blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
2b842410ff09b5c4c5ee02673863363ca749c5e3
e6af4bb164fe4361a3f016bde78087997851a96c
/AI/src/tools/build_negative.py
b2406b4468f5d0c95576ccf5d435c861b752ef34
[]
no_license
gagerblog/Oscar-smart-trash
c158582d755fb6dcb8bc5a21a41989a5756e8f23
b4cd78cdc56deb6482965016026e8e0a94e2e2d8
refs/heads/master
2020-08-24T00:09:30.231705
2018-07-17T08:00:46
2018-07-17T08:00:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,291
py
"""Build TFRecords from ImageNet dataset.""" import os import csv import random import logging import xml.etree.ElementTree as ET import tensorflow as tf from logging_utils import setup_logging from utils import process_dataset FLAGS = tf.flags.FLAGS def define_flags(): """Define flags to config building process.""" # Output data Flags tf.flags.DEFINE_string( "tfrecord_output_dir", "/media/ubuntu/Data/dataset/recycle/data/interim/test", "Output directory for TFRecord files." ) # Input data Flags tf.flags.DEFINE_string("image_list", "resources/negative_images.csv", "File contains list of images to build dataset from.") tf.flags.DEFINE_string("image_dir", "data/ILSVRC2012_val/", "Directory of ImageNet's images.") tf.flags.DEFINE_string("label_dir", "data/val/", "Directory of ImageNet's labels.") # Build config Flags tf.flags.DEFINE_float( "min_area", 0.4, "Minimum area of the object to consider valid." ) tf.flags.DEFINE_string( "subset_to_build", "all", "The ImageNet dataset to build (train/val/test/all)." ) tf.flags.DEFINE_float( "train_percentage", 0.8, "Percentage of images to put in training set." ) tf.flags.DEFINE_integer( "train_shards", 4, "Number of shards for negative training set." ) tf.flags.DEFINE_float( "val_percentage", 0.1, "Percentage of images to put in validation set." ) tf.flags.DEFINE_integer( "val_shards", 2, "Number of shards for negative validation set." ) tf.flags.DEFINE_integer( "test_shards", 2, "Number of shards for negative test set." ) tf.flags.DEFINE_integer( "num_threads", 4, "Number of threads to write images in TFRecord files." ) def convert_to_infos(images): """Convert to image infos format with label -1.""" image_infos = [] for filepath in images: label = -1 image_infos.append({"filepath": filepath, "label": label}) return image_infos def parse_bbox_xml(file_name): """Get image info and list of bounding boxes from a xml file""" logger = logging.getLogger() try: tree = ET.parse(file_name) except Exception as e: msg = "Failed to parse {}: {}".format(file_name, e) logger.warning(msg) return None, None root = tree.getroot() image_size = root.find("size") image_width = int(image_size.find("width").text) image_height = int(image_size.find("height").text) image_info = { "width": image_width, "height": image_height } # Loop through each bbox, get coordinates and object WordNet ID bbox = [] for obj in root.iter("object"): name = obj.find("name").text bndbox = obj.find("bndbox") xmin = int(bndbox.find("xmin").text) ymin = int(bndbox.find("ymin").text) xmax = int(bndbox.find("xmax").text) ymax = int(bndbox.find("ymax").text) bbox.append({"name": name, "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax}) return image_info, bbox def is_valid(label_name, wnid, label_dir, min_area): """Check if an image is valid by checking the size of the largest object. A valid image contains at least one object of interest with area larger than a threshold. Args: label_name: str, name of the file contains the description of the image. wnid: str, the WordNetID of interest. label_dir: str directory of the label files. min_area: float minimum percentage of object to consider valid. Returns: valid: bool, whether the image is considered as valid. """ image_info, bbox = parse_bbox_xml( os.path.join(label_dir, label_name)) if not image_info: return False image_size = image_info["width"] * image_info["height"] * 1.0 max_size = 0.0 for b in bbox: if b["name"].strip().lower() != wnid: continue obj_size = abs((b["xmax"] - b["xmin"]) * (b["ymax"] - b["ymin"]) * 1.0) if obj_size > max_size: max_size = obj_size return max_size / image_size > min_area def split_images(images, train_percentage, val_percentage): """Split the images dataset into train/val/test set.""" image_train, image_val, image_test = [], [], [] for iid in images: num_images = len(images[iid]) num_trains = int(train_percentage * num_images) num_vals = int(val_percentage * num_images) num_tests = num_images - num_trains - num_vals image_train.extend(images[iid][:num_trains]) image_val.extend(images[iid][num_trains: num_trains + num_vals]) image_test.extend(images[iid][-num_tests:]) return image_train, image_val, image_test def get_valid_images(image_list, image_dir, label_dir, min_area): """Get all valid images and sort by classes to build balance datasets. Args: image_list: list of string name of the images. image_dir: string path to the folder contains the images. label_dir: str directory of the label files. min_area: float minimum percentage of object to consider valid. Returns: valid_images: dict with key is the id of the classes and value is the list of the path of valid images. """ valid_images = {} with open(image_list, "rt") as f: csv_reader = csv.reader(f) next(csv_reader) # Skip header for i, row in enumerate(csv_reader): image_name, label_name, wnid, iid = row if not is_valid(label_name, wnid, label_dir, min_area): continue image_path = os.path.join(image_dir, image_name) if iid in valid_images: valid_images[iid].append(image_path) else: valid_images[iid] = [image_path] return valid_images def get_image_infos(image_list, image_dir, train_percentage, val_percentage, label_dir, min_area): """Get lists of train/val/test image infos.""" valid_images = get_valid_images(image_list, image_dir, label_dir, min_area) image_train, image_val, image_test = split_images(valid_images, train_percentage, val_percentage) image_train = convert_to_infos(image_train) image_val = convert_to_infos(image_val) image_test = convert_to_infos(image_test) return image_train, image_val, image_test def main(unused_argv): """Build TFRecords.""" random.seed(333) setup_logging(filename="tfrecord_negative.log") logger = logging.getLogger() logger.info("Start building negative dataset") if not tf.gfile.IsDirectory(FLAGS.tfrecord_output_dir): tf.gfile.MakeDirs(FLAGS.tfrecord_output_dir) subset = FLAGS.subset_to_build.lower().strip() assert subset == "all" or subset == "train" or subset == "val" or \ subset == "test" image_train, image_val, image_test = get_image_infos( FLAGS.image_list, FLAGS.image_dir, FLAGS.train_percentage, FLAGS.val_percentage, FLAGS.label_dir, FLAGS.min_area) if subset == "train" or subset == "all": process_dataset("negative-train", FLAGS.train_shards, image_train, 1, FLAGS.num_threads, FLAGS.tfrecord_output_dir) if subset == "val" or subset == "all": process_dataset("negative-val", FLAGS.val_shards, image_val, 1, FLAGS.num_threads, FLAGS.tfrecord_output_dir) if subset == "test" or subset == "all": process_dataset("negative-test", FLAGS.test_shards, image_test, 1, FLAGS.num_threads, FLAGS.tfrecord_output_dir) logger.info("Finish building negative dataset") if __name__ == '__main__': define_flags() tf.app.run()
bbbfc6df2ceef7fe88b55150129b9adcebb1bfbb
f5214006a587cf363ced0945af144d7c96ff65b7
/resources/hoja_control.py
d0c12c624f99fd8a44f9e536ffa11e31ac384766
[]
no_license
lcevallo/sistagua-api
73fd985a3a98f0db9c8b192469aac1e6f356eb65
361bb9a2b0ba00a68d924ac675ca6a9f64f8d095
refs/heads/main
2023-04-17T09:36:14.000522
2021-05-08T09:39:00
2021-05-08T09:39:00
331,178,077
0
0
null
null
null
null
UTF-8
Python
false
false
25,448
py
import datetime import re from http import HTTPStatus from flask import request from flask_restful import Resource import myconnutils from models.ficha_tecnica import FichaTecnica from models.hoja_control import HojaControl from models.hoja_control_detalle import HojaControlDetalle from models.temp.hoja_control_tmp import HojaControlTMP class FichaTecnicaResource(Resource): def get(self): id = request.args.get('id') ficha_tecnica = self.buscar_x_id(id) if ficha_tecnica: return ficha_tecnica return {'message': 'Ficha tecnica no encontrada'}, 404 def post(self): data = request.get_json() ficha_tecnica_object = self.find_by_cedula(data['cedula'], data['codigo']) if ficha_tecnica_object is not None: return {'mensaje': 'la ficha tecnica para ese usuario ya existe en la base de datos'} else: ficha_tecnica_id = self.insert(data) if ficha_tecnica_id: ficha_tecnica_object = self.buscar_x_id(ficha_tecnica_id) print(ficha_tecnica_object) return {'ficha_tecnica': ficha_tecnica_object}, HTTPStatus.CREATED @classmethod def find_by_cedula(cls, cedula, codigo): connection = myconnutils.getConnection() cursor = connection.cursor() # query = 'SELECT `tid`,`participant_id`,`firstname`,`lastname`,`email`,`token`,`usesleft` from # `lime_tokens_782729` WHERE `token`= %s ' query = ''' SELECT ficha_tecnica.* FROM ficha_tecnica INNER JOIN cliente_ficha ON ficha_tecnica.fk_cliente = cliente_ficha.id WHERE cliente_ficha.cedula = %s AND ficha_tecnica.codigo = %s AND ficha_tecnica.publish = TRUE ''' cursor.execute(query, (cedula, codigo)) row = cursor.fetchone() connection.close() if row: ficha_tecnica = FichaTecnica( row['id'], row['fk_cliente'], row['codigo'], row['tds'], row['ppm'], row['visitas'], row['fecha_comprado'], row['created_at'], row['updated_at'], row['publish'] ) return ficha_tecnica.data else: return None @classmethod def buscar_x_id(cls, id): connection = myconnutils.getConnection() cursor = connection.cursor() query = """ SELECT ficha_tecnica.* FROM ficha_tecnica WHERE ficha_tecnica.publish = TRUE AND ficha_tecnica.id = %s """ cursor.execute(query, (id,)) row = cursor.fetchone() connection.close() if row: ficha_tecnica = FichaTecnica( row['id'], row['fk_cliente'], row['codigo'], row['tds'], row['ppm'], row['visitas'], row['fecha_comprado'], row['created_at'], row['updated_at'], row['publish'] ) return ficha_tecnica.data else: return None @classmethod def insert(cls, valor): fecha_comprado_format = datetime.datetime.strptime(valor['fecha_comprado'], "%Y-%m-%d") connection = myconnutils.getConnection() cursor = connection.cursor() query_insert = """ INSERT INTO `ficha_tecnica`( `fk_cliente`, `codigo`, `tds`, `ppm`, `visitas`, `fecha_comprado`) VALUES( %s, %s, %s, %s, %s, %s) """ cursor.execute(query_insert, ( valor['fk_cliente'], valor['codigo'], valor['tds'], valor['ppm'], valor['visitas'], fecha_comprado_format ) ) connection.commit() id_inserted = cursor.lastrowid connection.close() return id_inserted @classmethod def actualizar(cls, id, valor): connection = myconnutils.getConnection() cursor = connection.cursor() query_update = """ UPDATE cliente_ficha SET correo = %s, nombre = %s, apellidos = %s, cedula = %s, telefono = %s, updated_at = CURRENT_TIMESTAMP() WHERE id = %s AND publish = true """ cursor.execute(query_update, ( valor['correo'], valor['nombre'], valor['apellidos'], valor['cedula'], valor['telefono'] , id)) connection.commit() print(cursor.rowcount, "record(s) affected") connection.close() @classmethod def eliminar(cls, cedula): connection = myconnutils.getConnection() cursor = connection.cursor() query_update = """UPDATE cliente_ficha SET publish = false, updated_at = CURTIME() WHERE cedula = %s """ cursor.execute(query_update, (cedula,)) connection.commit() print(cursor.rowcount, "record(s) affected logic deleted!") connection.close() class HojaControlResource(Resource): def get(self, id): hoja_control = self.buscar_x_id(id) detalle_items = self.buscar_detalle_x_id(id) return {'hoja_control': hoja_control, 'itemDetale': detalle_items}, HTTPStatus.OK def delete(self, id): hoja_control_response = self.buscar_x_id(id) if hoja_control_response: affected = self.borrarHojaControl(id) if affected['hoja_control_id'] > 0: return {'message': ''}, HTTPStatus.OK else: return {'message': f'No se pudo eliminar la hoja de control con id: {id}'}, HTTPStatus.BAD_REQUEST else: return {'message': f'Hoja de control con id:{id} no encontrada en la base'}, HTTPStatus.NOT_FOUND @classmethod def borrarHojaControl(cls, id): query_delete_hoja_control = """ DELETE FROM hoja_control WHERE id = %s """ query_delete_hoja_control_detalle_filtracion = """ DELETE FROM hoja_control_detalle_filtracion WHERE fk_hoja_control_detalle IN ( SELECT hoja_control_detalle.id FROM hoja_control_detalle WHERE hoja_control_detalle.fk_hoja_control = %s ) """ query_delete_hoja_control_detalle = """ DELETE FROM hoja_control_detalle WHERE fk_hoja_control = %s """ connection = myconnutils.getConnection() cursor = connection.cursor() rows_afectada_detalle_filtracion = cursor.execute(query_delete_hoja_control_detalle_filtracion, (id,)) rows_afectada_detalle = cursor.execute(query_delete_hoja_control_detalle, (id,)) rows_afectada = cursor.execute(query_delete_hoja_control, (id,)) connection.commit() connection.close() return {'hoja_control_id': rows_afectada, 'ids_detalles': rows_afectada_detalle} @classmethod def getFechaFormateada(cls, fecha_no_formateada): if fecha_no_formateada: fecha_comprado = re.search('\d{4}-\d{2}-\d{2}', fecha_no_formateada) fecha_formateada = datetime.datetime.strptime(fecha_comprado.group(), '%Y-%m-%d').date() else: fecha_formateada = None return fecha_formateada @classmethod def buscar_x_id(cls, id): query = """ SELECT hoja_control.id, hoja_control.fk_cliente, hoja_control.tipo_cliente, hoja_control.codigo, hoja_control.tds, hoja_control.ppm, hoja_control.visitas, hoja_control.fecha_comprado, hoja_control.created_at, hoja_control.updated_at, hoja_control.publish FROM hoja_control WHERE hoja_control.id = %s """ connection = myconnutils.getConnection() cursor = connection.cursor() cursor.execute(query, (id,)) row = cursor.fetchone() connection.close() if row: hoja_control = HojaControl( row['id'], row['fk_cliente'], row['tipo_cliente'], row['codigo'], row['tds'], row['ppm'], row['visitas'], row['fecha_comprado'], row['created_at'], row['updated_at'], row['publish'] ) return hoja_control.data else: return None @classmethod def buscar_detalle_x_id(cls, id): query = """ SELECT hoja_control_detalle.id, hoja_control_detalle.fk_hoja_control, hoja_control_detalle.factura, hoja_control_detalle.fecha_mantenimiento, hoja_control_detalle.recibo, hoja_control_detalle.hoja_control, hoja_control_detalle.descripcion, hoja_control_detalle.persona_autoriza, hoja_control_detalle.firma_url, hoja_control_detalle.cedula_autoriza, hoja_control_detalle.persona_dio_mantenimiento, hoja_control_detalle.cedula_dio_mantenimiento, hoja_control_detalle.ppm, hoja_control_detalle.tds, hoja_control_detalle.created_at, hoja_control_detalle.updated_at, hoja_control_detalle.publish FROM hoja_control_detalle WHERE hoja_control_detalle.fk_hoja_control = %s """ connection = myconnutils.getConnection() cursor = connection.cursor() cursor.execute(query, (id,)) rows = cursor.fetchall() connection.close() data = [] for row in rows: if row: hoja_control_detalle = HojaControlDetalle( row['id'], row['fk_hoja_control'], row['factura'], row['fecha_mantenimiento'], row['recibo'], row['hoja_control'], row['descripcion'], row['persona_autoriza'], row['firma_url'], row['cedula_autoriza'], row['persona_dio_mantenimiento'], row['cedula_dio_mantenimiento'], row['ppm'], row['tds'], row['created_at'], row['updated_at'], row['publish'] ) data.append(hoja_control_detalle.data) return data class HojasControlListResource(Resource): def get(self): hojas_control = self.traer_hojas_control() return {'hojas_control': hojas_control}, HTTPStatus.OK def post(self): json_data = request.get_json() detalle_items = json_data['detalle'] detalle_json = json_data['detalle'] del json_data['detalle'] return self.guardar(json_data, detalle_items) @classmethod def traer_hojas_control(cls): connection = myconnutils.getConnection() cursor = connection.cursor() query = """ SELECT hoja_control.id, hoja_control.codigo, hoja_control.fk_cliente, CASE hoja_control.tipo_cliente WHEN 1 THEN (SELECT CONCAT_WS(' ',cn.nombre1, cn.nombre2, cn.apellido1, cn.apellido2) FROM cliente_natural cn WHERE cn.id= hoja_control.fk_cliente) WHEN 2 THEN (SELECT CONCAT_WS(' ',ce.nombres) FROM cliente_empresarial ce WHERE ce.id= hoja_control.fk_cliente) ELSE NULL END as 'cliente', hoja_control.tipo_cliente, hoja_control.tds, hoja_control.ppm, hoja_control.visitas, hoja_control.fecha_comprado FROM hoja_control """ cursor.execute(query) rows = cursor.fetchall() connection.close() data = [] for row in rows: if row: hoja_control_tmp = HojaControlTMP( row['id'], row['codigo'], row['fk_cliente'], row['cliente'], row['tipo_cliente'], row['tds'], row['ppm'], row['visitas'], row['fecha_comprado'] ) data.append(hoja_control_tmp.data) return data @classmethod def guardar(cls, hoja_control_json, hoja_control_detalle_json): connection = myconnutils.getConnection() cursor = connection.cursor() fecha_comprado = cls.getFechaFormateada(hoja_control_json['fecha_comprado']) query_hoja_control_insert = """ INSERT INTO hoja_control(fk_cliente, tipo_cliente, codigo, tds, ppm, visitas, fecha_comprado) VALUES (%s, %s, %s, %s, %s, %s, %s) """ query_hoja_control_update = """ UPDATE hoja_control SET fk_cliente = %s, tipo_cliente = %s, codigo = %s, tds = %s, ppm = %s, visitas = %s, fecha_comprado = %s, updated_at = CURRENT_TIMESTAMP(), publish = true WHERE id = %s """ query_hoja_control_detalle_insert = """ INSERT INTO hoja_control_detalle (fk_hoja_control, factura, fecha_mantenimiento, recibo, hoja_control, descripcion, persona_autoriza, firma_url, cedula_autoriza, persona_dio_mantenimiento, cedula_dio_mantenimiento,ppm,tds) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s,%s,%s) """ query_hoja_control_detalle_update = """ UPDATE hoja_control_detalle SET factura = %s, fecha_mantenimiento = %s, recibo = %s, hoja_control = %s, descripcion = %s, persona_autoriza = %s, firma_url = %s, cedula_autoriza = %s, persona_dio_mantenimiento = %s, cedula_dio_mantenimiento = %s, ppm = %s, tds = %s, updated_at = CURRENT_TIMESTAMP() WHERE id = %s AND fk_hoja_control = %s """ query_hoja_control_detalle_delete = """ DELETE FROM hoja_control_detalle WHERE id = %s AND fk_hoja_control = %s """ query_hoja_control_detalle_filtracion_delete = """ DELETE FROM hoja_control_detalle_filtracion WHERE fk_hoja_control_detalle = %s """ if 'id' in hoja_control_json: cursor.execute(query_hoja_control_update, ( hoja_control_json['fk_cliente'], hoja_control_json['tipo_cliente'], hoja_control_json['codigo'], hoja_control_json['tds'], hoja_control_json['ppm'], hoja_control_json['visitas'], fecha_comprado, hoja_control_json['id'] ) ) id_hoja_control = hoja_control_json['id'] else: cursor.execute(query_hoja_control_insert, ( hoja_control_json['fk_cliente'], hoja_control_json['tipo_cliente'], hoja_control_json['codigo'], hoja_control_json['tds'], hoja_control_json['ppm'], hoja_control_json['visitas'], fecha_comprado ) ) id_hoja_control = cursor.lastrowid insert_ids = [] connection.commit() for row in hoja_control_detalle_json: if row: # if row['id'] is None or row['fk_hoja_control'] == 0: fk_detalle_hoja_control = -1; if 'id' in row: valor_ppm = None; if 'ppm' in row: valor_ppm = row['ppm'] valor_tds = None; if 'tds' in row: valor_tds = row['tds'] cursor.execute(query_hoja_control_detalle_update, ( (row['factura']).strip(), cls.getFechaFormateada(row['fecha_mantenimiento']), (row['recibo']).strip(), (row['hoja_control']).strip(), (row['descripcion']).strip(), (row['persona_autoriza']).strip(), (row['firma_url']).strip(), (row['cedula_autoriza']).strip(), (row['persona_dio_mantenimiento']).strip(), (row['cedula_dio_mantenimiento']).strip(), row['ppm'], row['tds'], row['id'], row['fk_hoja_control'] ) ) insert_ids.append(row['id']) fk_detalle_hoja_control = row['id'] else: valor_ppm = None; if 'ppm' in row: valor_ppm = row['ppm'] valor_tds = None; if 'tds' in row: valor_tds = row['tds'] cursor.execute(query_hoja_control_detalle_insert, ( id_hoja_control, (row['factura']).strip(), cls.getFechaFormateada(row['fecha_mantenimiento']), (row['recibo']).strip(), (row['hoja_control']).strip(), (row['descripcion']).strip(), (row['persona_autoriza']).strip(), (row['firma_url']).strip(), (row['cedula_autoriza']).strip(), (row['persona_dio_mantenimiento']).strip(), (row['cedula_dio_mantenimiento']).strip(), valor_ppm, valor_tds ) ) insert_ids.append(cursor.lastrowid) fk_detalle_hoja_control = cursor.lastrowid connection.commit() # y aqui comienzo a Guardar las filtraciones query_hoja_control_detalle_insert_filtracion=""" INSERT INTO hoja_control_detalle_filtracion (fk_hoja_control_detalle, fk_filtracion, valor_filtracion, descripcion) VALUES (%s, %s, %s, %s) """ query_hoja_control_detalle_update_filtracion=""" UPDATE hoja_control_detalle_filtracion SET fk_filtracion = %s, valor_filtracion = %s, descripcion = %s, updated_at = CURRENT_TIMESTAMP() WHERE id = %s AND fk_hoja_control_detalle = %s """ # Aqui voy a extraer el array de las filtraciones filtraciones_list_json = row['filtraciones_list'] for filtracion in filtraciones_list_json: if filtracion['id']==0: cursor.execute(query_hoja_control_detalle_insert_filtracion, ( fk_detalle_hoja_control, filtracion['fk_filtracion'], filtracion['cantidad'], (filtracion['descripcion']).strip() ) ) else: cursor.execute(query_hoja_control_detalle_update_filtracion, ( filtracion['fk_filtracion'], filtracion['cantidad'], (filtracion['descripcion']).strip(), filtracion['id'], filtracion['fk_hoja_control_detalle'] ) ) connection.commit() # Para los que elimino if 'deletedHojaControlItemIds' in hoja_control_json: deleted_hoja_control_items_id = hoja_control_json['deletedHojaControlItemIds'] ids_borrar = deleted_hoja_control_items_id.split(',') for id_hoja_control_detalle in ids_borrar: cursor.execute(query_hoja_control_detalle_delete, (id_hoja_control_detalle, id_hoja_control)) cursor.execute(query_hoja_control_detalle_filtracion_delete, (id_hoja_control_detalle,)) connection.commit() connection.close() return {'id_hoja_control': id_hoja_control, 'ids_detalles': insert_ids} @classmethod def getFechaFormateada(cls, fecha_no_formateada): if fecha_no_formateada: fecha_comprado = re.search('\d{4}-\d{2}-\d{2}', fecha_no_formateada) fecha_formateada = datetime.datetime.strptime(fecha_comprado.group(), '%Y-%m-%d').date() else: fecha_formateada = None return fecha_formateada
d2b9df7e94f38ee983c30d5363ebc16205dda68c
b3bb0d8e42e1a38e5cd84e64e9990bf05d63ddde
/ft/tests.py
7ff0161f40a31368a807238d6d6df32b473c74ad
[]
no_license
vassily-la/obey01
7a9b2433f1b7c09a210ab77c108d3caa097f26e4
958badabf5549dd627150b5f94af13324dfd159b
refs/heads/master
2020-03-08T20:38:43.552362
2018-04-09T17:59:52
2018-04-09T17:59:52
128,387,334
0
0
null
null
null
null
UTF-8
Python
false
false
5,570
py
import os, time from django.contrib.staticfiles.testing import StaticLiveServerTestCase from selenium import webdriver from selenium.common.exceptions import WebDriverException from selenium.webdriver.common.keys import Keys MAX_WAIT = 10 class NewVisitorTest(StaticLiveServerTestCase): def setUp(self): self.browser = webdriver.Firefox() staging_server = os.environ.get('STAGING_SERVER') if staging_server: self.live_server_url = 'http://' + staging_server def tearDown(self): self.browser.quit() def wait_for_row_in_list_table(self, row_text): start_time = time.time() while True: try: table = self.browser.find_element_by_id('id_list_table') rows = table.find_elements_by_tag_name('tr') self.assertIn(row_text, [row.text for row in rows]) return except (AssertionError, WebDriverException) as e: if time.time() - start_time > MAX_WAIT: raise e time.sleep(0.5) def test_can_start_a_list_for_one_user(self): # Edith has heard about a cool new online to-do app. She goes # to check out its homepage self.browser.get(self.live_server_url) # She notices the page title and header mention to-do lists self.assertIn('To-Do', self.browser.title) header_text = self.browser.find_element_by_tag_name('h1').text self.assertIn('To-Do', header_text) # She is invited to enter a to-do item straight away inputbox = self.browser.find_element_by_id('id_new_item') self.assertEqual( inputbox.get_attribute('placeholder'), 'Enter a to-do item' ) # She types "Buy peacock feathers" into a text box (Edith's hobby # is tying fly-fishing lures) inputbox.send_keys('Buy peacock feathers') # When she hits enter, the page updates, and now the page lists # "1: Buy peacock feathers" as an item in a to-do list table inputbox.send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: Buy peacock feathers') # There is still a text box inviting her to add another item. She # enters "Use peacock feathers to make a fly" (Edith is very # methodical) inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('Use peacock feathers to make a fly') inputbox.send_keys(Keys.ENTER) # The page updates again, and now shows both items on her list self.wait_for_row_in_list_table('2: Use peacock feathers to make a fly') self.wait_for_row_in_list_table('1: Buy peacock feathers') # Satisfied, she goes back to sleep def test_multiple_users_can_start_lists_at_different_urls(self): # Edith starts a new to-do list self.browser.get(self.live_server_url) inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('Buy peacock feathers') inputbox.send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: Buy peacock feathers') # She notices that her list has a unique URL edith_list_url = self.browser.current_url self.assertRegex(edith_list_url, '/lists/.+') # Now a new user, Francis, comes along to the site. ## We use a new browser session to make sure that no information ## of Edith's is coming through from cookies etc self.browser.quit() self.browser = webdriver.Firefox() # Francis visits the home page. There is no sign of Edith's # list self.browser.get(self.live_server_url) page_text = self.browser.find_element_by_tag_name('body').text self.assertNotIn('Buy peacock feathers', page_text) self.assertNotIn('make a fly', page_text) # Francis starts a new list by entering a new item. He # is less interesting than Edith... inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('Buy milk') inputbox.send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: Buy milk') # Francis gets his own unique URL francis_list_url = self.browser.current_url self.assertRegex(francis_list_url, '/lists/.+') self.assertNotEqual(francis_list_url, edith_list_url) # Again, there is no trace of Edith's list page_text = self.browser.find_element_by_tag_name('body').text self.assertNotIn('Buy peacock feathers', page_text) self.assertIn('Buy milk', page_text) # Satisfied, they both go back to sleep def test_layout_and_styling(self): # Edith goes to the home page self.browser.get(self.live_server_url) self.browser.set_window_size(1024, 768) # She notices the input box is nicely centered inputbox = self.browser.find_element_by_id('id_new_item') self.assertAlmostEqual( inputbox.location['x'] + inputbox.size['width'] / 2, 512, delta=10 ) # She starts a new list and sees the input is nicely # centered there too inputbox.send_keys('testing') inputbox.send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: testing') inputbox = self.browser.find_element_by_id('id_new_item') self.assertAlmostEqual( inputbox.location['x'] + inputbox.size['width'] / 2, 512, delta=10 )
77d43ac1bd2334701f9e03ccc7ded589d57e8c40
77c820198567519f8ce106c75000a03167942347
/credentials.py
0a0604a817841e7318db81318ae50f8c23ca0222
[]
no_license
cmhoc/cmhocclerk
6a3be10f89100104d3468e3c0354baddbdaa1917
f973f57a28b731e2d474cb2c8077ef9813f423f7
refs/heads/master
2020-03-15T11:45:16.850778
2018-05-20T15:07:49
2018-05-20T15:07:49
132,127,321
0
1
null
2018-05-05T22:35:10
2018-05-04T10:43:11
Python
UTF-8
Python
false
false
1,400
py
#Authorization Credentials for Google Sheets and this specific bot #Code made by google, modified by /u/thehowlinggreywolf from __future__ import print_function import os from oauth2client.file import Storage from oauth2client import client from oauth2client import tools SCOPES = 'https://www.googleapis.com/auth/spreadsheets' CLIENT_SECRET_FILE = 'client_secret.json' APPLICATION_NAME = 'Rome Bot v1.5' def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, CLIENT_SECRET_FILE) store = Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) print('Storing credentials to ' + credential_path) return credentials
80257832860ad0a22b6782d158b13e16675b9141
339ee457c642bd7990d312b6e309dcf636a04c62
/Codechef Lunchtime 2019/April/FASTFOOD.py
1e4b67df2b0a4dbf3dd713a67bb9f08dbbc39643
[]
no_license
RajatGupta2138/Programming-Practice
e8c6341172560845d62cae5467102e5fc92ae5b9
ddef427396494ab9cb345f2c38c9bf52fda2911b
refs/heads/master
2022-11-13T04:51:29.624023
2020-07-05T16:02:35
2020-07-05T16:02:35
277,070,055
2
0
null
null
null
null
UTF-8
Python
false
false
289
py
for _ in range(int(input())): N=int(input()) A=list(map(int, input().split())) B=list(map(int, input().split())) profit=sum(A) maxprofit=profit for i in range(N-1,-1,-1): profit=profit-A[i]+B[i] maxprofit=max(maxprofit, profit) print(maxprofit)
0f972d9e866b624fe94d02c98fb1a139c1dfd6d9
4294eac3ddd33e3e14b8de0b8f5cea3be891bc0f
/.buildozer/android/platform/build-armeabi-v7a/build/other_builds/numpy-python3/armeabi-v7a__ndk_target_21/numpy/numpy/random/setup.py
44af1806412da18376739329ce96f027f30d29b3
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "BSD-2-Clause", "Python-2.0", "BSD-3-Clause", "MIT" ]
permissive
VPetras/mobile-test-app
9093a4bd3b17c9db96f08e413216753d2f0af263
6708dade6873ae2fb1ecb13aa70662f95fb42dc6
refs/heads/master
2020-11-30T19:46:17.148262
2019-12-30T20:51:19
2019-12-30T20:51:19
230,459,305
0
0
null
null
null
null
UTF-8
Python
false
false
2,289
py
from __future__ import division, print_function from os.path import join import sys from distutils.dep_util import newer from distutils.msvccompiler import get_build_version as get_msvc_build_version def needs_mingw_ftime_workaround(): # We need the mingw workaround for _ftime if the msvc runtime version is # 7.1 or above and we build with mingw ... # ... but we can't easily detect compiler version outside distutils command # context, so we will need to detect in randomkit whether we build with gcc msver = get_msvc_build_version() if msver and msver >= 8: return True return False def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration, get_mathlibs config = Configuration('random', parent_package, top_path) def generate_libraries(ext, build_dir): config_cmd = config.get_config_cmd() libs = get_mathlibs() if sys.platform == 'win32': libs.append('Advapi32') ext.libraries.extend(libs) return None # enable unix large file support on 32 bit systems # (64 bit off_t, lseek -> lseek64 etc.) if sys.platform[:3] == "aix": defs = [('_LARGE_FILES', None)] else: defs = [('_FILE_OFFSET_BITS', '64'), ('_LARGEFILE_SOURCE', '1'), ('_LARGEFILE64_SOURCE', '1')] if needs_mingw_ftime_workaround(): defs.append(("NPY_NEEDS_MINGW_TIME_WORKAROUND", None)) libs = ['m'] # Configure mtrand config.add_extension('mtrand', sources=[join('mtrand', x) for x in ['mtrand.c', 'randomkit.c', 'initarray.c', 'distributions.c']]+[generate_libraries], libraries=libs, depends=[join('mtrand', '*.h'), join('mtrand', '*.pyx'), join('mtrand', '*.pxi'),], define_macros=defs, ) config.add_data_files(('.', join('mtrand', 'randomkit.h'))) config.add_data_dir('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(configuration=configuration)
65d79a8adef04fdbc70e590cb1025aa748e9e9a7
eae50e84483d129d915ea62692ef34b9ac64af68
/moss/core/migrations/0001_initial.py
5ad773d1cb1eff1326054797c9e83c3ab9813c35
[]
no_license
Elicarlos/ifpi-project
785cba465a90bf93f0ac61674f990e1853d96fd5
fb13556726fe4e2317223e88ed4fc53261667d04
refs/heads/master
2020-03-23T14:08:13.390179
2018-07-27T06:08:25
2018-07-27T06:08:25
141,658,552
0
0
null
null
null
null
UTF-8
Python
false
false
1,469
py
# Generated by Django 2.0.6 on 2018-07-26 23:01 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Chamado', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cnpj', models.CharField(max_length=17)), ('nome', models.CharField(max_length=50)), ('defeito', models.CharField(max_length=200)), ('nome_sistema', models.CharField(max_length=50)), ('data_abertura', models.DateTimeField(verbose_name='Data de Abertura de Chamdado')), ], ), migrations.CreateModel( name='Cliente', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cnpj', models.CharField(max_length=17)), ('razao_social', models.CharField(max_length=50)), ('fantasia', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='Tecnico', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome', models.CharField(max_length=50)), ], ), ]
42ae24c5e27301e7c1af69885ee6fb72db779a79
89f1c415c744170e268f33c403214ecc197d8375
/Chapter11/CNN_TDC_STRATEGY.py
9f94cc245da8e221c319e855b5f9d7efe17e4548
[ "MIT" ]
permissive
deadphilosopher/Artificial-Intelligence-By-Example
620abc5e05689b537249ee84c3b0b6370ebd3ec1
fbb5fb56c816d5cefefe2cdad0affcd7b3321081
refs/heads/master
2022-11-02T08:21:14.271368
2022-06-13T15:07:54
2022-06-13T15:07:54
193,830,647
0
0
MIT
2019-06-26T04:41:05
2019-06-26T04:41:05
null
UTF-8
Python
false
false
2,418
py
#Copyright 2018 Denis Rothman MIT License. See LICENSE. from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array import matplotlib.pyplot as plt import keras import numpy as np from keras.preprocessing.image import ImageDataGenerator from keras.models import model_from_json from keras.models import load_model import numpy as np from PIL import Image import scipy.misc #loads,traffic,food processing A=['dataset_O/','dataset_traffic/','dataset/'] MS1=['loaded','jammed','productive'] MS2=['unloaded','change','gap'] display=1 #display images scenario=0 #reference to A,MS1,MS2 directory=A[scenario] #transfer learning parameter (choice of images) CRLMN=1 # concept learning print("directory",directory) #____________________LOAD MODEL____________________________ json_file = open(directory+'model/model.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model=model_from_json(loaded_model_json) #___________________ load weights into new model loaded_model.load_weights(directory+"model/model.h5") print("Strategy model loaded from training repository.") # __________________compile loaded model loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) #___________________IDENTIFY IMAGE FUNCTION_____________________ def identify(target_image): filename = target_image original = load_img(filename, target_size=(64, 64)) #print('PIL image size',original.size) if(display==1): plt.imshow(original) plt.show() numpy_image = img_to_array(original) arrayresized = scipy.misc.imresize(numpy_image, (64,64)) #print('Resized',arrayresized) inputarray = arrayresized[np.newaxis,...] # extra dimension to fit model #___________________PREDICTION___________________________ prediction1 = loaded_model.predict_proba(inputarray) prediction2 = loaded_model.predict(inputarray) print("image",target_image,"predict_proba:",prediction1,"predict:",prediction2) return prediction1 #___________________SEARCH STRATEGY_____________________ s=identify(directory+'classify/img1.jpg') s1=int(s[0]) if (int(s1)==0): print('Classified in class A') print(MS1[scenario]) print('Seeking...') s=identify(directory+'classify/img2.jpg') s1=int(s[0]) if (int(s1)==1): print('Classified in class B') print(MS2[scenario])
fefc9585e3a091c97ccd12fa459892e979c1dbf5
55d82976caaad6ef095b8a43cf4edd73f7bd54f3
/4_django/board/board/settings.py
e8d169ff69c4017df6ff44e41595c4d30baa2ddc
[]
no_license
asy0239/TIL
bfa2bf2856bd534777edc1cdf53465cc1f78784a
8493cf08cca43c5b0947a3469bae9a6d057c760a
refs/heads/master
2020-05-27T19:18:53.910448
2019-06-18T07:37:42
2019-06-18T07:37:42
188,759,004
1
0
null
null
null
null
UTF-8
Python
false
false
3,101
py
""" Django settings for board project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '#f9ksn&9$y_lri2sw2vg)vc=l$5lz0)f#6=)!r-(n3i9vfl9($' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'articles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'board.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'board.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
88c2a025bf018c2548daf79a448628a19daa9545
8c522f3f1116882c9a83db8faa6730a154b3d212
/python/Clicker.py
1181580587abce3d3cf2c986af2c7a8ed77b86a1
[]
no_license
jaredad7/CSC_BACKUPS
c6efb86edcfa234f765e2dd51288d101a616a980
271652edac1f1783922782d37b519a71be90a868
refs/heads/master
2020-03-21T09:27:57.993691
2018-06-23T13:03:02
2018-06-23T13:03:02
138,401,086
0
0
null
null
null
null
UTF-8
Python
false
false
783
py
# Click Counter # Demonstrates binding an event with an event handler from tkinter import * class Application(Frame): def __init__(self, master): super(Application, self).__init__(master) self.grid() self.button_clicks = 0 #Number of times the button has been clicked self.create_widget() def create_widget(self): self.bttn = Button(self) self.bttn["text"] = "Total Clicks: 0" self.bttn["command"] = self.update_count self.bttn.grid() def update_count(self): self.button_clicks += 1 self.bttn["text"] = "Total Clicks: " + str(self.button_clicks) #main root = Tk() root.title("Click Counter") root.geometry("200x50") app = Application(root) root.mainloop()
0d253c67c05313df25a84c93f04f1a0f4bb03981
d7ecb49576e6b0e2582a7473ac3e9712b23adc83
/datasets/transforms.py
4016b6d0bd18b110da7fc23e02e74fb163f22858
[ "MIT", "Apache-2.0" ]
permissive
Tarandro/MOTR_4
9a6fe6928ddf2de40d2ceabdb3ffd0d791ac3bd9
bd8e53d7ea0584f06ccf032b056b327c87986ca7
refs/heads/master
2023-08-03T03:31:53.804147
2021-09-24T21:19:12
2021-09-24T21:19:12
408,173,045
0
0
null
