blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
345bdaab2b38aae1910c3a58274b6e2998041641
68fa4dca860bdacdf34bd86e1aed23b61efbadde
/perception/fabric/train.py
8b453a77060c2f750adb858ee0859400290046eb
[]
no_license
nehasunil/deformable_following
161013489ad6a2fccd843984ca260ea6beb612e5
5bbb56e3136fc2195966f6f2926fe956e2c94311
refs/heads/master
2023-07-22T01:39:12.576350
2021-08-30T20:54:34
2021-08-30T20:54:34
361,874,431
0
0
null
null
null
null
UTF-8
Python
false
false
8,882
py
#!/usr/bin/env python # coding: utf-8 import os import sys import json import time import random import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from datetime import datetime from unet import unet from data_loader import TowelDataset import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as T from torch.optim import lr_scheduler from torch.autograd import Variable from torch.utils.data import DataLoader from utils import weights_init, compute_map, compute_iou, compute_auc, preprocessHeatMap from tensorboardX import SummaryWriter from PIL import Image class BaseTrain: def __init__(self, cfgs): self.cfgs = cfgs self.init_dirs() self.init_datasets() self.init_tboard() def init_dirs(self): runspath = self.cfgs["runspath"] self.run_id = str( max([int(run_id) for run_id in os.listdir(runspath) if run_id.isdecimal()]) + 1 ) self.model_path = os.path.join(runspath, self.run_id) if not os.path.exists(self.model_path): os.makedirs(self.model_path) with open(os.path.join(self.model_path, "cfgs.json"), "w") as f: json.dump(self.cfgs, f, sort_keys=True, indent=2) self.chkpnts_path = os.path.join(self.model_path, "chkpnts") if not os.path.exists(self.chkpnts_path): os.makedirs(self.chkpnts_path) print(self.model_path) def init_datasets(self): self.datasize = self.cfgs["datasize"] if self.datasize == "": self.datasize = None print("self.datasize", self.datasize) train_data = TowelDataset( root_dir=self.cfgs["datapath"], phase="train", use_transform=self.cfgs["transform"], datasize=self.datasize, ) self.train_loader = DataLoader( train_data, batch_size=self.cfgs["batch_size"], shuffle=True, num_workers=16 ) if self.datasize != None and self.datasize <= 8: return val_data = TowelDataset( root_dir=self.cfgs["datapath"], phase="val", use_transform=False, datasize=self.datasize, ) self.val_loader = DataLoader( val_data, batch_size=self.cfgs["batch_size"], num_workers=16 ) def init_model(self): self.model = unet(n_classes=self.cfgs["n_feature"], in_channels=1) self.use_gpu = torch.cuda.is_available() def init_tboard(self): self.score_dir = os.path.join(self.model_path, "scores") os.mkdir(self.score_dir) self.n_class = self.cfgs["n_class"] self.iou_scores = np.zeros((self.cfgs["epochs"], self.n_class)) self.pixel_scores = np.zeros(self.cfgs["epochs"]) train_sum_path = os.path.join( self.model_path, "summaries", "train", self.run_id ) os.makedirs(train_sum_path) self.train_writer = SummaryWriter(train_sum_path) val_sum_path = os.path.join(self.model_path, "summaries", "val", self.run_id) self.val_writer = SummaryWriter(val_sum_path) # if self.datasize != None and self.datasize <= 8: return # os.makedirs(val_sum_path) def loss(self, outputs, labels): return self.criterion(outputs[:, : self.n_class, :, :], labels) def tboard(self, writer, names, vals, epoch): for i in range(len(names)): writer.add_scalar(names[i], vals[i], epoch) def metrics(self, outputs, labels): output = torch.sigmoid(outputs[:, : self.n_class, :, :]) output = output.data.cpu().numpy() pred = output.transpose(0, 2, 3, 1) gt = labels.cpu().numpy().transpose(0, 2, 3, 1) maps = [] ious = [] aucs = [] for g, p in zip(gt, pred): maps.append(compute_map(g, p, self.n_class)) ious.append(compute_iou(g, p, self.n_class)) aucs.append(compute_auc(g, p, self.n_class)) return maps, ious, aucs class TrainSeg(BaseTrain): def __init__(self, cfgs): super().__init__(cfgs) self.init_model() def init_model(self): super().init_model() weights_init(self.model) if self.use_gpu: torch.cuda.device(0) self.model = self.model.cuda() self.criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(20.0).to("cuda")) self.optimizer = optim.Adam( self.model.parameters(), lr=self.cfgs["lr"], weight_decay=self.cfgs["w_decay"], ) self.scheduler = lr_scheduler.StepLR( self.optimizer, step_size=self.cfgs["step_size"], gamma=self.cfgs["gamma"] ) # decay LR by a factor of 0.5 every 30 epochs def get_batch(self, batch): inputs = Variable(batch["X"].cuda()) if self.use_gpu else Variable(batch["X"]) labels = Variable(batch["Y"].cuda()) if self.use_gpu else Variable(batch["Y"]) return inputs, labels def train(self): ts = time.time() for epoch in range(self.cfgs["epochs"]): self.model.train() self.scheduler.step() losses = [] maps, ious, aucs = ([] for i in range(3)) for iter, batch in enumerate(self.train_loader): self.optimizer.zero_grad() inputs, labels = self.get_batch(batch) outputs = self.model(inputs) # Compute losses loss = self.loss(outputs, labels) losses.append(loss.item()) loss.backward() self.optimizer.step() if iter % 10 == 0: print("epoch%d, iter%d, loss: %0.5f" % (epoch, iter, loss)) batch_maps, batch_ious, batch_aucs = self.metrics(outputs, labels) maps += batch_maps ious += batch_ious aucs += batch_aucs ious = np.nanmean(ious, axis=1) pixel_map = np.nanmean(maps) mean_auc = np.nanmean(aucs) # Write to tensorboard names = ["loss", "MAP", "meanIOU", "meanAUC"] values = [np.nanmean(losses), pixel_map, np.nanmean(ious), mean_auc] self.tboard(self.train_writer, names, values, epoch) print("summary writer add train loss: " + str(np.nanmean(losses))) print("Finish epoch {}, time elapsed {}".format(epoch, time.time() - ts)) if epoch % 1 == 0: if self.datasize == None or self.datasize > 8: self.val(epoch) torch.save( self.model.state_dict(), os.path.join( self.chkpnts_path, "%s_epoch%d" % (self.run_id, epoch) ), ) self.train_writer.close() self.val_writer.close() def val(self, epoch): self.model.eval() num_batches = len(self.val_loader) losses = [] maps, ious, aucs = ([] for i in range(3)) for iter, batch in enumerate(self.val_loader): inputs, labels = self.get_batch(batch) outputs = self.model(inputs) with torch.no_grad(): loss = self.loss(outputs, labels) losses.append(loss.item()) batch_maps, batch_ious, batch_aucs = self.metrics(outputs, labels) maps += batch_maps ious += batch_ious aucs += batch_aucs if epoch % 50 == 0 and iter == 0: hm = torch.sigmoid(outputs[0, :, :, :]) self.val_writer.add_image("hm_%d" % epoch, hm, epoch) # Calculate average ious = np.array(ious).T # n_class * val_len ious = np.nanmean(ious, axis=1) pixel_map = np.nanmean(maps) mean_auc = np.nanmean(aucs) print( "epoch{}, pix_map: {}, meanAUC: {}, meanIoU: {}, IoUs: {}".format( epoch, pixel_map, mean_auc, np.nanmean(ious), ious ) ) self.iou_scores[epoch] = ious np.save(os.path.join(self.score_dir, "meanIOU"), self.iou_scores) self.pixel_scores[epoch] = pixel_map np.save(os.path.join(self.score_dir, "PixelMAP"), self.pixel_scores) names = ["loss", "MAP", "meanIOU", "meanAUC"] values = [np.nanmean(losses), pixel_map, np.nanmean(ious), mean_auc] self.tboard(self.val_writer, names, values, epoch) if __name__ == "__main__": torch.manual_seed(1337) torch.cuda.manual_seed(1337) np.random.seed(1337) random.seed(1337) with open("configs/segmentation.json", "r") as f: cfgs = json.loads(f.read()) print(json.dumps(cfgs, sort_keys=True, indent=1)) t = TrainSeg(cfgs) t.train()
f488148590db023618748efe38e9ebc10eb86b47
595c75b36a8efc5cefd13fa2261f2db7476e4af2
/server_2357.py
737b1bf21f967d5c19b7fdc5d43a99ad01e79976
[]
no_license
rightpeter/ssdutnews
0e3619c207c715fe26d4c206b3a834fa6513dfeb
a1804ddfa6d5aeec3ecd4709824c700cc3abde9c
refs/heads/master
2021-01-20T02:19:08.325955
2015-12-01T10:22:39
2015-12-01T10:22:39
15,448,369
0
0
null
2014-01-03T02:25:44
2013-12-26T07:47:26
Python
UTF-8
Python
false
false
18,240
py
#!/usr/bin/env python #-*- coding: utf-8 -*- import sys import os import re import time import json import tornado.web import tornado.ioloop import tornado.httpclient # tornado 3.x nolonger have this. use torndb #import tornado.database import torndb import math import httplib import json import pickle import datetime import threading from config import * from db import * from myTools import * import uimodules reload(sys) sys.setdefaultencoding('utf-8') from tornado.options import define, options # define("port", default=80, help="run on the given port", type=int) define("port", default=2357, help="run on the given port", type=int) class CJsonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(obj, date): return obj.strftime('%Y-%m-%d') else: return json.JSONEncoder.default(self, obj) class Application(tornado.web.Application): def __init__(self): #self.max_comm = 5000 handlers = [ (r'/', MainHandler), # API ----------------- (r'/api', APIHandler), (r'/api/follow', FllwHandler), (r'/api/subscribed', SbscHandler), (r'/api/check', CheckHandler), (r'/api/cgpasswd', ChangePasswdHandler), (r'/login', LoginHandler), (r'/logout', LogoutHandler), (r'/signup', SignupHandler), (r'/id/(\d+)$', NewsHandler), (r'/renrencallback', RenrenCallBackHandler), (r'/renrengettoken', RenrenGetTokenHandler), (r'/404', Error404Handler), (r'/index', TucaoIndexHandler), (r'/about', AboutHandler), #(r'/tucao', TucaoHandler), #(r'/tucao/(\d+)$', TucaoHandler), (r'/news', TucaoCommHandler), (r'/news/(\d+)$', TucaoCommHandler), (r'/home/(\d+)$', HomeHandler), #(r'/blacklist', BlackListHandler), ] settings = { "template_path": os.path.join(os.path.dirname(__file__), "templates"), "static_path": os.path.join(os.path.dirname(__file__), "static"), "ui_modules": uimodules, "cookie_secret": "#De1rFq@oyW^!kc3MI@74LY*^TPG6J8fkiG@xidDBF", "login_url": "/login", "xsrf_cookies": True, } tornado.web.Application.__init__(self, handlers, **settings) class BaseHandler(tornado.web.RequestHandler): def get_current_user(self): return self.get_secure_cookie("name") class MainHandler(BaseHandler): #@tornado.web.authenticated def get(self): slides = [{}, {}, {}] slides[0]['image'] = "pedestal.jpg" slides[0]['name'] = "周知吐槽" slides[0]['descript'] = "尽情地为自己呐喊" slides[0]['href'] = "/about" slides[0]['button'] = "关于我们" slides[1]['image'] = "tucao_slide.jpg" slides[1]['name'] = "周知吐槽" slides[1]['descript'] = "尽情地为自己呐喊" slides[1]['href'] = "/index" slides[1]['button'] = "开始吐槽" slides[2]['image'] = "pedestal_welcome.jpg" slides[2]['name'] = "这只是一个大标题" slides[2]['descript'] = "用来测试轮播插件这个复杂的东西" slides[2]['href'] = "/signup" slides[2]['button'] = "加入我们" user = myTools.get_current_user(self) self.set_cookie("url", self.request.uri) url = self.request.uri self.render("index.html", slides=slides, user=user, url=url) class APIHandler(BaseHandler): def get(self): jsonDict = {} api_type = self.get_argument('type') value = self.get_argument('value') call_back = self.get_argument('callback') jsonDict['value'] = value if api_type == 'EMAIL': jsonDict['type'] = "EMAIL" if myTools.is_email_exist(value): jsonDict['status'] = "UNIQUE" else: jsonDict['status'] = "REPEATED" if api_type == 'NAME': jsonDict['type'] = "NAME" if myTools.is_name_exist(value): jsonDict['status'] = "UNIQUE" else: jsonDict['status'] = "REPEATED" encoded_json = json.dumps(jsonDict) call_back_json = '%s(%s)' % (call_back, encoded_json) self.write(call_back_json) class Error404Handler(BaseHandler): def get(self): user = myTools.get_current_user(self) url = self.request.uri self.render('404.html', user=user, url=url) class HomeHandler(BaseHandler): @tornado.web.authenticated def get(self, home_id): home_name = myTools.get_name_by_id(home_id) user = myTools.get_current_user(self) url = self.request.uri self.set_cookie('url', url) self.render('home.html', home_name=home_name, user=user, url=url) class AboutHandler(BaseHandler): def get(self): user = myTools.get_current_user(self) url = self.request.uri self.set_cookie('url', url) self.render('about.html', user=user, url=url) class LoginHandler(BaseHandler): def get(self): self.render("login.html") def post(self): if ( myTools.is_a_attack(self) ): return self.set_header("Content-Type", "text/plain") email = self.get_argument('email') password = self.get_argument('password') if myTools.login(email, password): name = myTools.get_name_by_email(email) if myTools.is_user_checked(email): self.set_secure_cookie('name', name) url = self.get_cookie('url') self.redirect(url) else: self.set_secure_cookie('guest', name) self.redirect('/signup') else: self.write("Login Failed!") class LogoutHandler(BaseHandler): def get(self): url = self.get_cookie('url') self.clear_cookie('name') self.clear_cookie('guest') self.redirect(url) class SignupHandler(BaseHandler): def get(self): user = myTools.get_current_user(self) #if self.get_secure_cookie('guest'): # user['name'] = self.get_secure_cookie('guest') # user['id'] = myTools.get_id_by_name(user['name']) # guest = self.get_secure_cookie('guest') #elif self.get_current_user(): # user['name'] = self.get_current_user() # user['id'] = myTools.get_id_by_name(user['name']) self.render('signup.html', user=user, url='/') def post(self): if ( myTools.is_a_attack(self) ): return user = {} user['email'] = self.get_argument('email') user['name'] = self.get_argument('name') user['password'] = self.get_argument('password') re_password = self.get_argument('repassword') try: if self.get_argument('is_subscribed'): user['subscribed'] = 1 except: user['subscribed'] = 0 if user['password'] == re_password: if myTools.is_email_exist(user['email']) and myTools.is_name_exist(user['name']): if myTools.insert_a_user(user): myTools.send_check_email(user['email']) if myTools.login(user['email'], user['password']): self.set_secure_cookie('guest', user['name']) self.redirect('/signup') self.write('Signup Failed!') class FllwHandler(BaseHandler): @tornado.web.authenticated def post(self): pid = int(self.get_argument('pid')) fname = self.get_current_user() if myTools.follow(pid, fname): self.write("Succeed Following!") else: self.write("Followed Error!") class SbscHandler(BaseHandler): @tornado.web.authenticated def post(self): subscribed = int(self.get_argument('subscribed')) name = self.get_current_user() if myTools.subscribe(name, subscribed): self.write("Succeed Subscribing!") else: self.write("Subscribed Error!") class CheckHandler(BaseHandler): def get(self): try: code = self.get_argument('code') email = self.get_argument('email') name = myTools.get_name_by_email(email) if myTools.check_email(email, code): self.set_secure_cookie('name', name) self.redirect('/signup') else: self.write('Checked Failed!') except: name = self.get_argument('name') email = myTools.get_email_by_name(name) myTools.send_check_email(email) class ChangePasswdHandler(BaseHandler): @tornado.web.authenticated def get(self): name = self.get_current_user() email = myTools.get_email_by_name(name) passwd = self.get_argument('passwd') new_passwd = self.get_argument('new_passwd') re_new_passwd = self.get_argument('re_new_passwd') if myTools.change_passwd(email, passwd, new_passwd, re_new_passwd): self.write('Passwd Changed!') else: self.write('Changing Passwd Fail!') @tornado.web.authenticated def get(self): name = self.get_current_user() email = myTools.get_email_by_name(name) passwd = self.get_argument('passwd') new_passwd = self.get_argument('new_passwd') re_new_passwd = self.get_argument('re_new_passwd') if myTools.change_passwd(email, passwd, new_passwd, re_new_passwd): self.write('Passwd Changed!') else: self.write('Changing Passwd Fail!') class RenrenCallBackHandler(BaseHandler): def get(self): code = self.get_argument('code') print code url = "https://graph.renren.com/oauth/token" +\ "?grant_type=authorization_code" + \ "&client_id=a5cd69597ccf4b369057f919928cbfce"+\ "&redirect_uri=http://tucao.pedestal.cn/renrencallback"+\ "&client_secret=ce6f56e203524cfc9c3bb61523009b6e"+\ "&code=" + code #print url http_client = tornado.httpclient.HTTPClient() response = http_client.fetch(url) print response.body jsonDic = json.loads(response.body) print jsonDic['access_token'] http_client.close() class RenrenGetTokenHandler(BaseHandler): def get(self): token = self.get_argument('code') print token class NewsHandler(BaseHandler): def get(self, nnid): nid = int(nnid) news = myTools.get_a_news(nid) news['id'] = news['nid'] news.pop('nid') news_json = json.dumps(news) self.write(news_json) class TucaoIndexHandler(BaseHandler): def get(self): try: page = int(self.get_argument('page')) except: page = 1 page_size = 20 latest_id = myTools.get_latest_news_id() oldest_id = myTools.get_oldest_news_id() total_pages = (myTools.get_total_news_num()-1) / page_size + 1 if page>total_pages or page<1: page = 1 max_id = latest_id - (page-1)*page_size if page == total_pages: min_id = myTools.get_oldest_news_id() else: min_id = max_id - page_size + 1 newsList = myTools.get_news_list(min_id, max_id) visible_pages = 10 user = myTools.get_current_user(self) self.set_cookie("url", self.request.uri) url = self.request.uri self.render("tucao_index.html", newsList=newsList, total_pages=total_pages, current_page=page, visible_pages=visible_pages, user=user, url=url) class TucaoHandler(BaseHandler): def get(self, nnid): if ( myTools.is_a_attack(self) ): return NewsDatabase.reconnect() nid = int(nnid) comm = NewsDatabase.query("""SELECT * FROM commTable WHERE id=%r ORDER BY level DESC, tolevel""", nid) # print comm reply = json.dumps(comm, cls=CJsonEncoder) # print reply self.write(reply) def post(self): if ( myTools.is_a_attack(self) ): return print ("In post") NewsDatabase.reconnect() remote_ip = self.request.remote_ip if ( restrict.has_key(remote_ip) ): if ( time.time() - restrict[remote_ip][0] < 5 ): self.write("less than 5 second") print restrict[remote_ip][0] print time.time() print "less than 5 second" return if ( restrict[remote_ip][1] > 1000 ): self.write("too much") NewsDatabase.execute(u"""INSERT blackList(ip) VALUES(%s)""", remote_ip) blacklist.append(remote_ip) print blacklist print restrict[remote_ip][1] print "too much" return else: restrict[remote_ip] = [time.time(), 0] print self.request raw_body = str(self.request.body) # print raw_body jsonDic = json.loads(raw_body) # print jsonDic nid = int(jsonDic['id']) content = jsonDic['content'] r = r"^@(\d+):([\s\S]+)$" LEVEL = re.findall(r, content) if LEVEL: level = int(LEVEL[0][0]) TOLEVEL = NewsDatabase.query("""SELECT COUNT(*) AS tolevel FROM commTable WHERE id=%r AND level=%r""", nid, level) if ( int(TOLEVEL[0]['tolevel']) == 0 ): print "no such level" self.write("no such level") return else: tolevel = int(TOLEVEL[0]['tolevel']) + 1 content = LEVEL[0][1] else: tolevel = 1 LEVEL = NewsDatabase.query("""SELECT COUNT(DISTINCT(level)) AS level FROM commTable WHERE id=%r""", nid) level = int(LEVEL[0]['level']) + 1 # print content if (content == 'water'): NewsDatabase.execute(u"""INSERT blackList(ip) VALUES(%s)""", remote_ip) blacklist.append(remote_ip) print blacklist myTools.is_a_attack(self) NewsDatabase.execute(u"""INSERT commTable(id, level, tolevel, content) VALUES(%r, %r, %r, %s)""", nid, level, tolevel, content) restrict[remote_ip][1] += 1 print ("Insert comm") print restrict[remote_ip][1] self.write("success") class TucaoCommHandler(BaseHandler): def get(self, nnid): NewsDatabase.reconnect() nid = int(nnid) news = myTools.get_a_news(nid) news['body'] = news['body'].replace('href="/Attachments/file', 'href="http://ssdut.dlut.edu.cn/Attachments/file') comm = NewsDatabase.query("""SELECT * FROM commTable WHERE id=%r ORDER BY level DESC, tolevel""", nid) latest = myTools.get_latest_news_id() total = myTools.get_total_news_num() # print comm user = myTools.get_current_user(self) self.set_cookie("url", self.request.uri) url = self.request.uri self.render('TucaoComm.html', title=news['title'],\ body=news['body'], publisher=news['publisher'],\ date=news['date'], clean_body=news['clean_body'],\ commList=comm, nid=nid, latest=latest, total=total, user=user, url=url) def post(self): if ( myTools.is_a_attack(self) ): self.redirect("/blacklist") return print ("In post") NewsDatabase.reconnect() raw_body = str(self.request.body) print self.request.remote_ip print raw_body nid = int(self.get_argument('id')) content = self.get_argument('content') r = r"^@(\d+):([\s\S]+)$" LEVEL = re.findall(r, content) if LEVEL: level = int(LEVEL[0][0]) TOLEVEL = NewsDatabase.query("""SELECT COUNT(*) AS tolevel FROM commTable WHERE id=%r AND level=%r""", nid, level) if ( int(TOLEVEL[0]['tolevel']) == 0 ): print "no such level" self.write("no such level") return else: tolevel = int(TOLEVEL[0]['tolevel']) + 1 content = LEVEL[0][1] else: tolevel = 1 LEVEL = NewsDatabase.query("""SELECT COUNT(DISTINCT(level)) AS level FROM commTable WHERE id=%r""", nid) level = int(LEVEL[0]['level']) + 1 # print content if (content == 'water'): NewsDatabase.execute(u"""INSERT blackList(ip) VALUES(%s)""", remote_ip) ENV_DIC['blacklist'].append(remote_ip) myTools.is_a_attack(self) NewsDatabase.execute(u"""INSERT commTable(id, level, tolevel, content) VALUES(%r, %r, %r, %s)""", nid, level, tolevel, content) myTools.post_once(self) self.redirect("/news/%d" % nid) class BlackListHandler(BaseHandler): def get(self): self.write("U are in blacklist!<br>联系人人网“学生周知”") def main(): app = Application() app.listen(options.port) tornado.ioloop.IOLoop.instance().start() def init(): ENV_DICT['latest'] = myTools.get_latest_news_id() ENV_DICT['total'] = myTools.get_total_news_num() print ENV_DICT['total'] BLACKLIST = NewsDatabase.query("""SELECT * FROM blackList""") ENV_DICT['blacklist'] = [] ENV_DICT['restrict'] = {} for blackdict in BLACKLIST: ENV_DICT['blacklist'].append(blackdict['ip']) print ENV_DICT['blacklist'] if __name__ == "__main__": init() main()
5196aa80c752adb16bb8cd345d8db75574e812f7
e334a81be3960876a8f918f592f6d8de6bfe9926
/Deep Learning approach/Inference.py
ca166b5f65a760a4b8cb513e9b8e66b4f5204693
[]
no_license
akshatbjain/Object-Detection-using-Computer-Vision
a03432243820cc4ad5cc4bfb09035b7468bc0c01
44f27ffcf55641470a791ec39b825aa1f82ea564
refs/heads/master
2021-06-17T12:52:00.624763
2017-04-23T21:32:10
2017-04-23T21:32:10
74,620,087
0
0
null
null
null
null
UTF-8
Python
false
false
1,445
py
from keras.models import Sequential from keras.layers import Dense from keras.models import model_from_json from keras.optimizers import SGD import numpy as np import os import cv2 # load json and create model json_file = open('VGG16_Model.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("VGG16_Model.h5") print("Loaded model from disk") # evaluate loaded model on test data sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True) loaded_model.compile(loss='mse', optimizer=sgd, metrics=['accuracy']) #loaded_model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy']) # Code to load the image from webcam cam = cv2.VideoCapture(0) print 'Press <q> to exit this code!' while(1): ret, img = cam.read() # Code to load the image from local directory #im = cv2.imread('test_images/5.jpeg') im = img.copy() im = cv2.resize(im, (224, 224)).astype(np.float32) im = im.transpose((2,0,1)) im = np.expand_dims(im, axis=0) out = loaded_model.predict(im) print out[0] if out[0][0] > 0.8 and out[0][1] > 0.022: font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img,'Object Detected', (20,150), font, 2, (255,255,255), 2, cv2.CV_AA) cv2.imshow('Input', img) k = cv2.waitKey(33) if k == 1048689: cam.release() break
bb034ab1792689bad0fe60d59c014703462e053b
a01633825cb77ce83320e9d99fba73b20a08ffab
/ycm_extra_conf.py
aab6f667988882458a1d5e6bdac43d3507ab8ac9
[]
no_license
lucckb/sysscripts
e9c6b116329963e5e52cbad2becbe72dc2f400eb
d5d191981509cc71520076aa87f56c84e3667c49
refs/heads/master
2023-03-20T06:44:51.291742
2023-03-08T21:23:43
2023-03-08T21:23:43
186,891,822
0
0
null
null
null
null
UTF-8
Python
false
false
4,017
py
import os import ycm_core from clang_helpers import PrepareClangFlags # Set this to the absolute path to the folder (NOT the file!) containing the # compile_commands.json file to use that instead of 'flags'. See here for # more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # Most projects will NOT need to set this to anything; you can just change the # 'flags' list of compilation flags. Notice that YCM itself uses that approach. def find_build_folder(): current = '.build.json' for i in range(10): if os.path.exists(current): return current current = '../' + current return '' # Set this to the absolute path to the folder (NOT the file!) containing the # compile_commands.json file to use that instead of 'flags'. See here for # more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # Most projects will NOT need to set this to anything; you can just change the # 'flags' list of compilation flags. Notice that YCM itself uses that approach. compilation_database_folder = find_build_folder() # These are the compilation flags that will be used in case there's no # compilation database set. flags = [ '-Wall', '-Wextra', '-Wno-variadic-macros', '-fexceptions', '-nostdinc', '-std=c++17', '-x', 'c++', ] # For check the compiler paths call `gcc -print-prog-name=cc1plus` -v # Compatibility with clang complete if os.path.isfile('.clang_complete'): with open('.clang_complete') as clf: content = clf.read().splitlines() flags += content else: flags += [ '-I', '/usr/include' '-isystem', '/usr/lib/gcc/x86_64-pc-linux-gnu/8.2.1/../../../../include/c++/8.2.1' '-isystem', '/usr/lib/gcc/x86_64-pc-linux-gnu/8.2.1/../../../../include/c++/8.2.1/x86_64-pc-linux-gnu', '-isystem', '/usr/lib/gcc/x86_64-pc-linux-gnu/8.2.1/../../../../include/c++/8.2.1/backward', '-isystem', '/usr/lib/gcc/x86_64-pc-linux-gnu/8.2.1/include', '-isystem', '/usr/lib/gcc/x86_64-pc-linux-gnu/8.2.1/include-fixed', '-I', '/usr/local/include', ] if compilation_database_folder: database = ycm_core.CompilationDatabase(compilation_database_folder) else: database = None #def DirectoryOfThisScript(): # return os.path.dirname(os.path.abspath(__file__)) def DirectoryOfThisScript(): return os.path.abspath(os.getcwd()) def MakeRelativePathsInFlagsAbsolute(flags, working_directory): if not working_directory: return flags new_flags = [] make_next_absolute = False path_flags = ['-isystem', '-I', '-iquote', '--sysroot='] for flag in flags: new_flag = flag if make_next_absolute: make_next_absolute = False if not flag.startswith('/'): new_flag = os.path.join(working_directory, flag) for path_flag in path_flags: if flag == path_flag: make_next_absolute = True break if flag.startswith(path_flag): path = flag[len(path_flag):] new_flag = path_flag + os.path.join(working_directory, path) break if new_flag: new_flags.append(new_flag) return new_flags def FlagsForFile(filename): if database: # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object compilation_info = database.GetCompilationInfoForFile(filename) final_flags = PrepareClangFlags( MakeRelativePathsInFlagsAbsolute( compilation_info.compiler_flags_, compilation_info.compiler_working_dir_), filename) else: relative_to = DirectoryOfThisScript() final_flags = MakeRelativePathsInFlagsAbsolute(flags, relative_to) return { 'flags': final_flags, 'do_cache': True}
223e1702edfa023a4ea7e8553dae1934294aa7ea
1875c16dee46ab528b5a227c09c5743d8d10e982
