Times, dataNum_1, KK)) psi_ll_tt2 = np.zeros((Times-1, dataNum_1, KK)) for tt in range(1, Times): psi_ll_tt1[tt] = np.dot(betas[ll-1, tt].T, pis[ll-1, tt]) psi_ll_tt2[tt-1] = np.dot(gammas[ll, tt-1].T, pis[ll, tt-1]) psi_ll_tt = psi_ll_tt1[tt] + psi_ll_tt2[tt-1] + 1e-16 for ii in range(dataNum_1): pis[ll, tt, ii] = dirichlet.rvs(psi_ll_tt[ii]) M = dataNum_1 X_i = poisson.rvs(M*pis[-1]).astype(int) k_Lambda = 1 theta_Lambda = 1/(M*dataNum_1) QQ = theta_Lambda Lambdas = gamma.rvs(a = k_Lambda, scale = theta_Lambda, size = (KK, KK)) Z_ik = np.zeros((Times, dataNum_1, KK), dtype=int) Z_k1k2 = np.zeros((KK, KK), dtype=int) scale_val = 1 for tt in range(Times): for ii in range(len(whole_dataR[tt])): pois_lambda = scale_val*(X_i[tt, whole_dataR[tt][ii][0]][:, np.newaxis] * X_i[tt, whole_dataR[tt][ii][1]][np.newaxis, :]) * Lambdas total_val = positive_poisson_sample(np.sum(pois_lambda)) new_counts = np.random.multinomial(total_val, pois_lambda.reshape((-1)) / np.sum(pois_lambda)).reshape((KK, KK)) Z_k1k2 += new_counts Z_ik[tt, whole_dataR[tt][ii][0]] += np.sum(new_counts, axis=1) Z_ik[tt, whole_dataR[tt][ii][1]] += np.sum(new_counts, axis=0) return M, X_i, Z_ik, Z_k1k2, pis, betas, Lambdas, gammas, QQ, scale_val def positive_poisson_sample(z_lambda): # return positive truncated poisson random variables Z = 1, 2, 3, 4, ... # z_lambda: parameter for Poisson distribution sum_1 = np.exp(z_lambda)-1 candidate = 1000 can_val = np.arange(1, candidate) vals = np.exp(can_val*np.log(z_lambda)-np.cumsum(np.log(can_val))) select_val = can_val[np.sum((sum_1*uniform.rvs())>np.cumsum(vals))] # candidate = 1000 # can_val = np.arange(1, candidate) # log_vals = can_val * np.log(z_lambda) - np.cumsum(np.log(can_val)) # vals = np.exp(log_vals - np.max(log_vals)) # select_val = np.random.choice(can_val, p=(vals / np.sum(vals))) return select_val class sDGRM_class: def __init__(self, dataNum_1, dataNum_2, Times, LL, KK, Lambdas, QQ, M, X_i, Z_ik, Z_k1k2, pis, betas, gammas, scale_val): self.dataNum_1 = dataNum_1 self.dataNum_2 = dataNum_2 self.Times = Times self.LL = LL self.KK = KK self.Lambdas = Lambdas # K * K self.QQ = QQ self.M = M self.X_i = X_i self.Z_ik = Z_ik # T * N * K self.Z_k1k2 = Z_k1k2 # K * K self.pis = pis # LL * T * N * K self.betas = betas # LL-1 * T * N * K self.gammas = gammas # LL * T-1 * N * K self.alphas = 0.1 self.scale = scale_val def back_propagate_fan(self, dataR_H): # Back propagate the latent counts from X_i to the feature layer # Input: # dataR_H: the non-zeros locations of \beta (the information propagation matrix) # Output: # X_ik: LL X T X N X KK: layer-wise latent counting statistics matrix # y_ik: LL X T X N X KK: auxiliary counts for each pi introduced in back propagation # q_il: LL X T X N auxiliary variables used # psi_ll_tt: LL X T X N X KK: Prior of Pi's parameter # z_llj1_tt_ji_k: y_ik pass to pi of next layer, the layer L is 0 # A_ll_tj1_ji_k: y_ik pass to pi of next time, the time T is 0 # Z_ik_sum_k, A_ik_sum_k: LL X T X N X N auxiliary variables used ## ll=L,tt=T X(ll*tt)_ik = self.Xi[T] ## ll=L,tt=t, X(ll*tt)_ik = self.Xi[t]+ #### y_ik, LL X T X N X KK y_ik = np.zeros((self.LL, self.Times, self.dataNum_1, self.KK)) # LL * T * N * K #### Z&A (LL X T X N X KK, LL layer of Z and T time of A should be all zero) Z_ik_sum_k = np.zeros((self.LL-1, self.Times, self.dataNum_1, self.dataNum_2)) # LL * T * N' * N A_ik_sum_k = np.zeros((self.LL, self.Times-1, self.dataNum_1, self.dataNum_2)) # LL * T * N' * N z_llj1_tt_ji_k = np.zeros((self.LL-1, self.Times, self.dataNum_1, self.dataNum_2,self.KK)) # LL * T * N' * N *K A_ll_tj1_ji_k = np.zeros((self.LL, self.Times-1, self.dataNum_1, self.dataNum_2,self.KK)) # LL * T * N' * N *K ##### Phi psi_ll_tt = np.zeros((self.LL, self.Times, self.dataNum_1, self.KK)) #### q_il, LL X T X N q_il = np.zeros((self.LL, self.Times, self.dataNum_1)) ### Layer L, time T, X_ik[L, T]=self.X_i[T], ### Layer L, time t, X_i[L,t] = self.X_ik[L, t] + A((L,t)_i'ik_sum i ### Layer L, time 0, X_i[L,0] = self.X_ik[L, 0] + A((L,0)_i'ik_sum i, psi_ll_tt only has beta*pi, y only generate z ### Layer ll!=0, time T, X_i[ll,T]= Z(ll,t)_i'ik_sum i ### Layer ll!=0, time t, X_i[ll,t]= Z(ll,t)_i'ik_sum i + A(ll,t)_i'ik_sum i, #### X_ik, LL X T X N X KK X_ik = np.zeros((self.LL, self.Times, self.dataNum_1, self.KK)) # LL * T * N * K X_ik[-1] = self.X_i # T * N * K ## Layer L to 1, time T to 1 for ll in np.arange(self.LL-1, -1, -1): for tt in np.arange(self.Times-1, -1, -1): if ll > 0: if tt > 0: ## beta(ll-1,tt)_i',i * Pi(ll-1, tt)_i',k N'*1*K * N'*N*1 = N'*N*K psi_ll_tt_kk_1 = self.pis[ll-1, tt][:, np.newaxis, :] * ((self.betas[ll-1, tt] * (dataR_H[tt]))[:, :, np.newaxis]) ## gamma(ll,tt-1)_i',i * Pi(ll, tt-1)_i',k N'*1*K * N'*N*1 = N'*N*K psi_ll_tt_kk_2 = self.pis[ll, tt - 1][:, np.newaxis, :] * ((self.gammas[ll, tt - 1] * (dataR_H[tt - 1]))[:, :, np.newaxis]) ## phi N*K psi_ll_tt[ll, tt] = np.sum(psi_ll_tt_kk_1, axis=0) + np.sum(psi_ll_tt_kk_2, axis=0) for nn in range(self.dataNum_1): for kk in range(self.KK): if X_ik[ll, tt, nn, kk] > 0: if np.sum(psi_ll_tt[ll, tt]) > 0: y_ik[ll, tt, nn, kk] = np.sum(uniform.rvs(size=int(X_ik[ll, tt, nn, kk])) < ( psi_ll_tt[ll, tt, nn, kk] / (psi_ll_tt[ll, tt, nn, kk] + np.arange( int(X_ik[ll, tt, nn, kk]))))) pp = np.zeros(self.dataNum_2 + self.dataNum_2) pp[:self.dataNum_2] = psi_ll_tt_kk_1[:, nn, kk] / psi_ll_tt[ll, tt, nn, kk] pp[self.dataNum_2:] = psi_ll_tt_kk_2[:, nn, kk] / psi_ll_tt[ll, tt, nn, kk] counts = np.random.multinomial(y_ik[ll, tt, nn, kk], pp) z_llj1_tt_ji_k[ll - 1, tt, :, nn, kk] = counts[:self.dataNum_2] A_ll_tj1_ji_k[ll, tt - 1, :, nn, kk] = counts[self.dataNum_2:] Z_ik_sum_k[ll - 1, tt, :, nn] += z_llj1_tt_ji_k[ll - 1, tt, :, nn, kk] # N' = (L-1*T)*N*:*K sum K A_ik_sum_k[ll, tt - 1, :, nn] += A_ll_tj1_ji_k[ll, tt - 1, :, nn, kk] # N' = ((L*T-1)*N*:*K sum K # back to ll-1, tt, kk X_ik[ll - 1, tt, :, kk] += z_llj1_tt_ji_k[ll - 1, tt, :, nn, kk] # back to ll, tt , kk X_ik[ll, tt - 1, :, kk] += A_ll_tj1_ji_k[ll, tt - 1, :, nn, kk] else: psi_ll_tt_kk_1 = self.pis[ll-1, tt][:, np.newaxis, :] * ((self.betas[ll-1, tt] * (dataR_H[tt]))[:, :, np.newaxis]) psi_ll_tt[ll, tt] = np.sum(psi_ll_tt_kk_1, axis=0) for nn in range(self.dataNum_1): for kk in range(self.KK): if X_ik[ll, tt, nn, kk] > 0: if np.sum(psi_ll_tt[ll, tt]) > 0: y_ik[ll, tt, nn, kk] = np.sum(uniform.rvs(size=int(X_ik[ll, tt, nn, kk])) < ( psi_ll_tt[ll, tt, nn, kk] / (psi_ll_tt[ll, tt, nn, kk] + np.arange( int(X_ik[ll, tt, nn, kk]))))) pp = psi_ll_tt_kk_1[:, nn, kk] / psi_ll_tt[ll, tt, nn, kk] counts = np.random.multinomial(y_ik[ll, tt, nn, kk], pp) z_llj1_tt_ji_k[ll - 1, tt, :, nn, kk] = counts Z_ik_sum_k[ll - 1, tt, :, nn] += z_llj1_tt_ji_k[ll - 1, tt, :, nn, kk] # N' = (L-1*T)*N*:*K sum K # back to ll-1, tt, kk X_ik[ll - 1, tt, :, kk] += z_llj1_tt_ji_k[ll - 1, tt, :, nn, kk] else: if tt>0: psi_ll_tt_kk_2 = self.pis[ll, tt - 1][:, np.newaxis, :] * ((self.gammas[ll, tt - 1] * (dataR_H[tt - 1]))[:, :, np.newaxis]) psi_ll_tt[ll, tt] = np.sum(psi_ll_tt_kk_2, axis=0) for nn in range(self.dataNum_1): for kk in range(self.KK): if X_ik[ll, tt, nn, kk] > 0: if np.sum(psi_ll_tt[ll, tt]) > 0: y_ik[ll, tt, nn, kk] = np.sum(uniform.rvs(size=int(X_ik[ll, tt, nn, kk])) < ( psi_ll_tt[ll, tt, nn, kk] / (psi_ll_tt[ll, tt, nn, kk] + np.arange( int(X_ik[ll, tt, nn, kk]))))) pp = psi_ll_tt_kk_2[:, nn, kk] / psi_ll_tt[ll, tt, nn, kk] counts = np.random.multinomial(y_ik[ll, tt, nn, kk], pp) A_ll_tj1_ji_k[ll, tt-1, :, nn, kk] = counts A_ik_sum_k[ll, tt-1, :, nn] += A_ll_tj1_ji_k[ll, tt-1, :, nn, kk] # N' = (L-1*T)*N*:*K sum K # back to ll, tt-1, kk X_ik[ll, tt-1, :, kk] += z_llj1_tt_ji_k[ll, tt-1, :, nn, kk] latent_count_i = np.sum(X_ik[ll, tt], axis=1).astype(float) # N X(ll,tt)_ik sum K beta_para_1 = np.sum(psi_ll_tt[ll, tt], axis=1) # Phi(L,tt)_ik sum k inte1 = gamma.rvs(a=beta_para_1 + 1e-16, scale=1) + 1e-16 inte2 = gamma.rvs(a=latent_count_i + 1e-16, scale=1) + 1e-16 qil_val = inte1 / (inte1 + inte2) q_il[ll, tt] = qil_val return X_ik, y_ik, q_il, z_llj1_tt_ji_k, A_ll_tj1_ji_k, Z_ik_sum_k, A_ik_sum_k, psi_ll_tt def sample_pis(self, X_ik, psi_ll_tt): # layer-wise sample mixed-membership distribution # Input: # X_ik: LL X T X N X KK: layer-wise latent counting statistics matrix # psi_ll_tt: LL X T X N X KK: Prior of Pi's parameter for ll in np.arange(self.LL): for tt in np.arange(self.Times): psi_ll = psi_ll_tt[ll, tt] if ll == 0: psi_ll += self.alphas para_nn = psi_ll+X_ik[ll, tt] nn_pis = gamma.rvs(a=para_nn, scale=1) + 1e-16 self.pis[ll, tt] = nn_pis / (np.sum(nn_pis, axis=1)[:, np.newaxis]) def sample_X_i(self, dataR_matrix): # sample the latent counts X_i idx = (dataR_matrix != (-1)) for tt in range(dataR_matrix.shape[0]): np.fill_diagonal(idx[tt], False) for tt in range(self.Times): for nn in range(self.dataNum_1): Xik_Lambda = np.sum(np.dot(self.Lambdas, ((idx[tt, nn][:, np.newaxis] * self.X_i[tt]).T)), axis=1) + \ np.sum(np.dot(self.Lambdas.T, (idx[tt, :, nn][:, np.newaxis] * self.X_i[tt]).T), axis=1) log_alpha_X = np.log(self.M) + np.log(self.pis[-1, tt][nn]) - Xik_Lambda for kk in range(self.KK): n_X = self.Z_ik[tt, nn, kk] if n_X == 0: select_val = poisson.rvs(np.exp(log_alpha_X[kk])) else: candidates = np.arange(1, 10*self.M+1) pseudos = candidates*log_alpha_X[kk]+n_X*np.log(candidates)-np.cumsum(np.log(candidates)) pseudos_max = np.max(pseudos) proportions = np.exp(pseudos-pseudos_max) select_val = np.random.choice(candidates, p=proportions / np.sum(proportions)) self.X_i[tt, nn, kk] = select_val def sample_Lambda_k1k2(self, dataR_matrix): # sample Lambda according to the gamma distribution idx = (dataR_matrix != (-1)) Phi_KK = np.zeros((self.KK, self.KK)) for tt in range(dataR_matrix.shape[0]): np.fill_diagonal(idx[tt], False) Phi_KK += np.dot(np.dot(self.X_i[tt].T, idx[tt]), self.X_i[tt]) R_KK = np.ones((self.KK, self.KK))/(self.KK**2) np.fill_diagonal(R_KK, 1/self.KK) self.Lambdas = gamma.rvs(a = self.Z_k1k2 + R_KK, scale = 1)/(1+Phi_KK) def sample_Z_ik_k1k2(self, whole_dataR): # sampling the latent integers # Input: # whole_dataR: tt list of array, the L list of Rij=1 for training data Z_ik = np.zeros((self.Times, self.dataNum_1, self.KK), dtype=int) Z_k1k2 = np.zeros((self.KK, self.KK), dtype=int) for tt in range(self.Times): for ii in range(len(whole_dataR[tt])): pois_lambda = self.scale*(self.X_i[tt, whole_dataR[tt][ii][0]][:, np.newaxis]*self.X_i[tt, whole_dataR[tt][ii][1]][np.newaxis, :])*self.Lambdas total_val = positive_poisson_sample(np.sum(pois_lambda)) new_counts = np.random.multinomial(total_val, pois_lambda.reshape((-1))/np.sum(pois_lambda)).reshape((self.KK, self.KK)) Z_k1k2 += new_counts Z_ik[tt, whole_dataR[tt][ii][0]] += np.sum(new_counts, axis=1) Z_ik[tt, whole_dataR[tt][ii][1]] += np.sum(new_counts, axis=0) self.Z_k1k2 = Z_k1k2 self.Z_ik = Z_ik def sample_beta(self, Z_ik_sum_k, q_il): # Sampling the information propagation coefficients # Input: # Z_ik_sum_k: LL X T X N X N auxiliary variables used # q_il: LL X T X N auxiliary variables used hyper_alpha = 1 hyper_beta = 1 for ll in range(self.betas.shape[0]): for tt in range(self.betas.shape[1]): self.betas[ll, tt] = gamma.rvs(a=hyper_alpha+Z_ik_sum_k[ll, tt], scale=1)/(hyper_beta -np.log(q_il[ll, tt][:, np.newaxis])) def sample_gammas(self, A_ik_sum_k, q_il): # Sampling the information propagation coefficients # Input: # A_ik_sum_k: LL X T X N X N auxiliary variables used # q_il: LL X T X N auxiliary variables used hyper_alpha = 1 hyper_beta = 1 for ll in range(self.gammas.shape[0]): for tt in range(self.gammas.shape[1]): self.gammas[ll, tt] = gamma.rvs(a=hyper_alpha+A_ik_sum_k[ll, tt], scale=1)/(hyper_beta -np.log(q_il[ll, tt][np.newaxis, :])) def sample_M(self, M_val): # updating the hyper-parameter M # Input: # M_val: Poisson distribution parameter in generating X_{ik} k_M = M_val theta_M_inverse = 1 self.M = gamma.rvs(a=k_M+np.sum(self.X_i), scale=1)/(theta_M_inverse+self.Times*self.dataNum_1)
8c0a6958d0fc28783f5c750e3591c16f0966e082
6f401aed6b736b07224c5da774fef5124536e4c3
/automate_the_bouring_stuff/if_else_exaple.py
1a38bf510adbb9ccad2150d54bbc03ff508275f3
[]
no_license
Fumitus/First_Python_lessons
871a417cdfe828c68da1003e24d5e93de5a466dd
07a161c886a00ddb86eca3ede32e82df00b938a8
refs/heads/master
2020-04-10T06:49:20.666396
2018-12-07T19:23:41
2018-12-07T19:23:41
160,865,229
0
0
null
null
null
null
UTF-8
Python
false
false
112
py
password = 'swordfish' if password == 'swordfish': print('Acces granted') else: print('Wrong password')
cdd0fb9b79616b82673e39202061c831e37586b3
7636292e3e32fa6fea4be6f2491b3bd303e68867
/MethodsPractice/003无重复字符的最长子串.py
16bfa38e26e722ad9c94d29122f7c5f013b82c1b
[]
no_license
MariOdyssey/Weeping-Hall
0d595eea6d22c9c928b42daaef0712a3dbb44fda
d064068d92a65a8e94fa77583c9b4d4ccc529111
refs/heads/master
2020-04-17T16:27:17.210611
2019-09-07T18:52:26
2019-09-07T18:52:26
166,740,783
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
class Solution: def lengthOfLongestSubstring(self, s): """ :type s: str :rtype: int """ tempList = [] for i in s: if not i in s: tempList.append()
dd24036430468b0bc02e658fe3954b26de047e3b
69c470989c058fac9cd1a99e5bf2454e129d44dc
/assignment1/cs231n/classifiers/k_nearest_neighbor.py
c22d095d14640cda31b2131a381ecdaa1951a8b3
[]
no_license
PedroFerreiradaCosta/CS231n-Solutions
34efa55916936cf43c20f0ce78acb08913c146f5
a77f72294618307f87922bc16817f7e218891f29
refs/heads/master
2022-12-14T03:58:06.042204
2019-11-12T14:42:49
2019-11-12T14:42:49
196,404,053
3
0
null
2022-12-08T05:18:44
2019-07-11T13:50:33
Jupyter Notebook
UTF-8
Python
false
false
8,924
py
from builtins import range from builtins import object import numpy as np from past.builtins import xrange class KNearestNeighbor(object): """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y): """ Train the classifier. For k-nearest neighbors this is just memorizing the training data. Inputs: - X: A numpy array of shape (num_train, D) containing the training data consisting of num_train samples each of dimension D. - y: A numpy array of shape (N,) containing the training labels, where y[i] is the label for X[i]. """ self.X_train = X self.y_train = y def predict(self, X, k=1, num_loops=0): """ Predict labels for test data using this classifier. Inputs: - X: A numpy array of shape (num_test, D) containing test data consisting of num_test samples each of dimension D. - k: The number of nearest neighbors that vote for the predicted labels. - num_loops: Determines which implementation to use to compute distances between training points and testing points. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) elif num_loops == 2: dists = self.compute_distances_two_loops(X) else: raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a nested loop over both the training data and the test data. Inputs: - X: A numpy array of shape (num_test, D) containing test data. Returns: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] is the Euclidean distance between the ith test point and the jth training point. """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): for j in range(num_train): ##################################################################### # TODO: # # Compute the l2 distance between the ith test point and the jth # # training point, and store the result in dists[i, j]. You should # # not use a loop over dimension, nor use np.linalg.norm(). # ##################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** dists[i,j] = np.sqrt(np.sum((self.X_train[j]-X[i])**2)) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return dists def compute_distances_one_loop(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): ####################################################################### # TODO: # # Compute the l2 distance between the ith test point and all training # # points, and store the result in dists[i, :]. # # Do not use np.linalg.norm(). # ####################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** powered_dist = np.power((self.X_train-X[i]), 2) dists[i,:] = np.sqrt(np.sum(powered_dist, axis = 1)) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return dists def compute_distances_no_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) ######################################################################### # TODO: # # Compute the l2 distance between all test points and all training # # points without using any explicit loops, and store the result in # # dists. # # # # You should implement this function using only basic array operations; # # in particular you should not use functions from scipy, # # nor use np.linalg.norm(). # # # # HINT: Try to formulate the l2 distance using matrix multiplication # # and two broadcast sums. # ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** dists = np.sqrt(-2 * np.dot(X, self.X_train.T) + np.sum(self.X_train**2, axis=1)+ np.sum(X**2, axis=1)[:,np.newaxis]) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return dists def predict_labels(self, dists, k=1): """ Given a matrix of distances between test points and training points, predict a label for each test point. Inputs: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] gives the distance betwen the ith test point and the jth training point. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ num_test = dists.shape[0] y_pred = np.zeros(num_test) for i in range(num_test): # A list of length k storing the labels of the k nearest neighbors to # the ith test point. closest_y = [] ######################################################################### # TODO: # # Use the distance matrix to find the k nearest neighbors of the ith # # testing point, and use self.y_train to find the labels of these # # neighbors. Store these labels in closest_y. # # Hint: Look up the function numpy.argsort. # ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** sorted_idx = np.argsort(dists[i,:]) for j in range(k): closest_y.append(self.y_train[sorted_idx[j]]) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ######################################################################### # TODO: # # Now that you have found the labels of the k nearest neighbors, you # # need to find the most common label in the list closest_y of labels. # # Store this label in y_pred[i]. Break ties by choosing the smaller # # label. # ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** if(k==1): y_pred[i] = closest_y[0] else: y_pred[i] = max(set(closest_y), key = closest_y.count) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return y_pred
957b402ca0ef50b2e6fe249c5db02dfa2e581343
af683cae09e2ab3b49d50995f681b5616eb1b16c
/FC.py
532353e2abdded1b03b8a1013b0cdad86e81eb76
[ "MIT" ]
permissive
cutierobot/Folder-Compare
aefb967c8186a9eac2ab4bcdfaedaa097ca05139
206bdba879690ca0816d6b25f93f9aa2bb9100dc
refs/heads/master
2020-04-13T03:28:06.564768
2019-01-08T11:15:40
2019-01-08T11:15:40
162,932,599
0
0
null
null
null
null
UTF-8
Python
false
false
11,463
py