null
null
null
UTF-8
Python
false
false
23,758
py
# ------------------------------------------------------------------------ # Copyright (c) 2021 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ Transforms and data augmentation for both image + bbox. """ import copy import random import PIL import torch import torchvision.transforms as T import torchvision.transforms.functional as F from PIL import Image, ImageDraw from util.box_ops import box_xyxy_to_cxcywh from util.misc import interpolate import numpy as np import os def crop_mot(image, image2, target, region): cropped_image = F.crop(image, *region) cropped_image2 = F.crop(image2, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd"] if 'obj_ids' in target: fields.append('obj_ids') if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) for i, box in enumerate(cropped_boxes): l, t, r, b = box if l < 0: l = 0 if r < 0: r = 0 if l > w: l = w if r > w: r = w if t < 0: t = 0 if b < 0: b = 0 if t > h: t = h if b > h: b = h cropped_boxes[i] = torch.tensor([l, t, r, b], dtype=box.dtype) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target['masks'] = target['masks'][:, i:i + h, j:j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target['boxes'].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target['masks'].flatten(1).any(1) for field in fields: target[field] = target[field][keep] return cropped_image, cropped_image2, target def random_shift(image, image2, target, region, sizes): oh, ow = sizes # step 1, shift crop and re-scale image firstly cropped_image = F.crop(image, *region) cropped_image = F.resize(cropped_image, sizes) cropped_image2 = F.crop(image2, *region) cropped_image2 = F.resize(cropped_image2, sizes) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd"] if 'obj_ids' in target: fields.append('obj_ids') if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) for i, box in enumerate(cropped_boxes): l, t, r, b = box if l < 0: l = 0 if r < 0: r = 0 if l > w: l = w if r > w: r = w if t < 0: t = 0 if b < 0: b = 0 if t > h: t = h if b > h: b = h # step 2, re-scale coords secondly ratio_h = 1.0 * oh / h ratio_w = 1.0 * ow / w cropped_boxes[i] = torch.tensor([ratio_w * l, ratio_h * t, ratio_w * r, ratio_h * b], dtype=box.dtype) cropped_boxes = cropped_boxes.reshape(-1, 2, 2) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target['masks'] = target['masks'][:, i:i + h, j:j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target['boxes'].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target['masks'].flatten(1).any(1) for field in fields: target[field] = target[field][keep] return cropped_image, cropped_image2, target def crop(image, image2, target, region): cropped_image = F.crop(image, *region) cropped_image2 = F.crop(image2, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd"] if 'obj_ids' in target: fields.append('obj_ids') if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target['masks'] = target['masks'][:, i:i + h, j:j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target['boxes'].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target['masks'].flatten(1).any(1) for field in fields: target[field] = target[field][keep] return cropped_image, cropped_image2, target def hflip(image, image2, target): flipped_image = F.hflip(image) flipped_image2 = F.hflip(image2) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) target["boxes"] = boxes if "masks" in target: target['masks'] = target['masks'].flip(-1) return flipped_image, flipped_image2, target def resize(image, image2, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) rescaled_image2 = F.resize(image2, size) if target is None: return rescaled_image, rescaled_image2, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) target["boxes"] = scaled_boxes if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target['masks'] = interpolate( target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5 return rescaled_image, rescaled_image2, target def pad(image, image2, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) padded_image2 = F.pad(image2, (0, 0, padding[0], padding[1])) if target is None: return padded_image, padded_image2, None target = target.copy() # should we do something wrt the original size? target["size"] = torch.tensor(padded_image[::-1]) if "masks" in target: target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1])) return padded_image, padded_image2, target class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, img2, target): region = T.RandomCrop.get_params(img, self.size) return crop(img, img2, target, region) class MotRandomCrop(RandomCrop): def __call__(self, imgs: list, imgs2: list, targets: list): ret_imgs = [] ret_imgs2 = [] ret_targets = [] region = T.RandomCrop.get_params(imgs[0], self.size) for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): img_i, img_i2, targets_i = crop(img_i, img_i2, targets_i, region) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets class FixedMotRandomCrop(object): def __init__(self, min_size: int, max_size: int): self.min_size = min_size self.max_size = max_size def __call__(self, imgs: list, imgs2: list, targets: list): ret_imgs = [] ret_imgs2 = [] ret_targets = [] w = random.randint(self.min_size, min(imgs[0].width, self.max_size)) h = random.randint(self.min_size, min(imgs[0].height, self.max_size)) region = T.RandomCrop.get_params(imgs[0], [h, w]) for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): img_i, img_i2, targets_i = crop_mot(img_i, img_i2, targets_i, region) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets class MotRandomShift(object): def __init__(self, bs=1): self.bs = bs def __call__(self, imgs: list, imgs2: list, targets: list): ret_imgs = copy.deepcopy(imgs) ret_imgs2 = copy.deepcopy(imgs2) ret_targets = copy.deepcopy(targets) n_frames = len(imgs) select_i = random.choice(list(range(n_frames))) w, h = imgs[select_i].size xshift = (100 * torch.rand(self.bs)).int() xshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1 yshift = (100 * torch.rand(self.bs)).int() yshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1 ymin = max(0, -yshift[0]) ymax = min(h, h - yshift[0]) xmin = max(0, -xshift[0]) xmax = min(w, w - xshift[0]) region = (int(ymin), int(xmin), int(ymax-ymin), int(xmax-xmin)) ret_imgs[select_i], ret_imgs2[select_i], ret_targets[select_i] = random_shift(imgs[select_i], imgs2[select_i], targets[select_i], region, (h,w)) return ret_imgs, ret_imgs2, ret_targets class FixedMotRandomShift(object): def __init__(self, bs=1, padding=50): self.bs = bs self.padding = padding def __call__(self, imgs: list, imgs2: list, targets: list): ret_imgs = [] ret_imgs2 = [] ret_targets = [] n_frames = len(imgs) w, h = imgs[0].size xshift = (self.padding * torch.rand(self.bs)).int() + 1 xshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1 yshift = (self.padding * torch.rand(self.bs)).int() + 1 yshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1 ret_imgs.append(imgs[0]) ret_imgs2.append(imgs2[0]) ret_targets.append(targets[0]) for i in range(1, n_frames): ymin = max(0, -yshift[0]) ymax = min(h, h - yshift[0]) xmin = max(0, -xshift[0]) xmax = min(w, w - xshift[0]) prev_img = ret_imgs[i-1].copy() prev_img2 = ret_imgs2[i - 1].copy() prev_target = copy.deepcopy(ret_targets[i-1]) region = (int(ymin), int(xmin), int(ymax - ymin), int(xmax - xmin)) img_i, img_i2, target_i = random_shift(prev_img, prev_img2, prev_target, region, (h, w)) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(target_i) return ret_imgs, ret_imgs2, ret_targets class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int): self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, img2: PIL.Image.Image, target: dict): w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) return crop(img, img2, target, region) class MotRandomSizeCrop(RandomSizeCrop): def __call__(self, imgs, imgs2, targets): w = random.randint(self.min_size, min(imgs[0].width, self.max_size)) h = random.randint(self.min_size, min(imgs[0].height, self.max_size)) region = T.RandomCrop.get_params(imgs[0], [h, w]) ret_imgs = [] ret_imgs2 = [] ret_targets = [] for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): img_i, img_i2, targets_i = crop(img_i, img_i2, targets_i, region) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, img, img2, target): image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.)) crop_left = int(round((image_width - crop_width) / 2.)) return crop(img, img2, target, (crop_top, crop_left, crop_height, crop_width)) class MotCenterCrop(CenterCrop): def __call__(self, imgs, imgs2, targets): image_width, image_height = imgs[0].size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.)) crop_left = int(round((image_width - crop_width) / 2.)) ret_imgs = [] ret_imgs2 = [] ret_targets = [] for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): img_i, img_i2, targets_i = crop(img_i, img_i2, targets_i, (crop_top, crop_left, crop_height, crop_width)) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, img2, target): if random.random() < self.p: return hflip(img, img2, target) return img, img2, target class MotRandomHorizontalFlip(RandomHorizontalFlip): def __call__(self, imgs, imgs2, targets): if random.random() < self.p: ret_imgs = [] ret_imgs2 = [] ret_targets = [] for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): img_i, img_i2, targets_i = hflip(img_i, img_i2, targets_i) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets return imgs, imgs2, targets class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, img2, target=None): size = random.choice(self.sizes) return resize(img, img2, target, size, self.max_size) class MotRandomResize(RandomResize): def __call__(self, imgs, imgs2, targets): size = random.choice(self.sizes) ret_imgs = [] ret_imgs2 = [] ret_targets = [] for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): img_i, img_i2, targets_i = resize(img_i, img_i2, targets_i, size, self.max_size) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets class RandomPad(object): def __init__(self, max_pad): self.max_pad = max_pad def __call__(self, img, img2, target): pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) return pad(img, img2, target, (pad_x, pad_y)) class MotRandomPad(RandomPad): def __call__(self, imgs, imgs2, targets): pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) ret_imgs = [] ret_imgs2 = [] ret_targets = [] for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): img_i, img_i2, target_i = pad(img_i, img_i2, targets_i, (pad_x, pad_y)) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, img2, target): if random.random() < self.p: return self.transforms1(img, img2, target) return self.transforms2(img, img2, target) class MotRandomSelect(RandomSelect): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __call__(self, imgs, imgs2, targets): if random.random() < self.p: return self.transforms1(imgs, imgs2, targets) return self.transforms2(imgs, imgs2, targets) class ToTensor(object): def __call__(self, img, img2, target): return F.to_tensor(img), F.to_tensor(img2), target class MotToTensor(ToTensor): def __call__(self, imgs, imgs2, targets): ret_imgs = [] ret_imgs2 = [] for img in imgs: ret_imgs.append(F.to_tensor(img)) for img2 in imgs2: ret_imgs2.append(F.to_tensor(img2)) return ret_imgs, ret_imgs2, targets class RandomErasing(object): def __init__(self, *args, **kwargs): self.eraser = T.RandomErasing(*args, **kwargs) def __call__(self, img, img2, target): return self.eraser(img), self.eraser(img2), target class MotRandomErasing(RandomErasing): def __call__(self, imgs, imgs2, targets): # TODO: Rewrite this part to ensure the data augmentation is same to each image. ret_imgs = [] ret_imgs2 = [] for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): ret_imgs.append(self.eraser(img_i)) ret_imgs2.append(self.eraser(img_i2)) return ret_imgs, ret_imgs2, targets class MoTColorJitter(T.ColorJitter): def __call__(self, imgs, imgs2, targets): transform = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) ret_imgs = [] ret_imgs2 = [] for img_i, img_i2, targets_i in zip(imgs, imgs2, targets): ret_imgs.append(transform(img_i)) ret_imgs2.append(transform(img_i2)) return ret_imgs, targets class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, image2, target=None): if target is not None: target['ori_img'] = image.clone() image = F.normalize(image, mean=self.mean, std=self.std) image2 = F.normalize(image2, mean=self.mean, std=self.std) if target is None: return image, image2, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, image2, target class MotNormalize(Normalize): def __call__(self, imgs, imgs2, targets=None): ret_imgs = [] ret_imgs2 = [] ret_targets = [] for i in range(len(imgs)): img_i = imgs[i] img_i2 = imgs2[i] targets_i = targets[i] if targets is not None else None img_i, img_i2, targets_i = super().__call__(img_i, img_i2, targets_i) ret_imgs.append(img_i) ret_imgs2.append(img_i2) ret_targets.append(targets_i) return ret_imgs, ret_imgs2, ret_targets class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, image2, target): for t in self.transforms: image, image2, target = t(image, image2, target) return image, image2, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string class MotCompose(Compose): def __call__(self, imgs, imgs2, targets): for t in self.transforms: imgs, imgs2, targets = t(imgs, imgs2, targets) return imgs, imgs2, targets
dfef6512a4ea340a12e92ce730d9052f302614d1
c7bca86a776c3f1a267fc8bad37b1badb3985a42
/scraper.py
585e027ab419692015761038bf3afd1c9c58aa78
[]
no_license
taenin/Riot-Games-NURF-Project
59df22e13c9cd630fff98e8cffa4d6046d978ddb
e7dab5e0d079168b65c0b882bacc2646689db65f
refs/heads/master
2021-01-10T19:14:12.640683
2015-04-11T00:20:00
2015-04-11T00:20:00
33,195,545
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
import timers import time import sys import updater def main(args): startTime = int(args[1]) mainWorker = updater.Worker(startTime) comThread = timers.BackgroundUpdater(1.5, mainWorker.updateInformation).start() try: while True: time.sleep(1) except: print "Exiting ..." if __name__ == '__main__': main(sys.argv)
a944005aa57a366320289b4317d4667ee2b9e3e1
f2a2f7eb7a8819365909bcf84f258273a4f1e086
/mlp/errors.py
712fe594949595e97fb61ce0b8c6d2f9cbcec120
[]
no_license
gracecxj/mlpractical
73398ba0de8b67de47a93f955772622ff23cde12
24cf59b04e7d106f143fdb84573639f1e39bd628
refs/heads/mlp2017-8/master
2021-07-20T05:17:01.758744
2017-09-29T17:00:52
2017-09-29T17:00:52
106,006,944
1
0
null
2017-10-06T13:19:57
2017-10-06T13:19:57
null
UTF-8
Python
false
false
1,452
py
# -*- coding: utf-8 -*- """Error functions. This module defines error functions, with the aim of model training being to minimise the error function given a set of inputs and target outputs. The error functions will typically measure some concept of distance between the model outputs and target outputs, averaged over all data points in the data set or batch. """ import numpy as np class SumOfSquaredDiffsError(object): """Sum of squared differences (squared Euclidean distance) error.""" def __call__(self, outputs, targets): """Calculates error function given a batch of outputs and targets. Args: outputs: Array of model outputs of shape (batch_size, output_dim). targets: Array of target outputs of shape (batch_size, output_dim). Returns: Scalar error function value. """ raise NotImplementedError() def grad(self, outputs, targets): """Calculates gradient of error function with respect to outputs. Args: outputs: Array of model outputs of shape (batch_size, output_dim). targets: Array of target outputs of shape (batch_size, output_dim). Returns: Gradient of error function with respect to outputs. This should be an array of shape (batch_size, output_dim). """ raise NotImplementedError() def __repr__(self): return 'SumOfSquaredDiffsError'
5c53c405c769ad6e96eb92359df716a95fa1a8c6
02de7815b28c3ea7c311365f9ea3fcd64a35da4b
/tests/tests.py
30f06a85495130f4bed585b5f8316c2dd6c067e4
[]
no_license
cheeseywhiz/pyt
73499b3a734c2702b7082fffd571da1224d2a006
73ffa77ac347fe6b4c9a00e5ef12b4a0d29ee7ec
refs/heads/master
2020-03-25T06:15:31.495862
2019-01-31T21:41:24
2019-01-31T21:41:24
143,491,919
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
from chars import * def join(*lines): return ''.join(lines) def escape_command(seq): return ESC + seq def control_sequence(final_byte, *args): body = SEP.join(map(str, args)) return escape_command(f'{CSI}{body}{final_byte}') def cursor_character_absolute(nth_col=None): if nth_col is None: nth_col = 0 return control_sequence(CHA, nth_col + 1) def cursor_forward_tabulation(n_tabs=None): if n_tabs is None: n_tabs = 1 return control_sequence(CHT, n_tabs) def tabuation_clear(selection=None): if selection is None: selection = 0 return control_sequence(TBC, selection) def character_tabulation_set(): return escape_command(HTS) def line_position_absolute(nth_line=None): if nth_line is None: nth_line = 1 return control_sequence(VPA, nth_line) def reset_to_initial_state(): return escape_command(RIS)
270dfd7fcb19c5dee5f5d2c6f5ec30f802192865
83586573a57401d6f35c88b9753efe65afcae612
/hw1/exp1_2.py
0a85262d203bdfc4aeabfeaaf57e6ec1277b32ca
[]
no_license
wcLegend/data_mining
0f96f25a9761f9b6df4337e31c7f7020b774b059
59c888f43a7e52a0f77b8972c4a9fe08db6d9a7c
refs/heads/master
2020-07-29T08:56:01.643618
2019-12-24T02:06:11
2019-12-24T02:06:11
209,737,296
0
0
null
null
null
null
UTF-8
Python
false
false
10,174
py
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent semantic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <[email protected]> # Lars Buitinck # License: BSD 3 clause import warnings warnings.filterwarnings("ignore") from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans,AffinityPropagation,MeanShift,SpectralClustering,AgglomerativeClustering,DBSCAN from sklearn.mixture import GaussianMixture import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") #使用潜在语义分析对文档进行预处理 op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") #使用普通的k均值算法(在批处理模式下) op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") #禁用TF-IDF加权 op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() def is_interactive(): return not hasattr(sys.modules['__main__'], '__file__') def document_clustering(estimator,name,X): #print("Clustering sparse data with %s" % estimator) t0 = time() estimator.fit(X.toarray())# 用toarray也行 但用了svd降维 #print("done in %0.3fs" % (time() - t0)) #print() if hasattr(estimator, 'labels_'): y_pred = estimator.labels_ else: y_pred = estimator.predict(X) print('%-9s\t\t\t%.2fs\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), metrics.normalized_mutual_info_score(labels, y_pred), metrics.homogeneity_score(labels, y_pred), metrics.completeness_score(labels, y_pred), metrics.v_measure_score(labels, y_pred), metrics.adjusted_rand_score(labels, y_pred), metrics.adjusted_mutual_info_score(labels, y_pred, average_method='arithmetic'))) # work-around for Jupyter notebook and IPython console argv = [] if is_interactive() else sys.argv[1:] (opts, args) = op.parse_args(argv) if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) # ############################################################################# # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories # categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset " "using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', alternate_sign=False, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', alternate_sign=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() # ############################################################################# # Do the actual clustering print(82 * '_') print('init\t\t\t\ttime\tNMI\t\thomo\tcompl\tv-meas\tARS\t\tAMI') mbkm = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) document_clustering(mbkm,'MBKMeans',X) km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) document_clustering(km,'KMeans',X) af = AffinityPropagation(preference=-50,convergence_iter = 10,verbose=opts.verbose) #效果很差 document_clustering(af,'AfPro',X) ms = MeanShift(bandwidth=2) document_clustering(ms,'MeanS',X) whc = AgglomerativeClustering(n_clusters=4,linkage='ward') document_clustering(whc,'Ward/Aggclu',X) chc = AgglomerativeClustering(n_clusters=4,linkage='complete') document_clustering(chc,'comp/Aggclu',X) ahc = AgglomerativeClustering(n_clusters=4,linkage='average') document_clustering(ahc,'ave/Aggclu',X) shc = AgglomerativeClustering(n_clusters=4,linkage='single') #效果很差 document_clustering(shc,'sin/Aggclu',X) sc = SpectralClustering(n_clusters=4, eigen_solver='arpack', affinity="nearest_neighbors") document_clustering(sc,'SpeClu',X) db = DBSCAN() #效果很差 当SVD取K=100的时候效果还行 document_clustering(db,'DBSCAN',X) gau = GaussianMixture(n_components = 4, covariance_type='full') document_clustering(gau,'GauMix',X) """ print("NMI: %0.3f"%metrics.normalized_mutual_info_score(labels, km.labels_)) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print() """ """ if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print() """
07322d8ea7f676088aa2cbbcdaf68b58ce468bf3
e6ce5cfa880637c651580eaf013916fb915ad019
/TR2_RP/src/rp_mlp_loo.py
007ba952819ad404c36c7071624891bef884640e
[]
no_license
faellacurcio/rp
f3c760deff16a411ed55121baf2a4741934aed36
a23d31f12382d36a5e2b03a39f7a6800a7194566
refs/heads/master
2020-05-03T11:56:42.253345
2019-06-18T12:48:29
2019-06-18T12:48:29
178,612,615
0
0
null
null
null
null
UTF-8
Python
false
false
2,175
py
#importa as bibliotecas import numpy from sklearn.model_selection import LeaveOneOut from sklearn.neural_network import MLPClassifier from plot_confusion_matrix import plot_confusion_matrix import matplotlib.pyplot as plt def fix_Y(vec_input): mat = numpy.zeros([vec_input.shape[0], int(numpy.amax(vec_input))]) for idx, element in enumerate(Y): mat[idx][int(element)-1] = 1 return mat samples = list() # Abre e lê dermatology como um dataset with open('dermatology.dat') as iris: for row in iris.readlines(): samples.append(list(map(float, row.split(",")))) dataset = numpy.array(samples) # separa os dados em features e classe (X/Y) X = dataset[:,:-1] Y = dataset[:,dataset.shape[1]-1] Y = fix_Y(Y) # Função de normalização def zscore(X): X = X - numpy.mean(X, axis=0) X = X / numpy.std(X, axis=0, ddof=1) return X # X = zscore(X) clf = MLPClassifier(hidden_layer_sizes=(50,), max_iter=100, alpha=1e-4, solver='lbfgs', verbose=0, tol=1e-2, random_state=1, learning_rate_init=.1) confusion_y_test = [] confusion_y_pred = [] # Separa as amotras utilizando leave one ou cross_val = LeaveOneOut() cross_val.get_n_splits(X) total = len(X) success = 0.0 # loop que roda a classificação nos diferentes grupos de validação for train_index, test_index in cross_val.split(X,Y): #Separa em treinamento e amostras X_train, X_test = X[train_index], X[test_index] Y_train, Y_test = Y[train_index], Y[test_index] # classifica as amostras da base de teste clf.fit(X_train, Y_train) y = clf.predict(X_test) #armazena o sucesso y = numpy.argmax(y,axis=1) Y_test = numpy.argmax(Y_test,axis=1) confusion_y_test.extend(Y_test) confusion_y_pred.extend(y) success += sum(y == Y_test) # calcula e imprime o resultado. result = 100*(success/total) print('%.2f %%' % (result)) plot_confusion_matrix(confusion_y_test, confusion_y_pred, classes=["class 1", "class 2", "class 3", "class 4", "class 5", "class 6"], title='MLP, 100 neurons, Leave-one-out: '+str('%.2f' % result)+'%') plt.savefig("q3_mlp_loo_notNorm") plt.show() plt.clf()
a3f1d4931d6678a9032dead8c990899a2745e000
969b7d3c27e0d29ef994616fd1b6c50966168835
/sprint.py
1c8a8d8e24bcff5d60251e6b79bde5d220313265
[]
no_license
liamh17/Python_Files
d8f9e8ed726f184167f1d4af3ea370e0127cdb48
968297ab2b25e4fef9c5538f54d51924c3f4f4e4
refs/heads/master
2020-12-24T20:24:17.109795
2016-06-02T03:22:44
2016-06-02T03:22:44
58,249,602
0
0
null
null
null
null
UTF-8
Python
false
false
1,507
py
import msvcrt import time high_score = 50 name = "no-one" while True: distance = int(0) print("\n--------------------------------------------------------------") print('\n\nWelcome to the 100m sprint, tap z and x rapidly to move!') print('* = 10m') print("\n**Current record: " + str(high_score) + "s, by: " + name) print('\nPress enter to start') input() print('Ready...') time.sleep(1) print('GO!') start_time = time.time() while distance < 100: k1 = input() k1 = str(k1) if k1 == 'z': k2 = input() k2 = str(k2) if k2 == 'x': distance += 1 if distance == 50: print("* You're halfway there!") elif distance % 10 == 0: print('*') fin_time = time.time() - start_time fin_time = round(fin_time,2) print('Well done you did it in...') print(fin_time) if fin_time < high_score: print("Well done you've got a new high score ") name = input("Please enter your name : ") high_score = fin_time
[ "Liam Heisler" ]
Liam Heisler
d80efee932216f2f43dc9d15c1826b6099035c05
ccf7b194ecdff46f02a9e280511709d716d311aa
/ecommercedev/ecommercebd/ecom/views.py
ac9695321f7340532297df91c5772f1570555480
[]
no_license
imon91/test12
24a505a5545eca217436cf6ccff7e54acaca4d30
0c28a50f0b66be5c717f5ad28d8e189fbe21b002
refs/heads/master
2020-12-17T22:44:04.640363
2020-01-21T09:37:39
2020-01-21T09:37:39
235,298,680
0
0
null
null
null
null
UTF-8
Python
false
false
1,169
py
import datetime from django.http import HttpResponse from django.shortcuts import render from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect from django.shortcuts import get_object_or_404 from django.contrib.auth import login as auth_login, logout as auth_logout, authenticate # Admin Dashboard from ecom.models import Order from ecomadminapp.models import ProductCategory from ecomadminapp.models import Product from registration.models import CompanyRegistration def index(request): context = dict() context['products'] = Product.objects.filter(is_active=True).order_by('-id') return render(request, 'ecom/display.html', context) def product_detail(request, id): context = dict() context['product_details'] = get_object_or_404(Product, pk=id) return render(request, 'ecom/product_detail.html', context) def addcart(request): product = Product.objects.get(pk=request.GET.get('product_id')) quantity = request.GET.get('quantity') request.session['product'] = "product" request.session['quantity'] = "quantity" return HttpResponse("Added cart successfully.. ! ")
515ab8d53a5ddeadafdaff27d99130f0b0011aa6
682a4ab5047a54c56c4585e768afacb209eef42e
/mail_message.py
e0a88a3f3f183632a25056403cbd285f258a4ca1
[]
no_license
rheami/myMail
7fbf245250d57bd82ec4eb5950a89896e36df509
5a7a193c4cd4751150eaef53c3320e40f98e0d46
refs/heads/master
2022-12-26T03:43:46.179053
2018-08-13T18:45:54
2018-08-13T18:45:54
302,132,305
0
0
null
null
null
null
UTF-8
Python
false
false
6,949
py
# -*- coding: utf-8 -*- # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl.html). from openerp import models, fields, api, _ html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;", ">": "&gt;", "<": "&lt;", } def html_escape(text): return "".join(html_escape_table.get(c,c) for c in text) class MailMessage(models.Model): _inherit = 'mail.message' @api.multi def on_message_forward(self): context = dict(self._context or {}) if context['option'] == 'forward': subject = [_("Fwd")] header = [ "----------" + _("Forwarded message") + "----------", _("From: ") + self.email_from, _("Date: ") + self.date, ] else: if context['option'] == 'reply': subject = [_("Re")] header = [ "----------" + _("Replyed message") + "----------", _("From: ") + self.email_from, _("Date: ") + self.date, ] if self.record_name and self.parent_id: subject.append(self.record_name) if self.subject: subject.append(self.subject) else: if len(subject) < 2: subject.append(_("No subject")) if self.subject: header.append(_("Subject: ") + self.subject) header = '<br/>'.join(html_escape(s) for s in header) context = { 'default_parent_id': self.id, 'default_body': "<p><i>" + header + "</i></p><br/>" + self.body, 'default_attachment_ids': self.attachment_ids.ids, 'default_partner_ids': self.partner_ids.ids, 'mail_post_autofollow': True, 'mail_post_autofollow_partner_ids': self.partner_ids.ids, } # private message: no model, no res_id is_private = False if not self.model or not self.res_id: is_private = True context["is_private"] = is_private if self.model: context["default_model"] = self.model if self.res_id: context["default_res_id"] = self.res_id if self.model and self.res_id: context["default_destination_object_id"] = ",".join([self.model, str(self.res_id)]) action = self.env['ir.actions.act_window'].for_xml_id('mail_forward', 'compose_action') action['context'] = context return action @api.multi @api.depends('body') def _get_body(self): for message in self: mybody = u"<hr/>" + message.body + u"<hr/>" url = None if message.res_id: url = '#id=%s&model=%s&view_type=form' % ( message.res_id, message.model ) title = _("Associated Model: ") url = u'<p><b> %s</b><a href="%s">%s</a></p>' % (title, url, message.record_name) mybody = mybody + url message.mybody = mybody @api.multi @api.depends('body') def _get_description_short(self): for message in self: truncated_text = self.env["ir.fields.converter"].text_from_html( message.body, 40, 100) url = None if message.res_id: url = '#id=%s&model=%s&view_type=form' % ( message.res_id, message.model ) about = message.about if url: about = '<a href="%s">%s</a>' % (url, about) message.short_description = "<h4 class \"oe_msg_title\">" + about + "</h4>" + u": " + truncated_text @api.multi @api.depends('res_id') def _get_model_url(self): res = {} for message in self: url = None if message.res_id: url = '#id=%s&model=%s&view_type=form' % ( message.res_id, message.model ) title = _("Associated Model: ") message.url = '<p><b>%s</b><a href="%s">%s</a></p>' % (title, url, message.record_name) @api.multi @api.depends('author_id') def _get_author(self): for message in self: author = message.author_id and message.author_id.name_get()[0][1] url = None if author: url = '#id=%s&model=res.partner&view_type=form' % message.author_id.id image_src = '/web/binary/image?model=mail.message&amp;field=author_avatar&amp;id=%s' % ( message.id) if author: message.author = '<a title=%s href="%s"><img height="36px" src="%s"></a>' % (author, url, image_src) else: message.author = message.email_from @api.multi @api.depends('author_id') def _get_about(self): for message in self: message.about = message.subject or message.record_name or 'UNDEFINED' short_description = fields.Char(string = "Description", compute=_get_description_short, help='Message description: either the subject, or the beginning of the body', store=False) author = fields.Char(string="Author", compute=_get_author, store=False) about = fields.Char(string="About", compute=_get_about, store=False) # url = fields.Char(string="url", compute=_get_model_url, store=False) mybody = fields.Html(string="Contents", help='Automatically sanitized HTML contents', compute=_get_body, store=False) # todo date epoch arrondi sur le jour : pour groupby # @api.multi # @api.depends("to_read") # def _on_open_set_messages_read(self): # context = dict(self._context or {}) # for message in self: # if message.parent_id.id: # print (message.id, message.parent_id) # # self[0].set_message_read(True) # only first not the parent (assume already be reed if parent) # # self.refresh() # # on_open = fields.Integer(compute="_on_open_set_messages_read", store=False) @api.multi def toggle_messages_to_read(self): for message in self: to_read = message.to_read message.set_message_read(to_read) message.child_ids.set_message_read(to_read) # message.child_ids.refresh() # return {'type': 'ir.actions.client', 'tag': 'reload'} @api.multi def toggle_messages_starred(self): for message in self: message.set_message_starred(not message.starred) # return { 'type': 'ir.actions.client', 'tag': 'reload' } @api.multi def unset_messages_to_read(self): for message in self: message.set_message_read(False) # message.child_ids.set_message_read(False) # return {'type': 'ir.actions.client', 'tag': 'reload'}
eb2bd8abbc7f912dfa40133c45c02f66526b71a2
994c1b533fe64265715231d6458a9f316ce82cbf
/users/forms.py
34d47092d282474eb8c2de50d4c673242cd68db6
[]
no_license
zerobubus/hw05_final
07320a8fcc1119f28cf3bd5e3285d381470f7f47
ed89bdd5fa088c71bdb127a780fc2eac3bcda47c
refs/heads/master
2022-11-24T23:09:29.335507
2020-07-29T16:49:10
2020-07-29T16:49:10
282,685,996
0
0
null
null
null
null
UTF-8
Python
false
false
513
py
from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import get_user_model User = get_user_model() # создадим собственный класс для формы регистрации # сделаем его наследником предустановленного класса UserCreationForm class CreationForm(UserCreationForm): class Meta(UserCreationForm.Meta): model = User fields = ("first_name", "last_name", "username", "email")
0eba2abfbc6b06e28fc7e2042a9f4aeaf406d89e
91f0ada382a529bb928d3eb122fd65900d0702f5
/03.Third_week_exersice/03Football_cards.py
309caf08577fd76f7ab6edecfc7eb6f6c5f285a2
[]
no_license
skafev/Python_fundamentals
aa62208ae0fdfc9ed6a9dcc0905c4a8e5aefd2be
959f9bca948cc901ac3f10694f540d1d533585b5
refs/heads/main
2023-06-09T19:33:21.370459
2021-07-01T16:29:30
2021-07-01T16:29:30
382,092,763
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
text = input().split(" ") team_A = 11 team_B = 11 less_then_seven = False for text_one in set(text): if "A" in text_one: team_A -= 1 if "B" in text_one: team_B -= 1 if team_A < 7: less_then_seven = True break if team_B < 7: less_then_seven = True break print(f"Team A - {team_A}; Team B - {team_B}") if less_then_seven: print("Game was terminated")
7481b35cd014efbfc7a8d72bee9a65e12c4e0c85
12938461fe1cc5617d3e425937a5d79ceb61a76a
/development/shenzyn/emailTrigger/jobseeker_email.py
83532fcbcb79a3fd5153c8943da5c9e9e2dead4c
[]
no_license
Megha566/Shenzyn-Test-Aut
15847b6c50a48957e3738ba40b567be3521360ce
487751e94fb2bc4745cb1902f76530c58f4bd870
refs/heads/master
2023-02-11T19:28:53.923332
2021-01-08T07:45:17
2021-01-08T07:45:17
327,862,517
0
0
null
null
null
null
UTF-8
Python
false
false
1,840
py
# Python code to illustrate Sending mail with attachments # from your Gmail account # libraries to be imported import smtplib import glob import os from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email import encoders #Hotmail account, for gmail change the smtp server. fromaddr = "[email protected]" toaddr = "[email protected]" # instance of MIMEMultipart msg = MIMEMultipart() # storing the senders email address msg['From'] = fromaddr # storing the receivers email address msg['To'] = toaddr # storing the subject msg['Subject'] = "JobSeeker Automation Testing Results" # string to store the body of the mail body = "Please find the attached Test Reults for JobSeeker Automation" # attach the body with the msg instance msg.attach(MIMEText(body, 'plain')) #Get the latest file from the Results Directory list_of_files = glob.glob(r'D:\robotframework\Shenzyn-Test-Aut\development\shenzyn\Results\report-*.html') # * means all if need specific format then *.csv filename = max(list_of_files, key=os.path.getctime) # open the file to be sent attachment = open(filename, "rb") # instance of MIMEBase and named as p p = MIMEBase('application', 'octet-stream') # To change the payload into encoded form p.set_payload((attachment).read()) # encode into base64 encoders.encode_base64(p) p.add_header('Content-Disposition', "attachment; filename= %s" % filename) # attach the instance 'p' to instance 'msg' msg.attach(p) # creates SMTP session s = smtplib.SMTP('smtp-mail.outlook.com', 587) # start TLS for security s.starttls() # Authentication s.login(fromaddr, "seerat@123") # Converts the Multipart msg into a string text = msg.as_string() # sending the mail s.sendmail(fromaddr, toaddr, text) # terminating the session s.quit()
bf00ede1eb6695ab64ca14b24995b1e1df06d68d
5c6d7ddebb3a3b7a5e8bd60b92f7ee28d23edb28
/tile/side/__init__.py
86bf1a2e8bc80f8276eba4cc8a341a0991e2238d
[]
no_license
jgrowl/pycarcassonne
6bb4d19813fe31065064d7035d273aaac9eabb6c
fb989b4fcc8005cfc2d1b951f3968ec8fe5b43af
refs/heads/master
2021-01-18T14:02:02.394650
2009-06-17T08:27:39
2009-06-17T08:27:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
#!/usr/bin/env python from side import Side from top import Top from right import Right from bottom import Bottom from left import Left
a6a2daf271ad89e416af84ed992ecfd9e12ae0b7
cba3aea3b0f2614f5d7674e93a19caac43508178
/db.py
5ba46608243e0dc6b9e080a7d6661370af481ced
[]
no_license
joshua-deans/FitTrkr
a92682d0f0cf880e68186b396c5c89b3d57cf87d
cae51dd19a40d3e9f63e4663bd004396621aeb4b
refs/heads/master
2020-03-26T07:25:34.263140
2019-11-20T08:00:25
2019-11-20T08:00:25
144,653,775
0
1
null
2019-11-20T08:00:26
2018-08-14T01:42:23
HTML
UTF-8
Python
false
false
208
py
def DBconfig(): dbconfig = { "host": 'localhost', "user": 'root', "password": 'fitness2018!', "DBName": 'fitTrkr', "dictDB": 'DictCursor', } return dbconfig
bb9ea5783768afdeea7cd6a5508620b2d7af587d
dca653bb975528bd1b8ab2547f6ef4f48e15b7b7
/tags/wxPy-2.9.2.2/wxPython/cfg_version.py
ebe70ff24da82d693db9366fc5c3806f62d8c9c3
[]
no_license
czxxjtu/wxPython-1
51ca2f62ff6c01722e50742d1813f4be378c0517
6a7473c258ea4105f44e31d140ea5c0ae6bc46d8
refs/heads/master
2021-01-15T12:09:59.328778
2015-01-05T20:55:10
2015-01-05T20:55:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
# wxPython version numbers used in build VER_MAJOR = 2 # The first three must match wxWidgets VER_MINOR = 9 VER_RELEASE = 2 VER_SUBREL = 2 # wxPython release num for x.y.z release of wxWidgets VER_FLAGS = "" # release flags, such as prerelease or RC num, etc.