/pyacs/lib/strain.py
286a4eea8f7c2d32302bdc8043281aba51f4d7f6
[]
no_license
CorentinPeutin/pyacs
56a8d2b3941bb7f921c447167c40d89157a502ed
c82aecd2c95a5d635170ed6750131cb49e28e570
refs/heads/main
2023-04-16T13:41:53.042830
2021-05-03T14:56:28
2021-05-03T14:56:28
363,963,509
0
0
null
null
null
null
UTF-8
Python
false
false
3,658
py
""" Strain rate calculation library """ ############################################################################### def vgrad(X,Y,VE,VN,SVE=None,SVN=None,CVEN=None,CODE=None, method='WLS',verbose=False): ############################################################################### """ Linear estimates of a horizontal velocity gradient :param X,Y: 1D numpy array of longitudes and latitudes :param VE,VN: 1D numpy array of east and north velocity. Unit is assummed to be mm/yr :param SVE,SVN,CVEN: 1D numpy array of east and north velocity standard deviation (mm/yr) and correlation. :param CODE: 1D numpy of string with site codes :param method: estimator in 'L1','WLS' (default: weighted least-squares 'WLS') :return: DV, the velocity gradient tensor as a 2x2 2D-numpy array and a 2-columns (East and North) residuals 2D numpy array """ import numpy as np ########################################################################### def __vgrad_obs_eq__(l0,p0,l,p,ve,vn,sve,svn,cven): ########################################################################### """ observation equation for the horizontal velocity gradient we assume that observation are in mm/yr and result will be in nstrain / yr """ Rt = 6371.E3 # Earth's radius in metres Rt3nstrain = Rt / 1.E6 import pyacs.lib.glinalg Ai = np.zeros((2,6)) Bi = np.zeros(2) Corri = np.zeros((2,2)) # velocity at the barycenter Ai[0,0] = 1. Ai[1,1] = 1. # ve Ai[0,2] = np.radians(l-l0) * Rt3nstrain * np.cos( np.radians( (p+p0)/2. ) ) Ai[0,3] = np.radians(p-p0) * Rt3nstrain # vn Ai[1,4] = np.radians(l-l0) * Rt3nstrain * np.cos( np.radians( (p+p0)/2. ) ) Ai[1,5] = np.radians(p-p0) * Rt3nstrain # Observation vector Bi[0] = ve Bi[1] = vn # Covariance matrix Corri[0,0] = 1. Corri[1,1] = 1. Corri[1,0] = cven Corri[0,1] = cven Cvi = pyacs.lib.glinalg.corr_to_cov( Corri,np.array([sve,svn]) ) return(Ai,Bi,Cvi) ########################################################################### def __barycenter__(X,Y): ########################################################################### """ the barycenter of a set of point given by geographical coordinates """ import pyacs.lib.coordinates XYZ = np.array( list(map(pyacs.lib.coordinates.geo2xyz,np.radians(X),np.radians(Y),np.zeros(X.size)) )) [mx,my,mz] = np.mean( XYZ, axis=0 ) [mlong,mlat, _ ] = pyacs.lib.coordinates.xyz2geo(mx, my, mz, unit='dec_deg') return(mlong,mlat) # MAIN # barycenter of network (l0,p0) = __barycenter__(X,Y) if verbose: print("-- Barycenter at (%10.5lf , %10.5lf )" % (l0,p0)) # build the linear system A=np.zeros((2*X.size,6)) B=np.zeros((2*X.size)) CV=np.zeros((2*X.size,2*X.size)) for i in np.arange(X.size): (Ai,Bi,Cvi) = __vgrad_obs_eq__(l0,p0,X[i],Y[i],VE[i],VN[i],SVE[i],SVN[i],CVEN[i]) A[2*i:2*i+2,:] = Ai B[2*i:2*i+2] = Bi CV[2*i:2*i+2,2*i:2*i+2] = Cvi # Solve import pyacs.lib.glinalg SOL,COV,RESIDUALS, chi2 = pyacs.lib.glinalg.lscov_full(A,B,CV) return(l0,p0,SOL,COV,RESIDUALS, chi2)
2687452fb54b846ce10ed9522ff3792242e23613
dbbe307491d3d4b00c077d502c52ee45fc7944f9
/Spam_Filter.py
a98714b8d2eb9ad0ae9e69c3a1282ec848c713a6
[]
no_license
Prais3/Artificial-Intelligence
d0c2a180b265fd76447fe08bb3b6eb6eec1f26db
0c60700a5b03401fbe04d4ddf5b4fe63f8764669
refs/heads/master
2023-02-02T17:56:48.791188
2020-12-03T14:53:23
2020-12-03T14:53:23
167,734,051
0
0
null
null
null
null
UTF-8
Python
false
false
5,946
py
############################################################ # CMPSC442: Homework_4 ############################################################ # student_name = "Varun Jani" ############################################################ # Imports ############################################################ # Include your imports here, if any are used. import email import os from math import log, exp # from queue import PriorityQueue ############################################################ # Section 1: Spam Filter ############################################################ # Function to read the emails once the path is specified, and it extracts the tokens and returns it as a list def load_tokens(email_path): # To open the file using the specified path file_obj = open(email_path, encoding="utf8") message = email.message_from_file(file_obj) token_list = [] for line in email.iterators.body_line_iterator(message): token_list += line.split() # Simply close the file file_obj.close() return token_list # Function to return a dictionary from the words contained in the email to their Laplace-smoothed probabilities def log_probs(email_paths, smoothing): p_dict = {} # For loop to check the path of the email iterating over the paths for e in email_paths: values = load_tokens(e) # From the values, we are looking for a word specifically using for loop for x in values: # To check if the word is in the dictionary or not if x in p_dict: p_dict[x] += 1 else: p_dict[x] = 1 final = sum(p_dict.values()) # To check the word and its frequency in the dictionary using for loop and items() for dictionary for term, w in p_dict.items(): temp = final + smoothing * (len(p_dict) + 1) p_dict[term] = log((w + smoothing) / temp) p_dict.update({'<UNK>': log(smoothing / (final + smoothing * (len(p_dict) + 1)))}) return p_dict class SpamFilter(object): # Simple init function create two log probability dictionaries def __init__(self, spam_dir, ham_dir, smoothing): spam_path, ham_path = [], [] # Using os.walk to access the file information for dir_path, dir_name, file_name in os.walk(spam_dir): spam_path = [dir_path + '/' + f for f in file_name] for dir_path, dir_name, file_name in os.walk(ham_dir): ham_path = [dir_path + '/' + f for f in file_name] self.spam_prob = log_probs(spam_path, smoothing) self.ham_prob = log_probs(ham_path, smoothing) total_len = len(spam_path) + len(ham_path) self.p_ham = log(len(ham_path) / total_len) self.p_spam = log(1 - self.p_ham) # Function to return whether the email in the given file path is spam or not (returns True or False) def is_spam(self, email_path): spam_p, ham_p = self.p_spam, self.p_ham dict_words = {} # Check for the word in the given file, which is accessed using load_tokens function for w in load_tokens(email_path): if w in dict_words: dict_words[w] += 1 else: dict_words[w] = 1 # Update the ham and spam accordingly after iterating through the dictionary for w, count in dict_words.items(): # To check if the word is in there or not (for spam and ham) if w in self.ham_prob: ham_p += self.ham_prob[w] else: ham_p += self.ham_prob["<UNK>"] if w in self.spam_prob: spam_p += self.spam_prob[w] else: spam_p += self.spam_prob["<UNK>"] # I started these valued with the calculated value and not zero if spam_p > ham_p: return True return False # Next two function return the n most indicative words for each category sorted in descending order def most_indicative_spam(self, n): v = set(self.spam_prob.keys()) & set(self.ham_prob.keys()) spam_res = {i: log(exp(self.spam_prob[i]) / (exp(self.ham_prob[i]) + exp(self.spam_prob[i]))) for i in v} ans = sorted([(i, spam_res[i]) for i in spam_res], key=lambda x: x[1], reverse=True) return [i[0] for i in ans[:n]] def most_indicative_ham(self, n): v = set(self.spam_prob.keys()) & set(self.ham_prob.keys()) ham_res = {i: log(exp(self.ham_prob[i]) / (exp(self.spam_prob[i]) + exp(self.ham_prob[i]))) for i in v} ans = sorted([(i, ham_res[i]) for i in ham_res], key=lambda x: x[1], reverse=True) return [i[0] for i in ans[:n]] # P.S: I used priority queue also to implement the two most indicative function here. It was slightly slower than the # sorting method so I decided not to use it. Based on my test cases, this is a faster method. I hope I am not wrong. # I would love to change it if it isn't because the auto-grader test cases might be different and so I cannot # be completely sure. # Best time overall using unittest should be in the range 3.5 to 4.0 seconds ############################################################ # Section 2: Feedback ############################################################ feedback_question_1 = """ Around 8-9 hours mainly because of last timing part """ feedback_question_2 = """ The second function was challenging at first, and the most indicative part was a whole lot time consuming for me because of the time issue. I had to solve a lot of issues there. Please look at the P.S. above, as I have a better solution if the current one isn't satisfactory. Overall otherwise I had not many stumbling blocks. """ feedback_question_3 = """ Assignment was alright. It was a good assignment and helped me learn something new. """
a1884220878bb23e0717618fb735566fe0dbc2ee
29597b67f10d456bdcc90a693ac93f571635ae34
/starter/fact_gen.py
5c18200c17517a2188492ff21fe5285875adda1a
[]
no_license
sh-tatsuno/python-algorithm
67d50f24604550c115f957ed74e81483566c560d
2800050077562eef50b6f0bd8ba6733068469c4c
refs/heads/master
2020-05-17T09:46:05.714449
2019-07-25T15:43:20
2019-07-25T15:43:20
183,641,527
1
0
null
null
null
null
UTF-8
Python
false
false
485
py
def prod(a,b): # TODO change output to the product of a and b output = a * b return output def fact_gen(): i = 1 n = i while True: output = prod(n, i) yield output n = output i += 1 # TODO: update i and n # Hint: i is a successive integer and n is the previous product # Test block my_gen = fact_gen() num = 5 for i in range(num): print(next(my_gen)) # Correct result when num = 5: # 1 # 2 # 6 # 24 # 120
ad7d6b93bd2c0c9188bc6788a1c2cd4f6d68c6b4
aec1201dad3f0aeda161c4e927ba05c04377eae9
/cogs/commands/userinfo.py
4fa88b6b6c214c9db0db2bddc83083cce150529a
[]
no_license
asdiasjiodasj/ahsidusdfdsfs
aa8455915633f7187d6756291e61db7e97e5303a
2214c6318147fa397d6d01b87086250edeec5ff4
refs/heads/main
2023-02-24T11:48:31.811629
2021-01-29T12:38:28
2021-01-29T12:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,074
py
import discord from discord.ext import commands class Userinfo(commands.Cog): @commands.command(aliases=["whois"]) async def userinfo(self, ctx, *, target: discord.Member=None): if target is None: target = ctx.author roles = [role for role in target.roles if role != ctx.guild.default_role] embed = discord.Embed(title="User information", colour=discord.Color.gold(), timestamp=datetime.utcnow()) embed.set_author(name=target.name, icon_url=target.avatar_url) embed.set_thumbnail(url=target.avatar_url) fields = [("Name", str(target), False), ("ID", target.id, False), ("Status", str(target.status).title(), False), (f"Roles ({len(roles)})", " ".join([role.mention for role in roles]), False), ("Created at", target.created_at.strftime("%d/%m/%Y %H:%M:%S"), False), ("Joined at", target.joined_at.strftime("%d/%m/%Y %H:%M:%S"), False)] for name, value, inline in fields: embed.add_field(name=name, value=value, inline=inline) await ctx.send(embed=embed) def setup(bot): bot.add_cog(Userinfo(bot))
8d4552c6674aa3ccb96e1d03b40f4a53cc32e0d2
7c8957401e1991ea8fa84ba7ac8462ad11bd5502
/train.py
733cee5d9861b3de998afeb6b1d48b16ce65e99e
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
y33-j3T/DeepMusicvStyle
cfec508078832ce9032008e2c9ce8fe15615fcc6
f1a6b149d8412ad480952e6820708b2b6eaf4b96
refs/heads/master
2021-04-02T12:49:52.828167
2020-03-23T15:44:06
2020-03-23T15:44:06
248,276,853
0
0
BSD-3-Clause
2020-03-23T15:44:08
2020-03-18T15:55:41
Python
UTF-8
Python
false
false
5,792
py
from model import MusicVAE from loader import load_noteseqs import numpy as np import tensorflow as tf import argparse tf.reset_default_graph() ap = argparse.ArgumentParser() ap.add_argument("-bs", "--batch_size", default=32, type=int) ap.add_argument("-s", "--save_path", default="vae/", type=str) ap.add_argument("-e", "--epochs", default=100, type=int) ap.add_argument("--train_set", default="data/Jsbtr.pkl data/Nmdtr.pkl", type=str) ap.add_argument("--test_set", default="data/Jsbte.pkl data/Nmdte.pkl", type=str) ap.add_argument("--x_depth", default="89 33 33", type=str) ap.add_argument("--enc_rnn", default="hyperlstm", type=str) ap.add_argument("--enc_rnn_dim", default=512, type=int) ap.add_argument("--enc_hyper_unit", default=256, type=int) ap.add_argument("--enc_dropout", default=0.25, type=float) ap.add_argument("--enc_rnn_layer", default=1, type=int) ap.add_argument("--dec_rnn", default="hyperlstm", type=str) ap.add_argument("--dec_rnn_dim", default=512, type=int) ap.add_argument("--dec_hyper_unit", default=256, type=int) ap.add_argument("--dec_dropout", default=0.25, type=float) ap.add_argument("--dec_rnn_layer", default=1, type=int) ap.add_argument("--attention", default=128, type=int) ap.add_argument("--cont_dim", default=100, type=int) ap.add_argument("--cat_dim", default=2, type=int) ap.add_argument("--style_embed_dim", default=100, type=int) ap.add_argument("--mu_force", default=2.0, type=float) ap.add_argument("--gumbel", default=0.67, type=float) ap.add_argument("--l2_reg", default=0.002, type=float) ap.add_argument("--kl_reg", default=1.0, type=float) ap.add_argument("--kl_anneal", default=1000, type=int) ap.add_argument("--restore_path", default=None, type=str) args = ap.parse_args() x_depth = args.x_depth.split() x_depth = [int(i) for i in x_depth] train_set = args.train_set.split() test_set = args.test_set.split() train_graph = tf.Graph() val_graph = tf.Graph() with train_graph.as_default(): t_it, t_x, t_s, t_l = load_noteseqs(train_set, x_depth, batch_size=args.batch_size, augment=True).get_iterator() m = MusicVAE(x_depth=x_depth, enc_rnn_dim=args.enc_rnn_dim, enc_hyper_unit=args.enc_hyper_unit, enc_dropout=args.enc_dropout, dec_rnn_dim=args.dec_rnn_dim, dec_hyper_unit=args.dec_hyper_unit, dec_dropout=args.dec_dropout, enc_rnn_layer=args.enc_rnn_layer, dec_rnn_layer=args.dec_rnn_layer, enc_rnn=args.enc_rnn, dec_rnn=args.dec_rnn, attention=args.attention, cont_dim=args.cont_dim, cat_dim=args.cat_dim, mu_force=args.mu_force, gumbel=args.gumbel, style_embed_dim=args.style_embed_dim, l2_reg=args.l2_reg, kl_reg=args.kl_reg, training=True, beta_anneal_steps=args.kl_anneal) m.build(t_x, t_s, t_l, None) with val_graph.as_default(): v_it, v_x, v_s, v_l = load_noteseqs(test_set, x_depth, batch_size=20).get_iterator() n = MusicVAE(x_depth=x_depth, enc_rnn_dim=args.enc_rnn_dim, enc_hyper_unit=args.enc_hyper_unit, enc_dropout=0.0, dec_rnn_dim=args.dec_rnn_dim, dec_hyper_unit=args.dec_hyper_unit, dec_dropout=0.0, enc_rnn_layer=args.enc_rnn_layer, dec_rnn_layer=args.dec_rnn_layer, enc_rnn=args.enc_rnn, dec_rnn=args.dec_rnn, attention=args.attention, cont_dim=args.cont_dim, cat_dim=args.cat_dim, mu_force=args.mu_force, gumbel=args.gumbel, style_embed_dim=args.style_embed_dim, l2_reg=args.l2_reg, kl_reg=args.kl_reg, training=False, beta_anneal_steps=args.kl_anneal) n.build(v_x, v_s, v_l, None) tf_config = tf.ConfigProto() tf_config.allow_soft_placement = True tf_config.gpu_options.allow_growth = True sess = tf.Session(config=tf_config, graph=train_graph) ss = tf.Session(config=tf_config, graph=val_graph) if args.restore_path: print("[INFO] Restoring from checkpoint {}".format(args.restore_path)) m.saver.restore(sess, args.restore_path) else: sess.run(m.init) step = 0 tw = tf.summary.FileWriter(args.save_path+"train", sess.graph) vw = tf.summary.FileWriter(args.save_path+"val", ss.graph) print("[INFO] Start training...") for epoch in range(args.epochs): sess.run(t_it.initializer) train_loss = [] train_kl = [] while True: try: if (step+1)%20 == 0 or step == 0: _, tmp_loss, tmp_kl, step, summ = sess.run([m.op, m.recon_loss, m.kl_loss, m.step, m.summ_op]) tw.add_summary(summ, step) else: _, tmp_loss, tmp_kl, step = sess.run([m.op, m.recon_loss, m.kl_loss, m.step]) train_loss.append(tmp_loss) train_kl.append(tmp_kl) except tf.errors.OutOfRangeError: break m.saver.save(sess, args.save_path + "vae-epoch{}".format(epoch+1)) n.saver.restore(ss, args.save_path + "vae-epoch{}".format(epoch+1)) val_loss = [] val_kl = [] ss.run(v_it.initializer) while True: try: tmp_loss, tmp_kl, summ = ss.run([n.recon_loss, n.kl_loss, n.summ_op]) val_loss.append(tmp_loss) val_kl.append(tmp_kl) except tf.errors.OutOfRangeError: vw.add_summary(summ, step) break train_loss = np.mean(train_loss) train_kl = np.mean(train_kl) val_loss = np.mean(val_loss) val_kl = np.mean(val_kl) print("{} Train Loss: {:.4f} Train KL: {:.2f} Val Loss: {:.4f} Val KL: {:.2f}".format(epoch+1, train_loss, train_kl, val_loss, val_kl))
7f65ad75e2696a0df66c6ff8d05e1997399a2474
c7cb7b9583859147cdc13811e2d25c15fae059d8
/Problem Sets/Only A Little Lucky.py
79390ee8c07a4c8a885d1f4387a512d43a040c17
[]
no_license
rhmiller47/Udacity-cs101-building-a-search-engine
f83e2ecadd34d29c48ff16aa711b2c6e616e6d16
661c7253e338f7ad15f317be9205e70f7b81f087
refs/heads/master
2021-12-13T21:17:27.254062
2017-04-06T03:11:40
2017-04-06T03:11:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,144
py
# Triple Gold Star # Only A Little Lucky # The Feeling Lucky question (from the regular homework) assumed it was enough # to find the best-ranked page for a given query. For most queries, though, we # don't just want the best page (according to the page ranking algorithm), we # want a list of many pages that match the query, ordered from the most likely # to be useful to the least likely. # Your goal for this question is to define a procedure, ordered_search(index, # ranks, keyword), that takes the same inputs as lucky_search from Question 5, # but returns an ordered list of all the URLs that match the query. # To order the pages, use the quicksort algorithm, invented by Sir Tony Hoare in # 1959. Quicksort provides a way to sort any list of data, using an expected # number of comparisons that scales as n log n where n is the number of elements # in the list. # The idea of quicksort is quite simple: # If the list has zero or one elements, it is already sorted. # Otherwise, pick a pivot element, and split the list into two partitions: one # contains all the elements equal to or lower than the value of the pivot # element, and the other contains all the elements that are greater than the # pivot element. Recursively sort each of the sub-lists, and then return the # result of concatenating the sorted left sub-list, the pivot element, and the # sorted right sub-list. # For simplicity, use the first element in the list as your pivot element (this # is not usually a good choice, since it means if the input list is already # nearly sorted, the actual work will be much worse than expected). def qsort(pages): if pages == []: return [] else: pivot = pages[0] lesser = qsort([x for x in pages[1:] if x < pivot]) greater = qsort([x for x in pages[1:] if x >= pivot]) return lesser + [pivot] + greater def ordered_search(index, ranks, keyword): pages = lookup(index,keyword) if not pages: return None else: return qsort(pages) cache = { 'http://udacity.com/cs101x/urank/index.html': """<html> <body> <h1>Dave's Cooking Algorithms</h1> <p> Here are my favorite recipies: <ul> <li> <a href="http://udacity.com/cs101x/urank/hummus.html">Hummus Recipe</a> <li> <a href="http://udacity.com/cs101x/urank/arsenic.html">World's Best Hummus</a> <li> <a href="http://udacity.com/cs101x/urank/kathleen.html">Kathleen's Hummus Recipe</a> </ul> For more expert opinions, check out the <a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a> and <a href="http://udacity.com/cs101x/urank/zinc.html">Zinc Chef</a>. </body> </html> """, 'http://udacity.com/cs101x/urank/zinc.html': """<html> <body> <h1>The Zinc Chef</h1> <p> I learned everything I know from <a href="http://udacity.com/cs101x/urank/nickel.html">the Nickel Chef</a>. </p> <p> For great hummus, try <a href="http://udacity.com/cs101x/urank/arsenic.html">this recipe</a>. </body> </html> """, 'http://udacity.com/cs101x/urank/nickel.html': """<html> <body> <h1>The Nickel Chef</h1> <p> This is the <a href="http://udacity.com/cs101x/urank/kathleen.html"> best Hummus recipe! </a> </body> </html> """, 'http://udacity.com/cs101x/urank/kathleen.html': """<html> <body> <h1> Kathleen's Hummus Recipe </h1> <p> <ol> <li> Open a can of garbonzo beans. <li> Crush them in a blender. <li> Add 3 tablesppons of tahini sauce. <li> Squeeze in one lemon. <li> Add salt, pepper, and buttercream frosting to taste. </ol> </body> </html> """, 'http://udacity.com/cs101x/urank/arsenic.html': """<html> <body> <h1> The Arsenic Chef's World Famous Hummus Recipe </h1> <p> <ol> <li> Kidnap the <a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a>. <li> Force her to make hummus for you. </ol> </body> </html> """, 'http://udacity.com/cs101x/urank/hummus.html': """<html> <body> <h1> Hummus Recipe </h1> <p> <ol> <li> Go to the store and buy a container of hummus. <li> Open it. </ol> </body> </html> """, } def get_page(url): if url in cache: return cache[url] return "" def get_next_target(page): start_link = page.find('<a href=') if start_link == -1: return None, 0 start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote def get_all_links(page): links = [] while True: url, endpos = get_next_target(page) if url: links.append(url) page = page[endpos:] else: break return links def union(a, b): for e in b: if e not in a: a.append(e) def add_page_to_index(index, url, content): words = content.split() for word in words: add_to_index(index, word, url) def add_to_index(index, keyword, url): if keyword in index: index[keyword].append(url) else: index[keyword] = [url] def lookup(index, keyword): if keyword in index: return index[keyword] else: return None def crawl_web(seed): # returns index, graph of inlinks tocrawl = [seed] crawled = [] graph = {} # <url>, [list of pages it links to] index = {} while tocrawl: page = tocrawl.pop() if page not in crawled: content = get_page(page) add_page_to_index(index, page, content) outlinks = get_all_links(content) graph[page] = outlinks union(tocrawl, outlinks) crawled.append(page) return index, graph def compute_ranks(graph): d = 0.8 # damping factor numloops = 10 ranks = {} npages = len(graph) for page in graph: ranks[page] = 1.0 / npages for i in range(0, numloops): newranks = {} for page in graph: newrank = (1 - d) / npages for node in graph: if page in graph[node]: newrank = newrank + d * (ranks[node] / len(graph[node])) newranks[page] = newrank ranks = newranks return ranks # Here are some example showing what ordered_search should do: # Observe that the result list is sorted so the highest-ranking site is at the # beginning of the list. # Note: the intent of this question is for students to write their own sorting # code, not to use the built-in sort procedure. index, graph = crawl_web('http://udacity.com/cs101x/urank/index.html') ranks = compute_ranks(graph) print ordered_search(index, ranks, 'Hummus') #>>> ['http://udacity.com/cs101x/urank/kathleen.html', # 'http://udacity.com/cs101x/urank/nickel.html', # 'http://udacity.com/cs101x/urank/arsenic.html', # 'http://udacity.com/cs101x/urank/hummus.html', # 'http://udacity.com/cs101x/urank/index.html'] print ordered_search(index, ranks, 'the') #>>> ['http://udacity.com/cs101x/urank/nickel.html', # 'http://udacity.com/cs101x/urank/arsenic.html', # 'http://udacity.com/cs101x/urank/hummus.html', # 'http://udacity.com/cs101x/urank/index.html'] print ordered_search(index, ranks, 'babaganoush') #>>> None
6e3219373e0597dbbe517953e3878c45f03103a8
e16aba29c27fa7a0bdabd9d30b91c4ddafbc5c11
/mainsite/migrations/0004_order_confirmed.py
2e3dcf59c809a29cdce06b938c4f0617feecb9b2
[]
no_license
ansh-saini/GraphicDesignShop
ebecd0ba039c135de73e4485e0e454c7e891b958
047d1af93982c5cfc696340411d27cc27d00782f
refs/heads/master
2020-04-20T16:12:35.106247
2019-03-12T17:45:46
2019-03-12T17:45:46
168,952,114
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
# Generated by Django 2.1.1 on 2018-11-16 09:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mainsite', '0003_auto_20181103_1322'), ] operations = [ migrations.AddField( model_name='order', name='confirmed', field=models.BooleanField(default=False), ), ]
342c17d9683d247865ce5a972ee907442a24a85c
f68c4cf56cf68c4d025a107804c5b2049baf4484
/eventregistry/tests/TestAnalytics.py
40a7e46b6c844950c5284806591a54577b7cca0c
[ "MIT" ]
permissive
philip928lin/event-registry-python
6688aa946e71292518951e67084530f83bf55cf8
a031cf6103b68f388e3035c2a7c1e311208c3ff3
refs/heads/master
2021-05-04T00:17:18.121273
2017-12-19T07:50:46
2017-12-19T07:50:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,015
py
import unittest import eventregistry as ER from DataValidator import DataValidator class TestAnalytics(DataValidator): def testConcepts(self): analytics = ER.Analytics(self.er) annInfo = analytics.annotate("Microsoft released a new version of Windows OS.") self.assertTrue("annotations" in annInfo, "Annotations were not provided for the given text") anns = annInfo["annotations"] self.assertTrue(len(anns) == 2) self.assertTrue("url" in anns[0]) self.assertTrue("title" in anns[0]) self.assertTrue("lang" in anns[0]) self.assertTrue("secLang" in anns[0]) self.assertTrue("secUrl" in anns[0]) self.assertTrue("secTitle" in anns[0]) self.assertTrue("wgt" in anns[0]) self.assertTrue("wikiDataItemId" in anns[0]) self.assertTrue("adverbs" in annInfo) self.assertTrue("adjectives" in annInfo) self.assertTrue("verbs" in annInfo) self.assertTrue("nouns" in annInfo) self.assertTrue("ranges" in annInfo) self.assertTrue("language" in annInfo) def testCategories(self): analytics = ER.Analytics(self.er) cats = analytics.categorize("Microsoft released a new version of Windows OS.") self.assertTrue("dmoz" in cats) self.assertTrue("categories" in cats.get("dmoz")) self.assertTrue("keywords" in cats.get("dmoz")) cat = cats.get("dmoz").get("categories")[0] self.assertTrue("label" in cat) self.assertTrue("score" in cat) kw = cats.get("dmoz").get("keywords")[0] self.assertTrue("keyword" in kw) self.assertTrue("wgt" in kw) def testLanguage(self): analytics = ER.Analytics(self.er) langInfo = analytics.detectLanguage("Microsoft released a new version of Windows OS.") print langInfo if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(TestAnalytics) unittest.TextTestRunner(verbosity=2).run(suite)
95b78133c0068f053357affee18b2b8a8cf13311
3c89509e8f04fe5b12d6a447edca1de61b670514
/OIA_Automation/Resuables/test_logging.py
192c8f768a759cf087fd4e21a458ceb6d42e55dc
[]
no_license
waytoabhay99/OIA_Automation_
8413ef913d3b353a3c2fea55a9bf7ebaf51b77eb
0e2c9046230b81c932d4548fba09cdc865d626a2
refs/heads/master
2023-05-21T13:43:25.598755
2021-06-09T12:57:30
2021-06-09T12:57:30
375,355,101
0
0
null
null
null
null
UTF-8
Python
false
false
470
py
import inspect import logging def get_logger(): loggerName = inspect.stack()[1][3] logger = logging.getLogger(loggerName) fileHandler = logging.FileHandler('../Execution_log/OIA_Admin_test_execution_report_log.log') formatter = logging.Formatter("%(asctime)s :%(levelname)s : %(name)s : %(message)s") fileHandler.setFormatter(formatter) logger.addHandler(fileHandler) # filehandler object logger.setLevel(logging.DEBUG) return logger