# \033[1;32;40m green # \033[1;35;40m purple # \033[1;34;40m Bright Blue # \033[0;37;40m Normal text # \033[2;37;40m Normal text underline import filecmp import sys # folder1="/Volumes/Mikaela\'s Hardrive/TV SHOWS" # folder2 = "/Volumes/Grayson/Tv shows/" # dc = filecmp.dircmp(folder1, folder2) # dc.report_full_closure() class Compare(object): """The compare class that is the brains behind this whole program""" def __init__(self, folder1, folder2): self.dc = "" self.folder1 = folder1 self.folder2 = folder2 """ Sets the class "dc" to the given dc value @param dc The value to become self.dc value """ def set_dc(self, dc): self.dc = dc # TODO: [write] function definition (99) def get_init_details(self, dc): # folder1=sys.argv[1] # folder2 = sys.argv[2] if self.dc == "": Compare.set_dc(self,dc) # self.table_print(self.dc) # left = '\n'.join(dc.left_only) # right = '\n'.join(dc.right_only) # com = '\n'.join(dc.common_dirs) # sub = '\n'.join(dc.subdirs) # print statments print("Legends of colours:\n"+"\033[1;35;40m"+"Left Only"+ "\033[1;34;40m"+" Right Only"+ "\033[1;32;40m"+" Common Directories/files\033[0;37;40m\n") self.init_prompt() # self.recursive_dir(dc,self.folder1,self.folder2) """ Prints the left directory only. Where only file/folders that appear in the left compared directory appear. """ def left_directory_only(self): left = '\n'.join(self.dc.left_only) # Left Only print("\033[1;35;40m" +"left_only: \033[0;37;40m\n" + left + "\n") """ Prints the right directory only. where only file/folders that appear in the right compared directory appear. """ def right_directory_only(self): right = '\n'.join(self.dc.right_only) # right Only print("\033[1;34;40m"+"Right Only: \033[0;37;40m\n" + right + "\n") """ Prints the comparison between directory 1 and 2 together. """ def compared_only(self): com = '\n'.join(self.dc.common_dirs) # common directories print print("\033[1;32;40m"+"Common Directories/files\033[0;37;40m\n" + com + "\n") # //TODO: [write] function definition (99) # @staticmethod def recus_details(self,dc,folder1,folder2): # left = '\n'.join(dc.left_only) # right = '\n'.join(dc.right_only) # com = '\n'.join(dc.common) # leftOnly = "\033[1;35;40m" +format("left_only: ","^25s")+"\033[0;37;40m" # rightOnly = "\033[1;34;40m"+format("Right Only: ","^25s")+"\033[0;37;40m" # Common = "\033[1;32;40m"+format("Common Directories/files","^25s")+"\033[0;37;40m" # yellow_pole = "\033[1;33;40m"+"|"+"\033[0;37;40m" # # Left Only # print(yellow_pole+leftOnly+yellow_pole) # print(left) # # right Only # print(yellow_pole+rightOnly+yellow_pole) # print(right) # # common directories print # print(yellow_pole+Common+yellow_pole) # print(com) self.table_print(dc) """ Recursive of sorts, finds subfolders and go through them and prints out subfolders info. @see recus_details """ # @staticmethod def recursive_dir(self,dc,folder1,folder2): if len(dc.common_dirs)>0: for folder in dc.common_dirs: # print folder name in yellow pole = "|"+ format(folder,"^25s")+"|" print("\033[1;33;40m"+"+"+format("--","-^25s")+"+"+"\033[0;37;40m") print("\033[1;33;40m"+pole+"\033[0;37;40m") print("\033[1;33;40m"+"+"+format("--","-^25s")+"+"+"\033[0;37;40m") left = folder1+"/"+folder right = folder2+"/"+folder newdc = filecmp.dircmp(left, right) # Compare.recus_details(newdc,left,right) self.recus_details(newdc,left,right) # # deals with the subfolders in the current folder. i.e Season 1 # if len(newdc.common_dirs)>0: # for subfolder in newdc.common_dirs: # # print("\nsubfolder: "+subfolder) # # print("======================\n") # print("\n\033[1;33;40m"+subfolder+"\033[0;37;40m") # subleft = left+"/"+subfolder # subright = right+"/"+subfolder # subdc = filecmp.dircmp(subleft, subright) # # Compare.recus_details(subdc,subleft,subright) # self.recus_details(subdc,subleft,subright) # print("#######################\n") # # Compare.give_best_score(len(dc.common),newdc) # self.give_best_score(len(dc.common),newdc) # print("======================\n") # self.subfolder_rec(newdc, left, right, dc) """ Takes in the dc and newdc, which is for the subfolders of the dc, and prints out the subfolder infomation for that dc folder. @param newdc The newdc for the subfolder @param dc teh dc for the parent directory @param left The left directory subfolder creation @param right The right directory subfolder creation """ def subfolder_rec(self, newdc, left, right, dc): # deals with the subfolders in the current folder. i.e Season 1 if len(newdc.common_dirs)>0: for subfolder in newdc.common_dirs: # print("\nsubfolder: "+subfolder) # print("======================\n") print("\n\033[1;33;40m"+subfolder+"\033[0;37;40m") subleft = left+"/"+subfolder subright = right+"/"+subfolder subdc = filecmp.dircmp(subleft, subright) # Compare.recus_details(subdc,subleft,subright) self.recus_details(subdc,subleft,subright) print("#######################\n") # Compare.give_best_score(len(dc.common),newdc) self.give_best_score(len(dc.common),newdc) print("======================\n") """ The initial prompt that appears after successful initialisation of program. It launches all the sub-programs of this program. If anything but 0-4, or h is entered then there is a reprompt. """ def init_prompt(self): # name of python program # options # - see only things on first directory(quick look) # - see only things on second directory(quick look) # - see things on both first and second directory(quick look) # - go into sub directories # input prompt print("[0] Left Only") print("[1] Right Only") print("[2] Comparison Only") print("[3] Table Comparison") print("[4] Recursive Comparison") print("[h] Reprint these help messages") print("[exit] Exit this program") usrInput = input("Type number from 0 - 3: ") if usrInput == "0": self.left_directory_only() elif usrInput == "1": self.right_directory_only() elif usrInput == "2": self.compared_only() elif usrInput == "3": self.table_print(self.dc) elif usrInput == "4": self.recursive_dir(self.dc,self.folder1,self.folder2) elif usrInput == "h": self.init_prompt() elif usrInput == "exit": exInput = input("Are you sure you want to exit [Y|N]: ") if exInput == "Y": sys.exit(2) else: self.print_red("error please input a number between 0 - 3") self.init_prompt() """ In a nice table format gives all comparason types (left_only, right_only, and comparison) @param dc the self.dc value """ @staticmethod def table_print(dc): # left = '\n'.join(dc.left_only) # right = '\n'.join(dc.right_only) # com = '\n'.join(dc.common_dirs) # coloured words leftOnly = "\033[1;35;40m" +"left_only\033[0;37;40m" rightOnly = "\033[1;34;40m"+"Right Only\033[0;37;40m" commonDirs = "\033[1;32;40m"+"Common Directories/files\033[0;37;40m" # leftTitle = format(leftOnly,":^10") # ------ borders leftPole = "-"*23 middlePole = "-"*24 rightPole = "-"*28 print("+"+"-"*23+"+"+"-"*24+"+"+"-"*28+"+") print("| "+leftOnly+" | "+rightOnly+" | "+commonDirs+" |") print("+"+"-"*23+"+"+"-"*24+"+"+"-"*28+"+") # get heights of the three coloums and get the largest number and use for # for loop sizes = [] sizes.append(len(dc.left_only)) sizes.append(len(dc.right_only)) sizes.append(len(dc.common)) for x in range(0,max(sizes)): # 1st column temp = "|" if x < sizes[0]: dcl = str(dc.left_only[x]) # lft = 23 - len(dc.left_only[x]) temp += dcl[0:23].ljust(23, ' ') temp = temp.splitlines() temp = "?".join(temp) # print('{0:.23}'.format(dcl) + " "*lft, end="") else: temp += " "*23 temp += "|" # 2nd column if x < sizes[1]: temp_right = dc.right_only[x] # rght = 24 - len(dc.right_only[x]) # if temp.isprintable(): # print("is printable") # else: # print("is not printable") temp += temp_right[0:24].ljust(24, ' ') temp = temp.splitlines() temp = "?".join(temp) # if temp.isprintable(): # print("is printable") # else: # print("is not printable") # print('{0:.24}'.format(dc.right_only[x]) + " "*rght, end="") else: temp += " "*24 # print(" "*24, end="") # print("[temp = ]"+temp) temp += "|" # print("|", end="",flush=True) # 3rd column if x < sizes[2]: temp_comm = dc.common[x] # comp = 28 - len(dc.common[x]) temp += temp_comm[0:28].ljust(28, ' ') temp = temp.splitlines() temp = "?".join(temp) # print('{0:.28}'.format(dc.common[x]) + " "*comp, end="") else: temp += " "*28 # print(" "*28, end="",flush=True) temp += "|" # print("|") print(temp) temp = "" print("+"+"-"*23+"+"+"-"*24+"+"+"-"*28+"+") Compare.print_red("left_only = "+str(len(dc.left_only))) Compare.print_red("right_only: "+str(len(dc.right_only))) Compare.print_red("common: "+str(len(dc.common))) # get size of all coloums and use the larget number for "for loop" # bigest = max(sizes) """ Give best average to help with calulating what version to delete of what location. takes both directories with same folder name and determines which folder has more items and such to help establish what folder version to keep and delete. @param commonNumber The number of files/folders that both directories have in common. @param subdc The dc value from filecmp @see filecmp#dircmp {https://docs.python.org/3/library/filecmp.html#filecmp.dircmp} """ @staticmethod def give_best_score(commonNumber,subdc): # tv show folder common directs/folders number # sub leftScore = commonNumber rightScore = commonNumber # for subfolders in subdc.common_dirs: leftScore += len(subdc.left_only) rightScore += len(subdc.right_only) leftScore += len(subdc.common) rightScore += len(subdc.common) # rightScore = len(subdc.right_only)+len(subdc.common) # leftScore = len(subdc.left_only)+len(subdc.common) Compare.print_red("left:"+str(leftScore)+" right: "+str(rightScore)) if leftScore > rightScore: print("keep left, delete right") elif rightScore > leftScore: print("keep right, delete left") else: print("both equal") # ============helper function====================== """ Uses the inbuild "print" method but changes all the text to red @param string - The string to print out red @see print """ @staticmethod def print_red(string): print("\033[1;31;40m"+string+"\033[0;37;40m") """ Checks argv value. If when initialising progam there are not 2 directories given then print error message and exit program. """ def check_argv(): if len(sys.argv) != 3: print("\033[1;31;40m"+"name folder1 folder2\033[0;37;40m") sys.exit(2) # //TODO: create testing functions and stuff """ Main funtion @param argv Arguments from commandline """ def main(argv): # print(sys.argv[1]) # folder1="/Volumes/Mikaela\'s Hardrive/TV SHOWS" # folder2 = "/Volumes/Grayson/Tv shows/" check_argv() comp = Compare(sys.argv[1],sys.argv[2]) folder1 = sys.argv[1] folder2 = sys.argv[2] dc = filecmp.dircmp(folder1, folder2) comp.get_init_details(dc) if __name__== "__main__": main(sys.argv)
a85ca2c33438c8d0eb7d6e5178f79143aa5e13ea
24d6790dedd7473002513b2d58aa7e03e1b9b7c2
/Week4/lesson_files/using_hint.py
67fbed258d62b75f184596f05e61855a747d0c34
[ "MIT" ]
permissive
italoag/M101P
3b50ddcc9935f6977d95f23dfc5aa7ee56a716e7
708bdd793735228f820f3f50f57c44ce8fc637ef
refs/heads/master
2021-01-01T20:01:30.181394
2013-09-24T02:29:58
2013-09-24T02:29:58
12,883,560
0
0
MIT
2020-08-13T20:06:29
2013-09-17T01:43:13
Python
UTF-8
Python
false
false
449
py
import pymongo import sys # establish a connection to the database connection = pymongo.Connection("mongodb://localhost", safe=True) # get a handle to the test database db=connection.test foo = db.foo query = {'a':40000,'b':40000, 'c':40000} try: doc = foo.find(query).hint([('c', pymongo.ASCENDING)]).explain() except: print "Unexpected error:", sys.exc_info()[0] for key in doc: print str(key).rjust(20),": ", str(doc[key])
d9711c688ed5e63261e8c5597b0c4d6284345508
bcc6ba85119503185759f17ccc89c32699b9d82f
/lib/stochastic/tauleap.py
041531859c706eea9ac1d70b768e23da13d0676d
[ "MIT" ]
permissive
JordiVillaFreixa/ByoDyn
01ca756c0cd50b42ccb35585c174ec02c6349877
be5554323299d806ed2def5e0e68207fc22367fa
refs/heads/main
2023-08-07T08:53:25.448622
2021-10-07T09:25:41
2021-10-07T09:25:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,545
py
# # Project: ByoDyn # # Copyright (C) 2008 Alex Gomez-Garrido, Adrian L. Garcia-Lomana and Jordi Villa-Freixa # # Author: Pau Rue-Queralt # # Created: 2008-06-05 by Pau Rue-Queralt # # This application is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This application is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Library General Public License for more details. # # You should have received a copy of the GNU General Public # License along with this library; if not, write to the Free # Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA. # # $Id: tauleap.py,v 1.4 2008/12/11 15:00:39 paurue Exp $ ## \file # This module is contains the the stochastic simulation algorithms for the tau-leap method. import numpy as np def simulate (evalPropensities, stoichiometry, x_0, time, tau, seed = None): ''' Gillespie's Poisson tau-leap stochastic simulation algorithm evalPropensities list of propensity functions stoichiometry stoichiometrty matrix, each column corresponds to a reaction x_0 initial conditions time simulation time tau the time step for which the system state is written (if set to None all reactions are written in the output) seed for the pseudo-random number generator ''' def poisson(x): ''' This function takes a list of (nonnegative) real numbers and samples a Poisson random number for each of them with mean and variance given by this. If any number in the list is negative, it is treated as zero. ''' xt = np.maximum(x,0) return np.array(map(np.random.poisson, xt)).T if seed != None: np.random.seed(seed) nsteps = np.ceil(time/tau) + 1 x = np.array(x_0, dtype = np.int64) tHist = tau * np.arange(nsteps) xHist = np.zeros([x.size, nsteps], dtype = np.int64) xHist[:,0] = x i = 1 while(i < nsteps and sum(abs(x)) > 0): k = poisson(tau * evalPropensities(x)) update = np.dot(stoichiometry, k) x += update xHist[:,i] = x i = i + 1 return xHist.T, tHist
4f949d20d79e29074f35b084d9b4298331cd0dc0
6d3b383497283fd479162c719fabf033cdcf076c
/groupAnagrams.py
6e2a1d0c282d2f00e96e2b7d10d791a630ffcfd6
[]
no_license
zunzunwang/python-leetcode
ea15b62929174397f39553280466c29a5883f235
2091a45cf825e3d1f8c318ed4e7d00f7fe97d017
refs/heads/master
2021-05-22T21:21:24.411217
2020-04-28T11:58:28
2020-04-28T11:58:28
253,101,880
0
0
null
null
null
null
UTF-8
Python
false
false
2,474
py
import collections from typing import List ''' Given an array of strings, group anagrams together. Example: Input: ["eat", "tea", "tan", "ate", "nat", "bat"], Output: [ ["ate","eat","tea"], ["nat","tan"], ["bat"] ] Note: All inputs will be in lowercase. The order of your output does not matter. review pthon 创建 dict的两种方式 d = {} 1 0 BUILD_MAP 0 2 RETURN_VALUE d = dict() 1 0 LOAD_NAME 0 (dict) 2 CALL_FUNCTION 0 4 RETURN_VALUE defaultdict接受一个工厂函数作为参数,如下来构造: dict =defaultdict( factory_function) 这个factory_function可以是list、set、str等等,作用是当key不存在时,返回的是工厂函数的默认值,比如list对应[ ],str对应的是空字符串,set对应set( ),int对应0,如下举例: from collections import defaultdict dict1 = defaultdict(int) dict2 = defaultdict(set) dict3 = defaultdict(str) dict4 = defaultdict(list) dict1[2] ='two' print(dict1[1]) print(dict2[1]) print(dict3[1]) print(dict4[1]) 输出: 0 set() [] ''' class Solution: def groupAnagrams1(self, strs: List[str]) -> List[List[str]]: """ Time Complexity: O(NK \log K)O(NKlogK), where NN is the length of strs, and KK is the maximum length of a string in strs. The outer loop has complexity O(N)O(N) as we iterate through each string. Then, we sort each string in O(K \log K)O(KlogK) time. Space Complexity: O(NK)O(NK), the total information content stored in ans. :param strs: :return: """ result = collections.defaultdict(list) for e in strs: result[tuple(sorted(e))].append(e) return result.values() def groupAnagrams(self, strs: List[str]) -> List[List[str]]: ''' Complexity Analysis Time Complexity: O(NK)O(NK), where NN is the length of strs, and KK is the maximum length of a string in strs. Counting each string is linear in the size of the string, and we count every string. Space Complexity: O(NK)O(NK), the total information content stored in ans. :param strs: :return: ''' result = collections.defaultdict(list) for s in strs: count = [0] * 26 for c in s: count[ord(c) - ord('a')] += 1 result[tuple(count)].append(s) return result.values()
ee3fa06556b05ef72b5e2a9ecbaaafb5b7c8d4d4
4f51b503c321f31a1088e1c884f2853d9ba127c2
/flour_problem.py
2b3b36f5941a103d38a8588e52496cf54e56202e
[]
no_license
pi-q/gluten_free_flour_optimization
751e698b178e75bb3247e715fc10842540ae9286
af93a8e6f2f30ea05f4ba3ea263661ee694a3b6f
refs/heads/main
2023-01-12T23:50:48.834648
2020-11-16T14:29:52
2020-11-16T14:29:52
312,671,552
0
0
null
null
null
null
UTF-8
Python
false
false
3,937
py
# https://scipy-lectures.org/advanced/mathematical_optimization/#optimization-with-constraints import numpy as np import scipy.optimize #https://www.fqmc.org/vivre-sans-gluten/infolettres-anterieures/valentin-2018/farines-sans-gluten #https://tools.myfooddata.com/nutrition-facts/172023/100g/1 #Assume water ~ 100% - sum of all the rest #Minerals = magnesium, potassium, phosphore #Ash not included in this model # [Starch, Sugars, Fiber, Proteins, Fat, Minerals ] wheat = [ 0.7, 0.02, 0.03, 0.115, 0.013, 0.0055] brown_rice = [ 0.76, 0.0066, 0.046, 0.0723, 0.0278, 0.0074] white_rice = [ 0.80, 0.0012, 0.024, 0.0595, 0.0142, 0.0021] tapioca = [ 0.89, 0.0002, 0., 0.0006, 0., 0.] potato = [ 0.80, 0.035, 0.06, 0.007, 0.003, 0.0106] arrowroot = [0.875, 0., 0.031, 0., 0., 0.0002] almond = [ 0.16, 0.04, 0.12, 0.2, 0.47, 0.0134] banana = [ 0.82, 0., 0.07, 0.036, 0., 0.0035] chickpea = [ 0.47, 0.11, 0.11, 0.22, 0.07, 0.0139] psyllium = [ 0.88, 0., 0.85, 0.02, 0., 0.0060] #mineral content unsure quinoa = [0.648, 0.029, 0.065, 0.118, 0.059, 0.0015] #mineral content unsure oat = [0.733, 0., 0.133, 0.133, 0.05, 0.0048] #mineral content unsure teff = [0.707, 0., 0.122, 0.122, 0.037, 0.0025] #mineral content unsure sorghum = [0.074, 0.01, 0.1, 0.11, 0.035, 0.0074] millet = [0.734, 0.017, 0.035, 0.108, 0.043, 0.0065] cassava = [0.886, 0., 0.057, 0., 0., 0.0046] #mineral content unsure pea_protein = [ 0., 0., 0., 0.84, 0.15, 0.0050] #mineral content unsure pumpkin_protein = [ 0.11, 0., 0.1, 0.65, 0.08, 0.0020] #mineral content unsure A = np.array([ brown_rice, white_rice, tapioca, potato, arrowroot, almond, banana, chickpea, psyllium, quinoa, oat, teff, sorghum, millet, cassava, pea_protein, pumpkin_protein ]) #Function to optimize def f(x): #C = A x # norm(Ax - Cd)**2 # Cd = np.array(wheat) diff = (np.dot(np.transpose(A), np.transpose(x))) - np.array(wheat) return np.dot(np.transpose(diff), diff) #Inequality constraint def constraint(x): return np.sum(x) - 1 def print_results(x, desired_flour_grams): for idx in range(0, len(x)): if x[idx] < 1.e-10: x[idx] = 0 else: x[idx] = round(x[idx] * desired_flour_grams, 1) print "Desired flour amounts for a total of", str(desired_flour_grams), "g:" print "brown rice: ", x[ 0], " g" print "white rice: ", x[ 1], " g" print "tapioca : ", x[ 2], " g" print "potato : ", x[ 3], " g" print "arrowroot : ", x[ 4], " g" print "almond : ", x[ 5], " g" print "banana : ", x[ 6], " g" print "chickpea : ", x[ 7], " g" print "psyllium : ", x[ 8], " g" print "quinoa : ", x[ 9], " g" print "oat : ", x[10], " g" print "teff : ", x[11], " g" print "sorghum : ", x[12], " g" print "millet : ", x[13], " g" print "cassava : ", x[14], " g" print "pea : ", x[15], " g" print "pumpkin : ", x[16], " g" x0 = np.zeros(np.shape(A)[0]) x = scipy.optimize.minimize(f, x0, bounds = ((0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.)), constraints={"fun": constraint, "type": "eq"}) print " composition: [ Starch, Sugars, Fiber, Proteins, Fat, Minerals ]" print "Target composition: ", str(wheat) print "Obtained composition: ", str(np.dot(np.transpose(A), np.transpose(x.x))) print_results(x.x, 115)
22d318dd89abba5341491b3b6eb850002e4371b4
51c5f1bec4c64f2f4596404dc54ac19de7cbc0f4
/Python/LT/listas.py
b40a034008e1a46938f70f5a6b67cf00703a0db7
[]
no_license
jos3s/Linguagens
53c49f6cb9849562d3f95a9125158d030ba2a096
a72c240e87b81bc9676de32da53fc01fb3130661
refs/heads/master
2020-11-24T03:30:33.173559
2020-04-17T00:19:45
2020-04-17T00:19:45
227,946,835
1
1
null
2020-02-11T15:10:48
2019-12-14T00:59:03
Python
UTF-8
Python
false
false
437
py
valores=[] pares=[] impares=[] while True: valores.append(int(input('Digite um valor: '))) opc=str(input('Quer continuar? [S/N] ')) if opc in 'Nn': break for i,v in enumerate(valores): if v%2==0: pares.append(v) else: impares.append(v) print(f'Os valores digitados foram {valores}') print(f'Os valores pares digitados foram {pares}') print(f'Os valores impares digitados foram {impares}')
d5e6c3f2b59984b852d3eb925817cf4a395ad31e
bec2ccc5f19575518649932fb3f2853adf54c11e
/blog/myapp/migrations/0001_initial.py
d0dd55015f40c321d0a6d361bcfc47b094a5139d
[]
no_license
liuxinqiqi/djangosite
08831c63c5fa5a4c8a14dd4bf8beed62138eb58a
9a1b425cbdb73feb34d7fb1f60c3f2923e262d64
refs/heads/master
2022-12-13T11:00:07.039593
2017-08-12T08:40:03
2017-08-12T08:40:03
100,082,409
0
0
null
2022-12-08T00:43:01
2017-08-12T01:55:14
JavaScript
UTF-8
Python
false
false
9,447
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-04 20:35 from __future__ import unicode_literals from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.ASCIIUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=30, verbose_name='last name')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('avatar', models.ImageField(blank=True, default='avatar/1.png', max_length=200, null=True, upload_to='avatar/%Y/%m', verbose_name='\u7528\u6237\u5934\u50cf')), ('qq', models.CharField(blank=True, max_length=20, null=True, verbose_name='QQ\u53f7\u7801')), ('mobile', models.CharField(blank=True, max_length=11, null=True, verbose_name='\u4e2a\u4eba\u7f51\u9875\u5730\u5740')), ('email', models.EmailField(blank=True, max_length=30, null=True, verbose_name='\u7535\u5b50\u90ae\u7bb1')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'ordering': ['-id'], 'verbose_name': '\u7528\u6237', 'verbose_name_plural': '\u7528\u6237', }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Ad', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50, verbose_name='\u5e7f\u544a\u6807\u9898')), ('description', models.CharField(max_length=100, verbose_name='\u5e7f\u544a\u63cf\u8ff0')), ('image', models.ImageField(upload_to='ad/%Y/%m', verbose_name='\u56fe\u7247\u8def\u5f84')), ('date_publish', models.DateTimeField(auto_now_add=True, verbose_name='\u53d1\u8868\u65f6\u95f4')), ('back_content', models.URLField(blank=True, null=True, verbose_name='\u53cd\u9988\u5185\u5bb9')), ], options={ 'ordering': ['id'], 'verbose_name': '\u5e7f\u544a', 'verbose_name_plural': '\u5e7f\u544a', }, ), migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=150, verbose_name='\u6587\u7ae0\u6807\u9898')), ('desc', models.CharField(max_length=50, verbose_name='\u6587\u7ae0\u63cf\u8ff0')), ('content', models.TextField(verbose_name='\u6587\u7ae0\u5185\u5bb9')), ('click_count', models.IntegerField(default=0, verbose_name='\u70b9\u51fb\u6b21\u6570')), ('is_recommend', models.BooleanField(default=False, verbose_name='\u662f\u5426\u63a8\u8350')), ('date_publish', models.DateTimeField(verbose_name='\u53d1\u8868\u65f6\u95f4')), ], options={ 'ordering': ['-date_publish'], 'verbose_name': '\u6587\u7ae0', 'verbose_name_plural': '\u6587\u7ae0', }, ), migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, verbose_name='\u5206\u7c7b\u540d\u79f0')), ('index', models.IntegerField(default=999, verbose_name='\u5206\u7c7b\u7684\u6392\u5e8f')), ], options={ 'ordering': ['index', 'id'], 'verbose_name': '\u7c7b\u578b', 'verbose_name_plural': '\u7c7b\u578b', }, ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField(verbose_name='\u8bc4\u8bba\u5185\u5bb9')), ('username', models.CharField(blank=True, max_length=30, null=True, verbose_name='\u7528\u6237\u540d')), ('email', models.EmailField(blank=True, max_length=50, null=True, verbose_name='\u90ae\u7bb1\u5730\u5740')), ('url', models.URLField(blank=True, max_length=50, null=True, verbose_name='\u4e2a\u4eba\u7f51\u9875\u5730\u5740')), ('date_publish', models.DateTimeField(auto_now_add=True, verbose_name='\u53d1\u8868\u65f6\u95f4')), ('article', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='myapp.Article', verbose_name='\u6587\u7ae0')), ('parent_id', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='myapp.Comment', verbose_name='\u7236\u7ea7\u8bc4\u8bba')), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='\u7528\u6237')), ], options={ 'verbose_name': '\u8bc4\u8bba', 'verbose_name_plural': '\u8bc4\u8bba', }, ), migrations.CreateModel( name='Links', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=30, verbose_name='\u6807\u9898')), ('back_content', models.URLField(verbose_name='\u8fd4\u56de\u7f51\u9875')), ('desc', models.CharField(max_length=100, verbose_name='\u94fe\u63a5\u63cf\u8ff0')), ('date_publish', models.DateTimeField(auto_now_add=True, verbose_name='\u53d1\u5e03\u65f6\u95f4')), ], options={ 'ordering': ['id'], 'verbose_name': '\u53cb\u60c5\u94fe\u63a5', 'verbose_name_plural': '\u53cb\u60c5\u94fe\u63a5', }, ), migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, verbose_name='\u6807\u7b7e\u540d\u79f0')), ], options={ 'verbose_name': '\u6807\u7b7e', 'verbose_name_plural': '\u6807\u7b7e', }, ), migrations.AddField( model_name='article', name='category', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='myapp.Category', verbose_name='\u5206\u7c7b'), ), migrations.AddField( model_name='article', name='tag', field=models.ManyToManyField(to='myapp.Tag', verbose_name='\u6807\u7b7e'), ), migrations.AddField( model_name='article', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='\u7528\u6237'), ), ]