[ "RD@c3d73ce0-8a6f-49c7-b76d-6d57e0e08775" ]
RD@c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
6e2244a1026602e0f26a5f99c52efe0e60411d11
bd8fde6dbf227013c9af44ea29646c397b91ca75
/demo/book/migrations/0001_initial.py
8556db280c06fd6d6d0efc58352831b990938a8b
[]
no_license
hersinniji/git_demo_drf
4aef66008fb808d0bc48c45a5025407d14399df9
6a06e0943e88b658d7b3278e2058a7b9de695157
refs/heads/master
2020-06-16T08:33:30.915129
2019-07-09T15:24:40
2019-07-09T15:24:40
195,524,695
0
0
null
null
null
null
UTF-8
Python
false
false
2,061
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2019-06-16 05:40 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='BookInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('btitle', models.CharField(max_length=20, verbose_name='名称')), ('bpub_date', models.DateField(verbose_name='发布日期')), ('bread', models.IntegerField(default=0, verbose_name='阅读量')), ('bcomment', models.IntegerField(default=0, verbose_name='评论量')), ('is_delete', models.BooleanField(default=False, verbose_name='逻辑删除')), ], options={ 'verbose_name': '图书', 'verbose_name_plural': '图书', 'db_table': 'tb_books', }, ), migrations.CreateModel( name='HeroInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('hname', models.CharField(max_length=20, verbose_name='名称')), ('hgender', models.SmallIntegerField(choices=[(0, 'male'), (1, 'female')], default=0, verbose_name='性别')), ('hcomment', models.CharField(max_length=200, null=True, verbose_name='描述信息')), ('is_delete', models.BooleanField(default=False, verbose_name='逻辑删除')), ('hbook', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='book.BookInfo', verbose_name='图书')), ], options={ 'verbose_name': '英雄', 'verbose_name_plural': '英雄', 'db_table': 'tb_heros', }, ), ]
307573fb0a6e3d11504211c85b45339e89642a92
066ee4df594a5dc90335d271b9d5a1b1e2a4d34c
/y/google-cloud-sdk/platform/google_appengine/google/appengine/api/app_identity/app_identity.py
3e92c752ad31a363b9b061b8fc72201afdbe81a1
[ "Apache-2.0", "LGPL-2.1-or-later", "BSD-3-Clause", "MIT", "GPL-2.0-or-later", "MPL-1.1", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ychen820/microblog
a2d82447525325ec58285c2e5db58b79cceaca1b
d379afa2db3582d5c3be652165f0e9e2e0c154c6
refs/heads/master
2021-01-20T05:58:48.424357
2015-04-28T22:03:09
2015-04-28T22:03:09
32,948,331
0
2
BSD-3-Clause
2020-07-25T05:04:35
2015-03-26T19:45:07
Python
UTF-8
Python
false
false
17,342
py
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Provides access functions for the app identity service.""" import os import time from google.appengine.api import apiproxy_stub_map from google.appengine.api import memcache from google.appengine.api.app_identity import app_identity_service_pb from google.appengine.runtime import apiproxy_errors __all__ = ['BackendDeadlineExceeded', 'BlobSizeTooLarge', 'InternalError', 'InvalidScope', 'NotAllowed', 'OperationNotImplemented', 'Error', 'create_rpc', 'make_sign_blob_call', 'make_get_public_certificates_call', 'make_get_service_account_name_call', 'sign_blob', 'get_public_certificates', 'PublicCertificate', 'get_service_account_name', 'get_application_id', 'get_default_version_hostname', 'get_access_token', 'get_access_token_uncached', 'make_get_access_token_call', 'get_default_gcs_bucket_name', 'make_get_default_gcs_bucket_name_call', ] _APP_IDENTITY_SERVICE_NAME = 'app_identity_service' _SIGN_FOR_APP_METHOD_NAME = 'SignForApp' _GET_CERTS_METHOD_NAME = 'GetPublicCertificatesForApp' _GET_SERVICE_ACCOUNT_NAME_METHOD_NAME = 'GetServiceAccountName' _GET_DEFAULT_GCS_BUCKET_NAME_METHOD_NAME = 'GetDefaultGcsBucketName' _GET_ACCESS_TOKEN_METHOD_NAME = 'GetAccessToken' _PARTITION_SEPARATOR = '~' _DOMAIN_SEPARATOR = ':' _MEMCACHE_KEY_PREFIX = '_ah_app_identity_' _MEMCACHE_NAMESPACE = '_ah_' _TOKEN_EXPIRY_SAFETY_MARGIN = 300 _MAX_TOKEN_CACHE_SIZE = 100 _MAX_RANDOM_EXPIRY_DELTA = 60 _access_token_cache = {} _random_cache_expiry_delta = ( hash(time.time()) % (_MAX_RANDOM_EXPIRY_DELTA * 1000) / 1000.0) class Error(Exception): """Base error type.""" class BackendDeadlineExceeded(Error): """Communication to backend service timed-out.""" class BlobSizeTooLarge(Error): """Size of blob to sign is larger than the allowed limit.""" class InternalError(Error): """Unspecified internal failure.""" class InvalidScope(Error): """Invalid scope.""" class NotAllowed(Error): """The operation is not allowed.""" class OperationNotImplemented(Error): """The operation is not implemented for the service account.""" def _to_app_identity_error(error): """Translate an application error to an external Error, if possible. Args: error: An ApplicationError to translate. Returns: error: app identity API specific error message. """ error_map = { app_identity_service_pb.AppIdentityServiceError.NOT_A_VALID_APP: InternalError, app_identity_service_pb.AppIdentityServiceError.DEADLINE_EXCEEDED: BackendDeadlineExceeded, app_identity_service_pb.AppIdentityServiceError.BLOB_TOO_LARGE: BlobSizeTooLarge, app_identity_service_pb.AppIdentityServiceError.UNKNOWN_ERROR: InternalError, app_identity_service_pb.AppIdentityServiceError.UNKNOWN_SCOPE: InvalidScope, app_identity_service_pb.AppIdentityServiceError.NOT_ALLOWED: NotAllowed, app_identity_service_pb.AppIdentityServiceError.NOT_IMPLEMENTED: OperationNotImplemented, } if error.application_error in error_map: return error_map[error.application_error](error.error_detail) else: return InternalError('%s: %s' % (error.application_error, error.error_detail)) class PublicCertificate(object): """Info about public certificate. Attributes: key_name: name of the certificate. x509_certificate_pem: x509 cerficiates in pem format. """ def __init__(self, key_name, x509_certificate_pem): self.key_name = key_name self.x509_certificate_pem = x509_certificate_pem def create_rpc(deadline=None, callback=None): """Creates an RPC object for use with the App identity API. Args: deadline: Optional deadline in seconds for the operation; the default is a system-specific deadline (typically 5 seconds). callback: Optional callable to invoke on completion. Returns: An apiproxy_stub_map.UserRPC object specialized for this service. """ return apiproxy_stub_map.UserRPC(_APP_IDENTITY_SERVICE_NAME, deadline, callback) def make_sign_blob_call(rpc, bytes_to_sign): """Executes the RPC call to sign a blob. Args: rpc: a UserRPC instance. bytes_to_sign: blob that needs to be signed. Returns: A tuple that contains the signing key name and the signature. Raises: TypeError: when bytes_to_sign is not a str. """ if not isinstance(bytes_to_sign, str): raise TypeError('bytes_to_sign must be str: %s' % bytes_to_sign) request = app_identity_service_pb.SignForAppRequest() request.set_bytes_to_sign(bytes_to_sign) response = app_identity_service_pb.SignForAppResponse() def signing_for_app_result(rpc): """Check success, handle exceptions, and return converted RPC result. This method waits for the RPC if it has not yet finished, and calls the post-call hooks on the first invocation. Args: rpc: A UserRPC object. Returns: A tuple that contains signing key name and signature. """ assert rpc.service == _APP_IDENTITY_SERVICE_NAME, repr(rpc.service) assert rpc.method == _SIGN_FOR_APP_METHOD_NAME, repr(rpc.method) try: rpc.check_success() except apiproxy_errors.ApplicationError, err: raise _to_app_identity_error(err) return (response.key_name(), response.signature_bytes()) rpc.make_call(_SIGN_FOR_APP_METHOD_NAME, request, response, signing_for_app_result) def make_get_public_certificates_call(rpc): """Executes the RPC call to get a list of public certificates. Args: rpc: a UserRPC instance. Returns: A list of PublicCertificate object. """ request = app_identity_service_pb.GetPublicCertificateForAppRequest() response = app_identity_service_pb.GetPublicCertificateForAppResponse() def get_certs_result(rpc): """Check success, handle exceptions, and return converted RPC result. This method waits for the RPC if it has not yet finished, and calls the post-call hooks on the first invocation. Args: rpc: A UserRPC object. Returns: A list of PublicCertificate object. """ assert rpc.service == _APP_IDENTITY_SERVICE_NAME, repr(rpc.service) assert rpc.method == _GET_CERTS_METHOD_NAME, repr(rpc.method) try: rpc.check_success() except apiproxy_errors.ApplicationError, err: raise _to_app_identity_error(err) result = [] for cert in response.public_certificate_list_list(): result.append(PublicCertificate( cert.key_name(), cert.x509_certificate_pem())) return result rpc.make_call(_GET_CERTS_METHOD_NAME, request, response, get_certs_result) def make_get_service_account_name_call(rpc): """Get service account name of the app. Args: deadline: Optional deadline in seconds for the operation; the default is a system-specific deadline (typically 5 seconds). Returns: Service account name of the app. """ request = app_identity_service_pb.GetServiceAccountNameRequest() response = app_identity_service_pb.GetServiceAccountNameResponse() if rpc.deadline is not None: request.set_deadline(rpc.deadline) def get_service_account_name_result(rpc): """Check success, handle exceptions, and return converted RPC result. This method waits for the RPC if it has not yet finished, and calls the post-call hooks on the first invocation. Args: rpc: A UserRPC object. Returns: A string which is service account name of the app. """ assert rpc.service == _APP_IDENTITY_SERVICE_NAME, repr(rpc.service) assert rpc.method == _GET_SERVICE_ACCOUNT_NAME_METHOD_NAME, repr(rpc.method) try: rpc.check_success() except apiproxy_errors.ApplicationError, err: raise _to_app_identity_error(err) return response.service_account_name() rpc.make_call(_GET_SERVICE_ACCOUNT_NAME_METHOD_NAME, request, response, get_service_account_name_result) def make_get_default_gcs_bucket_name_call(rpc): """Get default google storage bucket name for the app. Args: rpc: A UserRPC object. Returns: Default Google Storage Bucket name of the app. """ request = app_identity_service_pb.GetDefaultGcsBucketNameRequest() response = app_identity_service_pb.GetDefaultGcsBucketNameResponse() if rpc.deadline is not None: request.set_deadline(rpc.deadline) def get_default_gcs_bucket_name_result(rpc): """Check success, handle exceptions, and return converted RPC result. This method waits for the RPC if it has not yet finished, and calls the post-call hooks on the first invocation. Args: rpc: A UserRPC object. Returns: A string which is the name of the app's default google storage bucket. """ assert rpc.service == _APP_IDENTITY_SERVICE_NAME, repr(rpc.service) assert rpc.method == _GET_DEFAULT_GCS_BUCKET_NAME_METHOD_NAME, ( repr(rpc.method)) try: rpc.check_success() except apiproxy_errors.ApplicationError, err: raise _to_app_identity_error(err) if response.has_default_gcs_bucket_name(): return response.default_gcs_bucket_name() else: return None rpc.make_call(_GET_DEFAULT_GCS_BUCKET_NAME_METHOD_NAME, request, response, get_default_gcs_bucket_name_result) def sign_blob(bytes_to_sign, deadline=None): """Signs a blob. Args: bytes_to_sign: blob that needs to be signed. deadline: Optional deadline in seconds for the operation; the default is a system-specific deadline (typically 5 seconds). Returns: Tuple, signing key name and signature. """ rpc = create_rpc(deadline) make_sign_blob_call(rpc, bytes_to_sign) rpc.wait() return rpc.get_result() def get_public_certificates(deadline=None): """Get public certificates. Args: deadline: Optional deadline in seconds for the operation; the default is a system-specific deadline (typically 5 seconds). Returns: A list of PublicCertificate object. """ rpc = create_rpc(deadline) make_get_public_certificates_call(rpc) rpc.wait() return rpc.get_result() def get_service_account_name(deadline=None): """Get service account name of the app. Args: deadline: Optional deadline in seconds for the operation; the default is a system-specific deadline (typically 5 seconds). Returns: Service account name of the app. """ rpc = create_rpc(deadline) make_get_service_account_name_call(rpc) rpc.wait() return rpc.get_result() def get_default_gcs_bucket_name(deadline=None): """Gets the default gs bucket name for the app. Args: deadline: Optional deadline in seconds for the operation; the default is a system-specific deadline (typically 5 seconds). Returns: Default bucket name for the app. """ rpc = create_rpc(deadline) make_get_default_gcs_bucket_name_call(rpc) rpc.wait() return rpc.get_result() def _ParseFullAppId(app_id): """Parse a full app id into partition, domain name and display app_id. Args: app_id: The full partitioned app id. Returns: A tuple (partition, domain_name, display_app_id). The partition and domain name may be empty. """ partition = '' psep = app_id.find(_PARTITION_SEPARATOR) if psep > 0: partition = app_id[:psep] app_id = app_id[psep+1:] domain_name = '' dsep = app_id.find(_DOMAIN_SEPARATOR) if dsep > 0: domain_name = app_id[:dsep] app_id = app_id[dsep+1:] return partition, domain_name, app_id def get_application_id(): """Get the application id of an app. Returns: The application id of the app. """ full_app_id = os.getenv('APPLICATION_ID') _, domain_name, display_app_id = _ParseFullAppId(full_app_id) if domain_name: return '%s%s%s' % (domain_name, _DOMAIN_SEPARATOR, display_app_id) return display_app_id def get_default_version_hostname(): """Get the standard hostname of the default version of the app. For example if your application_id is my-app then the result might be my-app.appspot.com. Returns: The standard hostname of the default version of the application. """ return os.getenv('DEFAULT_VERSION_HOSTNAME') def make_get_access_token_call(rpc, scopes, service_account_id=None): """OAuth2 access token to act on behalf of the application (async, uncached). Most developers should use get_access_token instead. Args: rpc: RPC object. scopes: The requested API scope string, or a list of strings. Raises: InvalidScope: if the scopes are unspecified or invalid. """ request = app_identity_service_pb.GetAccessTokenRequest() if not scopes: raise InvalidScope('No scopes specified.') if isinstance(scopes, basestring): request.add_scope(scopes) else: for scope in scopes: request.add_scope(scope) if service_account_id: if isinstance(service_account_id, (int, long)): request.set_service_account_id(service_account_id) elif isinstance(service_account_id, basestring): request.set_service_account_name(service_account_id) else: raise TypeError() response = app_identity_service_pb.GetAccessTokenResponse() def get_access_token_result(rpc): """Check success, handle exceptions, and return converted RPC result. This method waits for the RPC if it has not yet finished, and calls the post-call hooks on the first invocation. Args: rpc: A UserRPC object. Returns: Pair, Access token (string) and expiration time (seconds since the epoch). """ assert rpc.service == _APP_IDENTITY_SERVICE_NAME, repr(rpc.service) assert rpc.method == _GET_ACCESS_TOKEN_METHOD_NAME, repr(rpc.method) try: rpc.check_success() except apiproxy_errors.ApplicationError, err: raise _to_app_identity_error(err) return response.access_token(), response.expiration_time() rpc.make_call(_GET_ACCESS_TOKEN_METHOD_NAME, request, response, get_access_token_result) def get_access_token_uncached(scopes, deadline=None, service_account_id=None): """OAuth2 access token to act on behalf of the application (sync, uncached). Most developers should use get_access_token instead. Args: scopes: The requested API scope string, or a list of strings. deadline: Optional deadline in seconds for the operation; the default is a system-specific deadline (typically 5 seconds). Returns: Pair, Access token (string) and expiration time (seconds since the epoch). """ rpc = create_rpc(deadline) make_get_access_token_call(rpc, scopes, service_account_id=service_account_id) rpc.wait() return rpc.get_result() def get_access_token(scopes, service_account_id=None): """OAuth2 access token to act on behalf of the application, cached. Generates and caches an OAuth2 access token for the service account for the appengine application. Each application has an associated Google account. This function returns OAuth2 access token corresponding to the running app. Access tokens are safe to cache and reuse until their expiry time as returned. This method will do that using both an in-process cache and memcache. Args: scopes: The requested API scope string, or a list of strings. Returns: Pair, Access token (string) and expiration time (seconds since the epoch). """ cache_key = _MEMCACHE_KEY_PREFIX + str(scopes) if service_account_id: cache_key += ',%s' % service_account_id cached = _access_token_cache.get(cache_key) if cached is not None: access_token, expires_at = cached safe_expiry = (expires_at - _TOKEN_EXPIRY_SAFETY_MARGIN - _random_cache_expiry_delta) if time.time() < safe_expiry: return access_token, expires_at memcache_value = memcache.get(cache_key, namespace=_MEMCACHE_NAMESPACE) if memcache_value: access_token, expires_at = memcache_value else: access_token, expires_at = get_access_token_uncached( scopes, service_account_id=service_account_id) memcache_expiry = expires_at - _TOKEN_EXPIRY_SAFETY_MARGIN memcache_expiry -= _MAX_RANDOM_EXPIRY_DELTA memcache_expiry -= 10 memcache.add(cache_key, (access_token, expires_at), memcache_expiry, namespace=_MEMCACHE_NAMESPACE) if len(_access_token_cache) >= _MAX_TOKEN_CACHE_SIZE: _access_token_cache.clear() _access_token_cache[cache_key] = (access_token, expires_at) return access_token, expires_at
c38f76869d89fa31fa4b8ef71ec6a19879b98f2c
41e02a6cb11149501c8cb05cf549e6497da146b3
/social_networking_project/settings.py
710df13989abd3782da33747c3675a1f9f71d4d4
[]
no_license
muffajal53/holiday_list_by_IP_address_django
f47e8de99ed6455754240d8d8b6f683672e8730d
d05a39a1314c72acd71a7af22ee83ae58ea2d823
refs/heads/master
2023-04-26T22:22:20.825232
2021-05-31T19:44:28
2021-05-31T19:44:28
372,609,723
0
0
null
null
null
null
UTF-8
Python
false
false
4,638
py
import os from pathlib import Path from datetime import timedelta # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-g$7xtg$kb@x+1(1wi(zd%umf&^s62nkh@^hbcms4=r)3ycj#bk' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # comment this for production BASE_URL = "http://localhost:8000" # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'user', 'post', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'social_networking_project.urls' TEMPLATE_DIR = os.path.join(BASE_DIR, "templates") TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'social_networking_project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] REST_FRAMEWORK = { # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. "DEFAULT_AUTHENTICATION_CLASSES": ( "rest_framework_simplejwt.authentication.JWTAuthentication", "rest_framework.authentication.SessionAuthentication", ), # "DEFAULT_PERMISSION_CLASSES": ["rest_framework.permissions.IsAuthenticated"], # "DEFAULT_FILTER_BACKENDS": [ # "django_filters.rest_framework.DjangoFilterBackend", # "rest_framework.filters.OrderingFilter", # ] } # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATICFILES_DIRS = (os.path.join(BASE_DIR, "static"),) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, "media") MEDIA_URL = "/media/" # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' SIMPLE_JWT = { "ACCESS_TOKEN_LIFETIME": timedelta(days=1), "REFRESH_TOKEN_LIFETIME": timedelta(days=365), "ROTATE_REFRESH_TOKENS": True, "USER_ID_FIELD": "id", "USER_ID_CLAIM": "user_id", "BLACKLIST_AFTER_ROTATION": True, "AUTH_HEADER_TYPES": ("Bearer",), "AUTH_HEADER_NAME": "HTTP_AUTHORIZATION", } # CELERY STUFF BROKER_URL = 'redis://localhost:6379' CELERY_RESULT_BACKEND = 'redis://localhost:6379' CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_TIMEZONE = 'Asia/Kolkata' #Abstract API keys IP_GEOLOCATION_API_KEY = 'c3059a655dec4f869fd642b17fd9bbd8' HOLIDAY_API_KEY = '8f4767975c7c4e0180e61fe71b9c3a68'
4e0dfcb09266aa4877dbacacaf17ce807eaf09d9
289818a63e8213606fd437c0ab29f0dba6750357
/search/urls.py
147bf92651599f02ee1e91018879a0b443ddbdda
[]
no_license
dzynin/django-mtr
642b9e4b7f568d89059cedcf3dd8a4061a94ba83
15c9ba13b2f91cacd76b9c04da1c6ee4cdfe9aeb
refs/heads/master
2021-05-29T07:29:42.303984
2015-09-06T13:54:41
2015-09-06T13:54:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
from django.conf.urls import patterns, include, url urlpatterns = patterns('', #url(r'^$', include('haystack.urls')), #url(r'^advanced/$', 'search.views.index'), #url(r'^autocomplete/$', 'search.autocomplete.autocomplete'), url(r'^$', 'search.views.results', name='search'), )
526eb57ef6986d95baa70b2a0a489faab9ae04ff
3b0feb458896e588297db26aab635b45b3765cbc
/hbaseread2.py
7106b530f5b27b128083e180b0e743803be1d8bb
[]
no_license
guoch/sparkproject
af384551be26261471cc8ad766010c3f8cda8252
2afd598ec7d6849268230f28e9ffc970a5a61d88
refs/heads/master
2021-01-10T11:03:26.060566
2015-12-26T13:16:07
2015-12-26T13:16:07
47,060,497
0
0
null
null
null
null
UTF-8
Python
false
false
8,971
py
# -*- coding: utf-8 -*- from __future__ import print_function import json # from jieba import analyse import jieba from pyspark import SparkContext import sys reload(sys) sys.setdefaultencoding('utf-8') """ author:Kira(Chenghao Guo) 根据时间筛选top k Create test data in HBase first: hbase(main):016:0> create 'test', 'f1' 0 row(s) in 1.0430 seconds hbase(main):017:0> put 'test', 'row1', 'f1:a', 'value1' 0 row(s) in 0.0130 seconds hbase(main):018:0> put 'test', 'row1', 'f1:b', 'value2' 0 row(s) in 0.0030 seconds hbase(main):019:0> put 'test', 'row2', 'f1', 'value3' 0 row(s) in 0.0050 seconds hbase(main):020:0> put 'test', 'row3', 'f1', 'value4' 0 row(s) in 0.0110 seconds hbase(main):021:0> scan 'test' ROW COLUMN+CELL row1 column=f1:a, timestamp=1401883411986, value=value1 row1 column=f1:b, timestamp=1401883415212, value=value2 row2 column=f1:, timestamp=1401883417858, value=value3 row3 column=f1:, timestamp=1401883420805, value=value4 4 row(s) in 0.0240 seconds """ def wordcut(v): try: x=eval("'%s'"%v['value']) except Exception,ex: x='invalid' seglist=jieba.cut(x) # seglist=analyse.extract_tags(x,10) myvalue='|'.join(seglist) return myvalue # def content_analyse(v): # try: # x=eval("'%s'"%v['value']) # except Exception,ex: # x='invalid' # # seglist=jieba.cut(x) # seglist=analyse.extract_tags(x,10) # myvalue='|'.join(seglist) # return myvalue def inverted(v): url=v[0] return ((word,url) for word in v[1].split('|')) def ridoff(ids): news_ids=list(set(ids)) # news_ids.sort(ids.index) return news_ids def hbaseput(sc,host,table,args): #单独插入性能比较差,并行插入 ''' ./bin/spark-submit --driver-class-path /path/to/example/jar \ /path/to/examples/hbase_outputformat.py <args> Assumes you have created <table> with column family <family> in HBase running on <host> already ''' conf = {"hbase.zookeeper.quorum": host, "hbase.mapred.outputtable": table, "mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.TableOutputFormat", "mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable", "mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"} keyConv = "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter" valueConv = "org.apache.spark.examples.pythonconverters.StringListToPutConverter" sc.parallelize([args]).map(lambda x: (x[0], x)).saveAsNewAPIHadoopDataset( conf=conf, keyConverter=keyConv, valueConverter=valueConv) if __name__ == "__main__": if len(sys.argv) != 3: print(""" Usage: hbase_inputformat <host> <table> Run with example jar: ./bin/spark-submit --driver-class-path /path/to/example/jar \ /path/to/examples/hbase_inputformat.py <host> <table> [<znode>] Assumes you have some data in HBase already, running on <host>, in <table> optionally, you can specify parent znode for your hbase cluster - <znode> """, file=sys.stderr) exit(-1) host = sys.argv[1] table = sys.argv[2] # outputdir=sys.argv[3] sc = SparkContext(appName="HBaseInputFormat") # sc.addJar('/home/scidb/spark-1.5.2/lib/spark-examples-1.5.2-hadoop2.6.0.jar') # Other options for configuring scan behavior are available. More information available at # https://github.com/apache/hbase/blob/master/hbase-server/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormat.java conf = {"hbase.zookeeper.quorum": host, "hbase.mapreduce.inputtable": table} if len(sys.argv) > 3: conf = {"hbase.zookeeper.quorum": host, "zookeeper.znode.parent": sys.argv[3], "hbase.mapreduce.inputtable": table} keyConv = "org.apache.spark.examples.pythonconverters.ImmutableBytesWritableToStringConverter" valueConv = "org.apache.spark.examples.pythonconverters.HBaseResultToStringConverter" hbase_rdd = sc.newAPIHadoopRDD("org.apache.hadoop.hbase.mapreduce.TableInputFormat","org.apache.hadoop.hbase.io.ImmutableBytesWritable","org.apache.hadoop.hbase.client.Result",keyConverter=keyConv,valueConverter=valueConv,conf=conf) hbase_rdd = hbase_rdd.flatMapValues(lambda v: v.split("\n")).mapValues(json.loads) hbase_rdd_title=hbase_rdd.filter(lambda keyValue: keyValue[1]['qualifier']=='title' and keyValue[1]['value']!=None) hbase_rdd_title=hbase_rdd_title.mapValues(wordcut) #分析title中所有的关键词,title的权重更加重一些 # hbase_rdd_content=hbase_rdd.filter(lambda keyValue: keyValue[1]['qualifier']=='content' and keyValue[1]['value']!=None) # hbase_rdd_content=hbase_rdd_content.mapValues(content_analyse) #按照tf-idf分析去除不相干的关键词以及得到top k的词 # tags=jieba.analyse.extract_tags(content,top_num) ''' |著名|导演|郭宝昌|最新|执导|的|中国|首部|历史|谋略|情节剧|《|谋圣|鬼谷子|》|正在|浙江省|象山|影视城|热拍|。|郭宝昌|出|“|宅门|”|后|首次|玩|“|谋略|”|,|让|这部|剧|深受|观众|期待|,|他|表示|《|谋圣|鬼谷子|》|要|打|造成|中国|版|《|权力|的|游戏|》|。| ''' # hbase_rdd_new=hbase_rdd_title.union(hbase_rdd_content) hbase_rdd_new=hbase_rdd_title #hbase_rdd_title=hbase_rdd_title.flatMap(inverted) hbase_rdd_new=hbase_rdd_new.flatMap(inverted).groupByKey() #list(set(myList)) 对list去重,一行里面包括多个url并rank hbase_rdd_new=hbase_rdd_new.filter(lambda keyValue:len(keyValue[0])>4) #过滤太短的关键词 #rank策略 content基于tfidf后 # hbase_rdd_new=hbase_rdd_new.mapValues(lambda v: list(set(v))).mapValues(lambda v: "|".join(v)) hbase_rdd_new=hbase_rdd_new.mapValues(ridoff).mapValues(lambda v: "|".join(v)) # sc.union(rdd1, rdd2) # output = hbase_rdd_new.collect() # for (k, v) in output: # for url in v: # if len(k)>1: # hbaseput(sc,'ubuntu1','test3',[k,'f','index',url]) # print(k+':'+",".join(v)) #记得删除重复的url # if v['qualifier']=='content': # print(eval("'%s'"%v['value'])) # wordRDD=tc.flatMap(lambda x:jieba.cut(x)) # wordFreRDD=wordRDD.map(lambda x:(x,1)) # counts=wordFreRDD.reduceByKey(add) # tags=jieba.analyse.extract_tags(content,top_num) #hbase_outputformat <host> test row1 f q1 value1 host='ubuntu1' table='newsindex' confout = {"hbase.zookeeper.quorum": host, "hbase.mapred.outputtable": table, "mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.TableOutputFormat", "mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable", "mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"} keyConvout = "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter" valueConvout = "org.apache.spark.examples.pythonconverters.StringListToPutConverter" #rowid的设计是唯一的,但内容不唯一 hbase_rdd_new.map(lambda x: [x[0],'f','index',x[1]]).map(lambda x: (x[0], x)).saveAsNewAPIHadoopDataset( conf=confout, keyConverter=keyConvout, valueConverter=valueConvout) sc.stop() #处理value的内容 ''' result = pairs.filter(lambda keyValue: len(keyValue[1]) < 20) nums = sc.parallelize([1, 2, 3, 4]) squared = nums.map(lambda x: x * x).collect() for num in squared: print "%i " % (num) pairs = lines.map(lambda x: (x.split(" ")[0], x)) ''' #print((k, v)) ''' (u'http://www.chinanews.com/yl/2015/12-13/7668707.shtml', {u'qualifier': u'title', u'timestamp': u'1449980290800', u'value': u'\\xE9\\xA6\\x99\\xE6\\xB8\\xAF\\xE6\\xBC\\x94\\xE5\\x91\\x98\\xE6\\x9E\\x97\\xE5\\xAD\\x90\\xE8\\x81\\xAA\\xE5\\xBD\\x93\\xE7\\x88\\xB8\\xE7\\x88\\xB8 \\xE8\\xA2\\xAB\\xE5\\x84\\xBF\\xE5\\xAD\\x90\\xE8\\x84\\x9A\\xE8\\xB8\\xA2\\xE6\\x84\\x9F\\xE5\\x8A\\xA8\\xE5\\x88\\xB0\\xE5\\x93\\xAD(\\xE5\\x9B\\xBE)', u'columnFamily': u'f', u'type': u'Put', u'row': u'http://www.chinanews.com/yl/2015/12-13/7668707.shtml'}) u'row1', {u'qualifier': u'a', u'timestamp': u'1450598363113', u'value': u'value1', u'columnFamily': u'f1', u'type': u'Put', u'row': u'row1'} (u'row1', {u'qualifier': u'b', u'timestamp': u'1450598369239', u'value': u'value2', u'columnFamily': u'f1', u'type': u'Put', u'row': u'row1'}) (u'row2', {u'qualifier': u'', u'timestamp': u'1450598376945', u'value': u'value3', u'columnFamily': u'f1', u'type': u'Put', u'row': u'row2'}) (u'row3', {u'qualifier': u'', u'timestamp': u'1450598382736', u'value': u'value4', u'columnFamily': u'f1', u'type': u'Put', u'row': u'row3'}) '''
60e7629da9f99587fad3ae8ca2de4fb0451aa8b9
a2c66f592770b04d27319b470ff12ec0342bf326
/Reinforcement-Learning/K_armed_bandit.py
7322f6d932093342c34af29782e7a55f9222e7d3
[]
no_license
Zhangyxyyx/Machine-Learning
5f4ffcd4604dcf72105512f37606f866c1b0fd00
434b71d884905e88c4535249109cca757924b6a7
refs/heads/master
2022-02-23T13:40:26.890800
2019-10-16T08:22:14
2019-10-16T08:22:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
685
py
""" a implementation of K armed bandit, the algorithm is in page 375 of book <Machine Learning> """ import random R = [1, 2, 3, 4, 5] e = 0.5 r = 0 arms_num = 5 Q = [0 for i in range(arms_num)] count = [0 for i in range(arms_num)] T = 100000 for i in range(T): p = random.random() if p <0.001: k = random.randint(0, 4) else: temp = max(Q) max_index = [] for j in range(len(Q)): if Q[j] == temp: max_index.append(j) index = random.randint(0, len(max_index) - 1) k = max_index[index] v = R[k] r += v Q[k] = (Q[k] * count[k] + v) / (count[k] + 1) count[k] += 1 print(r) print(count)
72d9567ddd4b1974eda07d6f6f72ea3423236bd1
f16eaef4075a55f46d53729ab0612b5111b176d4
/00_data_structure/binary_tree.py
c425f9de960ade636c14ee2118274fe230d46f46
[]
no_license
K-AlfredIwasaki/coding_interview
cfc590feb2414e0a7403a2f5a3d2497ea78a4f02
470ccbc8ee18f3d23bfa5bbdc93b72867d0b2647
refs/heads/master
2021-08-23T23:06:48.112588
2017-12-07T01:03:01
2017-12-07T01:03:01
103,080,454
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
class BinaryTree: def __init__(self, content, left=None, right=None): self.content = content self.left = left self.right = right self.depth = -1 def __str__(self): return "(" + str(self.content) + " ( " + str(self.left) + " | " \ + str(self.right) + "))"
37d58cea0c7347774b5080d6bb595b4f918caefd
5edded0c82e56dd57b120fec7ff0f3ba9ed18961
/shape_calculator.py
d1308e70467b64062286ab87dc9f6a1aa8769684
[]
no_license
jorgechavarriaga/PolygonAreaCalculator
933d87798c6c5f5ae8c4fb6de3fd4d0de978b492
32c7604e938d68569075afd0bcc91b344b930d44
refs/heads/main
2023-03-28T19:43:53.056877
2021-03-29T13:00:28
2021-03-29T13:00:28
351,799,693
0
0
null
null
null
null
UTF-8
Python
false
false
2,379
py
import math # Rectangle class class Rectangle: # When a Rectangle object is created, it should be initialized with `width` and `height` attributes. def __init__(self, width, height): self.width = width self.height = height # If an instance of a Rectangle is represented as a string, it should look like: `Rectangle(width=5, height=10)` def __str__(self): rectangle_string = type(self).__name__ + "(width=" + str(self.width) + ", height=" + str(self.height) +")" return rectangle_string # method set_width def set_width(self, width): self.width = width # method set_height def set_height(self, height): self.height = height # method get_area def get_area(self): area = self.width * self.height return area # method get_perimeter def get_perimeter(self): perimeter = (2* (self.width + self.height)) return perimeter # method get_diagonal def get_diagonal(self): diagonal = math.sqrt(pow(self.width, 2) + pow(self.height, 2)) return diagonal # method get_picture def get_picture(self): if self.width > 50 or self.height > 50: return 'Too big for picture.' pattern = '' for index in range(self.height): for index in range(self.width): pattern += '*' pattern += '\n' return pattern # method get_amount_inside def get_amount_inside(self, shape): area1 = shape.get_area() count = 0 area_home = self.get_area() while area_home >= area1: area_home = area_home - area1 count += 1 return count # Square class: The Square class should be a subclass of Rectangle. When a Square object is # created, a single side length is passed in. The `__init__` method should store the side # length in both the `width` and `height` attributes from the Rectangle class. class Square(Rectangle): def __init__(self, side): super().__init__(side,side) # An instance of a Square is represented as a string def __str__(self): square_string = type(self).__name__ + "(side="+ str(self.width) + ")" return square_string # method set_side def set_side(self, side): self.set_width(side) self.set_height(side)
d2a77564db9f4569384851f86e6be093484a266c
5b56c0695d0582186f8aa902e51551c2c297c292
/python/generateNormalizedData.py
5e5dc13c2095ee25e5cb3dc4fb056ce8a22717d5
[]
no_license
IamcalledPhil/bechdel-test-data-visualisation
caab8d3ea8ee04c3f5028ca5e99f2d6c4ffcf62c
ff26f695e9c1af7eacad83c67e8b570aa6610b76
refs/heads/master
2022-09-19T00:41:56.358308
2020-01-11T23:12:45
2020-01-11T23:12:45
267,276,358
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
import json import io with open('moviesBechdel.json') as f: moviesBechdel = json.load(f) with open('moviesBudget.json') as f: moviesBudget = json.load(f) normalizedMovies = [] for movie in moviesBudget: for bechMovie in moviesBechdel: if movie["imdb_id"] == 'tt' + bechMovie["imdbid"]: normalizedMovie = bechMovie normalizedMovie["budget"] = movie["budget"] normalizedMovies.append(normalizedMovie) with io.open('normalizedMovies.json', 'w', encoding='utf8') as outfile: data = json.dumps(normalizedMovies, outfile, ensure_ascii=False, indent=4) outfile.write(unicode(data))
a4208a1024afaa7f06714847c3404d14fb8e0bcc
d9a1d531af2a553c214f29bdff0f8f69352c862a
/Exp 6/script.py
1bf87580f4864cecb6466c78a1c75b5ce89ff926
[]
no_license
kante95/FP2
7831685878c916960262d13a444097077c34cd67
7f58ed3be0b74ce526ddceaccd38e624cfbee305
refs/heads/master
2021-05-15T15:12:17.925441
2018-01-25T10:58:34
2018-01-25T10:58:34
107,283,219
0
0
null
null
null
null
UTF-8
Python
false
false
7,425
py
import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt plt.rcParams['font.size'] = 16 directory = "data_rubidium/" def multi_lorentz_peak(w, Voff, Vlorentz, width, wresonance, Vlorentz2, width2, wresonance2, Vlorentz3, width3, wresonance3, Vlorentz4, width4, wresonance4, Vlorentz5, width5, wresonance5, Vlorentz6, width6, wresonance6): return (Voff+Vlorentz*width/((w-wresonance)**2+(width)**2)+ Vlorentz2*width2/((w-wresonance2)**2+(width2)**2)+ Vlorentz3*width3/((w-wresonance3)**2+(width3)**2)+ Vlorentz4*width4/((w-wresonance4)**2+(width4)**2)+ Vlorentz5*width5/((w-wresonance5)**2+(width5)**2)+ Vlorentz6*width6/((w-wresonance6)**2+(width6)**2)) def multi_lorentz_peak2(w, Voff, Vlorentz, width, wresonance, Vlorentz2, width2, wresonance2, Vlorentz3, width3, wresonance3, Vlorentz4, width4, wresonance4, Vlorentz5, width5, wresonance5, Vlorentz6, width6, wresonance6, Vlorentz7, width7, wresonance7): return (Voff+Vlorentz*width/((w-wresonance)**2+(width)**2)+ Vlorentz2*width2/((w-wresonance2)**2+(width2)**2)+ Vlorentz3*width3/((w-wresonance3)**2+(width3)**2)+ Vlorentz4*width4/((w-wresonance4)**2+(width4)**2)+ Vlorentz5*width5/((w-wresonance5)**2+(width5)**2)+ Vlorentz6*width6/((w-wresonance6)**2+(width6)**2)+ Vlorentz7*width7/((w-wresonance7)**2+(width7)**2)) def lorentz(x,A,m,s): return A*(s/((x-m)**2+s**2)) def lorentz_with_offset(x,A,m,s,offset): return A*(s/((x-m)**2+s**2)) + offset def gaussian(x, height, center, width): return height*np.exp(-(x - center)**2/(2*width**2)) def read_oscilloscope_data(file): data = np.genfromtxt( file, delimiter=",", usecols=range(3,5), skip_header=0) return data[:,0],data[:,1] #fabryperot t,v = read_oscilloscope_data(directory+"ALL0106/F0106CH1.CSV") plt.errorbar(t,v,yerr = (1.6/256)*np.ones(len(t))) plt.xlabel("Time [s]") plt.ylabel("Voltage [V]") def center_of_peak(t,v,low,high): #first peak v = v[(t> low) & (t< high)] t = t[(t> low) & (t< high)] plt.figure() plt.errorbar(t,v,yerr = (1.6/256)*np.ones(len(t)),fmt='.',markersize=5,label="Experimental data") #popt, pcov = curve_fit(gaussian, t, v,bounds = ([-np.inf,-0.0010,0],[np.inf,-0.0004,0.00025])) #perr = np.sqrt(np.diag(pcov)) popt, pcov = curve_fit(lorentz, t, v,sigma = (1.6/256)*np.ones(len(t)),bounds = ([0,low,0],[np.inf,high,0.0004])) perr = np.sqrt(np.diag(pcov)) print("Lorentzian peak fit: A,t0,gamma") print(popt,perr) print("Reduced chi2") chi_squared = np.sum( ((lorentz(t, *popt)-v)/(1.6/256))**2 ) reduced_chi_squared = chi_squared / (len(t) - len(popt)) print(reduced_chi_squared) t1 = np.arange(low,high,0.0000001) plt.plot(t1, lorentz(t1, *popt), 'r-', label='Lorentzian fit') popt, pcov = curve_fit(gaussian, t, v,sigma = (1.6/256)*np.ones(len(t)),bounds = ([0,low,0],[np.inf,high,0.0004])) perr = np.sqrt(np.diag(pcov)) print("Gaussia peak fit: B,t0,sigma") print(popt,perr) print("Reduced chi2") chi_squared = np.sum( ((gaussian(t, *popt)-v)/(1.6/256))**2 ) reduced_chi_squared = chi_squared / (len(t) - len(popt)) print(reduced_chi_squared) t = np.arange(low,high,0.000001) plt.plot(t, gaussian(t, *popt), 'g-', label='Gaussian fit') plt.legend() plt.xlabel("Time [s]") plt.ylabel("Voltage [V]") return popt[1],perr[1] center1,dcenter1 = center_of_peak(t,v,-0.000750,-0.000640) center2,dcenter2 = center_of_peak(t,v,0.00294,0.00304) c = 299792458 L = 20e-2 real_fsr = c/L time_fsr = -center1+center2 dtime_fsr = np.sqrt(dcenter1**2 + dcenter2**2) print("Free spectral range: %f +/- %f",time_fsr,dtime_fsr) def t2freq(t): return (real_fsr/time_fsr)*t*1e-6 #in MHz #hyperfine structure t,v = read_oscilloscope_data(directory+"ALL0102/F0102CH3.CSV") t = t2freq(t) tb,vb = read_oscilloscope_data(directory+"ALL0103/F0103CH3.CSV") tb= t2freq(tb) plt.figure() plt.errorbar(t,v,yerr = (0.08/(256*np.sqrt(12)))*np.ones(len(t)), label="Hyperfine spectrum",fmt='.',markersize=5) plt.errorbar(tb,vb,yerr = (0.08/(256*np.sqrt(12)))*np.ones(len(tb)),label="Background",fmt='.',markersize=5) plt.xlabel("Detuning [MHz]") plt.ylabel("Voltage [V]") plt.legend() diff = v-vb # high = 450 # low = -150 # diff = diff[(t> low) & (t< high)] # t = t[(t> low) & (t< high)] plt.figure() #plt.errorbar(t,diff,yerr = (0.08/256)*np.ones(len(t)),fmt="." ) plt.errorbar(t,diff,yerr = (2*0.08/(256*np.sqrt(12)))*np.ones(len(tb)),fmt='.',label = "Experimental data",markersize=5) p= [-5.10681072e-03 ,3.76653515e-02, 1.58333476e+01, -7.77073287e+01,1.53816471e-01 , 1.45447758e+01, 6.85368665e+00 , 1.06667251e-01, 1.31304916e+01 , 9.13358709e+1 ,7.13693568e-1, 1.69622715e1, 2.37608123e+02 ,3.57212145e-1 , 1.22766961e1 , 1.52825804e+02,1.76598802e-3 , 1.62151338e1,378,1,1,1] # def lorentz_peaks(t,v,low,high): # #first peak # v = v[(t> low) & (t< high)] # t = t[(t> low) & (t< high)] # popt, pcov = curve_fit(lorentz_with_offset, t, v,sigma = (0.04/256)*np.ones(len(t)),bounds = ([0,low,10,0.005],[np.inf,high,50,np.inf])) # perr = np.sqrt(np.diag(pcov)) # print(popt,perr) # t1 = np.arange(low,high,1) # plt.plot(t1, lorentz_with_offset(t1, *popt), 'r-', label='fit: A=%f, xc=%f, s=%f offset=%f' % tuple(popt)) # plt.legend() # return popt[1] # lorentz_peaks(t,v,190,270) popt, pcov = curve_fit(multi_lorentz_peak2, t, diff,sigma = (0.08/256)*np.ones(len(t)),p0=p,method="lm") perr = np.sqrt(np.diag(pcov)) print("Multi lorentzian fit") print(popt) print(perr) #popt= [-5.07632489e-03, -1.80209252e-02 , -9.04256941e+00 ,-7.82219782e+01,1.794366e-01, 1.63950133e+01 , 7.25825710e+00 , 1.43503961e-01,1.59195514e+01 , 9.13954496e+01 , 7.98698005e-01 , 1.84465199e+01,2.37651304e+02 , 4.03636692e-01 , 1.33479294e+01, 1.52940906e+02 ,1.09375260e-02 ,7 , 378] plt.plot(t, multi_lorentz_peak2(t, *popt), 'r-',label="Multi lorentzian fit", zorder=20) plt.xlim([-150,450]) plt.xlabel("Detuning [MHz]") plt.ylabel("Voltage [V]") plt.grid(True) plt.legend() peak1 = popt[3] peak2 = popt[9] peak3 = popt[18] dpeak1 = perr[3] dpeak2 = perr[9] dpeak3 = perr[18] print("Picco F=1: "+str(popt[3])+ "+/-" + str(dpeak1)) print("Picco F=2: "+str(popt[9])+ "+/-" + str(dpeak2)) print("Picco F=3: "+str(popt[18])+ "+/-" + str(dpeak3)) print("Altri picchi:" +str(popt[6])+" "+str(popt[12])+" "+str(popt[15])+" "+str(popt[21])) peak12 = peak2-peak1 peak13 = peak3-peak1 peak23 = peak3-peak2 dpeak12 = np.sqrt(dpeak1**2 + dpeak2**2) dpeak13 = np.sqrt(dpeak3**2 + dpeak1**2) dpeak23 = np.sqrt(dpeak2**2 + dpeak3**2) print("Distanza picco F 1->2:" +str(peak12) + "+/-" + str(dpeak12)) print("Distanza picco F 1->3:" +str(peak13) + "+/-" + str(dpeak13)) print("Distanza picco F 2->3:" +str(peak23) + "+/-" + str(dpeak23)) A = (peak23+peak12)/5 B = (2*peak23-3*peak12)/5 dA = (1/5)*np.sqrt(dpeak23**2 + dpeak12**2) dB = (1/5)*np.sqrt((2*dpeak23)**2 + (3*dpeak12)**2) print("Magnetic dipole constant: h"+str(A)+ "+/-" + str(dA)) print("Electric quadrupole constant: h"+str(B)+ "+/-" + str(dB)) plt.show()
0dd949bf525d884fb0afce61ba4dc913e5040fd5
c9b1460e5620bb37aa3b087a25395aa722438bf2
/decorators.py
f8985725ea12d357b3f708bde59dfa6412b1f58d
[]
no_license
11Nithya/Python_Training_task
cdddc9c046aa7e37a2bf838beaea42633a8e27d9
1262caaec0848925a793da50b3fbc32901a6f729
refs/heads/main
2023-05-09T11:12:27.247617
2021-05-18T07:08:39
2021-05-18T07:08:39
346,230,221
0
0
null
null
null
null
UTF-8
Python
false
false
1,273
py
#Explain what are all the use case of Decorators, How control flows in decorator invoke, Code Examples of use cases Def: A decorator is function which add extra functionality to the existing code without changing the existing code Eg: Time decorator def _time(func): def wrapper(*args ,**kwargs): start=time.time() result=func(*args,**kwargs) end= time.time() return result return wrapper @_time def add(a,b): print(a+b) output console add(1,2) 3 explanation: when the function is called the execution starts from the the outer function(i.e _time function) and then it enters the inner function when the inner function(i.e wrapper function) is called it executes the existing function that is add function it note downs the start time ie at what time the function start executing and end time i.e at what time the function ends the inner function(wrapper function )will be having the address of add function and when it is called it displays the output and outer function(_time function) will be having the reference of inner function. The wrapper function contains arguments(* args and **kwargs )which means we can give variable number of position arguments and variable number of keyword arugements
2358df38a615ac477179f9b02b827d6a91d6cba4
45b2504be9214e1b4e25aa41b9043ffa808215fa
/blog/blog/urls.py
4325a6851fc976aebac6b58c669670f3676f81fe
[]
no_license
jai-singhal/pyclub
b53a9d2ac1f5f2e8332d242c681700e67af20afc
a7d1eca85e225d9d852c126bfe58da233ba1e363
refs/heads/master
2021-07-09T09:18:49.653342
2017-10-06T17:27:42
2017-10-06T17:27:42
106,029,120
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
"""blog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from posts.views import my_view urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^home/', my_view, name = "my_view") ]
[ "=" ]
=
321e86f6cf9ddfe5c8462d2bcd3d5a5937364cdf