58dd6b5779438026c8c04a401030f1fdf2bd4a76
82debe3cc9f8fa33a60f03119f8a9343f959ceed
/sensor_logger.py
70fc6cbc02449977ec4f1a743210d9120b04caa2
[]
no_license
robotoilet/sensor_logger
68bd831a37c2b53307b1bbbb5a57231ce02f97cc
611375bce89dbed380f2f8b4e14843f5e65f5225
refs/heads/master
2021-01-22T11:20:44.202166
2016-10-25T22:41:13
2016-10-25T22:41:13
32,469,510
0
0
null
null
null
null
UTF-8
Python
false
false
3,175
py
from datetime import datetime import os.path import re import time import sensor_config from transmit import send_data SENSOR_CFG = sensor_config.CONFIG def create_logfilepath(datapoint, logdir): """ Find the first occurrence of a 10digit unix timestamp in a string, return a filepath (string) of format "<logdir>/L<timestamp>" """ timestamp = re.findall('\d{10}', datapoint)[0] return os.path.join(logdir, 'L%s' % timestamp) def tracked(log_function): """ Decorator to start writing to a new logfile after max_datapoints """ track = { 'count': 0, 'logfile': None, } def tracked_log(datapoint, max_datapoints=5, logdir='.'): lf = track.get('logfile') if not lf or logdir.split('/') != lf.split('/')[:-1]: track['logfile'] = create_logfilepath(datapoint, logdir) track['count'] = 0 log_function(datapoint, track['logfile']) count = track['count'] + 1 track['count'] = (count < max_datapoints) and count or 0 if not track['count']: print("closing logfile %s.." % track['logfile']) os.rename(track['logfile'], re.sub('L(?=\d{10})', 'C', track['logfile'])) track['logfile'] = None return tracked_log @tracked def log_datapoint(datapoint, logfile): print('logging datapoint %s to file %s' % (datapoint, logfile)) with open(logfile, 'a') as f: f.write(datapoint) def run(): sensors = [{'name': sr['name'], 'res': sr['res'], 'kwargs': sr['kwargs'], 'sense': sr['sensor'].setup()} for sr in SENSOR_CFG['sensors']] prev = None logdir = SENSOR_CFG['logdir'] closed_logfiles = (f for f in os.listdir(logdir) if f.startswith('C')) while True: ts = datetime.now() if ts.second == prev: continue #if ts.second % SENSOR_CFG['collect-res'] == 0: # for sr in sensors: # if ts.second % sr['res'] == 0: # dp = '(%s %s %s)' % (sr['name'], ts.strftime('%s'), # sr['sense'](**sr['kwargs'])) # try: # log_datapoint(dp, SENSOR_CFG['max_dp'], logdir) # except Exception as e: # msg = "could not get data for sensor {}, exeption was {}" # print(msg.format(sr['name'], e)) if ts.second % SENSOR_CFG['send-res'] == 0: try: next_file = closed_logfiles.next() except StopIteration: # last filelist used? try to create new one closed_logfiles = (f for f in os.listdir(logdir) if f.startswith('C')) try: next_file = closed_logfiles.next() except StopIteration: continue # nothing to send try: send_data(next_file) except Exception as e: msg = "Could not send data, exception was: {}" print(msg.format(e)) prev = ts.second if __name__ == '__main__': run()
f147dd355e000a73b9f724fdbe9401418cbdb0b3
ac9f014b138003ad288732688bf08b085f6b18b6
/prac_03/password_check.py
d4e1169c887fa0d1a24e24203f59853bc50bda59
[]
no_license
rdaumuller1/CP1404_practicals
8b97a78d10861eb5baffd77de8ca8ea19e0d8fd2
f12b740a0be4382bd32f602885505ca0afcb6e93
refs/heads/master
2020-04-30T13:46:10.677487
2019-05-31T00:00:13
2019-05-31T00:00:13
176,868,372
0
0
null
2019-04-04T03:46:07
2019-03-21T04:12:33
Python
UTF-8
Python
false
false
249
py
MIN_LENGTH = 3 def main(): password = get_password() while len(password) < MIN_LENGTH: password = get_password() print(len(password) * '*') def get_password(): password = input("Password: ") return password main()
7b04ca1d2f2e688491f33a4fb76efb298e938f59
194848d309f1b5ea1e7749d3560d99f9aa158431
/plot_and_analyze_the_climatology.py
6b7197972e5dc486d22f9997b3b936e4b6ccad14
[]
no_license
siirias/nemo_analysis
967d7012a1b963e46290b7d83a7d23293f0d168c
d20181750406445a259c2c0de02f5c1eabd51d0d
refs/heads/master
2023-03-16T08:16:21.595165
2023-03-09T16:17:45
2023-03-09T16:17:45
177,143,292
0
0
null
null
null
null
UTF-8
Python
false
false
12,553
py
# -*- coding: utf-8 -*- """ Created on Tue Jul 3 14:11:45 2018 @author: siirias """ import datetime import matplotlib as mp import matplotlib.pyplot as plt import numpy as np from scipy.io import netcdf from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import Basemap, shiftgrid, cm from netCDF4 import Dataset from smartseahelper import smh import os import cmocean import re import importlib import param_sets_for_plotting months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] param_sets =[\ { 'var1':'icecon',\ 'name_marker':'A005',\ 'other_name_marker':'A001',\ 'slice_wanted':-1,\ 'compare_two':True,\ 'output_dir_end':"/tmp/images/ice/",\ 'cludge':True\ } ] # actually parameters are set in next line. this is just an example. importlib.reload(param_sets_for_plotting) param_sets = param_sets_for_plotting.temperature_param_sets for param_set in param_sets: # param_set['name_marker'] = param_set['name_marker'].replace('A','C') # a cludge to quickly change the set. # param_set['other_name_marker'] = param_set['other_name_marker'].replace('A','C') # a cludge to quickly change the set. print(param_set) name_marker=param_set['name_marker'] #this one tells which dataseries is handled. compare_two=param_set['compare_two'] other_name_marker=param_set['other_name_marker'] land_color = (0.8, 0.83, 0.8) sea_color = (0.5, 0.5, 0.7) # meaningful only on sea-area where no data present var1 = param_set['var1'] #'VEL', 'SST', 'SSS', 'votemper', 'vosaline' slice_wanted = param_set['slice_wanted'] # if 3d grid, which layer to take. if -1, bottommost. ss=smh() ss.grid_type='T' ss.interval='m' ss.main_data_folder= ss.root_data_in+"/OUTPUT{}/".format(name_marker) datadir = ss.root_data_out+param_set['output_dir_end'] #where everyt output is stored extra ="" other_extra = "" cludge = param_set['cludge'] if(not '1' in name_marker): extra = 'c20v_' if(not '1' in other_name_marker): other_extra = 'c20v_' climatology_file=ss.root_data_out+'derived_data/test/{}climatology_{}_{}_{}.nc'.format(\ extra,name_marker,ss.interval,var1) #this one tells which dataseries is handled. series_name='climatology{}'.format(name_marker) if(compare_two): other_climatology_file=ss.root_data_out+\ 'derived_data/test/{}climatology_{}_{}_{}.nc'.\ format(other_extra,other_name_marker,ss.interval,var1) #this one tells which dataseries is handled. series_name='climatology{}vs{}'.format(name_marker,other_name_marker) if cludge: climatology_file=ss.root_data_out+\ 'derived_data/test/monthly_climatology_{}_d_icecon.nc'.format(name_marker) #GLUDGE! other_climatology_file=ss.root_data_out+\ 'derived_data/test/monthly_climatology_{}_d_icecon.nc'.format(other_name_marker) #GLUDGE! def get_bottom(grid): # grid is supposed to be masked array, Time, D,Lat,Lon # The idea in this is to shifht the mask one layer up, # and find the values which are masked in one (and only one) of # these masks. full_shape = grid.shape bottom_layers = np.zeros(( full_shape[0],\ full_shape[2], full_shape[3])) bottom_layers = np.ma.masked_array(bottom_layers,False) mask_roll = np.roll(grid.mask,-1,1) # move mask values one up. mask_roll[:,-1,:,:] = True # And mark bottom most mask as True. # This to get bottom values if there are no mask at end grid.mask = ~(grid.mask ^ mask_roll) bottom_layers = np.sum(grid,1) values = np.array(np.sum(~grid.mask,1),bool) # used to get the mask bottom_layers.mask = ~values return bottom_layers #Let's try to plot soemthing to start with: lon_min=16;lat_min=60;lon_max=26.01;lat_max=66.01; running_number=0 show_contours=True contour_step = 0.5 plotted_depth=0. #meters var2 = None #None, 'icecon' var2_min=0.0 var2_max=1.0 var2_cm='gray' if var1 in ['VEL']: var_min=0.0 var_max=0.15 var1_cm=cmocean.cm.speed var1_cm=cmocean.cm.speed ss.grid_type='U' #U,V,T plotted_depth=-10000. #meters var2=None show_contours=False if var1 in ['SST','votemper']: var_min=-0.5 var_max=18.0 var1_cm=cmocean.cm.thermal ss.grid_type='T' #U,V,T if(compare_two): var_min=-2. var_max=2. var1_cm='coolwarm' if var1 in ['SSS','vosaline']: var_min=0.0 var_max=8.0 var1_cm=cmocean.cm.haline ss.grid_type='T' #U,V,T if(compare_two): var_min=-2. var_max=2. var1_cm='RdGy' if var1 in ['SSH']: var_min=1.0 var_max=6.0 var1_cm=cmocean.cm.haline ss.grid_type='T' #U,V,T if var1 in ['icecon']: var_min=0.0 var_max=1.0 var1_cm=cmocean.cm.ice ss.grid_type='T' #U,V,T if(compare_two): var_min=-1. var_max=1. var1_cm='RdGy' font_size=10.0 resolution='h' projection='laea' just_one=False #first setup the main map: fig=plt.figure(figsize=(6,6)) if projection in ['laea']: lat_0=0.5*(lat_min+lat_max) lon_0=0.5*(lon_min+lon_max) bmap = Basemap(llcrnrlon=lon_min,llcrnrlat=lat_min,urcrnrlon=lon_max,urcrnrlat=lat_max, \ lat_0=lat_0, lon_0=lon_0,resolution = resolution, \ projection=projection,fix_aspect=False) #resolution c,l,i,h,f elif projection in ['merc','cyl']: bmap = Basemap(llcrnrlon=lon_min,llcrnrlat=lat_min,urcrnrlon=lon_max,urcrnrlat=lat_max, \ resolution = resolution, projection=projection,fix_aspect=False) #resolution c,l,i,h,f bmap.drawmapboundary(fill_color=sea_color, zorder = -10) bmap.fillcontinents(color=land_color, lake_color=sea_color,zorder = -9) bmap.drawcoastlines(zorder=21,linewidth=0.5,color='gray') #bmap.fillcontinents([0.9,0.9,0.9],lake_color=[0.85,0.85,0.85],zorder=20) bmap.drawparallels(np.arange(lat_min,lat_max,1.),linewidth=1,zorder=50,\ labels=[True,False,False,False],dashes=[1,0],color="#00000020",fontsize=10) bmap.drawmeridians(np.arange(lon_min,lon_max,2.),linewidth=1,zorder=50,\ labels=[False,False,False,True],dashes=[1,0],color="#00000020",fontsize=10) is_first=True data=Dataset(climatology_file) if(compare_two): other_data=Dataset(other_climatology_file) if(var1 in ['SST','SSH','SSS','votemper','vosaline','icecon','ivevolume']): d=data.variables['{}_mean'.format(var1)][:] if(len(d.shape)>3): # means this is 3d data, we only want one slice if(slice_wanted>=0): # Just a regular slice d = d[:,slice_wanted,:,:] else: #Now we want the bottom-most d = get_bottom(d) if(compare_two): other_d=other_data.variables['{}_mean'.format(var1)][:] if(len(other_d.shape)>3): # means this is 3d data, we only want one slice if(slice_wanted>=0): # Just a regular slice other_d = other_d[:,slice_wanted,:,:] else: other_d = get_bottom(other_d) #fix to get values fromplaces where one is masked, and the other is not mask_changed = d.mask ^ other_d.mask other_d.data[mask_changed & other_d.mask == True] = 0.0 d.data[mask_changed & d.mask == True] = 0.0 d.mask[mask_changed] = False # set the mask value of these off. other_d.mask[mask_changed] = False # set the mask value of these off. d=d-other_d # d=np.ma.masked_where(d==0.0,d) if(var1 in ['VEL']): data2=Dataset(ss.main_data_folder+re.sub("_grid_.","_grid_V",f)) if(plotted_depth>=0): depth_index=np.abs(data.variables['depthu'][:]-plotted_depth).argmin() d=data.variables['uos'][:,depth_index,:,:] d2=data2.variables['vos'][:,depth_index,:,:] else: #negative plotted depth measn bottom. d=ss.give_bottom_values(data.variables['uos'][:,:,:,:]) d2=data2.variables['vos'][:,:,:] d=np.ma.masked_where(d==0.0,d) #this one requires that we take another file too: d2=np.ma.masked_where(d==0.0,d) d=np.sqrt(d*d+d2*d2) data2.close() if(var2 is not None): ice_d=data.variables[var2][:] ice_d=np.ma.masked_where(ice_d<0.2,ice_d) lons = data.variables['nav_lon'][:] lats = data.variables['nav_lat'][:] lats,lons=ss.fix_latslons(lats,lons) if(ss.interval == 'd'): times=data.variables['day_of_year'][:].data else: times=data.variables['month_of_year'][:].data times = times[:12] # gludge to get over a bug. figure out later. data.close() if compare_two: other_data.close() if(just_one): times=[times[0]] for time_frame in range(len(times)): time=time_frame tmp_lon,tmp_lat=bmap(lons,lats) #cb=plt.colorbar(fraction=0.027, pad=0.01) value_range = np.max(d[time_frame,:,:])-np.min(d[time_frame,:,:]) print(time_frame, value_range) colors_fig=bmap.pcolormesh(tmp_lon,tmp_lat,d[time_frame,:,:],vmin=var_min,vmax=var_max,zorder=-3,cmap=var1_cm) if is_first: cb=plt.colorbar() cb.set_clim(vmin=var_min,vmax=var_max) cb.ax.tick_params(labelsize=font_size) is_first=False if(var2 is not None): ice_fig=bmap.pcolormesh(tmp_lon,tmp_lat,ice_d[time_frame,:,:],vmin=var2_min,vmax=var2_max,zorder=16,cmap=var2_cm) if show_contours and value_range>0.0001: cont_fig=bmap.contour(tmp_lon,tmp_lat,d[time_frame,:,:],\ levels = np.arange(var_min, var_max, contour_step),\ vmin=var_min,vmax=var_max,\ zorder=15,colors='black',linewidths=0.5,alpha=0.5) cont_labels=plt.clabel(cont_fig,inline=1,fontsize=5,fmt="%1.1f") if(ss.interval == 'd'): annotation=plt.annotate("Year day: {}".format(time_frame+1),\ xy=(0.25, 0.95), xycoords='axes fraction',zorder=100) if(ss.interval == 'm'): annotation=plt.annotate("{}".format(months[time_frame%12]),\ xy=(0.25, 0.95), xycoords='axes fraction',zorder=100) layer_info = "" if(slice_wanted > 0): layer_info = "_D{}_".format(slice_wanted) if(slice_wanted<0): layer_info = "_bottom_" plt.savefig("{}{}{}{}{:05d}.png".format( datadir,\ var1,\ series_name,\ layer_info,\ running_number),\ facecolor='w',dpi=300) if(not just_one): #clean up the changing things, so we don't have to do everything again, just these: colors_fig.remove() if(var2 is not None): ice_fig.remove() annotation.remove() if show_contours and value_range > 0.0001: for i in cont_labels: i.remove() for i in cont_fig.collections: i.remove() # plt.close(fig) running_number+=1 print("Image {} done.".format(running_number)) plt.close('all')
19c20999a51c16f5b201f8d6685836bf58b4c980
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnsentenc.py
e85c518a0706e02ee13728df2b638a1d8d85cb7d
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
2,387
py
ii = [('BentJDO2.py', 3), ('EmerRN.py', 3), ('CookGHP3.py', 13), ('MarrFDI.py', 4), ('RogePAV2.py', 1), ('CoolWHM2.py', 8), ('KembFFF.py', 3), ('GodwWSL2.py', 3), ('ChanWS.py', 3), ('SadlMLP.py', 9), ('FerrSDO3.py', 1), ('WilbRLW.py', 8), ('WilbRLW4.py', 7), ('AubePRP2.py', 4), ('CookGHP.py', 23), ('MartHSI2.py', 2), ('LeakWTI2.py', 2), ('KembFJ1.py', 2), ('WilkJMC3.py', 3), ('WilbRLW5.py', 6), ('PettTHE.py', 3), ('MarrFDI3.py', 2), ('PeckJNG.py', 1), ('AubePRP.py', 7), ('ChalTPW2.py', 6), ('GellWPT.py', 1), ('FitzRNS3.py', 1), ('WilbRLW2.py', 3), ('ClarGE2.py', 44), ('GellWPT2.py', 1), ('WilkJMC2.py', 12), ('CarlTFR.py', 23), ('SeniNSP.py', 9), ('LyttELD.py', 3), ('CoopJBT2.py', 2), ('TalfTAC.py', 5), ('GrimSLE.py', 1), ('RoscTTI3.py', 4), ('AinsWRR3.py', 3), ('CookGHP2.py', 13), ('AdamHMM.py', 4), ('BailJD1.py', 5), ('RoscTTI2.py', 5), ('CoolWHM.py', 3), ('MarrFDI2.py', 1), ('CrokTPS.py', 3), ('ClarGE.py', 60), ('LandWPA.py', 7), ('IrviWVD.py', 4), ('LyelCPG.py', 1), ('GilmCRS.py', 3), ('DaltJMA.py', 15), ('WestJIT2.py', 1), ('DibdTRL2.py', 6), ('CrocDNL.py', 2), ('MedwTAI.py', 5), ('LandWPA2.py', 9), ('WadeJEB.py', 5), ('FerrSDO2.py', 2), ('TalfTIT.py', 2), ('NewmJLP.py', 15), ('GodwWLN.py', 14), ('CoopJBT.py', 3), ('KirbWPW2.py', 2), ('SoutRD2.py', 8), ('MedwTAI2.py', 1), ('BachARE.py', 57), ('SoutRD.py', 9), ('WheeJPT.py', 24), ('MereHHB3.py', 5), ('BailJD3.py', 15), ('MereHHB.py', 1), ('WilkJMC.py', 2), ('HogaGMM.py', 8), ('MartHRW.py', 8), ('MackCNH.py', 3), ('BabbCEM.py', 2), ('FitzRNS4.py', 3), ('CoolWHM3.py', 3), ('DequTKM.py', 2), ('FitzRNS.py', 1), ('BentJRP.py', 36), ('EdgeMHT.py', 2), ('BowrJMM.py', 2), ('LyttELD3.py', 13), ('FerrSDO.py', 1), ('RoscTTI.py', 5), ('ThomGLG.py', 7), ('StorJCC.py', 15), ('KembFJ2.py', 1), ('LewiMJW.py', 12), ('MackCNH2.py', 6), ('BellCHM.py', 2), ('JacoWHI2.py', 4), ('HaliTBC.py', 3), ('WilbRLW3.py', 9), ('AinsWRR2.py', 1), ('MereHHB2.py', 4), ('JacoWHI.py', 3), ('ClarGE3.py', 18), ('RogeSIP.py', 5), ('MartHRW2.py', 8), ('DibdTRL.py', 12), ('FitzRNS2.py', 8), ('HogaGMM2.py', 4), ('MartHSI.py', 8), ('EvarJSP.py', 9), ('DwigTHH.py', 13), ('SadlMLP2.py', 6), ('BowrJMM2.py', 2), ('BowrJMM3.py', 4), ('TaylIF.py', 8), ('WordWYR.py', 1), ('DibdTBR.py', 1), ('ChalTPW.py', 11), ('ThomWEC.py', 10), ('KeigTSS.py', 48), ('KirbWPW.py', 4), ('BentJDO.py', 7), ('ClarGE4.py', 10), ('AdamJOA.py', 1), ('HowiWRL.py', 2)]
101894a2704c43da6f94ad22f0bc531725b70904
6b2e77aa6a6d03d6fa12eab2ea8ba22aa8d70d4a
/run.py
0741a664f6d2fee6e1f4a8f96546cf1d06f0e270
[ "MIT" ]
permissive
francisdbillones/LearnNet
05aa38fc12bb2f913e4dca58fbdccf5fb3307a11
2c1561fc85df853c78e21c6ba0dd10d4f173ee0a
refs/heads/main
2023-04-29T22:45:56.446266
2021-05-17T07:20:05
2021-05-17T07:20:05
334,654,602
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
from learn_net import app if __name__ == '__main__': import os dev = os.environ.get('DEV') # if DEV environment variable is set, run in debug mode if dev: app.run(debug=True) else: from gevent.pywsgi import WSGIServer server = WSGIServer(('', 5000), app) server.serve_forever()
9bd11828a0b8e41003f03f87a0792ddb26fea227
7e769c53213d5de6220616d825c86cf539c7abab
/rush00/moviemon/moviemon/model/Player.py
44b7f2d4742536ef316b70c92659d87cc57f7547
[]
no_license
romanets-s/cisco_rest_api
473f8a001e36086e37bfedc7d7feff9fe6c11651
6304ec9a802a406a81ee96141f6a909c95a5f8e5
refs/heads/master
2020-05-16T11:45:46.727550
2020-02-25T14:06:20
2020-02-25T14:06:20
116,568,232
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
class Player: def __init__(self, x, y, power=0): self.x = x self.y = y self.power = power self.boll = 1 self.lucky = 5 self.allMonsters = 0 self.bollHere = 0 self.enemy = {}
55412234dfa65f0d0446c2f25686141214596ab8
d0869d4a6b782527313700d8167c431fbbd6fd10
/scidownl/core/updater.py
b8adc631ff3ca8d2d1d86b2f8d6301e5feb64253
[ "MIT" ]
permissive
Tishacy/SciDownl
7148cb15c5881fb816cab6653c800897e9fbd592
0fe77d2f21d4c840d60a907f2a0682645a5e6fe0
refs/heads/v1.0
2023-04-09T03:41:35.350645
2023-04-02T03:17:03
2023-04-02T03:17:03
180,743,987
149
40
MIT
2023-04-02T03:17:04
2019-04-11T08:02:29
Python
UTF-8
Python
false
false
5,157
py
# -*- coding: utf-8 -*- """Implementations of DomainUpdater""" import re import string from typing import Iterable, Union, List from concurrent.futures import ThreadPoolExecutor, as_completed import requests from bs4 import BeautifulSoup from .base import DomainUpdater from ..log import get_logger from ..config import get_config from ..db.entities import ScihubUrl from ..db.service import ScihubUrlService logger = get_logger() configs = get_config() class CrawlingScihubDomainUpdater(DomainUpdater): """Updater of Scihub domains by crawling a domain source.""" def __init__(self, domain_source_url: str = None): super().__init__() self.service = ScihubUrlService() # use strings defined in configs. self.domain_source_url = domain_source_url or configs['scihub.domain.updater.crawl']['scihub_domain_source'] self._domain_url_pattern = configs['scihub.domain.updater.crawl']['scihub_url_pattern'] self._exclude_url_pattern = configs['scihub.domain.updater.crawl']['exclude_url_pattern'] def update_domains(self) -> Union[List, Iterable[ScihubUrl]]: html = requests.get(self.domain_source_url).text domain_urls = re.findall(self._domain_url_pattern, html) # Drop duplicates. domain_urls = list(set(domain_urls)) # Exclude invalid urls. available_domain_urls = self._exclude_domain_urls(domain_urls) logger.info(f"Found {len(available_domain_urls)} valid SciHub domains in total: {available_domain_urls}") # Save to db. urls_to_save = [ScihubUrl(url=url) for url in available_domain_urls] self.service.add_urls(urls_to_save) logger.info(f"Saved {len(urls_to_save)} SciHub domains to local db.") return available_domain_urls def _exclude_domain_urls(self, domain_urls, exclude_url_pattern: str = None): exclude_url_pattern = exclude_url_pattern or self._exclude_url_pattern remain_urls = [] for url in domain_urls: if not re.search(exclude_url_pattern, url): remain_urls.append(url) return remain_urls class SearchScihubDomainUpdater(DomainUpdater): """Updater of Scihub domains by brute force search.""" OK_STATUS_CODES = [200] def __init__(self, title_keyword_pattern: str = None, num_workers: int = None, timeout: int = None): super().__init__() self.service = ScihubUrlService() # read from configs self._domain_prefixes = ["http://sci-hub.", "https://sci-hub."] self._keyword_pattern = title_keyword_pattern or \ configs['scihub.domain.updater.search']['scihub_title_keyword_pattern'] self._num_workers = num_workers or configs['scihub.domain.updater.search'].getint('num_workers') self._timeout = timeout or configs['scihub.domain.updater.search'].getint('check_timeout') def update_domains(self) -> Union[List, Iterable[str]]: search_urls = self._get_search_urls() logger.info(f"# Search valid SciHub domains from {len(search_urls)} urls") valid_urls = [] with ThreadPoolExecutor(max_workers=self._num_workers) as executor: future_to_url = { executor.submit(self._check_valid_url, url, self._timeout): url for url in search_urls } for future in as_completed(future_to_url): url = future_to_url[future] try: valid = future.result() if valid: valid_urls.append(url) except Exception as exc: logger.error('%r generated an exception: %s' % (url, exc)) logger.info(f"Found {len(valid_urls)} valid SciHub domains in total: {valid_urls}") # Save to db. urls_to_save = [ScihubUrl(url=url) for url in valid_urls] self.service.add_urls(urls_to_save) logger.info(f"Saved {len(urls_to_save)} SciHub domains to local db.") return valid_urls def _get_search_urls(self): letters = string.ascii_lowercase search_urls = [] for first_letter in letters: for second_letter in letters: for prefix in self._domain_prefixes: search_urls.append(prefix + first_letter + second_letter) return search_urls def _check_valid_url(self, url: str, timeout: int = 60) -> bool: try: res = requests.get(url, timeout=timeout) except Exception as e: # Cannot connect the specified url, skip it. return False if res.status_code not in SearchScihubDomainUpdater.OK_STATUS_CODES: return False content = res.content.decode() soup = BeautifulSoup(content, 'html.parser') if soup.title is not None and re.search(self._keyword_pattern, soup.title.text) is not None: logger.info(f"# Found a SciHub domain url: {url}") return True return False scihub_domain_updaters = { 'crawl': CrawlingScihubDomainUpdater, 'search': SearchScihubDomainUpdater }
03245af4d15f65c90d827859b1a2760c5454a6df
ef415f543a41a45a181c4b24ef8172c6bf669317
/IPR_Website/Skits/apps.py
af729b72c711201d813bef5f4e14f4fd497b21ce
[]
no_license
ujwalkpl/IPR_Website
1e6ff77d075b2b6b5a287dc6e5d1c1c8b759cfa0
04685f52aa06187a8cb412d4c8d6dd72922b47b4
refs/heads/master
2022-04-10T16:30:39.285414
2020-03-29T13:00:19
2020-03-29T13:00:19
222,711,415
0
0
null
null
null
null
UTF-8
Python
false
false
85
py
from django.apps import AppConfig class SkitsConfig(AppConfig): name = 'Skits'
d08ee0b6fd6e3be4deec4400e41fd332d03eeee6
e5de6c8470e1019d1ea8faff8b9d9e8c5207885b
/Iterables and Iterators.py
baf90209ede4be0ef1cac68d2dfc08554913d718
[]
no_license
gordonmhy/HackerRank-Python
87233dcc0d1658c1494b75e8cbde98a89db5751d
ba1e1506aa2636ffe0ca97f583355b2b4415c0c9
refs/heads/main
2023-06-29T05:57:07.097954
2021-08-04T09:46:21
2021-08-04T09:46:21
392,407,705
1
0
null
null
null
null
UTF-8
Python
false
false
385
py
# Iterables and Iterators import itertools n = int(input()) letters = str(input()).split(' ') permutations = iter(itertools.permutations(letters, int(input()))) nominator = 0 denominator = 0 i = next(permutations, None) while i is not None: if 'a' in i: nominator += 1 denominator += 1 i = next(permutations, None) print('{:.3f}'.format(nominator/denominator))
48a368af4aa96cc89abf65e929c329bb1bf267fa
bbee658bffae55ee62381ccba6b0b64c36815643
/examples/AtmosphericFlight/HypersonicNose/HypersonicNose.py
89168323515006f491c9178858defdbda6d59c3b
[ "MIT" ]
permissive
regular-oscillator/beluga
c770d23715ebfe26e59422c0a1e6e1e68e8f1615
2bda36fddb674b70a72e28178212fb4f56be5cc4
refs/heads/master
2020-11-27T22:36:40.294786
2020-01-01T23:25:31
2020-01-01T23:25:31
229,630,669
0
0
MIT
2019-12-22T21:03:15
2019-12-22T21:03:14
null
UTF-8
Python
false
false
1,966
py
""" References ---------- .. [1] Buttazzo, Giuseppe, and Bernhard Kawohl. "On Newton’s problem of minimal resistance." The Mathematical Intelligencer 15.4 (1993): 7-12. """ import beluga import logging import matplotlib.pyplot as plt ocp = beluga.OCP() # Define independent variables ocp.independent('l', 'm') # Define equations of motion ocp.state('r', '-u', 'm') # Define controls ocp.control('u', 'm/s') # Define constants ocp.constant('r_0', 1, 'm') ocp.constant('eps1', 1, '1') # Define costs ocp.path_cost('4*r*u**3/(1+u**2)', 'm') # Define constraints ocp.constraints() \ .initial('r - r_0', 'm') \ .initial('l - 0', 'm') \ .terminal('r', 'm') \ .terminal('l - 2', 'm') ocp.path_constraint('u', 'm/s', lower='-5', upper='5', method='utm', activator='eps1') ocp.scale(m='x', rad=1) guess_maker = beluga.guess_generator('ones', start=[1.0], # Starting values for states in order costate_guess = 0.1, control_guess=[0.35], use_control_guess=True ) continuation_steps = beluga.init_continuation() continuation_steps.add_step('bisection') \ .num_cases(10, 'log') \ .const('eps1', 2e-1) beluga.add_logger(logging_level=logging.DEBUG, display_level=logging.INFO) bvp_solver = beluga.bvp_algorithm('spbvp') beluga.solve(ocp=ocp, method='indirect', optim_options={'control_method': 'icrm', 'analytical_jacobian': True}, bvp_algorithm=bvp_solver, steps=continuation_steps, guess_generator=guess_maker, autoscale=False, save='indirect_data.blg') bvp_solver = beluga.bvp_algorithm('Collocation', num_nodes=60) beluga.solve(ocp=ocp, method='direct', bvp_algorithm=bvp_solver, steps=None, guess_generator=guess_maker, autoscale=False, save='direct_data.blg')
70ea25d148ecf96291a8297391d0fc5c9f5f8b9b
f035389665420ac94118130afa2665cee9e1d681
/blog/models.py
a991ce291ad8c63dd0fac91d7b6289425738cb0a
[]
no_license
Juanno/gmr_site
02f5e411784ba357b4585707226b80dd92c7c0aa
1f918e45f34029ae1754834354065700530e4ea6
refs/heads/main
2023-01-11T10:02:34.879713
2020-11-08T15:05:28
2020-11-08T15:05:28
311,087,728
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
from django.db import models from tinymce.models import HTMLField class Articles(models.Model): titre = models.CharField(max_length=200) pub_date = models.DateField('date published') content = HTMLField() def __str__(self): return self.titre class Infos(models.Model): titre = models.CharField(max_length=200) pub_date = models.DateField('date published') content = HTMLField() INFO_TYPE = [ ('gr', 'general'), ('ra', 'randonnees'), ('ma', 'materiel'), ] type_infos = models.CharField(max_length=30, choices=INFO_TYPE, default='gr') def __str__(self): return self.titre class QuiSommmesNous(models.Model): titre = models.CharField(max_length=200) pub_date = models.DateField('date published') content = HTMLField() def __str__(self): return self.titre class Calendrier(models.Model): titre = models.CharField(max_length=200) pub_date = models.DateField('date published') image = models.ImageField(upload_to="media", null=False) content = HTMLField() # trois fichiers un par groupe : # chamoix - marmotte - rando santé def __str__(self): return self.titre #Séjours unique pour été et pour hiver. #Galerie photos à prévoir X photos.