24435742a100eb44eebbaaf0e1f1c8741128254a
79e1a5ad019b261034bc6338e894679d3f5d54d9
/Min Cost Climbing Stairs.py
9a9950a033bd4e855d1802436a93afb1b12d2cc0
[ "MIT" ]
permissive
ngdeva99/Fulcrum
c615f457ec34c563199cc1dab243ecc62e23ad0b
3a5c69005bbaf2a5aebe13d1907f13790210fb32
refs/heads/master
2022-12-15T19:35:46.508701
2020-09-09T06:47:48
2020-09-09T06:48:08
294,027,104
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: f1 = f2 = 0 for x in reversed(cost): print(f1,f2) f1, f2 = x + min(f1, f2), f1 print(f1,f2) return min(f1, f2)
84c5dce05f108711b9f0c7145f5a308f8dc04b85
b001b44c95f4a7c5574385baa4fe72c5f3d02236
/home/migrations/0023_auto_20181105_1127.py
de37b9f338419b1882e0f38acef6049ef0a5a320
[ "MIT" ]
permissive
gjergjk71/Attendence
3ae9b9f3cb3c4e0bfe2addf4124b7612a78f1533
9e9370125bfc4958de02171a3ae4c8e16bf10913
refs/heads/master
2020-04-14T08:46:58.649674
2019-01-01T14:27:29
2019-01-01T14:27:29
163,743,067
0
0
MIT
2019-01-01T14:34:28
2019-01-01T14:34:28
null
UTF-8
Python
false
false
491
py
# Generated by Django 2.1.3 on 2018-11-05 05:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('home', '0022_auto_20181104_1620'), ] operations = [ migrations.AlterField( model_name='semester_1', name='professerr_name', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to='home.Sections'), ), ]
b1fca8e72085fe1fa234e38b71acb35fdb96361e
ee054fbb74b9d015b5b2e61f5801a7117ee6f872
/postgresql/import_csv.py
fd4947158711fcea2fab090957aaa58d02521209
[]
no_license
Sperryfreak01/other
992571ca9dee8a6b0c07a408cb3b9d0bf7a7097b
f38be8d089316a0c56c3e94ef1683ec64c218f92
refs/heads/master
2021-05-30T08:15:06.427689
2016-02-07T00:27:03
2016-02-07T00:27:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,309
py
""" Script to load csv files into remote PostgreSQL database Overview: 1. Get list of files to import 2. Get list of tables 3. Clear each table of existing data 4. Import new csv data into each table """ import os import psycopg2 # Get list of files to import file_list = os.listdir('C:/Users/pfriedhoff/Desktop/Arena Extracts') file_list.sort() # Setup connection: http://initd.org/psycopg/docs/module.html try: connection = psycopg2.connect(database = 'NTarenadump', host = 'nt-arena-dump.co2objn467gs.us-west-2.rds.amazonaws.com', user = 'pfriedhoff', password = '') except psycopg2.Error as e: print ('Cannot connect to db: %s, %s' % (e.pgcode, e.pgerror)) # Get list of tables from database cursor = connection.cursor() cursor.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'") table_list = [] for i in cursor.fetchall(): table_list.append(i) table_list.sort() cursor.close() # Build {table: file} dictionary tables_to_files = dict(zip(table_list, file_list)) # Create tables (look into how to cursor.execute(my_sql_file.sql)) # Drop (remove) existing tables [not really needed] # cursor = connection.cursor() # for i in table_list: # try: # cursor.execute("DROP TABLE IF EXISTS %s" % i) # except psycopg2.Error as e: # print ('Something went wrong dropping table: %s' % i) # print ('%s, %s' % (e.pgcode, e.pgerror)) # break # else: # print ('Dropped: %s' % i) # connection.commit() # cursor.close() # Delete existing data from tables cursor = connection.cursor() for i in table_list: try: cursor.execute("DELETE FROM %s" % i) except psycopg2.Error as e: print ('Something went wrong deleting data from %s' % i) print ('%s, %s' % (e.pgcode, e.pgerror)) break else: print ('Deleted from: %s' % i) connection.commit() cursor.close() # Import csv data using copy_expert() cursor = connection.cursor() for k, v in tables_to_files.items(): try: cursor.copy_expert(sql = "COPY %s FROM STDIN WITH DELIMITER ',' CSV HEADER" % k, file = open('C:/Users/pfriedhoff/Desktop/Arena Extracts/%s' % v, encoding = 'utf8')) connection.commit() except psycopg2.Error as e: print ('Import error: %s, %s' % (k, v)) print ('%s, %s' % (e.pgcode, e.pgerror)) break else: print ('File copied: %s' % v) cursor.close() connection.close()
ed491ef29d52c9db882bb740da80eef161bcd96c
aeb1bf8e189d7aabe55d86697f0b5712e35ed6ab
/KontoInhaber/main.py
4bcb79d95c46578c487cca865e7892ea3fdbc5f6
[ "MIT" ]
permissive
sandrodegiorgi/pythonits
bdb1b870fd3844aadf81082e7e0e6c6ecede3a1f
1677e8fcf7c117c7657273ef0f6cc98718c5895b
refs/heads/master
2023-05-30T17:37:39.108912
2021-06-17T17:08:32
2021-06-17T17:08:32
377,806,160
0
1
null
null
null
null
UTF-8
Python
false
false
1,160
py
# This is a sample Python script. # Press Umschalt+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. from Girokonto import Girokonto from Inhaber import Inhaber from Sparkonto import Sparkonto # Press the green button in the gutter to run the script. if __name__ == '__main__': erstesKonto = Girokonto(499, 500, 1000) ersterInhaber = Inhaber("Helga",erstesKonto) erstesKonto.setInhaber(ersterInhaber) print(erstesKonto.getInhaber().getName()) naechstesKonto = Girokonto(500, 100, 319) print(naechstesKonto.getKontoNr()) print(naechstesKonto.getKontostand()) naechstesKonto.einzahlen(100) print(naechstesKonto.getKontostand()) naechstesKonto.abheben(150) print(naechstesKonto.getKontostand()) anderesKonto = Sparkonto(501) print(anderesKonto.getKontostand()) anderesKonto.einzahlen(100) einKunde = Inhaber("Bruno", anderesKonto) einKunde.fuegeKontoHinzu(naechstesKonto) print(einKunde.berechneGesamtStand()) print(einKunde.berechneGesamtGebuehr())
31ff3e39a7a68715fe32a0839c2e2d057417d29b
931db874c996cfedea38607922e3ceef7497a727
/api.py
5e635899c35e455759048e741505c14bf497a3e7
[]
no_license
Cy8erEgo/vk-mailing-bot
f809fd501504909cc7f2f5359b0eb7ecbb07a654
4cb3a834c742578fb6c03fffa8170829a774f830
refs/heads/master
2023-01-02T06:10:59.950392
2020-10-25T13:26:15
2020-10-25T13:26:15
306,930,016
0
0
null
null
null
null
UTF-8
Python
false
false
2,917
py
import random from time import sleep import requests from typing import List _BASE_URL = "https://api.vk.com/method/" _HTTP_HEADERS = {"Content-Type": "application/json;charset=utf-8"} _API_VERSION = 5.124 class IncorrectTokenException(Exception): pass class Api: def __init__(self, token: str): self._token = token def _query(self, endpoint: str, params: dict = None, data: dict = None, method: str = "GET") -> dict: url = "{}{}".format(_BASE_URL, endpoint) if not params: params = {} params["access_token"] = self._token params["v"] = _API_VERSION if method == "GET": response = requests.get(url, params=params) elif method == "POST": response = requests.post(url, data=data, params=params) else: raise ValueError("Incorrect method passed") json_ = response.json() if "error" in json_: if json_["error"]["error_code"] == 5: raise IncorrectTokenException else: raise RuntimeError(json_["error"]["error_msg"]) return json_ def get_chats(self, max_count: int = 0) -> list: chats = [] offset = 0 while 1: # высчитываем count исходя из max_count if max_count and max_count - len(chats) < 200: count = max_count - len(chats) if count == 0: break else: count = 200 # получение списка чатов response = self._query( "messages.getConversations", {"count": count, "offset": offset} ) chats_portion = response["response"]["items"] chats.extend(chats_portion) # выходим из цикла, если это последняя партия чатов if len(chats_portion) < 200: break offset += 200 return chats def mailing(self, user_ids: List[int], text: str, delay: int = 0) -> None: offset = 0 while True: # формируем список получателей до 100 шт. peer_ids = ",".join( [str(user_id) for user_id in user_ids[offset : offset + 100]] ) # формируем уникальный ID сообщения random_id = random.randint(1_000_000_000, 9_999_999_999) # отправляем сообщение вышеуказанным получателям self._query( "messages.send", data={"peer_ids": peer_ids, "message": text, "random_id": random_id}, method="POST" ) offset += 100 if offset >= len(user_ids): break sleep(delay)
3afe47de2ced6f21ac6206f27a8fca59cac32d6b
ff1324c007edb02dc4fa84c428f7b1b3b45bd318
/yql3/__init__.py
7ac9f82c1e616113f2d6f711b952b16acb756f2a
[]
no_license
softsign/yahoo_ff_bot
d4888d74cf7d1c507b86e6daa1ec655951fc42c3
d5bbc7a8198153cff805fac82b08463a79dc47e6
refs/heads/master
2020-03-28T13:25:52.525901
2018-09-12T03:30:13
2018-09-12T03:30:13
148,394,868
1
0
null
2018-09-12T03:32:40
2018-09-11T23:56:38
Python
UTF-8
Python
false
false
21,350
py
""" Python YQL ========== YQL client for Python Author: Stuart Colville http://muffinresearch.co.uk/ Docs at: http://python-yql.org/ Updates by: Joe M TODO: More granular error handling """ import json import re import time import pprint from urllib.parse import urlparse, urlencode from httplib2 import Http from six import string_types from yql3.utils import get_http_method, clean_url, clean_query from yql3.logger import get_logger import oauth2 as oauth try: from urllib.parse import parse_qs, parse_qsl except ImportError: # pragma: no cover from cgi import parse_qs, parse_qsl __author__ = 'Stuart Colville' __version__ = '0.7.7' __all__ = ['Public', 'TwoLegged', 'ThreeLegged'] QUERY_PLACEHOLDER = re.compile(r"[ =]@(?P<param>[a-z].*?\b)", re.IGNORECASE) REQUEST_TOKEN_URL = 'https://api.login.yahoo.com/oauth/v2/get_request_token' ACCESS_TOKEN_URL = 'https://api.login.yahoo.com/oauth/v2/get_token' AUTHORIZATION_URL = 'https://api.login.yahoo.com/oauth/v2/request_auth' PUBLIC_ENDPOINT = 'https://query.yahooapis.com/v1/public/yql' PRIVATE_ENDPOINT = 'https://query.yahooapis.com/v1/yql' yql_logger = get_logger() class YQLObj(object): """A YQLObject is the object created as the result of a YQL query""" def __init__(self, result_dict): """Init query object""" self._raw = result_dict and result_dict.get('query') or {} @property def raw(self): """The raw data response""" return self._raw @property def uri(self): """The uri used to query the YQL API""" return self._raw.get('uri') @property def query_params(self): """The query parameters of the uri used to call the YQL API""" if self.uri: q_string = urlparse(self.uri)[4] return dict(parse_qsl(q_string)) else: return {} @property def results(self): """The query results dict.""" return self._raw.get('results') def one(self): """Return just one result directly.""" rows = self.rows if len(rows) > 1: raise NotOneError("More than one result") else: return rows[0] @property def rows(self): """Get a list of rows returned by the query. Results is a dict with one key but that key changes depending on the results This provides a way of getting at the rows list in an arbitrary way. Added in version: 0.6 fixes results with 1 item so that they are still returned within a list. """ result = [] if self.results: vals = self.results.values() if len(vals) == 1: result = list(self.results.values())[0] if self.count == 1 and result: result = [result] return result @property def query(self): """The YQL query""" return self.query_params.get('q') @property def lang(self): """The language""" return self._raw.get('lang') @property def count(self): """The results count""" count = self._raw.get('count') if count: return int(count) @property def diagnostics(self): """The query diagnostics""" return self._raw.get('diagnostics') def pprint_raw(self, indent=4): # pragma: no cover """Pretty print the raw data""" pprint.pprint(self._raw, indent=indent) def pformat_raw(self, indent=4): # pragma: no cover """Pretty format the raw data""" return pprint.pformat(self._raw, indent=indent) class YQLError(Exception): """Default Error""" def __init__(self, resp, content, url=None, query=None): yql_logger.error("%s", content) yql_logger.error("Error Response: %s", resp) yql_logger.error("Error url: %s", url) self.response = resp self.content = content self.url = url self.query = query def __str__(self): """Return the error message. Attempt to parse the json if it fails simply return the content attribute instead. """ try: content = json.loads(self.content) except: content = {} if content and content.get("error") and content["error"].get( "description"): return content['error']['description'] else: if isinstance(self.content, string_types): return self.content else: return repr(self.content) class NotOneError(Exception): """Not One Error.""" def __init__(self, message): self.message = message def __str__(self): """Return the error message""" return self.message class YQLQuery(object): """A YQL Query class used to inspect and validate a query""" def __init__(self, query): self.query = clean_query(query) def __str__(self): """Return the query""" return self.query def get_http_method(self): """Return the HTTP method associated with the type of this query""" return get_http_method(self.query) def get_placeholder_keys(self): """Gets the @var placeholders http://developer.yahoo.com/yql/guide/var_substitution.html """ result = [] for match in QUERY_PLACEHOLDER.finditer(self.query): result.append(match.group('param')) if result: yql_logger.debug("placeholder_keys: %s", result) return result def validate(self, substitutions=None): """Validate the query placeholders""" placeholders = set(self.get_placeholder_keys()) if substitutions is not None: self._validate_substitutions(substitutions, placeholders) elif placeholders: raise ValueError("Query uses placeholders so a dictionary " "of substitutions is required") return True def _validate_substitutions(self, substitutions, placeholders): if hasattr(substitutions, 'keys'): self._validate_substitutions_dictionary(placeholders, substitutions) else: raise ValueError("Substitutions must be a dictionary.") def _validate_substitutions_dictionary(self, placeholders, substitutions): if not placeholders: raise ValueError("Got a dictionary of substitutions but " "the query doesn't have any placeholders") if set(placeholders) != set(substitutions.keys()): raise ValueError("Substitution keys don't match " "the placeholders") class Public(object): """Class for making public YQL queries""" def __init__(self, api_key=None, shared_secret=None, httplib2_inst=None): """Init the base class. Optionally you can pass in an httplib2 instance which allows you to set-up the instance in a different way for your own uses. Also it's very helpful in a testing scenario. """ self.api_key = api_key self.secret = shared_secret self.http = httplib2_inst or Http() self.endpoint = PUBLIC_ENDPOINT def get_query_params(self, query, params, **kwargs): """Get the query params and validate placeholders""" query_params = {} if query.validate(params) and params: query_params.update(params) query_params['q'] = query.query query_params['format'] = 'json' env = kwargs.get('env') if env: query_params['env'] = env return query_params def get_uri(self, query, params=None, **kwargs): """Get the the request url""" if isinstance(query, string_types): query = YQLQuery(query) params = self.get_query_params(query, params, **kwargs) query_string = urlencode(params) uri = '%s?%s' % (self.endpoint, query_string) uri = clean_url(uri) return uri def execute(self, query, params=None, **kwargs): """Execute YQL query""" yqlquery = YQLQuery(query) url = self.get_uri(yqlquery, params, **kwargs) yql_logger.debug("executed url: %s", url) http_method = yqlquery.get_http_method() if http_method in ["DELETE", "PUT", "POST"]: data = {"q": query} # Encode as json and set Content-Type header # to reflect we are sending JSON # Fixes LP: 629064 data = json.dumps(data) headers = {"Content-Type": "application/json"} resp, content = self.http.request( url, http_method, headers=headers, body=data) yql_logger.debug("body: %s", data) else: resp, content = self.http.request(url, http_method) yql_logger.debug("http_method: %s", http_method) if resp.get('status') == '200': return YQLObj(json.loads(content.decode('utf-8'))) else: raise YQLError(resp, content) class TwoLegged(Public): """Two legged Auth is simple request which is signed prior to sending""" def __init__(self, api_key, shared_secret, httplib2_inst=None): """Override init to ensure required args""" super(TwoLegged, self).__init__(api_key, shared_secret, httplib2_inst) self.endpoint = PRIVATE_ENDPOINT self.hmac_sha1_signature = oauth.SignatureMethod_HMAC_SHA1() self.plaintext_signature = oauth.SignatureMethod_PLAINTEXT() def get_signature(self, url): url_parts = urlparse(url) scheme = url_parts.scheme if scheme == "http": sig = self.hmac_sha1_signature elif scheme == "https": sig = self.plaintext_signature else: raise ValueError("Invalid scheme: %s " % scheme) return sig @staticmethod def get_base_params(): """Set-up the basic parameters needed for a request""" params = {} params['oauth_version'] = "1.0" params['oauth_nonce'] = oauth.generate_nonce() params['oauth_timestamp'] = int(time.time()) return params def __two_legged_request(self, parameters=None, method=None): """Sign a request for two-legged authentication""" params = self.get_base_params() if parameters: params.update(parameters) url = self.endpoint yql_logger.debug("params: %s", params) yql_logger.debug("endpoint_url: %s", url) if not method: method = "GET" consumer = oauth.Consumer(self.api_key, self.secret) request = oauth.Request(method=method, url=url, parameters=params) sig = self.get_signature(url) yql_logger.debug("signature: %s", sig) request.sign_request(sig, consumer, None) return request def get_uri(self, query, params=None, **kwargs): """Get the the request url""" if isinstance(query, string_types): query = YQLQuery(query) query_params = self.get_query_params(query, params, **kwargs) http_method = query.get_http_method() request = self.__two_legged_request(parameters=query_params, method=http_method) url = request.to_url() return clean_url(url) class ThreeLegged(TwoLegged): """ Three-legged Auth is used when it involves private data such as a user's contacts. Three-legged auth is most likely to be used in a web-site or web-accessible application. Three-legged auth requires the user to authenticate the request through the Yahoo login. Three-legged auth requires the implementation to: * Request a token * Get a authentication url * User uses the auth url to login which will redirect to a callback or shows a verfier string on screen * Verifier is read at the callback url or manually provided to get the access token * resources is access For an implementation this will require calling the following methods in order the first time the user needs to authenticate * :meth:`get_token_and_auth_url` (returns a token and the auth url) * get verifier through callback or from screen * :meth:`get_access_token` (returns the access token) * :meth:`execute` - makes the request to the protected resource. Once the access token has been provided subsequent requests can re-use it. Access tokens expire after 1 hour, however they can be refreshed with the :meth:`refresh_token` method """ def __init__(self, api_key, shared_secret, httplib2_inst=None): """Override init to add consumer""" super(ThreeLegged, self).__init__( api_key, shared_secret, httplib2_inst) self.consumer = oauth.Consumer(self.api_key, self.secret) def get_token_and_auth_url(self, callback_url=None): """First step is to get the token and then send the request that provides the auth URL Returns a tuple of token and the authorisation URL. """ client = oauth.Client(self.consumer) params = {} params['oauth_callback'] = callback_url or 'oob' request = oauth.Request(parameters=params) url = REQUEST_TOKEN_URL resp, content = client.request(url, "POST", request.to_postdata()) if resp.get('status') == '200': token = oauth.Token.from_string(content) yql_logger.debug("token: %s", token) data = dict(parse_qsl(content)) yql_logger.debug("data: %s", data) return token, data[b'xoauth_request_auth_url'] else: raise YQLError(resp, content, url) def get_access_token(self, token, verifier): """Get the access token The verifier (required) should have been provided to the user following login to at the url returned by the :meth:`get_token_and_auth_url` method. If not you will need need to extract the auth_verifier parameter from your callback url on the site where you are implementing 3-legged auth in order to pass it to this function. The access token can be stored and re-used for subsequent calls. The stored token will also need to be refreshed periodically with :meth:`refresh_token` """ params = {} params['oauth_verifier'] = verifier oauth_request = oauth.Request.from_consumer_and_token( self.consumer, token=token, http_url=ACCESS_TOKEN_URL, http_method="POST", parameters=params) yql_logger.debug("oauth_request: %s", oauth_request) oauth_request.sign_request( self.hmac_sha1_signature, self.consumer, token) url = oauth_request.to_url() yql_logger.debug("oauth_url: %s", url) postdata = oauth_request.to_postdata() yql_logger.debug("oauth_postdata: %s", postdata) resp, content = self.http.request(url, "POST", postdata) if resp.get('status') == '200': access_token = YahooToken.from_string(content) access_token.timestamp = oauth_request['oauth_timestamp'] return access_token else: raise YQLError(resp, content, url) def check_token(self, token): """Check to see if a token has expired""" if not hasattr(token, 'timestamp'): raise AttributeError('token doesn\'t have a timestamp attribute') if (int(token.timestamp) + 3600) < time.time(): token = self.refresh_token(token) return token def refresh_token(self, token): """Access Tokens only last for one hour from the point of being issued. When a token has expired it needs to be refreshed this method takes an expired token and refreshes it. token parameter can be either a token object or a token string. """ if not hasattr(token, "key"): token = YahooToken.from_string(token) params = self.get_base_params() params['oauth_token'] = token.key params['oauth_token_secret'] = token.secret if hasattr(token, "session_handle"): params['oauth_session_handle'] = token.session_handle oauth_request = oauth.Request.from_consumer_and_token( self.consumer, token=token, http_url=ACCESS_TOKEN_URL, http_method="POST", parameters=params) yql_logger.debug("oauth_request: %s", oauth_request) oauth_request.sign_request( self.hmac_sha1_signature, self.consumer, token) url = oauth_request.to_url() yql_logger.debug("oauth_url: %s", url) postdata = oauth_request.to_postdata() yql_logger.debug("oauth_postdata: %s", postdata) resp, content = self.http.request(url, "POST", postdata) if resp.get('status') == '200': access_token = YahooToken.from_string(content) yql_logger.debug("oauth_access_token: %s", access_token) access_token.timestamp = oauth_request['oauth_timestamp'] return access_token else: raise YQLError(resp, content, url) def get_uri(self, query, params=None, **kwargs): """Get the the request url""" if isinstance(query, string_types): query = YQLQuery(query) query_params = self.get_query_params(query, params, **kwargs) token = kwargs.get("token") if hasattr(token, "yahoo_guid"): query_params["oauth_yahoo_guid"] = getattr(token, "yahoo_guid") if not token: raise ValueError("Without a token three-legged-auth cannot be" " carried out") yql_logger.debug("query_params: %s", query_params) http_method = query.get_http_method() url = self.endpoint oauth_request = oauth.Request.from_consumer_and_token( self.consumer, http_url=url, token=token, parameters=query_params, http_method=http_method) yql_logger.debug("oauth_request: %s", oauth_request) # Sign request sig = self.get_signature(url) oauth_request.sign_request(sig, self.consumer, token) yql_logger.debug("oauth_signed_request: %s", oauth_request) url = oauth_request.to_url() url = clean_url(url) return url.replace('+', '%20').replace('%7E', '~') def convert(data): if isinstance(data, bytes): return data.decode('ascii') if isinstance(data, dict): return dict(map(convert, data.items())) if isinstance(data, tuple): return map(convert, data) return data class YahooToken(oauth.Token): """A subclass of oauth.Token with the addition of a place to stash the session_handler which is required for token refreshing """ @staticmethod def from_string(data_string): """Deserializes a token from a string like one returned by `to_string()`.""" if not len(data_string): raise ValueError("Invalid parameter string.") orig_params = parse_qs(data_string, keep_blank_values=False) params = convert(orig_params) if not len(params): raise ValueError("Invalid parameter string.") try: key = params['oauth_token'][0] except Exception: raise ValueError("'oauth_token' not found in OAuth request.") try: secret = params['oauth_token_secret'][0] except Exception: raise ValueError("'oauth_token_secret' not found in " "OAuth request.") token = YahooToken(key, secret) session_handle = params.get('oauth_session_handle') if session_handle: setattr(token, 'session_handle', session_handle[0]) timestamp = params.get('token_creation_timestamp') if timestamp: setattr(token, 'timestamp', timestamp[0]) try: token.callback_confirmed = params['oauth_callback_confirmed'][0] except KeyError: pass # 1.0, no callback confirmed. return token def to_string(self): """Returns this token as a plain string, suitable for storage. The resulting string includes the token's secret, so you should never send or store this string where a third party can read it. """ data = { 'oauth_token': self.key, 'oauth_token_secret': self.secret, } if hasattr(self, 'session_handle'): data['oauth_session_handle'] = self.session_handle if hasattr(self, 'timestamp'): data['token_creation_timestamp'] = self.timestamp if self.callback_confirmed is not None: data['oauth_callback_confirmed'] = self.callback_confirmed return urlencode(data)