f086cbd31a55226ba4d04545abeca0953fffa6af
/build.py
02942ef81a552c4a1795df0a2c55fc13e79404db
[]
no_license
kyungjejo/exprgram__old
603f8c245a1364a6c29fff8c48e78e15862c1b5b
8f29527c0a319f0e427d48077c50334cf7524aa6
refs/heads/master
2022-12-14T09:59:24.137871
2018-08-03T10:56:41
2018-08-03T10:56:41
139,372,160
0
0
null
2022-12-07T23:51:49
2018-07-02T00:18:28
JavaScript
UTF-8
Python
false
false
1,371
py
import subprocess, re, os # move build folder from exprgram-front to backend # subprocess.call("rm ./backend/build") PATH = os.getcwd() subprocess.call("cp -rf %s/exprgram-front/build %s/backend/" %(PATH,PATH), shell=True) # # subprocess.call("python ./backend/manage.py collectstatic", shell=True) subprocess.call("mv ./backend/build/manifest.json ./backend/static", shell=True) with open("./backend/build/index.html") as text: html = "{% load static %}"+text.read() html = re.sub('/manifest.json', "{% static 'manifest.json' %}", html) css = re.compile("/static/css/main.*.css").search(html).group().replace("/static/",'') new_css = "{% static '"+css+"' %}" js = re.compile("/static/js/main.*.js").search(html).group().replace("/static/",'') new_js = "{% static '"+js+"' %}" html = re.sub("/static/css/main.*.css",new_css,html) html = re.sub("/static/js/main.*.js",new_js,html) with open("./backend/build/index.html",'w') as text: text.write(html) with open('./backend/build/static/'+css) as text: new_css = text.read() url = re.findall("url\((/static/media.*?)\)", new_css) for idx,u in enumerate(url): _u = u.strip("/static/") _u = "{% static "+_u+" %}" new_css = re.sub(u, _u, new_css) with open('./backend/build/static/'+css, 'w') as text: text.write("{% load static %}"+new_css)
09fe65322acf3ae806998d7a71fd25ea26018983
b639a3fbda373b0efb5e6eac6ca682f0be789cb0
/modules/worker.py
0ecc62afc41e4590ca2cb0771dffab0e6248b2c9
[ "MIT" ]
permissive
Dinxor/tstore
98b497c873124c492a9b35ff1f87df218e4d2bfd
ff2bb229ad2169926046076022b5a37025e98877
refs/heads/main
2023-08-07T03:38:40.645754
2021-10-02T05:56:44
2021-10-02T05:56:44
412,704,997
0
0
null
null
null
null
UTF-8
Python
false
false
690
py
from time import sleep def worker(tt): name = 'worker' sleep(1) cnt = 0 source = tt[name].get('queue') while 1: if not tt[name].get('is_working', False) and tt[name].get('is_enable', False): tt[name].update({'is_working':True}) elif tt[name].get('is_working', False) and not tt[name].get('is_enable', False): tt[name].update({'is_working':False}) while not source.empty(): new_data = source.get(block=True) if tt[name].get('is_enable', False): print(new_data) cnt +=1 else: pass tt[name].update({'cnt':cnt}) sleep(1)
3dd993f6f03823131322acc17b971c0a91733cae
26938c6646e7a645037c037a3361633f568cdd6d
/src/DSSCDB/cron_wsgi.py
aab7ab613d311980cb7f9ff05d13041531d122ed
[ "AFL-3.0" ]
permissive
Elsenety/DSSCDB
4f2fc9533d82de2e1d65c155e086ad2d7e4791a0
6631110c1bb477d45eab9c15324826958cd61ed6
refs/heads/master
2023-04-18T08:19:46.391491
2018-06-11T21:47:23
2018-06-11T21:47:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
726
py
import os from django.core.management import call_command from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "DSSCDB.settings") application = get_wsgi_application() from django.conf import settings try: import uwsgidecorators @uwsgidecorators.timer(60) def send_queued_mail(num): """Send queued mail every 60 seconds""" call_command('send_queued_mail', processes=1) @uwsgidecorators.cron(4, 4, -1, -1, 1) def send_database_backup_email(num): call_command('send_database_backup', **{'--backup_password': settings.DATABASE_EMAIL_PASSWORD}) except ImportError: print("uwsgidecorators not found. Cron and timers are disabled")
e48aaced021300f583f462fe3ef463ac9d0e8899
039b316064097dddce158adfd66684eb8c573760
/NumberClassificationPerceptron/constantsNegative.py
47b5fccf30e14394e384717a30b3d1cdd0aeeb72
[]
no_license
Akshat-Raj-Vansh/neural-networks-classification
df7c1fe7a7a09f923a5824f29d1d7e8a0f56e4d2
0e2fb6d86ff738d66015de86a1617153945cc91d
refs/heads/main
2023-07-26T11:20:14.625710
2021-09-06T10:35:52
2021-09-06T10:35:52
403,593,374
0
0
null
2021-09-06T11:16:36
2021-09-06T11:16:35
null
UTF-8
Python
false
false
1,453
py
#-1 : 111 1-11 1-11 1-11 111 #1 : -11-1 -11-1 -11-1 -11-1 -11-1 #2 : 111 -1-11 111 1-1-1 111 #3 : 111 -1-11 111 -1-11 111 #4 : 1-11 1-11 111 -1-11 -1-11 #5 : 111 1-1-1 111 -1-11 111 #6 : 111 1-1-1 111 1-11 111 #7 : 111 -1-11 -1-11 -1-11 -1-11 #8 : 111 1-11 111 1-11 111 #9 : 111 1-11 111 -1-11 111 import numpy as np input_vector = np.array([[1,1,1,1,-1,1,1,-1,1,1,-1,1,1,1,1], [-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1], [1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1], [1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1], [1,-1,1,1,-1,1,1,1,1,-1,-1,1,-1,-1,1], [1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,1], [1,1,1,1,-1,-1,1,1,1,1,-1,1,1,1,1], [1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1], [1,1,1,1,-1,1,1,1,1,1,-1,1,1,1,1], [1,1,1,1,-1,1,1,1,1,-1,-1,1,1,1,1]]) # 1-1 X 15 m,x = input_vector.shape target_vector = np.array([[-1,-1,-1,-1], [-1,-1,-1,1], [-1,-1,1,-1], [-1,-1,1,1], [-1,1,-1,-1], [-1,1,-1,1], [-1,1,1,-1], [-1,1,1,1], [1,-1,-1,-1], [1,-1,-1,1]]) # 1-1 X 4 n,t = target_vector.shape input_nodes = 15 output_nodes = 4
fae9fc8b3c6d53c95d9785dffe79b4025eb110d9
cab84979234c907896275290fdfcbe6d6db7857d
/src/api_time_set/migrations/0001_initial.py
14b7184903365c8e16af300b3bdd0e6fb2ff99be
[]
no_license
ntdo2506/Football_pitching
80eea36fa48ee060b795146fbea64f81e6875f15
b344d3fd38bf1777381db9973a40550fda3adf94
refs/heads/master
2023-04-07T14:04:41.558422
2021-03-01T12:46:32
2021-03-01T12:46:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
906
py
# Generated by Django 3.1.2 on 2020-10-05 15:48 from django.db import migrations, models import django.utils.timezone import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='TimeSetModels', fields=[ ('created_at', models.DateTimeField(default=django.utils.timezone.now)), ('updated_at', models.DateTimeField(default=django.utils.timezone.now)), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False, unique=True)), ('start_time', models.DateTimeField()), ('end_time', models.DateTimeField()), ('duration', models.IntegerField()), ], options={ 'db_table': 'fb_time_set', }, ), ]
4dafe2fa7f0fdf91b426d21f9eba0438c236c084
966108cddefb96ea53b579483afe54f60dfd174d
/args.py
fada44f45b6497efcd9785b63c1db7251a2be7d3
[]
no_license
adelaidehsu/Personalized-Dialogue-Response-Generation-from-Monologues
9f9aaa32f2e5a476be855752c474e91690d71166
85f1b9596cfb6abfe5a0ab803ff860203579de15
refs/heads/master
2021-10-25T19:33:52.437441
2019-10-21T07:45:01
2019-10-21T07:45:01
188,363,218
4
1
null
null
null
null
UTF-8
Python
false
false
3,576
py
import argparse def parse(): parser = argparse.ArgumentParser( description='You have to set the parameters for seq2seq, \ including both maximum likelihood estimation and \ generative adversarial learning.') parser.add_argument("--file-head", type=str, default='None') parser.add_argument("--pre-model-dir", type=str, default='None') parser.add_argument("--pre-D-model-dir", type=str, default='None') parser.add_argument("--model-dir", type=str, default='results/gan') parser.add_argument("--pretrain-dir", type=str, default='results/pretrain') parser.add_argument("--gan-dir", type=str, default='results/gan') parser.add_argument("--glove-model", type=str, default='glove_model/corpus_op+fri') parser.add_argument("--data-dir", type=str, default='data/') parser.add_argument("--data-path", type=str, default='data/opensubtitles.txt') parser.add_argument("--feature-path", type=str, default='data/feature.txt') parser.add_argument("--feature-size", type=int, default=6) parser.add_argument("--train-path", type=str, default='data/friends.txt') parser.add_argument("--test-path", type=str, default='data/friends.txt') parser.add_argument("--steps-per-checkpoint", type=int, default=200) parser.add_argument("--lambda-one", type=float, default=0.5) parser.add_argument("--lambda-two", type=float, default=0.5) parser.add_argument("--lambda-dis", type=float, default=0.5) parser.add_argument("--baseline", type=float, default=1.5) parser.add_argument("--iteration", type=int, default=5000) parser.add_argument("--Dstep", type=int, default=5) parser.add_argument("--Gstep", type=int, default=1) # s2s: for encoder and decoder parser.add_argument("--size", type=int, default=256) parser.add_argument("--num-layers", type=int, default=2) parser.add_argument("--lr", type=float, default=0.5) parser.add_argument("--lr-decay", type=float, default=0.99) parser.add_argument("--grad-norm", type=float, default=5.0) parser.add_argument("--use-attn", type=bool, default=False) parser.add_argument("--vocab-size", type=int, default=20000) parser.add_argument("--output-sample", type=bool, default=False) parser.add_argument("--input_embed", type=bool, default=True) # s2s: training setting parser.add_argument("--buckets", type=str, default='[(10, 5)]') parser.add_argument("--batch-size", type=int, default=64) parser.add_argument("--max-seq-len", type=int, default=30) parser.add_argument("--max-train-data-size", type=int, default=0) # 0: no limit # for value function parser.add_argument("--v-lr", type=float, default=1e-4) parser.add_argument("--v-lr-decay-factor", type=float, default=0.99) # gan parser.add_argument("--D-lr", type=float, default=1e-4) parser.add_argument("--D-lr-decay-factor", type=float, default=0.99) parser.add_argument("--gan-type", type=str, default='None') parser.add_argument("--gan-size", type=int) parser.add_argument("--gan-num-layers", type=int) parser.add_argument("--G-step", type=int) parser.add_argument("--D-step", type=int) parser.add_argument("--option", type=str, default='None') # test parser.add_argument("--test-type", type=str, default='accuracy') parser.add_argument("--test-critic", type=str, default='None') parser.add_argument("--test-data", type=str, default='None') parser.add_argument("--test-fout", type=str, default='None') return parser.parse_args()
99ecf43ecf798e941c912684222865758bf4ac30
37279a6b70fd432d96087f2154ded529ffbc0c9e
/dynamic_programming/1143-Longest-Common-Subsequence.py
19ae64fa6848196a1a789fa9fc58963e6ac563b1
[]
no_license
abhishek-jana/Leetcode-Solutions
cfe1bad64fda2421ba85f23121ca50ffc59357da
9cd5d12b7438c646226a5e174571e3dbf339a179
refs/heads/master
2020-12-02T02:04:41.784082
2020-01-22T13:07:13
2020-01-22T13:07:13
230,852,748
0
0
null
null
null
null
UTF-8
Python
false
false
2,187
py
''' Given two strings text1 and text2, return the length of their longest common subsequence. A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings. If there is no common subsequence, return 0. Example 1: Input: text1 = "abcde", text2 = "ace" Output: 3 Explanation: The longest common subsequence is "ace" and its length is 3. Example 2: Input: text1 = "abc", text2 = "abc" Output: 3 Explanation: The longest common subsequence is "abc" and its length is 3. Example 3: Input: text1 = "abc", text2 = "def" Output: 0 Explanation: There is no such common subsequence, so the result is 0. ''' #https://www.geeksforgeeks.org/longest-common-subsequence-dp-4/ # A Naive recursive Python implementation of LCS problem def lcs(X, Y, m, n): if m == 0 or n == 0: return 0; elif X[m-1] == Y[n-1]: return 1 + lcs(X, Y, m-1, n-1); else: return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n)); # Driver program to test the above function X = "AGGTAB" Y = "GXTXAYB" print "Length of LCS is ", lcs(X, Y, len(X), len(Y)) # Dynamic Programming implementation of LCS problem def lcs(X, Y): # find the length of the strings m = len(X) n = len(Y) # declaring the array for storing the dp values L = [[None]*(n + 1) for i in range(m + 1)] """Following steps build L[m + 1][n + 1] in bottom up fashion Note: L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1]""" for i in range(m + 1): for j in range(n + 1): if i == 0 or j == 0 : L[i][j] = 0 elif X[i-1] == Y[j-1]: L[i][j] = L[i-1][j-1]+1 else: L[i][j] = max(L[i-1][j], L[i][j-1]) # L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1] return L[m][n] # end of function lcs # Driver program to test the above function X = "AGGTAB" Y = "GXTXAYB" print "Length of LCS is ", lcs(X, Y)
9693eb29e019a30e3f90532099f41b13e8b5c7c6
5d4bf79b0eabb6cd3a659f14d1d8471956a32a85
/pyBrisbane.py
20b8aa2d7f3d8ede3f12a6e17c17304f7df6222a
[]
no_license
crystalmanner/scrapy_source
8c08d1b4aafc16df58d647ad308506e252a6c0d5
5cbdca543bc05a40942c801334f45e4b27555725
refs/heads/master
2023-02-21T10:33:00.857451
2021-01-21T06:58:01
2021-01-21T06:58:01
331,528,735
0
0
null
null
null
null
UTF-8
Python
false
false
3,127
py
import pyMsql import gsheet import json import re def get_price(cloth_pattern_number): ucpn = str(cloth_pattern_number).replace(" ","").upper() if 'Chiltern'.upper() in ucpn: return 6.95 elif 'Cotswold'.upper() in ucpn:return 8.25 elif '530' in ucpn: return 7.25 elif '531' in ucpn: return 7.25 elif 'Coniston'.upper() in ucpn or '568' in ucpn: return 7.95 elif '3101X' in ucpn: return 11.25 elif 'GS20' in ucpn: return 17.50 elif '3124' in ucpn: return 10.95 elif 'T1' in ucpn: return 9.75 elif 'Yew'.upper() in ucpn: return 8.40 elif "Sycamore".upper() in ucpn: return 8.95 elif '3103' in ucpn: return 7.75 elif 'Calder' in ucpn: return 8.75 elif 'M1A' in ucpn: return 10.25 elif 'M1B' in ucpn: return 9.75 elif 'M25' in ucpn: return 7.95 elif '52' in ucpn: return 7.45 elif 'Haworth'.upper() in ucpn: return 6.95 elif 'Madrid'.upper() in ucpn: return 7.95 elif 'Napoli'.upper() in ucpn: return 8.95 elif 'Shakespeare'.upper() in ucpn: return 6.50 elif 'Turner'.upper() in ucpn: return 6.25 elif 'Tennyson'.upper() in ucpn: return 7.45 elif 'Keats'.upper() in ucpn or 'Wordsworth'.upper() in ucpn: return 5.95 elif 'Blake'.upper() in ucpn: return 6.50 elif 'Rye'.upper() in ucpn: return 4.95 elif 'Byron'.upper() in ucpn: return 4.25 elif 'Dreem'.upper() in ucpn: return 5.45 elif 'Milton'.upper() in ucpn: return 4.50 elif 'Bronte'.upper() in ucpn: return 7.45 elif 'Montecarlo'.upper() in ucpn: return 6.85 elif 'Aztec'.upper() in ucpn: return 5.50 elif 'Pique'.upper() in ucpn: return 6.25 elif 'Althorp'.upper() in ucpn: return 18.75 elif 'Sherbourne'.upper() in ucpn: return 15.5 elif 'Osborne'.upper() in ucpn: return 23.45 elif 'Stowe'.upper() in ucpn: return 21 else: print("non exist price list ",ucpn ) return 0 return def brisbane_main(): new_list = [] with open("brisbanMoss_new.json", "r") as f: new_list = json.load(f) for item in new_list: print(item['cloth_pattern_number']) write_data = { 'cloth_pattern_number': str(item['cloth_pattern_number']).upper(), 'image_url': item['image_url'], 'cloth_bunch': item['cloth_bunch'], 'composition_1': item['compostion1'] if 'compostion1' in item else "", 'supplier_name': 'Brisban Moss', "weight_gms": item['weight'] if 'weight' in item else "", "design": item['design'] if 'design' in item else "", 'colour': item['colour'] if 'colour' in item else "", "width": item['width'] if 'width' in item else "", "weight_ozs": "", "selvedge": "", "dye": "", "weave": item['weave'] if 'weave' in item else "", "price_per_meter": float(get_price(item['cloth_pattern_number']))} try: pyMsql.save_scabal(write_data) except Exception as e: print("save data error", e, item['cloth_pattern_number']) return if __name__ == '__main__': brisbane_main()
a3c3810d6ff9529ce543b09f87cac82f6a091422
7b772acb8daf788f44191becb32accfee866a06c
/nociones_basicas/indices_slicing.py
44337fbfbef05e573a56885bfff0b4e07bb96640
[]
no_license
jeysonrgxd/python
5793b912f5c0fe1929fdba40b9a4c50ecb49fbad
f3ac045e6ef4862b24da7ff16f5e195cf0bfb7f0
refs/heads/master
2023-08-15T22:16:51.767219
2021-10-23T17:48:41
2021-10-23T17:48:41
258,714,107
0
0
null
null
null
null
UTF-8
Python
false
false
1,376
py
palabra = "python" ''' | P | Y | T | H | O | N | ------> | 0 | 1 | 2 | 3 | 4 | 5 | <------ | -6 | -5 | -4 | -3 | -2 | -1 | ''' print(palabra[0]) print(palabra[1]) print(palabra[2]) print(palabra[3]) print(palabra[4]) print(palabra[5]) print("\n") print(palabra[-6]) print(palabra[-5]) print(palabra[-4]) print(palabra[-3]) print(palabra[-2]) print(palabra[-1]) # Slicing print('''\n SLICING ''') print(palabra[:]) #imprime todo python print(palabra[1:]) #imprime ython osea de la pocision que especificamos para adelante print(palabra[:5]) #imprime pytho no toma el ultimo especificado "recordar eso" print(palabra[:99]) # imprime todo devido que especificamos una pocios que supera a la cantidad normal de la palabra print(palabra[99:]) # me imprime vacio devido a que le espeificamos una pocios que supera a la cantidad y que supuestamente dessde ahi imprimi por ende nada print(palabra[:-2]) # imprime asta donde especificamos menos ese especificado print(palabra[-2:])# imprime del especifaco asia adelante ''' En esta parte especificamos la concatenacion o la creacion de otra palabra utilizando la que tenemos len(palabra) es una funcion que nos dice la cantidad de lementos que conforman la cadena de texto ''' concatenacion1 = "T"+palabra[1:len(palabra)] concatenacion2 = "T"+palabra[1:6] print(concatenacion1) print(concatenacion2)
5928531477adae181ea7e8284d8747a773a140c6
622b9e5f5c58b746574898dda24d4eb992fdc78b
/app/utils/file.py
d03b18fe992083f7e9e862e1f6e03d01829bf98a
[]
no_license
chajeehyung/hackathon-finish
9953b403e2434c55c31238642b67c8caad950c11
3c8b9235ff8e76b4950e6282d8ab5a911c316af6
refs/heads/master
2022-12-10T07:32:54.939835
2018-11-16T10:16:24
2018-11-16T10:16:24
157,850,240
0
0
null
2022-12-08T01:17:46
2018-11-16T10:15:33
Jupyter Notebook
UTF-8
Python
false
false
536
py
import urllib.request # from io import BytesIO # # import magic # import requests # # # url로부터 파일을 임시 다운로드 # def download(url): # response = requests.get(url) # binary_data = response.content # temp_file = BytesIO() # temp_file.write(binary_data) # temp_file.seek(0) # return temp_file # # # 파일 확장자 추출 # def get_buffer_ext(buffer): # buffer.seek(0) # mime_info = magic.from_buffer(buffer.read(), mime=True) # buffer.seek(0) # return mime_info.split('/')[-1]
4d0dc9942b5c1604a67ef352576e93d48ef56627
22319631f2027c3bfa724c283bf7762992336b5b
/wsgi.py
b4080b9296ea0f3fa14dfb463816e253ff9b7db3
[]
no_license
rodolfolotte/webgis
eefcb7912ae40d3ae353c154ad08d5fe67f75e15
e27d1d14f08262ea37de6079abc3e7dd12c74bb6
refs/heads/master
2022-12-03T02:04:51.409836
2020-08-19T17:50:24
2020-08-19T17:50:24
288,797,772
0
0
null
null
null
null
UTF-8
Python
false
false
389
py
""" WSGI config for webgis project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'webgis.settings') application = get_wsgi_application()
ee126199d7cd2366e17798ecf8a532b5b6192bb8
1b83e95009f7e883c9da4ec50aa19f9902ccc9ab
/python/dazl/cli/sandbox.py
0b46a18f9aa01aa4038d3d51f011f02545301360
[ "Apache-2.0" ]
permissive
ballon3/dazl-client
327ec6d2a3acbd3748fd03766d93acb2699a7805
baa9eb975cac26a000fed076f3d1c23569068f5b
refs/heads/master
2021-02-27T06:29:45.046458
2020-02-11T22:03:17
2020-02-11T22:03:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
# Copyright (c) 2019 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 from asyncio import get_event_loop from argparse import ArgumentParser from .. import sandbox from ..util.dar import DamlcPackageError from ._base import CliCommand class SandboxCommand(CliCommand): name = 'sandbox' hidden = True def parser(self): arg_parser = ArgumentParser('dazl sandbox') arg_parser.add_argument( 'file', metavar='FILE', help='A .daml file to compile into a package, or a .dar file') arg_parser.add_argument( '--port', metavar='PORT', default=7600, type=int) arg_parser.add_argument( '--log-level') return arg_parser def execute(self, args): try: with sandbox(args.file, args.port): get_event_loop().run_forever() except DamlcPackageError as ex: return ex.exit_code
8b61f441f981bd4050e418c7940bb4153e5c05ff
1f813c3cd6a9d293acfbc81f198c64f816a9a95d
/devel/.private/pkg_ros_iot_bridge/lib/python2.7/dist-packages/pkg_ros_iot_bridge/msg/_msgRosIotActionResult.py
f1b43f02572883f9b6a4854923a6d4c6c3dfc006
[]
no_license
koteshrv/Vargi_Bots_1418
5ada79746785a9f9cc0e1d686a1dd2702c9e0f0f
6bcf843c7150c93caee2b596e0864749c51b6155
refs/heads/main
2023-01-06T03:42:53.555701
2020-11-08T17:36:59
2020-11-08T17:36:59
302,916,294
0
0
null
null
null
null
UTF-8
Python
false
false
13,021
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from pkg_ros_iot_bridge/msgRosIotActionResult.msg. Do not edit.""" import codecs import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import actionlib_msgs.msg import genpy import pkg_ros_iot_bridge.msg import std_msgs.msg class msgRosIotActionResult(genpy.Message): _md5sum = "9947ff0cda32e84a022d3d6978fa6c68" _type = "pkg_ros_iot_bridge/msgRosIotActionResult" _has_header = True # flag to mark the presence of a Header object _full_text = """# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== Header header actionlib_msgs/GoalStatus status msgRosIotResult result ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with string frame_id ================================================================================ MSG: actionlib_msgs/GoalStatus GoalID goal_id uint8 status uint8 PENDING = 0 # The goal has yet to be processed by the action server uint8 ACTIVE = 1 # The goal is currently being processed by the action server uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing # and has since completed its execution (Terminal State) uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State) uint8 ABORTED = 4 # The goal was aborted during execution by the action server due # to some failure (Terminal State) uint8 REJECTED = 5 # The goal was rejected by the action server without being processed, # because the goal was unattainable or invalid (Terminal State) uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing # and has not yet completed execution uint8 RECALLING = 7 # The goal received a cancel request before it started executing, # but the action server has not yet confirmed that the goal is canceled uint8 RECALLED = 8 # The goal received a cancel request before it started executing # and was successfully cancelled (Terminal State) uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be # sent over the wire by an action server #Allow for the user to associate a string with GoalStatus for debugging string text ================================================================================ MSG: actionlib_msgs/GoalID # The stamp should store the time at which this goal was requested. # It is used by an action server when it tries to preempt all # goals that were requested before a certain time time stamp # The id provides a way to associate feedback and # result message with specific goal requests. The id # specified must be unique. string id ================================================================================ MSG: pkg_ros_iot_bridge/msgRosIotResult # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== # result int8 final_x int8 final_y int8 final_theta """ __slots__ = ['header','status','result'] _slot_types = ['std_msgs/Header','actionlib_msgs/GoalStatus','pkg_ros_iot_bridge/msgRosIotResult'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,status,result :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(msgRosIotActionResult, self).__init__(*args, **kwds) # message fields cannot be None, assign default values for those that are if self.header is None: self.header = std_msgs.msg.Header() if self.status is None: self.status = actionlib_msgs.msg.GoalStatus() if self.result is None: self.result = pkg_ros_iot_bridge.msg.msgRosIotResult() else: self.header = std_msgs.msg.Header() self.status = actionlib_msgs.msg.GoalStatus() self.result = pkg_ros_iot_bridge.msg.msgRosIotResult() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs)) _x = self.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self.status.status buff.write(_get_struct_B().pack(_x)) _x = self.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self buff.write(_get_struct_3b().pack(_x.result.final_x, _x.result.final_y, _x.result.final_theta)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ codecs.lookup_error("rosmsg").msg_type = self._type try: if self.header is None: self.header = std_msgs.msg.Header() if self.status is None: self.status = actionlib_msgs.msg.GoalStatus() if self.result is None: self.result = pkg_ros_iot_bridge.msg.msgRosIotResult() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8', 'rosmsg') else: self.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.goal_id.id = str[start:end].decode('utf-8', 'rosmsg') else: self.status.goal_id.id = str[start:end] start = end end += 1 (self.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.text = str[start:end].decode('utf-8', 'rosmsg') else: self.status.text = str[start:end] _x = self start = end end += 3 (_x.result.final_x, _x.result.final_y, _x.result.final_theta,) = _get_struct_3b().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs)) _x = self.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self.status.status buff.write(_get_struct_B().pack(_x)) _x = self.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self buff.write(_get_struct_3b().pack(_x.result.final_x, _x.result.final_y, _x.result.final_theta)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ codecs.lookup_error("rosmsg").msg_type = self._type try: if self.header is None: self.header = std_msgs.msg.Header() if self.status is None: self.status = actionlib_msgs.msg.GoalStatus() if self.result is None: self.result = pkg_ros_iot_bridge.msg.msgRosIotResult() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8', 'rosmsg') else: self.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.goal_id.id = str[start:end].decode('utf-8', 'rosmsg') else: self.status.goal_id.id = str[start:end] start = end end += 1 (self.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.text = str[start:end].decode('utf-8', 'rosmsg') else: self.status.text = str[start:end] _x = self start = end end += 3 (_x.result.final_x, _x.result.final_y, _x.result.final_theta,) = _get_struct_3b().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_3b = None def _get_struct_3b(): global _struct_3b if _struct_3b is None: _struct_3b = struct.Struct("<3b") return _struct_3b _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B
00cb52e288e09752cd4ee585a1331f3674043452
d3b3a68db7d70f85a72d30818ee198bb52f5720a
/venv/bin/pip
f0b1636348c46fac420d468426f2a9f1afd58c5f
[]
no_license
Cloudxtreme/billing-7
70cef72acb5979395148e50974f0bddd8f9927bc
484b18735c38da2010b7fc98451db5abecf616a3
refs/heads/master
2021-05-28T22:54:49.313520
2015-07-03T03:58:42
2015-07-03T03:58:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
#!/Users/nlaird/git/billing/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
285229b76942c122d76afab9973196c4ef8e92cf
9f613a4cb3496be67ff8e8975f8f2af6ad3823d8
/DFT.py
02aabbafe38f2938587b6ba3bbda6c408ca543a9
[]
no_license
anguyen216/blob-detection
902156a62e6960015e2c9bd60f3de379e98a5cba
3ad952655e693f65321a70c0d0ca1cc1f3478b04
refs/heads/master
2022-12-14T10:43:58.046624
2020-09-11T00:41:06
2020-09-11T00:41:06
294,551,246
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
#!/usr/bin/env python3 import numpy as np def DFT2(image): """ Implementation of 2D FFT using a numpy built-in FFT Input: - image: 2-D image of grayscale image that need to be transformed Output: - 2-D matrix of fourier transform of original image """ # only take grayscale image or 2D inputs assert(np.ndim(image) == 2) M, N = image.shape res = np.zeros((M,N), dtype=np.complex128) # transform rows then columns for i in range(M): res[i,:] = np.fft.fft(image[i,:]) for i in range(N): res[:,i] = np.fft.fft(res[:,i]) return res def IDFT2(F): """ Implementation of 2D IDFT using the above 2D DFT function This is done by inputing Fourier Transform into DFT and divide the result by M*N Input: - F: 2D signals in frequency domain Output: - 2D image of the image in spatial domain """ # only take 2-D inputs assert(np.ndim(F) == 2) M, N = F.shape res = DFT2(F.conjugate()) / (M * N) res = res.conjugate() return res.real
eb1bf55848c22eab9a285c204849f1f620852fed
6c4f6ce13304b6a440a44dc175b2a1c796988835
/etc/gunicorn.conf.py
252518bc9788cf9b3c4f78c27548487998728d8f
[]
no_license
timmyomahony/bitbucket-jekyll-hook
6e72dc5797177d0d5b5e7aef24987732f5ac55b3
92836af4545e72184c9a93fbbe3b1e12c58d2803
refs/heads/master
2021-01-19T12:36:27.791591
2019-02-26T09:09:30
2019-02-26T09:09:30
13,768,277
6
1
null
null
null
null
UTF-8
Python
false
false
156
py
bind = "127.0.0.1:50100" accesslog = "/path/to/virtualenv/logs/gunicorn/access.log" errorlog = "/path/to/virtualenv/logs/gunicorn/errors.log" workers = 1
f5ff027f63b9767fc250dafaf13777bd3b9f2eca
0473079081af2d3490ba96313914940e00c3eb2e
/RLcode/run_lander.py
473d41bce17cca17f2777c50ff9c92116d116e95
[]
no_license
sandra-93/Reinforcement_learning_project
070a9fe1ca7100c983e9999952bffcd53089ebea
bac0ecded78dbba25b2964b39dd20ce54b5fddfa
refs/heads/master
2020-12-29T10:18:28.938665
2020-02-03T00:04:53
2020-02-03T00:04:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,243
py
import linear_policy import nn_policy import random_agent import gym import sys def run_lunar_lander(env, num_episodes, policy_function): """ runs the lunar lander environment for a specific number of episodes with a specified policy function. """ rewards = [] for episode in range(num_episodes): observation = env.reset() episode_reward = 0 while True: action = policy_function(observation) observation, reward, done, info = env.step(action) # You can comment the below line for faster execution env.render() episode_reward += reward if done: print('Episode: {} Reward: {}'.format(episode, episode_reward)) rewards.append(episode_reward) break print('Average reward: %.2f' % (sum(rewards) / len(rewards))) if __name__=="__main__": ## load environment env = gym.make('LunarLanderContinuous-v2') ## choose a policy policy = random_agent.get_action if len(sys.argv) > 1: run_lunar_lander(env, num_episodes=int(sys.argv[1]), policy_function = policy) else: run_lunar_lander(env, num_episodes=100, policy_function = policy)
3cddee9c805ccbe332f83e058515fb0d2098e8de
bb285aa0fa9203ab07c092c47ff5470fa5034ee9
/myEnv/bin/chardetect3
d4c9ac50d31e65d01e518921aa3858d4cf1b4cf4
[]
no_license
surathjhakal/programming-voting-app
eac7871942ab9ebe488d598ead9692a0b78bacf4
ed4bd8c517dea889c5ec9240d7151dbc469c5fc7
refs/heads/master
2023-04-15T05:35:10.491455
2023-04-08T09:24:15
2023-04-08T09:24:15
339,997,752
0
0
null
null
null
null
UTF-8
Python
false
false
278
#!/home/surath/Desktop/myWork/django-folder/djangoProjects/myEnv/bin/python # -*- coding: utf-8 -*- import re import sys from chardet.cli.chardetect import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
7dcadc05edd75d419a5e1e3209018e6647099169
1756a97999baa79b2ab066ea548b631ec61506a5
/cs399_Theater/main/migrations/0001_initial.py
4e79b19524c09726186cfbf6275bd2921aab601c
[]
no_license
sk367/cs399_Theater
b8dd84a05f3521ac69337bf2f789b2826930791f
2c1c47b97d5e2db409d009d85c7334ebe204ea74
refs/heads/master
2016-09-05T11:24:51.074328
2015-02-06T15:49:40
2015-02-06T15:49:40
29,934,928
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Events', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default=b'', max_length=128)), ('date', models.DateTimeField()), ('cost', models.DecimalField(max_digits=3, decimal_places=2)), ('genre', models.CharField(default=b'folk', max_length=50)), ('description', models.TextField(default=b'This band plays music')), ], options={ }, bases=(models.Model,), ), ]
b0dbd6c7e93b2d90b29a38a86057e7e9f6e8d77b
cbbf17379c05ece1bab8a128c03bdca53e74c3e2
/convolution.py
e137218cd61b457aab775e77d3bb8eac7fd7d99a
[]
no_license
pooplar/Bio2Vec
f75558ad65165fb5cf33976c87324409b56df5ec
a5f781f81169909d3a6716e6e7988d3c0c1e4ca4
refs/heads/master
2023-09-02T19:55:51.091149
2021-10-21T03:14:19
2021-10-21T03:14:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,503
py
''' 1.Loading data and then divide it into x_train, y_train,x_test, y_test. 2.Forward propagation. 3.Back propagation. 4.Training the network ''' from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Input, Dense, Flatten, Dropout,concatenate from keras.layers.advanced_activations import PReLU from keras.callbacks import ModelCheckpoint, TensorBoard,EarlyStopping from util import make_data # from loading_data import load_data from keras.models import Model from sklearn.model_selection import train_test_split import pickle import matplotlib.pyplot as plt from keras.utils import plot_model import datetime print("start",datetime.datetime.now()) # define parameters patience=50 # model_save_path='model/'+"patience_"+str(patience)+"_human_windows_size_3_model" model_save_path='model/'+"patience_"+str(patience)+"_human_test_2048dim_20000unigram" '''data''' max_feature =4096 batch_size = 64 '''convolution layer''' filters = 64 kernel_size = 2 pool_size = 2 strides = 1 log_dir = 'log_dir/' acc_loss_file = 'images/human2_concatenate_cnn_acc_loss_sg__human_test_2048dim_20000unigram' # num_classes = 2 epochs =50 # get data x, y = make_data() # expected input data shape: (batch_size, timesteps, data_dim) x = x.reshape(-1, 1, max_feature) # split data x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=64) # init = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=64) digit_input = Input(shape=(1, max_feature)) x = Conv1D(filters, kernel_size, padding="same")(digit_input) x = Conv1D(filters, kernel_size, padding="same", )(x) x = Dropout(0.5)(x) x=PReLU()(x) x = MaxPooling1D(pool_size=pool_size, strides=strides, padding="same")(x) y=Conv1D(32, kernel_size, padding="same")(digit_input) y = Dropout(0.5)(y) y=PReLU()(y) y = MaxPooling1D(pool_size=pool_size, strides=strides, padding="same")(y) k=Conv1D(128, kernel_size, padding="same")(digit_input) k = Dropout(0.5)(k) k=PReLU()(k) k= MaxPooling1D(pool_size=pool_size, strides=strides, padding="same")(k) z=concatenate([x,y,k]) z = Flatten()(z) # x = Flatten()(x) # x = GRU(gru_output_size, dropout=0.5, recurrent_dropout=0.5)(x) out = Dense(1, activation='sigmoid')(z) model = Model(digit_input, out) model.summary() print('Compiling the Model...') model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) print("Train...") # store checkpoint file every 5 steps # checkpointer = ModelCheckpoint(filepath="model/"+"patience_"+str(patience)+"human_test_64dim_20000unigram_"+"weights.{epoch:02d}.hdf5", verbose=1, period=10) # # TB = TensorBoard(log_dir=log_dir, write_images=1, histogram_freq=1, write_graph=True) early_stopping = EarlyStopping(monitor='val_loss',patience=patience) fit_history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1, shuffle=True, callbacks=[early_stopping]) '''save final model''' model.save(model_save_path) '''plot acc and loss''' plt.figure(1) plt.subplot(1, 2, 1) x = range(1, len(fit_history.history['loss']) + 1) plt.plot(x, fit_history.history['loss'], 'b', x, fit_history.history['val_loss'], 'r') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.subplot(1, 2, 2) plt.plot(x, fit_history.history['acc'], 'b', x, fit_history.history['val_acc'], 'r') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig(acc_loss_file) print("Evaluate...") test_history = model.evaluate(x_test, y_test, batch_size=batch_size) print('patience: ',patience) print(model.metrics_names) print('Test score:', test_history) print("end",datetime.datetime.now()) # ''' # store Neural Network,include: both graph and weight # ''' # model.save('model/NN_model.h5') ''' visualization Neural Network ''' # plot_model(model, to_file='images/lstm_model.png', show_shapes=True) ''' store accuracy on matine_Final set and fit_history ''' # train_acc = fit_history.history['acc'] # train_loss = fit_history.history['loss'] # val_acc = fit_history.history['val_acc'] # val_loss = fit_history.history['val_loss'] # epochs = fit_history.epoch # # with open('data/test_set_accuracy.pickle1', mode='wb') as f: # pickle.dump([test_history, train_acc, train_loss, val_acc, val_loss, epochs], f, -1)
cbb569ecca9d675c16c2e00f858612a271a98327
d4cbfd493ecc5b9e17ce3c11f303793b3d1f1fae
/Miscellaneous/RemoveDuplicatesFromList.py
80cbfca933d172227674a63d13cc8f4c997d8c8b
[ "MIT" ]
permissive
ArmenBaghdasaryan14/Algorithms
45aa18cb26eaa6711ac9aa4b914af905ca61e1b5
8581947c8e73d50bb3324377dea7914afc066de6
refs/heads/master
2020-12-14T17:06:05.112448
2020-02-10T00:37:04
2020-02-10T00:37:04
234,818,885
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
# Remove duplicates from an unsorted array/list # # The following method consists in iterating over the list and # adding each element to a set. By definition, a set consists of # unique values, therefore, duplicates won't be added. def remove_duplicate(inputList): filterSet = set() for i in inputList: filterSet.add(i) return list(filterSet) sampleList = [-2, 2, 5, 5, 10, 11, 32, 100, 111, 3333] filteredList = remove_duplicate(sampleList)
b9ab2321337dd00ca4e9a93c95c612a4f9be0b0f
0591ab396b78fa873187e49e0feb873a9c6bbfb9
/DjangoUeditor/forms.py
984de90d4fd8045bbf37632a539daf33d2da8053
[]
no_license
Xiao01/news
eb7daa2afb5308b56439050c401d88e49b3e9750
0c63169772f41af855bebd8e3fa408654c013daf
refs/heads/master
2022-12-08T23:13:00.057529
2019-06-24T08:04:52
2019-06-24T08:04:52
193,461,512
0
0
null
2022-12-08T01:47:09
2019-06-24T08:04:12
JavaScript
UTF-8
Python
false
false
1,427
py
#coding: utf-8 from django import forms from .widgets import UEditorWidget from DjangoUeditor.models import UEditorField as ModelUEditorField class UEditorField(forms.CharField): def __init__(self,label,width=600, height=300, toolbars="full",imagePath="", filePath="",upload_settings={},settings={},command=None ,event_handler=None,*args,**kwargs): uSettings=locals().copy() del uSettings["self"],uSettings["label"],uSettings["args"],uSettings["kwargs"] kwargs["widget"]=UEditorWidget(attrs=uSettings) kwargs["label"]=label super(UEditorField,self).__init__( *args, **kwargs) def UpdateUploadPath(model_form,model_inst=None): """ 遍历model字段,如果是UEditorField则需要重新计算路径 """ if model_inst is not None: try: for field in model_inst._meta.fields: if isinstance(field, ModelUEditorField): model_form.__getitem__(field.name).field.widget.recalc_path(model_inst) except: pass class UEditorModelForm(forms.ModelForm): def __init__(self,*args,**kwargs): super(UEditorModelForm,self).__init__(*args,**kwargs) try: if kwargs.has_key("instance"): UpdateUploadPath(self,kwargs["instance"]) else: UpdateUploadPath(self,None) except Exception: pass
019ef2966945369f5a6c2c5b55fe3039f975488f
a4ea411b64409f72cea45f6014afdf08869b9e28
/ros/benz_navigation/scripts/wheel_odometry_benz_dirimu.py
81bee863d8e1706578c59666cdf9035abf10b914
[]
no_license
SiChiTong/TukubaChallenge
858a168180e9db5d03446e9917ef8d4093319074
a4b19bdad743cee3b0d6e131ea09db511b03253e
refs/heads/master
2021-12-26T06:53:00.057330
2017-12-12T12:16:07
2017-12-12T12:16:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,908
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import roslib; #roslib.load_manifest('wheel_odometry') import rospy import time from std_msgs.msg import * from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from geometry_msgs.msg import TransformStamped from numpy import * from tf.transformations import quaternion_from_euler import tf from sensor_msgs.msg import Imu import string #=========Initial Parameter============= D_RIGHT=1.200 #0.245462 # 右パルスの移動量 m? Pulse ratio of the right wheel encoder D_LEFT =1.198 #0.243768 # 左パルスの移動量 m? (大きいほど移動量増える)Pulse ratio of the left wheel encoder GR=1.0 #100.0 # パルス値を割る値1 Gear ratio PR=100.0 #32.0 # パルス値を割る値2 Pulse ratio of encoders TREAD=1.0 #0.25 #1.002405 # 左右の移動量の差から角度に変換する値(小さいほど急激に変化) Tread rs=[0,0]; #pluse store u=array([0,0]); count=0 odocount=0 encL = 0 encR = 0 encLold = 0 encRold = 0 angularOld = 0.0 imuYawDiff = 0.0 imuYawOld = 0.0 imuYaw = 0.0 imuPitch = 0.0 imuRoll = 0.0 # tfにも出力 bc = tf.TransformBroadcaster() listener = tf.TransformListener() #result=open('odo.txt','w') def imu_callback(data): global imuYawDiff global imuYawOld global imuYaw e = tf.transformations.euler_from_quaternion((data.orientation.x,data.orientation.y,data.orientation.z,data.orientation.w)) imuYaw = e[2] #imuYawDiff += (e[2] - imuYawOld) #imuYawOld = e[2] def imuserial_callback(data): global imuYawDiff global imuYaw global imuPitch global imuRoll global imuYawOld rospy.loginfo(data) words = string.split(data.data,",") # Fields split yaw = -float(words[9]) - 180.0 yaw = PItoPI(yaw*pi/180.0) imuYaw = yaw imuYawDiff += PItoPI(yaw - imuYawOld) imuYawOld = yaw pitch = float(words[7]) pitch = PItoPI(pitch*pi/180.0) imuPitch = pitch roll = float(words[8]) roll = PItoPI(roll*pi/180.0) imuRoll = roll #def cmdvel_callback(data): # global angularOld # angularOld = data.angular.z def talker(): rospy.init_node('infant_odometry', anonymous=True) #rospy.Subscriber("/cmd_vel", Twist, cmdvel_callback) rospy.Subscriber("/benz/raspi/encR", Int64, odom_callbackR) rospy.Subscriber("/benz/raspi/encL", Int64, odom_callbackL) rospy.Subscriber("/imu", Imu, imu_callback) #rospy.Subscriber("/imu/serial", String, imuserial_callback) pub = rospy.Publisher('/odom', Odometry, queue_size=10 ) odo=Odometry() odo.header.frame_id='odom' odo.child_frame_id='base_link' current_time=time.time() last_time=time.time() #======= Parameter Setting with Parameter Server======= # * If the parameter server didn't work, the following sequence would be passed. if rospy.has_param('infant_learning_odometry/right_wheel_p'): global D_RIGHT D_RIGHT=rospy.get_param('infant_learning_odometry/right_wheel_p') if rospy.has_param('infant_learning_odometry/left_wheel_p'): global D_LEFT PRIGHT=rospy.get_param('infant_learning_odometry/left_wheel_p') if rospy.has_param('infant_learning_odometry/Tread'): global TREAD TREAD=rospy.get_param('infant_learning_odometry/Tread') #print PRIGHT #print PLEFT #print TREAD #=========================================================== odo.pose.pose.position.x=0 odo.pose.pose.orientation.w=0 odo.twist.twist.linear.x=0 odo.twist.twist.angular.z=0 r = rospy.Rate(10) global dt global x global count global imuYaw global imuPitch x=array([0,0,toRadian(0.0)]); dt=0.1 t=0; while not rospy.is_shutdown(): count=count+1 current_time=time.time() dt=current_time-last_time odo.header.seq=count odo.header.stamp = rospy.Time.now() odo.pose.pose.position.x=x[0] odo.pose.pose.position.y=x[1] roll=imuRoll pitch=imuPitch yaw = x[2] q = quaternion_from_euler(roll,pitch,yaw) odo.pose.pose.orientation.x = q[0] odo.pose.pose.orientation.y = q[1] odo.pose.pose.orientation.z = q[2] odo.pose.pose.orientation.w = q[3] odo.twist.twist.linear.x=u[0] odo.twist.twist.angular.z=u[1] pub.publish(odo) # odom tf if bc is not None: bc.sendTransform((x[0],x[1],0.0),q,rospy.Time.now(),'base_link','odom') if count%2000==0: print "%8.2f" %x[0],"%8.2f" %x[1],"%8.2f" %toDegree(x[2]) #print (last_time-current_time) #print t #result.write('%f,%f,%f,%f,%f\n' %(x[0],x[1],x[2],u[0],u[1])) last_time=time.time() t+=dt r.sleep() rospy.spin() # u[0] move vec # u[1] dir def calc_input(rs): global imuYawDiff global imuYaw u=array([0,0]); vr=rs[0]/(GR*PR)*pi*D_RIGHT vl=rs[1]/(GR*PR)*pi*D_LEFT v=(vr+vl)/2.0 #yawrate=(vr-vl)/(TREAD/2.0) #u=array([v,yawrate]) #u=array([v,imuYawDiff*9.50]) #u=array([v,imuYaw]) u=array([v,0.0]) imuYawDiff = 0.0 return u # x[0] x # x[1] y # x[2] dir def MotionModel(x,u,dt): F=eye(3) #B=array([[dt*cos(x[2]),0], # [dt*sin(x[2]),0], # [0,dt]]) B=array([[dt*cos(imuYaw),0], [dt*sin(imuYaw),0], [0,dt]]) x=dot(F,x)+dot(B,u) x[2]=imuYaw #PItoPI(x[2]) return x # Pi Limit def PItoPI(angle): while angle>=pi: angle=angle-2*pi while angle<=-pi: angle=angle+2*pi return angle def odom_callback(data): global u global x global dt global odocount rs=[data.pose.pose.position.x,data.pose.pose.position.y] odocount=data.header.seq u=calc_input(rs) x=MotionModel(x,u,dt) # -------------------------- def odom_callbackR(data): global encR if abs(data.data) < 1000: encR = data.data def odom_callbackL(data): global u global x global dt #global odocount global encL global encLold global encRold global listener if abs(data.data) < 1000: encL = data.data rs=[float(encR),float(encL)] encRold = encR encLold = encL #odocount=data.header.seq u=calc_input(rs) x=MotionModel(x,u,dt) def toDegree(angle): angle=angle*180.0/pi return angle def toRadian(angle): angle=angle*pi/180.0 return angle if __name__ == '__main__': talker()