0652436f3f2ea25130dee16bb63eab2e47356b04
3ba76ce98cdc5578f1ce38fba41da152404224fa
/python/test/grammar_translator/kernelgen/testAccKernel.py
b41d4728c3d8e16fdd1e88175e315b3f37ba7594
[ "MIT" ]
permissive
DiaosiDev/gpufort
258a4d3f8e8a8d53428f34f377ad8ff662369a53
e60e99dfa3b17306ad65a01d56a764aac471eaba
refs/heads/main
2023-08-14T13:15:08.266532
2021-10-05T09:51:23
2021-10-05T09:51:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,607
py
#!/usr/bin/env python3 # SPDX-License-Identifier: MIT # Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. import addtoplevelpath import translator.translator as translator testdata=[] testdata.append("""!$acc kernels if(2>3) self num_workers(64) num_gangs(8) async(0) wait(1,2) copy(a,b,c) default(PRESENT) private(a,b) reduction(+:a) detach(aaim,a) collapse(3) bind(a) seq tile(4,4) do i= 1, N a(i) = 10 b(i) = 5 end do !$acc end kernels""") testdata.append("""!$acc parallel num_gangs(8) do i= 1, N a(i) = 10 b(i) = 5 end do !$acc end parallel""") testdata.append("""!$acc wait async(0)""") testdata.append("""!$acc host_data use_device(WS) do i= 1, N a(i) = 10 b(i) = 5 end do !$acc end host_data""") testdata.append("""!$acc data create(IWKX) do i= 1, N a(i) = 10 b(i) = 5 end do !$acc end data""") testdata.append("""!$acc enter data copyin(ICELNOD)""") testdata.append("""!$acc exit data copyout(X)""") testdata.append("""!$acc loop independent reduction(+:a)""") testdata.append("""!$acc routine(JACOBI) seq""") testdata.append("""!$acc loop independent !$acc& private(DETJ,PNX,PNY,PNZ) !$acc& private(X1,X2,X3,X4,X5,X6,X7,X8) !$acc& private(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8) !$acc& private(Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8) !$acc& private(NODLOCAL)""") testdata.append("""!$acc atomic read x=3 !$acc end atomic""") testdata.append("""!$acc atomic do i = 1,N do j = 1,M b(indx(i)) = b(indx(i)) + a(i,j) end do end do !$acc end atomic""") testdata.append("""!$acc update """) testdata.append("""!$acc serial create(IWKX) do i= 1, N a(i) = 10 b(i) = 5 end do !$acc end serial""") testdata.append("""!$acc cache (a,b)""") testdata.append("""!$acc declare link(a)""") testdata.append("""!$acc kernels !$acc loop independent gang vector(16) do j = jS, jE jsL= indexL(j-1)+1 jeL= indexL(j) enddo !$acc end kernels""") for i in range(len(testdata)): #print(str(i)+".",accKernels.parseString(testdata[i])) #results = accKernels.parseString(testdata[i]) #print(str(i)+".",accClauses.parseString(testdata[i])) #results = accClauses.parseString(testdata[i]) #print(str(i)+".",accConstruct.parseString(testdata[i])) results = translator.accConstruct.parseString(testdata[i]) print(results) results[0].printTokens() print(results[0].c_str())
708696ce2c8856f55c9f5f8af1bc5b00af04bb1a
2bba023206664e137cc9e02f1f76e8d326019182
/frame_2D_alg/intra_comp_a.py
932577d4be2874bfbd85617e2540e8720504ad6a
[ "MIT" ]
permissive
gargoyle-ltd/CogAlg
316793f9ac3f26a001eb4c91bfff5e5f1fac75cc
cce62a16167db7c7f842c235e8f2a833afd4261b
refs/heads/master
2021-05-17T02:25:36.672667
2020-05-22T13:18:39
2020-05-22T13:18:39
250,550,869
2
0
null
2020-03-27T14:07:57
2020-03-27T14:07:56
null
UTF-8
Python
false
false
17,994
py
""" Cross-comparison of pixels, angles, or gradients, in 2x2 or 3x3 kernels """ import numpy as np import numpy.ma as ma # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Sobel coefficients to decompose ds into dy and dx: YCOEFs = np.array([-1, -2, -1, 0, 1, 2, 1, 0]) XCOEFs = np.array([-1, 0, 1, 2, 1, 0, -1, -2]) ''' |--(clockwise)--+ |--(clockwise)--+ YCOEF: -1 -2 -1 ¦ XCOEF: -1 0 1 ¦ 0 0 ¦ -2 2 ¦ 1 2 1 ¦ -1 0 1 ¦ ''' # ------------------------------------------------------------------------------------ # Functions def comp_r(dert__, fig, root_fcr): """ Cross-comparison of input param (dert[0]) over rng passed from intra_blob. This fork is selective for blobs with below-average gradient, where input intensity didn't vary much in shorter-range cross-comparison. Such input is predictable enough for selective sampling: skipping current rim derts as kernel-central derts in following comparison kernels. Skipping forms increasingly sparse output dert__ for greater-range cross-comp, hence rng (distance between centers of compared derts) increases as 2^n, starting at 0: rng = 1: 3x3 kernel, rng = 2: 5x5 kernel, rng = 4: 9x9 kernel, ... Due to skipping, configuration of input derts in next-rng kernel will always be 3x3, see: https://github.com/boris-kz/CogAlg/blob/master/frame_2D_alg/Illustrations/intra_comp_diagrams.png """ i__ = dert__[0] # i is ig if fig else pixel ''' sparse aligned i__center and i__rim arrays: ''' i__center = i__[1:-1:2, 1:-1:2] i__topleft = i__[:-2:2, :-2:2] i__top = i__[:-2:2, 1:-1:2] i__topright = i__[:-2:2, 2::2] i__right = i__[1:-1:2, 2::2] i__bottomright = i__[2::2, 2::2] i__bottom = i__[2::2, 1:-1:2] i__bottomleft = i__[2::2, :-2:2] i__left = i__[1:-1:2, :-2:2] if root_fcr: # root fork is comp_r, all params are present in the input: idy__, idx__, m__ = dert__[[2, 3, 4]] # skip g: recomputed, output for Dert only dy__ = idy__[1:-1:2, 1:-1:2] # sparse to align with i__center dx__ = idx__[1:-1:2, 1:-1:2] m__ = m__[1:-1:2, 1:-1:2] else: # root fork is comp_g or comp_pixel, initialize sparse derivatives: dy__ = np.zeros((i__center.shape[0], i__center.shape[1])) # row, column dx__ = np.zeros((i__center.shape[0], i__center.shape[1])) m__ = np.zeros((i__center.shape[0], i__center.shape[1])) if not fig: # compare four diametrically opposed pairs of rim pixels: dt__ = np.stack((i__topleft - i__bottomright, i__top - i__bottom, i__topright - i__bottomleft, i__right - i__left )) for d__, YCOEF, XCOEF in zip(dt__, YCOEFs[:4], XCOEFs[:4]): dy__ += d__ * YCOEF # decompose differences into dy and dx, dx__ += d__ * XCOEF # accumulate with prior-rng dy, dx g__ = np.hypot(dy__, dx__) # gradient ''' inverse match = SAD, more precise measure of variation than g, direction doesn't matter: (all diagonal derivatives can be imported from prior 2x2 comp) ''' m__ += (abs(i__center - i__topleft) + abs(i__center - i__top) + abs(i__center - i__topright) + abs(i__center - i__right) + abs(i__center - i__bottomright) + abs(i__center - i__bottom) + abs(i__center - i__bottomleft) + abs(i__center - i__left) ) else: # fig is TRUE, compare angle and then magnitude of 8 center-rim pairs if not root_fcr: idy__, idx__ = dert__[[-2, -1]] # root fork is comp_g, not sparse a__ = [idy__, idx__] / i__ # i = ig ''' sparse aligned a__center and a__rim arrays: ''' a__center = a__[:, 1:-1:2, 1:-1:2] a__topleft = a__[:, :-2:2, :-2:2] a__top = a__[:, :-2:2, 1:-1: 2] a__topright = a__[:, :-2:2, 2::2] a__right = a__[:, 1:-1:2, 2::2] a__bottomright = a__[:, 2::2, 2::2] a__bottom = a__[:, 2::2, 1:-1:2] a__bottomleft = a__[:, 2::2, :-2:2] a__left = a__[:, 1:-1:2, :-2:2] ''' 8-tuple of differences between center dert angle and rim dert angle: ''' dat__ = np.stack((angle_diff(a__center, a__topleft, 0), angle_diff(a__center, a__top, 0), angle_diff(a__center, a__topright, 0), angle_diff(a__center, a__right, 0), angle_diff(a__center, a__bottomright, 0), angle_diff(a__center, a__bottom, 0), angle_diff(a__center, a__bottomleft, 0), angle_diff(a__center, a__left, 0) )) if root_fcr: m__, day__, dax__ = dert__[[-4, -2, -1]] # skip ga: recomputed, output for summation only? m__ = m__[1:-1:2, 1:-1:2] # sparse to align with i__center day__ = day__[1:-1:2, 1:-1:2] dax__ = dax__[1:-1:2, 1:-1:2] else: m__ = np.zeros((i__center.shape[0], i__center.shape[1])) # row, column day__ = np.zeros((a__center.shape[0], a__center.shape[1], a__center.shape[2])) dax__ = np.zeros((a__center.shape[0], a__center.shape[1], a__center.shape[2])) for dat_, YCOEF, XCOEF in zip(dat__, YCOEFs, XCOEFs): ''' accumulate in prior-rng (3x3 -> 5x5 -> 9x9) day, dax: ''' day__ += dat_ * YCOEF # decomposed differences of angle, dax__ += dat_ * YCOEF # accumulate in prior-rng day, dax ''' gradient of angle: not needed in comp_r? ''' ga__ = np.hypot(np.arctan2(*day__), np.arctan2(*dax__)) ''' accumulate match (cosine similarity) in prior-rng (3x3 -> 5x5 -> 9x9) m: ''' m__ += (np.minimum(i__center, (i__topleft * dat__[0][1])) + np.minimum(i__center, (i__top * dat__[1][1])) + np.minimum(i__center, (i__topright * dat__[2][1])) + np.minimum(i__center, (i__right * dat__[3][1])) + np.minimum(i__center, (i__bottomright * dat__[4][1])) + np.minimum(i__center, (i__bottom * dat__[5][1])) + np.minimum(i__center, (i__bottomleft * dat__[6][1])) + np.minimum(i__center, (i__left * dat__[7][1])) ) ''' 8-tuple of cosine differences per direction: ''' dt__ = np.stack(((i__center - i__topleft * dat__[0][1]), (i__center - i__top * dat__[1][1]), (i__center - i__topright * dat__[2][1]), (i__center - i__right * dat__[3][1]), (i__center - i__bottomright * dat__[4][1]), (i__center - i__bottom * dat__[5][1]), (i__center - i__bottomleft * dat__[6][1]), (i__center - i__left * dat__[7][1]) )) for d__, YCOEF, XCOEF in zip(dt__, YCOEFs, XCOEFs): dy__ += d__ * YCOEF # y-decomposed center-to-rim difference dx__ += d__ * XCOEF # x-decomposed center-to-rim difference ''' accumulate in prior-rng (3x3 -> 5x5 -> 9x9) dy, dx ''' g__ = np.hypot(dy__, dx__) if fig: rdert = ma.stack((i__center, g__, dy__, dx__, m__, ga__, *day__, *dax__)) else: rdert = ma.stack((i__center, g__, dy__, dx__, m__)) ''' return input dert__ with accumulated derivatives, next comp_r will use full dert # comp_rr next comp_a will use g__, dy__, dx__ # comp_agr, preserve dy, dx as idy, idx ''' return rdert def comp_a(dert__, fga): # cross-comp of a or aga in 2x2 kernels ''' if fga: dert = (g, gg, dgy, dgx, gm, ?(iga, iday, idax) else: dert = (i, g, dy, dx, ?m) ''' dert__ = shape_check(dert__) # remove derts of incomplete kernels i__, g__, dy__, dx__, = dert__[0:4] if fga: # input is adert ga__, day__, dax__ = dert__[4], dert__[5:7], dert__[7:9] a__ = [day__[0], day__[1], dax__[0], dax__[1]] / ga__ else: a__ = [dy__, dx__] / g__ # similar to calc_a # each shifted a in 2x2 kernel a__topleft = a__[:, :-1, :-1] a__topright = a__[:, :-1, 1:] a__botright = a__[:, 1:, 1:] a__botleft = a__[:, 1:, :-1] # diagonal angle differences: sin_da0__, cos_da0__ = angle_diff(a__topleft, a__botright, fga) sin_da1__, cos_da1__ = angle_diff(a__topright, a__botleft, fga) ma__ = np.hypot(sin_da0__ + 1, cos_da0__ + 1) + np.hypot(sin_da1__ + 1, cos_da1__ + 1) # ma = inverse angle match = SAD: covert sin and cos da to 0->2 range day__ = (-sin_da0__ - sin_da1__), (cos_da0__ + cos_da1__) # angle change in y, sines are sign-reversed because da0 and da1 are top-down, no reversal in cosines dax__ = (-sin_da0__ + sin_da1__), (cos_da0__ + cos_da1__) # angle change in x, positive sign is right-to-left, so only sin_da0__ is sign-reversed ''' sin(-θ) = -sin(θ), cos(-θ) = cos(θ): sin(da) = -sin(-da), cos(da) = cos(-da) => (sin(-da), cos(-da)) = (-sin(da), cos(da)) ''' ga__ = np.hypot(np.arctan2(*day__), np.arctan2(*dax__)) # angle gradient, a scalar, to evaluate for comp_aga adert__ = ma.stack((i__[:-1, :-1], # for summation in Dert g__[:-1, :-1], # for summation in Dert dy__[:-1, :-1], # passed on as idy dx__[:-1, :-1], # passed on as idx # no use for m__[:-1, :-1]? ga__, *day__, *dax__, ma__, cos_da0__, cos_da1__ )) ''' next comp_g will use g, cos_da0__, cos_da1__, dy, dx (passed to comp_rg as idy, idx) next comp_a will use ga, day, dax # comp_aga ''' return adert__ def angle_diff(a2, a1, fga): # compare angle_1 to angle_2 if fga: sin_11, cos_11, sin_12, cos_12 = a1[:] # dyy1, dxy1, dyx1, dxx1 = a1[:] sin_21, cos_21, sin_22, cos_22 = a2[:] # dyy2, dxy2, dyx2, dxx2 = a2[:] sin_da = np.subtract(np.multiply([sin_12, cos_12], [sin_21, cos_21]), np.multiply([sin_11, cos_11], [sin_22, cos_22])) cos_da = np.add(np.multiply([sin_11, cos_11], [sin_12, cos_12]), np.multiply([sin_21, cos_21], [sin_22, cos_22])) # = # sin_da = ( [sin_12,cos_12] * [sin_21,cos_21]) - ([sin_11,cos_11] * [sin_22,cos_22]) # cos_da = ( [sin_11,cos_11] * [sin_12,cos_12]) + ([sin_21,cos_21] * [sin_22,cos_22]) # right now each sin_da and cos_da is having sin and cos components # we need to find a way to reduce the sin & cos components into 1 component only # probably take the sine part of sin_da (since sine = direction info) , and cosine part of cos_da (cosine = magnitude info)? sin_da = sin_da[0] cos_da = cos_da[1] else: sin_1, cos_1 = a1[:] sin_2, cos_2 = a2[:] # sine and cosine of difference between angles: sin_da = (cos_1 * sin_2) - (sin_1 * cos_2) cos_da = (sin_1 * cos_1) + (sin_2 * cos_2) return ma.array([sin_da, cos_da]) def comp_g(dert__): # add fga if processing in comp_ga is different? """ Cross-comp of g or ga in 2x2 kernels, between derts in ma.stack dert__: input dert = (i, g, dy, dx, ga, dyy, dxy, dyx, dxx, ma, cos_da0, cos_da1) output dert = (g, gg, dgy, dgx, gm, ga, day, dax, dy, dx) """ dert__ = shape_check(dert__) # remove derts of incomplete kernels g__, cos_da0__, cos_da1__ = dert__[[1, -2, -1]] # top dimension of numpy stack must be a list cos_da0__ = cos_da0__[:-1, :-1] cos_da1__ = cos_da1__[:-1, :-1] g_topleft__ = g__[:-1, :-1] g_topright__ = g__[:-1, 1:] g_bottomleft__ = g__[1:, :-1] g_bottomright__ = g__[1:, 1:] dgy__ = ((g_bottomleft__ + g_bottomright__) - (g_topleft__ * cos_da0__ + g_topright__ * cos_da1__)) # y-decomposed cosine difference between gs dgx__ = ((g_topright__ + g_bottomright__) - (g_topleft__ * cos_da0__ + g_bottomleft__ * cos_da1__)) # x-decomposed cosine difference between gs gg__ = np.hypot(dgy__, dgx__) # gradient of gradient mg0__ = np.minimum(g_topleft__, (g_bottomright__ * cos_da0__)) # g match = min(g, _g*cos(da)) mg1__ = np.minimum(g_topright__, (g_bottomleft__ * cos_da1__)) mg__ = mg0__ + mg1__ gdert = ma.stack((g__[:-1, :-1], # remove last row and column to align with derived params gg__, dgy__, dgx__, mg__, dert__[4][:-1, :-1], # ga__ dert__[5][:-1, :-1], # dayy dert__[6][:-1, :-1], # daxy dert__[7][:-1, :-1], # dayx dert__[8][:-1, :-1], # daxx dert__[9][:-1, :-1], # ma__ dert__[2][:-1, :-1], # idy__ dert__[3][:-1, :-1] # idx__ )) ''' next comp_r will use g, idy, idx # comp_rg next comp_a will use ga, day, dax # comp_agg, also dgy__, dgx__ as idy, idx? ''' return gdert def shape_check(dert__): # remove derts of 2x2 kernels that are missing some other derts if dert__[0].shape[0] % 2 != 0: dert__ = dert__[:, :-1, :] if dert__[0].shape[1] % 2 != 0: dert__ = dert__[:, :, :-1] return dert__ def calc_a(dert__): """ Compute vector representation of angle of gradient by normalizing (dy, dx). Numpy-broadcasted, first dimension of dert__ is a list of parameters: g, dy, dx Example ------- >>> dert1 = np.array([0, 5, 3, 4]) >>> a1 = calc_a(dert1) >>> print(a1) array([0.6, 0.8]) >>> # 45 degrees angle >>> dert2 = np.array([0, 450**0.5, 15, 15]) >>> a2 = calc_a(dert2) >>> print(a2) array([0.70710678, 0.70710678]) >>> print(np.degrees(np.arctan2(*a2))) 45.0 >>> # -30 (or 330) degrees angle >>> dert3 = np.array([0, 10, -5, 75**0.5]) >>> a3 = calc_a(dert3) >>> print(a3) array([-0.5 , 0.8660254]) >>> print(np.rad2deg(np.arctan2(*a3))) -29.999999999999996 """ return dert__[[2, 3]] / dert__[1] # np.array([dy, dx]) / g ''' old comp_a: day__ = ( Y_COEFFS[0][0] * angle_diff(a__topleft, a__bottomright) + Y_COEFFS[0][1] * angle_diff(a__topright, a__bottomleft) ) dax__ = ( X_COEFFS[0][0] * angle_diff(a__topleft, a__bottomright) + X_COEFFS[0][1] * angle_diff(a__topright, a__bottomleft) ) 2x2 COEFFS: Y: np.array([-2, -2, 2, 2]) X: np.array([-2, 2, 2, -2]) roll axis to align COEFFs with dat__: move 1st axis to 4th axis, for broadcasting 4 pairs of 8 directionals with coefficients: dat__ = np.rollaxis(dat__, 0, 4) day__ = (dat__ * YCOEFs).sum(axis=-1) dax__ = (dat__ * XCOEFs).sum(axis=-1) dt__ = np.rollaxis(dt__, 0, 3) gy__ += (dt__ * YCOEFs).sum(axis=-1) gx__ += (dt__ * XCOEFs).sum(axis=-1) if isinstance(a__, ma.masked_array): a__.data[a__.mask] = np.nan a__.mask = ma.nomask ''' def intra_blob_a(blob, rdn, rng, fig, fca, fcr, fga): # recursive input rng+ | der+ | angle cross-comp within a blob # flags: fca: comp angle, fga: comp angle of ga, fig: input is g, fcr: comp over rng+ if fca: dert__ = comp_a(blob['dert__'], fga) # -> ma sub_blobs evaluate for comp_g | comp_aga: cluster_derts(blob, dert__, ave * rdn, fca, fcr, fig=0) for sub_blob in blob['blob_']: # eval intra_blob: if disoriented g: comp_aga, else comp_g if sub_blob['sign']: if sub_blob['Dert']['Ma'] > aveB * rdn: # +Ma -> comp_g -> dert = g, gg, gdy, gdx, gm: intra_blob(sub_blob, rdn + 1, rng=1, fig=1, fca=0, fcr=0, fga=1) # fga for comp_agg elif sub_blob['Dert']['Ga'] > aveB * rdn: # +Ga -> comp_aga -> dert + gaga, ga_day, ga_dax: intra_blob(sub_blob, rdn + 1, rng=1, fig=1, fca=1, fcr=0, fga=1) else: if fcr: dert__ = comp_r(blob['dert__'], fig, blob['root']['fcr']) # -> m sub_blobs else: dert__ = comp_g(blob['dert__']) # -> g sub_blobs: cluster_derts(blob, dert__, ave * rdn, fca, fcr, fig) # feedback: root['layer_'] += [[(lL, fig, fcr, rdn, rng, blob['sub_blob_'])]] # 1st sub_layer for sub_blob in blob['blob_']: # eval intra_blob comp_a | comp_rng if low gradient if sub_blob['sign']: if sub_blob['Dert']['M'] > aveB * rdn: # +M -> comp_r -> dert with accumulated derivatives: intra_blob(sub_blob, rdn + 1, rng + 1, fig=fig, fca=0, fcr=1, fga=0) # fga for comp_agr elif sub_blob['Dert']['G'] > aveB * rdn: # +G -> comp_a -> dert + a, ga=0, day=0, dax=0: intra_blob(sub_blob, rdn + 1, rng=1, fig=1, fca=1, fcr=0, fga=0) ''' fca, # flag comp angle, clustering by ga: gradient of angle? fga, # flag comp angle of ga vs. angle of g also cluster_derts(crit=gi): abs_gg (no * cos(da)) -> abs_gblobs, no eval by Gi? with feedback: for sub_blob in blob['blob_']: blob['layer_'] += intra_blob(sub_blob, rdn + 1 + 1 / lL, rng, fig, fca) # redundant to sub_blob '''
9db6c4629ec3ba1451b1569a803d3370d83954d7
d25734585fc616d1a92eeed4ced78796af877d70
/test/functions/python/helloworld.py
5d5c288a17dae1f11ee851fef3e3b1f00a4939f5
[ "MIT" ]
permissive
swiftycloud/swifty
9c1db8285311f8e9464b7353023dbaf38c501507
ac9ea8b8919f797c0d92ab70db13459ec0148dd3
refs/heads/master
2022-02-21T19:56:41.976335
2022-01-31T09:06:43
2022-01-31T09:06:43
181,493,509
36
3
null
null
null
null
UTF-8
Python
false
false
79
py
def Main(req): return {"message": "hw:python:%s" % req.args['name']}, None
162bbbab50f98d221282c53b09bb56049dae0155
db221615b13a27b9b34901fe52500f4b7ee58473
/rememerme/cards/cassa.py
ccff6cbe63bb8d148dbf5141f161011e82c0b118
[ "Apache-2.0" ]
permissive
rememerme/marketplace-model
ea4ee6a1238682e86bf455bf80ea3aadc0ff6927
7a5199037ab863237778849be771edb80ba975fd
refs/heads/master
2016-09-06T09:47:29.177398
2014-01-27T20:56:08
2014-01-27T20:56:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
from django.db import models ''' Created on Jan 7, 2014 @author: Andrew Oberlin ''' ''' Model that we can use to get rid of the Django stuff, but still use the model concept while coding. ''' class CassaModel(models.Model): ''' Overriding the default save method to remove Django operation. This save will do nothing and will not be used. ''' def save(self): pass ''' Updates this user with the values put into the map. @param other: The map of values to use for updating the model. ''' def update(self, other): for attrKey in self.__dict__.keys(): if attrKey in other: setattr(self, attrKey, other[attrKey]) ''' Overriding the default delete method to remove Django operation. This delete will do nothing and will not be used. ''' def delete(self): pass class Meta: app_label = u'friends'
50a54e1743e2d479801e432af50f14d10d6acdaf
f3b233e5053e28fa95c549017bd75a30456eb50c
/p38a_input/L2I/2I-3FN_MD_NVT_rerun/set_1.py
900f01cb309373c1957f494591d94947da0ea1b2
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
741
py
import os dir = '/mnt/scratch/songlin3/run/p38a/L2I/MD_NVT_rerun/ti_one-step/2I_3FN/' filesdir = dir + 'files/' temp_prodin = filesdir + 'temp_prod_1.in' temp_pbs = filesdir + 'temp_1.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.chdir("%6.5f" %(j)) workdir = dir + "%6.5f" %(j) + '/' #prodin prodin = workdir + "%6.5f_prod_1.in" %(j) os.system("cp %s %s" %(temp_prodin, prodin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, prodin)) #PBS pbs = workdir + "%6.5f_1.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #submit pbs #os.system("qsub %s" %(pbs)) os.chdir(dir)
07dec2dc5f395a39cb3c3643e0b760b89b6f9576
584bbbd6936222a67ed88bd36446f0f35bc89432
/rango/migrations/0001_initial.py
93ae0af67463ef73b8f3889d9f9a990c697de05a
[]
no_license
jianhuayou/tango_with_django_project1
2645115af5813cf2ada5e2666dc0a45090d80cbd
fa9916881e2d0baf571fb1f02071d11ac3dc3e4a
refs/heads/master
2023-03-07T12:36:45.479855
2021-02-12T10:24:12
2021-02-12T10:24:12
335,925,383
0
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
# Generated by Django 2.2.17 on 2021-02-04 08:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128, unique=True)), ], ), migrations.CreateModel( name='page', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=128)), ('url', models.URLField()), ('views', models.IntegerField(default=0)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='rango.Category')), ], ), ]
69133b3c2ade788942c380de5ecfc040e34c476c
16dfc690007b3dec2761e80712f83ab3e7a8b33f
/FIO/fusion_io/fpy.py
47c11fae827752c1d225456ebe6a78d683f5c072
[]
no_license
usczpw/KORC
b07475e50fd8795bb221f67d73bd007e8baf5232
59c2428e02a92c982addb34927163d3805b98ae2
refs/heads/master
2023-04-11T22:32:25.647314
2021-03-24T02:12:16
2021-03-24T02:12:16
363,285,505
0
0
null
null
null
null
UTF-8
Python
false
false
18,533
py