081eec9129daf0365812630378010bba524f2a46
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_246/ch31_2020_03_19_21_18_43_133674.py
96a74701687347579e4909926913a5fbe4407c46
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
305
py
def eh_primo(x): if x==25: return False elif x==3: return True elif x==2: return True elif x==1: return False elif x%2==0: return False else: y=3 while not x%y==0: y=y+2 return True return False
00e7a05b4daac5c0a2b0e1da8441ad4c7712e449
4718417c66065904e53c141c476c8b232f96ed55
/June16/WordAndCharCount.py
faac691ae448bf1f74fd93e9eeb9ffd36333c96a
[]
no_license
alvas-education-foundation/Srilatha-K-Kamath-Daily-Report
c28dec426f1e57b65fd21d7370b7d742f823c22f
6d56662633ae5b1df87dd6d5c23232c1a09dcd34
refs/heads/master
2022-11-30T04:59:26.548878
2020-08-19T12:20:01
2020-08-19T12:20:01
265,306,429
1
0
null
null
null
null
UTF-8
Python
false
false
229
py
string=input('Enter the String: ') wordcount=0 charcount=0 for word in string.split(): wordcount+=1 for i in word: if(len(i)>0): charcount+=1 print('Word count is ',wordcount) print('Character count is ',charcount)
0b4074c7855ab1f8347ee4e06bf3d439e4e0ac55
c01fdb66ee949ce14fa7b2fc64c94b15a9ba645f
/3.无重复字符的最长子串.py
cc705193f7011053287ff3b0614d4b83c0a47fb0
[]
no_license
yxudong/LeetCode
fab58e73cf25fed435f9bd8365503ca0a1a16ac0
5fa8d84f91f6d2583a963313fde8fda48301c495
refs/heads/master
2021-08-04T03:50:52.409993
2021-07-15T08:33:52
2021-07-15T08:33:52
167,906,353
1
0
null
null
null
null
UTF-8
Python
false
false
833
py
# # @lc app=leetcode.cn id=3 lang=python3 # # [3] 无重复字符的最长子串 # # @lc code=start # Tips: string, sliding-window, two-pointers, hash-table class Solution: def lengthOfLongestSubstring(self, s: str) -> int: len_s = len(s) if len_s <= 1: return len_s max_sub_len, right_point = 1, 1 set_s = set() set_s.add(s[0]) for left_point in range(0, len_s): while right_point < len_s: if s[right_point] not in set_s: set_s.add(s[right_point]) right_point = right_point + 1 max_sub_len = max(max_sub_len, right_point - left_point) else: set_s.remove(s[left_point]) break return max_sub_len # @lc code=end
cfee516f6a9befc78f63ec344ce9bc4d23c5925f
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/classification/convmixer/timm/models/layers/drop.py
df2526309ae305202741bf5836e408b6b8e94bc5
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
8,618
py
# BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ """ DropBlock, DropPath PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. Papers: DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) Code: DropBlock impl inspired by two Tensorflow impl that I liked: - https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 - https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py Hacked together by / Copyright 2020 Ross Wightman """ import torch import torch.nn as nn import torch.nn.functional as F def drop_block_2d( x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf DropBlock with an experimental gaussian noise option. This layer has been tested on a few training runs with success, but needs further validation and possibly optimization for lower runtime impact. """ B, C, H, W = x.shape total_size = W * H clipped_block_size = min(block_size, min(W, H)) # seed_drop_rate, the gamma parameter gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( (W - block_size + 1) * (H - block_size + 1)) # Forces the block to be inside the feature map. w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device)) valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \ ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) if batchwise: # one mask for whole batch, quite a bit faster uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) else: uniform_noise = torch.rand_like(x) block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) block_mask = -F.max_pool2d( -block_mask, kernel_size=clipped_block_size, # block_size, stride=1, padding=clipped_block_size // 2) if with_noise: normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) if inplace: x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) else: x = x * block_mask + normal_noise * (1 - block_mask) else: normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype) if inplace: x.mul_(block_mask * normalize_scale) else: x = x * block_mask * normalize_scale return x def drop_block_fast_2d( x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid block mask at edges. """ B, C, H, W = x.shape total_size = W * H clipped_block_size = min(block_size, min(W, H)) gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( (W - block_size + 1) * (H - block_size + 1)) if batchwise: # one mask for whole batch, quite a bit faster block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma else: # mask per batch element block_mask = torch.rand_like(x) < gamma block_mask = F.max_pool2d( block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) if with_noise: normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) if inplace: x.mul_(1. - block_mask).add_(normal_noise * block_mask) else: x = x * (1. - block_mask) + normal_noise * block_mask else: block_mask = 1 - block_mask normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype) if inplace: x.mul_(block_mask * normalize_scale) else: x = x * block_mask * normalize_scale return x class DropBlock2d(nn.Module): """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf """ def __init__(self, drop_prob=0.1, block_size=7, gamma_scale=1.0, with_noise=False, inplace=False, batchwise=False, fast=True): super(DropBlock2d, self).__init__() self.drop_prob = drop_prob self.gamma_scale = gamma_scale self.block_size = block_size self.with_noise = with_noise self.inplace = inplace self.batchwise = batchwise self.fast = fast # FIXME finish comparisons of fast vs not def forward(self, x): if not self.training or not self.drop_prob: return x if self.fast: return drop_block_fast_2d( x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) else: return drop_block_2d( x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training)
0007f103813cae3d297e93408d84f95ee4198ba1
b63142e8540cb30bb0c663332e29a4112721073e
/1396_set_union.py
0d857ee6689a0f91d0670cc733bef0a70168eb09
[]
no_license
HaydenInEdinburgh/LintCode
025bb2f0d75686097061de324c0fd292536dbb14
dbeae2bf631e57667d1415164d452d5ca2df7447
refs/heads/master
2023-08-18T19:52:54.561623
2021-10-06T21:46:50
2021-10-06T21:46:50
370,733,548
0
0
null
null
null
null
UTF-8
Python
false
false
1,100
py
class UnionFind: def __init__(self, length): self.father = {i: i for i in range(length)} self.count = length def union(self, a, b): a_root = self.find(a) b_root = self.find(b) if a_root == b_root: return self.father[b_root] = a_root self.count -= 1 def find(self, point): path = [] while point != self.father[point]: path.append(point) point = self.father[point] for p in path: self.father[p] = point return point class Solution: """ @param sets: Initial set list @return: The final number of sets """ def setUnion(self, sets): # Write your code here uf = UnionFind(len(sets)) idx = {} for i in range(len(sets)): cur_set = sets[i] for j in range(len(sets[i])): cur_ele = cur_set[j] if cur_ele in idx: uf.union(i, idx[cur_ele]) else: idx[cur_ele] = i return uf.count
b98b728c632282bacfbc50e8f93d8247d8fe05da
5348732cf26a42a83a714adb5841cec9b5f64f81
/Task 1/lecture02.py
61cd167e48718a91ac938e91ccd3738ef3b54c6f
[ "MIT" ]
permissive
SchemingWeasels/EEEE1027_face-recognition_template-matching
7b4468f76164a784a8f2c299b5d8744730537e5c
22a9ebf174d21bbbfbe637d9c7dadba34d468614
refs/heads/master
2022-07-23T21:35:32.024385
2020-05-22T09:32:29
2020-05-22T09:32:29
266,066,269
0
0
null
null
null
null
UTF-8
Python
false
false
3,287
py
import cv2 import numpy as np face_cascade = cv2.CascadeClassifier('Pictures/haarcascade_frontalface_alt.xml') cap = cv2.VideoCapture(0) scaling_factor = 0.5 while True: ret, frame = cap.read() frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) face_rects = face_cascade.detectMultiScale(frame, scaleFactor=1.3,minNeighbors=3) for (x,y,w,h) in face_rects: cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3) cv2.imshow('Face Detector', frame) c = cv2.waitKey(1) if c == 27: break cap.release() cv2.destroyAllWindows() ___________________________________________________________________ import cv2 import numpy as np face_cascade =cv2.CascadeClassifier('Pictures/haarcascade_frontalface_alt.xml') eye_cascade = cv2.CascadeClassifier('Pictures/haarcascade_eye.xml') if face_cascade.empty(): raise IOError('Unable to load the face cascade classifier xml file') if eye_cascade.empty(): raise IOError('Unable to load the eye cascade classifier xml file') cap = cv2.VideoCapture(0) scaling_factor = 0.5 while True: ret, frame = cap.read() frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3,minNeighbors=1) for (x,y,w,h) in faces: roi_gray = gray[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (x_eye,y_eye,w_eye,h_eye) in eyes: center = (int(x_eye + 0.5*w_eye), int(y_eye + 0.5*h_eye)) radius = int(0.3 * (w_eye + h_eye)) color = (0, 255, 0) thickness = 3 cv2.circle(roi_color, center, radius, color, thickness) cv2.imshow('Eye Detector', frame) c = cv2.waitKey(1) if c == 27: break cap.release() cv2.destroyAllWindows() _________________________________________________________________________ import cv2 import numpy as np left_ear_cascade = cv2.CascadeClassifier('Pictures/haarcascade_mcs_leftear.xml') right_ear_cascade = cv2.CascadeClassifier('Pictures/haarcascade_mcs_rightear.xml') if left_ear_cascade.empty(): raise IOError('Unable to load the left ear cascade classifier xml file') if right_ear_cascade.empty(): raise IOError('Unable to load the right ear cascade classifier xml file') cap = cv2.VideoCapture(0) scaling_factor = 0.5 while True: ret, frame = cap.read() frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) left_ear = left_ear_cascade.detectMultiScale(gray, scaleFactor=1.3,minNeighbors=3) right_ear = right_ear_cascade.detectMultiScale(gray, scaleFactor=1.3,minNeighbors=3) for (x,y,w,h) in left_ear: cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3) for (x,y,w,h) in right_ear: cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 3) cv2.imshow('Ear Detector', frame) c = cv2.waitKey(1) if c == 27: break cap.release() cv2.destroyAllWindows() ______________________________________________________________-
c4582d858eedc192af567422de49a7e58b240a1c
53dd5d2cfb79edc87f6c606bbfb7d0bedcf6da61
/.history/EMR/zhzd_2_20190605154039.py
c6472ca4dd8a3ad43ec2696d5a071ed5ec48ca2b
[]
no_license
cyc19950621/python
4add54894dc81187211aa8d45e5115903b69a182
d184b83e73334a37d413306d3694e14a19580cb0
refs/heads/master
2020-04-11T20:39:34.641303
2019-07-02T12:54:49
2019-07-02T12:54:49
162,078,640
0
0
null
null
null
null
UTF-8
Python
false
false
5,178
py
import time import math import os import sys import os, os.path,shutil import codecs import EMRdef import re import pandas as pd emrtxts = EMRdef.txttq(u'D:\DeepLearning ER\EHRzhzd')#txt目录提取 g = open(r'C:\Users\Administrator\Desktop\JBML.txt',errors='ignore') dics=g.readlines() ryzd=[] output=[] line_re = [] for emrtxt in emrtxts: f = open(emrtxt,'r',errors="ignore")#中文加入errors emrpath = os.path.basename(emrtxt) emrpath = os.path.splitext(emrpath)[0]#提取目录 pattern =r'\s*\d+、+\s?(.*)' c=re.compile(pattern) for line in f.readlines(): line1=line.strip('\n') line2 = ''.join(line1) line2 = line2.strip( ) line3=c.findall(line2) line3=''.join(line3) line4 = str(line3) line = line4 line=re.sub('\n','',line) line=re.sub(' ','',line) line = re.sub(r'\?|?', '',line) line = re.sub(r'\,|\.|;','',line) out = line out= re.sub(r'右侧|两侧|双侧|左侧|右|左|双','',out) out = re.sub(r'肺肺','肺',out) out = re.sub('(.*?)', '', out) out = re.sub(r'很高危|极高危', '', out) line = out line_re.append(line) while '' in line_re: line_re.remove('') for line in line_re: for dic in dics: dic=re.sub('\n','',dic) if set(line) == set(dic): out.append(dic) elif SBS(line,dic)>0.8 and SBS(line,dic) <1: out.append(dic) output=EMRdef.delre(output) #output1='\n'.join(output) #EMRdef.text_create(r'D:\DeepLearning ER\EHRzhzd2','.txt',emrpath,output1) ryzd.append(output) #导入关联规则 import orangecontrib.associate.fpgrowth as oaf def dealRules(rules): returnRules = [] for i in rules: temStr = ''; for j in i[0]: #处理第一个frozenset temStr = temStr+j+'&' temStr = temStr[:-1] temStr = temStr + ' ==> ' for j in i[1]: temStr = temStr+j+'&' temStr = temStr[:-1] temStr = temStr + ';' +'\t'+str(i[2])+ ';' +'\t'+str(i[3]) # print(temStr) returnRules.append(temStr) return returnRules def dealResult(rules):#对规则处理 returnRules = [] for i in rules: temStr = ''; for j in i[0]: #处理第一个frozenset temStr = temStr+j+'&' temStr = temStr[:-1] temStr = temStr + ' ==> ' for j in i[1]: temStr = temStr+j+'&' temStr = temStr[:-1] temStr = temStr + ';' +'\t'+str(i[2])+ ';' +'\t'+str(i[3])+ ';' +'\t'+str(i[4])+ ';' +'\t'+str(i[5])+ ';' +'\t'+str(i[6])+ ';' +'\t'+str(i[7]) # print(temStr) returnRules.append(temStr) return returnRules def ResultDFToSave(rules): #根据Qrange3关联分析生成的规则得到并返回对于的DataFrame数据结构的函数 returnRules = [] for i in rules: temList = [] temStr = ''; for j in i[0]: #处理第一个frozenset temStr = temStr + str(j) + '&' temStr = temStr[:-1] temStr = temStr + ' ==> ' for j in i[1]: temStr = temStr + str(j) + '&' temStr = temStr[:-1] temList.append(temStr); temList.append(i[2]); temList.append(i[3]); temList.append(i[4]) temList.append(i[5]); temList.append(i[6]); temList.append(i[7]) returnRules.append(temList) return pd.DataFrame(returnRules,columns=('规则','项集出现数目','置信度','覆盖度','力度','提升度','利用度')) if __name__ == '__main__': supportRate = 0.002 confidenceRate = 0.2 itemsets = dict(oaf.frequent_itemsets(ryzd, supportRate)) rules = oaf.association_rules(itemsets, confidenceRate) rules = list(rules) regularNum = len(rules) printRules = dealRules(rules) result = list(oaf.rules_stats(rules, itemsets, len(ryzd))) #下面这个函数改变了rules,把rules用完了! printResult = dealResult(result) ################################################# # 下面将结果保存成excel格式的文件 dfToSave = ResultDFToSave(result) #saveRegularName = str(supportRate)+'支持度_'+str(confidenceRate)+'置信度_产生了'+str(regularNum)+'条规则'+'.xlsx' dfToSave.to_excel(r'C:\Users\Administrator\Desktop\2.xlsx') ####################################################### # 下面是根据不同置信度和关联度得到关联规则数目 listTable = [] supportRate = 0.001 confidenceRate = 0.1 for i in range(9): support = supportRate*(i+1) listS = [] for j in range(9): confidence = confidenceRate*(j+1) itemsets = dict(oaf.frequent_itemsets(ryzd, support)) rules = list(oaf.association_rules(itemsets, confidence)) listS.append(len(rules)) listTable.append(listS) dfList = pd.DataFrame(listTable,index = [supportRate*(i+1) for i in range(9)],columns=[confidenceRate*(i+1) for i in range(9)]) dfList.to_excel(r'C:\Users\Administrator\Desktop\outlunwen.xlsx')
bfc3f2d2974b18bddcac2a327a085bced230123a
bfad81de459052ea439a06d4346a4fdc60b3cad2
/Project/Project/urls.py
b938a774ed61e21c007646c1637cf0a69b8236a0
[]
no_license
MarCastellnou/Deriverable_Proj-Web
ecc9841b48c479cc05071a85f94bc92d5b8323a5
0a3b39e3afe1cc233c0e0e0186635037da26e0cd
refs/heads/master
2021-07-19T02:49:02.962373
2019-05-26T09:54:39
2019-05-26T09:54:39
175,597,908
0
0
null
2020-06-05T20:59:43
2019-03-14T10:17:58
Python
UTF-8
Python
false
false
989
py
"""Project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('django.contrib.auth.urls')), path('accounts/', include('accounts.urls')), path('', include('criptomonedasapp.urls')), ]
97ef71708fa9e7f58b078ba005c13ae776855b84
6a3f2da99bd10f6a701964bc46c3bc6dc2ba1043
/lab02/lab02.py
768b05a4c58e67cc9e02627b0a981b8752742bcc
[]
no_license
ziliang865/CS61A
678a1a5d1963529b94b7664075333c6729242126
5d98e0ceff10607800f81f75d35363a218fabf59
refs/heads/master
2021-01-24T08:21:01.479598
2016-09-25T06:09:00
2016-09-25T06:09:00
69,146,948
0
0
null
null
null
null
UTF-8
Python
false
false
2,371
py
"""Lab 2: Higher Order Functions & Lambdas & Recursions""" def lambda_curry2(func): """ Returns a Curried version of a two argument function func. >>> from operator import add >>> from operator import mul >>> x = lambda_curry2(add) >>> y = x(3) >>> y(5) 8 >>> x = lambda_curry2(mul)(3)(5) >>> x 15 """ "*** YOUR CODE HERE ***" return lambda x: lambda y:func(x,y) from doctest import run_docstring_examples run_docstring_examples(lambda_curry2,globals(),True) def adder(f1, f2): """ Return a function that takes in a single variable x, and returns f1(x) + f2(x). You can assume the result of f1(x) and f2(x) can be added together, and they both take in one argument. >>> identity = lambda x: x # returns input >>> square = lambda x: x**2 >>> a1 = adder(identity, square) # x + x^2 >>> a1(4) 20 >>> a2 = adder(a1, identity) # (x + x^2) + x >>> a2(4) 24 >>> a2(5) 35 >>> a3 = adder(a1, a2) # (x + x^2) + (x + x^2 + x) >>> a3(4) 44 """ from operator import add def addFunc(x): return add(f1(x),f2(x)) return addFunc run_docstring_examples(adder, globals(), True) def skip_mul(n): """Return the product of n * (n - 2) * (n - 4) * ... >>> skip_mul(5) # 5 * 3 * 1 15 >>> skip_mul(8) # 8 * 6 * 4 * 2 * 0 0 """ if n == 0: return 0 if n==1: return 1 else: return n * skip_mul(n - 2) def count_up(n): """Print out all numbers up to and including n in ascending order. >>> count_up(5) 1 2 3 4 5 """ def counter(i): if(i>n): return else: print(i) return counter(i+1) i=1 counter(1) run_docstring_examples(count_up, globals(), True) def gcd(a, b): """Returns the greatest common divisor of a and b. Should be implemented using recursion. >>> gcd(34, 19) 1 >>> gcd(39, 91) 13 >>> gcd(20, 30) 10 >>> gcd(40, 40) 40 """ # exchange a and b when a is less than b if(a<b): return gcd(b,a) else: #return if b can be divided by b if(a%b==0): return b else: return gcd(b,a%b) "*** YOUR CODE HERE ***" run_docstring_examples(gcd, globals(), True)
d4edaed4db9a9e82e6c748f1fa17f782f84aa519
62a3db23d44532ef538b6d57f0ea0fd6a43050a0
/finalproject/app/migrations/0005_tournament_fighters.py
f858a094804b0f258e29b31be31e3c952d63395d
[]
no_license
beatrizrp/final
377f009a9a828b9809ab73e66a32d10065bb6347
ce0deb52a8b17e4ae999ca63bd644a2a15f91a9d
refs/heads/master
2020-03-17T11:31:21.147101
2018-10-02T10:55:40
2018-10-02T10:55:40
133,550,930
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-05-23 21:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0004_auto_20180523_2304'), ] operations = [ migrations.AddField( model_name='tournament', name='fighters', field=models.ManyToManyField(to='app.Fighter', verbose_name='Luchadores'), ), ]
e6cffb75f19e4afab6d2810287b9595e26dc13e8
0301717c32f8a919fd00b6e14f944192fe8ba332
/f0005c.py
70dd8100e048bf15df73111b7049ee7a26c7d552
[]
no_license
vmarci80/f0005
e727b2117fe36e463a20b7abc1c355758b477ffd
5fb2c50852e9d20203e401239eb696de2d1b11cc
refs/heads/master
2023-01-12T11:08:15.843474
2020-11-09T13:17:19
2020-11-09T13:17:19
311,344,401
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
#!/usr/bin/env python3 sz1 = 23 sz2 = 9 tipp = int(input ('Mennyi ' + str(sz1) + '+' + str(sz2) + ' ? ')) if tipp == sz1 + sz2: print ('Nem rossz, nem rossz...') else: print('Háát mit csinálsz?!')