0840c9f42cbaad01720dc6260a1278c6e4d69ae1
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/nilearn/2017/8/conf.py
518d965d16cfb73d3a77f680140733488b524154
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
10,384
py
# -*- coding: utf-8 -*- # # nistats documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import sphinx # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) import sphinx_gallery # We also add the directory just above to enable local imports of nistats sys.path.insert(0, os.path.abspath('..')) # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', ('sphinx.ext.imgmath' # only available for sphinx >= 1.4 if sphinx.version_info[:2] >= (1, 4) else 'sphinx.ext.pngmath'), 'sphinx.ext.intersphinx', 'numpydoc.numpydoc', 'sphinx_gallery.gen_gallery', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u'Nistats' copyright = u'The nistats developers 2010-2016' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # The full version, including alpha/beta/rc tags. import nistats release = nistats.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. language = 'en' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] exclude_patterns = ['tune_toc.rst', 'includes/big_toc_css.rst', 'includes/bigger_toc_css.rst', ] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'nistats' # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'nature.css' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {'oldversion':False, 'collapsiblesidebar': False} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "functional MRI for NeuroImaging" # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'Nistats' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/nistats-logo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_use_modindex = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'PythonScientic' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'nistats.tex', u'functional MRI in python', ur"""Bertrand Thirion""" + r"\\\relax ~\\\relax http://nistats.github.io", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/nistats-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \let\oldfootnote\footnote \def\footnote#1{\oldfootnote{\small #1}} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] latex_elements = { 'classoptions': ',oneside', 'babel': '\\usepackage[english]{babel}', # Get completely rid of index 'printindex': '', } # If false, no module index is generated. latex_use_modindex = False latex_domain_indices = False # Show the page numbers in the references latex_show_pagerefs = True # Show URLs in footnotes latex_show_urls = 'footnote' trim_doctests_flags = True _python_doc_base = 'http://docs.python.org/2.7' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { _python_doc_base: None, 'http://docs.scipy.org/doc/numpy': None, 'http://docs.scipy.org/doc/scipy/reference': None, 'http://matplotlib.org/': None, 'http://scikit-learn.org/stable': None, 'http://nipy.org/nibabel': None, # add line for nilearn # add line for patsy #'http://scikit-image.org/docs/0.8.0/': None, #'http://docs.enthought.com/mayavi/mayavi/': None, #'http://statsmodels.sourceforge.net/': None, #'http://pandas.pydata.org': None, } extlinks = { 'simple': (_python_doc_base + '/reference/simple_stmts.html#%s', ''), 'compound': (_python_doc_base + '/reference/compound_stmts.html#%s', ''), } sphinx_gallery_conf = { 'doc_module' : 'nistats', 'reference_url' : { 'nilearn': 'http://nilearn.github.io/index.html', 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', 'nibabel': 'http://nipy.org/nibabel', 'sklearn': 'http://scikit-learn.org/stable', 'patsy': 'http://patsy.readthedocs.io/en/latest/', 'pandas': 'http://pandas.pydata.org/pandas-docs/stable/'} } # Get rid of spurious warnings due to some interaction between # autosummary and numpydoc. See # https://github.com/phn/pytpm/issues/3#issuecomment-12133978 for more # details numpydoc_show_class_members = False def touch_example_backreferences(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() # Add the 'copybutton' javascript, to hide/show the prompt in code # examples def setup(app): app.add_javascript('copybutton.js') app.connect('autodoc-process-docstring', touch_example_backreferences)
dfacabd6e8e05e277bf6e7d67608128c52ab31b9
6b984499993b757d094afb773c74bce48629cc8c
/sito/payrol/views.py
8c16313b245eb41d2fcc5d122cb9c2e23ee8ce8a
[]
no_license
joemash/django-ansible-deploy
9e5f825e24144f71d1f388f156fbf389bba2c699
c04f9e3f1ef20620571b3242bbdbf4bf4bd21597
refs/heads/master
2020-03-18T16:52:22.006457
2019-01-10T21:30:34
2019-01-10T21:30:34
134,990,830
0
0
null
null
null
null
UTF-8
Python
false
false
3,393
py
from django.shortcuts import render from django.views.generic import TemplateView from django.http import HttpResponseRedirect,HttpResponse,JsonResponse class BaseView(TemplateView): template_name = 'payrol.html' def post(self,request,*args,**kwargs): myitems = [] import locale locale.setlocale(locale.LC_ALL, '') if request.is_ajax(): salary = float(request.POST.get("salary")) net_salary = self.calculate_net_salary(salary) net_paye = self.calculate_net_paye(salary) nhif = self.calculate_nhif(salary) #convert the json string to a python object #json1_data = json.loads(line_items) data = { 'url':'http://127.0.0.1:8000/', 'salary':net_salary, 'net_paye':net_paye, 'nhif':nhif, } return JsonResponse(data) return super(BaseView,self).get(request) def calculate_gross_paye(self,gross_pay): gross_paye = 0.0 nssf = 200 taxable_pay = gross_pay - nssf if taxable_pay >= 11181 and taxable_pay <= 21713: gross_paye = 1118.03 + (taxable_pay - 11180) * 0.15 elif taxable_pay >= 21714 and taxable_pay <= 32247: gross_paye = 2698.07 + (taxable_pay - 21713) * 0.2 elif taxable_pay >= 32248 and taxable_pay <= 42780: gross_paye = 4804.79 + (taxable_pay - 32247) * 0.25 elif taxable_pay >= 42781: gross_paye = 7438.18 + (taxable_pay - 42781) * 0.3 return round(gross_paye,1) def calculate_net_paye(self,gross_pay): net_paye = 0.0 personal_relief = 1280 if gross_pay > 0: gross_paye = self.calculate_gross_paye(gross_pay) if gross_paye > 0: net_paye = gross_paye - personal_relief return net_paye def calculate_nhif(self,salary): nhif = 0.0 if salary >= 1000 and salary <= 5999: nhif = 150 elif salary >= 6000 and salary <= 7999: nhif = 300 elif salary >= 8000 and salary <= 11999: nhif = 400 elif salary >= 12000 and salary <= 14999: nhif = 500 elif salary >= 15000 and salary <= 19999: nhif = 600 elif salary >= 20000 and salary <= 24999: nhif = 750 elif salary >= 25000 and salary <= 29999: nhif = 850 elif salary>=30000 and salary <= 34999: nhif = 900 elif salary >= 35000 and salary <= 39999: nhif = 950 elif salary>= 40000 and salary <= 44999: nhif = 1000 elif salary >= 45000 and salary <= 49999: nhif = 1100 elif salary >= 50000 and salary <= 59999: nhif = 1200 elif salary >= 60000 and salary <= 69999: nhif = 1300 elif salary >= 70000 and salary <= 79999: nhif = 1400 elif salary >= 80000 and salary <= 89999: nhif = 1500 elif salary >= 90000 and salary <= 99999: nhif = 1600 elif salary >= 100000: nhif = 1700 return nhif def calculate_net_salary(self,gross_pay): net_pay = 0.0 nssf = 200 if type(gross_pay) != str: net_pay = gross_pay - nssf if net_pay > 0: net_pay -= self.calculate_net_paye(gross_pay) + self.calculate_nhif(gross_pay) else: return gross_pay else: net_pay = 0.0 return round(net_pay,0)
f852a218085e5ed1cd1d88039a328daaf2000cb3
3aca185c65285b4dd37d7fd5b82c225a61d6af6b
/helper/__init__.py
712e4717a9aa95c1eb7f30697218847a673fca16
[ "MIT" ]
permissive
m2u/m2u
04947236d269619ed33b8ea5730ee2ce76307820
121a9cded0ff10d10a438c8510ece7f6b0cb6176
refs/heads/develop
2021-01-02T08:14:23.231967
2017-05-19T19:05:07
2017-05-19T19:05:07
28,252,425
31
20
null
2017-09-08T07:10:04
2014-12-20T01:02:00
Python
UTF-8
Python
false
false
48
py
from systemhelper import * from helper import *
83f3c70c6a5fc372506556fa465a2440a9cd0dde
a84acc182863362951b3b5405732c822f92e1d48
/navier-stokes/data/16x16/t1/ns.py
c03786902725528cf42b877cef49b8eb644c608f
[]
no_license
mulligatawny/me408-final
86edd7bc82a928bbca6dce3ec9365219b0c2f5f7
ffbd01c4a0d849ad186c2ade87716d01fb54668f
refs/heads/main
2023-03-23T07:30:00.253904
2021-03-19T23:24:11
2021-03-19T23:24:11
349,128,933
0
0
null
null
null
null
UTF-8
Python
false
false
3,230
py
############################################################################### # 2D Incompressible Navier-Stokes Solver with Periodic Boundaries, Galerkins' # # Method and Adams-Bashforth Time Integration # ############################################################################### import numpy as np import matplotlib.pyplot as plt from subroutines import compute_fk from subroutines import compute_vorticity from subroutines import compute_pressure from matplotlib import cm import pdb def fu(uk, vk): fku = compute_fk.compute_fk(N, n1, n2, uk, vk, dim=0) fkv = compute_fk.compute_fk(N, n1, n2, uk, vk, dim=1) a = np.zeros_like(uk) d = np.zeros_like(uk) for i in range(N): for j in range(N): # singular k**2 if n1[i] == n2[j] == 0: a[i,j] = 0 d[i,j] = 0 else: a[i,j] = (n1[i]*fku[i,j] + n2[j]*fkv[i,j])*\ n1[i]/(n1[i]**2 + n2[j]**2) d[i,j] = nu*(n1[i]**2 + n2[j]**2)*uk[i,j] return fku -a -d def fv(uk, vk): fku = compute_fk.compute_fk(N, n1, n2, uk, vk, dim=0) fkv = compute_fk.compute_fk(N, n1, n2, uk, vk, dim=1) a = np.zeros_like(vk) d = np.zeros_like(vk) for i in range(N): for j in range(N): if n1[i] == n2[j] == 0: a[i,j] = 0 d[i,j] = 0 else: a[i,j] = (n1[i]*fku[i,j] + n2[j]*fkv[i,j]\ )*n2[j]/(n1[i]**2 + n2[j]**2) d[i,j] = nu*(n1[i]**2 + n2[j]**2)*vk[i,j] return fkv -a -d N = 16 L = 2*np.pi nu = 1 # mesh x = np.linspace(-L/2, L/2, N+1)[:-1] y = np.linspace(-L/2, L/2, N+1)[:-1] X, Y = np.meshgrid(x, y) # wavenumbers n1 = np.arange(-N/2, N/2)*(2*np.pi/L) n2 = np.arange(-N/2, N/2)*(2*np.pi/L) # initialize u0 = 0.5*(np.sin(Y+X) +np.sin(Y-X)) v0 = -0.5*(np.sin(X+Y) +np.sin(X-Y)) t = 0.0 tf = 1 dt = 1e-3 nt = int(tf/dt+1) e = np.zeros(nt) count = 0 # transform I.C. uk = np.fft.fftshift(np.fft.fft2(u0))/N**2 vk = np.fft.fftshift(np.fft.fft2(v0))/N**2 # allocate storage for (n+1) and (n-1)th timestep uknp1 = np.zeros_like(uk) vknp1 = np.zeros_like(vk) uknm1 = np.zeros_like(uk) vknm1 = np.zeros_like(vk) # first timestep with forward Euler uknp1 = uk + dt*fu(uk, vk) vknp1 = vk + dt*fv(uk, vk) uknm1 = uk vknm1 = vk uk = uknp1 vk = vknp1 t = t + dt # time integrate using Adams-Bashforth while t < tf: uknp1 = uk + (dt/2)*(3*fu(uk, vk) - fu(uknm1, vknm1)) vknp1 = vk + (dt/2)*(3*fv(uk, vk) - fv(uknm1, vknm1)) uknm1 = uk vknm1 = vk uk = uknp1 vk = vknp1 u = np.real(np.fft.ifft2(np.fft.ifftshift(uk))*(N**2)) v = np.real(np.fft.ifft2(np.fft.ifftshift(vk))*(N**2)) e[count] = (np.mean(u**2) + np.mean(v**2))/2 count = count + 1 t = t + dt u = np.real(np.fft.ifft2(np.fft.ifftshift(uk))*(N**2)) v = np.real(np.fft.ifft2(np.fft.ifftshift(vk))*(N**2)) w = compute_vorticity.compute_vorticity(N, n1, n2, uk, vk) p = compute_pressure.compute_pressure(N, n1, n2, uk, vk) np.save('t.npy', t) np.save('x.npy', X) np.save('y.npy', Y) np.save('u.npy', u) np.save('v.npy', v) np.save('w.npy', w) np.save('p.npy', p) np.save('e.npy', e)
7143e094b37877a6546a35c155447afe22e4ac98
ee50c362e090b03276fcda9509632df3f2088292
/easyirctests/test_connection.py
a65059446ddf4999e1c824fc2cc01ccbbe7605c8
[ "BSD-2-Clause-Views" ]
permissive
youknowone/easyirc
a208eacaeefb29eca8e83e9691f9ec7f5f136454
294630acb4ec931b0deff342faf1904120200650
refs/heads/master
2021-01-01T15:44:31.606522
2017-12-29T14:59:58
2017-12-29T14:59:58
9,749,876
3
1
null
null
null
null
UTF-8
Python
false
false
4,284
py
# -*- coding: utf-8 -*- import time import pytest from easyirc.connection import DispatchConnection, CallbackConnection, EventHookConnection from easyirc.command import protocol from easyirc.event import EventManager from easyirc.const import * from easyirc import util from mocksocket import MockSocket from test_socket import socktypes, test_create import settings connop = settings.TEST_CONNECTION @pytest.mark.parametrize(['SocketType'], socktypes) def test_dispatch(SocketType): print SocketType connection = DispatchConnection(None, protocol.manager) msg = connection.dispatch() assert msg == CREATED connection.socket = test_create(SocketType) connection.connect() connection.start() msg = connection.dispatch() assert msg == CONNECTED def check_msg(themsg): while True: time.sleep(0.1) msg = connection.dispatch() if msg is None: continue parts = util.msgsplit(msg) if parts.type == PING: connection.pong(parts[1]) continue if parts.type == themsg: break else: print msg connection.nick(connop['nick']) connection.user(connop['nick'], 'Bot by EasyIRC') check_msg('375') connection.join(connop['autojoins'][0]) check_msg(JOIN) connection.part(connop['autojoins'][0]) check_msg(PART) connection.quit(u'QUIT MESSAGE') check_msg('ERROR') connection.disconnect() connection.thread.join() @pytest.mark.parametrize(['SocketType'], socktypes) def test_callback(SocketType): print SocketType def callback(connection, m): ps = util.msgsplit(m) chan = connop['autojoins'][0] if m == CREATED: connection.socket = test_create(SocketType) connection.connect() elif m == CONNECTED: connection.nick(connop['nick']) connection.user(connop['nick'], 'Bot by EasyIRC') elif ps.type == PING: connection.pong(ps[1]) elif ps.type == '375': connection.join(chan) elif ps.type == JOIN: connection.privmsg(chan, u'test the 콜백') connection.quit(u'전 이만 갑니다') elif ps.type == 'ERROR': print 'END!' connection.disconnect() else: print m connection = CallbackConnection(callback, protocol.manager) connection.start() connection.thread.join() event = EventManager() chan = connop['autojoins'][0] @event.hookmsg(CREATED) def created(connection, sender): print 'created?', connection connection.socket = event.socket connection.connect() @event.hookmsg(CONNECTED) def connected(connection, sender): print 'connected?', connection connection.nick(connop['nick']) connection.user(connop['nick'], 'Bot by EasyIRC') @event.hookmsg(PING) def ping(connection, sender, tag): print 'ping? pong!', connection connection.pong(tag) @event.hookmsg('375') def msgofday(connection, sender, *args): print 'message of the day!', connection connection.join(chan) @event.hookmsg(JOIN) def join(connection, sender, *args): print 'joined?', connection connection.privmsg(chan, u'test the 이벤트훅') connection.quit(u'전 이만 갑니다') @event.hookmsg('ERROR') def error(connection, sender, *args): print 'error?!', connection connection.disconnect() @pytest.mark.parametrize(['SocketType'], socktypes) def test_dispatch_event(SocketType): event.socket = test_create(SocketType) connection = DispatchConnection(event, protocol.manager) connection.start() while connection.thread.is_alive(): connection.handle_message() connection.thread.join() @pytest.mark.parametrize(['SocketType'], socktypes) def test_eventhook(SocketType): event.socket = test_create(SocketType) connection = EventHookConnection(event, protocol.manager) connection.start() connection.thread.join() if __name__ == '__main__': test_dispatch(socktypes[0][0]) #test_dispatch(socktypes[1][0]) test_callback(socktypes[0][0]) #test_callback(socktypes[1][0]) test_eventhook(socktypes[0][0]) #test_eventhook(socktypes[1][0])
bd5682cfb8e9da71bcfca361cb7399d2afc94949
c70e49ec20fbae95e34321d01381859b08e48397
/12/script2.py
b5c72b706882867b790ec86edbc68cd71c569db1
[]
no_license
benx45h/advent-2020
4c915f1d00c589244ce83ab212790b888d3874a7
a12f0b8dbf5041131a693d8202585353f88a6e07
refs/heads/master
2023-03-31T19:07:32.046285
2021-04-02T19:39:38
2021-04-02T19:39:38
319,415,795
0
0
null
null
null
null
UTF-8
Python
false
false
816
py
ifile = open('input.txt','r') lines = ifile.readlines() lines = [line.strip() for line in lines] wpos = [10,1] dpos = [0,0] for line in lines: cmd = line[0] num = int(line[1:]) if(cmd == 'F'): dpos[0] = dpos[0] + num * wpos[0] dpos[1] = dpos[1] + num * wpos[1] if(cmd == 'N'): wpos[1] = wpos[1] + num if(cmd == 'S'): wpos[1] = wpos[1] - num if(cmd == 'E'): wpos[0] = wpos[0] + num if(cmd == 'W'): wpos[0] = wpos[0] - num if(cmd == 'R'): for i in range(int(num/90)): x = wpos[0] wpos[0] = wpos[1] wpos[1] = -x if(cmd == 'L'): for i in range(int(num/90)): x = wpos[0] wpos[0] = -wpos[1] wpos[1] = x man = abs(dpos[0])+abs(dpos[1]) print(man)
10d022c28ea04f0d29c2b03b00f591c964714d6c
1b7da2f11e509828476e21ca665279602de7b509
/config/urls.py
67cbc34adf85f12a64480899e9d4644511448717
[]
no_license
rosenene/oap
922f3955e4f3a583e6829eed0d518f2c7f806d58
32598b7d6c9d6677c889258f21752878ad30d0a5
refs/heads/master
2022-04-26T20:31:37.850145
2020-04-16T07:47:19
2020-04-16T07:47:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,330
py
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin # from django.conf.urls import url from django.urls import include, path from django.views import defaults as default_views from django.views.generic import TemplateView from portal.cv_registration import urls as cv_reg_urls from portal.ega_org import urls as ega_reg_urls from portal.university_regulator import urls as university_regulator_urls # from django.contrib.auth.views import LoginView # from portal.users.views import login_spana # from portal.users import views urlpatterns = [ path("", TemplateView.as_view(template_name="pages/home.html"), name="home"), # path("", include(views.log), name="login_spana"), # url("", login_spana, name="l"), # path("", LoginView.as_view( # template_name='account/login.html')), path( "about/", TemplateView.as_view(template_name="pages/about.html"), name="about" ), # Django Admin, use {% url 'admin:index' %} path(settings.ADMIN_URL, admin.site.urls), # User management path("users/", include("portal.users.urls", namespace="users")), path("accounts/", include("allauth.urls")), path("info_registration/", include(cv_reg_urls)), path('university/', include(university_regulator_urls)), path('ega/', include(ega_reg_urls)), # Your stuff: custom urls includes go here ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ path( "400/", default_views.bad_request, kwargs={"exception": Exception("Bad Request!")}, ), path( "403/", default_views.permission_denied, kwargs={"exception": Exception("Permission Denied")}, ), path( "404/", default_views.page_not_found, kwargs={"exception": Exception("Page not Found")}, ), path("500/", default_views.server_error), ] if "debug_toolbar" in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [path("__debug__/", include(debug_toolbar.urls))] + urlpatterns
d1f2ea3914e215f6474197ddc8d3171da4a83c96
fd7ae9a979302bf868f681a16215d425cb62afe2
/config2.py
ad060d9fb824bac5d0d5d6148d386788c507f409
[]
no_license
b0olean/bot-discord
2e5a9980375db367eee3c62cc6ab4c816188a88f
604f8da5ac83217beec3af17c7d7b58fed511ee7
refs/heads/master
2023-02-19T05:12:58.456059
2021-01-20T15:05:07
2021-01-20T15:05:07
323,875,879
1
0
null
null
null
null
UTF-8
Python
false
false
56
py
TOKEN2 = 'тут может быть ваш токен'
4a276c24541e49c8fd21b853d4155a98f2eb287a
f6ffcb2111c677916525fb25554ef5b7d2c9cbbe
/blackjax/inference/hmc/trajectory.py
81f75b3d97167ee2e57ed28debe907fd3e765112
[ "Apache-2.0" ]
permissive
prashjet/blackjax
748b4b91c279217af7870ec18516510a3d0799e4
fe10807d04c8d1c2dcdd51e0db0ba54b4dceb88e
refs/heads/main
2023-08-11T20:17:40.395768
2021-08-05T20:06:22
2021-08-05T20:06:22
399,069,946
0
0
Apache-2.0
2021-08-23T11:02:01
2021-08-23T11:02:00
null
UTF-8
Python
false
false
22,197
py
"""Procedures to build trajectories for algorithms in the HMC family. To propose a new state, algorithms in the HMC family generally proceed by [1]_: 1. Sampling a trajectory starting from the initial point; 2. Sampling a new state from this sampled trajectory. Step (1) ensures that the process is reversible and thus that detailed balance is respected. The traditional implementation of HMC does not sample a trajectory, but instead takes a fixed number of steps in the same direction and flips the momentum of the last state. We distinguish here between two different methods to sample trajectories: static and dynamic sampling. In the static setting we sample trajectories with a fixed number of steps, while in the dynamic setting the total number of steps is determined by a dynamic termination criterion. Traditional HMC falls in the former category, NUTS in the latter. There are also two methods to sample proposals from these trajectories. In the static setting we first build the trajectory and then sample a proposal from this trajectory. In the progressive setting we update the proposal as the trajectory is being sampled. While the former is faster, we risk saturating the memory by keeping states that will subsequently be discarded. References ---------- .. [1]: Betancourt, Michael. "A conceptual introduction to Hamiltonian Monte Carlo." arXiv preprint arXiv:1701.02434 (2017). """ from typing import Callable, NamedTuple, Tuple import jax import jax.numpy as jnp from blackjax.inference.hmc.integrators import IntegratorState from blackjax.inference.hmc.proposal import ( Proposal, progressive_biased_sampling, progressive_uniform_sampling, proposal_generator, ) from blackjax.types import PRNGKey, PyTree class Trajectory(NamedTuple): leftmost_state: IntegratorState rightmost_state: IntegratorState momentum_sum: PyTree num_states: int def append_to_trajectory(trajectory: Trajectory, state: IntegratorState) -> Trajectory: """Append a state to the (right of the) trajectory to form a new trajectory.""" momentum_sum = jax.tree_util.tree_multimap( jnp.add, trajectory.momentum_sum, state.momentum ) return Trajectory( trajectory.leftmost_state, state, momentum_sum, trajectory.num_states + 1 ) def reorder_trajectories( direction: int, trajectory: Trajectory, new_trajectory: Trajectory ) -> Tuple[Trajectory, Trajectory]: """Order the two trajectories depending on the direction.""" return jax.lax.cond( direction > 0, lambda _: ( trajectory, new_trajectory, ), lambda _: ( new_trajectory, trajectory, ), operand=None, ) def merge_trajectories(left_trajectory: Trajectory, right_trajectory: Trajectory): momentum_sum = jax.tree_util.tree_multimap( jnp.add, left_trajectory.momentum_sum, right_trajectory.momentum_sum ) return Trajectory( left_trajectory.leftmost_state, right_trajectory.rightmost_state, momentum_sum, left_trajectory.num_states + right_trajectory.num_states, ) # ------------------------------------------------------------------- # Integration # # Generating samples by choosing a direction and running the integrator # several times along this direction. Distinct from sampling. # ------------------------------------------------------------------- def static_integration( integrator: Callable, step_size: float, num_integration_steps: int, direction: int = 1, ) -> Callable: """Generate a trajectory by integrating several times in one direction.""" directed_step_size = direction * step_size def integrate(initial_state: IntegratorState) -> IntegratorState: def one_step(state, _): state = integrator(state, directed_step_size) return state, state last_state, _ = jax.lax.scan( one_step, initial_state, jnp.arange(num_integration_steps) ) return last_state return integrate class DynamicIntegrationState(NamedTuple): step: int proposal: Proposal trajectory: Trajectory termination_state: NamedTuple def dynamic_progressive_integration( integrator: Callable, kinetic_energy: Callable, update_termination_state: Callable, is_criterion_met: Callable, divergence_threshold: float, ): """Integrate a trajectory and update the proposal sequentially in one direction until the termination criterion is met. Parameters ---------- integrator The symplectic integrator used to integrate the hamiltonian trajectory. kinetic_energy Function to compute the current value of the kinetic energy. update_termination_state Updates the state of the termination mechanism. is_criterion_met Determines whether the termination criterion has been met. divergence_threshold Value of the difference of energy between two consecutive states above which we say a transition is divergent. """ _, generate_proposal = proposal_generator(kinetic_energy, divergence_threshold) sample_proposal = progressive_uniform_sampling def integrate( rng_key: PRNGKey, initial_state: IntegratorState, direction: int, termination_state, max_num_steps: int, step_size, initial_energy, ): """Integrate the trajectory starting from `initial_state` and update the proposal sequentially until the termination criterion is met. Parameters ---------- rng_key Key used by JAX's random number generator. initial_state The initial state from which we start expanding the trajectory. direction int in {-1, 1} The direction in which to expand the trajectory. termination_state The state that keeps track of the information needed for the termination criterion. max_num_steps The maximum number of integration steps. The expansion will stop when this number is reached if the termination criterion has not been met. step_size The step size of the symplectic integrator. initial_energy Initial energy H0 of the HMC step (not to confused with the initial energy of the subtree) """ def do_keep_integrating(loop_state): """Decide whether we should continue integrating the trajectory""" _, integration_state, (is_diverging, has_terminated) = loop_state return ( (integration_state.step < max_num_steps) & ~has_terminated & ~is_diverging ) def add_one_state(loop_state): rng_key, integration_state, _ = loop_state step, proposal, trajectory, termination_state = integration_state rng_key, proposal_key = jax.random.split(rng_key) new_state = integrator(trajectory.rightmost_state, direction * step_size) new_proposal, is_diverging = generate_proposal(initial_energy, new_state) new_trajectory = append_to_trajectory(trajectory, new_state) sampled_proposal = sample_proposal(proposal_key, proposal, new_proposal) new_termination_state = update_termination_state( termination_state, new_trajectory.momentum_sum, new_state.momentum, step ) has_terminated = is_criterion_met( new_termination_state, new_trajectory.momentum_sum, new_state.momentum ) new_integration_state = DynamicIntegrationState( step + 1, sampled_proposal, new_trajectory, new_termination_state, ) return (rng_key, new_integration_state, (is_diverging, has_terminated)) # Take the first step (step 0) that starts the new trajectory with proposal, # so that at for step k > 0 in the while loop we can just append the new # state to the trajectory and generate new proposal. state_step0 = integrator(initial_state, direction * step_size) initial_proposal, is_diverging = generate_proposal(initial_energy, state_step0) trajectory0 = Trajectory(state_step0, state_step0, state_step0.momentum, 1) termination_state0 = update_termination_state( termination_state, trajectory0.momentum_sum, state_step0.momentum, 0 ) has_terminated = is_criterion_met( termination_state0, trajectory0.momentum_sum, state_step0.momentum ) initial_integration_state = DynamicIntegrationState( 1, initial_proposal, trajectory0, termination_state0, ) _, integration_state, (is_diverging, has_terminated) = jax.lax.while_loop( do_keep_integrating, add_one_state, (rng_key, initial_integration_state, (is_diverging, has_terminated)), ) step, proposal, trajectory, termination_state = integration_state # In the while_loop we always extend on the right most direction. new_trajectory = jax.lax.cond( direction > 0, lambda _: trajectory, lambda _: Trajectory( trajectory.rightmost_state, trajectory.leftmost_state, trajectory.momentum_sum, trajectory.num_states, ), operand=None, ) return ( proposal, new_trajectory, termination_state, is_diverging, has_terminated, ) return integrate def dynamic_recursive_integration( integrator: Callable, kinetic_energy: Callable, uturn_check_fn: Callable, divergence_threshold: float, use_robust_uturn_check: bool = False, ): """Integrate a trajectory and update the proposal recursively in Python until the termination criterion is met. This is the implementation of Algorithm 6 from [1] with multinomial sampling. The implemenation here is mostly for validating the progressive implementation to make sure the two are equivalent. The recursive implementation should not be used for actually sampling as it cannot be jitted and thus likely slow. Parameters ---------- integrator The symplectic integrator used to integrate the hamiltonian trajectory. kinetic_energy Function to compute the current value of the kinetic energy. uturn_check_fn Determines whether the termination criterion has been met. divergence_threshold Value of the difference of energy between two consecutive states above which we say a transition is divergent. use_robust_uturn_check Bool to indicate whether to perform additional U turn check between two trajectory. References ---------- .. [1]: Hoffman, Matthew D., and Andrew Gelman. "The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo." J. Mach. Learn. Res. 15.1 (2014): 1593-1623. """ _, generate_proposal = proposal_generator(kinetic_energy, divergence_threshold) sample_proposal = progressive_uniform_sampling def buildtree_integrate( rng_key: PRNGKey, initial_state: IntegratorState, direction: int, tree_depth: int, step_size, initial_energy: float, ): """Integrate the trajectory starting from `initial_state` and update the proposal recursively with tree doubling until the termination criterion is met. The function `buildtree_integrate` calls itself for tree_depth > 0, thus invokes the recursive scheme that builds a trajectory by doubling a binary tree. Parameters ---------- rng_key Key used by JAX's random number generator. initial_state The initial state from which we start expanding the trajectory. direction int in {-1, 1} The direction in which to expand the trajectory. tree_depth The depth of the binary tree doubling. step_size The step size of the symplectic integrator. initial_energy Initial energy H0 of the HMC step (not to confused with the initial energy of the subtree) """ if tree_depth == 0: # Base case - take one leapfrog step in the direction v. next_state = integrator(initial_state, direction * step_size) new_proposal, is_diverging = generate_proposal(initial_energy, next_state) trajectory = Trajectory(next_state, next_state, next_state.momentum, 1) return ( rng_key, new_proposal, trajectory, is_diverging, False, ) else: ( rng_key, proposal, trajectory, is_diverging, is_turning, ) = buildtree_integrate( rng_key, initial_state, direction, tree_depth - 1, step_size, initial_energy, ) # Note that is_diverging and is_turning is inplace updated if ~is_diverging & ~is_turning: start_state = jax.lax.cond( direction > 0, lambda _: trajectory.rightmost_state, lambda _: trajectory.leftmost_state, operand=None, ) ( rng_key, new_proposal, new_trajectory, is_diverging, is_turning, ) = buildtree_integrate( rng_key, start_state, direction, tree_depth - 1, step_size, initial_energy, ) left_trajectory, right_trajectory = reorder_trajectories( direction, trajectory, new_trajectory ) trajectory = merge_trajectories(left_trajectory, right_trajectory) if ~is_turning: is_turning = uturn_check_fn( trajectory.leftmost_state.momentum, trajectory.rightmost_state.momentum, trajectory.momentum_sum, ) if use_robust_uturn_check & (tree_depth - 1 > 0): momentum_sum_left = jax.tree_util.tree_multimap( jnp.add, left_trajectory.momentum_sum, right_trajectory.leftmost_state.momentum, ) is_turning_left = uturn_check_fn( left_trajectory.leftmost_state.momentum, right_trajectory.leftmost_state.momentum, momentum_sum_left, ) momentum_sum_right = jax.tree_util.tree_multimap( jnp.add, left_trajectory.rightmost_state.momentum, right_trajectory.momentum_sum, ) is_turning_right = uturn_check_fn( left_trajectory.rightmost_state.momentum, right_trajectory.rightmost_state.momentum, momentum_sum_right, ) is_turning = is_turning | is_turning_left | is_turning_right rng_key, proposal_key = jax.random.split(rng_key) proposal = sample_proposal(proposal_key, proposal, new_proposal) return ( rng_key, proposal, trajectory, is_diverging, is_turning, ) return buildtree_integrate # ------------------------------------------------------------------- # Sampling # # Sampling a trajectory by choosing a direction at random and integrating # the trajectory in this direction. In the simplest case we perform one # integration step, but can also perform several as is the case in the # NUTS algorithm. # ------------------------------------------------------------------- class DynamicExpansionState(NamedTuple): step: int proposal: Proposal trajectory: Trajectory termination_state: NamedTuple def dynamic_multiplicative_expansion( trajectory_integrator: Callable, uturn_check_fn: Callable, step_size: float, max_num_expansions: int = 10, rate: int = 2, ) -> Callable: """Sample a trajectory and update the proposal sequentially until the termination criterion is met. The trajectory is sampled with the following procedure: 1. Pick a direction at random; 2. Integrate `num_step` steps in this direction; 3. If the integration has stopped prematurely, do not update the proposal; 4. Else if the trajectory is performing a U-turn, return current proposal; 5. Else update proposal, `num_steps = num_steps ** rate` and repeat from (1). Parameters ---------- trajectory_integrator A function that runs the symplectic integrators and returns a new proposal and the integrated trajectory. uturn_check_fn Function used to check the U-Turn criterion. step_size The step size used by the symplectic integrator. max_num_expansions The maximum number of trajectory expansions until the proposal is returned. rate The rate of the geometrical expansion. Typically 2 in NUTS, this is why the literature often refers to "tree doubling". """ proposal_sampler = progressive_biased_sampling def expand( rng_key: PRNGKey, initial_expansion_state: DynamicExpansionState, initial_energy: float, ): def do_keep_expanding(loop_state) -> bool: """Determine whether we need to keep expanding the trajectory.""" _, expansion_state, (is_diverging, is_turning) = loop_state return ( (expansion_state.step < max_num_expansions) & ~is_diverging & ~is_turning ) def expand_once(loop_state): """Expand the current trajectory. At each step we draw a direction at random, build a subtrajectory starting from the leftmost or rightmost point of the current trajectory that is twice as long as the current trajectory. Once that is done, possibly update the current proposal with that of the subtrajectory. """ # Q: Should this function be aware of all the elements that need to # be passed downstream? rng_key, expansion_state, _ = loop_state step, proposal, trajectory, termination_state = expansion_state rng_key, direction_key, trajectory_key, proposal_key = jax.random.split( rng_key, 4 ) # create new subtrajectory that is twice as long as the current # trajectory. direction = jnp.where(jax.random.bernoulli(direction_key), 1, -1) start_state = jax.lax.cond( direction > 0, lambda _: trajectory.rightmost_state, lambda _: trajectory.leftmost_state, operand=None, ) ( new_proposal, new_trajectory, termination_state, is_diverging, is_turning_subtree, ) = trajectory_integrator( trajectory_key, start_state, direction, termination_state, rate ** step, step_size, initial_energy, ) left_trajectory, right_trajectory = reorder_trajectories( direction, trajectory, new_trajectory ) merged_trajectory = merge_trajectories(left_trajectory, right_trajectory) # update the proposal # we reject proposals coming from diverging or turning subtrajectories, # but accumulate average acceptance probabilty across entire trajectory def update_sum_log_p_accept(inputs): _, proposal, new_proposal = inputs return Proposal( proposal.state, proposal.energy, proposal.weight, jnp.logaddexp( proposal.sum_log_p_accept, new_proposal.sum_log_p_accept ), ) sampled_proposal = jax.lax.cond( is_diverging | is_turning_subtree, update_sum_log_p_accept, lambda x: proposal_sampler(*x), operand=(proposal_key, proposal, new_proposal), ) is_turning = uturn_check_fn( merged_trajectory.leftmost_state.momentum, merged_trajectory.rightmost_state.momentum, merged_trajectory.momentum_sum, ) new_state = DynamicExpansionState( step + 1, sampled_proposal, merged_trajectory, termination_state ) info = (is_diverging, is_turning_subtree | is_turning) return (rng_key, new_state, info) _, expansion_state, (is_diverging, is_turning) = jax.lax.while_loop( do_keep_expanding, expand_once, (rng_key, initial_expansion_state, (False, False)), ) return expansion_state, (is_diverging, is_turning) return expand
59cc5665c38dbcef218d2ee55b0b38ceec76cb87
eb93eae6d0dc4de84cb90ae0b87843551979e794
/pytest/test_code/test_employee.py
e3844b67e10c834eb9ae1a36b5fe6ca3761805f4
[]
no_license
mashilu/hello-python
d891f7a12bc4d2dbd6dacd509ba3d491046bb687
e5c45a6a4ebc7694c46243790000a7433a68ebf9
refs/heads/master
2020-04-28T11:10:51.407808
2018-07-20T09:10:55
2018-07-20T09:10:55
30,918,503
0
0
null
null
null
null
UTF-8
Python
false
false
604
py
# -*- coding: utf-8 -*- import unittest from employee import Employee class TestEmployee(unittest.TestCase): def setUp(self): self.employee = Employee('Ma', 'Shilu', 10000) print('setUp') def test_give_default_raise(self): self.employee.give_raise() self.assertEqual(self.employee.salary, 15000) print('test_give_default_raise') def test_give_custom_raise(self): self.employee.give_raise(10000) self.assertEqual(self.employee.salary, 20000) print('test_give_custom_raise') if __name__ == '__main__': unittest.main()
8be463a908ee6202a38eb8019c0ad190142115ff
369bcbbdecf3163889358bd340c33b8ec53e52ae
/modules/python/models/train_distributed.py
3000907a58e6413bcedee108cebf8f3ddab85339
[ "MIT" ]
permissive
tianap/pepper
47e9b22d834623a12cae243c85b88cf4b9b5d61e
1c6d2cdad11489ca873b97566c15f70213ad2824
refs/heads/master
2021-02-13T20:28:39.506309
2020-02-24T07:42:57
2020-02-24T07:42:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,609
py