# fpy.py: wrapper functions for the sim_data library to make accessing # simulation output more pythonic. # # # coded by Christopher Berg Smiet on 18 January 2019 # Edited by Ralf Mackenbach on the 14th of August 2019 # Mesh added by Andreas Kleiner on 20 August 2019 # [email protected] # [email protected] # [email protected] import fio_py import numpy as np import h5py class sim_data: """ Class that accesses the fusion-io functions in a more pythonic way. Invoke an element of the class as follows: sim = sim_data(filename='../C1.h5') This creates a simulation object. This object has four attributes: - Fields - Time traces - Mesh - Diagnostics - Constants --Fields-- Fields objects can be created by, for example, magnetic_field = sim.get_field('B',time=10) This field can in turn be evaluated using magnetic_field.evaluate((R,phi,Z)). !! Fields are given in SI units !! **Technical info** A list of all strings allowed to call on fields can be found in sim.available_fields. This dictionary is made so that one string contains all information on the type of field (scalar/vector), and the species. The fields make use of the sim_data library to interpolate fields in a consistent way. -- Time traces-- Time trace objects can be created by, for example, dt = sim.get_time_traces('dt'). The object dt then has two attributes: dt.time, this is an array of all the times where dt is evaluated dt.values, this is an array of all values of dt. To plot some arbitrary time trace plt.plot(dt.time,dt.values) is enough. A list of all callable traces can be found by invoking sim.available_traces. !! Time series are given in M3D-C1 units !! **Technical info** The time traces are read directly from the C1.h5 file. This is different from how the fields are evaluated (which use the sim_data library). --Mesh-- Mesh object can be created by, for example mesh = sim.get_mesh(time=1). This object has a few attributes: mesh.nplanes shows how many toroidal planes were used mesh.elements contains info on the actual locations. The specifics of this are explained in S. Jardin's 2004 paper. But useful info is: mesh.elements[:,4] are the R locations of the mesh-points mesh.elements[:,5] are the Z locations of the mesh-points **Technical info** The mesh is read directly from the time_xxx.h5 files. --Diagnostics-- The diagnostic object can be created by, for example diagnostic = sim.get_diagnostics(diagnostic) The diagnostic object is meant for non-physical parameters such as number of iterations, timings for each solve, and time_slice - time correspondensies. The diagnostic object has two attributes: !! Diagnostic are given in M3D-C1 units !! diagnostic.diagnostic - contains the value of the diagnostic. Can be a simple array (i.e. for 'time slices', or several objects i.e. to see a breakdown for timings) diagnostic.x_axis - contains the values of the x-axis of the diagnostic. This is alfven times for 'time slices' and iteration number for 'timings' To see all available diagnostics, check sim.available_diagnostics **Technical info** The diagnostic object is a bit of a hodge-podge of different methods. They all call on the C1.h5 file, and some make use of string manipulations. --Constants-- On subclass containing the constants can be created by, for example, constants = sim.get_constants() In this subclass, stuff like gamma, R0, and the version number of the M3DC1 simulation are stored. """ def __init__(self, filename='C1.h5', filetype='m3dc1', verbose=False, time = 0): """ Initializes the fusion-io bindings to a file. Keyworded arguments: **filename** the name of the file which is to be read. Can include path. **filetype** the type of file. **verbose** if true, gives extra info on file read. the fio source does some printing anyways. **time** sets the time variable during initialization. Not necessarily needed as is also set when reading a field """ if filetype == 'm3dc1': ifiletype = fio_py.FIO_M3DC1_SOURCE else: print('Sorry, cannot do that Dave. Only supports M3DC1 for now. \n' 'Please feel free to add to my functionality and add to the sim_data library!') # Dictionary contains the field abbreviation, the type of field, and the species self.typedict = {'j' : ('current density', 'vector', None ), 'ni': ('density', 'scalar', 'main ion'), 'ne': ('density', 'scalar', 'electron'), 'v' : ('fluid velocity', 'vector', None ), 'B' : ('magnetic field', 'vector', None ), 'p' : ('total pressure', 'scalar', None ), 'pi': ('pressure', 'scalar', 'main ion'), 'pe': ('pressure', 'scalar', 'electron'), 'alpha': ('alpha', 'scalar', None), 'ti': ('temperature', 'scalar', 'main ion'), 'te': ('temperature', 'scalar', 'electron'), 'A' : ('vector potential', 'vector', None ), 'gradA' : ('grad vector potential', 'tensor', None ), 'E' : ('electric field', 'vector', None )} self.available_fields = self.typedict self._all_attrs = h5py.File(filename, 'r') self._all_attrs_list = list(h5py.File(filename, 'r').keys()) self._all_traces = h5py.File(filename, 'r')['scalars'] self.available_traces = list(self._all_traces.keys()) self.available_traces.extend(['bharmonics','keharmonics']) self.available_diagnostics = ['slice times','timings','iterations'] self.fields = [] self.seriess = [] self._isrc = fio_py.open_source(ifiletype, filename) self.hint = fio_py.allocate_hint(self._isrc) fio_py.get_options(self._isrc) #self.ntime = fio_py.get_int_parameter(self._isrc, fio_py.FIO_NUM_TIMESLICES) self.ntime = self._all_attrs.attrs["ntime"] if time == 'last': time = self.ntime - 1 print('last time slice = '+str(time)) fio_py.set_int_option(fio_py.FIO_TIMESLICE, int(time)) self._imag = fio_py.get_field(self._isrc, fio_py.FIO_MAGNETIC_FIELD) self.fields.append(self._imag) self._cs = fio_py.get_int_parameter(self._isrc, fio_py.FIO_GEOMETRY) self._iavailable_fields = fio_py.get_available_fields(self._isrc) #available fields is a dictionary from names to assigned integers self._available_fields = dict(zip([fio_py.get_field_name(nr) for nr in self._iavailable_fields], self._iavailable_fields)) self.ntor = fio_py.get_int_parameter(self._isrc, fio_py.FIO_TOROIDAL_MODE) self.period = fio_py.get_real_parameter(self._isrc, fio_py.FIO_PERIOD) self.fc = None #used to store flux coodinate object upon calculation of flux coordinates (see class definition below and flux_coordinates.py) #if time == -1: # self.timeslice = int(0) #else: self.timeslice = int(time) self.time = fio_py.get_real_field_parameter(self._imag, fio_py.FIO_TIME) if verbose: print('Available fields:') if self._cs == fio_py.FIO_CYLINDRICAL: print('Using CYLINDRICAL coordinate system') else : print('Using CARTESIAN coordinate system') print('Number of time slices: ', self.ntime) print('Toroidal period = ', self.period) def __del__(self): print('deleting simulation object and closing {} fields'.format( len(self.fields)+len(self.seriess))) for ifield in self.fields: fio_py.close_field(ifield) for iseries in self.seriess: fio_py.close_series(iseries) fio_py.close_source(self._isrc) def get_time_traces(self,scalar): """ Makes an object containing a time-array, and an array with the correspond values of the physical quantity. Call on them using trace.time trace.values """ return self.time_traces(self,scalar) def get_diagnostic(self, diagnostic): """ returns a diagnostics object. Available diagnostics: *slice times* relation between slice numbers and time in M3DC1 Alfven units *timings* Clock time needed per iteration of the sim *iterations* Number of iterations needed per time advance """ return self.diagnostic(self,diagnostic) def get_field(self, field, time): """ Returns a field object. Keyworded arguments: **field** Contains field name. Allowed fieldnames mysim.typedict **time** Timeslice for field to be read out """ return self.field(self, field=self.typedict[field][0], time=time, species=self.typedict[field][2], ftype=self.typedict[field][1]) def get_mesh(self, time=0): """ Returns a mesh object. Keyworded arguments: **time** Timeslice for field to be read out """ return self.mesh(self, time) def get_signal(self,filename,signame): """ Return a signal object """ return self.signal(self,filename,signame) def get_constants(self): return self.constants(self) class field: """ Field class: the init sets up the data access, and its bound methods return to you what you want. ex: myfield =mysim.get_field('...') Allowed strings are: 'j' - current density 'ni' - ion density 'ne' - electron density 'v' - fluid velocity 'B' - magnetic field 'p' - total pressure 'pi' - ion pressure 'pe' - electron pressure 'ti' - ion temperature 'te' - electron temperature 'A' - vector potential 'E' - electric field Fields are evaluated using: myfield.evaluate((r,phi,theta)) """ def __init__(self, sim_data, field, time, species, ftype): self.sim_data = sim_data self.field = field fio_py.set_int_option(fio_py.FIO_TIMESLICE, time) if species == 'electron': fio_py.set_int_option(fio_py.FIO_SPECIES, fio_py.FIO_ELECTRON) elif species == 'main ion': fio_py.set_int_option(fio_py.FIO_SPECIES, fio_py.FIO_MAIN_ION) itype = sim_data._available_fields[field] self._ifield = fio_py.get_field(sim_data._isrc, itype) self.sim_data.fields.append(self._ifield) self.time = fio_py.get_real_field_parameter(self._ifield, fio_py.FIO_TIME) self.ftype = ftype def __del__(self): fio_py.close_field(self._ifield) def evaluate(self, x): """ Evaluates the required field, returns a one-tuple (scalar quantity required) or a three-tuple (vector) evaluated at the location x Arguments: **x** Three-tuple with the R, phi, z coordinate where the field is to be evaluated. """ if self.ftype == 'vector': try: return fio_py.eval_vector_field(self._ifield, x, self.sim_data.hint) except: return (None,None,None) if self.ftype == 'tensor': try: return fio_py.eval_tensor_field(self._ifield, x, self.sim_data.hint) except: return (None,None,None,None,None,None,None,None,None) elif self.ftype == 'scalar': try: return (fio_py.eval_scalar_field(self._ifield, x, self.sim_data.hint),) except: return (None,) else: print('ftype not recognized!') class mesh: """ Mesh class: init routine calls read_mesh() that reads the mesh from time slice file and stores the elements in an array. It also reads the output version and nplanes. The latter variable is needed for plotting 3D meshes. """ def __init__(self, sim_data, time=0): self.sim_data = sim_data fio_py.set_int_option(fio_py.FIO_TIMESLICE, int(time)) itype = sim_data._available_fields['magnetic field'] #'magnetic field' is just used as a dummy field to read time self.time = fio_py.get_real_field_parameter(fio_py.get_field(sim_data._isrc, itype), fio_py.FIO_TIME) self.elements, self.version, self.nplanes = self.read_mesh(sim_data, time) def read_mesh(self, sim_data, time): self.sim_data = sim_data timestr = str(time) if timestr == '-1': fname = 'equilibrium.h5' else: fname = "time_"+timestr.zfill(3)+'.h5' f = h5py.File(fname, 'r') mesh = np.asarray(f['mesh/elements']) version = f.attrs["version"] print('Output version: '+str(version)) meshshape = mesh.shape print('Mesh shape: '+str(meshshape)) dset = f["mesh"] nplanes = dset.attrs["nplanes"] return mesh, version, nplanes class signal: """ Signal class: for diagnostic signals from magnetic probes and flux loops """ def __init__(self, sim_data, filename, signame): self.sim_data = sim_data self._all_attrs = h5py.File(filename, 'r') self._all_attrs_list = list(h5py.File(filename, 'r').keys()) self.sigvalues = h5py.File(filename, 'r')[signame+'/value'] class time_traces: """ time_trace class: init routine calls read_scalars() that reads all possible scalars from the C1.h5 file. """ def __init__(self, sim_data, scalar): self.sim_data = sim_data self.time = self.sim_data._all_traces['time'][()] if scalar is not 'bharmonics' and scalar is not 'keharmonics': self.values = self.sim_data._all_traces[scalar][()] if scalar is 'bharmonics': self.values = self.sim_data._all_attrs['bharmonics/bharmonics'][()] if scalar is 'keharmonics': self.values = self.sim_data._all_attrs['keharmonics/keharmonics'][()] class diagnostic: def __init__(self, sim_data, diagnostic): self.sim_data = sim_data # Multiple cases depending on the diagnostic # Case corresponding to knowing the alfven times of the time slices if diagnostic == 'slice times': times = [] for string in sim_data._all_attrs_list: if string.startswith('time_') == True: times.append(string) times.sort() alfven_times = [] for time in times: # Retrieve the time attribute alfven_times.append(sim_data._all_attrs[time].attrs['time']) for (idx,time) in enumerate(times): times[idx] = int(time.replace('time_','')) self.diagnostic = times self.x_axis = alfven_times # Case corresponding to the timings of each iteration # self.diagnostic holds several objects, so you can see a breakdown of the # timings as well. # x_axis contains the iteration number if diagnostic == 'timings': self.diagnostic = sim_data._all_attrs['timings'] self.x_axis = np.arange(self.diagnostic['t_onestep'].shape[0])+1 # Case corresponding to the iterations of each step # self.diagnostic is a set of arrays for different iterations # x_axis contains iteration number if diagnostic =='iterations': self.diagnostic = sim_data._all_attrs['kspits/kspits'][()] self.x_axis = np.arange(np.shape(self.diagnostic[:,0])[0])+1 class constants: def __init__(self, sim_data): self.sim_data = sim_data self.R0 = sim_data._all_attrs.attrs['rzero'] self.B0 = sim_data._all_attrs.attrs['bzero'] self.gamma = sim_data._all_attrs.attrs['gam'] self.amupar = sim_data._all_attrs.attrs['amupar'] self.version = sim_data._all_attrs.attrs['version'] self.numvar = sim_data._all_attrs.attrs['numvar'] self.itor = sim_data._all_attrs.attrs['itor'] self.is3D = sim_data._all_attrs.attrs['3d'] class flux_coordinates: """ Class that represents a flux surface coordinate system, e.g. PEST, Boozer or Hamada coordinates. """ def __init__(self, m,n,rpath,zpath,axis,omega,psi,psin,period,theta,jac,q,area,dV,fcoords,V,phi,itor,r0,current,dpsi_dpsin): """ Initializes the flux_coordinates. """ self.m = m self.n = n self.rpath = rpath self.zpath = zpath self.rma = axis[0] self.zma = axis[1] self.omega = omega self.psi = psi self.psi_norm = psin self.flux_pol = -period*(psi-psi[0]) self.theta = theta self.j = jac self.q = q self.area = area self.dV_dchi = dV self.fcoords = fcoords #self.pest = #self.boozer = #self.hamada = self.V = V self.flux_tor = phi self.phi_norm = phi/phi[n-1] self.rho = np.sqrt(phi/phi[n-1]) self.period = period self.itor = itor self.r0 = r0 self.current = current self.dpsi_dchi = dpsi_dpsin
729720d4d212e2b7d382262b644bcbadcc9816a3
555b2a10e3c788704b876a2885a030af94852a19
/Vertex.py
abcbf0a80d8469e9ba4da15e35966981db2609b8
[]
no_license
swetlika/Python-Web-Scraper
196274e0355144ff680e3bad840a535db4d59b17
880151544b8facc2677ba46a350188b2d4820df6
refs/heads/master
2021-09-01T11:41:54.161236
2017-12-26T19:10:00
2017-12-26T19:10:00
115,448,162
0
0
null
null
null
null
UTF-8
Python
false
false
1,463
py
""" A vertex of a graph represents each point It holds information about the actor/movie, including the name, info (which is the release year of a movie, and the age of an actor), and the type, which is True if movie, else False """ class Vertex: def __init__(self, node, info, type_is_movie): self.id = node self.type = type_is_movie # if vertex is a movie, info = info movie was released # if vertex is an actor, info = age of actor self.info = info self.neighbors = {} def __str__(self): return str(self.id) + ' adjacent: ' + str([x.id for x in self.neighbors]) # while adding an edge between a vertex and another, add the other one to this vertex's neighbor list # edges are weighted def add_neighbor(self, neighbor, weight=0): self.neighbors[neighbor] = weight # returns a list of all the adjacent vertices of the current def get_neighbors(self): return self.neighbors.keys() # returns movie title if type movie # returns actor name if type actor def get_id(self): return self.id # returns the weight of the edge def get_weight(self, neighbor): return self.neighbors[neighbor] # returns release year if movie # returns age of actor if actor def get_info(self): return self.info # returns True if type movie # returns False if type actor def get_type(self): return self.type
dd97e1f73c7a3bd0e9ca1d944071be2ad3b1bab3
8b12560a1792ef7a15453a603dc038da3ee3eb4d
/server/optimization.py
350b2e9321397f166e61c5d99c46974f1fd49507
[]
no_license
LoveIace/GASI
edd1cee32f1fe4f368a94c1012bf3105ed046965
363c84f02f3bfc3cd61e5b1ca7c4edc559e0075a
refs/heads/master
2023-01-28T02:33:10.455472
2020-06-07T12:11:41
2020-06-07T12:11:41
246,835,683
0
0
null
2023-01-06T17:21:32
2020-03-12T13:02:27
Python
UTF-8
Python
false
false
4,464
py
import pandas from selection import roulette, tournament, uniform from numpy import exp from copy import copy def firefly_algo(problem, population_size = 20, iteration_ceiling = 50, alpha = 1.5, beta = 0.6, beta_min = 0.2, gamma = 0.005, delta=0.97, out_path='../documentation/FA_out.csv'): data = [] iter_count = 1 fireflies = problem.fireflies(population_size) for firefly in fireflies: firefly.brightness = problem.evaluate(firefly.position) data.append([iter_count] + firefly.values()) # find lowest brightness min_brightness = min(fireflies, key=lambda f: f.brightness).brightness # iterate while iter_count <= iteration_ceiling: for firefly in fireflies: moved = False for mate in fireflies: # don't compare to itself if firefly == mate: continue # compute light intensity based on distance firefly_intensity = firefly.brightness + abs(min_brightness) mate_intensity = (mate.brightness + abs(min_brightness)) * exp(-gamma * firefly.distance(mate) ** 2) if firefly_intensity < mate_intensity: # move firefly firefly.move_towards(mate, alpha, beta, gamma) # update brightness firefly.brightness = problem.evaluate(firefly.position) # update min_brightness if firefly.brightness < min_brightness: min_brightness = firefly.brightness moved = True # if firefly hasn't moved, do random local search # if not moved: # firefly.random_walk(alpha) data.append([iter_count] + firefly.values()) best = max(fireflies, key=lambda f: f.brightness) if problem.is_solved(best.brightness): iter_count+=1 return # best firefly searches locally best.random_walk(alpha) # update alpha value, increase iteration counter alpha *= delta iter_count += 1 if out_path is not False: print("Exporting dataset to", out_path,"...") df = pandas.DataFrame(data) df.to_csv(out_path, index=False, header=['generation']+problem.values()+['fitness']) print("Dataset exported") return pandas.DataFrame(data), data, iter_count-1 def genetic_algo(problem, population_size = 50, generation_ceiling = 25, select = tournament, mutation_rate = 0.25, elitism = 0.02, out_path='../documentation/GA_out.csv'): population = problem.population(population_size) generation_num = 1 data = [] # iterate generations while generation_num <= generation_ceiling: min_val = float('inf') # evaluate fitness of each individual in current population, add to dataset for individual in population: individual.fitness = problem.evaluate(individual.genotype) data.append([generation_num] + individual.values()) if individual.fitness is None: continue # move lower boundary if individual.fitness < min_val: min_val = individual.fitness # sort population by fitness population.sort(key=lambda individual: individual.fitness, reverse=True) # if population contains the problem solution break cycle if problem.is_solved(population[0].fitness): generation_num+=1 break # account for elitism new_generation = [ copy(population[i]) for i in range(int(elitism * population_size)) ] # select 2 parents, create offspring, repeat until new generation is complete selector = select(population) while len(new_generation) < population_size: new_generation.append( next(selector).crossover(next(selector), mutation_rate) ) # introduce new population population = new_generation[:] generation_num+=1 if out_path is not False: print("Exporting dataset to", out_path,"...") df = pandas.DataFrame(data) df.to_csv(out_path, index=False, header=['generation']+problem.df_headers()+['fitness']) print("Dataset exported") return pandas.DataFrame(data), data, generation_num-1
3f7954d3be9e18502554f59eebb8efc3ed37feaa
8a2f62f9ea9c6520b2cfa5a94967eb824e92bbd6
/src/server.py
f6fd66516bed87adf955b100bdf2dffab03bcc00
[ "MIT" ]
permissive
zarkle/sockets
66a8654904e767df6cc1da47cb99bad8569a17bb
b025ac208830bb7a6b686d686b15482888321676
refs/heads/master
2020-03-08T00:42:38.897980
2018-04-03T02:47:37
2018-04-03T02:47:37
127,812,073
0
0
MIT
2018-04-03T02:47:37
2018-04-02T21:01:59
null
UTF-8
Python
false
false
1,121
py
from datetime import datetime import socket sock = socket.socket( socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP) PORT = 3000 address = ('127.0.0.1', PORT) sock.bind(address) try: sock.listen(1) print('--- Starting server on port {} at {} ---'.format(PORT, datetime.now().strftime('%H:%M:%S %d-%m-%y'))) conn, addr = sock.accept() buffer_length = 8 message_complete = False message = b'' while not message_complete: part = conn.recv(buffer_length) message += part if len(part) < buffer_length: break message = message.decode('utf8') print('{} Echoed: {}'.format(datetime.now().strftime('%H:%M:%S %d-%m-%y'), message)) conn.sendall(message.encode('utf8')) except KeyboardInterrupt: try: conn.close() except NameError: pass sock.close() print('--- Stopping server on port {} at {} ---'.format(PORT, datetime.now().strftime('%H:%M:%S %d-%m-%y'))) conn.close() sock.close() print('--- Stopping server on port {} at {} ---'.format(PORT, datetime.now().strftime('%H:%M:%S %d-%m-%y')))
f0944519b2dcc61fa45505a45074964dab08301f
e90e83dea550fd2e36f2c20bf9c0f2354bfc1778
/movies/settings.py
1e7e6bb232b52a6d0eca12429af8490a747b764d
[]
no_license
vaishakh1990/MovieApp
efa0b66acf17ca3f8eda3c7674d47bda73dc4b04
9d372ae1a453135c14ebfeec5f81da98da7454f6
refs/heads/master
2022-12-15T13:28:05.550344
2019-05-30T05:01:30
2019-05-30T05:01:30
188,631,851
0
0
null
2022-12-08T05:11:43
2019-05-26T02:29:11
Python
UTF-8
Python
false
false
3,366
py
""" Django settings for movies project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'm&m1zai8!#hj-6=_()g^35vkxkgu^aur67)ljp&t5x=06ahs7b' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'users.apps.UsersConfig', 'movieapp.apps.MovieappConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'movies.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'movies.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Calcutta' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') OMDB_URL = 'http://www.omdbapi.com/' OMDB_API_KEY = 'a43a80f' LOGIN_REDIRECT_URL = 'movies-search' LOGIN_URL = 'login'
7cdbdc2209859155ca0f435744e95486cb3840ac
949a91a5fbe7b1f8968a68d86657503a75690e99
/cloud_native_app/microservices/b/b.py
3f7370a6ec7655788c8d45c3d65fb50912ea0f4b
[]
no_license
Jeanbouvatt/crepeausucre
1114f7deb62020e7cca59a10da89538b5fec6fef
b3df534792e1fd1ecc980539f3524b85f30aef33
refs/heads/master
2021-01-12T01:50:40.943863
2017-01-26T18:00:10
2017-01-26T18:00:10
78,437,265
0
0
null
null
null
null
UTF-8
Python
false
false
3,116
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Service B """ import base64 import logging from logging.handlers import RotatingFileHandler import pprint import time import sys import os from flask import Flask from flask import jsonify from flask import request import config # Initialise Flask app = Flask(__name__) app.debug = True # Affect app logger to a global variable so logger can be used elsewhere. config.logger = app.logger @app.route("/get_button/<id>") def get_button(id): try: config.logger.info("*** Start processing id %s ***", id) data = {"msg": "ok", "html":config.b.conf_file.get_w_protocol()+"://"+config.b.conf_file.get_w_hostname()+\ ":" + config.b.conf_file.get_w_port() + "/" + config.b.conf_file.get_w_route() + "/" + str(id)} resp = jsonify(data) resp.status_code = 200 config.logger.info("*** End processing id %s ***", id) add_headers(resp) return resp except: data = {"msg": "bug"} resp = jsonify(data) resp.status_code = 500 return resp @app.route("/shutdown", methods=["POST"]) def shutdown(): """Shutdown server""" shutdown_server() config.logger.info("Stopping %s...", config.b.NAME) return "Server shutting down..." @app.route("/", methods=["GET"]) def api_root(): """Root url, provide service name and version""" data = { "Service": config.b.NAME, "Version": config.b.VERSION } resp = jsonify(data) resp.status_code = 200 resp.headers["AuthorSite"] = "https://github.com/Jeanbouvatt/crepeausucre" add_headers(resp) return resp def shutdown_server(): """shutdown server""" func = request.environ.get("werkzeug.server.shutdown") if func is None: raise RuntimeError("Not running with the Werkzeug Server") func() def configure_logger(logger, logfile): """Configure logger""" formatter = logging.Formatter( "%(asctime)s :: %(levelname)s :: %(message)s") file_handler = RotatingFileHandler(logfile, "a", 1000000, 1) # Add logger to file if (config.b.conf_file.get_b_debug().title() == 'True'): logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) def add_headers(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') if __name__ == "__main__": # Vars app_logfile = "b.log" # Change diretory to script one try: os.chdir(os.path.dirname(sys.argv[0])) except FileNotFoundError: pass # Define a PrettyPrinter for debugging. pp = pprint.PrettyPrinter(indent=4) # Initialise apps config.initialise_b() # Configure Flask logger configure_logger(app.logger, app_logfile) config.logger.info("Starting %s", config.b.NAME) app.run(port=int(config.b.conf_file.get_b_port()), host='0.0.0.0')
301cc7c35e53e0f27f8e1983cabc3ed68f3b0eb7
58cc56aebd1d0a23a5bdd531774c139a74b58ea7
/cl_meats/colors.py
aa07166269eb19d468faabeeaff1803ef1030f8a
[]
no_license
ashleygwilliams/cl-meats
1fb36b9e5fe6e739b9468eb0e38da7de35ccab3f
8ec2aa736cd9ed63783b365ba39e049fe0038665
refs/heads/master
2020-12-11T09:08:44.856784
2013-11-28T01:23:12
2013-11-28T01:23:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,375
py
from __future__ import print_function class pretty_output(): ''' Context manager for pretty terminal prints ''' def __init__(self, *attr): self.END = '0e8ed89a-47ba-4cdb-938e-b8af8e084d5c' self.ALL_OFF = '\033[0m' self.attributes = attr self.opts = dict( BOLD = '\033[1m', UNDERSCORE = '\033[4m', BLINK = '\033[5m', REVERSE = '\033[7m', CONCEALED = '\033[7m', FG_BLACK = '\033[30m', FG_RED = '\033[31m', FG_GREEN = '\033[32m', FG_YELLOW = '\033[33m', FG_BLUE = '\033[34m', FG_MAGENTA = '\033[35m', FG_CYAN = '\033[36m', FG_WHITE = '\033[37m', BG_BLACK = '\033[40m', BG_RED = '\033[41m', BG_GREEN = '\033[42m', BG_YELLOW = '\033[43m', BG_BLUE = '\033[44m', BG_MAGENTA = '\033[45m', BG_CYAN = '\033[46m', BG_WHITE = '\033[47m' ) def __enter__(self): return self def __exit__(self, type, value, traceback): pass def write(self, msg): style = '' for a in self.attributes: a = a.upper() if a in self.opts.keys(): style += self.opts[a] else: raise("No Such Style!") print('{}{}{}'.format(style, msg.replace(self.END, self.ALL_OFF + style), self.ALL_OFF))