679a32a7d56a4b696e1f7578d001282b1b18aa18
0529dbee4b9defe6097f226656cc86079f81df8a
/NN_main.py
2e033b32eb27f7d81083ffca15748faf8ed1eb2c
[]
no_license
xiaoke0515/Bioinformatic_class_project
8f2665ac50f5c3763cbb4e507f5faa92a6865fd1
dac0b5a369a0a702ba3e6627624d2ac01998a595
refs/heads/master
2021-07-13T06:48:09.738880
2020-08-01T14:54:14
2020-08-01T14:54:14
190,893,840
2
0
null
null
null
null
UTF-8
Python
false
false
509
py
from ReadClass import GetClass from NN import NN import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" class_reader = GetClass() filename = "Gene_Chip_Data/Gene_Chip_Data/microarray.original.txt" classifier = NN(class_reader, filename, train_proportion=0.7) (sess, accuracy, loss, input_data, label) = classifier.BuildGraph(30, 20, 15) classifier.Train(sess, accuracy, loss, input_data, label, batch_size=100, train_time=500, lr=1e-3) classifier.Test(sess, accuracy, loss, input_data, label, batch_size=100)
5b7b69ff6abc4a5daba3036daa61e8568b31a038
89336f4937f7ef5416f6cf66669fbf128bb35f02
/app.py
da67d3def794148b3ddf9a3bd512c001d83afddc
[]
no_license
romanstr-code/milestone-project-threee
770605a005bb8102bb9b65b0f47ce747b51dde61
b7d0650123c8beb07c68835a40cd02a941e7c0c0
refs/heads/master
2023-04-20T09:52:20.989531
2021-05-12T09:59:01
2021-05-12T09:59:01
363,171,631
0
1
null
null
null
null
UTF-8
Python
false
false
7,254
py
# Imported Filesw import os from flask import ( Flask, flash, render_template, redirect, request, session, url_for) from flask_pymongo import PyMongo from bson.objectid import ObjectId from werkzeug.security import generate_password_hash, check_password_hash if os.path.exists("env.py"): import env app = Flask(__name__) app.config["MONGO_DBNAME"] = os.environ.get("MONGO_DBNAME") app.config["MONGO_URI"] = os.environ.get("MONGO_URI") app.secret_key = os.environ.get("SECRET_KEY") mongo = PyMongo(app) @app.route("/") # Route to Home Page @app.route("/home") def home(): return render_template("home.html") # All Recipes Page @app.route("/recipes") def recipes(): recipes = list(mongo.db.recipes.find()) return render_template("recipes.html", recipes=recipes) # Search Box @app.route("/search", methods=["GET", "POST"]) def search(): query = request.form.get("query") recipes = list(mongo.db.recipes.find({"$text": {"$search": query}})) return render_template("recipes.html", recipes=recipes) # Individual Recipe Page @app.route("/french_press") def french_press(): return render_template( "french_press.html", recipes=mongo.db.recipes.find({"category_name": "French Press"}) .sort("recipe_name")) # Individual Recipe Page @app.route("/siphon") def siphon(): return render_template( "siphon.html", recipes=mongo.db.recipes.find({"category_name": "Siphon Method"}) .sort("recipe_name")) # Individual Recipe Page @app.route("/turkish") def turkish(): return render_template( "turkish.html", recipes=mongo.db.recipes.find({"category_name": "Turkish Method"}) .sort("recipe_name")) # Individual Recipe Page @app.route("/pour_over") def pour_over(): return render_template( "pour_over.html", recipes=mongo.db.recipes.find({"category_name": "Pour Over Method"}) .sort("recipe_name")) # Individual Recipe Page @app.route("/aeropress") def aeropress(): return render_template( "aeropress.html", recipes=mongo.db.recipes.find({"category_name": "Aeropress Method"}) .sort("recipe_name")) # Individual Recipe Page @app.route("/iced_coffee") def iced_coffee(): return render_template( "iced_coffee.html", recipes=mongo.db.recipes.find({"category_name": "Iced Method"}) .sort("recipe_name")) # Register Page @app.route("/register", methods=["GET", "POST"]) def register(): if request.method == "POST": # check if username already exists in db existing_user = mongo.db.users.find_one( {"username": request.form.get("username").lower()}) if existing_user: flash("Username already exists!") return redirect(url_for("register")) register = { "username": request.form.get("username").lower(), "password": generate_password_hash(request.form.get("password")) } mongo.db.users.insert_one(register) # put new user into 'session' cookie session["user"] = request.form.get("username").lower() flash("Registration Successful!") return redirect(url_for("profile", username=session["user"])) return render_template("register.html") # Log In Page @app.route("/login", methods=["GET", "POST"]) def login(): if request.method == "POST": # check if username exists in db existing_user = mongo.db.users.find_one( {"username": request.form.get("username").lower()}) if existing_user: # ensure hashed password matches user input if check_password_hash( existing_user["password"], request.form.get("password")): session["user"] = request.form.get("username").lower() flash("Welcome,{}".format( request.form.get("username"))) return redirect(url_for( "profile", username=session["user"])) else: # invalid password match flash("Incorrect Username and/or Password") return redirect(url_for("login")) else: # username doesn't exist flash("Incorrect Username and/or Password") return redirect(url_for("login")) return render_template("login.html") # User Profile Page @app.route("/profile/<username>", methods=["GET", "POST"]) def profile(username): # grab the session user's username from db username = mongo.db.users.find_one( {"username": session["user"]})["username"] if session["user"]: return render_template("profile.html", username=username) return redirect(url_for("login")) # Log Session User Out Page @app.route("/logout") def logout(): # remove user from session cookies flash("You have been logged out!") session.pop("user") return redirect("login") # Add Recipe Page @app.route("/add_recipe", methods=["GET", "POST"]) def add_recipe(): # Send User Input to DB if request.method == "POST": recipes = { "url": request.form.get("url"), "category_name": request.form.get("category_name"), "recipe_name": request.form.get("recipe_name"), "ingridients": request.form.get("ingridients"), "method": request.form.get("method"), "created_by": session["user"] } # Post the User Input to MDB mongo.db.recipes.insert_one(recipes) flash("Thank You for your Recipe!") return redirect(url_for("recipes")) return render_template("add_recipe.html") # Edit Recipe Page @app.route("/edit_recipes/<recipes_id>", methods=["GET", "POST"]) def edit_recipe(recipes_id): if request.method == "POST": submit = { "url": request.form.get("url"), "category_name": request.form.get("category_name"), "recipe_name": request.form.get("recipe_name"), "ingridients": request.form.get("ingridients"), "method": request.form.get("method"), "created_by": session["user"] } mongo.db.recipes.update({"_id": ObjectId(recipes_id)}, submit) flash("Yeeey! Edited with Success!") return redirect(url_for('recipes')) recipes = mongo.db.recipes.find_one({"_id": ObjectId(recipes_id)}) return render_template("edit_recipe.html", recipes=recipes) # Delete Recipe @app.route("/delete_recipe/<recipes_id>") def delete_recipe(recipes_id): mongo.db.recipes.remove({"_id": ObjectId(recipes_id)}) flash("Deleted Permanently!") return redirect(url_for('recipes')) # Contact Page @app.route("/contact_us") def contact_us(): return render_template("contact_us.html") # About Us Page @app.route("/about_us") def about_us(): return render_template("about_us.html") # 404 Error Page @app.errorhandler(404) def page_not_found(e): return render_template("404.html"), 404 # 500 Server Error @app.errorhandler(500) def internal_server_error(e): return render_template("500.html"), 500 if __name__ == "__main__": app.run(host=os.environ.get("IP"), port=int(os.environ.get("PORT")), debug=False)
f082dfbd85f23540fe495dddc50f961bfcb35818
86e6dd3df6f5a2dc0a5e08839eadfdab0a856759
/cmdb/cmdb/cmdb/wsgi.py
dded9f98cb9a83ad913c45a2a66f3489769190e6
[]
no_license
99649952/practice
37b0f4349cfd4957d8d2bcc9e0e6d042f9b157d9
a486b6949a08594612428e88e8a5b73ad73b0b16
refs/heads/master
2021-01-17T15:41:09.769013
2016-06-12T06:16:34
2016-06-12T06:16:34
55,946,326
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
""" WSGI config for MadKing project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "cmdb.settings") application = get_wsgi_application()
f85b15a4823c6810244d576b6c8ac4f14a27b370
7ef8833dbf5f71dff7093f8daf72f5046cfbc914
/datastructure/python-data-structure-linkedlist/deleteduplicates.py
c33ab7b90b8c0e7f513d61bcd3ca5f3a7a6ccbd1
[]
no_license
zhangwhitemouse/pythonDataStructure
84259177a98e6a4fc7cd816fa3939c2ae3665ff0
eb9d8020207263074b528b6a221bf6fa75c04533
refs/heads/master
2021-06-29T04:32:01.650360
2021-01-16T07:52:55
2021-01-16T07:52:55
214,996,795
1
0
null
null
null
null
UTF-8
Python
false
false
1,550
py
#删除链表的重复元素 """ 问题分析:保证链表中没有重复的元素(保证没有相邻的元素存在相同) 算法分析:一边遍历一边判断,看当前节点值与前一个节点值是否相同, 若相同,则删除当前节点,若不相同,则继续遍历 """ # class Solution(object): # def deleteDuplicates(self, head): # cur = head # while cur and cur.next: # if cur.val == cur.next.val: # cur.next = cur.next.next # else: # cur = cur.next # return head """ 问题延伸:上面删除链表的重复节点是删除多出来的一个节点,而现在要求只要这个元素出现了重复元素,删除这个元素的所有值 例如:1,2,3,3,4 第一个问题结果:1,2,3,4 第二个结果:1,2,4 保证整个链表中,出现过相同元素的直接全部删除 """ class ListNode: def __init__(self, x): self.val = x self.next = None class Solution(object): def deleteDuplicates(self, head): newlink = ListNode(-1) newlink.next = head prev = None cur = newlink while cur: pre = cur cur = cur.next while cur and cur.next and cur.val == cur.next.val: tmp = cur.val while cur and tmp == cur.val: cur = cur.next pre.next = cur return newlink.next
665ca7c8480cf43f3293241817377b6208c1060c
35c774ee67feae65cf3379781db389513cf8416e
/old_mac.py
ab76e287d25bc8e0af55d41cac282b302ed12d97
[]
no_license
divyamtalreja/basic-python-program
c95e4bb64eca9b1f378a74ca7c610d36f5150e76
2bcb0f65334f42d7690a17c7355253544b3cbb4a
refs/heads/master
2021-02-28T01:47:24.867857
2020-03-07T14:59:27
2020-03-07T14:59:27
245,651,923
1
0
null
null
null
null
UTF-8
Python
false
false
194
py
def old_macdonald(s): first=s[0] inbetween=s[1:3] fourth=s[3] rem=s[4:] return first.upper()+inbetween+fourth.upper()+rem print(old_macdonald("macdonald"))
a384997b92fd4d648e8df0aa05d3606b08def541
2ce7346a38ff819b7cbd69df73a7948b0abab12f
/10.자료구조변경.py
67fc354d7787da7f70a12afc19fdc4fd64cd6dde
[]
no_license
poebus0102/JINWOO
c615f3540b18730bfce0926bdc20d35399367f60
761cd7ca5d9f8a1efe66ad89c2909850b0512e0d
refs/heads/main
2023-04-24T13:03:14.266366
2021-04-26T04:08:11
2021-04-26T04:08:11
361,612,907
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
# 자료구조의 변경 # 커피숍 menu = {"커피","우유","주스"} print(menu,type(menu))
a6c1a20dfdb3da33fd7e96ed02470a8318d32b13
d65128e38be0243f279e0d72ef85e7d3c5e116ca
/base/site-packages/django/contrib/gis/geoip/tests.py
3fa64bf6bef6ebe66e0523ad8e22ee07ec3b4e8b
[ "Apache-2.0" ]
permissive
ZxwZero/fastor
19bfc568f9a68f1447c2e049428330ade02d451d
dd9e299e250362802032d1984801bed249e36d8d
refs/heads/master
2021-06-26T06:40:38.555211
2021-06-09T02:05:38
2021-06-09T02:05:38
229,753,500
1
1
Apache-2.0
2019-12-23T12:59:25
2019-12-23T12:59:24
null
UTF-8
Python
false
false
4,672
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os from django.conf import settings from django.contrib.gis.geos import HAS_GEOS from django.contrib.gis.geoip import HAS_GEOIP from django.utils import unittest from django.utils.unittest import skipUnless from django.utils import six if HAS_GEOIP: from . import GeoIP, GeoIPException if HAS_GEOS: from ..geos import GEOSGeometry # Note: Requires use of both the GeoIP country and city datasets. # The GEOIP_DATA path should be the only setting set (the directory # should contain links or the actual database files 'GeoIP.dat' and # 'GeoLiteCity.dat'. @skipUnless(HAS_GEOIP and getattr(settings, "GEOIP_PATH", None), "GeoIP is required along with the GEOIP_DATA setting.") class GeoIPTest(unittest.TestCase): def test01_init(self): "Testing GeoIP initialization." g1 = GeoIP() # Everything inferred from GeoIP path path = settings.GEOIP_PATH g2 = GeoIP(path, 0) # Passing in data path explicitly. g3 = GeoIP.open(path, 0) # MaxMind Python API syntax. for g in (g1, g2, g3): self.assertEqual(True, bool(g._country)) self.assertEqual(True, bool(g._city)) # Only passing in the location of one database. city = os.path.join(path, 'GeoLiteCity.dat') cntry = os.path.join(path, 'GeoIP.dat') g4 = GeoIP(city, country='') self.assertEqual(None, g4._country) g5 = GeoIP(cntry, city='') self.assertEqual(None, g5._city) # Improper parameters. bad_params = (23, 'foo', 15.23) for bad in bad_params: self.assertRaises(GeoIPException, GeoIP, cache=bad) if isinstance(bad, six.string_types): e = GeoIPException else: e = TypeError self.assertRaises(e, GeoIP, bad, 0) def test02_bad_query(self): "Testing GeoIP query parameter checking." cntry_g = GeoIP(city='<foo>') # No city database available, these calls should fail. self.assertRaises(GeoIPException, cntry_g.city, 'google.com') self.assertRaises(GeoIPException, cntry_g.coords, 'yahoo.com') # Non-string query should raise TypeError self.assertRaises(TypeError, cntry_g.country_code, 17) self.assertRaises(TypeError, cntry_g.country_name, GeoIP) def test03_country(self): "Testing GeoIP country querying methods." g = GeoIP(city='<foo>') fqdn = 'www.google.com' addr = '12.215.42.19' for query in (fqdn, addr): for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) @skipUnless(HAS_GEOS, "Geos is required") def test04_city(self): "Testing GeoIP city querying methods." g = GeoIP(country='<foo>') addr = '128.249.1.1' fqdn = 'tmc.edu' for query in (fqdn, addr): # Country queries should still work. for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) # City information dictionary. d = g.city(query) self.assertEqual('USA', d['country_code3']) self.assertEqual('Houston', d['city']) self.assertEqual('TX', d['region']) self.assertEqual(713, d['area_code']) geom = g.geos(query) self.assertTrue(isinstance(geom, GEOSGeometry)) lon, lat = (-95.4010, 29.7079) lat_lon = g.lat_lon(query) lat_lon = (lat_lon[1], lat_lon[0]) for tup in (geom.tuple, g.coords(query), g.lon_lat(query), lat_lon): self.assertAlmostEqual(lon, tup[0], 4) self.assertAlmostEqual(lat, tup[1], 4) def test05_unicode_response(self): "Testing that GeoIP strings are properly encoded, see #16553." g = GeoIP() d = g.city("www.osnabrueck.de") self.assertEqual('Osnabrück', d['city'])
a24e94b51e575f5924c1a09583866578e9030e35
f0858aae73097c49e995ff3526a91879354d1424
/nova/virt/hardware.py
830a74c70c635ef3b2a1621d054fa53bbab810ad
[ "Apache-2.0" ]
permissive
bopopescu/nested_quota_final
7a13f7c95e9580909d91db83c46092148ba1403b
7c3454883de9f5368fa943924540eebe157a319d
refs/heads/master
2022-11-20T16:14:28.508150
2015-02-16T17:47:59
2015-02-16T17:47:59
282,100,691
0
0
Apache-2.0
2020-07-24T02:14:02
2020-07-24T02:14:02
null
UTF-8
Python
false
false
51,509
py
# Copyright 2014 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import itertools from oslo_config import cfg from oslo_serialization import jsonutils from oslo_utils import units import six from nova import context from nova import exception from nova.i18n import _ from nova import objects from nova.openstack.common import log as logging virt_cpu_opts = [ cfg.StrOpt('vcpu_pin_set', help='Defines which pcpus that instance vcpus can use. ' 'For example, "4-12,^8,15"'), ] CONF = cfg.CONF CONF.register_opts(virt_cpu_opts) LOG = logging.getLogger(__name__) MEMPAGES_SMALL = -1 MEMPAGES_LARGE = -2 MEMPAGES_ANY = -3 def get_vcpu_pin_set(): """Parsing vcpu_pin_set config. Returns a set of pcpu ids can be used by instances. """ if not CONF.vcpu_pin_set: return None cpuset_ids = parse_cpu_spec(CONF.vcpu_pin_set) if not cpuset_ids: raise exception.Invalid(_("No CPUs available after parsing %r") % CONF.vcpu_pin_set) return cpuset_ids def parse_cpu_spec(spec): """Parse a CPU set specification. :param spec: cpu set string eg "1-4,^3,6" Each element in the list is either a single CPU number, a range of CPU numbers, or a caret followed by a CPU number to be excluded from a previous range. :returns: a set of CPU indexes """ cpuset_ids = set() cpuset_reject_ids = set() for rule in spec.split(','): rule = rule.strip() # Handle multi ',' if len(rule) < 1: continue # Note the count limit in the .split() call range_parts = rule.split('-', 1) if len(range_parts) > 1: # So, this was a range; start by converting the parts to ints try: start, end = [int(p.strip()) for p in range_parts] except ValueError: raise exception.Invalid(_("Invalid range expression %r") % rule) # Make sure it's a valid range if start > end: raise exception.Invalid(_("Invalid range expression %r") % rule) # Add available CPU ids to set cpuset_ids |= set(range(start, end + 1)) elif rule[0] == '^': # Not a range, the rule is an exclusion rule; convert to int try: cpuset_reject_ids.add(int(rule[1:].strip())) except ValueError: raise exception.Invalid(_("Invalid exclusion " "expression %r") % rule) else: # OK, a single CPU to include; convert to int try: cpuset_ids.add(int(rule)) except ValueError: raise exception.Invalid(_("Invalid inclusion " "expression %r") % rule) # Use sets to handle the exclusion rules for us cpuset_ids -= cpuset_reject_ids return cpuset_ids def format_cpu_spec(cpuset, allow_ranges=True): """Format a libvirt CPU range specification. :param cpuset: set (or list) of CPU indexes Format a set/list of CPU indexes as a libvirt CPU range specification. It allow_ranges is true, it will try to detect continuous ranges of CPUs, otherwise it will just list each CPU index explicitly. :returns: a formatted CPU range string """ # We attempt to detect ranges, but don't bother with # trying to do range negations to minimize the overall # spec string length if allow_ranges: ranges = [] previndex = None for cpuindex in sorted(cpuset): if previndex is None or previndex != (cpuindex - 1): ranges.append([]) ranges[-1].append(cpuindex) previndex = cpuindex parts = [] for entry in ranges: if len(entry) == 1: parts.append(str(entry[0])) else: parts.append("%d-%d" % (entry[0], entry[len(entry) - 1])) return ",".join(parts) else: return ",".join(str(id) for id in sorted(cpuset)) def get_number_of_serial_ports(flavor, image_meta): """Get the number of serial consoles from the flavor or image :param flavor: Flavor object to read extra specs from :param image_meta: Image object to read image metadata from If flavor extra specs is not set, then any image meta value is permitted. If flavour extra specs *is* set, then this provides the default serial port count. The image meta is permitted to override the extra specs, but *only* with a lower value. ie - flavor hw:serial_port_count=4 VM gets 4 serial ports - flavor hw:serial_port_count=4 and image hw_serial_port_count=2 VM gets 2 serial ports - image hw_serial_port_count=6 VM gets 6 serial ports - flavor hw:serial_port_count=4 and image hw_serial_port_count=6 Abort guest boot - forbidden to exceed flavor value :returns: number of serial ports """ def get_number(obj, property): num_ports = obj.get(property) if num_ports is not None: try: num_ports = int(num_ports) except ValueError: raise exception.ImageSerialPortNumberInvalid( num_ports=num_ports, property=property) return num_ports image_meta_prop = (image_meta or {}).get('properties', {}) flavor_num_ports = get_number(flavor.extra_specs, "hw:serial_port_count") image_num_ports = get_number(image_meta_prop, "hw_serial_port_count") if (flavor_num_ports and image_num_ports) is not None: if image_num_ports > flavor_num_ports: raise exception.ImageSerialPortNumberExceedFlavorValue() return image_num_ports return flavor_num_ports or image_num_ports or 1 class InstanceInfo(object): def __init__(self, state=None, max_mem_kb=0, mem_kb=0, num_cpu=0, cpu_time_ns=0, id=None): """Create a new Instance Info object :param state: the running state, one of the power_state codes :param max_mem_kb: (int) the maximum memory in KBytes allowed :param mem_kb: (int) the memory in KBytes used by the instance :param num_cpu: (int) the number of virtual CPUs for the instance :param cpu_time_ns: (int) the CPU time used in nanoseconds :param id: a unique ID for the instance """ self.state = state self.max_mem_kb = max_mem_kb self.mem_kb = mem_kb self.num_cpu = num_cpu self.cpu_time_ns = cpu_time_ns self.id = id def __eq__(self, other): return (self.__class__ == other.__class__ and self.__dict__ == other.__dict__) def _score_cpu_topology(topology, wanttopology): """Calculate score for the topology against a desired configuration :param wanttopology: nova.objects.VirtCPUTopology instance for preferred topology Calculate a score indicating how well this topology matches against a preferred topology. A score of 3 indicates an exact match for sockets, cores and threads. A score of 2 indicates a match of sockets & cores or sockets & threads or cores and threads. A score of 1 indicates a match of sockets or cores or threads. A score of 0 indicates no match :returns: score in range 0 (worst) to 3 (best) """ score = 0 if (wanttopology.sockets != -1 and topology.sockets == wanttopology.sockets): score = score + 1 if (wanttopology.cores != -1 and topology.cores == wanttopology.cores): score = score + 1 if (wanttopology.threads != -1 and topology.threads == wanttopology.threads): score = score + 1 return score def _get_cpu_topology_constraints(flavor, image_meta): """Get the topology constraints declared in flavor or image :param flavor: Flavor object to read extra specs from :param image_meta: Image object to read image metadata from Gets the topology constraints from the configuration defined in the flavor extra specs or the image metadata. In the flavor this will look for hw:cpu_sockets - preferred socket count hw:cpu_cores - preferred core count hw:cpu_threads - preferred thread count hw:cpu_maxsockets - maximum socket count hw:cpu_maxcores - maximum core count hw:cpu_maxthreads - maximum thread count In the image metadata this will look at hw_cpu_sockets - preferred socket count hw_cpu_cores - preferred core count hw_cpu_threads - preferred thread count hw_cpu_maxsockets - maximum socket count hw_cpu_maxcores - maximum core count hw_cpu_maxthreads - maximum thread count The image metadata must be strictly lower than any values set in the flavor. All values are, however, optional. This will return a pair of nova.objects.VirtCPUTopology instances, the first giving the preferred socket/core/thread counts, and the second giving the upper limits on socket/core/ thread counts. exception.ImageVCPULimitsRangeExceeded will be raised if the maximum counts set against the image exceed the maximum counts set against the flavor exception.ImageVCPUTopologyRangeExceeded will be raised if the preferred counts set against the image exceed the maximum counts set against the image or flavor :returns: (preferred topology, maximum topology) """ # Obtain the absolute limits from the flavor flvmaxsockets = int(flavor.extra_specs.get( "hw:cpu_max_sockets", 65536)) flvmaxcores = int(flavor.extra_specs.get( "hw:cpu_max_cores", 65536)) flvmaxthreads = int(flavor.extra_specs.get( "hw:cpu_max_threads", 65536)) LOG.debug("Flavor limits %(sockets)d:%(cores)d:%(threads)d", {"sockets": flvmaxsockets, "cores": flvmaxcores, "threads": flvmaxthreads}) # Get any customized limits from the image maxsockets = int(image_meta.get("properties", {}) .get("hw_cpu_max_sockets", flvmaxsockets)) maxcores = int(image_meta.get("properties", {}) .get("hw_cpu_max_cores", flvmaxcores)) maxthreads = int(image_meta.get("properties", {}) .get("hw_cpu_max_threads", flvmaxthreads)) LOG.debug("Image limits %(sockets)d:%(cores)d:%(threads)d", {"sockets": maxsockets, "cores": maxcores, "threads": maxthreads}) # Image limits are not permitted to exceed the flavor # limits. ie they can only lower what the flavor defines if ((maxsockets > flvmaxsockets) or (maxcores > flvmaxcores) or (maxthreads > flvmaxthreads)): raise exception.ImageVCPULimitsRangeExceeded( sockets=maxsockets, cores=maxcores, threads=maxthreads, maxsockets=flvmaxsockets, maxcores=flvmaxcores, maxthreads=flvmaxthreads) # Get any default preferred topology from the flavor flvsockets = int(flavor.extra_specs.get("hw:cpu_sockets", -1)) flvcores = int(flavor.extra_specs.get("hw:cpu_cores", -1)) flvthreads = int(flavor.extra_specs.get("hw:cpu_threads", -1)) LOG.debug("Flavor pref %(sockets)d:%(cores)d:%(threads)d", {"sockets": flvsockets, "cores": flvcores, "threads": flvthreads}) # If the image limits have reduced the flavor limits # we might need to discard the preferred topology # from the flavor if ((flvsockets > maxsockets) or (flvcores > maxcores) or (flvthreads > maxthreads)): flvsockets = flvcores = flvthreads = -1 # Finally see if the image has provided a preferred # topology to use sockets = int(image_meta.get("properties", {}) .get("hw_cpu_sockets", -1)) cores = int(image_meta.get("properties", {}) .get("hw_cpu_cores", -1)) threads = int(image_meta.get("properties", {}) .get("hw_cpu_threads", -1)) LOG.debug("Image pref %(sockets)d:%(cores)d:%(threads)d", {"sockets": sockets, "cores": cores, "threads": threads}) # Image topology is not permitted to exceed image/flavor # limits if ((sockets > maxsockets) or (cores > maxcores) or (threads > maxthreads)): raise exception.ImageVCPUTopologyRangeExceeded( sockets=sockets, cores=cores, threads=threads, maxsockets=maxsockets, maxcores=maxcores, maxthreads=maxthreads) # If no preferred