import sys import torch import os from tqdm import tqdm import torch.distributed as dist import torch.nn as nn import torch.multiprocessing as mp # Custom generator for our dataset from torch.utils.data import DataLoader from modules.python.models.dataloader import SequenceDataset from modules.python.TextColor import TextColor from modules.python.models.ModelHander import ModelHandler from modules.python.models.test import test from modules.python.Options import ImageSizeOptions, TrainOptions os.environ['PYTHONWARNINGS'] = 'ignore:semaphore_tracker:UserWarning' """ Train a model and return the model and optimizer trained. Input: - A train CSV containing training image set information (usually chr1-18) Return: - A trained model """ CLASS_WEIGHTS = [1.0, 1.0, 1.0, 1.0, 1.0] def save_best_model(transducer_model, model_optimizer, hidden_size, layers, epoch, file_name): """ Save the best model :param transducer_model: A trained model :param model_optimizer: Model optimizer :param hidden_size: Number of hidden layers :param layers: Number of GRU layers to use :param epoch: Epoch/iteration number :param file_name: Output file name :return: """ if os.path.isfile(file_name): os.remove(file_name) ModelHandler.save_checkpoint({ 'model_state_dict': transducer_model.state_dict(), 'model_optimizer': model_optimizer.state_dict(), 'hidden_size': hidden_size, 'gru_layers': layers, 'epochs': epoch, }, file_name) sys.stderr.write(TextColor.RED + "\nMODEL SAVED SUCCESSFULLY.\n" + TextColor.END) def train(train_file, test_file, batch_size, epoch_limit, gpu_mode, num_workers, retrain_model, retrain_model_path, gru_layers, hidden_size, lr, decay, model_dir, stats_dir, train_mode, world_size, rank, device_id): if train_mode is True and rank == 0: train_loss_logger = open(stats_dir + "train_loss.csv", 'w') test_loss_logger = open(stats_dir + "test_loss.csv", 'w') confusion_matrix_logger = open(stats_dir + "confusion_matrix.txt", 'w') else: train_loss_logger = None test_loss_logger = None confusion_matrix_logger = None torch.cuda.set_device(device_id) if rank == 0: sys.stderr.write(TextColor.PURPLE + 'Loading data\n' + TextColor.END) train_data_set = SequenceDataset(train_file) train_sampler = torch.utils.data.distributed.DistributedSampler( train_data_set, num_replicas=world_size, rank=rank ) train_loader = torch.utils.data.DataLoader( dataset=train_data_set, batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=True, sampler=train_sampler) num_classes = ImageSizeOptions.TOTAL_LABELS if retrain_model is True: if os.path.isfile(retrain_model_path) is False: sys.stderr.write(TextColor.RED + "ERROR: INVALID PATH TO RETRAIN PATH MODEL --retrain_model_path\n") exit(1) sys.stderr.write(TextColor.GREEN + "INFO: RETRAIN MODEL LOADING\n" + TextColor.END) transducer_model, hidden_size, gru_layers, prev_ite = \ ModelHandler.load_simple_model_for_training(retrain_model_path, input_channels=ImageSizeOptions.IMAGE_CHANNELS, image_features=ImageSizeOptions.IMAGE_HEIGHT, seq_len=ImageSizeOptions.SEQ_LENGTH, num_classes=num_classes) if train_mode is True: epoch_limit = prev_ite + epoch_limit sys.stderr.write(TextColor.GREEN + "INFO: RETRAIN MODEL LOADED\n" + TextColor.END) else: transducer_model = ModelHandler.get_new_gru_model(input_channels=ImageSizeOptions.IMAGE_CHANNELS, image_features=ImageSizeOptions.IMAGE_HEIGHT, gru_layers=gru_layers, hidden_size=hidden_size, num_classes=num_classes) prev_ite = 0 param_count = sum(p.numel() for p in transducer_model.parameters() if p.requires_grad) if rank == 0: sys.stderr.write(TextColor.RED + "INFO: TOTAL TRAINABLE PARAMETERS:\t" + str(param_count) + "\n" + TextColor.END) model_optimizer = torch.optim.Adam(transducer_model.parameters(), lr=lr, weight_decay=decay) if retrain_model is True: sys.stderr.write(TextColor.GREEN + "INFO: OPTIMIZER LOADING\n" + TextColor.END) model_optimizer = ModelHandler.load_simple_optimizer(model_optimizer, retrain_model_path, gpu_mode) sys.stderr.write(TextColor.GREEN + "INFO: OPTIMIZER LOADED\n" + TextColor.END) if gpu_mode: transducer_model = transducer_model.to(device_id) transducer_model = nn.parallel.DistributedDataParallel(transducer_model, device_ids=[device_id]) class_weights = torch.Tensor(CLASS_WEIGHTS) # Loss criterion = nn.CrossEntropyLoss(class_weights) if gpu_mode is True: criterion = criterion.to(device_id) start_epoch = prev_ite # Train the Model if rank == 0: sys.stderr.write(TextColor.PURPLE + 'Training starting\n' + TextColor.END) sys.stderr.write(TextColor.BLUE + 'Start: ' + str(start_epoch + 1) + ' End: ' + str(epoch_limit) + "\n") stats = dict() stats['loss_epoch'] = [] stats['accuracy_epoch'] = [] for epoch in range(start_epoch, epoch_limit, 1): total_loss = 0 total_images = 0 if rank == 0: sys.stderr.write(TextColor.BLUE + 'Train epoch: ' + str(epoch + 1) + "\n") # make sure the model is in train mode. BN is different in train and eval. batch_no = 1 if rank == 0: progress_bar = tqdm( total=len(train_loader), ncols=100, leave=True, position=rank, desc="Loss: ", ) else: progress_bar = None transducer_model.train() for images, labels in train_loader: labels = labels.type(torch.LongTensor) images = images.type(torch.FloatTensor) if gpu_mode: images = images.to(device_id) labels = labels.to(device_id) hidden = torch.zeros(images.size(0), 2 * TrainOptions.GRU_LAYERS, TrainOptions.HIDDEN_SIZE) if gpu_mode: hidden = hidden.to(device_id) for i in range(0, ImageSizeOptions.SEQ_LENGTH, TrainOptions.WINDOW_JUMP): model_optimizer.zero_grad() if i + TrainOptions.TRAIN_WINDOW > ImageSizeOptions.SEQ_LENGTH: break image_chunk = images[:, i:i+TrainOptions.TRAIN_WINDOW] label_chunk = labels[:, i:i+TrainOptions.TRAIN_WINDOW] output_, hidden = transducer_model(image_chunk, hidden) loss = criterion(output_.contiguous().view(-1, num_classes), label_chunk.contiguous().view(-1)) loss.backward() model_optimizer.step() total_loss += loss.item() total_images += image_chunk.size(0) hidden = hidden.detach() # update the progress bar avg_loss = (total_loss / total_images) if total_images else 0 if train_mode is True and rank == 0: train_loss_logger.write(str(epoch + 1) + "," + str(batch_no) + "," + str(avg_loss) + "\n") if rank == 0: progress_bar.set_description("Loss: " + str(avg_loss)) progress_bar.refresh() progress_bar.update(1) batch_no += 1 if rank == 0: progress_bar.close() dist.barrier() if rank == 0: stats_dictioanry = test(test_file, batch_size, gpu_mode, transducer_model, num_workers, gru_layers, hidden_size, num_classes=ImageSizeOptions.TOTAL_LABELS) stats['loss'] = stats_dictioanry['loss'] stats['accuracy'] = stats_dictioanry['accuracy'] stats['loss_epoch'].append((epoch, stats_dictioanry['loss'])) stats['accuracy_epoch'].append((epoch, stats_dictioanry['accuracy'])) dist.barrier() # update the loggers if train_mode is True and rank == 0: # save the model after each epoch # encoder_model, decoder_model, encoder_optimizer, decoder_optimizer, hidden_size, layers, epoch, # file_name save_best_model(transducer_model, model_optimizer, hidden_size, gru_layers, epoch, model_dir + "_epoch_" + str(epoch + 1) + '_checkpoint.pkl') test_loss_logger.write(str(epoch + 1) + "," + str(stats['loss']) + "," + str(stats['accuracy']) + "\n") confusion_matrix_logger.write(str(epoch + 1) + "\n" + str(stats_dictioanry['confusion_matrix']) + "\n") train_loss_logger.flush() test_loss_logger.flush() confusion_matrix_logger.flush() elif train_mode is False: # this setup is for hyperband if epoch + 1 >= 10 and stats['accuracy'] < 98: sys.stderr.write(TextColor.PURPLE + 'EARLY STOPPING AS THE MODEL NOT DOING WELL\n' + TextColor.END) return transducer_model, model_optimizer, stats if rank == 0: sys.stderr.write(TextColor.PURPLE + 'Finished training\n' + TextColor.END) return transducer_model, model_optimizer, stats def cleanup(): dist.destroy_process_group() def setup(rank, device_ids, args): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=len(device_ids)) train_file, test_file, batch_size, epochs, gpu_mode, num_workers, retrain_model, \ retrain_model_path, gru_layers, hidden_size, learning_rate, weight_decay, model_dir, stats_dir, total_callers, \ train_mode = args # issue with semaphore lock: https://github.com/pytorch/pytorch/issues/2517 # mp.set_start_method('spawn') # Explicitly setting seed to make sure that models created in two processes # start from same random weights and biases. https://github.com/pytorch/pytorch/issues/2517 torch.manual_seed(42) train(train_file, test_file, batch_size, epochs, gpu_mode, num_workers, retrain_model, retrain_model_path, gru_layers, hidden_size, learning_rate, weight_decay, model_dir, stats_dir, train_mode, total_callers, rank, device_ids[rank]) cleanup() def train_distributed(train_file, test_file, batch_size, epochs, gpu_mode, num_workers, retrain_model, retrain_model_path, gru_layers, hidden_size, learning_rate, weight_decay, model_dir, stats_dir, device_ids, total_callers, train_mode): args = (train_file, test_file, batch_size, epochs, gpu_mode, num_workers, retrain_model, retrain_model_path, gru_layers, hidden_size, learning_rate, weight_decay, model_dir, stats_dir, total_callers, train_mode) mp.spawn(setup, args=(device_ids, args), nprocs=len(device_ids), join=True)
31c31dd70f600c146fbe4ca24233f4d5559ece54
ffbce1ba05737fc8403e91a565bd64b72f7c3ab9
/.history/vicky/views_20210512104007.py
995108e3690c927c1bc9fc0cdfe4fa44e10b7300
[]
no_license
Crixtiancub/Feedback_Vicky2.0
ffa1f9af8e81abb55540dbb10e3324866d23be2d
bc97740eba40c1edcacc309b8206f94fdee62cb6
refs/heads/master
2023-04-12T05:39:21.113454
2021-05-19T21:54:28
2021-05-19T21:54:28
368,983,043
0
0
null
null
null
null
UTF-8
Python
false
false
4,274
py
from django.shortcuts import render, redirect import os from modelo_IA.archivos_Python.pipeline import Pipeline from vicky import templates from .models import * from django.template.response import TemplateResponse model = Pipeline() # Create your views here. def home(request): num_visits = request.session.get('num_visits', 3) if num_visits == 0: request.session['num_visits'] = 3 if 'Si' in request.POST: acierto = str(request.POST.get('Si')) pregunta = str(request.POST.get('retorno_Pregunta')) respuesta = str(request.POST.get('retorno_Respuesta')) envio_Pregunta = preguntas_Vicky( pregunta=pregunta, respuesta=respuesta, acierto= acierto ) envio_Pregunta.save() print("Pregunta Saved...") context = { 'num_visits': num_visits, } return TemplateResponse(request, 'noVisitas.html') if 'No' in request.POST: acierto = str(request.POST.get('No')) pregunta = str(request.POST.get('retorno_Pregunta')) respuesta = str(request.POST.get('retorno_Respuesta')) envio_Pregunta = preguntas_Vicky( pregunta=pregunta, respuesta=respuesta, acierto= acierto ) envio_Pregunta.save() print("Pregunta Saved...") context = { 'num_visits': num_visits, } return TemplateResponse(request, 'noVisitas.html') pregunta = str(request.POST.get('pregunta_Vicky')) respuesta = model.run_model(pregunta) context = { "pregunta":pregunta, "respuesta":respuesta, 'num_visits': num_visits, } return TemplateResponse(request, 'dashboard.html' , context) if request.POST: if 'Si' in request.POST: request.session['num_visits'] -= 1 acierto = str(request.POST.get('Si')) pregunta = str(request.POST.get('retorno_Pregunta')) respuesta = str(request.POST.get('retorno_Respuesta')) envio_Pregunta = preguntas_Vicky( pregunta=pregunta, respuesta=respuesta, acierto= acierto ) envio_Pregunta.save() print("Pregunta Saved...") context = { 'num_visits': num_visits, } return TemplateResponse(request, 'dashboard.html' , context) if 'No' in request.POST: request.session['num_visits'] -= 1 acierto = str(request.POST.get('No')) pregunta = str(request.POST.get('retorno_Pregunta')) respuesta = str(request.POST.get('retorno_Respuesta')) envio_Pregunta = preguntas_Vicky( pregunta=pregunta, respuesta=respuesta, acierto= acierto ) envio_Pregunta.save() print("Pregunta Saved...") context = { 'num_visits': num_visits, } print(context) return TemplateResponse(request, 'dashboard.html' , context) # pregunta = str(request.POST.get('retorno_Pregunta')) # respuesta = str(request.POST.get('retorno_Respuesta')) pregunta = str(request.POST.get('pregunta_Vicky')) respuesta = model.run_model(pregunta) context = { "pregunta":pregunta, "respuesta":respuesta, 'num_visits': num_visits, } print(context) return TemplateResponse(request, 'dashboard.html' , context) else: contexto = { 'num_visits': num_visits, } return render(request, 'dashboard.html', contexto) def noVisitas(request): return render(request, 'noVisitas.html') def respuesta_Vicky(request): pregunta = str(request.POST['pregunta_Vicky']) respuesta = model.run_model(pregunta) context = { "pregunta":pregunta, "respuesta":respuesta } return render(request, 'respuesta_Vicky.html', context)
64ccbfab35ff229a7e7c14c48ddff5226a783295
e82b761f53d6a3ae023ee65a219eea38e66946a0
/All_In_One/addons/bpycollada/import_collada.py
1bb5360d157006d7285bc4d686a2d5d8c0514da8
[]
no_license
2434325680/Learnbgame
f3a050c28df588cbb3b14e1067a58221252e2e40
7b796d30dfd22b7706a93e4419ed913d18d29a44
refs/heads/master
2023-08-22T23:59:55.711050
2021-10-17T07:26:07
2021-10-17T07:26:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,215
py
import os import math from tempfile import NamedTemporaryFile from contextlib import contextmanager import bpy from bpy.ops import BPyOpsSubModOp from bpy_extras.image_utils import load_image from mathutils import Matrix, Vector from collada import Collada from collada.camera import PerspectiveCamera, OrthographicCamera from collada.common import DaeBrokenRefError from collada.light import AmbientLight, DirectionalLight, PointLight, SpotLight from collada.material import Map from collada.polylist import Polylist, BoundPolylist from collada.primitive import BoundPrimitive from collada.scene import Scene, Node, NodeNode, GeometryNode from collada.triangleset import TriangleSet, BoundTriangleSet __all__ = ['load'] VENDOR_SPECIFIC = [] COLLADA_NS = 'http://www.collada.org/2005/11/COLLADASchema' DAE_NS = {'dae': COLLADA_NS} TRANSPARENCY_RAY_DEPTH = 8 MAX_NAME_LENGTH = 27 def load(op, ctx, filepath=None, **kwargs): c = Collada(filepath, ignore=[DaeBrokenRefError]) impclass = get_import(c) imp = impclass(ctx, c, os.path.dirname(filepath), **kwargs) tf = kwargs['transformation'] with prevented_updates(ctx): if tf in ('MUL', 'APPLY'): for i, obj in enumerate(c.scene.objects('geometry')): b_geoms = imp.geometry(obj) if tf == 'MUL': tf_mat = Matrix(obj.matrix) for b_obj in b_geoms: b_obj.matrix_world = tf_mat elif tf == 'PARENT': _dfs(c.scene, imp.node) for i, obj in enumerate(c.scene.objects('light')): imp.light(obj, i) for obj in c.scene.objects('camera'): imp.camera(obj) return {'FINISHED'} @contextmanager def prevented_updates(ctx): """ Stop Blender from funning scene update for each change. Update it just once the import is finished. """ scene_update = BPyOpsSubModOp._scene_update setattr(BPyOpsSubModOp, '_scene_update', lambda ctx: None) yield setattr(BPyOpsSubModOp, '_scene_update', scene_update) BPyOpsSubModOp._scene_update(ctx) def get_import(collada): for i in VENDOR_SPECIFIC: if i.match(collada): return i return ColladaImport class ColladaImport(object): """ Standard COLLADA importer. """ def __init__(self, ctx, collada, basedir, **kwargs): self._ctx = ctx self._collada = collada self._kwargs = kwargs self._images = {} self._namecount = 0 self._names = {} def camera(self, bcam): bpy.ops.object.add(type='CAMERA') b_obj = self._ctx.object b_obj.name = self.name(bcam.original, id(bcam)) b_obj.matrix_world = Matrix(bcam.matrix) b_cam = b_obj.data if isinstance(bcam.original, PerspectiveCamera): b_cam.type = 'PERSP' prop = b_cam.bl_rna.properties.get('lens_unit') if 'DEGREES' in prop.enum_items: b_cam.lens_unit = 'DEGREES' elif 'FOV' in prop.enum_items: b_cam.lens_unit = 'FOV' else: b_cam.lens_unit = prop.default b_cam.angle = math.radians(max( bcam.xfov or bcam.yfov, bcam.yfov or bcam.xfov)) elif isinstance(bcam.original, OrthographicCamera): b_cam.type = 'ORTHO' b_cam.ortho_scale = max( bcam.xmag or bcam.ymag, bcam.ymag or bcam.xmag) if bcam.znear: b_cam.clip_start = bcam.znear if bcam.zfar: b_cam.clip_end = bcam.zfar def geometry(self, bgeom): b_materials = {} for sym, matnode in bgeom.materialnodebysymbol.items(): mat = matnode.target b_matname = self.name(mat) if b_matname not in bpy.data.materials: b_matname = self.material(mat, b_matname) b_materials[sym] = bpy.data.materials[b_matname] primitives = bgeom.original.primitives if self._transform('APPLY'): primitives = bgeom.primitives() b_geoms = [] for i, p in enumerate(primitives): if isinstance(p, BoundPrimitive): b_mat_key = p.original.material else: b_mat_key = p.material b_mat = b_materials.get(b_mat_key, None) b_meshname = self.name(bgeom.original, i) if isinstance(p, (TriangleSet, BoundTriangleSet)): b_mesh = self.geometry_triangleset( p, b_meshname, b_mat) elif isinstance(p, (Polylist, BoundPolylist)): b_mesh = self.geometry_triangleset( p.triangleset(), b_meshname, b_mat) else: continue if not b_mesh: continue b_obj = bpy.data.objects.new(b_meshname, b_mesh) b_obj.data = b_mesh self._ctx.scene.objects.link(b_obj) self._ctx.scene.objects.active = b_obj if len(b_obj.material_slots) == 0: bpy.ops.object.material_slot_add() b_obj.material_slots[0].link = 'OBJECT' b_obj.material_slots[0].material = b_mat b_obj.active_material = b_mat if self._transform('APPLY'): # TODO import normals bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.normals_make_consistent() bpy.ops.object.mode_set(mode='OBJECT') b_geoms.append(b_obj) return b_geoms def geometry_triangleset(self, triset, b_name, b_mat): if not self._transform('APPLY') and b_name in bpy.data.meshes: # with applied transformation, mesh reuse is not possible return bpy.data.meshes[b_name] else: if triset.vertex_index is None or \ not len(triset.vertex_index): return b_mesh = bpy.data.meshes.new(b_name) b_mesh.vertices.add(len(triset.vertex)) b_mesh.tessfaces.add(len(triset)) for i, vertex in enumerate(triset.vertex): b_mesh.vertices[i].co = vertex # eekadoodle eekadoodle_faces = [v for f in triset.vertex_index for v in _eekadoodle_face(*f)] b_mesh.tessfaces.foreach_set( 'vertices_raw', eekadoodle_faces) has_normal = (triset.normal_index is not None) has_uv = (len(triset.texcoord_indexset) > 0) if has_normal: # TODO import normals for i, f in enumerate(b_mesh.tessfaces): f.use_smooth = not _is_flat_face( triset.normal[triset.normal_index[i]]) if has_uv: for j in range(len(triset.texcoord_indexset)): self.texcoord_layer( triset, triset.texcoordset[j], triset.texcoord_indexset[j], b_mesh, b_mat) b_mesh.update() return b_mesh def texcoord_layer(self, triset, texcoord, index, b_mesh, b_mat): b_mesh.uv_textures.new() for i, f in enumerate(b_mesh.tessfaces): t1, t2, t3 = index[i] tface = b_mesh.tessface_uv_textures[-1].data[i] # eekadoodle if triset.vertex_index[i][2] == 0: t1, t2, t3 = t3, t1, t2 tface.uv1 = texcoord[t1] tface.uv2 = texcoord[t2] tface.uv3 = texcoord[t3] def light(self, light, i): if isinstance(light.original, AmbientLight): return b_name = self.name(light.original, i) if b_name not in bpy.data.lamps: if isinstance(light.original, DirectionalLight): b_lamp = bpy.data.lamps.new(b_name, type='SUN') elif isinstance(light.original, PointLight): b_lamp = bpy.data.lamps.new(b_name, type='POINT') b_obj = bpy.data.objects.new(b_name, b_lamp) self._ctx.scene.objects.link(b_obj) b_obj.matrix_world = Matrix.Translation(light.position) elif isinstance(light.original, SpotLight): b_lamp = bpy.data.lamps.new(b_name, type='SPOT') def material(self, mat, b_name): effect = mat.effect b_mat = bpy.data.materials.new(b_name) b_name = b_mat.name b_mat.diffuse_shader = 'LAMBERT' getattr(self, 'rendering_' + \ effect.shadingtype)(mat, b_mat) bpy.data.materials[b_name].use_transparent_shadows = \ self._kwargs.get('transparent_shadows', False) if effect.emission: b_mat.emit = sum(effect.emission[:3]) / 3.0 self.rendering_transparency(effect, b_mat) self.rendering_reflectivity(effect, b_mat) return b_name def node(self, node, parent): if isinstance(node, (Node, NodeNode)): b_obj = bpy.data.objects.new(self.name(node), None) b_obj.matrix_world = Matrix(node.matrix) self._ctx.scene.objects.link(b_obj) if parent: b_obj.parent = parent parent = b_obj elif isinstance(node, GeometryNode): for bgeom in node.objects('geometry'): b_geoms = self.geometry(bgeom) for b_obj in b_geoms: b_obj.parent = parent return parent def rendering_blinn(self, mat, b_mat): effect = mat.effect b_mat.specular_shader = 'BLINN' self.rendering_diffuse(effect.diffuse, b_mat) self.rendering_specular(effect, b_mat) def rendering_constant(self, mat, b_mat): b_mat.use_shadeless = True def rendering_lambert(self, mat, b_mat): effect = mat.effect self.rendering_diffuse(effect.diffuse, b_mat) b_mat.specular_intensity = 0.0 def rendering_phong(self, mat, b_mat): effect = mat.effect b_mat.specular_shader = 'PHONG' self.rendering_diffuse(effect.diffuse, b_mat) self.rendering_specular(effect, b_mat) def rendering_diffuse(self, diffuse, b_mat): b_mat.diffuse_intensity = 1.0 diff = self.color_or_texture(diffuse, b_mat) if isinstance(diff, tuple): b_mat.diffuse_color = diff else: diff.use_map_color_diffuse = True def rendering_specular(self, effect, b_mat): if effect.specular: b_mat.specular_intensity = 1.0 b_mat.specular_color = effect.specular[:3] if effect.shininess: b_mat.specular_hardness = effect.shininess def rendering_reflectivity(self, effect, b_mat): if effect.reflectivity and effect.reflectivity > 0: b_mat.raytrace_mirror.use = True b_mat.raytrace_mirror.reflect_factor = effect.reflectivity if effect.reflective: refi = self.color_or_texture(effect.reflective, b_mat) if isinstance(refi, tuple): b_mat.mirror_color = refi else: # TODO use_map_mirror or use_map_raymir ? pass def rendering_transparency(self, effect, b_mat): if not effect.transparency: return if isinstance(effect.transparency, float): if effect.transparency < 1.0: b_mat.use_transparency = True b_mat.alpha = effect.transparency if self._kwargs.get('raytrace_transparency', False): b_mat.transparency_method = 'RAYTRACE' b_mat.raytrace_transparency.ior = 1.0 b_mat.raytrace_transparency.depth = TRANSPARENCY_RAY_DEPTH if isinstance(effect.index_of_refraction, float): b_mat.transparency_method = 'RAYTRACE' b_mat.raytrace_transparency.ior = effect.index_of_refraction b_mat.raytrace_transparency.depth = TRANSPARENCY_RAY_DEPTH def color_or_texture(self, color_or_texture, b_mat): if isinstance(color_or_texture, Map): image = color_or_texture.sampler.surface.image mtex = self.try_texture(image, b_mat) return mtex or (1., 0., 0.) elif isinstance(color_or_texture, tuple): return color_or_texture[:3] def try_texture(self, c_image, b_mat): mtex = None with self._tmpwrite(c_image.path, c_image.data) as tmp: image = load_image(tmp) if image is not None: image.pack(True) texture = bpy.data.textures.new(name='Kd', type='IMAGE') texture.image = image mtex = b_mat.texture_slots.add() mtex.texture_coords = 'UV' mtex.texture = texture self._images[b_mat.name] = image return mtex def name(self, obj, index=0): """ Trying to get efficient and human readable name, workarounds Blender's object name limitations. """ if hasattr(obj, 'id'): uid = obj.id.replace('material', 'm') else: self._namecount += 1 uid = 'Untitled.' + str(self._namecount) base = '%s-%d' % (uid, index) if base not in self._names: self._namecount += 1 self._names[base] = '%s-%.4d' % (base[:MAX_NAME_LENGTH], self._namecount) return self._names[base] @contextmanager def _tmpwrite(self, relpath, data): with NamedTemporaryFile(suffix='.' + relpath.split('.')[-1]) as out: out.write(data) out.flush() yield out.name def _transform(self, t): return self._kwargs['transformation'] == t class SketchUpImport(ColladaImport): """ SketchUp specific COLLADA import. """ def rendering_diffuse(self, diffuse, b_mat): """ Imports PNG textures with alpha channel. """ ColladaImport.rendering_diffuse(self, diffuse, b_mat) if isinstance(diffuse, Map): if b_mat.name in self._images: image = self._images[b_mat.name] if image.depth == 32: diffslot = None for ts in b_mat.texture_slots: if ts and ts.use_map_color_diffuse: diffslot = ts break if not diffslot: return image.use_alpha = True diffslot.use_map_alpha = True tex = diffslot.texture tex.use_mipmap = True tex.use_interpolation = True tex.use_alpha = True b_mat.use_transparency = True b_mat.alpha = 0.0 if self._kwargs.get('raytrace_transparency', False): b_mat.transparency_method = 'RAYTRACE' b_mat.raytrace_transparency.ior = 1.0 b_mat.raytrace_transparency.depth = TRANSPARENCY_RAY_DEPTH def rendering_phong(self, mat, b_mat): super().rendering_lambert(mat, b_mat) def rendering_reflectivity(self, effect, b_mat): """ There are no reflectivity controls in SketchUp """ if not self.__class__.test2(effect.xmlnode): ColladaImport.rendering_reflectivity(self, effect, b_mat) @classmethod def match(cls, collada): xml = collada.xmlnode return cls.test1(xml) or cls.test2(xml) @classmethod def test1(cls, xml): src = [xml.find('.//dae:instance_visual_scene', namespaces=DAE_NS).get('url')] at = xml.find('.//dae:authoring_tool', namespaces=DAE_NS) if at is not None: src.append(at.text) return any(['SketchUp' in s for s in src if s]) @classmethod def test2(cls, xml): et = xml.findall('.//dae:extra/dae:technique', namespaces=DAE_NS) return len(et) and any([ t.get('profile') == 'GOOGLEEARTH' for t in et]) VENDOR_SPECIFIC.append(SketchUpImport) def _is_flat_face(normal): a = Vector(normal[0]) for n in normal[1:]: dp = a.dot(Vector(n)) if dp < 0.99999 or dp > 1.00001: return False return True def _eekadoodle_face(v1, v2, v3): return v3 == 0 and (v3, v1, v2, 0) or (v1, v2, v3, 0) def _children(node): if isinstance(node, Scene): return node.nodes elif isinstance(node, Node): return node.children elif isinstance(node, NodeNode): return node.node.children else: return [] def _dfs(node, cb, parent=None): """ Depth first search taking a callback function. Its return value will be passed recursively as a parent argument. :param node: COLLADA node :param callable cb: """ parent = cb(node, parent) for child in _children(node): _dfs(child, cb, parent)
8cd818444c27b4f781c9fcb4f938acbe5fb6b0aa
97c5af22476b1efb5cacb91686a2e704f4249437
/Topic/recieve_logs_topic.py
49400f7daf78dbb7fb53cfd52637148c4d8c228d
[]
no_license
mcclayac/RabbitMQ_python
5b3a6f8604123901eb63878c5a37e216d7e6c60b
f2a743b1187499bc79a6b0045b508f92c457243b
refs/heads/master
2021-01-11T02:50:12.542891
2016-10-15T13:00:57
2016-10-15T13:00:57
70,917,558
0
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
__author__ = 'anthonymcclay' __project__ = 'RabbitMQ' __date__ = '10/15/16' __revision__ = '$' __revision_date__ = '$' #!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='topic_logs', type='topic') result = channel.queue_declare(exclusive=True) queue_name = result.method.queue binding_keys = sys.argv[1:] if not binding_keys: sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0]) sys.exit(1) for binding_key in binding_keys: channel.queue_bind(exchange='topic_logs', queue=queue_name, routing_key=binding_key) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
5048510bf141c45aed2624550198d8896bcd32cb
a6ccd2da44e4b1d91e562dc68ad49f8396f8bd4c
/main.py
a6b37d1827596dec7fc6ac48f55d6b5aafc746fa
[]
no_license
Zarreen-Davis/Password_Generator
39cd1cebd5837b97b7eb16d340f5719a5f064a06
774ac2e3b47956464efe08ba9acec339863847fe
refs/heads/master
2023-01-02T08:39:45.228744
2020-10-27T18:57:06
2020-10-27T18:57:06
307,798,907
1
0
null
null
null
null
UTF-8
Python
false
false
1,547
py
#enter and reenter password to ensure they match password= input ("Please create a password: ") password_2 = input ("Please re-enter you password: ") #if passwords don't match an invalid message is displayed if password != password_2: print("Invalid! These passwords don't match.") #checks password length is valid. Must be more than 6 characters but less than 20 characters if len(password_2) <6: print("Invalid! Password must be more than 6 characters.") elif len(password_2) >20: print("Invalid! Password must be less than 20 characters.") #weak password contains just lower and/or uppercase characters #medium strength password contains lowercase, uppercase and numbers #strong password contains uppercase and lowercase characters, number and symbols lowercase_found = 0 uppercase_found = 0 digit_found = 0 Specialchar_found = 0 for char in password_2: if char.islower(): lowercase_found = 1 if char.isupper(): uppercase_found = 1 if char.isdigit(): digit_found = 1 if char=='$'or char=='#' or char=='%' or char=="!": Specialchar_found = 1 if lowercase_found and uppercase_found and digit_found and Specialchar_found: break password_strength = lowercase_found + uppercase_found + digit_found + Specialchar_found if password_strength == 1: print("You have entered a weak password!") elif password_strength ==2: print("You have entered a weak password!") elif password_strength ==3: print("You have entered a medium strength password.") else: print("You have entered a strong password.")
33b7fafb2c489da4c821b0f2d6c5bd2e4a4f86d4
28e6ef83fa54713c70a3f0115d390ddfa91d00a1
/mmfeat/miner/freesound.py
e3ac502f630f5960767499f4963d54bf5d05871e
[ "BSD-3-Clause" ]
permissive
braingineer/mmfeat
11029fb680460a242ce71807a2d22b31adda6c35
fdb59c4f60f5d910722ab72b469b7e317046e2d2
refs/heads/master
2020-12-27T15:15:05.376984
2016-08-15T15:23:27
2016-08-15T15:23:27
66,103,807
1
0
null
2016-08-19T18:27:23
2016-08-19T18:27:21
Python
UTF-8
Python
false
false
3,181
py
''' FreeSound API miner ''' import os import requests import shutil import time import urllib from .base import BaseMiner class FreeSoundResult(object): def __init__(self, result, api_key): self.ID = result['id'] self.format_url = 'http://www.freesound.org/apiv2/sounds/{}/?token={}' self.url = self.format_url.format(self.ID, api_key) self.format = 'audio/ogg' # FreeSound default class FreeSoundMiner(BaseMiner): def __init__(self, save_dir, config_path='./miner.yaml'): super(FreeSoundMiner, self).__init__(save_dir, config_path) self.__engine__ = 'freesound' self.api_keys = self.config['freesound']['api-keys'] self.format_url = 'http://www.freesound.org/apiv2/search/text/?fields=id&{}' self.page_size = 150 # maximum def getUrl(self, query, limit, offset): filters = { 'tag': query, 'duration': '[0 TO 120]' } self.filter = ' '.join([key + ':' + filters[key] for key in filters]) full_query = urllib.urlencode({ 'token': self.api_keys[self.cur_api_key], 'page_size': limit, 'page': offset, 'filter': self.filter }) return self.format_url.format(full_query) def _search(self, query, limit=20, offset=1): url = self.getUrl(query, limit, offset) print url r = requests.get(url) try: results = r.json() except ValueError: print('ERR: Request returned with code %s (%s)' % (r.status_code, r.text)) time.sleep(self.sleep_time) print results return [FreeSoundResult(res, self.api_keys[self.cur_api_key]) \ for res in results['results']], results['next'] is not None def search(self, query, limit=20): page = 1 results, isMoreLeft = self._search(query, limit, page) page = 2 while isMoreLeft and len(results) < limit: print page, isMoreLeft max = limit - len(results) more_results, isMoreLeft = self._search(query, max, page) results += more_results page += 1 return results def saveFile(self, result): ''' result: result object (FreesoundResult) ''' if result.format in ['audio/ogg']: format = 'ogg' else: # unknown format, skipping return None fname = '%s.%s' % (result.ID, format) path = '%s/%s' % (self.save_dir, fname) if os.path.exists(path): print('%s - already exists' % fname) return # download the file (specifically, the high-quality ogg preview) try: r = requests.get(result.url, timeout=20) response = r.json() r = requests.get(response['previews']['preview-hq-ogg'], \ stream=True, timeout=20) r.raw.decode_content = True with open(path, 'wb') as fw: shutil.copyfileobj(r.raw, fw) except: print(fname, 'error saving') return None print(fname) return fname
ea2f67c98f18b60516584d6e34cfb6f1083eee5d
19a39bc9ec8c300f60e17a61cd4c6ec911842573
/count_coins_and_bills.py
3796cf18cdb818d95dbb4a39ea83cd1e52307568
[]
no_license
caiosuzuki/conta-moedas-e-notas
07f6d89b2be43eaa2508087de550e985e7822d86
3843d6c9e70c51b57f5666dfb307dc6601a70b5c
refs/heads/master
2020-08-27T15:01:27.400193
2019-11-09T01:26:05
2019-11-09T01:26:05
217,414,629
0
0
null
null
null
null
UTF-8
Python
false
false
3,968
py
import cv2 as cv import numpy as np MATH_MORPH_KERNEL_SIZE = 3 BLUR_KERNEL_SIZE = 11 DEFAULT_INPUT_IMG_PATH = './notas-e-moedas-exemplo/0c2n-3.jpg' def calculate_area_of_rect(rect): return rect[1][0] * rect[1][1] def calculate_rect_ratio(rect): width = rect[1][0] height = rect[1][1] if width > height: return width / height else: return height / width def count_coins_and_bills_in_image(filename, show_steps=False): bgr_img = cv.imread(filename, 1) img = cv.cvtColor(bgr_img, cv.COLOR_BGR2GRAY) # Tratando tamanho da imagem para ser visualizável enquanto é feito o tuning dos parâmetros img = cv.resize(img,None,fx=0.25,fy=0.25) resized_img = img.copy() if show_steps: cv.imshow('0 - Resized Original Image', img) # Utilizando blur para amenizar detalhes internos das notas e moedas como números de desenhos img = cv.GaussianBlur(img, (BLUR_KERNEL_SIZE, BLUR_KERNEL_SIZE), cv.BORDER_DEFAULT) if show_steps: cv.imshow('1 - Gaussian Blur', img) # Aplicando transformada de hough para encontrar círculos na imagem all_circles_found = cv.HoughCircles(img, cv.HOUGH_GRADIENT, dp=0.9, minDist=120, param1=10, param2=40, minRadius=30, maxRadius=60) # Encontrando círculos que serão considerados como moedas coins_in_image = 0 if all_circles_found is not None: all_circles_found = np.uint16(np.around(all_circles_found)) for circle in all_circles_found[0, :]: # Desenhando círculo na imagem original cv.circle(resized_img, (circle[0], circle[1]), circle[2], (0, 255, 0), 5) # Cada círculo conta como uma moeda coins_in_image += 1 if show_steps: cv.imshow('2 - Drawn circles', resized_img) # Binarizando valores de intensidade img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, 11, 2) if show_steps: cv.imshow('3 - Adaptive Gaussian Thresholding', img) # Definindo kernel que será utilizado nas operações de morfologia matemática kernel = cv.getStructuringElement(cv.MORPH_RECT, (MATH_MORPH_KERNEL_SIZE, MATH_MORPH_KERNEL_SIZE)) # Realizando fechamento para fechar fendas que surgem principalmente nas notas, # evitando que fiquem separadas e cause com que não consigamos transformar # essas partes no "blob" da nota img = cv.morphologyEx(img, cv.MORPH_CLOSE, kernel, iterations=5) if show_steps: cv.imshow('4 - Closing', img) # Dilatando as pequenas partes que compõe cada nota para que se juntem e eventualmente # seja possível identificar os retângulos das notas img = cv.dilate(img, kernel, iterations = 12) if show_steps: cv.imshow('5 - Dilation', img) bills_in_image = 0 # Encontrando os contours (liga os pontos de mesma intensidade que estão próximos) contours, _ = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) for contour in contours: # Achando os retângulos que possivelmente são uma nota rect = cv.minAreaRect(contour) rect_area = calculate_area_of_rect(rect) rect_ratio = calculate_rect_ratio(rect) # Assumindo por critério de área e ratio do retângulo se ele é uma nota ou não if (rect_area > 90000) and 1.2 < rect_ratio < 2.0: # Criando bounding box correspondente para poder desenhar na imagem box = cv.boxPoints(rect) box = np.int0(box) resized_img = cv.drawContours(resized_img, [box], 0, (0, 255, 0), 3) bills_in_image += 1 if show_steps: cv.imshow(f'Coins and bills: {filename}', resized_img) cv.waitKey(0) cv.destroyAllWindows() print(f'{coins_in_image}c{bills_in_image}n') return coins_in_image, bills_in_image if __name__ == "__main__": count_coins_and_bills_in_image(DEFAULT_INPUT_IMG_PATH, show_steps=True)
62cbf0a6b75da95841744b5f398c31d871e00a6d
3591e440d74b5cd40a3fbfedb88ed103f22c9722
/mysite/polls/migrations/0018_auto_20170425_0041.py
8b8b6a6752bf58c30b261d59b5eb9ac85b23d893
[]
no_license
larako/web_4A_S2
072b0c597e9771cb9d2a75fc70d89b0d08557a08
454a4ede3c588cd37e4ed1416e2ebd1b32c8c5a8
refs/heads/master
2021-01-22T22:08:15.722787
2017-04-28T15:17:48
2017-04-28T15:17:48
85,509,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,383
py
# Generated by Django 2.0.dev20170317160306 on 2017-04-25 00:41 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('polls', '0017_auto_20170424_2342'), ] operations = [ migrations.CreateModel( name='Purchase', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('purchased_at', models.DateTimeField(auto_now_add=True)), ('tx', models.CharField(max_length=250)), ('purchaser', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.User')), ], ), migrations.CreateModel( name='Resource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=250)), ('location', models.CharField(max_length=250)), ('price', models.DecimalField(decimal_places=2, max_digits=7)), ], ), migrations.AddField( model_name='purchase', name='ressource', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Resource'), ), ]
3bf874bd99dc884003dd3e452e0eeb8d382a3467
84b046d70ed94d8db9e8ea82798597c0e1ca7cd2
/bionlp/data/document.py
a6f8f7a39971b25f022b751e38ec73ade2c124a8
[ "MIT" ]
permissive
Honghan/ade_ann
20ead66c051ad57903b7514979b2d624b47eb32e
1cbbe47a1c6c2af3477f6c0c1398bae683c8d601
refs/heads/master
2021-04-30T23:22:39.465704
2016-11-04T11:49:50
2016-11-04T11:49:50
69,241,232
1
1
null
null
null
null
UTF-8
Python
false
false
268
py
class Document: def __init__(self,SentenceList,id=-1): self.id=id self.value=SentenceList self.attr={} def __str__(self): s ="Document id: {0}, value: {1}, attributes: {2}".format(self.id,self.value,self.attr) return s
915fbfd3f6cb8e8d8b28b0a9abf61ad77b62bb96
6e758147e0cf2b9e7440f1b09daef4ad84132a81
/mySite/offerStream/models.py
9a7528b51f900cd7f66a6eda9d456097553e7068
[]
no_license
joha0123/djangoProject
31fed982dba4298cdc1e4b72e29e87064b1676dc
c700c9b65cd2404674bfd72506fa3e6824a46a6d
refs/heads/master
2021-01-01T03:46:51.016060
2016-05-18T09:58:21
2016-05-18T09:58:21
58,851,299
0
0
null
null
null
null
UTF-8
Python
false
false
788
py
from django.db import models class Adress(models.Model): street = models.CharField(max_length=150) city = models.CharField(max_length=100) zipCode = models.CharField(max_length=10) def __str__(self): return "%s, %s %s" % (self.street, self.zipCode, self.city) class Store(models.Model): name = models.CharField(max_length=50) description = models.TextField() adress = models.OneToOneField(Adress, on_delete=models.CASCADE) def __str__(self): return self.name class Offer(models.Model): creationDate = models.DateTimeField(auto_now_add=True) title = models.CharField(max_length=100) detail = models.TextField() store = models.ForeignKey(Store, on_delete=models.CASCADE) def __str__(self): return self.title
e3e0d9bd3cd8849299f63bd764b5c02cc8ae2980
699d28b11032360f076ba21aa95ca00111bc97f6
/calcs.py
5586e5c93d8a887634807c41463a40fe5a90d03c
[]
no_license
kthyng/ai65
840058f8ee717df01a02d8177a94ce5a4cc714db
5bebedd0033c64cb5a5cf64c8e2f9d9d827bfdd7
refs/heads/master
2020-04-05T12:35:02.211547
2019-07-28T15:47:54
2019-07-28T15:47:54
95,168,859
0
0
null
null
null
null
UTF-8
Python
false
false
13,033
py
''' Calculations. ''' import xarray as xr import pandas as pd import matplotlib.pyplot as plt import cartopy.crs as ccrs import cmocean.cm as cmo from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import cartopy.feature as cfeature import matplotlib.ticker as mticker import netCDF4 as netCDF import argparse from glob import glob import numpy as np from cartopy.io import shapereader import matplotlib as mpl mpl.rcParams.update({'font.size': 10}) import scipy.io import os import matplotlib.dates as Dates from plots import re # set up locgrid = '/pong/raid/kthyng/froude/ai65/grid.nc' locmodel = '/pong/raid/kthyng/froude/ai65/OUT/' grid = netCDF.Dataset(locgrid) pm = grid['pm'][0,0]; pn = grid['pn'][0,0] dx = pm**-1; dy = pn**-1 h = grid['h'][:] lon_psi = grid['lon_psi'][:]; lat_psi = grid['lat_psi'][:] lon_rho = grid['lon_rho'][:]; lat_rho = grid['lat_rho'][:] dates = pd.date_range("2006-09-01", "2006-10-01", freq="15T") ntimes = len(dates) g = 9.81 # m/s^2 Cd = 3e-3 # friction coefficient rho0 = 1023.7 def run(twest, teast, tnorth, tsouth, name, doterms=False): PEeast = np.zeros(ntimes); KEbteast = np.zeros(ntimes); KEbceast = np.zeros(ntimes) PEwest = np.zeros(ntimes); KEbtwest = np.zeros(ntimes); KEbcwest = np.zeros(ntimes) PEnorth = np.zeros(ntimes); KEbtnorth = np.zeros(ntimes); KEbcnorth = np.zeros(ntimes) PEsouth = np.zeros(ntimes); KEbtsouth = np.zeros(ntimes); KEbcsouth = np.zeros(ntimes) Pbtin = np.zeros(ntimes); Pbtout = np.zeros(ntimes) Pbcin = np.zeros(ntimes); Pbcout = np.zeros(ntimes) Pbtwest = np.zeros(ntimes); Pbtnorth = np.zeros(ntimes) Pbtsouth = np.zeros(ntimes); Pbteast = np.zeros(ntimes) Pbcwest = np.zeros(ntimes); Pbcnorth = np.zeros(ntimes) Pbcsouth = np.zeros(ntimes); Pbceast = np.zeros(ntimes) if doterms: Pmix = np.zeros(ntimes); Pfriction = np.zeros(ntimes) Pmom = np.zeros(ntimes) for i in range(ntimes): m = netCDF.Dataset(locmodel + 'ocean_his_' + str(i+1).zfill(4) + '.nc') # Calculate over power dissipation across inlet in time # Want to have all of these calculations on the psi grid to be at cell edges for vec in twest: # west # in y direction need 2 extra indices: 1 for interpolating from rho to psi grid # and 1 for including the end point ubarwest = re(m['ubar'][0,vec[0]:vec[1]+2,vec[2]],0).squeeze() # in y direction need 1 extra index for including the end point # in x direction need 2 extra for interpolating from rho to psi grid vbarwest = re(m['vbar'][0,vec[0]:vec[1]+1,vec[2]:vec[2]+2],1).squeeze() uwest = re(m['u'][0,:, vec[0]:vec[1]+2,vec[2]],1).squeeze() vwest = re(m['v'][0,:, vec[0]:vec[1]+1,vec[2]:vec[2]+2],2).squeeze() # need to interpolate from rho to psi grid in both y and x zetawest = re(re(m['zeta'][0,vec[0]:vec[1]+2,vec[2]:vec[2]+2], 1), 0) Hwest = re(re(h[vec[0]:vec[1]+2,vec[2]:vec[2]+2], 1), 0) + zetawest # height PEwest[i] = rho0 * g * dy * (Hwest * ubarwest * zetawest).sum() # potential energy anomaly, sum in y KEbtwest[i] = 0.5 * rho0 * dy * (Hwest * ubarwest * (ubarwest**2 + vbarwest**2)).sum() # sum in y dzwest = Hwest.squeeze()/20. KEbcwest[i] = 0.5 * rho0 * dy * (dzwest * uwest * (uwest**2 + vwest**2)).sum() # sum in z and y Pbtwest[i] = PEwest[i] + KEbtwest[i] Pbcwest[i] = PEwest[i] + KEbcwest[i] for vec in teast: # east ubareast = re(m['ubar'][0,vec[0]:vec[1]+2,vec[2]],0).squeeze() vbareast = re(m['vbar'][0,vec[0]:vec[1]+1,vec[2]:vec[2]+2],1).squeeze() ueast = re(m['u'][0,:, vec[0]:vec[1]+2,vec[2]],1).squeeze() veast = re(m['v'][0,:, vec[0]:vec[1]+1,vec[2]:vec[2]+2],2).squeeze() zetaeast = re(re(m['zeta'][0,vec[0]:vec[1]+2,vec[2]:vec[2]+2], 1), 0) Heast = re(re(h[vec[0]:vec[1]+2,vec[2]:vec[2]+2], 1), 0) + zetaeast # height PEeast[i] = rho0 * g * dy * (Heast * ubareast * zetaeast).sum() # potential energy anomaly, sum in y KEbteast[i] = 0.5 * rho0 * dy * (Heast * ubareast * (ubareast**2 + vbareast**2)).sum() # sum in y dzeast = Heast.squeeze()/20. KEbceast[i] = 0.5 * rho0 * dy * (dzeast * ueast * (ueast**2 + veast**2)).sum() # sum in z and y Pbteast[i] = PEeast[i] + KEbteast[i] Pbceast[i] = PEeast[i] + KEbceast[i] for vec in tnorth: # north vbarnorth = re(m['vbar'][0,vec[0],vec[1]:vec[2]+2],0).squeeze() # in y direction 2 extra indices for intepolating from rho to psi grid with an extra index # in x direction 1 extra index to include end point ubarnorth = re(m['ubar'][0,vec[0]:vec[0]+2,vec[1]:vec[2]+1],0).squeeze() unorth = re(m['u'][0,:, vec[0]:vec[0]+2,vec[1]:vec[2]+1],1).squeeze() vnorth = re(m['v'][0,:, vec[0],vec[1]:vec[2]+2],1).squeeze() zetanorth = re(re(m['zeta'][0,vec[0]:vec[0]+2,vec[1]:vec[2]+2], 1), 0) Hnorth = re(re(h[vec[0]:vec[0]+2,vec[1]:vec[2]+2],1),0) + zetanorth # height PEnorth[i] = rho0 * g * dx * (Hnorth * vbarnorth * zetanorth).sum() # potential energy anomaly, sum in y KEbtnorth[i] = 0.5 * rho0 * dx * (Hnorth * vbarnorth * (ubarnorth**2 + vbarnorth**2)).sum() # sum in y dznorth = Hnorth.squeeze()/20. KEbcnorth[i] = 0.5 * rho0 * dx * (dznorth * vnorth * (unorth**2 + vnorth**2)).sum() # sum in z and y Pbtnorth[i] = PEnorth[i] + KEbtnorth[i] Pbcnorth[i] = PEnorth[i] + KEbcnorth[i] for vec in tsouth: # south vbarsouth = re(m['vbar'][0,vec[0],vec[1]:vec[2]+2],0).squeeze() ubarsouth = re(m['ubar'][0,vec[0]:vec[0]+2,vec[1]:vec[2]+1],0).squeeze() usouth = re(m['u'][0,:, vec[0]:vec[0]+2,vec[1]:vec[2]+1],1).squeeze() vsouth = re(m['v'][0,:, vec[0],vec[1]:vec[2]+2],1).squeeze() zetasouth = re(re(m['zeta'][0,vec[0]:vec[0]+2,vec[1]:vec[2]+2], 1), 0) Hsouth = re(re(h[vec[0]:vec[0]+2,vec[1]:vec[2]+2],1),0) + zetasouth # height PEsouth[i] = rho0 * g * dx * (Hsouth * vbarsouth * zetasouth).sum() # potential energy anomaly, sum in y KEbtsouth[i] = 0.5 * rho0 * dx * (Hsouth * vbarsouth * (ubarsouth**2 + vbarsouth**2)).sum() # sum in y dzsouth = Hsouth.squeeze()/20. KEbcsouth[i] = 0.5 * rho0 * dx * (dzsouth * vsouth * (usouth**2 + vsouth**2)).sum() # sum in z and y Pbtsouth[i] = PEsouth[i] + KEbtsouth[i] Pbcsouth[i] = PEsouth[i] + KEbcsouth[i] if doterms: ## Calculate mixing across inlet in time (buoyancy production) # in y direction +1 index at south to include rho inside of psi edge # and +1 index at north to include end point. (Same for x) AKs = m['AKs'][0, 1:-1, tsouth[0][0]+1:tnorth[0][0]+1, twest[0][2]+1:teast[0][2]+1] # vertical viscosity for tracer rho = m['rho'][0, :, tsouth[0][0]+1:tnorth[0][0]+1, twest[0][2]+1:teast[0][2]+1] # density zeta = m['zeta'][0,tsouth[0][0]+1:tnorth[0][0]+1, twest[0][2]+1:teast[0][2]+1] dz = (h[tsouth[0][0]+1:tnorth[0][0]+1, twest[0][2]+1:teast[0][2]+1] + zeta)/20. # easy since layers are uniform drhodz = (rho[:-1] - rho[1:])/dz Pmix[i] = g * dy * dx * (AKs*drhodz*dz).sum() ## ## Calculate momentum across inlet in time (shear production) AKv = m['AKv'][0, 1:-1, tsouth[0][0]+1:tnorth[0][0]+1, twest[0][2]+1:teast[0][2]+1] # vertical viscosity for momentum u = re(m['u'][0, :, tsouth[0][0]+1:tnorth[0][0]+1, twest[0][2]:teast[0][2]+1],2) v = re(m['v'][0, :, tsouth[0][0]:tnorth[0][0]+1, twest[0][2]+1:teast[0][2]+1],1) dudz = (u[:-1] - u[1:])/dz dvdz = (v[:-1] - v[1:])/dz Pmom[i] = rho0 * dy * dx * (AKv*(dudz**2 + dvdz**2)*dz).sum() ## ## Calculate power dissipation due to bottom friction, across domain # using velocity from bottom of water column Pfriction[i] = Cd * rho0 * dy * dx * abs((u[0]**2 + v[0]**2)**(3/2)).sum() ## df = pd.DataFrame(index=dates) df['PEeast'] = PEeast; df['KEbteast'] = KEbteast; df['KEbceast'] = KEbceast df['Pbteast'] = Pbteast; df['Pbceast'] = Pbceast; df['PEwest'] = PEwest; df['KEbtwest'] = KEbtwest; df['KEbcwest'] = KEbcwest df['Pbtwest'] = Pbtwest; df['Pbcwest'] = Pbcwest; df['PEnorth'] = PEnorth; df['KEbtnorth'] = KEbtnorth; df['KEbcnorth'] = KEbcnorth df['Pbtnorth'] = Pbtnorth; df['Pbcnorth'] = Pbcnorth; df['PEsouth'] = PEsouth; df['KEbtsouth'] = KEbtsouth; df['KEbcsouth'] = KEbcsouth df['Pbtsouth'] = Pbtsouth; df['Pbcsouth'] = Pbcsouth; if np.isnan(Pbtwest.sum()): Pbtwest = np.zeros(Pbtwest.size) Pbcwest = np.zeros(Pbcwest.size) if np.isnan(Pbteast.sum()): Pbteast = np.zeros(Pbteast.size) Pbceast = np.zeros(Pbceast.size) if np.isnan(Pbtnorth.sum()): Pbtnorth = np.zeros(Pbtnorth.size) Pbcnorth = np.zeros(Pbcnorth.size) if np.isnan(Pbtsouth.sum()): Pbtsouth = np.zeros(Pbtsouth.size) Pbcsouth = np.zeros(Pbcsouth.size) df['Pbtin'] = Pbtwest - Pbtnorth df['Pbcin'] = Pbcwest - Pbcnorth df['Pbtout'] = Pbtsouth - Pbteast df['Pbcout'] = Pbcsouth - Pbceast df['Pbt'] = df['Pbtin'] + df['Pbtout'] df['Pbc'] = df['Pbcin'] + df['Pbcout'] if doterms: df['Pmix'] = Pmix df['Pmom'] = Pmom df['Pfriction'] = Pfriction df.to_csv('savedoutput/power/' + name + '.csv') # pd.read_csv('savedoutput/power.csv', index_col=0, parse_dates=True) if __name__ == "__main__": # parse input arguments which = 'stripsd50' # 'all' 'center' doterms = True if which == 'testtop': # west transects: [0:1, 2] twest = np.array([[335, 375, 5]]) # east transects: [0:1, 2] teast = np.array([[335, 375, 280]]) # north transects: [0, 1:2] tnorth = np.array([[375,5,280]]) # south transects: [0, 1:2] tsouth = np.array([[335, 5,280]]) elif which == 'testbottom': # west transects: [0:1, 2] twest = np.array([[295, 335, 5]]) # east transects: [0:1, 2] teast = np.array([[295, 335, 280]]) # north transects: [0, 1:2] tnorth = np.array([[335,5,280]]) # south transects: [0, 1:2] tsouth = np.array([[295, 5,280]]) elif which == 'all': twest = np.array([[0, 444, 0]]) teast = np.array([[0, 444, 296]]) tnorth = np.array([[444, 0, 296]]) tsouth = np.array([[0, 0, 296]]) # choose domain to use, possibly looping. Run function. if 'strips' not in which: run(twest, teast, tnorth, tsouth, which) elif which == 'strips': for j in range(lon_psi.shape[0]): name = which + str(j) fname = 'savedoutput/power/' + name + '.csv' if os.path.exists(fname): continue twest = np.array([[j, j+1, 0]]) # west transects: [0:1, 2] teast = np.array([[j, j+1, 296]]) # east transects: [0:1, 2] tnorth = np.array([[j+1, 0, 296]]) # north transects: [0, 1:2] tsouth = np.array([[j, 0, 296]]) # south transects: [0, 1:2] run(twest, teast, tnorth, tsouth, name, doterms=doterms) elif which == 'stripsd10': dd = 10 for j in range(lon_psi.shape[0])[::dd]: twest = np.array([[j, j+dd, 0]]) # west transects: [0:1, 2] teast = np.array([[j, j+dd, 296]]) # east transects: [0:1, 2] tnorth = np.array([[j+dd, 0, 296]]) # north transects: [0, 1:2] tsouth = np.array([[j, 0, 296]]) # south transects: [0, 1:2] run(twest, teast, tnorth, tsouth, which + str(j), doterms=doterms) elif which == 'stripsd20': dd = 20 for j in range(lon_psi.shape[0])[::dd]: twest = np.array([[j, j+dd, 0]]) # west transects: [0:1, 2] teast = np.array([[j, j+dd, 296]]) # east transects: [0:1, 2] tnorth = np.array([[j+dd, 0, 296]]) # north transects: [0, 1:2] tsouth = np.array([[j, 0, 296]]) # south transects: [0, 1:2] run(twest, teast, tnorth, tsouth, which + str(j), doterms=doterms) elif which == 'stripsd50': dd = 50 for j in range(lon_psi.shape[0])[::dd]: twest = np.array([[j, j+dd, 0]]) # west transects: [0:1, 2] teast = np.array([[j, j+dd, 296]]) # east transects: [0:1, 2] tnorth = np.array([[j+dd, 0, 296]]) # north transects: [0, 1:2] tsouth = np.array([[j, 0, 296]]) # south transects: [0, 1:2] run(twest, teast, tnorth, tsouth, which + str(j), doterms=doterms)