e87d4ea35bb7cf4d21fc6a18af3ecc493ddf16fd
5f5813eedd7984410ebfe71ccd7d288fccfc8475
/towersOfHanoi.py
d36ba7a853342d4b5f927c01cc868e013275a4be
[]
no_license
helios2k6/python3_interview_questions
8a1956d013e184f6c5c12331d57e0beb6760ee19
d0a0334c090206083d8915e8c3ebadb86d35ad12
refs/heads/master
2020-04-16T09:07:39.267659
2019-09-14T16:45:22
2019-09-14T16:45:22
165,451,795
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
def th(n, start, aux, dest): if n > 0: th(n - 1, start, dest, aux) dest.append(start.pop()) th(n - 1, aux, start, dest) def test1(): start = [3, 2, 1] aux = [] dest = [] th(3, start, aux, dest) print(start) print(aux) print(dest) test1()
f6c1c585e692663e47ba39c37d0b18e23dc3bee6
e05c284894322f42eeb4020509f43aee7ad2b503
/pysync.py
19582785128ccb31df4c48c417ca54a649adc73e
[ "MIT" ]
permissive
plinecom/pysync
27426153bc125d50a66d5376201bda3481ec6b00
c0b5c5ccb38b214be2b5cf5d4686eabdbadd8553
refs/heads/master
2021-01-19T06:10:20.660240
2016-06-10T08:12:43
2016-06-10T08:12:43
60,820,118
1
0
null
null
null
null
UTF-8
Python
false
false
6,044
py
# -*- coding: utf-8 -*- import sys import os import os.path import time import shutil def listup(srcRoot, destRoot, oldRoot, relativePath): srcPath = os.path.join(srcRoot, relativePath) destPath = os.path.join(destRoot, relativePath) oldPath = os.path.join(oldRoot, relativePath) # System::String ^ srcPath = System::IO::Path::Combine(srcRoot, relativePath); # array < System::String ^ > ^ srcDirItems = System::IO::Directory::GetDirectories(srcPath); items = os.listdir(srcPath) dir_list=[] symlink_list=[] file_list=[] for item in items: item_path = os.path.join(srcPath, item) if os.path.isdir(item_path): dir_list.append(item) elif os.path.islink(item_path): symlink_list.append(item) elif os.path.isfile(item_path): file_list.append(item) # print dir_list # print file_list for directory in dir_list: src_dir = os.path.join(srcPath, directory) dest_dir = os.path.join(destPath, directory) print src_dir print u"->"+dest_dir # exception? os.makedirs(dest_dir) listup(srcRoot, destRoot, oldRoot, os.path.join(relativePath, directory)) for file_item in file_list: hardlinked = False src_file = os.path.join(srcPath, file_item) dest_file = os.path.join(destPath, file_item) old_file = os.path.join(oldPath, file_item) print src_file print u"->" + dest_file if os.path.exists(old_file): old_file_size = os.path.getsize(old_file) src_file_size = os.path.getsize(src_file) # 古いDestと日付がほぼ一緒で、サイズが同じ if old_file_size == src_file_size: old_file_last_write_time = time.gmtime(os.path.getmtime(old_file)) src_file_last_write_time = time.gmtime(os.path.getmtime(src_file)) # print old_file_last_write_time # print src_file_last_write_time if old_file_last_write_time.tm_year == src_file_last_write_time.tm_year \ and old_file_last_write_time.tm_mon == src_file_last_write_time.tm_mon \ and old_file_last_write_time.tm_mday == src_file_last_write_time.tm_mday \ and old_file_last_write_time.tm_hour == src_file_last_write_time.tm_hour \ and old_file_last_write_time.tm_min == src_file_last_write_time.tm_min \ and old_file_last_write_time.tm_sec == src_file_last_write_time.tm_sec: success = True try: os.link(old_file, dest_file) except IOError: success = False if success: print "HLinked" hardlinked = True if not hardlinked: shutil.copy2(src_file, dest_file) """ array < System::String ^ > ^ srcFileItems = System::IO::Directory::GetFiles(srcPath); for (int i = 0; i < srcFileItems->Length; i + +){ System::String ^ srcItem = srcFileItems[i]; System::String ^ filename = System::IO::Path::GetFileName(srcItem); System::String ^ destItem = System::IO::Path::Combine(destRoot, relativePath, filename); System::String ^ oldItem = System::IO::Path::Combine(oldRoot, relativePath, filename); // ファイルだ。ハードリンク必要か調べて、ダメならコピーだ。 bool hardlinked = false; if (System: :IO::File::Exists(oldItem)){ if (System: : IO::File::Exists(oldItem)){ // 古いDestと日付がほぼ一緒で、サイズが同じ System::IO::FileInfo ^ oldfi = gcnew System::IO::FileInfo(oldItem); System::IO::FileInfo ^ srcfi = gcnew System::IO::FileInfo(srcItem); if (oldfi->Length == srcfi->Length){ if (oldfi->LastWriteTime.Year == srcfi->LastWriteTime.Year & & oldfi->LastWriteTime.Month == srcfi->LastWriteTime.Month & & oldfi->LastWriteTime.Day == srcfi->LastWriteTime.Day & & oldfi->LastWriteTime.Hour == srcfi->LastWriteTime.Hour & & oldfi->LastWriteTime.Minute == srcfi->LastWriteTime.Minute & & oldfi->LastWriteTime.Second == srcfi->LastWriteTime.Secon) { ATL::CString atlOldItem(oldItem); ATL::CString atlDestItem(destItem); BOOL success =::CreateHardLink(atlDestItem, atlOldItem, NULL); if (success){ hardlinked = true; // System::Console::WriteLine(L"HLinked"); } else{ System::Console::WriteLine(L"Error:HLink"); System::Console::WriteLine(destItem); } } } } } if (!hardlinked){ // System::Console::WriteLine(L"Copy"); try{ System::IO::File::Copy(srcItem, destItem, true); }catch(System::Exception ^ e){ System::Console::WriteLine(L"An error occurred: '{0}'", e); } } } } """ if __name__ == "__main__": srcRoot = sys.argv[1] # バックアップ元 oldRoot = sys.argv[2] # バックアップ(ふるいの) destRoot = sys.argv[3] # バックアップ先 listup(srcRoot, destRoot, oldRoot, u"")
a0689170300c9ac5c0f3fd4e0774d82d6a4f2a22
e89d6b85b8e113cdac4a10f42a5ba9f40f807600
/crud/models.py
0ed369d27394374729951d046291c4f0063659a4
[]
no_license
JuanVicenteVazquezG/crud-django-project
5c951b2a371d4c2b4568c13a610fcde75b211e1e
d0c9ebb8630ad4467c4fccc3a2abcd4ad3cc7111
refs/heads/main
2023-03-05T15:15:15.097269
2021-02-14T20:13:15
2021-02-14T20:13:15
338,376,948
0
0
null
null
null
null
UTF-8
Python
false
false
1,018
py
from django.db import models """ Autor (nombre, email) Articulo (autores, titulo, contenido) """ # Create your models here. class Article(models.Model): title = models.CharField(max_length=120) content = models.TextField() public = models.BooleanField() # Usado cuando cree el registro me guarda la fecha, solo se hara una vez para este registro created_at = models.DateTimeField(auto_now_add=True) # Usado cuando actualice el registro me guarda la fecha, solo se hara a partir del momento que se actualice update_at = models.DateTimeField(auto_now_add=True) class Author(models.Model): nombre = models.CharField(max_length=50) email = models.EmailField() # Usado cuando cree el registro me guarda la fecha, solo se hara una vez para este registro created_at = models.DateTimeField(auto_now_add=True) # Usado cuando actualice el registro me guarda la fecha, solo se hara a partir del momento que se actualice update_at = models.DateTimeField(auto_now_add=True)
29da6b4856f275e645c98bc770853337711e82cc
aa5e5a5e3aa1729d9dc5af610890ec6bc69eb137
/SunPolitcs/SunPolitcs/startproject.py
8575e5c94cba0359e445f144661f9f61bcfaf195
[]
no_license
quqingsong/MyScrapy
2d3659b09436631fa4f58d65da74eae9cd65eed9
bc1e5094d0e6a1b9ac596297d27fb810e4f67158
refs/heads/master
2022-12-31T18:43:42.952234
2020-10-24T05:41:16
2020-10-24T05:41:16
306,808,755
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # @FileName :startproject.py # @Time :2020/5/17 19:37 # @Author :青松 from scrapy import cmdline cmdline.execute(["scrapy","crawl","sunpolitics","-o","1.csv"])
8f0a3f1e893a6f042c0b8df346a95d4eb0c54193
57a8e6497effdda6be198562a4ba84b1660d9d57
/first_NN.py
ac2a30c27721d08ea6dd7af4f408d772842727c2
[]
no_license
frankpennchen/First_Tensorflow
47605fe5390275fdda55824bcde42765c176053a
9db1317888930fab8f41b3891960b834f81ba4c6
refs/heads/master
2020-03-28T19:43:53.916883
2018-09-16T14:35:17
2018-09-16T14:35:17
149,004,172
1
0
null
null
null
null
UTF-8
Python
false
false
17,885
py
# -*- coding: utf-8 -*- import numpy as np import h5py import matplotlib.pyplot as plt from testCases_v4 import * from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward from init_utils import load_dataset np.random.seed(1) def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: parameters -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(1) ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h, n_x)*0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h)*0.01 b2 = np.zeros((n_y, 1)) ### END CODE HERE ### assert(W1.shape == (n_h, n_x)) assert(b1.shape == (n_h, 1)) assert(W2.shape == (n_y, n_h)) assert(b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters def initialize_parameters_deep(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) ### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters def linear_forward(A, W, b): """ Implement the linear part of a layer's forward propagation. Arguments: A -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) Returns: Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently """ ### START CODE HERE ### (≈ 1 line of code) Z = np.dot(W,A)+b ### END CODE HERE ### assert(Z.shape == (W.shape[0], A.shape[1])) cache = (A, W, b) return Z, cache def linear_activation_forward(A_prev, W, b, activation): """ Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments: A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently """ if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = np.dot(W,A_prev) + b, np.dot(W,A_prev) + b A, activation_cache = sigmoid(Z) ### END CODE HERE ### elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = np.dot(W,A_prev) + b, np.dot(W,A_prev) + b A, activation_cache = relu(Z) ### END CODE HERE ### assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache) return A, cache def L_model_forward(X, parameters): """ Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1) """ caches = [] A = X L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A ### START CODE HERE ### (≈ 2 lines of code) A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu") caches.append(cache) ### END CODE HERE ### # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. ### START CODE HERE ### (≈ 2 lines of code) AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid") caches.append(cache) ### END CODE HERE ### assert(AL.shape == (1,X.shape[1])) return AL, caches def compute_cost(AL, Y): """ Implement the cost function defined by equation (7). Arguments: AL -- probability vector corresponding to your label predictions, shape (1, number of examples) Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns: cost -- cross-entropy cost """ m = Y.shape[1] # Compute loss from aL and y. ### START CODE HERE ### (≈ 1 lines of code) cost = -(np.inner(np.log(AL),Y)+np.inner(np.log(1.0-AL),1.0-Y))/float(m) ### END CODE HERE ### cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17). assert(cost.shape == ()) return cost def linear_backward(dZ, cache): """ Implement the linear portion of backward propagation for a single layer (layer l) Arguments: dZ -- Gradient of the cost with respect to the linear output (of current layer l) cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ A_prev, W, b = cache m = A_prev.shape[1] ### START CODE HERE ### (≈ 3 lines of code) dW = np.dot(dZ,A_prev.T)/float(m) db = np.sum(dZ,axis=1,keepdims=True)/float(m) dA_prev = np.dot(W.T,dZ) ### END CODE HERE ### assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db def linear_activation_backward(dA, cache, activation): """ Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments: dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ linear_cache, activation_cache = cache if activation == "relu": ### START CODE HERE ### (≈ 2 lines of code) dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) ### END CODE HERE ### elif activation == "sigmoid": ### START CODE HERE ### (≈ 2 lines of code) dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) ### END CODE HERE ### return dA_prev, dW, db def L_model_backward(AL, Y, caches): """ Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments: AL -- probability vector, output of the forward propagation (L_model_forward()) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) caches -- list of caches containing: every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2) the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1]) Returns: grads -- A dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... """ grads = {} L = len(caches) # the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation ### START CODE HERE ### (1 line of code) dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) ### END CODE HERE ### # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"] ### START CODE HERE ### (approx. 2 lines) current_cache = caches[L-1] grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid") ### END CODE HERE ### # Loop from l=L-2 to l=0 for l in reversed(range(L-1)): # lth layer: (RELU -> LINEAR) gradients. # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines) current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, "relu") grads["dA" + str(l)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp ### END CODE HERE ### return grads def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop. ### START CODE HERE ### (≈ 3 lines of code) for l in range(L): parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l + 1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l + 1)] ### END CODE HERE ### return parameters def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False): """ Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (n_x, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) layers_dims -- dimensions of the layers (n_x, n_h, n_y) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- If set to True, this will print the cost every 100 iterations Returns: parameters -- a dictionary containing W1, W2, b1, and b2 """ np.random.seed(1) grads = {} costs = [] # to keep track of the cost m = X.shape[1] # number of examples (n_x, n_h, n_y) = layers_dims # Initialize parameters dictionary, by calling one of the functions you'd previously implemented ### START CODE HERE ### (≈ 1 line of code) parameters = initialize_parameters(n_x, n_h, n_y) ### END CODE HERE ### # Get W1, b1, W2 and b2 from the dictionary parameters. W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2". ### START CODE HERE ### (≈ 2 lines of code) A1, cache1 = linear_activation_forward(X, W1, b1, "relu") A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid") ### END CODE HERE ### # Compute cost ### START CODE HERE ### (≈ 1 line of code) cost = compute_cost(A2, Y) ### END CODE HERE ### # Initializing backward propagation dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2)) # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1". ### START CODE HERE ### (≈ 2 lines of code) dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid") dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu") ### END CODE HERE ### # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2 grads['dW1'] = dW1 grads['db1'] = db1 grads['dW2'] = dW2 grads['db2'] = db2 # Update parameters. ### START CODE HERE ### (approx. 1 line of code) parameters = update_parameters(parameters, grads, learning_rate) ### END CODE HERE ### # Retrieve W1, b1, W2, b2 from parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Print the cost every 100 training example if print_cost and i % 100 == 0: print("Cost after iteration {}: {}".format(i, np.squeeze(cost))) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009 """ Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID. Arguments: X -- data, numpy array of shape (number of examples, num_px * num_px * 3) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) layers_dims -- list containing the input size and each layer size, of length (number of layers + 1). learning_rate -- learning rate of the gradient descent update rule num_iterations -- number of iterations of the optimization loop print_cost -- if True, it prints the cost every 100 steps Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(1) costs = [] # keep track of cost # Parameters initialization. (≈ 1 line of code) ### START CODE HERE ### parameters = initialize_parameters_deep(layers_dims) ### END CODE HERE ### # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID. ### START CODE HERE ### (≈ 1 line of code) AL, caches = L_model_forward(X, parameters) ### END CODE HERE ### # Compute cost. ### START CODE HERE ### (≈ 1 line of code) cost = compute_cost(AL, Y) ### END CODE HERE ### # Backward propagation. ### START CODE HERE ### (≈ 1 line of code) grads = L_model_backward(AL, Y, caches) ### END CODE HERE ### # Update parameters. ### START CODE HERE ### (≈ 1 line of code) parameters = update_parameters(parameters, grads, learning_rate) ### END CODE HERE ### # Print the cost every 100 training example if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ################################################################################
e10916000769e062512e896968a462248e3aaaf8
facb8b9155a569b09ba66aefc22564a5bf9cd319
/wp2/merra_scripts/03_model_fitting/merraRF882/294-tideGauge.py
cd2a90061870ed011239ee4570526d3b677444d3
[]
no_license
moinabyssinia/modeling-global-storm-surges
13e69faa8f45a1244a964c5de4e2a5a6c95b2128
6e385b2a5f0867df8ceabd155e17ba876779c1bd
refs/heads/master
2023-06-09T00:40:39.319465
2021-06-25T21:00:44
2021-06-25T21:00:44
229,080,191
0
0
null
null
null
null
UTF-8
Python
false
false
7,456
py
# -*- coding: utf-8 -*- """ Created on Mon May 4 15:51:30 2020 This program is designed to validate a Random Forest model by using the KFOLD method @author: Michael Tadesse """ #import packages import os import glob import numpy as np import pandas as pd from sklearn import metrics from scipy import stats import seaborn as sns import matplotlib.pyplot as plt from datetime import datetime from sklearn.ensemble import RandomForestRegressor from sklearn.decomposition import PCA from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler def validateRF(): """ run KFOLD method for regression """ #defining directories dir_in = "/lustre/fs0/home/mtadesse/merraAllLagged" dir_out = "/lustre/fs0/home/mtadesse/merraRFValidation" surge_path = "/lustre/fs0/home/mtadesse/05_dmax_surge_georef" #cd to the lagged predictors directory os.chdir(dir_in) x = 294 y = 295 #empty dataframe for model validation df = pd.DataFrame(columns = ['tg', 'lon', 'lat', 'num_year', \ 'num_95pcs','corrn', 'rmse']) #looping through for tg in range(x,y): os.chdir(dir_in) #filter only .csv files tgNames = [] for file in glob.glob("*.csv"): tgNames.append(file) tg_name = sorted(tgNames)[tg] print(tg_name) ########################################## #check if this tg is already taken care of ########################################## os.chdir(dir_out) if os.path.isfile(tg_name): print("this tide gauge is already taken care of") return "file already analyzed!" os.chdir(dir_in) #load predictor pred = pd.read_csv(tg_name) pred.drop('Unnamed: 0', axis = 1, inplace = True) #add squared and cubed wind terms (as in WPI model) pickTerms = lambda x: x.startswith('wnd') wndTerms = pred.columns[list(map(pickTerms, pred.columns))] wnd_sqr = pred[wndTerms]**2 wnd_cbd = pred[wndTerms]**3 pred = pd.concat([pred, wnd_sqr, wnd_cbd], axis = 1) #standardize predictor data dat = pred.iloc[:,1:] scaler = StandardScaler() print(scaler.fit(dat)) dat_standardized = pd.DataFrame(scaler.transform(dat), \ columns = dat.columns) pred_standardized = pd.concat([pred['date'], dat_standardized], axis = 1) #load surge data os.chdir(surge_path) surge = pd.read_csv(tg_name) surge.drop('Unnamed: 0', axis = 1, inplace = True) #remove duplicated surge rows surge.drop(surge[surge['ymd'].duplicated()].index, axis = 0, inplace = True) surge.reset_index(inplace = True) surge.drop('index', axis = 1, inplace = True) #adjust surge time format to match that of pred time_str = lambda x: str(datetime.strptime(x, '%Y-%m-%d')) surge_time = pd.DataFrame(list(map(time_str, surge['ymd'])), columns = ['date']) time_stamp = lambda x: (datetime.strptime(x, '%Y-%m-%d %H:%M:%S')) surge_new = pd.concat([surge_time, surge[['surge', 'lon', 'lat']]], axis = 1) #merge predictors and surge to find common time frame pred_surge = pd.merge(pred_standardized, surge_new.iloc[:,:2], on='date', how='right') pred_surge.sort_values(by = 'date', inplace = True) #find rows that have nans and remove them row_nan = pred_surge[pred_surge.isna().any(axis =1)] pred_surge.drop(row_nan.index, axis = 0, inplace = True) pred_surge.reset_index(inplace = True) pred_surge.drop('index', axis = 1, inplace = True) #in case pred and surge don't overlap if pred_surge.shape[0] == 0: print('-'*80) print('Predictors and Surge don''t overlap') print('-'*80) continue pred_surge['date'] = pd.DataFrame(list(map(time_stamp, \ pred_surge['date'])), \ columns = ['date']) #prepare data for training/testing X = pred_surge.iloc[:,1:-1] y = pd.DataFrame(pred_surge['surge']) y = y.reset_index() y.drop(['index'], axis = 1, inplace = True) #apply PCA pca = PCA(.95) pca.fit(X) X_pca = pca.transform(X) #apply 10 fold cross validation kf = KFold(n_splits=10, random_state=29) metric_corr = []; metric_rmse = []; #combo = pd.DataFrame(columns = ['pred', 'obs']) for train_index, test_index in kf.split(X): X_train, X_test = X_pca[train_index], X_pca[test_index] y_train, y_test = y['surge'][train_index], y['surge'][test_index] #train regression model rf= RandomForestRegressor(n_estimators = 50, random_state = 101, \ min_samples_leaf = 1) rf.fit(X_train, y_train) #predictions predictions = rf.predict(X_test) # pred_obs = pd.concat([pd.DataFrame(np.array(predictions)), \ # pd.DataFrame(np.array(y_test))], \ # axis = 1) # pred_obs.columns = ['pred', 'obs'] # combo = pd.concat([combo, pred_obs], axis = 0) #evaluation matrix - check p value if stats.pearsonr(y_test, predictions)[1] >= 0.05: print("insignificant correlation!") continue else: print(stats.pearsonr(y_test, predictions)) metric_corr.append(stats.pearsonr(y_test, predictions)[0]) print(np.sqrt(metrics.mean_squared_error(y_test, predictions))) print() metric_rmse.append(np.sqrt(metrics.mean_squared_error(y_test, predictions))) #number of years used to train/test model num_years = (pred_surge['date'][pred_surge.shape[0]-1] -\ pred_surge['date'][0]).days/365 longitude = surge['lon'][0] latitude = surge['lat'][0] num_pc = X_pca.shape[1] #number of principal components corr = np.mean(metric_corr) rmse = np.mean(metric_rmse) print('num_year = ', num_years, ' num_pc = ', num_pc ,'avg_corr = ',np.mean(metric_corr), ' - avg_rmse (m) = ', \ np.mean(metric_rmse), '\n') #original size and pca size of matrix added new_df = pd.DataFrame([tg_name, longitude, latitude, num_years, num_pc, corr, rmse]).T new_df.columns = ['tg', 'lon', 'lat', 'num_year', \ 'num_95pcs','corrn', 'rmse'] df = pd.concat([df, new_df], axis = 0) #save df as cs - in case of interruption os.chdir(dir_out) df.to_csv(tg_name) #run script validateRF()
3b29858378e8a84dc8d6061a2f3b26b081be22f2
2bbf04bde4585ea4217f65a0037ff824007ada77
/Python/PetyaAndStrings.py
45f967d72a3bd2d16c3c1c76a39a1cb0ef78de23
[]
no_license
knight-byte/Codeforces-Problemset-Solution
7e0dea73a3906434faf4e59dbc8dd5269b09a688
cdac3669cc14385ed43f19621ba72a055a52c76c
refs/heads/main
2023-04-09T00:06:27.062577
2021-04-28T05:28:24
2021-04-28T05:28:24
340,555,681
1
1
null
2021-02-20T03:50:47
2021-02-20T03:50:46
null
UTF-8
Python
false
false
225
py
def main(): a = input().lower() b = input().lower() if a == b: return 0 x = sorted([a, b]) if x[0] == a: return -1 else: return 1 if __name__ == '__main__': print(main())
7c4ffa6c899f19c47416e06fb5253a69e6282d82
3d5da3b78d3e18027efb00a07a4a1641865acaf3
/dataset/hpa_single_dataset.py
e59b485fdaed577d46053a5cbe738a340ff647f4
[ "Apache-2.0" ]
permissive
marshuang80/cell-segmentation
d79326a3bba77417b98469a609618cb932e705a7
aef5196b6fd906bff3866156e205d4f787710bde
refs/heads/master
2022-02-20T15:29:02.716024
2019-08-27T22:00:11
2019-08-27T22:00:11
194,341,336
33
6
null
null
null
null
UTF-8
Python
false
false
1,622
py