topology was set against the image # then use the preferred topology from the flavor # We use 'and' not 'or', since if any value is set # against the image this invalidates the entire set # of values from the flavor if sockets == -1 and cores == -1 and threads == -1: sockets = flvsockets cores = flvcores threads = flvthreads LOG.debug("Chosen %(sockets)d:%(cores)d:%(threads)d limits " "%(maxsockets)d:%(maxcores)d:%(maxthreads)d", {"sockets": sockets, "cores": cores, "threads": threads, "maxsockets": maxsockets, "maxcores": maxcores, "maxthreads": maxthreads}) return (objects.VirtCPUTopology(sockets=sockets, cores=cores, threads=threads), objects.VirtCPUTopology(sockets=maxsockets, cores=maxcores, threads=maxthreads)) def _get_possible_cpu_topologies(vcpus, maxtopology, allow_threads, specified_threads): """Get a list of possible topologies for a vCPU count :param vcpus: total number of CPUs for guest instance :param maxtopology: nova.objects.VirtCPUTopology for upper limits :param allow_threads: if the hypervisor supports CPU threads :param specified_threads: if there is a specific request for threads we should attempt to honour Given a total desired vCPU count and constraints on the maximum number of sockets, cores and threads, return a list of nova.objects.VirtCPUTopology instances that represent every possible topology that satisfies the constraints. exception.ImageVCPULimitsRangeImpossible is raised if it is impossible to achieve the total vcpu count given the maximum limits on sockets, cores & threads. :returns: list of nova.objects.VirtCPUTopology instances """ # Clamp limits to number of vcpus to prevent # iterating over insanely large list maxsockets = min(vcpus, maxtopology.sockets) maxcores = min(vcpus, maxtopology.cores) maxthreads = min(vcpus, maxtopology.threads) if not allow_threads: # NOTE (ndipanov): If we don't support threads - it doesn't matter that # they are specified by the NUMA logic. specified_threads = None maxthreads = 1 LOG.debug("Build topologies for %(vcpus)d vcpu(s) " "%(maxsockets)d:%(maxcores)d:%(maxthreads)d", {"vcpus": vcpus, "maxsockets": maxsockets, "maxcores": maxcores, "maxthreads": maxthreads}) def _get_topology_for_vcpus(vcpus, sockets, cores, threads): if threads * cores * sockets == vcpus: return objects.VirtCPUTopology(sockets=sockets, cores=cores, threads=threads) # Figure out all possible topologies that match # the required vcpus count and satisfy the declared # limits. If the total vCPU count were very high # it might be more efficient to factorize the vcpu # count and then only iterate over its factors, but # that's overkill right now possible = [] for s in range(1, maxsockets + 1): for c in range(1, maxcores + 1): if specified_threads: o = _get_topology_for_vcpus(vcpus, s, c, specified_threads) if o is not None: possible.append(o) else: for t in range(1, maxthreads + 1): o = _get_topology_for_vcpus(vcpus, s, c, t) if o is not None: possible.append(o) # We want to # - Minimize threads (ie larger sockets * cores is best) # - Prefer sockets over cores possible = sorted(possible, reverse=True, key=lambda x: (x.sockets * x.cores, x.sockets, x.threads)) LOG.debug("Got %d possible topologies", len(possible)) if len(possible) == 0: raise exception.ImageVCPULimitsRangeImpossible(vcpus=vcpus, sockets=maxsockets, cores=maxcores, threads=maxthreads) return possible def _sort_possible_cpu_topologies(possible, wanttopology): """Sort the topologies in order of preference :param possible: list of nova.objects.VirtCPUTopology instances :param wanttopology: nova.objects.VirtCPUTopology for preferred topology This takes the list of possible topologies and resorts it such that those configurations which most closely match the preferred topology are first. :returns: sorted list of nova.objects.VirtCPUTopology instances """ # Look at possible topologies and score them according # to how well they match the preferred topologies # We don't use python's sort(), since we want to # preserve the sorting done when populating the # 'possible' list originally scores = collections.defaultdict(list) for topology in possible: score = _score_cpu_topology(topology, wanttopology) scores[score].append(topology) # Build list of all possible topologies sorted # by the match score, best match first desired = [] desired.extend(scores[3]) desired.extend(scores[2]) desired.extend(scores[1]) desired.extend(scores[0]) return desired def _threads_requested_by_user(flavor, image_meta): keys = ("cpu_threads", "cpu_maxthreads") if any(flavor.extra_specs.get("hw:%s" % key) for key in keys): return True if any(image_meta.get("properties", {}).get("hw_%s" % key) for key in keys): return True return False def _get_desirable_cpu_topologies(flavor, image_meta, allow_threads=True, numa_topology=None): """Get desired CPU topologies according to settings :param flavor: Flavor object to query extra specs from :param image_meta: ImageMeta object to query properties from :param allow_threads: if the hypervisor supports CPU threads :param numa_topology: InstanceNUMATopology object that may contain additional topology constraints (such as threading information) that we should consider Look at the properties set in the flavor extra specs and the image metadata and build up a list of all possible valid CPU topologies that can be used in the guest. Then return this list sorted in order of preference. :returns: sorted list of nova.objects.VirtCPUTopology instances """ LOG.debug("Getting desirable topologies for flavor %(flavor)s " "and image_meta %(image_meta)s", {"flavor": flavor, "image_meta": image_meta}) preferred, maximum = _get_cpu_topology_constraints(flavor, image_meta) specified_threads = None if numa_topology: min_requested_threads = None cell_topologies = [cell.cpu_topology for cell in numa_topology.cells if cell.cpu_topology] if cell_topologies: min_requested_threads = min( topo.threads for topo in cell_topologies) if min_requested_threads: if _threads_requested_by_user(flavor, image_meta): min_requested_threads = min(preferred.threads, min_requested_threads) specified_threads = max(1, min_requested_threads) possible = _get_possible_cpu_topologies(flavor.vcpus, maximum, allow_threads, specified_threads) desired = _sort_possible_cpu_topologies(possible, preferred) return desired def get_best_cpu_topology(flavor, image_meta, allow_threads=True, numa_topology=None): """Get best CPU topology according to settings :param flavor: Flavor object to query extra specs from :param image_meta: ImageMeta object to query properties from :param allow_threads: if the hypervisor supports CPU threads :param numa_topology: InstanceNUMATopology object that may contain additional topology constraints (such as threading information) that we should consider Look at the properties set in the flavor extra specs and the image metadata and build up a list of all possible valid CPU topologies that can be used in the guest. Then return the best topology to use :returns: a nova.objects.VirtCPUTopology instance for best topology """ return _get_desirable_cpu_topologies(flavor, image_meta, allow_threads, numa_topology)[0] class VirtNUMATopologyCell(object): """Class for reporting NUMA resources in a cell The VirtNUMATopologyCell class represents the hardware resources present in a NUMA cell. """ def __init__(self, id, cpuset, memory): """Create a new NUMA Cell :param id: integer identifier of cell :param cpuset: set containing list of CPU indexes :param memory: RAM measured in MiB Creates a new NUMA cell object to record the hardware resources. :returns: a new NUMA cell object """ super(VirtNUMATopologyCell, self).__init__() self.id = id self.cpuset = cpuset self.memory = memory def _to_dict(self): return {'cpus': format_cpu_spec(self.cpuset, allow_ranges=False), 'mem': {'total': self.memory}, 'id': self.id} @classmethod def _from_dict(cls, data_dict): cpuset = parse_cpu_spec(data_dict.get('cpus', '')) memory = data_dict.get('mem', {}).get('total', 0) cell_id = data_dict.get('id') return cls(cell_id, cpuset, memory) class VirtNUMATopologyCellLimit(VirtNUMATopologyCell): def __init__(self, id, cpuset, memory, cpu_limit, memory_limit): """Create a new NUMA Cell with usage :param id: integer identifier of cell :param cpuset: set containing list of CPU indexes :param memory: RAM measured in MiB :param cpu_limit: maximum number of CPUs allocated :param memory_limit: maxumum RAM allocated in MiB Creates a new NUMA cell object to represent the max hardware resources and utilization. The number of CPUs specified by the @cpu_usage parameter may be larger than the number of bits set in @cpuset if CPU overcommit is used. Likewise the amount of RAM specified by the @memory_limit parameter may be larger than the available RAM in @memory if RAM overcommit is used. :returns: a new NUMA cell object """ super(VirtNUMATopologyCellLimit, self).__init__( id, cpuset, memory) self.cpu_limit = cpu_limit self.memory_limit = memory_limit def _to_dict(self): data_dict = super(VirtNUMATopologyCellLimit, self)._to_dict() data_dict['mem']['limit'] = self.memory_limit data_dict['cpu_limit'] = self.cpu_limit return data_dict @classmethod def _from_dict(cls, data_dict): cpuset = parse_cpu_spec(data_dict.get('cpus', '')) memory = data_dict.get('mem', {}).get('total', 0) cpu_limit = data_dict.get('cpu_limit', len(cpuset)) memory_limit = data_dict.get('mem', {}).get('limit', memory) cell_id = data_dict.get('id') return cls(cell_id, cpuset, memory, cpu_limit, memory_limit) def _numa_cell_supports_pagesize_request(host_cell, inst_cell): """Determines whether the cell can accept the request. :param host_cell: host cell to fit the instance cell onto :param inst_cell: instance cell we want to fit :returns: The page size able to be handled by host_cell """ avail_pagesize = [page.size_kb for page in host_cell.mempages] avail_pagesize.sort(reverse=True) def verify_pagesizes(host_cell, inst_cell, avail_pagesize): inst_cell_mem = inst_cell.memory * units.Ki for pagesize in avail_pagesize: if host_cell.can_fit_hugepages(pagesize, inst_cell_mem): return pagesize if inst_cell.pagesize == MEMPAGES_SMALL: return verify_pagesizes(host_cell, inst_cell, avail_pagesize[-1:]) elif inst_cell.pagesize == MEMPAGES_LARGE: return verify_pagesizes(host_cell, inst_cell, avail_pagesize[:-1]) elif inst_cell.pagesize == MEMPAGES_ANY: return verify_pagesizes(host_cell, inst_cell, avail_pagesize) else: return verify_pagesizes(host_cell, inst_cell, [inst_cell.pagesize]) def _pack_instance_onto_cores(available_siblings, instance_cell, host_cell_id): """Pack an instance onto a set of siblings :param available_siblings: list of sets of CPU id's - available siblings per core :param instance_cell: An instance of objects.InstanceNUMACell describing the pinning requirements of the instance :returns: An instance of objects.InstanceNUMACell containing the pinning information, and potentially a new topology to be exposed to the instance. None if there is no valid way to satisfy the sibling requirements for the instance. This method will calculate the pinning for the given instance and it's topology, making sure that hyperthreads of the instance match up with those of the host when the pinning takes effect. """ # We build up a data structure 'can_pack' that answers the question: # 'Given the number of threads I want to pack, give me a list of all # the available sibling sets that can accommodate it' can_pack = collections.defaultdict(list) for sib in available_siblings: for threads_no in range(1, len(sib) + 1): can_pack[threads_no].append(sib) def _can_pack_instance_cell(instance_cell, threads_per_core, cores_list): """Determines if instance cell can fit an avail set of cores.""" if threads_per_core * len(cores_list) < len(instance_cell): return False if instance_cell.siblings: return instance_cell.cpu_topology.threads <= threads_per_core else: return len(instance_cell) % threads_per_core == 0 # We iterate over the can_pack dict in descending order of cores that # can be packed - an attempt to get even distribution over time for cores_per_sib, sib_list in sorted( (t for t in can_pack.items()), reverse=True): if _can_pack_instance_cell(instance_cell, cores_per_sib, sib_list): sliced_sibs = map(lambda s: list(s)[:cores_per_sib], sib_list) if instance_cell.siblings: pinning = zip(itertools.chain(*instance_cell.siblings), itertools.chain(*sliced_sibs)) else: pinning = zip(sorted(instance_cell.cpuset), itertools.chain(*sliced_sibs)) topology = (instance_cell.cpu_topology or objects.VirtCPUTopology(sockets=1, cores=len(sliced_sibs), threads=cores_per_sib)) instance_cell.pin_vcpus(*pinning) instance_cell.cpu_topology = topology instance_cell.id = host_cell_id return instance_cell def _numa_fit_instance_cell_with_pinning(host_cell, instance_cell): """Figure out if cells can be pinned to a host cell and return details :param host_cell: objects.NUMACell instance - the host cell that the isntance should be pinned to :param instance_cell: objects.InstanceNUMACell instance without any pinning information :returns: objects.InstanceNUMACell instance with pinning information, or None if instance cannot be pinned to the given host """ if (host_cell.avail_cpus < len(instance_cell.cpuset) or host_cell.avail_memory < instance_cell.memory): # If we do not have enough CPUs available or not enough memory # on the host cell, we quit early (no oversubscription). return if host_cell.siblings: # Instance requires hyperthreading in it's topology if instance_cell.cpu_topology and instance_cell.siblings: return _pack_instance_onto_cores(host_cell.free_siblings, instance_cell, host_cell.id) else: # Try to pack the instance cell in one core largest_free_sibling_set = sorted( host_cell.free_siblings, key=len)[-1] if (len(instance_cell.cpuset) <= len(largest_free_sibling_set)): return _pack_instance_onto_cores( [largest_free_sibling_set], instance_cell, host_cell.id) # We can't to pack it onto one core so try with avail siblings else: return _pack_instance_onto_cores( host_cell.free_siblings, instance_cell, host_cell.id) else: # Straightforward to pin to available cpus when there is no # hyperthreading on the host return _pack_instance_onto_cores( [host_cell.free_cpus], instance_cell, host_cell.id) def _numa_fit_instance_cell(host_cell, instance_cell, limit_cell=None): """Check if a instance cell can fit and set it's cell id :param host_cell: host cell to fit the instance cell onto :param instance_cell: instance cell we want to fit :param limit_cell: cell with limits of the host_cell if any Make sure we can fit the instance cell onto a host cell and if so, return a new objects.InstanceNUMACell with the id set to that of the host, or None if the cell exceeds the limits of the host :returns: a new instance cell or None """ # NOTE (ndipanov): do not allow an instance to overcommit against # itself on any NUMA cell if (instance_cell.memory > host_cell.memory or len(instance_cell.cpuset) > len(host_cell.cpuset)): return None if instance_cell.cpu_pinning_requested: new_instance_cell = _numa_fit_instance_cell_with_pinning( host_cell, instance_cell) if not new_instance_cell: return new_instance_cell.pagesize = instance_cell.pagesize instance_cell = new_instance_cell elif limit_cell: memory_usage = host_cell.memory_usage + instance_cell.memory cpu_usage = host_cell.cpu_usage + len(instance_cell.cpuset) if (memory_usage > limit_cell.memory_limit or cpu_usage > limit_cell.cpu_limit): return None pagesize = None if instance_cell.pagesize: pagesize = _numa_cell_supports_pagesize_request( host_cell, instance_cell) if not pagesize: return instance_cell.id = host_cell.id instance_cell.pagesize = pagesize return instance_cell class VirtNUMATopology(object): """Base class for tracking NUMA topology information The VirtNUMATopology class represents the NUMA hardware topology for memory and CPUs in any machine. It is later specialized for handling either guest instance or compute host NUMA topology. """ def __init__(self, cells=None): """Create a new NUMA topology object :param cells: list of VirtNUMATopologyCell instances """ super(VirtNUMATopology, self).__init__() self.cells = cells or [] def __len__(self): """Defined so that boolean testing works the same as for lists.""" return len(self.cells) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, str(self._to_dict())) def _to_dict(self): return {'cells': [cell._to_dict() for cell in self.cells]} @classmethod def _from_dict(cls, data_dict): return cls(cells=[cls.cell_class._from_dict(cell_dict) for cell_dict in data_dict.get('cells', [])]) def to_json(self): return jsonutils.dumps(self._to_dict()) @classmethod def from_json(cls, json_string): return cls._from_dict(jsonutils.loads(json_string)) def _numa_get_flavor_or_image_prop(flavor, image_meta, propname): """Return the value of propname from flavor or image :param flavor: a Flavor object or dict of instance type information :param image_meta: a dict of image information :returns: a value or None """ flavor_val = flavor.get('extra_specs', {}).get("hw:" + propname) image_val = (image_meta or {}).get("properties", {}).get("hw_" + propname) if flavor_val is not None: if image_val is not None: raise exception.ImageNUMATopologyForbidden( name='hw_' + propname) return flavor_val else: return image_val def _numa_get_pagesize_constraints(flavor, image_meta): """Return the requested memory page size :param flavor: a Flavor object to read extra specs from :param image_meta: an Image object to read meta data from :raises: MemoryPagesSizeInvalid or MemoryPageSizeForbidden :returns: a page size requested or MEMPAGES_* """ def check_and_return_pages_size(request): if request == "any": return MEMPAGES_ANY elif request == "large": return MEMPAGES_LARGE elif request == "small": return MEMPAGES_SMALL else: try: request = int(request) except ValueError: request = 0 if request <= 0: raise exception.MemoryPageSizeInvalid(pagesize=request) return request image_meta_prop = (image_meta or {}).get("properties", {}) flavor_request = flavor.get('extra_specs', {}).get("hw:mem_page_size", "") image_request = image_meta_prop.get("hw_mem_page_size", "") if not flavor_request and image_request: raise exception.MemoryPageSizeForbidden( pagesize=image_request, against="<empty>") if not flavor_request: # Nothing was specified for hugepages, # let's the default process running. return None pagesize = check_and_return_pages_size(flavor_request) if image_request and (pagesize in (MEMPAGES_ANY, MEMPAGES_LARGE)): return check_and_return_pages_size(image_request) elif image_request: raise exception.MemoryPageSizeForbidden( pagesize=image_request, against=flavor_request) return pagesize def _numa_get_constraints_manual(nodes, flavor, image_meta): cells = [] totalmem = 0 availcpus = set(range(flavor['vcpus'])) for node in range(nodes): cpus = _numa_get_flavor_or_image_prop( flavor, image_meta, "numa_cpus.%d" % node) mem = _numa_get_flavor_or_image_prop( flavor, image_meta, "numa_mem.%d" % node) # We're expecting both properties set, so # raise an error if either is missing if cpus is None or mem is None: raise exception.ImageNUMATopologyIncomplete() mem = int(mem) cpuset = parse_cpu_spec(cpus) for cpu in cpuset: if cpu > (flavor['vcpus'] - 1): raise exception.ImageNUMATopologyCPUOutOfRange( cpunum=cpu, cpumax=(flavor['vcpus'] - 1)) if cpu not in availcpus: raise exception.ImageNUMATopologyCPUDuplicates( cpunum=cpu) availcpus.remove(cpu) cells.append(objects.InstanceNUMACell( id=node, cpuset=cpuset, memory=mem)) totalmem = totalmem + mem if availcpus: raise exception.ImageNUMATopologyCPUsUnassigned( cpuset=str(availcpus)) if totalmem != flavor['memory_mb']: raise exception.ImageNUMATopologyMemoryOutOfRange( memsize=totalmem, memtotal=flavor['memory_mb']) return objects.InstanceNUMATopology(cells=cells) def _numa_get_constraints_auto(nodes, flavor, image_meta): if ((flavor['vcpus'] % nodes) > 0 or (flavor['memory_mb'] % nodes) > 0): raise exception.ImageNUMATopologyAsymmetric() cells = [] for node in range(nodes): cpus = _numa_get_flavor_or_image_prop( flavor, image_meta, "numa_cpus.%d" % node) mem = _numa_get_flavor_or_image_prop( flavor, image_meta, "numa_mem.%d" % node) # We're not expecting any properties set, so # raise an error if there are any if cpus is not None or mem is not None: raise exception.ImageNUMATopologyIncomplete() ncpus = int(flavor['vcpus'] / nodes) mem = int(flavor['memory_mb'] / nodes) start = node * ncpus cpuset = set(range(start, start + ncpus)) cells.append(objects.InstanceNUMACell( id=node, cpuset=cpuset, memory=mem)) return objects.InstanceNUMATopology(cells=cells) def _add_cpu_pinning_constraint(flavor, image_meta, numa_topology): flavor_pinning = flavor.get('extra_specs', {}).get("hw:cpu_policy") image_pinning = image_meta.get('properties', {}).get("hw_cpu_policy") if flavor_pinning == "dedicated": requested = True elif flavor_pinning == "shared": if image_pinning == "dedicated": raise exception.ImageCPUPinningForbidden() requested = False else: requested = image_pinning == "dedicated" if not requested: return numa_topology if numa_topology: # NOTE(ndipanov) Setting the cpu_pinning attribute to a non-None value # means CPU pinning was requested for cell in numa_topology.cells: cell.cpu_pinning = {} return numa_topology else: single_cell = objects.InstanceNUMACell( id=0, cpuset=set(range(flavor['vcpus'])), memory=flavor['memory_mb'], cpu_pinning={}) numa_topology = objects.InstanceNUMATopology(cells=[single_cell]) return numa_topology # TODO(sahid): Move numa related to hardward/numa.py def numa_get_constraints(flavor, image_meta): """Return topology related to input request :param flavor: Flavor object to read extra specs from :param image_meta: Image object to read image metadata from :returns: InstanceNUMATopology or None """ nodes = _numa_get_flavor_or_image_prop( flavor, image_meta, "numa_nodes") pagesize = _numa_get_pagesize_constraints( flavor, image_meta) numa_topology = None if nodes or pagesize: nodes = nodes and int(nodes) or 1 # We'll pick what path to go down based on whether # anything is set for the first node. Both paths # have logic to cope with inconsistent property usage auto = _numa_get_flavor_or_image_prop( flavor, image_meta, "numa_cpus.0") is None if auto: numa_topology = _numa_get_constraints_auto( nodes, flavor, image_meta) else: numa_topology = _numa_get_constraints_manual( nodes, flavor, image_meta) # We currently support same pagesize for all cells. [setattr(c, 'pagesize', pagesize) for c in numa_topology.cells] return _add_cpu_pinning_constraint(flavor, image_meta, numa_topology) class VirtNUMALimitTopology(VirtNUMATopology): """Class to represent the max resources of a compute node used for checking oversubscription limits. """ cell_class = VirtNUMATopologyCellLimit def numa_fit_instance_to_host( host_topology, instance_topology, limits_topology=None, pci_requests=None, pci_stats=None): """Fit the instance topology onto the host topology given the limits :param host_topology: objects.NUMATopology object to fit an instance on :param instance_topology: objects.InstanceNUMATopology to be fitted :param limits_topology: VirtNUMALimitTopology that defines limits :param pci_requests: instance pci_requests :param pci_stats: pci_stats for the host Given a host and instance topology and optionally limits - this method will attempt to fit instance cells onto all permutations of host cells by calling the _numa_fit_instance_cell method, and return a new InstanceNUMATopology with it's cell ids set to host cell id's of the first successful permutation, or None. """ if (not (host_topology and instance_topology) or len(host_topology) < len(instance_topology)): return else: if limits_topology is None: limits_topology_cells = itertools.repeat( None, len(host_topology)) else: limits_topology_cells = limits_topology.cells # TODO(ndipanov): We may want to sort permutations differently # depending on whether we want packing/spreading over NUMA nodes for host_cell_perm in itertools.permutations( zip(host_topology.cells, limits_topology_cells), len(instance_topology) ): cells = [] for (host_cell, limit_cell), instance_cell in zip( host_cell_perm, instance_topology.cells): got_cell = _numa_fit_instance_cell( host_cell, instance_cell, limit_cell) if got_cell is None: break cells.append(got_cell) if len(cells) == len(host_cell_perm): if not pci_requests: return objects.InstanceNUMATopology(cells=cells) elif ((pci_stats is not None) and pci_stats.support_requests(pci_requests, cells)): return objects.InstanceNUMATopology(cells=cells) def _numa_pagesize_usage_from_cell(hostcell, instancecell, sign): topo = [] for pages in hostcell.mempages: if pages.size_kb == instancecell.pagesize: topo.append(objects.NUMAPagesTopology( size_kb=pages.size_kb, total=pages.total, used=max(0, pages.used + instancecell.memory * units.Ki / pages.size_kb * sign))) else: topo.append(pages) return topo def numa_usage_from_instances(host, instances, free=False): """Get host topology usage :param host: objects.NUMATopology with usage information :param instances: list of objects.InstanceNUMATopology :param free: If True usage of the host will be decreased Sum the usage from all @instances to report the overall host topology usage :returns: objects.NUMATopology including usage information """ if host is None: return instances = instances or [] cells = [] sign = -1 if free else 1 for hostcell in host.cells: memory_usage = hostcell.memory_usage cpu_usage = hostcell.cpu_usage newcell = objects.NUMACell( id=hostcell.id, cpuset=hostcell.cpuset, memory=hostcell.memory, cpu_usage=0, memory_usage=0, mempages=hostcell.mempages, pinned_cpus=hostcell.pinned_cpus, siblings=hostcell.siblings) for instance in instances: for instancecell in instance.cells: if instancecell.id == hostcell.id: memory_usage = ( memory_usage + sign * instancecell.memory) cpu_usage = cpu_usage + sign * len(instancecell.cpuset) if instancecell.pagesize and instancecell.pagesize > 0: newcell.mempages = _numa_pagesize_usage_from_cell( hostcell, instancecell, sign) if instance.cpu_pinning_requested: pinned_cpus = set(instancecell.cpu_pinning.values()) if free: newcell.unpin_cpus(pinned_cpus) else: newcell.pin_cpus(pinned_cpus) newcell.cpu_usage = max(0, cpu_usage) newcell.memory_usage = max(0, memory_usage) cells.append(newcell) return objects.NUMATopology(cells=cells) # TODO(ndipanov): Remove when all code paths are using objects def instance_topology_from_instance(instance): """Convenience method for getting the numa_topology out of instances Since we may get an Instance as either a dict, a db object, or an actual Instance object, this makes sure we get beck either None, or an instance of objects.InstanceNUMATopology class. """ if isinstance(instance, objects.Instance): # NOTE (ndipanov): This may cause a lazy-load of the attribute instance_numa_topology = instance.numa_topology else: if 'numa_topology' in instance: instance_numa_topology = instance['numa_topology'] elif 'uuid' in instance: try: instance_numa_topology = ( objects.InstanceNUMATopology.get_by_instance_uuid( context.get_admin_context(), instance['uuid']) ) except exception.NumaTopologyNotFound: instance_numa_topology = None else: instance_numa_topology = None if instance_numa_topology: if isinstance(instance_numa_topology, six.string_types): instance_numa_topology = ( objects.InstanceNUMATopology.obj_from_primitive( jsonutils.loads(instance_numa_topology))) elif isinstance(instance_numa_topology, dict): # NOTE (ndipanov): A horrible hack so that we can use # this in the scheduler, since the # InstanceNUMATopology object is serialized raw using # the obj_base.obj_to_primitive, (which is buggy and # will give us a dict with a list of InstanceNUMACell # objects), and then passed to jsonutils.to_primitive, # which will make a dict out of those objects. All of # this is done by scheduler.utils.build_request_spec # called in the conductor. # # Remove when request_spec is a proper object itself! dict_cells = instance_numa_topology.get('cells') if dict_cells: cells = [objects.InstanceNUMACell( id=cell['id'], cpuset=set(cell['cpuset']), memory=cell['memory'], pagesize=cell.get('pagesize')) for cell in dict_cells] instance_numa_topology = objects.InstanceNUMATopology( cells=cells) return instance_numa_topology # TODO(ndipanov): Remove when all code paths are using objects def host_topology_and_format_from_host(host): """Convenience method for getting the numa_topology out of hosts Since we may get a host as either a dict, a db object, or an actual ComputeNode object, or an instance of HostState class, this makes sure we get beck either None, or an instance of objects.NUMATopology class. :returns: A two-tuple, first element is the topology itself or None, second is a boolean set to True if topology was in json format. """ was_json = False try: host_numa_topology = host.get('numa_topology') except AttributeError: host_numa_topology = host.numa_topology if host_numa_topology is not None and isinstance( host_numa_topology, six.string_types): was_json = True host_numa_topology = (objects.NUMATopology.obj_from_db_obj( host_numa_topology)) return host_numa_topology, was_json # TODO(ndipanov): Remove when all code paths are using objects def get_host_numa_usage_from_instance(host, instance, free=False, never_serialize_result=False): """Calculate new 'numa_usage' of 'host' from 'instance' NUMA usage This is a convenience method to help us handle the fact that we use several different types throughout the code (ComputeNode and Instance objects, dicts, scheduler HostState) which may have both json and deserialized versions of VirtNUMATopology classes. Handles all the complexity without polluting the class method with it. :param host: nova.objects.ComputeNode instance, or a db object or dict :param instance: nova.objects.Instance instance, or a db object or dict :param free: if True the the returned topology will have it's usage decreased instead. :param never_serialize_result: if True result will always be an instance of objects.NUMATopology class. :returns: numa_usage in the format it was on the host or objects.NUMATopology instance if never_serialize_result was True """ instance_numa_topology = instance_topology_from_instance(instance) if instance_numa_topology: instance_numa_topology = [instance_numa_topology] host_numa_topology, jsonify_result = host_topology_and_format_from_host( host) updated_numa_topology = ( numa_usage_from_instances( host_numa_topology, instance_numa_topology, free=free)) if updated_numa_topology is not None: if jsonify_result and not never_serialize_result: updated_numa_topology = updated_numa_topology._to_json() return updated_numa_topology
2c1698703cd35a9b3ddfb3fb9f2d79719b99005f
bf49a1f5a7e25777f5af626e8b9b2130c73d6450
/SignalSmooth.py
9beabef68d27f3f3f6c7ad2eb422f28d25a323c8
[]
no_license
maryammokhberi/BCI_AudioTactile
070b6bd70e139392c30b0331b0e7902602cc39ba
df9489f7224ed42ba3c87e059cdde38f733ac587
refs/heads/master
2021-09-05T03:04:05.644240
2018-01-23T20:54:22
2018-01-23T20:54:22
104,111,767
4
0
null
null
null
null
UTF-8
Python
false
false
2,722
py
# -*- coding: utf-8 -*- """ Created on Tue Oct 17 12:37:38 2017 @author: Downloaded from http://scipy-cookbook.readthedocs.io/items/SignalSmooth.html """ import numpy def smooth(x,window_len=11,window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y. """ if x.ndim != 1: raise ValueError, "smooth only accepts 1 dimension arrays." if x.size < window_len: raise ValueError, "Input vector needs to be bigger than window size." if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" s=numpy.r_[x[window_len-1:0:-1],x,x[-2:-window_len-1:-1]] #print(len(s)) if window == 'flat': #moving average w=numpy.ones(window_len,'d') else: w=eval('numpy.'+window+'(window_len)') y=numpy.convolve(w/w.sum(),s,mode='valid') return y from numpy import * from pylab import * def smooth_demo(): t=linspace(-4,4,100) x=sin(t) xn=x+randn(len(t))*0.1 y=smooth(x) ws=31 subplot(211) plot(ones(ws)) windows=['flat', 'hanning', 'hamming', 'bartlett', 'blackman'] hold(True) for w in windows[1:]: eval('plot('+w+'(ws) )') axis([0,30,0,1.1]) legend(windows) title("The smoothing windows") subplot(212) plot(x) plot(xn) for w in windows: plot(smooth(xn,10,w)) l=['original signal', 'signal with noise'] l.extend(windows) legend(l) title("Smoothing a noisy signal") show() if __name__=='__main__': smooth_demo()
869c610d451114a41b0ede9a9dd0219b59828c68
ff9303e0a6230fb508f33e55a0d4ff156270f350
/recreation-foptimise.py
afe9438a4fe27ee01b4b802402cff564cd127acd
[]
no_license
Vani4ka/recreation
026883bf7ae4207e245158b27e9184200b1c4aff
f6cc2b1c957c7096469c9db7d5734a672a876d5a
refs/heads/master
2021-01-25T12:20:44.776787
2018-03-14T15:14:52
2018-03-14T15:14:52
123,466,705
0
0
null
null
null
null
UTF-8
Python
false
false
4,866
py
from sklearn import svm from numpy import genfromtxt import features as f import functions as func import sys import datetime import math def findBestErrorRate(d): """Determines the best error rates by first selecting the lowest false alarm rate and then selecting the lowest miss rate if there are several pairs with an equal FAR.""" lowest = ((1, 1), (1, 1)) def fPos(p): return p[0][0] def fNeg(p): return p[0][1] for pair in d.iteritems(): # new lowest FAR found if fPos(pair) < fPos(lowest): lowest = pair # equal FAR - take a look at MR elif fPos(pair) == fPos(lowest): if fNeg(pair) < fNeg(lowest): lowest = pair return lowest def findBestErrorRateM(d): """Determines the best error rates by first selecting the lowest false alarm rate and then selecting the lowest miss rate if there are several pairs with an equal FAR.""" lowest = ((1, 1), (1, 1)) def fPos(p): return p[0][0] def fNeg(p): return p[0][1] for pair in d.iteritems(): # new lowest MR found if fNeg(pair) < fNeg(lowest): lowest = pair # equal MR - take a look at FAR elif fNeg(pair) == fNeg(lowest): if fPos(pair) < fPos(lowest): lowest = pair return lowest def compute(tpl): """Takes a combination of gamma and nu value and trains and evaluates a OC-SVM using the current feature set""" g = tpl[0] n = tpl[1] ocsvm = svm.OneClassSVM(nu=n, kernel="rbf", gamma=g, cache_size=1000) errorRate = func.calcErrorRate(func.run(ocsvm, config["folds"], malicious, benign)) tmpResults[errorRate] = (g, n) print str(format(errorRate[0], '.20f')) + " " + str(format(errorRate[1], '.20f')) + " : gamma= " + str( g) + " nu= " + str(n) def createCombos(): """Creates all combinations of gamma and nu values""" combos = [] for gamma in gammaVal: for nu in nuVal: combos.append((gamma, nu)) return combos def printResults(resultList): """Determines the best results of the given lists and prints them well readable.""" # for FAR best = findBestErrorRate(resultList) # for MR # best = findBestErrorRateM(resultList) print "Best found feature subset / model parameters for " + str(config["folds"]) + "-folded CV with " + str( len(gammaVal)) + " gamma values and " + str(len(nuVal)) + " nu values:" print "gamma : %s" % str(best[1][0]) print "nu : %s" % str(best[1][1]) print "grid search results : %s%% false alarm rate, %s%% miss rate" % ( str(best[0][0] * 100), str(best[0][1] * 100)) print "------------------------------------------------------------" results = {} config = { "folds": 8, "trainingSet": "data/new-datasets/original/fopt/malicious-subset.txt", "testingSet": "data/new-datasets/original/fopt/benign-subset.txt", } if __name__ == '__main__': started = datetime.datetime.now() # arrays with gamma and nu values gammaVal = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29] nuVal = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39] # training data malicious = genfromtxt(config["trainingSet"], delimiter='\t') # benign data benign = genfromtxt(config["testingSet"], delimiter='\t') numFeatures = f.getFeatureAmount(config["trainingSet"]) combinations = createCombos() # writing temporary results to a file orig_stdout = sys.stdout temp = open('data/results/optimisations/fopt-temp-' + str(config["folds"]) + '.txt', 'a+') temp.write("Started on " + started.strftime("%Y-%m-%d %H:%M") + "\n") sys.stdout = temp for c in combinations: tmpResults = {} compute(c) results.update(tmpResults) temp.write("Finished on " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M") + "\n\n") sys.stdout = orig_stdout temp.close() # writing the final result to a file f = open('data/results/optimisations/fopt-results-' + str(config["folds"]) + '.txt', 'a+') sys.stdout = f print "Started on " + started.strftime("%Y-%m-%d %H:%M") print "Finished on " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M") print "Execution time " + str(datetime.datetime.now() - started) + "\n" printResults(results) sys.stdout = orig_stdout f.close()
b20a49531606d2c5ae1e5574c0ba06d080ab4e78
0a6959eb1802f132e2fd4f9d1321420e293cb451
/app/src/utils/predictor.py
06d6e9af727b97ee700d204b87b01ab4b8ba2872
[ "MIT" ]
permissive
muskanmahajan37/Heart-Disease-Web-Application
398555940a5d1f363562c03896abc14a6f78ba70
02b65ece5606a18c3a293b53ec0f56271882cbb1
refs/heads/master
2022-12-24T04:04:34.701813
2020-09-25T06:48:51
2020-09-25T06:48:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,214
py
import streamlit as st import pandas as pd import joblib def create_inference_input(df): input_list = [] age = st.sidebar.slider(label="Age", min_value=min(df["age"]), max_value=max(df["age"])) input_list.append(age) st.sidebar.write("\n") sex = st.sidebar.radio(label="Sex", options=df["sex"].unique().tolist()) st.sidebar.write("\n") input_list.append(sex) chest_pain_type = st.sidebar.selectbox(label="Chest pain type", options=df["chest_pain_type"].unique().tolist()) st.sidebar.write("\n") input_list.append(chest_pain_type) resting_blood_pressure = st.sidebar.slider(label="Resting blood pressure mm Hg", min_value=min(df["resting_blood_pressure"]), max_value=max(df["resting_blood_pressure"])) st.sidebar.write("\n") input_list.append(resting_blood_pressure) cholesterol = st.sidebar.slider(label="Cholesterol measurement in mg/dl", min_value=min(df["cholesterol"]), max_value=max(df["cholesterol"])) st.sidebar.write("\n") input_list.append(cholesterol) fasting_blood_sugar = st.sidebar.radio(label="Enter the range for the fasting blood sugar", options=df["fasting_blood_sugar"].unique().tolist()) st.sidebar.write("\n") input_list.append(fasting_blood_sugar) rest_ecg = st.sidebar.selectbox(label="Resting electromagnetic measurement.", options=df["rest_ecg"].unique().tolist()) st.sidebar.write("\n") input_list.append(rest_ecg) max_heart_rate_achieved = st.sidebar.slider(label="Maximum heart rate achieved", min_value=min(df["max_heart_rate_achieved"]), max_value=max(df["max_heart_rate_achieved"])) st.sidebar.write("\n") input_list.append(max_heart_rate_achieved) exercise_induced_angina = st.sidebar.radio(label="Exercise induced Angina?", options=df["exercise_induced_angina"].unique().tolist()) st.sidebar.write("\n") input_list.append(exercise_induced_angina) st_depression = st.sidebar.slider("Enter the ST depression during exercise", min_value=min(df["st_depression"]), max_value=max(df["st_depression"])) st.sidebar.write("\n") input_list.append(st_depression) st_slope = st.sidebar.selectbox(label="Slope of peak exercise ST segment", options=df["st_slope"].unique().tolist()) st.sidebar.write("\n") input_list.append(st_slope) num_major_vessels = st.sidebar.slider(label="Number of major vessels", min_value=min(df["num_major_vessels"]), max_value=max(df["num_major_vessels"])) st.sidebar.write("\n") input_list.append(num_major_vessels) thalassemia = st.sidebar.selectbox(label="History of Thalassemia?", options=df["thalassemia"].unique().tolist()) st.sidebar.write("\n") input_list.append(thalassemia) response_dict = {column:value for column, value in zip(df.columns, input_list)} return response_dict def predictor(df): st.header("Machine Learning model predictor") st.write(""" A **machine learning model** trained on the heart disease dataset will be used to predict whether a patient has heart disease or not. We will be providing dropdowns for the user to select inputs for different attributes. These will then be fed into the machine learning model which will help predict the possibility of heart disease or not. """) st.sidebar.header("Input form for ML model") response_dict = create_inference_input(df) name = st.text_input(label="Enter your name") if st.sidebar.button(label="Submit input to model"): joblib.dump(response_dict, "app/src/utils/payload_dump/response_dict.bin") if st.button(label="Predict"): response_dict = joblib.load("app/src/utils/payload_dump/response_dict.bin") df = df.append(response_dict, ignore_index=True) model = joblib.load("app/src/models/rf_model.bin") df.drop(["target"], axis=1, inplace=True) df = pd.get_dummies(df, drop_first=True) pred = model.predict(df.iloc[-1, :].values.reshape(1, -1)) pred_prob = model.predict_proba(df.iloc[-1, :].values.reshape(1, -1)) pred = "No you do not have heart disease" if pred == 0 else "You have heart disease" result = pd.DataFrame({"Values": [name, round(pred_prob[0][1], 2), pred]}, index=["Name", "Probability of Heart Disease", "Verdict"]) st.write(result)
9545603abda16bc46d541742d01db6610d959d1b
f2b833774224a626741752c5ab3c692b18692b37
/vfoa/methods/geometrical_model.py
51da6cf9db40b724c84ee6cd08d31008beeef456
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
idiap/vfoa
6a3a691ec5ebb048147e597db234f6e28c85618c
c42697ebd848dc4871a5aaf480e2bbc40effc2c6
refs/heads/main
2022-12-27T22:23:56.364523
2020-10-12T07:03:02
2020-10-12T07:03:02
303,306,127
4
0
null
null
null
null
UTF-8
Python
false
false
5,832
py
""" Copyright (c) 2018 Idiap Research Institute, http://www.idiap.ch/ Written by Remy Siegfried <[email protected]> This file contains a vfoa estimation method based on geometrical features. Estimate vfoa based on a geometric model: if the angular distance between the gaze vector and the target direction (i.e. line frome eye to target) is below a given threshold, the gaze is allocated to this target. If several targets fill this condition, the nearest to the gaze vector wins. """ from copy import deepcopy import numpy as np from vfoa.utils.geometry import angleBetweenVectors_deg, yawElevationToVector class GeometricModel: def __init__(self, thresh=10): self.name = 'geometricalModel' self.thresh = thresh # Threshold applied on the angular distance between gaze and target direction self.vfoa_prob = None # Unnormalized vfoa self.vfoa = None # Normalized distribution def set_parameters(self, parameterList): if parameterList is None or len(parameterList) != 1: raise Exception('given parameters ({}) do not fit the model. Need 1 parameter'.format(parameterList)) threshold = parameterList[0] if threshold is not None: self.thresh = threshold def compute_vfoa(self, person, targetDict, timestamp): """ <gaze>: [x, y, z, yaw, pitch, roll] <targetDict>: {'targetname': Target} <gazeFormat>: should be 'vector' or 'angles' """ # Check coordinate systems and units person.convert_to(positionCS='CCS', poseCS='CCS', poseUnit='deg') for key in targetDict.keys(): targetDict[key].convert_to(positionCS='CCS') # Get nearest Target nearestTarget, minDist = 'aversion', np.inf for targetName, target in targetDict.items(): if targetName != person.name: if target.position is not None: # Compute 3D anglular error gazeVec = yawElevationToVector(person.gaze[3:5]) angDist = angleBetweenVectors_deg(gazeVec, target.position - person.gaze[0:3]) # Error in 3D # Compute error in 2D angles (yaw, elevation) # targetAngles = np.array(vectorToYawElevation(target.position - person.gaze[0:3])) # yawEleDist = person.gaze[3:5] - targetAngles if angDist < self.thresh and angDist < minDist: minDist = angDist nearestTarget = targetName # Build vfoa self.vfoa = {'aversion': int(nearestTarget is 'aversion')} for targetName, target in targetDict.items(): if targetName != person.name: self.vfoa[targetName] = int(nearestTarget is targetName) self.vfoa_prob = self.vfoa def get_vfoa_prob(self, targetName=None): """ Return probability that the person looks to the target (dict of {'targetName': probability} or this probability for all targets if <targetName> is None.) Note that those probabilites does not sum to 1 (not like <self.vfoa>, which is a distribution).""" if targetName: return deepcopy(self.vfoa_prob[targetName]) else: return deepcopy(self.vfoa_prob) def get_vfoa_distribution(self, targetName=None): """ Return distribution that the person looks to the target (dict of {'targetName': probability} or this probability for all targets if <targetName> is None.) """ if targetName: return deepcopy(self.vfoa[targetName]) else: return deepcopy(self.vfoa) def train(self, personList, targetDictList, groundTruth): distCollection_targets = [] distCollection_aversion = [] # Gather decision value (i.e. angular distance between target direction and gaze) nbSamples = 0 for person, targetDict, gt in zip(personList, targetDictList, groundTruth): nearestTarget, minDist = 'aversion', np.inf for targetName, target in targetDict.items(): if targetName != person.name: if target.position is not None: # Compute 3D angular error gazeVec = yawElevationToVector(person.gaze[3:5]) angDist = angleBetweenVectors_deg(gazeVec, target.position - person.gaze[0:3]) if angDist < minDist: minDist = angDist nearestTarget = targetName if gt == nearestTarget: distCollection_targets.append(minDist) nbSamples += 1 elif gt == 'aversion': distCollection_aversion.append(minDist) nbSamples += 1 # Build GMM model of classes mean1 = np.mean(np.array(distCollection_targets)) var1 = np.var(np.array(distCollection_targets)) mean2 = np.mean(np.array(distCollection_aversion)) var2 = np.var(np.array(distCollection_aversion)) # Compute gaussian intersections a = 1/var1 - 1/var2 b = 2*(mean2/var2 - mean1/var1) c = mean1**2/var1 - mean2**2/var2 - np.log(var2/var1) intersections = np.roots([a, b, c]) # Select the intersection representing a highest probability (intuition) def _gaussian(x, mu, var): return 1 / (2 * np.pi * var) ** .5 * np.exp(-.5 * (x - mu) ** 2 / var) if _gaussian(intersections[0], mean1, var1) > _gaussian(intersections[1], mean1, var1): self.thresh = intersections[0] else: self.thresh = intersections[1] print('Training {} ({} samples), threshold was updated to {}'.format(self.name, nbSamples, self.thresh))
2420836ad929495008eab115570e2265b2d7c035
7001344d76da760d24852ceadf0d2da18aa45a4d
/Algorithm/SVD/SVD_Anonymous_Microsoft_Web_Data/SVD_Anonymous_Microsoft_Web_Data_FromScratch.py
cb9b37d119d37ef8850bd2c28c1d8f6bd5e1d958
[]
no_license
JimXiongGM/MachineLearningPractice
e1038df38c740219562bca366472d67e898bdae0
9e76066303e317085a22d91785948d6ce12bac6d
refs/heads/master
2020-04-30T15:37:42.054069
2019-03-20T13:03:31
2019-03-20T13:03:58
176,925,255
0
1
null
2019-03-21T10:47:57
2019-03-21T10:47:55
null
UTF-8
Python
false
false
8,787
py