faf221e81366357c9bf8a59f9df555323d2f696f
ab764ffb00c82ad029f45a0d229cd2025f697985
/main/migrations/0002_auto__add_field_portrit_user_tutorial_completed__add_field_portrit_use.py
2edf987e934c7ca1df8807a6a6675fc515424318
[]
no_license
joneath/portrit
d1ae9b346fca29fd905cca300dfbca8b8a51641e
529047437d459905abb81618c2c1b85358d09a59
refs/heads/master
2020-03-29T20:43:27.487989
2011-12-14T06:02:34
2011-12-14T06:02:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,095
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Portrit_User.tutorial_completed' db.add_column('main_portrit_user', 'tutorial_completed', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) # Adding field 'Portrit_User.given_nomination_count' db.add_column('main_portrit_user', 'given_nomination_count', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Portrit_User.recieved_nomination_count' db.add_column('main_portrit_user', 'recieved_nomination_count', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Portrit_User.selfish_nomination_count' db.add_column('main_portrit_user', 'selfish_nomination_count', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Portrit_User.winning_nomination_count' db.add_column('main_portrit_user', 'winning_nomination_count', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Portrit_User.invite_count' db.add_column('main_portrit_user', 'invite_count', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Portrit_User.vote_count' db.add_column('main_portrit_user', 'vote_count', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Portrit_User.comment_count' db.add_column('main_portrit_user', 'comment_count', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) def backwards(self, orm): # Deleting field 'Portrit_User.tutorial_completed' db.delete_column('main_portrit_user', 'tutorial_completed') # Deleting field 'Portrit_User.given_nomination_count' db.delete_column('main_portrit_user', 'given_nomination_count') # Deleting field 'Portrit_User.recieved_nomination_count' db.delete_column('main_portrit_user', 'recieved_nomination_count') # Deleting field 'Portrit_User.selfish_nomination_count' db.delete_column('main_portrit_user', 'selfish_nomination_count') # Deleting field 'Portrit_User.winning_nomination_count' db.delete_column('main_portrit_user', 'winning_nomination_count') # Deleting field 'Portrit_User.invite_count' db.delete_column('main_portrit_user', 'invite_count') # Deleting field 'Portrit_User.vote_count' db.delete_column('main_portrit_user', 'vote_count') # Deleting field 'Portrit_User.comment_count' db.delete_column('main_portrit_user', 'comment_count') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'main.album': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'Album'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'fid': ('main.models.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'photos': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Photo']", 'null': 'True', 'blank': 'True'}) }, 'main.badge': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'Badge'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'associates': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.FB_User']", 'null': 'True', 'blank': 'True'}), 'badge_category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.Badge_Category']", 'null': 'True', 'blank': 'True'}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nomination': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.Nomination']", 'null': 'True', 'blank': 'True'}), 'pending': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'photo': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.Photo']", 'null': 'True', 'blank': 'True'}) }, 'main.badge_category': { 'Meta': {'ordering': "['order']", 'object_name': 'Badge_Category'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'main.comment': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'Comment'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'comments': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments_rel_+'", 'null': 'True', 'to': "orm['main.Comment']"}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.FB_User']"}) }, 'main.fb_user': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'FB_User'}, 'active_nominations': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Nomination']", 'null': 'True', 'blank': 'True'}), 'albums': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Album']", 'null': 'True', 'blank': 'True'}), 'created_date': ('django.db.models.fields.DateField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'fid': ('main.models.BigIntegerField', [], {'unique': 'True', 'null': 'True'}), 'friends': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'friends_rel_+'", 'null': 'True', 'to': "orm['main.FB_User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'winning_photos': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Photo']", 'null': 'True', 'blank': 'True'}) }, 'main.nomination': { 'Meta': {'ordering': "['up_votes', 'down_votes', '-created_date']", 'object_name': 'Nomination'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'caption': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'comments': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Comment']", 'null': 'True', 'blank': 'True'}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'current_vote_count': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'down_votes': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nominatee': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'nominated_user'", 'null': 'True', 'to': "orm['main.FB_User']"}), 'nomination_category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.Nomination_Category']", 'null': 'True'}), 'nominator': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'nominator_user'", 'null': 'True', 'to': "orm['main.FB_User']"}), 'up_votes': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'votes': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.FB_User']", 'null': 'True', 'blank': 'True'}), 'won': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'main.nomination_category': { 'Meta': {'ordering': "['order']", 'object_name': 'Nomination_Category'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'main.notification': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'Notification'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nomination': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.Nomination']", 'null': 'True', 'blank': 'True'}), 'notification_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.Notification_Type']", 'null': 'True', 'blank': 'True'}), 'read': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'source': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['main.FB_User']", 'null': 'True', 'blank': 'True'}) }, 'main.notification_type': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'Notification_Type'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'main.photo': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'Photo'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'caption': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'fb_source': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'fb_source_small': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'fid': ('main.models.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'height': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nominations': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Nomination']", 'null': 'True', 'blank': 'True'}), 'pending': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'photo': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'small_height': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'small_width': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'width': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'main.portrit_user': { 'Meta': {'ordering': "['-created_date']", 'object_name': 'Portrit_User'}, 'access_token': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True'}), 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'badges': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Badge']", 'null': 'True', 'blank': 'True'}), 'comment_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_date': ('django.db.models.fields.DateField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'fb_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'portrit_fb_user'", 'to': "orm['main.FB_User']"}), 'given_nomination_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'invite_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'notifications': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.Notification']", 'null': 'True', 'blank': 'True'}), 'recieved_nomination_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'referred_friends': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['main.FB_User']", 'null': 'True', 'blank': 'True'}), 'selfish_nomination_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'tutorial_completed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'vote_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'winning_nomination_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}) } } complete_apps = ['main']
7f9f7598857398906030166bc1343996c02e03ee
1121089b07e29cce020acf76190071600b6879bb
/maison.py
15d2edbf14ce2f9db2ea0aa1f06580911120c85c
[]
no_license
PapaBaGAYE/Python_Turtle_project
3dc1db7090a3536bfa608fa65463d89dd9da34df
ec59e734e65cce2fec9e859a7e2c27fc3d14b091
refs/heads/master
2023-06-19T08:51:50.932433
2021-07-24T12:57:41
2021-07-24T12:57:41
378,640,412
2
3
null
null
null
null
UTF-8
Python
false
false
1,197
py
import turtle import dessinMSDA as des # Dessin du rectangle en fond noir du bas des.tl.begin_fill() des.rectangle(100, 20, 'black') des.tl.end_fill() # Dessin du rectangle en fond noir du bas des.carre(100, 'black') # Dessin du triangle et son deplacement en haut pour le toit des.tl.penup() des.tl.setpos(-20, 100) des.tl.pendown() des.triangle(140, "black") # Dessin des petits carrées et leurs deplacement en haut pour la fenetre deplacement = 60 for i in range(2): des.tl.penup() des.tl.setpos(75, deplacement) des.tl.pendown() des.carre(20, "black") des.tl.penup() des.tl.setpos(55, deplacement) des.tl.pendown() des.carre(20, "black") deplacement-=20 # Dessin du rectangle et son deplacement pour la porte des.tl.penup() des.tl.setpos(10, 0) des.tl.pendown() des.rectangle(40, 80, "black") # Dessin du rectangle en fond noir du bas des.tl.penup() des.tl.setpos(5, 1) des.tl.pendown() des.tl.begin_fill() des.rectangle(50, 18, 'white', "white") des.tl.end_fill() # Dessin du rectangle pour le toit des.tl.penup() des.tl.setpos(75, 150) des.tl.pendown() des.tl.begin_fill() des.rectangle(20, 40, 'black', 'white') des.tl.end_fill() turtle.done()
752ae727504fb4dbb3e6323303b9b031869a2448
71a4cfb6747d728dfc97b29366bf8fdfcd790ac3
/rest_api/tests/unit/test_submit_requests.py
d1e5ac9f44e270c6cc2451a6c6d442e4e15260ab
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
suparnadhar/SuparnaGit
430c335934ded1649ae8a2dac387fed0c2ec1f5b
bec2704d8b6bc1802523ec26dcb902f59a747a4d
refs/heads/master
2021-01-25T00:39:33.420153
2017-06-16T18:52:02
2017-06-16T18:52:02
94,685,783
1
0
null
null
null
null
UTF-8
Python
false
false
16,720
py
# Copyright 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import json from aiohttp.test_utils import unittest_run_loop from tests.unit.components import Mocks, BaseApiTest from sawtooth_sdk.protobuf.validator_pb2 import Message from sawtooth_rest_api.protobuf import client_pb2 class PostBatchTests(BaseApiTest): async def get_application(self, loop): self.set_status_and_stream( Message.CLIENT_BATCH_SUBMIT_REQUEST, client_pb2.ClientBatchSubmitRequest, client_pb2.ClientBatchSubmitResponse) handlers = self.build_handlers(loop, self.stream) return self.build_app(loop, '/batches', handlers.submit_batches) @unittest_run_loop async def test_post_batch(self): """Verifies a POST /batches with one id works properly. It will receive a Protobuf response with: - the default status of OK It should send a Protobuf request with: - a batches property that matches the batches sent It should send back a JSON response with: - a response status of 202 - no data property - a link property that ends in '/batch_status?id=a' """ batches = Mocks.make_batches('a') self.stream.preset_response() request = await self.post_batches(batches) self.stream.assert_valid_request_sent(batches=batches) self.assertEqual(202, request.status) response = await request.json() self.assertNotIn('data', response) self.assert_has_valid_link(response, '/batch_status?id=a') @unittest_run_loop async def test_post_batch_with_validator_error(self): """Verifies a POST /batches with a validator error breaks properly. It will receive a Protobuf response with: - a status of INTERNAL_ERROR It should send back a JSON response with: - a status of 500 - an error property with a code of 10 """ batches = Mocks.make_batches('a') self.stream.preset_response(self.status.INTERNAL_ERROR) request = await self.post_batches(batches) self.assertEqual(500, request.status) response = await request.json() self.assert_has_valid_error(response, 10) @unittest_run_loop async def test_post_json_batch(self): """Verifies a POST /batches with a JSON request body breaks properly. It should send back a JSON response with: - a response status of 400 - an error property with a code of 42 """ request = await self.client.post( '/batches', data='{"bad": "data"}', headers={'content-type': 'application/json'}) self.assertEqual(400, request.status) response = await request.json() self.assert_has_valid_error(response, 42) @unittest_run_loop async def test_post_invalid_batch(self): """Verifies a POST /batches with an invalid batch breaks properly. It will receive a Protobuf response with: - a status of INVALID_BATCH It should send back a JSON response with: - a response status of 400 - an error property with a code of 30 """ batches = Mocks.make_batches('bad') self.stream.preset_response(self.status.INVALID_BATCH) request = await self.post_batches(batches) self.assertEqual(400, request.status) response = await request.json() self.assert_has_valid_error(response, 30) @unittest_run_loop async def test_post_many_batches(self): """Verifies a POST /batches with many ids works properly. It will receive a Protobuf response with: - the default status of OK It should send a Protobuf request with: - a batches property that matches the batches sent It should send back a JSON response with: - a response status of 202 - no data property - a link property that ends in '/batch_status?id=a,b,c' """ batches = Mocks.make_batches('a', 'b', 'c') self.stream.preset_response() request = await self.post_batches(batches) self.stream.assert_valid_request_sent(batches=batches) self.assertEqual(202, request.status) response = await request.json() self.assertNotIn('data', response) self.assert_has_valid_link(response, '/batch_status?id=a,b,c') @unittest_run_loop async def test_post_no_batches(self): """Verifies a POST /batches with no batches breaks properly. It should send back a JSON response with: - a response status of 400 - an error property with a code of 34 """ request = await self.post_batches([]) self.assertEqual(400, request.status) response = await request.json() self.assert_has_valid_error(response, 34) @unittest_run_loop async def test_post_batch_with_wait(self): """Verifies a POST /batches can wait for commit properly. It will receive a Protobuf response with: - batch statuses of {'a': COMMITTED} It should send a Protobuf request with: - a batches property that matches the batches sent - a wait_for_commit property that is True - a timeout property of 4 (Rest Api default) It should send back a JSON response with: - a response status of 201 - no data property - a link property that ends in '/batches?id=a' """ batches = Mocks.make_batches('a') statuses = {'a': self.status.COMMITTED} self.stream.preset_response(batch_statuses=statuses) request = await self.post_batches(batches, wait=True) self.stream.assert_valid_request_sent( batches=batches, wait_for_commit=True, timeout=4) self.assertEqual(201, request.status) response = await request.json() self.assert_has_valid_link(response, '/batches?id=a') self.assertNotIn('data', response) @unittest_run_loop async def test_post_batch_with_timeout(self): """Verifies a POST /batches works when timed out while waiting. It will receive a Protobuf response with: - batch statuses of {'pending': PENDING} It should send a Protobuf request with: - a batches property that matches the batches sent - a wait_for_commit property that is True - a timeout property of 4 (Rest Api default) It should send back a JSON response with: - a response status of 200 - a link property that ends in '/batch_status?id=pending' - a data property matching the batch statuses received """ batches = Mocks.make_batches('pending') statuses = {'pending': self.status.PENDING} self.stream.preset_response(batch_statuses=statuses) request = await self.post_batches(batches, wait=True) self.stream.assert_valid_request_sent( batches=batches, wait_for_commit=True, timeout=4) self.assertEqual(202, request.status) response = await request.json() self.assert_has_valid_link(response, '/batch_status?id=pending&wait') self.assert_statuses_match(statuses, response['data']) class BatchStatusTests(BaseApiTest): async def get_application(self, loop): self.set_status_and_stream( Message.CLIENT_BATCH_STATUS_REQUEST, client_pb2.ClientBatchStatusRequest, client_pb2.ClientBatchStatusResponse) handlers = self.build_handlers(loop, self.stream) return self.build_app(loop, '/batch_status', handlers.list_statuses) @unittest_run_loop async def test_batch_status_with_one_id(self): """Verifies a GET /batch_status with one id works properly. It will receive a Protobuf response with: - batch statuses of {'pending': PENDING} It should send a Protobuf request with: - a batch_ids property of ['pending'] It should send back a JSON response with: - a response status of 200 - a link property that ends in '/batch_status?id=pending' - a data property matching the batch statuses received """ statuses = {'pending': self.status.PENDING} self.stream.preset_response(batch_statuses=statuses) response = await self.get_assert_200('/batch_status?id=pending') self.stream.assert_valid_request_sent(batch_ids=['pending']) self.assert_has_valid_link(response, '/batch_status?id=pending') self.assert_statuses_match(statuses, response['data']) @unittest_run_loop async def test_batch_status_with_validator_error(self): """Verifies a GET /batch_status with a validator error breaks properly. It will receive a Protobuf response with: - a status of INTERNAL_ERROR It should send back a JSON response with: - a status of 500 - an error property with a code of 10 """ self.stream.preset_response(self.status.INTERNAL_ERROR) response = await self.get_assert_status('/batch_status?id=pending', 500) self.assert_has_valid_error(response, 10) @unittest_run_loop async def test_batch_status_with_missing_statuses(self): """Verifies a GET /batch_status with no statuses breaks properly. It will receive a Protobuf response with: - a status of NO_RESOURCE It should send back a JSON response with: - a status of 500 - an error property with a code of 27 """ self.stream.preset_response(self.status.NO_RESOURCE) response = await self.get_assert_status('/batch_status?id=pending', 500) self.assert_has_valid_error(response, 27) @unittest_run_loop async def test_batch_status_with_wait(self): """Verifies a GET /batch_status with a wait set works properly. It will receive a Protobuf response with: - batch statuses of {'pending': COMMITTED} It should send a Protobuf request with: - a batch_ids property of ['pending'] - a wait_for_commit property that is True - a timeout property of 4 (Rest Api default) It should send back a JSON response with: - a response status of 200 - a link property that ends in '/batch_status?id=pending&wait' - a data property matching the batch statuses received """ statuses = {'pending': self.status.COMMITTED} self.stream.preset_response(batch_statuses=statuses) response = await self.get_assert_200('/batch_status?id=pending&wait') self.stream.assert_valid_request_sent( batch_ids=['pending'], wait_for_commit=True, timeout=4) self.assert_has_valid_link(response, '/batch_status?id=pending&wait') self.assert_statuses_match(statuses, response['data']) @unittest_run_loop async def test_batch_status_with_many_ids(self): """Verifies a GET /batch_status with many ids works properly. It will receive a Protobuf response with: - batch statuses of: * 'committed': COMMITTED * 'unknown': UNKNOWN * 'bad': UNKNOWN It should send a Protobuf request with: - a batch_ids property of ['committed', 'unknown', 'bad'] It should send back a JSON response with: - a response status of 200 - link property ending in '/batch_status?id=committed,unknown,bad' - a data property matching the batch statuses received """ statuses = { 'committed': self.status.COMMITTED, 'unknown': self.status.UNKNOWN, 'bad': self.status.UNKNOWN} self.stream.preset_response(batch_statuses=statuses) response = await self.get_assert_200( '/batch_status?id=committed,unknown,bad') self.stream.assert_valid_request_sent( batch_ids=['committed', 'unknown', 'bad']) self.assert_has_valid_link( response, '/batch_status?id=committed,unknown,bad') self.assert_statuses_match(statuses, response['data']) @unittest_run_loop async def test_batch_status_with_no_id(self): """Verifies a GET /batch_status with no id breaks properly. It should send back a JSON response with: - a response status of 400 - an error property with a code of 66 """ response = await self.get_assert_status('/batch_status', 400) self.assert_has_valid_error(response, 66) @unittest_run_loop async def test_batch_status_as_post(self): """Verifies a POST to /batch_status works properly. It will receive a Protobuf response with: - batch statuses of: * 'committed': COMMITTED * 'pending': PENDING * 'bad': UNKNOWN It should send a Protobuf request with: - a batch_ids property of ['committed', 'pending', 'bad'] It should send back a JSON response with: - a response status of 200 - an empty link property - a data property matching the batch statuses received """ statuses = { 'committed': self.status.COMMITTED, 'pending': self.status.PENDING, 'bad': self.status.UNKNOWN} self.stream.preset_response(batch_statuses=statuses) request = await self.client.post( '/batch_status', data=json.dumps(['committed', 'pending', 'bad']).encode(), headers={'content-type': 'application/json'}) self.stream.assert_valid_request_sent( batch_ids=['committed', 'pending', 'bad']) self.assertEqual(200, request.status) response = await request.json() self.assertNotIn('link', response) self.assert_statuses_match(statuses, response['data']) @unittest_run_loop async def test_batch_status_wrong_post_type(self): """Verifies a bad POST to /batch_status breaks properly. It should send back a JSON response with: - a response status of 400 - an error property with a code of 43 """ request = await self.client.post( '/batch_status', data=json.dumps(['a', 'b', 'c']).encode(), headers={'content-type': 'application/octet-stream'}) self.assertEqual(400, request.status) response = await request.json() self.assert_has_valid_error(response, 43) @unittest_run_loop async def test_batch_status_as_bad_post(self): """Verifies an empty POST to /batch_status breaks properly. It should send back a JSON response with: - a response status of 400 - an error property with a code of 46 """ request = await self.client.post( '/batch_status', data=json.dumps('bad body').encode(), headers={'content-type': 'application/json'}) self.assertEqual(400, request.status) response = await request.json() self.assert_has_valid_error(response, 46) @unittest_run_loop async def test_batch_status_as_empty_post(self): """Verifies an empty POST to /batch_status breaks properly. It should send back a JSON response with: - a response status of 400 - an error property with a code of 46 """ request = await self.client.post( '/batch_status', data=json.dumps([]).encode(), headers={'content-type': 'application/json'}) self.assertEqual(400, request.status) response = await request.json() self.assert_has_valid_error(response, 46)
9d036bb0095c09ecccfc0ff1a1f322a58a874a5e
d4f5c7629c992fcb5b73f5bbdee480a7dcf21701
/bot_deriv_btc.py
62b85b87db063c15f6130efc919b7dd73b2d4fe1
[]
no_license
xkayo29/deriv_b3_btc
d827e218b9244ae81532bfeb009386db894a7c6c
19244c27bb6c43c03c3243c12591b61397e013b0
refs/heads/main
2023-04-25T00:44:54.813517
2021-05-07T16:44:44
2021-05-07T16:44:44
365,296,718
0
0
null
null
null
null
UTF-8
Python
false
false
5,781
py
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% import MetaTrader5 as mt5 # pip install MetaTrader5 import pandas as pd import numpy as np import telebot # pip install pyTelegramBotAPI from datetime import datetime, time import time as tm # %% # Função para inicializar o MT5 e efetuar login def login(login, password, servidor): mt5.initialize() lg = mt5.login(login, password, servidor) if lg: print(f'Conectado com sucesso...') else: print(f'Erro na conexção com a conta, erro = {mt5.last_error()}') mt5.shutdown() # %% # Função que verica a oportunidade de entra apos cruzamento das medias para troca de tendencia e enviar mensagem para o telegram def cruzamento(tendencia): if tendencia[-5] == 'Alta' and tendencia[-2] == 'Baixa': return 'Vendido' elif tendencia[-5] == 'Baixa' and tendencia[-2] == 'Alta': return 'Comprado' else: return False # %% # Função para pegar hora atual do computador e comprar com horario de negociação def iniciar(): # Transforma a hora atual do pc em string atual = datetime.now().time().strftime('%H:%M:%S') # Transforma a string em objeto de datetime para fazer comparação atual = datetime.strptime(atual, '%H:%M:%S').time() # Cria as variaveis de horario do inicio e fim de funcionamento do mercado inicio, fim = time(0, 0, 0), time(23, 59, 59) if atual > inicio and atual < fim: return True else: return False # %% # Variaveis para o bot do telgram # '1608254599:AAHK6CdSPPqDIFTLemsZXMtogGO4B8pkCic' token = '1576500645:AAG3FBifGkzsutPixGbrxnVSPMV9RaqPDUI' chat_id = '-1001108876977' # 955453236 # Função para bot do telegram def bot_telegram(msg, token, chat_id): tb = telebot.TeleBot(token) tb.send_message(chat_id, msg) return f'Mensagem enviada' # %% # Chama a função de login login(1570672, '90576edkF', 'Deriv-Server') # %% # Lista de ativos para o laço for papeis = ['EURUSD', 'USDJPY', 'EURJPY', 'BCHUSD', 'BNBUSD', 'BTCETH', 'BTCLTC', 'BTCUSD', 'DSHUSD', 'EOSUSD', 'ETHUSD', 'IOTUSD', 'LTCUSD', 'NEOUSD', 'OMGUSD', 'TRXUSD', 'XLMUSD', 'XMRUSD', 'XRPUSD', 'ZECUSD'] # Ativando para envia apenas uma notificação id_s = [] # %% while True: while iniciar(): # Verifica se a funcao do horario retorna true para iniciar as analise # Laço para pecorrer todos os papeis for papel in papeis: # Baixa os dados do papel rates = mt5.copy_rates_from_pos(papel, mt5.TIMEFRAME_M5, 0, 300) # Transforma os dados em um dataframe df_rates = pd.DataFrame(rates) # Converte o time de segundos para data e tempo df_rates['time'] = pd.to_datetime(df_rates['time'], unit='s') # %% # Renomea as colunas existente df_rates.rename(columns={'time': 'Data', 'open': 'Abertura', 'high': 'Alta', 'low': 'Baixa', 'close': 'Fechamento', 'tick_volume': 'T_volume', 'spread': 'Spread', 'real_volume': 'Volume'}, inplace=True) # Transforma a Data em index df_rates.set_index('Data', inplace=True) # %% # Criando medias df_rates['Lenta'] = df_rates['Fechamento'].rolling(200).mean() df_rates['Rapida'] = df_rates['Fechamento'].rolling(100).mean() # Limpando dados NaN df_rates.dropna(inplace=True) # %% # Criando a condição de tendencia para nova coluna condicao = [ (df_rates['Lenta'] > df_rates['Rapida']), (df_rates['Lenta'] < df_rates['Rapida']), (df_rates['Lenta'] == df_rates['Rapida']) ] valor = [ 'Baixa', 'Alta', 'Centralizado' ] # Criando a coluna de tendecia df_rates['Tendencia'] = np.select(condicao, valor) # %% # Iniciando a função da busca por entrada if cruzamento(df_rates['Tendencia']) == 'Vendido': if papel not in id_s: try: msg = f'{papel} - Entrar vendindo | Preço: {df_rates["Fechamento"].tail(1).values}' bot_telegram(msg, token=token, chat_id=chat_id) id_s.append(papel) print( f'\n*****{papel}*****\n{df_rates.tail(1)}') except: pass # print( # f'Erro ao envia via telegram\n{papel} - Entrar vendindo | #Preço: {df_rates["Fechamento"].tail(1).values}') else: pass elif cruzamento(df_rates['Tendencia']) == 'Comprado': if papel not in id_s: try: msg = f'{papel} - Entrar comprado | Preço: {df_rates["Fechamento"].tail(1).values}' bot_telegram(msg, token=token, chat_id=chat_id) id_s.append(papel) print( f'\n*****{papel}*****\n{df_rates.tail(1)}') except: pass # print( # f'Erro ao envia via telegram\n{papel} - Entrar comprado | #Preço: {df_rates["Fechamento"].tail(1).values}') else: pass else: if papel in id_s: id_s.remove(papel) # print( # f'\n*****{papel}*****\n{df_rates["Fechamento"].tail(1).values}') # tm.sleep(1) # %% else: print(f'Fora do horario de negociação') break
ab1cd998831a83dfff01278c0eb0f2a0825fb1cb
14a2a310a0b1022e12858bed60e5b0235c6d2cc4
/demo/oop/concatenate.py
773ba6984fec5ddadfaed4071e134e85916f38b6
[]
no_license
srikanthpragada/python_18_jan_2021
0f32b8ea05b5a7ebfc747c86161543711225bfa5
5197176e39b4f72a486d8bbe4f108ca783dd51ea
refs/heads/master
2023-03-13T14:25:20.046629
2021-03-01T14:18:14
2021-03-01T14:18:14
331,602,844
1
0
null
null
null
null
UTF-8
Python
false
false
161
py
def cat(st1, st2): if isinstance(st2,str): return st1 + st2 else: return st1 + str(st2) print(cat("abc", "xyz")) print(cat("abc", 10))
f72b7398402b93378a713bc1e809276281b5c7d3
b631ee6ebf35f9c09bb0f288e3be3eb3c9667504
/src/pedidos/apps.py
3389169b43c7bc12b0841a54c0a5a8f7f9b27068
[]
no_license
loristron/SimuladorDePedidos
39145602f87944217e55747c8acd64f98144627a
81c99c6c1ff9bc3a1df258176fcf54d722ffff50
refs/heads/master
2023-03-16T13:56:44.823338
2021-03-07T21:10:09
2021-03-07T21:10:09
345,128,838
1
0
null
null
null
null
UTF-8
Python
false
false
145
py
from django.apps import AppConfig class PedidosConfig(AppConfig): name = 'pedidos' def ready(self): import pedidos.signals
5d277728e53b34fd3d324366e0405a9c9147368d
b73eab67f1ec87b91160a59b1f35db226bbaf4a7
/half_analytical_const_lensz.py
c193bb92e5549ba15d5b6bf4ea50b9c92c915d3d
[]
no_license
lingxz/lightbending
35833a7d99afbb62bc2dc8ffdf95e9d04ff8d46f
b27f8a1ea9733b7d79b0794a78416f14179845db
refs/heads/master
2022-05-16T20:47:21.233309
2018-05-07T03:58:29
2018-05-07T03:58:29
106,876,699
0
0
null
null
null
null
UTF-8
Python
false
false
16,514
py
''' origin at lens ''' # diff_lambdas_small2: latest, diff z_lens, 100 per Omega_Lambda, but wrong DL # diff_lambdas_small: same z_lens, diff z_source, 100 per Omega_Lambda # diff_lambdas_small3: same as diff_lambdas_small2, but with correct DL # diff_lambdas_small4: same as previous, but the step size in kottler solver is changed to agree with dt. Previously was fixed at 5e-7, oops!!! # diff_lambdas_bigger_redshifts: bigger redshifts, 0.2 to 1 instead of 0.05 to 0.2. # diff_lambdas_bigger_redshifts2: same as above, just more points import numpy as np import scipy.integrate as spi import matplotlib.pyplot as plt import time import pandas as pd length_scale = 3.086e22 # mega parsec INTEGRATOR = 'vode' INTEGRATOR_PARAMS = { 'atol': 1e-110, # 'atol': 0, # 'rtol': 0, 'rtol': 1e-15, 'nsteps': 100000000, 'method': 'bdf', } # H_0 = 7.33e-27 H_0 = 7.56e-27 * length_scale # Omega_Lambda = 0 # Omega_m = 1 - Omega_Lambda # M = 0.5e15 / length_scale M = 1474e12 / length_scale tdot_to_steps_ratio = None print("M: ", M) # def frw(eta, w, p): # L, k, Omega_Lambda, Omega_m, H_0 = p # a, r, rdot, t, phi = w # a_t = a * H_0 * np.sqrt(Omega_m/a**3 + Omega_Lambda) # phidot = L / (a*r)**2 # # tddot = -a*r**2*phidot**2*a_t - a*rdot**2*a_t/ (1 - k*r**2) # tdot = -np.sqrt(a**2*rdot**2+a**2*r**2*phidot**2) # rddot = r*phidot**2 - k*rdot**2 - 2*a_t/a*rdot*tdot # return [ # a_t*tdot, # rdot, # rddot, # tdot, # phidot, # ] def omega_lambda2lambda(Omega_Lambda): return 3*Omega_Lambda*H_0**2 def kantowski_alpha(R, phi, Omega_Lambda): r0 = 1/(1/R + M/R**2 + 3/16*M**2/R**3) # r0 = R*(1-M/R - 3/2*(M/R)**2 - 4*(M/R)**3) Lambda = omega_lambda2lambda(Omega_Lambda) rs = 2*M first_term = (rs/2/r0)*np.cos(phi)*(-4*(np.cos(phi))**2 - 12*np.cos(phi)*np.sin(phi)*np.sqrt(Lambda*r0**2/3+rs/r0*(np.sin(phi))**3) + Lambda*r0**2*(8/3-20/3*(np.sin(phi))**2)) second_term = (rs/2/r0)**2*(15/4*(2*phi-np.pi) + np.cos(phi)*(4+33/2*np.sin(phi)-4*(np.sin(phi))**2+19*(np.sin(phi))**3-64*(np.sin(phi))**5) - 12*np.log(np.tan(phi/2))*(np.sin(phi))**3) return first_term + second_term def get_angle(r, phi, rdot, phidot): res = np.arctan((rdot*np.sin(phi)+r*np.cos(phi)*phidot)/(rdot*np.cos(phi)-r*np.sin(phi)*phidot)) return res def kottler(eta, w, p): E, L, M, Omega_Lambda, Omega_m, H_0 = p r_h, t, r, rdot, phi = w Lambda = 3*Omega_Lambda*H_0**2 # Lambda = 0 f = 1 - 2*M/r - Lambda/3*r**2 rddot = L**2 * (r - 3*M) / r**4 tdot = E / f phidot = L/r**2 r_h_t = (1 - 2*M/r_h - Lambda/3*r_h**2) * np.sqrt(2*M/r_h + Lambda/3*r_h**2) # r_h_t = (1 - 2*M/r_h) * np.sqrt(2*M/r_h) return [ r_h_t*tdot, tdot, rdot, rddot, phidot, ] def cart2spherical(x): return np.array([ np.sqrt(x[0]**2 + x[1]**2), np.arctan(x[1]/x[0]) ]) def conformal_time(a, Omega_m, Omega_Lambda): def tmp(a1): return 1/a1**2/np.sqrt(Omega_m/a1**3 + Omega_Lambda) result, err = spi.quad(tmp, 1, a, epsrel=1e-8, epsabs=1e-8) return result/H_0 def binary_search(start, end, answer, Omega_m, Omega_Lambda): mid = (end+start)/2 res = conformal_time(mid, Omega_m, Omega_Lambda) # print(mid, res, answer) if np.isclose(res, answer, rtol=1e-10, atol=0): return mid if res < answer: return binary_search(mid, end, answer, Omega_m, Omega_Lambda) else: return binary_search(start, mid, answer, Omega_m, Omega_Lambda) def solve(angle_to_horizontal, comoving_lens=None, plot=True, Omega_Lambda=0, dt=None): k = 0 a0 = 1 initial_a = a0 # initial_r = 10e17 initial_r = comoving_lens initial_phi = np.pi initial_t = 0. Omega_m = 1 - Omega_Lambda initial_rdot = -initial_r initial_phidot = np.tan(angle_to_horizontal) * initial_rdot / initial_r initial_R = initial_a*initial_r initial_tdot = -np.sqrt(initial_a**2/(1-k*initial_r**2)*initial_rdot**2 + initial_R**2*initial_phidot**2) if plot: print("initial velocities:", initial_rdot, initial_phidot, initial_tdot) rho = Omega_m*3*H_0**2/(8*np.pi) r_h = 1/initial_a*(3*M/(4*np.pi*rho))**(1./3) if r_h > initial_r: print("Starting point is inside the hole! Make the hole smaller or bring the lens further away.") return if plot: print('r_h:', r_h, "\n") Lambda = 3*Omega_Lambda*H_0**2 L_frw = (initial_a*initial_r)**2*initial_phidot p_frw = [L_frw, k, Omega_Lambda, Omega_m, H_0] initial = [initial_a, initial_r, initial_rdot, initial_t, initial_phi] # save for later frw straight line propagation initial0 = initial x_initial = np.array([0, 0]) velocity = np.sqrt((initial_rdot*np.cos(initial_phi)-initial_r*np.sin(initial_phi)*initial_phidot)**2 + (initial_rdot*np.sin(initial_phi)+initial_r*np.cos(initial_phi)*initial_phidot)**2) direction = np.array([ initial_rdot*np.cos(initial_phi)-initial_r*np.sin(initial_phi)*initial_phidot, initial_rdot*np.sin(initial_phi)+initial_r*np.cos(initial_phi)*initial_phidot, ]) direction = direction / velocity # direction = np.array([ # velocity*np.cos(angle_to_horizontal), # velocity*np.sin(angle_to_horizontal), # ]) delta_eta = np.roots([direction[0]**2+direction[1]**2, -2*direction[0]*comoving_lens, comoving_lens**2-r_h**2]) if plot: print("delta_eta", delta_eta) delta_eta = sorted(delta_eta[delta_eta > 0])[0] eta_initial = 0 eta_out = eta_initial - delta_eta if plot: print("eta_out", eta_out, delta_eta) x_final = x_initial + (eta_initial - eta_out)*direction x_final[0] -= comoving_lens r_final, phi_final = cart2spherical(x_final) phi_final = np.pi + phi_final # change from 4th to second quadrant # print("conformal_time", conformal_time(0.9997899999999995, Omega_m, Omega_Lambda)) a_final = binary_search(0.5, 1, eta_out, Omega_m, Omega_Lambda) phidot_final = L_frw/(a_final*r_final)**2 rdot_final = (r_final*np.cos(phi_final)*phidot_final+r_final*np.sin(phi_final)*phidot_final*np.tan(angle_to_horizontal))/(np.cos(phi_final)*np.tan(angle_to_horizontal)-np.sin(phi_final)) # rdot_final = r_final*phidot_final/np.tan(angle_to_horizontal) tdot_final = -np.sqrt(a_final**2*rdot_final**2 + a_final**2*r_final**2*phidot_final**2) t_final = 0 # not important if plot: print("phi_final", phi_final) print("a_final", a_final) last = [a_final, r_final, rdot_final, t_final, phi_final] # res = np.arctan((rdot*np.sin(phi)+r*np.cos(phi)*phidot)/(rdot*np.cos(phi)-r*np.sin(phi)*phidot)) frw_angle_before_entering = get_angle(last[1], last[4], last[2], L_frw/(last[0]*last[1])**2) if plot: print("angle_to_horizontal", angle_to_horizontal) print("Angle in FRW::") print(frw_angle_before_entering) print(last) print("\n") solver_kottler = spi.ode(kottler).set_integrator(INTEGRATOR, **INTEGRATOR_PARAMS) # a, r, rdot, t, phi = w r_out = last[0] * last[1] exit_rh = r_out tdot_out = -np.sqrt(last[0]**2*last[2]**2+last[0]**2*last[1]**2*L_frw/(last[0]*last[1])**2) initial_t = 0 initial_r = r_out initial_phi = last[4] initial_rh = initial_r f = 1 - 2*M/r_out - Lambda/3*r_out**2 etadot = tdot_out / last[0] # conformal time # a, r, rdot, t, phi initial_rdot = last[0] * (np.sqrt(1 - f)*etadot + last[2]) initial_tdot = last[0]/f*(etadot + np.sqrt(1-f)*last[2]) initial_phidot = L_frw / (last[0]*last[1])**2 L_kottler = initial_phidot *initial_r**2 initial_kottler = [initial_rh, initial_t, initial_r, initial_rdot, initial_phi] E = f*initial_tdot p_kottler = [E, L_kottler, M, Omega_Lambda, Omega_m, H_0] # global tdot_to_steps_ratio # if not tdot_to_steps_ratio: # tdot_to_steps_ratio = initial_tdot/dt # else: # dt = initial_tdot / tdot_to_steps_ratio # print("tdot_to_steps_ratio", tdot_to_steps_ratio, dt) # print() solver_kottler.set_initial_value(initial_kottler, 0).set_f_params(p_kottler) if plot: print("kottler initial:") print("initial_rh, initial_t, initial_r, initial_rdot, initial_phi") print(initial_kottler) print("initial_tdot", initial_tdot) angle_before_entering = get_angle(initial_r, initial_phi, initial_rdot, initial_phidot) if plot: print("light ray angle before entering kottler hole: ", angle_before_entering) print("initial conditions on entering kottler hole: ", initial_kottler) print("initial params on entering kottler hole: ", p_kottler) first_time = True prev_r = np.inf while solver_kottler.successful(): solver_kottler.integrate(solver_kottler.t + dt, step=False) # sol_kottler.append(list(solver_kottler.y)) # if solver_kottler.y[2] > prev_r and first_time: # if plot: # print("turning point in kottler metric:", solver_kottler.y[2]) # first_time = False # else: # prev_r = solver_kottler.y[2] if solver_kottler.y[4] < np.pi/2 and first_time: if plot: print("turning point in kottler metric:", solver_kottler.y[2]) first_time = False # if solver_kottler.y[4] < np.pi/2 and np.isclose(solver_kottler.y[2], solver_kottler.y[0], rtol=1e-5): # last = solver_kottler.y # print("here??") # break if solver_kottler.y[2] > solver_kottler.y[0]: # print("exit hole at", solver_kottler.y[2], solver_kottler.y[0], solver_kottler.y[2]-solver_kottler.y[0]) last = solver_kottler.y break angle_after_exiting = get_angle(last[2], last[4], last[3], L_kottler/last[2]**2) if plot: print("light ray angle after exiting kottler hole: ", angle_after_exiting) print("bending angle in kottler: ", angle_before_entering - angle_after_exiting) print("\n") if plot: print("time in hole: ", last[1]) # r_h, t, r, rdot, phi = w exit_phi = last[4] initial_phi = last[4] initial_r = r_h initial_a = last[2] / r_h if plot: print("scale factor on exit:", initial_a) print("exit r in FRW:", initial_r) initial_phidot = L_kottler / last[2]**2 f = 1-2*M/last[2]-Lambda/3*last[2]**2 last_tdot = E/f initial_rdot = 1/initial_a*(1/f*last[3] - np.sqrt(1-f)*last_tdot) initial_etadot = 1/initial_a*(last_tdot - np.sqrt(1-f)/f*last[3]) initial_tdot = initial_etadot * initial_a p_frw[0] = initial_a**2 * initial_r**2*initial_phidot # change the L_frw # p_frw = [L_frw, k, Omega_Lambda, Omega_m, H_0] # r_h, t, r, rdot, phi = w initial_t = 0 # a, t, r, rdot, phi frw_angle_after_exiting = get_angle(initial_r, initial_phi, initial_rdot, initial_phidot) if plot: print("Angle after exiting FRW:", frw_angle_after_exiting) print("bending angle in FRW: ", frw_angle_before_entering - frw_angle_after_exiting) print("\n") # check if its going to cross the axis initial_ydot = initial_rdot*np.sin(initial_phi) + initial_r*np.cos(initial_phi)*initial_phidot if initial_ydot > 0: print("light ray is not going to cross the axis, decrease angle_to_horizontal") print("initial angle to horizontal: ", angle_to_horizontal) print("----") if initial_r*np.sin(initial_phi) < 0: print("light ray is bent too much by the hole, increase angle_to_horizontal") print("initial angle to horizontal: ", angle_to_horizontal) print("----") alpha = frw_angle_before_entering - frw_angle_after_exiting ans = initial_r*np.sin(initial_phi)/np.tan(np.abs(frw_angle_after_exiting)) + initial_r*np.cos(initial_phi) return ans, exit_rh, exit_phi, alpha # return r[-1], source_a # [ 0.18075975 0.05122652 0.23824122 0.31020329 0.20010044 0.39768539 # 0.43731914 0.46608477 0.37572935 0.39980157] def get_distances(z, Omega_Lambda=0): Omega_m = 1 - Omega_Lambda def integrand(z): return 1/np.sqrt(Omega_m*(1+z)**3 + Omega_Lambda) integral, error = spi.quad(integrand, 0, z, epsrel=1e-8, epsabs=1e-8) comoving = integral/H_0 dang = comoving/(1+z) return comoving, dang def calc_theta(D_LS, D_L, D_S): return np.sqrt(4*M*D_LS/D_L/D_S) def theta2rls_flat(theta, z_lens): rl, dl = get_distances(z_lens, Omega_Lambda=0) return 4*calculate_mass(0)*rl/(4*calculate_mass(0)-dl*theta**2) def rs2theta(rs, rl, dl): return np.sqrt(4*M*(rs-rl)/rs/dl) def rs2redshift_flat(rs): return 1/(1-H_0*rs/2)**2 -1 def calculate_mass(om): rho = (1-om)*3*H_0**2/(8*np.pi) return 4/3*np.pi*rho*r_h**3 from tqdm import tqdm def main(): start = time.time() om_lambdas = np.linspace(0.9, 0.99, 1) # om_lambdas = np.array([0.99]) start_ms = np.linspace(1474e12/length_scale, 5*1474e12/length_scale, 1) # start_ms = np.linspace(8*1474e13/length_scale, 5*1474e15/length_scale, 1) z_lens = 1. start_thetas = np.array([2e-6]*50) # start_thetas = np.array([2.18e-4]*50) step_size = 1e-9 first = True filename = 'data/half_analytical_const_lensz_throwaway.csv' print(filename) for theta, current_m in tqdm(list(zip(start_thetas, start_ms))): global M M = current_m rs = [] thetas = [] dl = [] ms = [] raw_rs = [] com_lens = [] exit_rhs = [] enter_phis = [] alphas = [] for om in tqdm(om_lambdas): ms.append(current_m) comoving_lens, dang_lens = get_distances(z_lens, Omega_Lambda=om) # source_r, dang_r = get_distances(source_z, Omega_Lambda=om) # theta = rs2theta(source_r, comoving_lens, dang_lens) # print("lens r", comoving_lens, theta) com_lens.append(comoving_lens) r, exit_rh, enter_phi, alpha = solve(theta, plot=True, comoving_lens=comoving_lens, Omega_Lambda=om, dt=step_size) exit_rhs.append(exit_rh) enter_phis.append(enter_phi) alphas.append(alpha) R = dang_lens*theta A_frw = 4*M/R + 15*np.pi*M**2/4/R**2 + 401/12*M**3/R**3 frw = comoving_lens/(A_frw/theta -1) print("enter_phi", enter_phi) print("R", dang_lens*theta) print("compare", r, frw, r/frw-1) print("A_frw", A_frw) k_alpha = kantowski_alpha(dang_lens*theta, enter_phi, om) print("k_alpha", k_alpha) print("difference", -alpha/k_alpha-1) r0 = 1/(1/R + M/R**2 + 3/16*M**2/R**3) extra_term = (2*M/r0 + omega_lambda2lambda(om)*r0**2)**(5/2) / (4*M/R*(np.cos(enter_phi))**3) print("extra term ratio", extra_term) thetas.append(theta) raw_rs.append(r) rs.append(r+comoving_lens) dl.append(dang_lens) rs = np.array(rs) thetas = np.array(thetas) dl = np.array(dl) ms = np.array(ms) raw_rs = np.array(raw_rs) com_lens = np.array(com_lens) exit_rhs = np.array(exit_rhs) enter_phis = np.array(enter_phis) alphas = np.array(alphas) # DL,DLS,DS,M,numerical_thetas,om_lambdas,rs,rs_initial,step,theta,z_lens,comoving_lens,raw_rs df = pd.DataFrame({ 'DL': dl, 'M': ms, 'numerical_thetas': thetas, 'om_lambdas': om_lambdas, 'rs': rs, # 'rs_initial': source_rs_array, 'step': [step_size]*len(thetas), 'theta': thetas, 'z_lens': [z_lens]*len(thetas), 'comoving_lens': com_lens, 'raw_rs': raw_rs, 'exit_rhs': exit_rhs, 'enter_phis': enter_phis, 'alphas': alphas, }) # df = df[['DL','DLS','DS','M','numerical_thetas','om_lambdas','rs','rs_initial','step','theta','z_lens','comoving_lens','raw_rs']] if first: df.to_csv(filename, index=False) first = False else: df.to_csv(filename, index=False, header=False, mode='a') print("Time taken: {}".format(time.time() - start)) main() # main2() # plt.show() # plt.savefig('images/lambda.png')