from torch.utils.data import Dataset from scipy import ndimage from .augmentation import augmentation import skimage import imageio import numpy as np import h5py import os import random class HPASingleDataset(Dataset): def __init__(self, data_path, phase='train', transform=False, percent_hole=0.4): """Custom PyTorch Dataset for hpa dataset Parameters ---------- data_path: str path to the nuclei dataset hdf5 file phase: str, optional phase this dataset is used for (train, val. test) """ self.data_path = data_path self.phase = phase self.transform = transform self.percent_hole = percent_hole self.target_dim = 1 with h5py.File(self.data_path,"r") as h: self.data_names = list(h.keys()) self.dim = 1 # decision to only use one channel (rgb are the same, a is all 1s) def __len__(self): return len(self.data_names) def __getitem__(self, idx): with h5py.File(self.data_path,"r") as h: data = h[self.data_names[idx]][:] data = data / 255. size = len(list(data.reshape(-1))) rand_holes = np.ones(size) idx = np.random.choice(size, int(size*self.percent_hole), replace=False) rand_holes[idx] = 0 rand_holes = rand_holes.reshape(data.shape) y = data.copy() x = data.copy() x = x * rand_holes x = np.expand_dims(x, 0) if self.transform: x,y = augmentation(x,y) return x, y
76cb72de738a416e8e036c041c95efadb27e14ec
fb8d595d44f5e7ed67942e286db835e1e7f931a5
/frechetmean/manifolds/hyperboloid.py
a90a0447fb1a4034c94bc1561ed209ca343ad2ba
[ "MIT" ]
permissive
CUAI/Differentiable-Frechet-Mean
8b112ed02ffdb590697ef1ec66fbf7b121adcf58
c73f9e8d0969a727043d3d2a07af6392fdc802af
refs/heads/master
2023-08-31T08:27:04.075283
2021-09-28T01:55:55
2021-09-28T01:55:55
274,028,706
38
2
null
null
null
null
UTF-8
Python
false
false
3,212
py
import torch from frechetmean.utils import (EPS, arcosh, arsinh, artanh, cosh, divsinh, sinh, sinhdiv, tanh) from .manifold import Manifold class Lorentz(Manifold): def __init__(self, K=-1.0): super(Lorentz, self).__init__() assert K < 0 if torch.is_tensor(K): self.K = K else: self.K = torch.tensor(K) @staticmethod def _ldot(u, v, keepdim=False, dim=-1): m = u * v if keepdim: ret = torch.sum(m, dim=dim, keepdim=True) - 2 * m[..., 0:1] else: ret = torch.sum(m, dim=dim, keepdim=False) - 2 * m[..., 0] return ret def ldot(self, u, v, keepdim=False, dim=-1): return Lorentz._ldot(u, v, keepdim, dim) def sh_to_dim(self, sh): if hasattr(sh, '__iter__'): return sh[-1] - 1 else: return sh - 1 def dim_to_sh(self, dim): if hasattr(dim, '__iter__'): return dim[-1] + 1 else: return dim + 1 def zero(self, *shape): x = torch.zeros(*shape) x[..., 0] = 1 / (-self.K).sqrt().detach() return x def zero_tan(self, *shape): return torch.zeros(*shape) def zero_like(self, x): y = torch.zeros_like(x) y[..., 0] = 1 / (-self.K).sqrt().detach() return y def zero_tan_like(self, x): return torch.zeros_like(x) def inner(self, x, u, v, keepdim=False): return self.ldot(u, v, keepdim=keepdim) def proju(self, x, u): return u - self.K * self.ldot(x, u, keepdim=True).expand_as(u) * x.expand_as(u) @staticmethod def _proju(x, u, K): return u - K * Lorentz._ldot(x, u, keepdim=True).expand_as(u) * x.expand_as(u) def projx(self, x): x = x.clone() x.data[..., 0] = (1 / (-self.K) + x[..., 1:].pow(2).sum(dim=-1)).sqrt() return x def egrad2rgrad(self, x, u): scaling = torch.zeros_like(x) scaling[..., :1] = torch.ones_like(scaling[..., :1]) u = u - 2 * x[..., :1] * scaling u = self.proju(x, u) return u def exp(self, x, u): un = self.ldot(u, u, keepdim=True) un = un.clamp(min=EPS[x.dtype]).sqrt() * (-self.K).sqrt() return x * cosh(un) + sinhdiv(un) * u def log(self, x, y): xy = self.K * self.ldot(x, y, keepdim=True) num = arcosh(xy) u = divsinh(num) * (y - xy * x) return self.proju(x, u) def dist(self, x, y, squared=False, keepdim=False): d = self.K * self.ldot(x, y) d.data.clamp(min=1) dist = arcosh(d) / (-self.K).sqrt() dist.data.clamp(min=EPS[x.dtype]) return dist.pow(2) if squared else dist def transp(self, x, y, u): xy = self.ldot(x, y, keepdim=True).expand_as(u) uy = self.ldot(u, y, keepdim=True).expand_as(u) return u - (self.K * uy) / (1 + self.K * xy) * (x + y).expand_as(u) def __str__(self): return 'Hyperboloid' def squeeze_tangent(self, x): return x[..., 1:] def unsqueeze_tangent(self, x): return torch.cat((torch.zeros_like(x[..., 0]).unsqueeze(-1), x), dim=-1)
f82ba9bc2bc1e77f9d51cf89cba9753ccb178e25
d0d95c538c4092b4f74f49c71a9306c79859cc97
/contents/models.py
5bfa22d9f0f56713a8f9b99805bd89e57e260eb9
[]
no_license
sjoh0704/Simple-Instagram
4e7c453e653cfbecb480b4bd283afb3f57bdedec
45604111120076191ef1c71589d9d4c36c05916c
refs/heads/master
2023-04-21T04:39:49.955102
2021-05-18T01:35:56
2021-05-18T01:35:56
356,603,983
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
import os import uuid from django.db import models from django.contrib.auth.models import User # Create your models here. class BaseModel(models.Model): created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) class Meta: abstract = True class Content(BaseModel): user = models.ForeignKey(User, on_delete=models.CASCADE) text = models.TextField(default="") # def __str__(self) -> str: # amdin에서 display_list를 설정해주었기 때문에 없어도 된다. # return self.text # 이미지를 업로드해주는 함수 def image_upload_to(instance, filename): ext = filename.split(".")[-1] return os.path.join(instance.UPLOAD_PATH, "{}.{}".format(uuid.uuid4(), ext)) class Image(BaseModel): UPLOAD_PATH = 'user-upload' content = models.ForeignKey(Content, on_delete=models.CASCADE) image = models.ImageField(upload_to = image_upload_to) order = models.SmallIntegerField() #게시물 마다 있는 사진들의 순서를 결정하기 위해 있는 데이터 class Meta: ordering = ['order'] def __str__(self) -> str: return "image" + str(self.order)
13ce8ea93a9f040e69314c5c86987140c95f96c6
49fe5157ac5cece1fbd537514ded6b8c0f7a03cb
/training/v0.1.1/danish_augmenter.py
6cc52be5e2ab18e3ca8ee4bdd5c6c86e9e436128
[ "Apache-2.0" ]
permissive
scottire/DaCy
5303f8c47f4c84a8e319c982c2495d03983b7555
b5a1a34422efd00ccf9e678b1bb9a8e1a150f3c3
refs/heads/main
2023-06-28T15:31:32.127470
2021-08-03T11:32:41
2021-08-03T11:32:41
392,293,740
0
0
Apache-2.0
2021-08-03T11:29:26
2021-08-03T11:29:25
null
UTF-8
Python
false
false
1,991
py
"""python -m spacy train config.cfg --code functions.py """ import sys from typing import Callable, Iterable, Iterator import spacy sys.path.append("../..") from dacy.augmenters import ( create_keyboard_augmenter, create_pers_augmenter, create_char_swap_augmenter, create_æøå_augmenter, ) from dacy.datasets.names import load_names from spacy.language import Language from spacy.training import Example from spacy.training.augment import create_lower_casing_augmenter def combine_augmenters( augmenters: Iterable[Callable[[Language, Example], Iterator[Example]]] ) -> Callable[[Language, Example], Iterator[Example]]: """Combines a series og spaCy style augmenters. Args: augmenters (Iterable[Callable[[Language, Example], Iterator[Example]]]): An list of spaCy augmenters. Returns: Callable[[Language, Example], Iterator[Example]]: The combined augmenter """ def apply_multiple_augmenters(nlp: Language, example: Example): examples = [example] for aug in augmenters: examples = (e for example in examples for e in aug(nlp, example)) for e in examples: yield example return apply_multiple_augmenters @spacy.registry.augmenters("dacy_augmenter.v1") def dacy_augmenters(): augmenters = [ create_keyboard_augmenter(doc_level=1, char_level=0.02, distance=1.5), create_pers_augmenter( ent_dict=load_names(), patterns=[ "fn,ln", "abbpunct,ln", "fn,ln,ln", "fn,ln,ln", "abb,ln", "ln,abbpunct", ], force_pattern_size=True, keep_name=False, prob=0.1, ), create_char_swap_augmenter(doc_level=1, char_level=0.02), create_æøå_augmenter(doc_level=1, char_level=0.1), create_lower_casing_augmenter(level=0.1), ] return combine_augmenters(augmenters)
1681c4bfa1b633a467c98beb07c08d18c0ac0c02
3ca2fc0098d3f6a876eba9f70d3c891b553b150e
/API/migrations/0005_auto_20200807_1508.py
c753ec0075667d630e165285919fa132d24c2b9a
[]
no_license
shivam-bit/drf-csv-processor
6c49bfafff0b2b18b77c51329af79f516cfb6eb1
4adbc4a7af7304cb2ace0c268685712847104f30
refs/heads/master
2022-12-01T13:59:18.726838
2020-08-07T19:15:31
2020-08-07T19:15:31
285,902,631
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
# Generated by Django 3.0.8 on 2020-08-07 15:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('API', '0004_auto_20200807_1501'), ] operations = [ migrations.AlterField( model_name='csv_product', name='price', field=models.DecimalField(decimal_places=2, max_digits=12), ), ]
6b29f937e438a7dbf2fd0bb68f186740125ae654
50027b2559f8e9c728f48bb172128149cc54071d
/src/main.py
62b5a1750a70cc679c7b659c4b8bc6f57df160f0
[]
no_license
kristhyanmatos/logica-fuzzy
396c47cb5769cd25c94b386e4494031fd01b3db2
04e442405e6e05ec500a9ad6993f1857d9924cf0
refs/heads/main
2023-06-09T16:01:34.167020
2021-07-06T12:39:28
2021-07-06T12:39:28
382,421,858
0
0
null
null
null
null
UTF-8
Python
false
false
1,242
py
from db import DEVS from utils import busca_chave from fuzzy import calula_aptidao input_complexidade = int(input("insira a complexidade: ")) input_linguagens = input("insira as linguagens: ") input_linguagens = input_linguagens.split(",") aptidao_linguagens = [] for linguagem in input_linguagens: aptidao_linguagens.append( { "nome": linguagem, "devs_aptidao": [], } ) for dev in DEVS: for linguagen in dev["linguagens"]: if linguagen["nome"] in (input_linguagens): for index, aptidao_linguagem in enumerate(aptidao_linguagens): if aptidao_linguagem["nome"] == linguagen["nome"]: aptidao_linguagens[index]["devs_aptidao"].append( { "nome": dev["nome"], "aptidao": calula_aptidao( dev["tempo_carreira"], input_complexidade, linguagen["projetos_realizados"], ), } ) for linguagem in aptidao_linguagens: linguagem["devs_aptidao"].sort(key=busca_chave) print(aptidao_linguagens)
c1dc45806274b3fd28e8afd136f642fdbdefd492
0ed9a8eef1d12587d596ec53842540063b58a7ec
/cloudrail/knowledge/utils/policy_utils.py
c6e67eb897180b23d1600163ecbe65f63c194702
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
cbc506/cloudrail-knowledge
8611faa10a3bf195f277b81622e2590dbcc60da4
7b5c9030575f512b9c230eed1a93f568d8663708
refs/heads/main
2023-08-02T08:36:22.051695
2021-09-13T15:23:33
2021-09-13T15:24:26
390,127,361
0
0
MIT
2021-07-27T21:08:06
2021-07-27T21:08:06
null
UTF-8
Python
false
false
3,180
py
from typing import List, Set from cloudrail.knowledge.context.connection import PolicyEvaluation from cloudrail.knowledge.context.aws.resources.iam.policy import Policy from cloudrail.knowledge.context.aws.resources.iam.policy_statement import StatementCondition, StatementEffect from cloudrail.knowledge.context.aws.resources.iam.principal import PrincipalType from cloudrail.knowledge.utils.action_utils import is_action_fully_defined from cloudrail.knowledge.utils.arn_utils import are_arns_intersected def build_condition(statement_dict: dict) -> List[StatementCondition]: condition_dict: dict = statement_dict.get('Condition') if condition_dict: condition_list: List[StatementCondition] = [] for operator, key_values in condition_dict.items(): for cond_key, cond_value in key_values.items(): values_list = [cond_value] if isinstance(cond_value, str) else cond_value condition_list.append(StatementCondition(operator, cond_key, values_list)) return condition_list else: return [] def is_any_resource_based_action_allowed(policy_evaluation: PolicyEvaluation) -> bool: resource_allowed_actions_copy = policy_evaluation.resource_allowed_actions.copy() resource_denied_actions_copy = policy_evaluation.resource_denied_actions.copy() remove_allowed_from_denied(resource_allowed_actions_copy, resource_denied_actions_copy) return len(resource_allowed_actions_copy) > 0 def remove_allowed_from_denied(allowed_actions: Set[str], denied_actions: Set[str]): allows_to_remove = set() denieds_to_remove = set() for allow_action_a in allowed_actions: for allow_action_b in allowed_actions: if allow_action_a != allow_action_b and is_action_fully_defined(allow_action_a, allow_action_b): allows_to_remove.add(allow_action_a) for denied_action_a in denied_actions: for denied_action_b in denied_actions: if denied_action_a != denied_action_b and is_action_fully_defined(denied_action_a, denied_action_b): denieds_to_remove.add(denied_action_a) for allow_action in allowed_actions: for deny_action in denied_actions: if is_action_fully_defined(allow_action, deny_action): allows_to_remove.add(allow_action) for allow_to_remove in allows_to_remove: allowed_actions.remove(allow_to_remove) for denied_to_remove in denieds_to_remove: denied_actions.remove(denied_to_remove) def is_policy_block_public_access(policy: Policy, aws_resource_arn: str = '*') -> bool: for statement in policy.statements: if len(statement.condition_block) == 0: if statement.principal.principal_type == PrincipalType.PUBLIC or \ (statement.principal.principal_type == PrincipalType.AWS and any(value == "*" for value in statement.principal.principal_values)) and \ any(are_arns_intersected(res, aws_resource_arn) for res in statement.resources): return statement.effect == StatementEffect.DENY else: return True return False
7f38ef6ec889c598cc6765fe7b60205fec67bcfb
43196f3ddb6492867bfcf00c9169c340aad4e7b6
/examples/Dict2D_examples.py
6fcd4cd72cf7e0b53cd4730dd2b960362a152b6a
[]
no_license
pycogent/old-cogent
eb24cf9b86e2df17ab32d05586ba0e034ab0dc86
b49442bd793a743188a43809903dc140512420b7
refs/heads/master
2016-09-05T18:06:15.100337
2012-12-20T20:04:09
2012-12-20T20:04:09
7,252,631
0
1
null
null
null
null
UTF-8
Python
false
false
8,443
py
#!/usr/bin/env python # Dict2D_examples.py # Owner: Greg Caporaso [email protected] from old_cogent.base.dict2d import Dict2D, largest from old_cogent.util.demo import QuickDemo from old_cogent.base.stats import Freqs demo = QuickDemo( [ "Demonstration of the Dict2D class", "Written by Greg Caporaso [email protected] 5/6/04", """ A Dict2D is meant to be a common interface for any 2D mapping types where the top level is a dict. \t This example is meant to illustrate a lot of its functionality """, ["Several objects can be used to create a Dict2D",None], ["No data creates an empty dict", "d = Dict2D()"], [None, "print d"], ["A dict of dicts", "d = Dict2D(data={'a':{'a':1,'b':2},'b':{'a':3,'b':4}})"], [None, "print d"], ["Indices data", "d = Dict2D(data=[('a','a',1),('a','b',2),('b','a',3),('b','b',4)])"], [None, "print d"], ["List data, note you must also define a RowOrder and ColOrder",\ "d = Dict2D(data=[[1,2,3],[4,5,6]], RowOrder=['a','b'], ColOrder=['d','e','f'])"], [None, "print d"], ["RowOrder and ColOrder are lists of the 'interesting' row keys and column keys", "d = Dict2D(data={'a':{'c':5}}, RowOrder=['a','b'], ColOrder=['c','d'])"], [None, "print d"], ["""If RowOrder and ColOrder are both passed in, along with setting Pad=True, the Dict2D will be filled with the default value to conatin all rows and cols.""", "d = Dict2D(data={'a':{'c':5}}, RowOrder=['a','b'], ColOrder=['c','d'], Pad=True)"], [None, "print d"], ["""You can change the default value for Pad with self.Default """, "d = Dict2D(data={'a':{'c':5}}, RowOrder=['a','b'], ColOrder=['c','d'], Pad=True, Default=42)"], [None, "print d"], ["""The only remaining constructor argument is RowConstructor, this allows you to optionally pass a different constructor (default==dict()) for the inner layer of the Dict2D. For example you could make all inner objects into cogent.base.stats.Freqs objects""", "d = Dict2D(data={'a':{'a':1,'b':2}}, RowConstructor=Freqs)"], [None, "print d"], ["Note the data type of d['a']", "print type(d['a'])"], ["""The pad() method can be called after initialization to achieve the same effect as passing Pad=True to the constructor. pad() optionally a default parameter, which by default is self.Default""", "d = Dict2D(data={'a':{'b':1}}, RowOrder=['a','b'], ColOrder=['a','b'])"], [None, "print d"], [None, "d.pad(default=42)"], [None, "print d"], ["""If pad() is called and RowOrder and ColOrder haven't been set, it pads all rows to contain data for all existing column keys""", "d = Dict2D(data={'a':{'c':1}, 'b':{'d':3}}, Default=42)"], [None, "print d"], [None, "d.pad()"], [None, "print d"], ["""The purge() method is used to get rid of unwanted elements. Calling purge will remove any elements whose row or column key is not in RowOrder or ColOrder respectively""", "d = Dict2D(data={'a':{'a':0,'b':1,'c':2}, 'b':{'b':5, 'c':9}, 'c':{'b':5}}, RowOrder=['a','b'], ColOrder=['a','b'])"], [None, "print d"], [None, "d.purge()"], [None, "print d"], ["""The fill() method is similar to pad(), it takes parameters to list rows and cols, and fills them with val. By default, RowOrder and ColOrder are not touched, but can be overwritten by passing set_orders=True). All values optional except val""", "d.fill(val=42, rows=['c'],cols=['y','z'],set_orders=True)"], [None, "print d"], [None, "print d.RowOrder"], [None, "print d.ColOrder"], ["""The square() method will fill a Dict2D with necessary values to make it square""", "d = Dict2D({'a':{'a':1, 'b':2}, 'b':{'a':0}})"], [None, "print d"], [None, "d.square()"], [None, "print d"], ["""Optionally square() can fill in columns that exist in one row but not in others by passinging reset_order=True""", "d = Dict2D({'a':{'a':1, 'b':2}, 'b':{'c':0}})"], [None, "print d"], [None, "d.square(default=42, reset_order=True)"], [None, "print d"], ["""There are several built-in operations for working on matrices:""",None], ["""Setting up a Dict2D for examples""", "d = Dict2D({'a':{'a':1,'b':2,'c':3}, 'b':{'a':4, 'b':5, 'c':6}}, RowOrder=list('ab'), ColOrder=('abc'))"], [None, 'print d'], ["""setDiag() allows you to set the diagonal to a certain value""", "d.setDiag(val=99)"], [None,"print d"], ["""scale() allows for the application of a function to all elements in the Dict2D""", """def add_one(x): \treturn x + 1 d.scale(f=add_one)"""], [None,"print d"], ["""transpose() swaps all self[r][c] -> self[c][r]""", "d.transpose()"], [None,"print d"], ["""reflect() reflects items across the diagonal based on a function that is passed in. Several are defined and available to use, or you may define your own. In this example, largest is used, which sets self[r][c] and self[c][r] to the larger value of the two. Reflect only works if RowOrder and ColOrder exist and are equal. Items that don't lie within the scope of RowOrder and ColOrder will be ignored.""", "d.RowOrder=list('ab')"], [None, "d.reflect(method=largest)"], [None, "print d"], ["""All methods operate on the Dict2D object. If you wish to create a new object to work on leaving your original untouched you should use the copy() method which makes a deep copy of the Dict2D""", "d = Dict2D(data={'a':{'a':1, 'b':2}, 'b':{'a':5, 'b':6}})"], [None, "c = d.copy()"], [None, "c.setDiag(42)"], [None, "print c"], ["...and the original remains untouched", "print d"], ["""A Dict2D can be converted to a list of lists based on specified RowOrder and ColOrder. The list will be padded as called for in self.Pad, and will raise an error on missing values if self.Pad=False. Headers describing the row keys and col keys will be included if specified, but will not be by default""", "d = Dict2D(data={'a':{'a':1, 'b':2}, 'b':{'a':5, 'b':6}}, RowOrder=list('ab'), ColOrder=('ba'))"], [None, "print d.toLists(headers=True)"], ["""There are several ways to learn about the keys present in the Dict2D object""", "d = Dict2D(data={'a':{'a':1, 'b':2}, 'b':{'a':5, 'c':6}})"], ["Get the row keys", "print d.rowKeys()"], ["Get all existing column keys", "print d.colKeys()"], ["Get column keys that are shared between all rows", "print d.sharedColKeys()"], ["""Iterators exist for Rows, Cols, and Items. If Dict2D is sparse, an error will be raised if self.Pad == False, otherwise self.Default will be returned for missing elements.""", "d = Dict2D(data={'a':{'a':1, 'b':2}, 'b':{'a':5, 'c':6}}, Pad=True)"], [None, """for r in d.Rows: \tprint r """], [None,"""for c in d.Cols: \tprint c """], [None,"""for i in d.Items: \tprint i """], ["""There are several ways to select for Rows, Cols, and Items based on how they evaluate in an arbitrary boolean function. Setting up some functions and objects to analyze for example.""", """def is_zero(x): \treturn x == 0. """], [None,"""def sum_to_zero(l): \tsum = 0 \tfor i in l: \t\tsum += i \treturn sum == 0. """], [None,"""d = Dict2D({'a':{'a':1,'b':0,'c':-1},'b':{'a':0, 'b':3, 'c':42},'c':{'a':-1, 'b':9, 'c':-41}})"""], ["""Return indices of rows whose elements sum to zero""", "print d.getRowIndices(f=sum_to_zero)"], ["""Return rows whose elements sum to zero""", "print d.getRowsIf(f=sum_to_zero)"], ["""Return indices of columns whose elements sum to zero""", "print d.getColIndices(f=sum_to_zero)"], ["""Return columns whose elements sum to zero""", "print d.getColsIf(f=sum_to_zero)"], ["""Return indices of items which are zero.""", "print d.getItemIndices(f=is_zero)"], ["""Return items which are zero (silly example, but you get the idea)""", "print d.getItemsIf(f=is_zero)"], ["""You can also select specific rows, cols, or items, and create a NEW OBJECT with that data, for example""", "c = d.getRows(rows=['a','b'])"], [None,"print c"], ["Note original remains the same", "print d"], ["... same thing exists for cols", "c = d.getCols(cols=['b','c'])"], [None,"print c"], ["... and for items", "c = d.getItems(items=[('a','b'),('c','a')])"], [None,"print c"], ["""Additionally all of these selections methods have a negate parameter, which if passed in as True, returns data corresponding to a result of False when tested against f, for example:""", "print d.getRowIndices(f=sum_to_zero)"], [None,"print d.getRowIndices(f=sum_to_zero, negate=True)"], ["""Dict2D objects also define a method to write them out in delimited form, which is useful for storing data in a file which can later be read back into a Dict2D object. (You can additionally define Orders and turn headers off)""", "print d.toDelimited()"] ])
ba50c9c691ae34220377be54c213cb36dcf65adb
e1cf2d7eb9a475d078d78a398e5007630f0da1a7
/server.py
9df1ff32cf6f7bbb585112e599366f5a3d12331e
[]
no_license
saml/crosswodrs
beae5017420f4b365670fdd8c0eb57c6081c7fd1
51e3dcea9c2b28d2a0477cb05704cb5f345ee1f1
refs/heads/master
2020-04-19T04:04:48.614945
2014-01-10T18:52:42
2014-01-10T18:52:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
if __name__ == '__main__': from crosswords import app app.run(host='0.0.0.0',port=5001,debug=False)
d5c1b022a9c773143cb7addb3519ae552efc46cf
6c3e747e8e0d97789f54ad5292dd81fd0757a1b2
/manage.py
0705edb05cab36d859f486ab028c07e2df9e61a0
[]
no_license
tmclean/flask-by-example
1f21648e41ec30b9ff48a8b2e5f66bf2162d02a0
0c0503bd7918b0495023b8df94c52ffc0fa70235
refs/heads/master
2023-02-09T15:28:55.586485
2021-01-10T02:44:51
2021-01-10T02:44:51
328,291,357
0
0
null
null
null
null
UTF-8
Python
false
false
320
py
import os from flask_script import Manager from flask_migrate import Migrate, MigrateCommand from app import app, db app.config.from_object( os.environ['APP_SETTINGS'] ) migrate = Migrate( app, db ) manager = Manager( app ) manager.add_command( 'db', MigrateCommand ) if __name__ == '__main__': manager.run()
d1d43e025b167a92f9bd20f67cea4bea728a7028
116f28795a717f9ead7b0758eebccfe072c6894e
/Model/FutureSale.py
45b045bdcb92dbc38f7d84f94048d3d24e25537f
[]
no_license
KJKimCE/ESPP-Python
5941bf1a6cfb730866dc2e7b0db84eedaea0b309
199136080005f555f4ff575cc7c2820421bbf555
refs/heads/master
2023-01-24T10:06:39.653347
2020-12-11T04:51:48
2020-12-11T04:51:48
308,115,136
2
0
null
2020-11-23T07:45:07
2020-10-28T19:04:34
Python
UTF-8
Python
false
false
2,774
py