## Automobile From Scratch Version # # Author: David Lee # Create Date: 2018/11/10 # # PS. Recommendation System import numpy as np import pandas as pd # Read csv from scipy.sparse.linalg import svds # using ARPACK as an eigensolver from scipy.sparse import csc_matrix ### Recommendation System # Item-based recommendation engine ## Similarity Measures # These metrics assumed the data was in column vectors def euclidianDistanceSimilarity(A, B): return 1.0/(1.0 + np.linalg.norm(A - B)) def pearsonCorrelationSimilarity(A, B): if len(A) < 3: return 1 else: return 0.5 + 0.5 * np.corrcoef(A, B, rowvar=0)[0][1] def cosineSimilarity(A, B): num = float(A.T*B) denom = np.linalg.norm(A) * np.linalg.norm(B) return 0.5 + 0.5 * (num/denom) ###### def standEstimation(dataMat, user, similarityMeasurement, item): n_items = np.shape(dataMat)[1] simTotal = 0; ratSimTotal = 0 for j in range(n_items): userRating = dataMat[user, j] if userRating == 0 or j == item: continue overLap = np.nonzero(np.logical_and(dataMat[:, item].A > 0, dataMat[:, j].A > 0))[0] if len(overLap) == 0: similarity = 0 else: similarity = similarityMeasurement(dataMat[overLap, item], dataMat[overLap, j]) # print("The %d and %d similarity is: %f" % (item, j, similarity)) simTotal += similarity ratSimTotal += similarity * userRating if simTotal == 0: return 0 else: return ratSimTotal / simTotal def svdEstimation(dataMat, user, similarityMeasurement, item, xformedItems): n_items = np.shape(dataMat)[1] simTotal = 0; ratSimTotal = 0 for j in range(n_items): userRating = dataMat[user, j] if userRating == 0 or j == item: continue similarity = similarityMeasurement(xformedItems[item, :].T, xformedItems[j, :].T) # print("The %d and %d similarity is: %f" % (item, j, similarity)) simTotal += similarity ratSimTotal += similarity * userRating if simTotal == 0: return 0 else: return ratSimTotal / simTotal def recommend(dataMat, user, N=None, simMeas=cosineSimilarity, estMethod='svdEstimation'): unratedItems = np.nonzero(dataMat[user, :].A == 0)[1] if len(unratedItems) == 0: return "You rated everything" itemScores = [] if estMethod == 'svdEstimation': # SVD Calculations U, Sigma, VT = np.linalg.svd(dataMat, full_matrices=False) U_new, Sigma_new, VT_new = keepSingularValue(U, Sigma, VT) diagonal_mat = np.mat(np.eye(len(Sigma_new)) * Sigma_new) # Create diagonal matrix xformedItems = dataMat.T * U_new * diagonal_mat.I # Create transformed items for item in unratedItems: if estMethod == 'svdEstimation': estimatedScore = svdEstimation(dataMat, user, simMeas, item, xformedItems) elif estMethod == 'standEstimation': estimatedScore = standEstimation(dataMat, user, simMeas, item) itemScores.append((item, estimatedScore)) recommendations = sorted(itemScores, key=lambda jj: jj[1], reverse=True) if not N: # Return all recommendation return recommendations else: return recommendations[:N] ######## def loadExData1_1(): matrix = [[1, 1, 1, 0, 0], [2, 2, 2, 0, 0], [1, 1, 1, 0, 0], [5, 5, 5, 0, 0], [1, 1, 0, 2, 2], [0, 0, 0, 3, 3], [0, 0, 0, 1, 1]] return np.mat(matrix) def loadExData1_2(): matrix = [[4, 4, 0, 2, 2], [4, 0, 0, 3, 3], [4, 0, 0, 1, 1], [1, 1, 1, 2, 0], [2, 2, 2, 0, 0], [1, 1, 1, 0, 0], [5, 5, 5, 0, 0]] return np.mat(matrix) def textbook_example(): print("\n=== Standard Estimation ===\n") ## Machine Learning in Action Example ex_data = loadExData1_1() U, Sigma, VT = np.linalg.svd(ex_data) # This will consume all your RAM print('Sigma:', Sigma) # Drop the last two value since they're so small to ignore Sig3 = np.mat([[Sigma[0], 0, 0], [0, Sigma[1], 0], [0, 0, Sigma[2]]]) # Reconstruct an apprximation of the original matrix approx_mat = U[:, :3] * Sig3 * VT[:3, :] print('Original matrix\n', ex_data) print('Apprximate matrix by SVD\n (round to 2 decimals)', np.round(approx_mat, decimals=2)) # Similarity test # print(euclidianDistanceSimilarity(approx_mat[:, 0], approx_mat[:, 4])) # print(euclidianDistanceSimilarity(approx_mat[:, 0], approx_mat[:, 0])) # print(pearsonCorrelationSimilarity(approx_mat[:, 0], approx_mat[:, 4])) # print(pearsonCorrelationSimilarity(approx_mat[:, 0], approx_mat[:, 0])) # print(cosineSimilarity(approx_mat[:, 0], approx_mat[:, 4])) # print(cosineSimilarity(approx_mat[:, 0], approx_mat[:, 0])) ex_data2 = loadExData1_2() # Recommend user 2 print("Eucilidian similarity:", recommend(ex_data2, 2, N=3, simMeas=euclidianDistanceSimilarity, estMethod='standEstimation')) print("Pearson similarity:", recommend(ex_data2, 2, N=3, simMeas=pearsonCorrelationSimilarity, estMethod='standEstimation')) print("Cos similarity:", recommend(ex_data2, 2, N=3, simMeas=cosineSimilarity, estMethod='standEstimation')) def loadExData2(): matrix = [[2, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5], [0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0], [3, 3, 4, 0, 3, 0, 0, 2, 2, 0, 0], [5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 5, 0, 0, 5, 0], [4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5], [0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4], [0, 0, 0, 0, 0, 0, 5, 0, 0, 5, 0], [0, 0, 0, 3, 0, 0, 0, 0, 4, 5, 0], [1, 1, 2, 1, 1, 2, 1, 0, 4, 5, 0]] return np.mat(matrix) def textbook_example2(): print("\n=== SVD Estimation ===\n") data = loadExData2() U, Sigma, VT = np.linalg.svd(data) U_new, Sigma_new, VT_new = keepSingularValue(U, Sigma, VT, energy=0.9) print('90%% of the energy expressed in the matrix is the first %d sigma' % len(Sigma_new)) # Recommend user 1 print("Eucilidian similarity:", recommend(data, 1, N=3, simMeas=euclidianDistanceSimilarity, estMethod='svdEstimation')) print("Pearson similarity:", recommend(data, 1, N=3, simMeas=pearsonCorrelationSimilarity, estMethod='svdEstimation')) print("Cos similarity:", recommend(data, 1, N=3, simMeas=cosineSimilarity, estMethod='svdEstimation')) def loadWebData(): pageId = [] description = [] url = [] with open('Datasets/anonymous-msweb.csv', 'r') as webdata_file: lines = webdata_file.read().splitlines() for line in lines: items = line.split(',') if items[0] == 'A': pageId.append('X' + str(items[1])) description.append(items[3]) url.append(items[4]) webdata_table = pd.DataFrame({'description': description, 'url': url}, index=pageId) return webdata_table def loadRatingsMatrix(): # This is preprocessed data by using R ratings_matrix = pd.read_csv('Datasets/MS_ratings_matrix.csv', index_col=0) # the first column is index return ratings_matrix # Keep default 90% of the energy expressed in the matrix def keepSingularValue(U, Sigma, VT, energy=0.9): target = sum(Sigma**2) * energy temp_sum = 0 for i, sigma in enumerate(Sigma**2): temp_sum += sigma if temp_sum > target: break return U[:, :i], Sigma[:i], VT[:i, :] def main(): textbook_example() textbook_example2() print("\n=== Anonymous Microsoft Web Data ===\n") ## Anonymous Microsoft Web Data # Load Data matrix = loadRatingsMatrix() data = np.mat(matrix) # Truncated SVD U, Sigma, VT = np.linalg.svd(data, full_matrices=False) # Compute the entire matrix will consume all your RAM #U, Sigma, VT = svds(csc_matrix(data, dtype=float), k = 165) U_new, Sigma_new, VT_new = keepSingularValue(U, Sigma, VT, energy=0.9) print('90%% of the energy expressed in the matrix is the first %d sigma' % len(Sigma_new)) table = loadWebData() user = 100 N = 5 result = recommend(data, user, N, simMeas=pearsonCorrelationSimilarity, estMethod='svdEstimation') print(result) print('For user %s with the top %d recommendation' % (matrix.index[user], N)) ids = [] for item, score in result: pageId = matrix.columns[item] ids.append(pageId) print('We recommend %s (recommendation score: %s)' % (pageId, score)) print(table.loc[pageId]) print("Recommendation Table\n", table.loc[ids,]) if __name__ == '__main__': main()
bba6df8d6d59232a1b97cbb8eea71d9b6a69427e
fb18183bb84f20b47dd75b158a48cbee1e68169b
/python/menu.py
54ab403b6e2d009a8af647ef1962eae4859910ac
[]
no_license
jasolson/development
f5cef579c2397d99636d1d117c39f9cb9adc1615
83a9a1accdea84ac3a6c5f0c457a11fa795c9706
refs/heads/master
2021-01-19T08:50:28.862441
2013-10-26T22:16:37
2013-10-26T22:16:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,502
py
import sys import aws_ec2_functions as ec2 def main(): print "Welcome to AWS!" while(True): function = mainMenu() if(function == 'listec2'): ec2.listEC2Instances() elif(function == 'listebs'): ec2.listEBSVolumes() elif(function == 'listzones'): ec2.listEC2Zones() elif(function == 'deleteebs'): deleteVol() elif(function == 'exit'): break def mainMenu(): while(True): print "Please select an option\n" print "1) List instances" print "2) List EBS instances" print "3) List EC2 Zones" print "4) Delete EBS instance by id" print "0) Exit" try: selection = input("Your selection:") except SyntaxError: continue # print "You selected:{0}".format(selection) if(str(selection) == '1'): return 'listec2' elif(str(selection) == '2'): return 'listebs' elif(str(selection) == '3'): return 'listzones' elif(str(selection) == '4'): return 'deleteebs' elif(str(selection) == '0'): return 'exit' else: print "Select one of the options, i.e. \"1\"" def deleteVol(): while(True): print "Select from this list of volumes..." vols = ec2.getEBSVolumes() count = 0 for vol in vols: count = count +1 print count,") Volume ID:",vol.id," Volume Size:",vol.size print "0) Exit(Do nothing)" try: selection = raw_input("What would you like to select:") if(str(selection) == '0'): return else: ec2.deleteEBSVolume(vols[int(selection)-1]) return except SyntaxError: continue main()
59e85beb15aa658989b3e8f94c10d8171a846512
5fbfdc83f2577f42b50656e60e503d08c0278f2d
/4palindromes.py
f2828ae3053b31bbf291cea2128f3777aec09c0f
[]
no_license
jchen1352/project-euler
25089a4a751bb47417975bf23dc562d2aa977b49
6f5a15aaa1a4879198f5ba9946c78291f61b0084
refs/heads/master
2021-01-19T09:41:56.495030
2015-09-06T17:43:13
2015-09-06T17:43:13
42,011,751
0
0
null
2015-09-06T17:42:10
2015-09-06T17:38:28
Python
UTF-8
Python
false
false
800
py
def factor(number): factors = [] factor = 2 while number > 1: if number % factor == 0: factors.append(factor) number = number / factor factor = 2 else: factor += 1 return factors palin_list = [] for x in range(10): for y in range(10): for z in range(10): palin_list.append(100001*x+10010*y+1100*z) palin_list.append(10001*x+1010*y+100*z) ''' for palin in palin_list: palin_factors = factor(palin) if len(palin_factors) == 2: if len(str(palin_factors[0])) == 3 and len(str(palin_factors[1])) == 3: print(palin, palin_factors) ''' for x in range(900,1000): for y in range(900,1000): xy = x*y if xy in palin_list: print(xy)
7a48106962ab4daa026afd3b6f4ebe6826ba7d85
c73c158654a2e76dbc63f34a47b0c77a4e98b5a8
/rexparse/__init__.py
2a7568b6c2e4463fcd091e598a2cb47e0fdc177d
[]
no_license
gregbanks/rexparse
2b61ebfe2638a446658965934325b7558b9bc72e
cd8b85df3219336c10bfb623dfc78b06785be593
refs/heads/master
2021-01-01T18:17:55.098929
2013-11-12T18:12:37
2013-11-12T18:12:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,021
py
import os import re from functools import wraps from distutils.errors import DistutilsSetupError from rex import Requirements, Requirement from _version import __version__ __all__ = ['Requirements', 'Requirement', 'get_version'] def get_version(path): version = None try: version = re.search(r'__version__\s*=\s*[\'"]([\d.]+)[\'"]', open(path).read()).group(1) except (IOError, AttributeError): pass return version def set_dist_attr(dist, attr, val): if not isinstance(val, Requirements): if not isinstance(val, basestring): raise DistutilsSetupError('%r must be a string, got %r' % (attr, type(val))) if not os.path.isfile(val): raise DistutilsSetupError('%s does not appear to be a file' % (val)) if attr in ['install_requires', 'tests_require', 'dependency_links']: if not isinstance(val, Requirements): val = Requirements(val, parse=True) setattr(dist, attr, getattr(val, attr)) elif attr == 'version': setattr(dist, attr, get_version(val)) else: raise DistutilsSetupError('unknown attr %s' % (attr)) def rexparse(dist, attr, val): if not isinstance(val, dict): raise DistutilsSetupError('%s must be a dict with keys ' '"requirements_path" and (optionally) ' '"version_path"' % (attr)) valid_args = set(['requirements_path', 'version_path']) if len(set(val.keys()) - valid_args) > 0: raise DistutilsSetupError('got unknown arguments %r' % (set(val.keys()) - valid_args)) if 'version_path' in val: set_dist_attr(dist, 'version', val['version_path']) reqs = Requirements(val['requirements_path'], parse=True) for key in ['install_requires', 'tests_require', 'dependency_links']: set_dist_attr(dist, key, reqs)
6a56579dde04c041a43a789d84507459c53c3aac
432ed7648ad8b634e2e03d3c721ce9b96b79c25c
/simpledot.py
63ab3de3db226e12b447c109648ffc6f12dfa507
[]
no_license
leeseunghow/cps-IOT-project
ded7026b0b4585165b328cca5e089e275eec7856
eb35fe26081ab528000b8301cfdcdd3979c1dfe9
refs/heads/master
2022-11-05T22:01:57.669797
2020-06-21T10:33:07
2020-06-21T10:33:07
269,158,111
0
0
null
null
null
null
UTF-8
Python
false
false
1,229
py
latlon = [[37.550997 , 126.922986], [37.548769, 126.918073], [37.551596, 126.924945], [37.554642, 126.921294], [37.548534, 126.913838], [37.55101598, 126.98866975], [37.56504849, 127.00790431], [37.56078470, 127.00615551], [37.56260513, 126.98268300], [37.56894269, 127.00058382], [37.502764, 126.928561], [37.510359, 126.926577], [37.508868, 126.962832], [37.482276, 126.965329], [37.522440, 126.924428], [37.497784, 127.027488], [37.498431, 127.036973], [37.510731, 127.098378], [37.481164, 127.121328], [37.462367, 127.036932], [37.579293, 126.951680], [37.536174, 126.998101], [37.504387, 126.861700], [37.550512, 127.142187], [37.471272, 127.029326], [37.601556, 126.929571], [37.595284, 126.915647], [37.530422, 126.882938], [37.525064, 126.903054], [37.468586, 126.953032] ] import folium m = folium.Map( location = [37.52206126, 126.99322917], zoom_start = 11.6, tiles = 'Cartodb Positron' ) for i in range(len(latlon)): folium.Circle( location = latlon[i], radius = 350, color = 'blue', fill = 'crimson', ).add_to(m) m.save('simpledots.html')
814593c51e85d2d29852853aa98aa56328942c71
fc7d5eb1cc94e7b7ed0e4e0bdb68268cc2016dcb
/blog/migrations/0004_auto_20190910_1928.py
8818d917e764965f5e4682457cd2bc2c769ed235
[ "MIT" ]
permissive
danceandfight/sensitive-blog-dvmn
65847a6796f393547976c051f3e7231f409295ed
1e93bace2c548644723de0ec17feab064e8f1643
refs/heads/master
2022-11-29T02:22:16.430997
2020-01-08T17:34:24
2020-01-08T17:34:24
224,164,480
0
1
MIT
2022-11-22T04:18:51
2019-11-26T10:29:03
HTML
UTF-8
Python
false
false
1,505
py
# Generated by Django 2.2.5 on 2019-09-10 16:28 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('blog', '0003_post_published_at'), ] operations = [ migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=20, verbose_name='Тег')), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField(verbose_name='Текст комментария')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Автор')), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Post', verbose_name='Пост, к которому написан')), ], ), migrations.AddField( model_name='post', name='tags', field=models.ManyToManyField(related_name='posts', to='blog.Tag', verbose_name='Теги поста'), ), ]
4a7e666225218172bb22d81d113bb13f1659271d
c22db8895c04cf8d34f52a6ba687153ad01886a4
/Chapter_5.2_Algorithms/Exercises/CountDown.py
1fdbac84ba0484cc9420d7aa9c3073183987fb45
[]
no_license
chyjuls/Computing-in-Python-IV-Objects-Algorithms-GTx-CS1301xIV-Exercises
a8b20e92a6d83a53f99fecc44a82ac02fb3dbec1
aac897f86ea5537e4038f05f83f62f314fd8f837
refs/heads/master
2022-12-30T17:27:07.093956
2020-10-15T20:07:36
2020-10-15T20:07:36
420,781,183
1
0
null
null
null
null
UTF-8
Python
false
false
1,521
py
#We've written a function below called count_down(). This #function takes an int parameter, start, and prints every #number from that start to 0. The way we've written it uses #recursion. Below that funtion, write a function that does #the exact same thing, but do not use recursion. # #The purpose of this exercise is for you to recognize some #example instances in which you can use recursion, and what #differences can be seen in the actual code. # #Make sure to actually print 0 as the last number! def count_down(start): #If we've reached 0 already, print 0 but do not call #another copy if start <= 0: print(start) #If we haven't reached 0 yet, print the current number, #then call count_down with the current number minus 1. else: # count_down(start - 1) # Head recursion print(start) count_down(start - 1) # Tail recursion #Do not modify the code above. #Fill in the function below to do the same as the function #above, but without recursion. You could use for loops, #while loops, or some other approach. def count_down2(start): #Add your code here! for count in range(start, -1, -1): print(count) #Below are some lines of code that will test your function. #You can change the value of the variable(s) to test your #function with different inputs. # #If your function works correctly, this will originally #print: 5, 4, 3, 2, 1, 0, each on their own line. count_down2(5) print('--------------------------') count_down(5)
0e0e2fab975591c749f87685e0fb40a01e7cd269
67a0b708ee86c23102dcb03b90bcfed3e4e4181b
/yzrpc/utils/__init__.py
12b77131ae05834a4fbb68df549bc5e49f8e9ecc
[ "Apache-2.0" ]
permissive
limi444/yz-rpc-1
ebfdd841abb4a08d1b4e179e4d7d9f6bd2bb2f3c
f3b6cb76dab72e1763d759080854c11aa6ade872
refs/heads/master
2023-04-11T08:01:49.074491
2021-04-27T07:52:58
2021-04-27T07:52:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
#!/usr/bin/python3.7+ # -*- coding:utf-8 -*- """ @auth: cml @date: 2021/2/23 @desc: ... """ from .type_transform import * from ._path import * from ._import import * from ._autoreload import * # from ._logger import * # from ._inspect import * # from ._singleton import *
712cb2fc42c9ad1f000da08ca648de2bab63137a
e8e77fbd3b128d5691db0dd3fbafaebddcca2f20
/mySpider_HSN/mySpider_HSN/items.py
8a0a5324cac66e6f7cd32c0912b37b36d2d78dea
[]
no_license
hashmeta/mySpider_HSN
f166f814209a48fc0aa636da57c91aecd29fe80e
2d9a5803469666b5c17472ae3ab334abcf9b2970
refs/heads/master
2022-02-03T23:55:21.717763
2019-08-08T22:04:27
2019-08-08T22:04:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
335
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html from scrapy.item import Item, Field class MyspiderHsnItem(Item): # define the fields for your item here like: # name = scrapy.Field() HSN_Code=Field() Desc=Field()
87f3d9a51925ed0fd72b5aba493e1d775bb21891
ed23c841f17a5c2eee2f3707f35d8641aa1ffc89
/366. Fibonacci.py
4105ce4063a5fa26a4f5e834580a652369d4754b
[ "MIT" ]
permissive
bicongwang/lintcode-python3
077f5fe2c4c354fb3e0a294abea1bc94b7e05275
23ba29677b4d4b0a90014dc3a92ab7fae5a4d980
refs/heads/master
2020-03-10T18:26:29.680084
2018-05-05T17:31:37
2018-05-05T17:31:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# Solution 1: Simple # # Comment: You have no need to use array which will cause a larger space complexity # Space complexity: O(1) # Time complexity: O(n) class Solution: """ @param n: an integer @return: an ineger f(n) """ def fibonacci(self, n): i_1, i_2 = 0, 1 for i in range(n-1): i_1, i_2 = i_2, i_1 + i_2 return i_1
e4c1bc4025cbb82d36058bfe6430850c83afe832
f94463add4743b33ca3cb405309eb2cb939165cb
/accounts/migrations/0001_initial.py
bef9e4898162a3087d999998704acf7ff583c07f
[]
no_license
JaaMata/Book-Ecommers
e813d490bcd7d6aed3c0aa7dbb38cd21eef21722
839fe6231d551f09aa2785b4bbc79809d8bc5d70
refs/heads/main
2023-07-16T03:12:30.991192
2021-08-30T14:09:17
2021-08-30T14:09:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
# Generated by Django 3.2.5 on 2021-07-21 18:51 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('email', models.EmailField(max_length=255, unique=True)), ('active', models.BooleanField(default=True)), ('staff', models.BooleanField(default=False)), ('admin', models.BooleanField(default=False)), ], options={ 'abstract': False, }, ), ]
8d2e68641e3022d1d0d4e3a364c9138e8574d8c2
746e766a5bffb98a1f353f107f370cfc37fa95f4
/dc.py
e9b8cf399420643cf6732c684d46a93158c1fcbf
[]
no_license
girishjakkam/python-repo
eb955a0a9e4b8375469f4a04ee9558a8020e295d
7d8cacb1df5d4f4751ec2a46f9d68744b604d69b
refs/heads/master
2021-01-21T15:00:08.331719
2016-06-09T16:40:53
2016-06-09T16:40:53
58,341,521
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
name = raw_input("Enter file:") handle = open(name) lst=list() z=list() counts=dict() for line in handle: line.split() if line.startswith('From')==True: pos=line.find('From') pos1=line.find('@') lst.append(line[pos+5:pos1+9]) for name in lst: counts[name]=counts.get(name,0)+1 bigword=None bigcount=None for word,count in counts.items(): if bigcount is None or count>bigcount: bigword=word bigcount=count print bigword,bigcount
ff73c351f221334739ef870b16ae97803f134220
23ea05ebeb26c4d5672bd1ddbfd7508196bddf99
/meditation_tracker/meditation_tracker/meditation_tracker/urls.py
a3149c886dbaa40423863f7f1f67b88fe91b767a
[]
no_license
nucly/python
7547c7a7bc5f90fe777b607cdac799db4e7e2d89
dae2f1b649b0933e26a6c1826e0cdf54284eec20
refs/heads/main
2023-02-26T09:26:09.692651
2021-01-29T00:59:40
2021-01-29T00:59:40
325,858,015
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
"""meditation_tracker URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('log/', include('meditation_log.urls')), path('admin/', admin.site.urls), ]
9ee3976091d42ea805caecd71de5304d1f0f6bef
e9c82c51f8f3a3eaa828c35d6254f82daa96bf88
/UTKFace.py
f3d81c0341376a1e74b8c05ce519a86cf8f9d810
[]
no_license
rampant-lancer/FaceDL
8bb6f4a1a61801ffe74da89f204cbfecece5b4f6
a2f7e1bb026ac4c4624e0672a7ff769c6a2514a9
refs/heads/master
2020-03-29T11:23:43.042788
2018-10-06T16:06:13
2018-10-06T16:06:13
149,850,190
0
0
null
null
null
null
UTF-8
Python
false
false
4,602
py
import os import tarfile import numpy as np import cv2 import requests class UTKFace(object): def __init__(self): ''' To initialize the self.req_file variable with the zipped file and also to initialize self.data_dir where extracted data is stored ''' self.req_file = 'downloaded/UTKFace.tar.gz' self.data_dir = 'downloaded/UTKFace' self.base_dir = 'downloaded' self.file_id = '0BxYys69jI14kYVM3aVhKS1VhRUk' curr_dir = os.listdir() if not 'downloaded' in curr_dir: os.mkdir('downloaded') def download_file_from_google_drive(self, id, destination): ''' The implementation of this function and it's helper function is taken from : https://stackoverflow.com/questions/38511444/python-download-files-from-google-drive-using-url It takes the file id of the shared google drive file and download it using requests package ''' URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params = { 'id' : id }, stream = True) token = self.get_confirm_token(response) if token: params = { 'id' : id, 'confirm' : token } response = session.get(URL, params = params, stream = True) self.save_response_content(response, destination) def get_confirm_token(self, response): '''This is the helper function of the above download_file_from_google_drive function''' for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None def save_response_content(self, response, destination): '''This is the helper function of the above download_file_from_google_drive function''' CHUNK_SIZE = 32768 print('Processing...') with open(destination, 'wb') as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) def get_data(self): ''' This function reads the self.data_dir i.e "UTKFace" directory and convert those images into numpy array and returns them as X and Y @return1: X: Image data in numpy array format with dtype as np.uint8 X.shape = [None, 200, 200, 3] @return2: Y: Class label in numpy array format with dtype as np.int32 Y.shape = [None, ] @param1: countOfImages: Number of images that are to be converted to numpy array positive integer to represent number of images NB: only for debugging or -1 to represent all images @param2: mode: The class label which would be extracted from the data 0 or 'age' for age 1 or 'gender' for gender 2 or 'race' for race ''' X = [] Y = [] all_files = os.listdir(self.data_dir) _range = len(all_files) if self.countOfImages == -1 : sample_size = _range else: sample_size = self.countOfImages # Making sure that the selection is random. random_indices = np.random.choice(range(_range), sample_size, replace=False) for indx in random_indices: fpath = self.data_dir + '/' + all_files[indx] img = cv2.imread(fpath) label = int(all_files[indx].split('_')[self.mode]) X.append(img) Y.append(label) return np.array(X), np.array(Y) def load_data(self, countOfImages, mode): ''' This is the main function of the class this function will extract images and labels from the directory specified. ''' all_files = os.listdir(self.base_dir) self.countOfImages = countOfImages self.mode = mode if not self.req_file.split('/')[1] in all_files: ''' This is to deal with the case when the required file is not present in the current downloaded directory ''' self.download_file_from_google_drive(self.file_id, self.req_file) if not self.data_dir.split('/')[1] in all_files: tar = tarfile.open(self.req_file, "r:gz") tar.extractall(self.base_dir) tar.close() return self.get_data()
0a013dbeac63b6fe9a9a83342f2a4d953a07c59f
8f848713ace51c3d7cb0491429f4abe808379431
/KRR/WME.py
363c602453c970c3714ed041bc8a24345e1c4c66
[]
no_license
AshwiniTagadghar1/ReteNet
20e1d7dcf74ffae71f292bda4b6374cf17d07c7c
48d6c098dc1702e2ff1f5f38e1d17766f41b735a
refs/heads/master
2022-11-17T17:43:42.075362
2020-07-11T07:50:28
2020-07-11T07:50:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
class WME: def __init__(self, className, attribute_value_pairs): self.className=className self.attribute_value_pairs=attribute_value_pairs
69fa7989cab255908dc5566d8284bd79b02113c2
2d96739882edc57788b7876255947cad184f34e4
/SMS_Packages/Tech/work.py
76901374ed7d0cbf472d8f9179cac3a40d54a9a7
[]
no_license
akash639743/Python_Assignment
afdd8ac126473fe9d2ef1a0f983376b17b5c4b92
c04242af0d31037fa536655b1319acb1fb879e7b
refs/heads/master
2023-07-18T04:55:48.333488
2021-08-27T07:41:39
2021-08-27T07:41:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
249
py
# import sys # sys.path.append('C:/Users/mande/Desktop/New folder/SMS/User') # import request from User import request def tech_work(): print("Tech Package --> work Module") print("tech_work Function") print() request.user_request()
a3fa89807dd7197e628cef4a3dc812403a098dec
47da5e297ca31b69387817dfaa920b47cc8ff8ca
/Basics/Colt_Data_structure/Sorting_Algorithms/Selection_Sort/Selection_Sort_Test.py
81aa410e6c94609843affb81c0110b8381cb3ce2
[]
no_license
shafirpl/InterView_Prep
546623b165903c2b3a1ffde55c65196f5e56f298
f0c1f7b581210da120b8325a4846695afc1b9da7
refs/heads/master
2020-12-18T21:35:41.680029
2020-05-24T06:26:17
2020-05-24T06:26:17
235,527,584
0
0
null
null
null
null
UTF-8
Python
false
false
646
py
import unittest from Selection_Sort import selection_sort class SelectionSortTest(unittest.TestCase): def test_Bubble_Sort(self): self.assertEqual(selection_sort([8, 1, 2, 3, 4, 5, 6, 7]), [1, 2, 3, 4, 5, 6, 7, 8]) self.assertEqual(selection_sort([10, 5, 90, 0, 10]), [0, 5, 10, 10, 90]) self.assertEqual(selection_sort([64, 34, 25, 22, 11, 90, 12]), [ 11, 12, 22, 25, 34, 64, 90]) self.assertEqual(selection_sort([8, 90, 4, 1, 5, 5]), [1, 4, 5, 5, 8, 90]) self.assertEqual(selection_sort( [0,1,5,2]), [0,1,2,5]) if __name__ == "__main__": unittest.main()
6ce93375ceff30229cb3953ab10690c269168af9
c51f02dc9bf560ce419e847c0a4c81cc507e6425
/users/migrations/0005_alter_profile_user.py
1ea9dc5aebaede819586885bd0e50f61ba745eda
[]
no_license
Emmanuelbreezy/votingapp
0bbd214fb67d3073ee5b0460fb008ceb9266d754
3880b8df0fe5702da4a7ffebb80ca4b5f9dfcc87
refs/heads/main
2023-06-30T06:03:02.442261
2021-08-04T20:37:34
2021-08-04T20:37:34
392,818,312
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
# Generated by Django 3.2.5 on 2021-07-21 00:32 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('users', '0004_alter_profile_user'), ] operations = [ migrations.AlterField( model_name='profile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='userprofile', to=settings.AUTH_USER_MODEL), ), ]
7160dd58ad1a75f527a42d7ae7cd601eb8a90b90
c28df1b0bf09c1ce1cb6d9de219676827f899e8d
/person/migrations/0014_auto_20201003_1524.py
3fd510d20ea5ea36dec65400e05c8f6880e99e1c
[]
no_license
frozyum/split-expenses-app-backend
36fc501c432b6508a7c34bc08b6ab27a6bff245d
55e23ea222396814a80512df3fab0d5710c88fdf
refs/heads/master
2023-01-01T08:56:16.145140
2020-10-27T09:17:14
2020-10-27T09:17:14
298,987,935
0
0
null
2020-09-28T16:49:28
2020-09-27T08:32:47
Python
UTF-8
Python
false
false
501
py
# Generated by Django 3.0.8 on 2020-10-03 15:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('group', '0001_initial'), ('person', '0013_auto_20201003_1356'), ] operations = [ migrations.AlterField( model_name='person', name='group', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='group.Group'), ), ]