e76ce8a2f472e3b1aa0ab5ddaf95486255b9ea6d
89841a2b522b7b1ab7965560f62b4b401b2d0a4d
/gravity physics/gravity simulation.py
105b78ee8eb670cd9124ca39718d4366f32d17f6
[]
no_license
sidd5sci/python-basics
14d621d52d3219943e2b0136c610dd769cc36a29
fea620141292cb6beee782cddb5a7d4eeb067e9a
refs/heads/master
2021-01-20T00:22:29.496330
2017-04-22T17:03:00
2017-04-22T17:03:00
89,123,461
0
0
null
null
null
null
UTF-8
Python
false
false
3,715
py
import random import math from Tkinter import * import time PI = 3.14159 g = 9.87 #m/s2 ctime = 0.0 class vector: def __init__(self): self.direction = 0.0 self.magnitude = 0.0 def asign(self,drct,mag,angletype): if(angletype == 'R'): self.direction = drct elif(angletype == 'D'): self.direction = (PI/180)*drct self.magnitude = mag def getDirection(self): return self.direction*(180/PI) def getMagnitude(self): return self.magnitude class vertex: def __init__(self): self.x = 0.0 self.y = 0.0 self.z = 0.0 positionVector = vector() def asign(self,X,Y,Z): self.x = X self.y = Y self.z = Z def random(self,irange,frange): self.x = random.uniform(irange,frange) self.y = random.uniform(irange,frange) self.z = random.uniform(irange,frange) class edge : def __init__(self): self.initVertex = vertex() self.finalVertex = vertex() def asignVertex(self,vi= vertex(),vf= vertex()): self.initVertex = vi self.finalVertex = vf def asignVertex(self,xi,yi,zi,xf,yf,zf): self.initVertex.x = xi self.initVertex.y = yi self.initVertex.z = zi self.finalVertex.x = xf self.finalVertex.y = yf self.finalVertex.z = zf WIDTH =900 HEIGHT = 400 root = Tk() root.title("Trapped Fly!") canvas = Canvas(root,width= WIDTH,height=HEIGHT) canvas.pack() #for i in range(0,100): def drawEquiTriangle(color, polygonCentre,z_axisRotation,mag): v1,v2,v3 = vector(),vector(),vector() v1.asign(90+z_axisRotation,mag,"D") v2.asign(90+120+z_axisRotation,mag,"D") v3.asign(90+240+z_axisRotation,mag,"D") ver1,ver2 = vertex(),vertex() ver1.x = polygonCentre.x + math.cos(v1.direction)*v1.magnitude ver1.y = polygonCentre.y + math.sin(v1.direction)*v1.magnitude ver2.x = polygonCentre.x + math.cos(v2.direction)*v2.magnitude ver2.y = polygonCentre.y + math.sin(v2.direction)*v2.magnitude poly = canvas.create_line(ver1.x,ver1.y,ver2.x,ver2.y,fill = color); ver1.x = polygonCentre.x + math.cos(v3.direction)*v3.magnitude ver1.y = polygonCentre.y + math.sin(v3.direction)*v3.magnitude poly = canvas.create_line(ver2.x,ver2.y,ver1.x,ver1.y,fill = color); ver2.x = polygonCentre.x + math.cos(v1.direction)*v1.magnitude ver2.y = polygonCentre.y + math.sin(v1.direction)*v1.magnitude poly = canvas.create_line(ver2.x,ver2.y,ver1.x,ver1.y,fill = color); # mass of triangle mass = 50# kg GForce = mass*g vy = g*(ctime+1) v = vertex() v.asign(300,200,0) velox,veloy,result = vector(),vector(),vector() velox.asign(0,15.10,"D") veloy.asign(90,100,"D")# rotation is anticlock wise tempx = v.x tempy = v.y for i in range(0,100): drawEquiTriangle("blue",v,10,10) mag = math.sqrt((velox.magnitude*velox.magnitude)+(veloy.magnitude*veloy.magnitude)) theta = math.atan(veloy.magnitude/velox.magnitude)*(180/PI) # convert to environent angles if velox.magnitude < 0 and veloy.magnitude >0: theta = -theta +90 if velox.magnitude < 0 and veloy.magnitude <0: theta = theta +180 if velox.magnitude > 0 and veloy.magnitude <0: theta = 360+theta result.asign(-theta,mag,"D") root.update() vy = vy+ g*ctime veloy.asign(90,-vy,"D") print (result.magnitude," | ",result.getDirection()) v.x += math.cos(result.direction)*result.magnitude v.y += math.sin(result.direction)*result.magnitude canvas.delete(ALL) time.sleep(0.7) ctime+=0.1 root.mainloop()
e6c5e5cdf587ad79fbec86f6c8696f8beba6a0fb
c3131577f706b25623da31f1d5af668c717eb91b
/jmt/check_trimout.py
f5f3d31b8210123445a574364265c67a7db66d1c
[]
no_license
cmspixelpilot/POSOverlay
29e5739cf4f1556802ca02ae8ee1663dcd941b22
abdd29afe0aeddefc111a14f723ec365329b34a8
refs/heads/master
2020-04-04T04:17:25.383958
2016-10-14T14:19:15
2016-10-14T14:19:15
29,026,300
1
13
null
2016-11-24T19:45:07
2015-01-09T17:04:16
C++
UTF-8
Python
false
false
1,789
py
from JMTTools import * try: run = run_from_argv() except ValueError: run = None if run is not None: calib = calib_dat(run) calib_rocs = calib.rocs pixels = calib.pixels detconfig = detconfig_dat(run) rocs_qual = detconfig.rocs['qual'] rocs_noqual = detconfig.rocs['noqual'] trim_fn = glob(run_fn(run, 'Trim*dat'))[0] else: calib_rocs = ['all'] pixels = [(r,c) for r in xrange(80) for c in range(52)] rocs_qual = [] rocs_noqual = ['Pilt_BmO_D3_BLD%i_PNL%i_PLQ1_ROC%i' % (bld, pnl, roc) for bld in (10,11) for pnl in (1,2) for roc in range(16) if (bld,pnl) != (11,1)] rocs_noqual += ['Pilt_BmI_D3_BLD%i_PNL%i_PLQ1_ROC%i' % (bld, pnl, roc) for bld in (2,3) for pnl in (1,2) for roc in range(16)] trim_fn = sys.argv[1] print 'run:', run trims = [TrimResult(x.strip()) for x in open(trim_fn).read().split('\n') if x.strip()] trims_by_roc = defaultdict(list) trims_by_roc_px = defaultdict(list) for t in trims: trims_by_roc[t.roc].append(t) trims_by_roc_px[(t.roc, t.row, t.col)].append(t) assert all(len(v) == 1 for v in trims_by_roc_px.itervalues()) assert calib_rocs == ['all'] for roc, quals in rocs_qual: assert quals == ('noAnalogSignal',) print '# trims:', len(trims) print '# rocs:', len(rocs_noqual) print '# pix:', len(pixels) should = len(rocs_noqual) * len(pixels) print '-> should have %i trims, missing %i' % (should, should-len(trims)) no_trim = defaultdict(list) for roc in rocs_noqual: for r,c in pixels: if not trims_by_roc_px.has_key((roc, r, c)): no_trim[roc].append((r,c)) if no_trim: print 'no trim for:' for roc in sorted(no_trim.iterkeys()): print roc.ljust(40), '# pix:', len(no_trim[roc]) print 'sum:', sum(len(v) for v in no_trim.itervalues())
d0d63a9a8cd95eb9efff60c2a9ff226382464f4d
6e0d936d3b308ea0a2b179abf58d1e9520022174
/fiskalnavenv/bin/iptest3
2ecac9b10d4626665dafc2b64f9a3be508cb70f4
[]
no_license
robizd/fiskali
e9273697fab7593cabfe7c898ec8b16b3f62ecf1
4e27b08a08de44fcf6a5459866b1b59b2c31b89c
refs/heads/master
2022-12-16T21:50:06.538824
2020-09-23T10:51:23
2020-09-23T10:51:23
292,207,854
1
0
null
null
null
null
UTF-8
Python
false
false
264
#!/home/r/Desktop/fiskalna/fiskalnavenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from IPython.testing.iptestcontroller import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
a04c4b33ed76bd6588fc389d6e747735858613ee
1236a8208138a6f8d15a0fc576fdec98e01f7d8f
/mypy/10.模块/10.3.包的概念.py
2f2bc8c81b8c103b7806125e81809343dc9cd2ae
[]
no_license
dingzishidtc/dzPython
cfb26ca7c38b1ed44a0e42ba5d1541aa8169ae19
3adf8aba5fe12ab28bd6d02e4e6baa60b828985d
refs/heads/master
2023-01-30T00:35:12.915290
2020-12-09T13:04:48
2020-12-09T13:04:48
260,984,723
0
0
null
null
null
null
UTF-8
Python
false
false
2,111
py
# 包即 package, 模块即 module, # 可以这样简单的理解,module 是文件,package 是文件夹 # package 包含 module,package 也可以包含 package # # 当然还要做一些前期的工作,文件夹需要增加 __init__.py 才会被 python 解析为 pakage (实际测试的时候发现可以没有,可能是版本的关系,建议还是添加) # __init__.py 中的代码将是包的内容,如可以在其中定义变量、方法等 # # 如一个目录结构如下,环境变量定义为 D:\environment\python\modules # # D:\environment\python\modules # └─fakeGame # ├─ item # | └─ sword.py # ├─ hero.py # └─ monster.py from fakeGame import hero, monster import fakeGame.items.sword h = fakeGame.hero.Hero() m = fakeGame.monster.Monster() s = fakeGame.items.sword.Sword() print("=================================================") # 实际使用时会发现,在使用一个包下的任意一个模块时,都要显式引用模块,当一个包中包含了大量模块时,这种引用几乎是不可能的 # 考虑到在引入包时,会先调用 __init__.py ,因此可以借助 __init__.py 来实现包内部的自我引用 # # 在 fakeGame2/__init__.py 中加入 # import fakeGame2.items # import fakeGame2.hero # import fakeGame2.monster # # 在 fakeGame2/items/__init__.py 中加入 # import fakeGame2.items.sword # # 那么在引入 fakeGame2 时,会先调用 fakeGame2/__init__.py,之后引用 import fakeGame2.items 会调用 fakeGame2/items/__init__.py # 顺次下去,最终结果时 只要引入了 fakeGame2 这个包,包下面的所有模块都加载了 # # D:\environment\python\modules # └─fakeGame2 # ├─ __init__.py # ├─ item # | ├─ __init__.py # | └─ sword.py # ├─ hero.py # └─ monster.py # import fakeGame2 h = fakeGame2.hero.Hero() h = fakeGame2.monster.Monster() h = fakeGame2.items.sword.Sword() # 这样就解决了大部分的问题,当然关于包的知识还有很多,这里不再具体介绍,遇到的时候再说把
60cdc12212c922a0f11ab3f0c6b2a4088eef2a80
f0e2a0190c0b9e4591ec25c525882cfeec6c1b87
/mahjong/yaku_checker/kokushi.py
c647e6e9d9a8ea963931f9715c2cc43f033f7ead
[]
no_license
thgwon-yaho-qcw/Mahjong
33d893c30a284e8b59664638bc6061a6e92845aa
25ef2684507225260e020eba1f841ec656204a3f
refs/heads/master
2023-08-29T00:28:42.136910
2021-10-19T09:04:02
2021-10-19T09:04:02
347,359,493
1
0
null
2021-10-19T09:04:03
2021-03-13T12:04:32
Python
UTF-8
Python
false
false
202
py
from mahjong.divider import Division from mahjong.yaku_checker.yaku import Yaku class Kokushi(Yaku): def is_satisfied(self, division: Division, hand_info): return len(division.parts) == 1
2db24c5c9eb872707f7249df40008aa9ac62b2b6
e5d130e183b5dea1b7aad23a047c703fa0d2b3bf
/lightbus_vendored/aioredis/abc.py
5c1bed890fcba6bae0602711e53bf29b7d888982
[ "Apache-2.0" ]
permissive
adamcharnock/lightbus
4a86428b8203bfe98f77a32375ac961ef398ce16
cf892779a9a9a8f69c789ffa83c24acfb7f9a336
refs/heads/master
2023-08-26T04:19:39.395735
2023-08-23T11:07:44
2023-08-23T11:07:44
94,617,214
193
22
Apache-2.0
2023-08-10T21:21:51
2017-06-17T10:39:23
Python
UTF-8
Python
false
false
3,746
py
"""The module provides connection and connections pool interfaces. These are intended to be used for implementing custom connection managers. """ import abc __all__ = [ 'AbcConnection', 'AbcPool', 'AbcChannel', ] class AbcConnection(abc.ABC): """Abstract connection interface.""" @abc.abstractmethod def execute(self, command, *args, **kwargs): """Execute redis command.""" @abc.abstractmethod def execute_pubsub(self, command, *args, **kwargs): """Execute Redis (p)subscribe/(p)unsubscribe commands.""" @abc.abstractmethod def close(self): """Perform connection(s) close and resources cleanup.""" @abc.abstractmethod async def wait_closed(self): """ Coroutine waiting until all resources are closed/released/cleaned up. """ @property @abc.abstractmethod def closed(self): """Flag indicating if connection is closing or already closed.""" @property @abc.abstractmethod def db(self): """Current selected DB index.""" @property @abc.abstractmethod def encoding(self): """Current set connection codec.""" @property @abc.abstractmethod def in_pubsub(self): """Returns number of subscribed channels. Can be tested as bool indicating Pub/Sub mode state. """ @property @abc.abstractmethod def pubsub_channels(self): """Read-only channels dict.""" @property @abc.abstractmethod def pubsub_patterns(self): """Read-only patterns dict.""" @property @abc.abstractmethod def address(self): """Connection address.""" class AbcPool(AbcConnection): """Abstract connections pool interface. Inherited from AbcConnection so both have common interface for executing Redis commands. """ @abc.abstractmethod def get_connection(self, command, args=()): """ Gets free connection from pool in a sync way. If no connection available — returns None. """ @abc.abstractmethod async def acquire(self, command=None, args=()): """Acquires connection from pool.""" @abc.abstractmethod def release(self, conn): """Releases connection to pool. :param AbcConnection conn: Owned connection to be released. """ @property @abc.abstractmethod def address(self): """Connection address or None.""" class AbcChannel(abc.ABC): """Abstract Pub/Sub Channel interface.""" @property @abc.abstractmethod def name(self): """Encoded channel name or pattern.""" @property @abc.abstractmethod def is_pattern(self): """Boolean flag indicating if channel is pattern channel.""" @property @abc.abstractmethod def is_active(self): """Flag indicating that channel has unreceived messages and not marked as closed.""" @abc.abstractmethod async def get(self): """Wait and return new message. Will raise ``ChannelClosedError`` if channel is not active. """ # wait_message is not required; details of implementation # @abc.abstractmethod # def wait_message(self): # pass @abc.abstractmethod def put_nowait(self, data): """Send data to channel. Called by RedisConnection when new message received. For pattern subscriptions data will be a tuple of channel name and message itself. """ @abc.abstractmethod def close(self, exc=None): """Marks Channel as closed, no more messages will be sent to it. Called by RedisConnection when channel is unsubscribed or connection is closed. """
4c2d33c12259b37ebf02f8da514795c25f84d6b8
36ace720c8507b8724957f6c85a5962d15a2f99c
/tests/unit/broker/test_simulated_broker.py
5168d71e8f8346c5f1026d4661877b98204b2e2b
[ "MIT", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-unknown-license-reference" ]
permissive
simongarisch/qstrader
8ce950036f6404dd4d6c61016cb6c77805942cd5
557f2fc2598b631a005309e415a5dab12793fd14
refs/heads/master
2021-06-27T04:51:24.588474
2020-08-29T05:58:08
2020-08-29T05:58:08
102,059,555
0
0
MIT
2020-08-29T04:36:52
2017-09-01T01:11:25
Python
UTF-8
Python
false
false
21,014
py
import queue import numpy as np import pandas as pd import pytest import pytz from qstrader.broker.portfolio.portfolio import Portfolio from qstrader.broker.simulated_broker import SimulatedBroker from qstrader.broker.fee_model.zero_fee_model import ZeroFeeModel from qstrader import settings class ExchangeMock(object): def get_latest_asset_bid_ask(self, asset): return (np.NaN, np.NaN) def is_open_at_datetime(self, dt): return True class ExchangeMockException(object): def get_latest_asset_bid_ask(self, asset): raise ValueError("No price available!") def is_open_at_datetime(self, dt): return True class ExchangeMockPrice(object): def is_open_at_datetime(self, dt): return True class DataHandlerMock(object): def get_asset_latest_bid_ask_price(self, dt, asset): return (np.NaN, np.NaN) def get_asset_latest_mid_price(self, dt, asset): return np.NaN class DataHandlerMockPrice(object): def get_asset_latest_bid_ask_price(self, dt, asset): return (53.45, 53.47) def get_asset_latest_mid_price(self, dt, asset): return (53.47 - 53.45) / 2.0 class OrderMock(object): def __init__(self, asset, quantity, order_id=None): self.asset = asset self.quantity = quantity self.order_id = 1 if order_id is None else order_id self.direction = np.copysign(1, self.quantity) class AssetMock(object): def __init__(self, name, symbol): self.name = name self.symbol = symbol def test_initial_settings_for_default_simulated_broker(): """ Tests that the SimulatedBroker settings are set correctly for default settings. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() # Test a default SimulatedBroker sb1 = SimulatedBroker(start_dt, exchange, data_handler) assert sb1.start_dt == start_dt assert sb1.current_dt == start_dt assert sb1.exchange == exchange assert sb1.account_id is None assert sb1.base_currency == "USD" assert sb1.initial_funds == 0.0 assert type(sb1.fee_model) == ZeroFeeModel tcb1 = dict( zip( settings.SUPPORTED['CURRENCIES'], [0.0] * len(settings.SUPPORTED['CURRENCIES']) ) ) assert sb1.cash_balances == tcb1 assert sb1.portfolios == {} assert sb1.open_orders == {} # Test a SimulatedBroker with some parameters set sb2 = SimulatedBroker( start_dt, exchange, data_handler, account_id="ACCT1234", base_currency="GBP", initial_funds=1e6, fee_model=ZeroFeeModel() ) assert sb2.start_dt == start_dt assert sb2.current_dt == start_dt assert sb2.exchange == exchange assert sb2.account_id == "ACCT1234" assert sb2.base_currency == "GBP" assert sb2.initial_funds == 1e6 assert type(sb2.fee_model) == ZeroFeeModel tcb2 = dict( zip( settings.SUPPORTED['CURRENCIES'], [0.0] * len(settings.SUPPORTED['CURRENCIES']) ) ) tcb2["GBP"] = 1e6 assert sb2.cash_balances == tcb2 assert sb2.portfolios == {} assert sb2.open_orders == {} def test_bad_set_base_currency(): """ Checks _set_base_currency raises ValueError if a non-supported currency is attempted to be set as the base currency. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() with pytest.raises(ValueError): SimulatedBroker( start_dt, exchange, data_handler, base_currency="XYZ" ) def test_good_set_base_currency(): """ Checks _set_base_currency sets the currency correctly if it is supported by QSTrader. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker( start_dt, exchange, data_handler, base_currency="EUR" ) assert sb.base_currency == "EUR" def test_bad_set_initial_funds(): """ Checks _set_initial_funds raises ValueError if initial funds amount is negative. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() with pytest.raises(ValueError): SimulatedBroker( start_dt, exchange, data_handler, initial_funds=-56.34 ) def test_good_set_initial_funds(): """ Checks _set_initial_funds sets the initial funds correctly if it is a positive floating point value. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler, initial_funds=1e4) assert sb._set_initial_funds(1e4) == 1e4 def test_all_cases_of_set_broker_commission(): """ Tests that _set_broker_commission correctly sets the appropriate broker commission model depending upon user choice. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() # Broker commission is None sb1 = SimulatedBroker(start_dt, exchange, data_handler) assert sb1.fee_model.__class__.__name__ == "ZeroFeeModel" # Broker commission is specified as a subclass # of FeeModel abstract base class bc2 = ZeroFeeModel() sb2 = SimulatedBroker( start_dt, exchange, data_handler, fee_model=bc2 ) assert sb2.fee_model.__class__.__name__ == "ZeroFeeModel" # FeeModel is mis-specified and thus # raises a TypeError with pytest.raises(TypeError): SimulatedBroker( start_dt, exchange, data_handler, fee_model="bad_fee_model" ) def test_set_cash_balances(): """ Checks _set_cash_balances for zero and non-zero initial_funds. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() # Zero initial funds sb1 = SimulatedBroker( start_dt, exchange, data_handler, initial_funds=0.0 ) tcb1 = dict( zip( settings.SUPPORTED['CURRENCIES'], [0.0] * len(settings.SUPPORTED['CURRENCIES']) ) ) assert sb1._set_cash_balances() == tcb1 # Non-zero initial funds sb2 = SimulatedBroker( start_dt, exchange, data_handler, initial_funds=12345.0 ) tcb2 = dict( zip( settings.SUPPORTED['CURRENCIES'], [0.0] * len(settings.SUPPORTED['CURRENCIES']) ) ) tcb2["USD"] = 12345.0 assert sb2._set_cash_balances() == tcb2 def test_set_initial_portfolios(): """ Check _set_initial_portfolios method for return of an empty dictionary. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) assert sb._set_initial_portfolios() == {} def test_set_initial_open_orders(): """ Check _set_initial_open_orders method for return of an empty dictionary. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) assert sb._set_initial_open_orders() == {} def test_subscribe_funds_to_account(): """ Tests subscribe_funds_to_account method for: * Raising ValueError with negative amount * Correctly setting cash_balances for a positive amount """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # Raising ValueError with negative amount with pytest.raises(ValueError): sb.subscribe_funds_to_account(-4306.23) # Correctly setting cash_balances for a positive amount sb.subscribe_funds_to_account(165303.23) assert sb.cash_balances[sb.base_currency] == 165303.23 def test_withdraw_funds_from_account(): """ Tests withdraw_funds_from_account method for: * Raising ValueError with negative amount * Raising ValueError for lack of cash * Correctly setting cash_balances for positive amount """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler, initial_funds=1e6) # Raising ValueError with negative amount with pytest.raises(ValueError): sb.withdraw_funds_from_account(-4306.23) # Raising ValueError for lack of cash with pytest.raises(ValueError): sb.withdraw_funds_from_account(2e6) # Correctly setting cash_balances for a positive amount sb.withdraw_funds_from_account(3e5) assert sb.cash_balances[sb.base_currency] == 7e5 def test_get_account_cash_balance(): """ Tests get_account_cash_balance method for: * If currency is None, return the cash_balances * If the currency code isn't in the cash_balances dictionary, then raise ValueError * Otherwise, return the appropriate cash balance """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker( start_dt, exchange, data_handler, initial_funds=1000.0 ) # If currency is None, return the cash balances sbcb1 = sb.get_account_cash_balance() tcb1 = dict( zip( settings.SUPPORTED['CURRENCIES'], [0.0] * len(settings.SUPPORTED['CURRENCIES']) ) ) tcb1["USD"] = 1000.0 assert sbcb1 == tcb1 # If the currency code isn't in the cash_balances # dictionary, then raise ValueError with pytest.raises(ValueError): sb.get_account_cash_balance(currency="XYZ") # Otherwise, return appropriate cash balance assert sb.get_account_cash_balance(currency="USD") == 1000.0 assert sb.get_account_cash_balance(currency="EUR") == 0.0 def test_get_account_total_market_value(): """ Tests get_account_total_market_value method for: * The correct market values after cash is subscribed. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # Subscribe all necessary funds and create portfolios sb.subscribe_funds_to_account(300000.0) sb.create_portfolio(portfolio_id="1", name="My Portfolio #1") sb.create_portfolio(portfolio_id="2", name="My Portfolio #1") sb.create_portfolio(portfolio_id="3", name="My Portfolio #1") sb.subscribe_funds_to_portfolio("1", 100000.0) sb.subscribe_funds_to_portfolio("2", 100000.0) sb.subscribe_funds_to_portfolio("3", 100000.0) # Check that the market value is correct res_equity = sb.get_account_total_equity() test_equity = { "1": 100000.0, "2": 100000.0, "3": 100000.0, "master": 300000.0 } assert res_equity == test_equity def test_create_portfolio(): """ Tests create_portfolio method for: * If portfolio_id already in the dictionary keys, raise ValueError * If it isn't, check that they portfolio and open orders dictionary was created correctly. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # If portfolio_id isn't in the dictionary, then check it # was created correctly, along with the orders dictionary sb.create_portfolio(portfolio_id=1234, name="My Portfolio") assert "1234" in sb.portfolios assert isinstance(sb.portfolios["1234"], Portfolio) assert "1234" in sb.open_orders assert isinstance(sb.open_orders["1234"], queue.Queue) # If portfolio is already in the dictionary # then raise ValueError with pytest.raises(ValueError): sb.create_portfolio( portfolio_id=1234, name="My Portfolio" ) def test_list_all_portfolio(): """ Tests list_all_portfolios method for: * If empty portfolio dictionary, return empty list * If non-empty, return sorted list via the portfolio IDs """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # If empty portfolio dictionary, return empty list assert sb.list_all_portfolios() == [] # If non-empty, return sorted list via the portfolio IDs sb.create_portfolio(portfolio_id=1234, name="My Portfolio #1") sb.create_portfolio(portfolio_id="z154", name="My Portfolio #2") sb.create_portfolio(portfolio_id="abcd", name="My Portfolio #3") res_ports = sorted([ p.portfolio_id for p in sb.list_all_portfolios() ]) test_ports = ["1234", "abcd", "z154"] assert res_ports == test_ports def test_subscribe_funds_to_portfolio(): """ Tests subscribe_funds_to_portfolio method for: * Raising ValueError with negative amount * Raising ValueError if portfolio does not exist * Correctly setting cash_balances for a positive amount """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # Raising ValueError with negative amount with pytest.raises(ValueError): sb.subscribe_funds_to_portfolio("1234", -4306.23) # Raising KeyError if portfolio doesn't exist with pytest.raises(KeyError): sb.subscribe_funds_to_portfolio("1234", 5432.12) # Add in cash balance to the account sb.create_portfolio(portfolio_id=1234, name="My Portfolio #1") sb.subscribe_funds_to_account(165303.23) # Raising ValueError if not enough cash with pytest.raises(ValueError): sb.subscribe_funds_to_portfolio("1234", 200000.00) # If everything else worked, check balances are correct sb.subscribe_funds_to_portfolio("1234", 100000.00) assert sb.cash_balances[sb.base_currency] == 65303.23000000001 assert sb.portfolios["1234"].cash == 100000.00 def test_withdraw_funds_from_portfolio(): """ Tests withdraw_funds_from_portfolio method for: * Raising ValueError with negative amount * Raising ValueError if portfolio does not exist * Raising ValueError for a lack of cash * Correctly setting cash_balances for a positive amount """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # Raising ValueError with negative amount with pytest.raises(ValueError): sb.withdraw_funds_from_portfolio("1234", -4306.23) # Raising KeyError if portfolio doesn't exist with pytest.raises(KeyError): sb.withdraw_funds_from_portfolio("1234", 5432.12) # Add in cash balance to the account sb.create_portfolio(portfolio_id=1234, name="My Portfolio #1") sb.subscribe_funds_to_account(165303.23) sb.subscribe_funds_to_portfolio("1234", 100000.00) # Raising ValueError if not enough cash with pytest.raises(ValueError): sb.withdraw_funds_from_portfolio("1234", 200000.00) # If everything else worked, check balances are correct sb.withdraw_funds_from_portfolio("1234", 50000.00) assert sb.cash_balances[sb.base_currency] == 115303.23000000001 assert sb.portfolios["1234"].cash == 50000.00 def test_get_portfolio_cash_balance(): """ Tests get_portfolio_cash_balance method for: * Raising ValueError if portfolio_id not in keys * Correctly obtaining the value after cash transfers """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # Raising ValueError if portfolio_id not in keys with pytest.raises(ValueError): sb.get_portfolio_cash_balance("5678") # Create fund transfers and portfolio sb.create_portfolio(portfolio_id=1234, name="My Portfolio #1") sb.subscribe_funds_to_account(175000.0) sb.subscribe_funds_to_portfolio("1234", 100000.00) # Check correct values obtained after cash transfers assert sb.get_portfolio_cash_balance("1234") == 100000.0 def test_get_portfolio_total_market_value(): """ Tests get_portfolio_total_market_value method for: * Raising ValueError if portfolio_id not in keys * Correctly obtaining the market value after cash transfers """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) # Raising KeyError if portfolio_id not in keys with pytest.raises(KeyError): sb.get_portfolio_total_market_value("5678") # Create fund transfers and portfolio sb.create_portfolio(portfolio_id=1234, name="My Portfolio #1") sb.subscribe_funds_to_account(175000.0) sb.subscribe_funds_to_portfolio("1234", 100000.00) # Check correct values obtained after cash transfers assert sb.get_portfolio_total_equity("1234") == 100000.0 def test_submit_order(): """ Tests the execute_order method for: * Raises ValueError if no portfolio_id * Raises ValueError if bid/ask is (np.NaN, np.NaN) * Checks that bid/ask are correctly set dependent upon order direction * Checks that portfolio values are correct after carrying out a transaction """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) # Raising KeyError if portfolio_id not in keys exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) asset = 'EQ:RDSB' quantity = 100 order = OrderMock(asset, quantity) with pytest.raises(KeyError): sb.submit_order("1234", order) # Raises ValueError if bid/ask is (np.NaN, np.NaN) exchange_exception = ExchangeMockException() sbnp = SimulatedBroker(start_dt, exchange_exception, data_handler) sbnp.create_portfolio(portfolio_id=1234, name="My Portfolio #1") quantity = 100 order = OrderMock(asset, quantity) with pytest.raises(ValueError): sbnp._execute_order(start_dt, "1234", order) # Checks that bid/ask are correctly set dependent on # order direction # Positive direction exchange_price = ExchangeMockPrice() data_handler_price = DataHandlerMockPrice() sbwp = SimulatedBroker(start_dt, exchange_price, data_handler_price) sbwp.create_portfolio(portfolio_id=1234, name="My Portfolio #1") sbwp.subscribe_funds_to_account(175000.0) sbwp.subscribe_funds_to_portfolio("1234", 100000.00) quantity = 1000 order = OrderMock(asset, quantity) sbwp.submit_order("1234", order) sbwp.update(start_dt) port = sbwp.portfolios["1234"] assert port.cash == 46530.0 assert port.total_market_value == 53470.0 assert port.total_equity == 100000.0 assert port.pos_handler.positions[asset].unrealised_pnl == 0.0 assert port.pos_handler.positions[asset].market_value == 53470.0 assert port.pos_handler.positions[asset].net_quantity == 1000 # Negative direction exchange_price = ExchangeMockPrice() sbwp = SimulatedBroker(start_dt, exchange_price, data_handler_price) sbwp.create_portfolio(portfolio_id=1234, name="My Portfolio #1") sbwp.subscribe_funds_to_account(175000.0) sbwp.subscribe_funds_to_portfolio("1234", 100000.00) quantity = -1000 order = OrderMock(asset, quantity) sbwp.submit_order("1234", order) sbwp.update(start_dt) port = sbwp.portfolios["1234"] assert port.cash == 153450.0 assert port.total_market_value == -53450.0 assert port.total_equity == 100000.0 assert port.pos_handler.positions[asset].unrealised_pnl == 0.0 assert port.pos_handler.positions[asset].market_value == -53450.0 assert port.pos_handler.positions[asset].net_quantity == -1000 def test_update_sets_correct_time(): """ Tests that the update method sets the current time correctly. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) new_dt = pd.Timestamp('2017-10-07 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) sb.update(new_dt) assert sb.current_dt == new_dt
625de4297ccafd3c704bbe927b431be4cfafbc38
6066eba4314ee5c8c26894e8864103e27bc547ba
/test/algorithms/ground_state_solvers/minimum_eigensolver_factories/test_vqe_ucc_factory.py
7da78201563cde2ea1075c5052f0467f010e1f09
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Global19/qiskit-nature
8098857e014fbc984028d1b8b1cb0a5055ecc407
5e932f6055e68649b4d6b0140dc926b07ba316e4
refs/heads/master
2023-04-15T01:42:49.663502
2021-04-09T15:56:08
2021-04-09T15:56:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,922
py
# This code is part of Qiskit. # # (C) Copyright IBM 2020, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test VQE UCC MinimumEigensovler Factory """ import unittest from test import QiskitNatureTestCase from qiskit import BasicAer from qiskit.utils import QuantumInstance from qiskit.opflow import AerPauliExpectation from qiskit.algorithms.optimizers import COBYLA from qiskit_nature.circuit.library import HartreeFock, UCCSD from qiskit_nature.operators.second_quantization.qubit_converter import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper from qiskit_nature.algorithms.ground_state_solvers.minimum_eigensolver_factories import \ VQEUCCFactory class TestVQEUCCFactory(QiskitNatureTestCase): """ Test VQE UCC MinimumEigensovler Factory """ # NOTE: The actual usage of this class is mostly tested in combination with the ground-state # eigensolvers (one module above). def setUp(self): super().setUp() self.converter = QubitConverter(JordanWignerMapper()) self.seed = 50 self.quantum_instance = QuantumInstance(BasicAer.get_backend('statevector_simulator'), shots=1, seed_simulator=self.seed, seed_transpiler=self.seed) self._vqe_ucc_factory = VQEUCCFactory(self.quantum_instance) def test_setters_getters(self): """ Test Getter/Setter """ with self.subTest("Quantum Instance"): self.assertEqual(self._vqe_ucc_factory.quantum_instance, self.quantum_instance) self._vqe_ucc_factory.quantum_instance = None self.assertEqual(self._vqe_ucc_factory.quantum_instance, None) with self.subTest("Optimizer"): self.assertEqual(self._vqe_ucc_factory.optimizer, None) optimizer = COBYLA() self._vqe_ucc_factory.optimizer = optimizer self.assertEqual(self._vqe_ucc_factory.optimizer, optimizer) with self.subTest("Initial Point"): self.assertEqual(self._vqe_ucc_factory.initial_point, None) initial_point = [1, 2, 3] self._vqe_ucc_factory.initial_point = initial_point self.assertEqual(self._vqe_ucc_factory.initial_point, initial_point) with self.subTest("Expectation"): self.assertEqual(self._vqe_ucc_factory.expectation, None) expectation = AerPauliExpectation() self._vqe_ucc_factory.expectation = expectation self.assertEqual(self._vqe_ucc_factory.expectation, expectation) with self.subTest("Include Custom"): self.assertEqual(self._vqe_ucc_factory.include_custom, False) self._vqe_ucc_factory.include_custom = True self.assertEqual(self._vqe_ucc_factory.include_custom, True) with self.subTest("Ansatz"): self.assertEqual(self._vqe_ucc_factory.ansatz, None) ansatz = UCCSD() self._vqe_ucc_factory.ansatz = ansatz self.assertTrue(isinstance(self._vqe_ucc_factory.ansatz, UCCSD)) with self.subTest("Initial State"): self.assertEqual(self._vqe_ucc_factory.initial_state, None) initial_state = HartreeFock(4, (1, 1), self.converter) self._vqe_ucc_factory.initial_state = initial_state self.assertEqual(self._vqe_ucc_factory.initial_state, initial_state) if __name__ == '__main__': unittest.main()
19881f72f2314c238faa43508926f8455e67eeb1
0d1f88e0c9e463c5e42b3c78c708df8b03f99a2b
/word/models.py
3b1f49939b5a14ff2e4e64a009898574f25f5d7a
[]
no_license
sefaky/Pre4Define
67784cf1ca61df81683dcad3e32cd9b15eb7d7d3
ad45d8b6cda778cb554ff2ee46df09b3276fb1ba
refs/heads/main
2023-02-18T17:03:36.785752
2021-01-20T10:17:45
2021-01-20T10:17:45
330,632,030
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
from django.db import models class WordsDefining(models.Model): word = models.CharField(max_length=30) category = models.CharField(max_length=30) pegi = models.CharField(max_length=3) commentCount = models.CharField(max_length=11) downloads = models.CharField(max_length=12) ranking = models.CharField(max_length=4) def __str__(self): return self.word + "" + self.category
7bc5e16bd591b8abde3f6bbdc886d227d1cb9588
85ed63e6ae798cc26bb7db989912405c2675dbb2
/MarkowitzSerde.py
2fbc40b496a5c6a26c09f1e47016064ee0391bbf
[ "MIT" ]
permissive
LaplaceKorea/APIClient
3608011f81e432237ed8c047b28e6323db3121fa
e772482c3d9cbedee98f46a3529dca5acc254f3c
refs/heads/main
2023-07-20T06:33:37.141537
2021-08-26T15:48:42
2021-08-26T15:48:42
380,518,632
0
0
null
null
null
null
UTF-8
Python
false
false
2,458
py
from dataclasses import dataclass from typing import Any, Dict, List, Union import numpy as np from UserTokenSerde import * import orjson import json from dataclasses_serialization.json import JSONSerializer @dataclass class Markowitz: # min_p (w - p)^T S (w-p) # s.t. sum_i(p_i) = 1 S: np.ndarray w: np.ndarray @dataclass class MarkowitzSerde: S: List[List[float]] w: List[float] def makeMarkowitzSerde(m: Markowitz) -> MarkowitzSerde: s = orjson.dumps(m, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY) return JSONSerializer.deserialize(MarkowitzSerde, json.loads(s)) def makeMarkowizt(m: MarkowitzSerde) -> Markowitz: return Markowitz(np.array(m.S, dtype=np.float), np.array(m.w, dtype=np.float)) @dataclass class MarkowitzSolution: p: np.ndarray status: OperationStatusSerde @dataclass class MarkowitzSolutionSerde: p: List[float] status: OperationStatusSerde def makeMarkowitzSolutionSerde(m: MarkowitzSolution) -> MarkowitzSolutionSerde: s = orjson.dumps(m, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY) #print("mms:", s) return JSONSerializer.deserialize(MarkowitzSolutionSerde, json.loads(s)) def makeMarkowitzSolution(m: MarkowitzSolutionSerde) -> MarkowitzSolution: #print("solution => ", ParamSpec) return MarkowitzSolution(np.array(m.p, dtype=np.float), m.status) @dataclass class MarkowitzProblem: m: Markowitz config: Dict[str, Union[str,float,int]] info: UserTokenSerde @dataclass class MarkowitzProblemSerde: m: MarkowitzSerde config: Dict[str, Union[str,float,int]] info: UserTokenSerde def makeMarkowitzProblemSerde(m: MarkowitzProblem) -> MarkowitzProblemSerde: s = orjson.dumps(m, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY) return JSONSerializer.deserialize(MarkowitzProblemSerde, json.loads(s)) def makeMarkowitzProblem(m: MarkowitzProblemSerde) -> MarkowitzProblem: return MarkowitzProblem(makeMarkowizt(m.m), m.config, m.info) def serializeMarkowitzProblemQuery(m: MarkowitzProblem) -> str: m2 = makeMarkowitzProblemSerde(m) query = '{ "__class__":"MarkowitzProblem", "query":' + orjson.dumps(m2).decode("utf-8") + '}' return query def deserializeMarkowitzSolutionResponse(r: str) -> MarkowitzSolution: rv = json.loads(r) p1 = JSONSerializer.deserialize(MarkowitzSolutionSerde, rv) print("p1=", p1) s2 = makeMarkowitzSolution(p1) return s2
672679732bb66c1cc979a3bd42a4d337e9a4a74a
a468016412cc2b435501de4d3ee5c4d2be5fa19f
/coupons/views.py
0a2a87766e6bc3b9517fd0e671635ecb1af860dd
[]
no_license
sadakchap/first-full-ecom
ef022596c05c29cae0842bae34d201cd4af08b93
881b39ec60dff3aef04105e3d08e3be3e16f6420
refs/heads/master
2020-08-07T05:02:48.165873
2019-10-07T06:16:16
2019-10-07T06:16:16
213,308,847
0
0
null
null
null
null
UTF-8
Python
false
false
697
py
from django.shortcuts import render,redirect from django.views.decorators.http import require_POST from .models import Coupon from .forms import CouponApplyForm from django.utils import timezone # Create your views here. @require_POST def coupon_apply(request): now = timezone.now() form = CouponApplyForm(request.POST) if form.is_valid(): code = form.cleaned_data.get('code') try: coupon = Coupon.objects.get(code__iexact=code,valid_from__lte=now,valid_to__gte=now,active=True) request.session['coupon_id'] = coupon.id except Coupon.DoesNotExist: request.session['coupon_id'] = None return redirect('cart:cart_detail')
998c833201d5781dff44b53d3b39f08131db1f84
edcfa1f24be85d356305c23fb488d1a3ba626ce4
/django/app/wsgi.py
7d395aac3dcfafb08868de90288904b12dfc502c
[ "Apache-2.0" ]
permissive
isabella232/pycon-2021-workshop-app-search
9b0cafafc0ee7fea484f4c47103b66170b6ba93f
aa2a24715ccae222f2dc53a85c9a65ac2dbae6d9
refs/heads/main
2023-04-25T06:00:29.362636
2021-05-14T20:55:48
2021-05-14T20:55:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
""" WSGI config for pycon_2021 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "app.settings") application = get_wsgi_application()