from Model.Regime import DisqualifyingShort, DisqualifyingLong, Qualifying from Model.Benefit import Benefit from Tools import Utils import heapq class FutureSale: regime = None date = None expectedReturn = None predictedPrice = None benefits = None regimes = None decision = None def __init__(self, model, taxBracket, currentSales, futureDate): self.benefits = [] self.regimes = [] self.date = futureDate self.expectedReturn = abs(self.date - model.today).days / 365.0 * .08 self.predictedPrice = model.currentPrice * (1 + self.expectedReturn) benefitIndex = 0 for regime in currentSales: if regime.dateFrom <= self.date < regime.dateTo: if regime.regimeType == 'Disqualifying Short': self.regime = DisqualifyingShort(model, taxBracket, self.predictedPrice) break elif regime.regimeType == 'Disqualifying Long': self.regime = DisqualifyingLong(model, taxBracket, self.predictedPrice) break elif regime.regimeType == 'Qualifying': self.regime = Qualifying(model, taxBracket, self.predictedPrice) break benefitIndex += 1 heapq.heappush(self.regimes, (-1 * self.regime.finalProceeds, self.regime.regimeType)) benefitIndex -= 1 while benefitIndex >= 0: benefit = Benefit(model, taxBracket, currentSales[benefitIndex], self) self.benefits.append(benefit) heapq.heappush(self.regimes, (-1 * benefit.finalProceeds, benefit.regimeType)) # self.regimes.append((benefit.difference, benefit.regimeType)) benefitIndex -= 1 self.decision = heapq.heappop(self.regimes)[1] def print(self): print(f"Future - {self.regime.regimeType}") print(f"Date: {self.date}") print(f"Expected Return: {'{:,.2f}'.format(self.expectedReturn * 100) + '%'}") print(f"Predicted Price: {Utils.formatCurrency(self.predictedPrice)}") print(f"Proceeds: {Utils.formatCurrency(self.regime.saleProceeds)}") print(f"Profit: {Utils.formatCurrency(self.regime.saleProfit)}") print(f"Income: {Utils.formatCurrency(self.regime.income)}") print(f"Short Term: {Utils.formatCurrency(self.regime.shortTerm)}") print(f"Long Term: {Utils.formatCurrency(self.regime.longTerm)}") print(f"Tax: {Utils.formatCurrency(self.regime.tax)}") print(f"Final Proceeds: {Utils.formatCurrency(self.regime.finalProceeds)}") print() for benefit in self.benefits: benefit.print() print(f"DECISION: {self.decision}") print()
aa866e7ee13cae23c3eba611617856ed3614b598
96c05a71c6f50ddbc1eb8b8ad0e83e8169dd3060
/simple_webapp.py
36d2e5fd0aeafb24f617fdb8ebe51957beef6ac3
[]
no_license
apheyhys/FlaskBerry
563c5d61e23dee713ef2de07e27c79dc7e1841d7
ceda5510e40d9236d71e7f0e3a72ffd2859898ba
refs/heads/master
2021-08-15T05:40:02.598312
2017-11-17T11:48:16
2017-11-17T11:48:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
773
py
from flask import Flask, session from checker import check_logged_in app = Flask(__name__) @app.route('/') def hello() -> str: return 'Hello from the simple webapp.' @app.route('/page1') @check_logged_in def page1() -> str: return 'This is page1.' @app.route('/page2') @check_logged_in def page2() -> str: return 'This is page2.' @app.route('/page3') @check_logged_in def page3() -> str: return 'This is page3.' @app.route('/login') def do_login() -> str: session['logged_in'] = True return 'You are now logged in.' @app.route('/logout') def do_logout() -> str: session.pop('logged_in') return 'You are now logged out.' app.secret_key = 'YouWillNeverGuessMySecretKey' if __name__ == '__main__': app.run(debug=False, port=5001)
b25f971ab860af42f04ab1c38fdedeeab5a7d550
5e6781dd3ea77c718a983c34fd8abc4af2b1090e
/bin/generate.py
0347af207f4c06469bef760f4c45bbfc61f2e5a6
[]
no_license
ajmirsky/appy
3ae41791aff3b6ec8b85fbdceb7b6369f5e4ebb8
24b2bde14f05d96e13765e3c5c7f3c62db6429c7
refs/heads/master
2016-09-05T12:30:10.031331
2011-09-02T07:59:49
2011-09-02T07:59:49
2,315,130
0
0
null
null
null
null
UTF-8
Python
false
false
6,359
py
'''This script allows to generate a product from a Appy application.''' # ------------------------------------------------------------------------------ import sys, os.path from optparse import OptionParser from appy.gen.generator import GeneratorError from appy.shared.utils import LinesCounter # ------------------------------------------------------------------------------ ERROR_CODE = 1 VALID_PRODUCT_TYPES = ('plone25', 'odt') APP_NOT_FOUND = 'Application not found at %s.' WRONG_NG_OF_ARGS = 'Wrong number of arguments.' WRONG_OUTPUT_FOLDER = 'Output folder not found. Please create it first.' PRODUCT_TYPE_ERROR = 'Wrong product type. Product type may be one of the ' \ 'following: %s' % str(VALID_PRODUCT_TYPES) C_OPTION = 'Removes from i18n files all labels that are not automatically ' \ 'generated from your gen-application. It can be useful during ' \ 'development, when you do lots of name changes (classes, ' \ 'attributes, states, transitions, etc): in this case, the Appy ' \ 'i18n label generation machinery produces lots of labels that ' \ 'then become obsolete.' S_OPTION = 'Sorts all i18n labels. If you use this option, among the ' \ 'generated i18n files, you will find first all labels ' \ 'that are automatically generated by appy.gen, in some logical ' \ 'order (ie: field-related labels appear together, in the order ' \ 'they are declared in the gen-class). Then, if you have added ' \ 'labels manually, they will appear afterwards. Sorting labels ' \ 'may not be desired under development. Indeed, when no sorting ' \ 'occurs, every time you add or modify a field, class, state, etc, ' \ 'newly generated labels will all appear together at the end of ' \ 'the file; so it will be easy to translate them all. When sorting ' \ 'occurs, those elements may be spread at different places in the ' \ 'i18n file. When the development is finished, it may be a good ' \ 'idea to sort the labels to get a clean and logically ordered ' \ 'set of translation files.' class GeneratorScript: '''usage: %prog [options] app productType outputFolder "app" is the path to your Appy application, which may be a Python module (= a file than ends with .py) or a Python package (= a folder containing a file named __init__.py). Your app may reside anywhere (but it needs to be accessible by the underlying application server, ie Zope), excepted within the generated product. Typically, if you generate a Plone product, it may reside within <yourZopeInstance>/lib/python, but not within the generated product (typically stored in <yourZopeInstance>/Products). "productType" is the kind of product you want to generate (currently, only "plone25" and 'odt' are supported; in the near future, the "plone25" target will also produce Plone 3-compliant code that will still work with Plone 2.5). "outputFolder" is the folder where the product will be generated. For example, if you specify /my/output/folder for your application /home/gde/MyApp.py, this script will create a folder /my/output/folder/MyApp and put in it the generated product. Example: generating a Plone product ----------------------------------- In your Zope instance named myZopeInstance, create a folder "myZopeInstance/lib/python/MyApp". Create into it your Appy application (we suppose here that it is a Python package, containing a __init__.py file and other files). Then, chdir into this folder and type "python <appyPath>/gen/generator.py . plone25 ../../../Products" and the product will be generated in myZopeInstance/Products/MyApp. "python" must refer to a Python interpreter that knows package appy.''' def generateProduct(self, options, application, productType, outputFolder): exec 'from appy.gen.%s.generator import Generator' % productType Generator(application, outputFolder, options).run() def manageArgs(self, parser, options, args): # Check number of args if len(args) != 3: print WRONG_NG_OF_ARGS parser.print_help() sys.exit(ERROR_CODE) # Check productType if args[1] not in VALID_PRODUCT_TYPES: print PRODUCT_TYPE_ERROR sys.exit(ERROR_CODE) # Check existence of application if not os.path.exists(args[0]): print APP_NOT_FOUND % args[0] sys.exit(ERROR_CODE) # Check existence of outputFolder basic type if not os.path.exists(args[2]): print WRONG_OUTPUT_FOLDER sys.exit(ERROR_CODE) # Convert all paths in absolute paths for i in (0,2): args[i] = os.path.abspath(args[i]) def run(self): optParser = OptionParser(usage=GeneratorScript.__doc__) optParser.add_option("-c", "--i18n-clean", action='store_true', dest='i18nClean', default=False, help=C_OPTION) optParser.add_option("-s", "--i18n-sort", action='store_true', dest='i18nSort', default=False, help=S_OPTION) (options, args) = optParser.parse_args() try: self.manageArgs(optParser, options, args) print 'Generating %s product in %s...' % (args[1], args[2]) self.generateProduct(options, *args) # Give the user some statistics about its code LinesCounter(args[0]).run() except GeneratorError, ge: sys.stderr.write(str(ge)) sys.stderr.write('\n') optParser.print_help() sys.exit(ERROR_CODE) # ------------------------------------------------------------------------------ if __name__ == '__main__': GeneratorScript().run() # ------------------------------------------------------------------------------
801fa55840a488244b220d5d91cce882341e68b7
a6fe8aeaa30a22b65d98a2bb360b6d761a2e17fc
/venv/lib/python2.7/site-packages/kubernetes/client/models/v1_network_policy_list.py
710fbf0a942cfbfaac48d8a60676112b85e12b70
[ "MIT" ]
permissive
784134748/kubernetes-install
54a2a8e83e2f47f2064270649725899282b7b244
5df59632c2619632e422948b667fb68eab9ff5be
refs/heads/master
2022-12-15T13:52:43.486633
2019-03-27T13:01:06
2019-03-27T13:01:06
176,937,818
0
0
MIT
2022-05-25T01:56:18
2019-03-21T12:13:41
Python
UTF-8
Python
false
false
6,560
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.12.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1NetworkPolicyList(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'items': 'list[V1NetworkPolicy]', 'kind': 'str', 'metadata': 'V1ListMeta' } attribute_map = { 'api_version': 'apiVersion', 'items': 'items', 'kind': 'kind', 'metadata': 'metadata' } def __init__(self, api_version=None, items=None, kind=None, metadata=None): """ V1NetworkPolicyList - a model defined in Swagger """ self._api_version = None self._items = None self._kind = None self._metadata = None self.discriminator = None if api_version is not None: self.api_version = api_version self.items = items if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata @property def api_version(self): """ Gets the api_version of this V1NetworkPolicyList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :return: The api_version of this V1NetworkPolicyList. :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """ Sets the api_version of this V1NetworkPolicyList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :param api_version: The api_version of this V1NetworkPolicyList. :type: str """ self._api_version = api_version @property def items(self): """ Gets the items of this V1NetworkPolicyList. Items is a list of schema objects. :return: The items of this V1NetworkPolicyList. :rtype: list[V1NetworkPolicy] """ return self._items @items.setter def items(self, items): """ Sets the items of this V1NetworkPolicyList. Items is a list of schema objects. :param items: The items of this V1NetworkPolicyList. :type: list[V1NetworkPolicy] """ if items is None: raise ValueError("Invalid value for `items`, must not be `None`") self._items = items @property def kind(self): """ Gets the kind of this V1NetworkPolicyList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The kind of this V1NetworkPolicyList. :rtype: str """ return self._kind @kind.setter def kind(self, kind): """ Sets the kind of this V1NetworkPolicyList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param kind: The kind of this V1NetworkPolicyList. :type: str """ self._kind = kind @property def metadata(self): """ Gets the metadata of this V1NetworkPolicyList. Standard list metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata :return: The metadata of this V1NetworkPolicyList. :rtype: V1ListMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """ Sets the metadata of this V1NetworkPolicyList. Standard list metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata :param metadata: The metadata of this V1NetworkPolicyList. :type: V1ListMeta """ self._metadata = metadata def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1NetworkPolicyList): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
b371c6adb1b7f2e01b0565c36cd021eda72e8d90
f0922c2bf70af17fcade0f857c9bf834bd294a9f
/model/model/settings.py
cfcb2d107cea5f9a5812971c42428261b23c1d9f
[]
no_license
Vaibhavraj-nath-chauhan/Django-Basic
f994d1180b789a3728ed4b018408fef8d26c352c
fa74e25aba00546cb19a72cf306a371510b85497
refs/heads/main
2023-02-04T04:21:37.261943
2020-12-23T05:31:26
2020-12-23T05:31:26
323,810,794
0
0
null
null
null
null
UTF-8
Python
false
false
3,081
py
""" Django settings for model project. Generated by 'django-admin startproject' using Django 3.1.4. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '*l^8(0uuvbjfb89872i6-ka7n1pd(p0q^mah6v&9+5z0p4_p71' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', "music", ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'model.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'model.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Kolkata' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
c4408cc0bd8a882f7da921f174d7c3c1ee877558
3e0d6a208afc1d2ee186c553c7c97f261eeee36d
/keras-ensemble.py
b392f966a672a995bda502e60ac910118d801ae0
[]
no_license
andrewszwec/realestate-v004
0cdfc99ee57f4dfeef13d911b447f624bdfc8179
d5ad8c129b298d93f7bfdd9516909a61591ac01e
refs/heads/master
2021-06-20T16:17:13.977967
2017-06-24T09:48:58
2017-06-24T09:48:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
model1 = sequential() model1.compile() model1.fit() model2 = sequential() model2.compile() model2.fit() model3 = sequential() model3.compile() model3.fit() prob1 = model1.predict_prob() prob2 = model2.predict_prob() prob3 = model3.predict_prob() final_prob = (prob1 + prob2 + prob3)/3
4b665756cfecba34a72ea4c1c191b5f2a5cf9bef
f4f657b7167b63b38a5d63af1d6495fc3d791f2d
/server.py
36ea711fb3e0a9b230f0ff63dbdd19d10c65ffea
[]
no_license
harshitsinghai77/platypus-socketio-server
821d8cd7e1ea072a91aea0e15acb2099f863246a
02205556ee70acc65d2f8e80a9d2daa3f222a3c7
refs/heads/master
2023-08-01T02:01:14.026951
2021-09-21T16:04:30
2021-09-21T16:04:30
408,876,998
0
0
null
null
null
null
UTF-8
Python
false
false
1,402
py
import logging import socketio import uvicorn from uvicorn.loops.uvloop import uvloop_setup from socketio.exceptions import ConnectionRefusedError # Set some basic logging logging.basicConfig( level=2, format="%(asctime)-15s %(levelname)-8s %(message)s" ) sio = socketio.AsyncServer(async_mode='asgi', cors_allowed_origins='*' ) app = socketio.ASGIApp(sio) @sio.event async def connect(sid, environ, auth): logging.info(f"connect {sid}") # raise ConnectionRefusedError('authentication failed') @sio.event async def disconnect(sid): logging.info(f'disconnect {sid}') async def send_message_to_client(): await sio.emit('my message to harshit', { 'data': 'Hello world from server' }) async def background_task_1(): while True: await sio.emit('my message to harshit', { 'data': 'Hello world from server' }) await sio.sleep(2) @sio.event async def send_changes(sid, data): # print("message ", data) await sio.emit('recieve_changes', data) @sio.on("message_from_client") async def message_from_client(sid, data): print(data) await sio.sleep(2) sio.start_background_task(background_task_1) @sio.event async def another_event(sid, data): print('sid: ', sid) print('data: ', data) return "Something just like this" if __name__ == '__main__': uvicorn.run(app, host='127.0.0.1', port=5000)
abad02fd73eba9b1bae8a6b5e1278161f56a046a
056a41657db9a6cc00475e2b1339edd834067a70
/glitter/assets/migrations/0001_initial.py
74e08286444cbeecd7bb8e28500639e1ead5014e
[ "BSD-3-Clause" ]
permissive
developersociety/django-glitter
83f17160a19f632572b4364653df3f3816876fe5
b9b0a3d8b49d5d9b840656f84564ba0a6e016f98
refs/heads/master
2023-04-14T16:58:14.765895
2020-01-07T14:46:17
2020-01-07T14:46:17
42,167,612
3
1
BSD-3-Clause
2020-01-07T16:26:56
2015-09-09T08:59:19
Python
UTF-8
Python
false
false
3,199
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='File', fields=[ ('id', models.AutoField(serialize=False, primary_key=True, verbose_name='ID', auto_created=True)), ('title', models.CharField(db_index=True, max_length=100)), ('file', models.FileField(upload_to='assets/file')), ('file_size', models.PositiveIntegerField(default=0, editable=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ], options={ 'abstract': False, 'ordering': ('-created_at', '-modified_at', 'title'), }, ), migrations.CreateModel( name='FileCategory', fields=[ ('id', models.AutoField(serialize=False, primary_key=True, verbose_name='ID', auto_created=True)), ('title', models.CharField(unique=True, max_length=100)), ], options={ 'verbose_name_plural': 'file categories', 'abstract': False, 'ordering': ('title',), }, ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(serialize=False, primary_key=True, verbose_name='ID', auto_created=True)), ('title', models.CharField(db_index=True, max_length=100)), ('file', models.ImageField(width_field='image_width', upload_to='assets/image', verbose_name='Image', height_field='image_height')), ('image_height', models.PositiveIntegerField(editable=False)), ('image_width', models.PositiveIntegerField(editable=False)), ('file_size', models.PositiveIntegerField(default=0, editable=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ], options={ 'abstract': False, 'ordering': ('-created_at', '-modified_at', 'title'), }, ), migrations.CreateModel( name='ImageCategory', fields=[ ('id', models.AutoField(serialize=False, primary_key=True, verbose_name='ID', auto_created=True)), ('title', models.CharField(unique=True, max_length=100)), ], options={ 'verbose_name_plural': 'image categories', 'abstract': False, 'ordering': ('title',), }, ), migrations.AddField( model_name='image', name='category', field=models.ForeignKey(to='glitter_assets.ImageCategory'), ), migrations.AddField( model_name='file', name='category', field=models.ForeignKey(to='glitter_assets.FileCategory'), ), ]
ec1c5ba1eb51f7891f4b274f9671d5a2804dc5a7
bf97e65650967281a3181a107994a9e02e269f6b
/main.py
b61dbe172cc1fa4853f207f84c63c3425c138456
[]
no_license
ta21cos/luna-lang
7e8566f73a2b842170c5a2ad65480b00cfa114cd
975483d7fe9fb961da0ccffa77c84ad9545f4699
refs/heads/master
2020-04-11T07:17:31.091780
2018-12-13T08:26:35
2018-12-13T08:26:35
161,606,310
2
0
null
null
null
null
UTF-8
Python
false
false
3,175
py
import sys from converter import Inst, convert_bf_to_instruction, convert_luna_to_brainfxck class Pointer: def __init__(self): self.__p = 0 def inc(self): self.__p += 1 def dec(self): self.__p -= 1 # 負になるかも def set(self, v): self.__p = v def __call__(self): return self.__p class Interpreter: def __init__(self): self.memory = [0 for _ in range(100)] def inc(self, p): self.memory[p()] += 1 def dec(self, p): self.memory[p()] -= 1 def out(self, p): return self.memory[p()] def inp(self, p, v): self.memory[p()] = v def jmpifz(self, p, insts, a): if self.memory[p()] == 0: _i = self.next_ret_index(insts, a) a.set(_i) def retifnz(self, p, insts, a): if self.memory[p()] != 0: _i = self.prev_jmp_index(insts, a) a.set(_i) def next_ret_index(self, insts, a): count = 0 # for nest for i in range(a()+1, len(insts)): if insts[i] == Inst.JMPIFZ: count += 1 elif insts[i] == Inst.RETIFNZ: if count == 0: return i else: count -= 1 print('could not jump') return len(insts) def prev_jmp_index(self, insts, a): count = 0 for i in range(0, a()-1)[::-1]: if insts[i] == Inst.RETIFNZ: count += 1 if insts[i] == Inst.JMPIFZ: if count == 0: return i else: count -= 1 print('could not return') return len(insts) execute_dict = { Inst.INCP: lambda intp, p, insts, a: p.inc(), Inst.DECP: lambda intp, p, insts, a: p.dec(), Inst.INCV: lambda intp, p, insts, a: intp.inc(p), Inst.DECV: lambda intp, p, insts, a: intp.dec(p), Inst.OUTV: lambda intp, p, insts, a: print(chr(intp.out(p)), end=''), Inst.INPV: lambda intp, p, insts, a: intp.inp(p, ord(input())), Inst.JMPIFZ: lambda intp, p, insts, a: intp.jmpifz(p, insts, a), Inst.RETIFNZ: lambda intp, p, insts, a: intp.retifnz(p, insts, a) } def execute(instructions): addr = Pointer() # 現在実行している命令を示すポインタ,ほぼ同じデータ構造なので流用 p = Pointer() # 現在参照しているメモリを表すデータポインタ interpreter = Interpreter() while addr() < len(instructions): try: execution = execute_dict[instructions[addr()]] execution(interpreter, p, instructions, addr) addr.inc() except: print("Could not execute", sys.exc_info()) break print() return def main(filename): with open(filename) as f: input_luna = f.read() instructions = convert_luna_to_brainfxck(input_luna) execute(instructions) # python interpreter.py luna.txtのように実行 if __name__ == '__main__': if len(sys.argv) < 2: print('Filename is not found.') exit() filename = sys.argv[1] main(filename)
bb7eaa310edf715bfe4281cd05da97a576af80ef
323f6a9078653e63c6bd9f83177c6e2689b40e0e
/scripts/merge_logs.py
edd05a2c1a44bc50a9e2e6c409463d6da0b0bc10
[]
no_license
kux/dev-env
99a43bcb0c91950b258b234516aa61c84206ac8c
9009fe08763161f3a3ef139c46233e6af60f9db8
refs/heads/master
2021-01-25T03:40:31.232930
2016-09-15T01:11:20
2016-09-15T01:11:20
22,931,375
0
0
null
null
null
null
UTF-8
Python
false
false
4,210
py
import copy import datetime import os import re import sys import time APACHE_TIMESTAMP_REGEX = re.compile(r'\[(\d\d)/(\w\w\w)/(\d\d\d\d):(\d\d):(\d\d):(\d\d) -\d*\]') MONTHS = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6, 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Nov': 10, 'Oct': 11, 'Dec': 12} def _get_timestamp_from_log_line(line): match = re.search(APACHE_TIMESTAMP_REGEX, line) if match: day, month, year, hour, mn, sec = match.groups() return datetime.datetime(int(year), MONTHS[month], int(day), int(hour), int(mn), int(sec)) else: raise ValueError("Line %s doesn't contian a timestamp in expected format" % line) def _skip_empty_logs(current_lines, fds): indexes_to_remove = set() for index, line in enumerate(current_lines[:]): if line == '': indexes_to_remove.add(index) current_lines[:] = [ln for (i, ln) in enumerate(current_lines) if i not in indexes_to_remove] fds[:] = [fd for (i, fd) in enumerate(fds) if i not in indexes_to_remove] def _nway_merge(logs, merged_log, burst_regex, burst_delta=5): fds = [open(log) for log in logs] fds_copy = copy.copy(fds) merged_fd = open(merged_log, 'w') burst_log_fd = open(merged_log + '.burst', 'w') prev_burst = 0 prev_burst_line = '' prev_is_written = False try: current_lines = [fd.readline() for fd in fds] _skip_empty_logs(current_lines, fds) timestamps = [_get_timestamp_from_log_line(ln) for ln in current_lines] while fds: assert len(timestamps) == len(current_lines) == len(fds) min_timestamp = min(timestamps) min_index = timestamps.index(min_timestamp) line_to_write = current_lines[min_index] merged_fd.write(line_to_write) matches_burst_regex = re.search(burst_regex, line_to_write) is not None if matches_burst_regex: burst_time = time.mktime(min_timestamp.timetuple()) if burst_time < prev_burst + burst_delta: if not prev_is_written: burst_log_fd.write('\n--- new burst ---\n') burst_log_fd.write(prev_burst_line) burst_log_fd.write(line_to_write) prev_is_written = True else: prev_is_written = False prev_burst = burst_time prev_burst_line = line_to_write new_line = fds[min_index].readline() if new_line != '': current_lines[min_index] = new_line timestamps[min_index] = _get_timestamp_from_log_line(new_line) else: del current_lines[min_index] del fds[min_index] del timestamps[min_index] finally: for fd in fds_copy: fd.close() merged_fd.close() burst_log_fd.close() def merge_logs(logs_dir, burst_regex, burst_delta): log_files = os.listdir(logs_dir) logs_by_day = {} log_regex = r'(?:(\w*)_)?(access|error)\.log(?:\.(\d+))?\.(\w[a-zA-Z0-9\-]+)' for log_file in log_files: match = re.search(log_regex, log_file) if match: vhost, log_type, day, host = match.groups() if host == 'burst': continue logs_by_day.setdefault((vhost, log_type, day), []).append(os.path.join(logs_dir, log_file)) for details, logs in logs_by_day.iteritems(): vhost, log_type, day = details aggregated_log = '%s.log' % log_type if vhost: aggregated_log = '%s_%s' % (vhost, aggregated_log) if day: aggregated_log = '%s.%s' % (aggregated_log, day) aggregated_log = os.path.join(logs_dir, aggregated_log) _nway_merge(logs, aggregated_log, burst_regex, burst_delta) if __name__ == '__main__': if len(sys.argv) != 4: print 'Usage: python merge_logs.py logs_dir burst_regex burst_delta' sys.exit(1) _, logs_dir, burst_regex, burst_delta = sys.argv burst_regex = re.compile(burst_regex) merge_logs(logs_dir, burst_regex, int(burst_delta))
986e0eec3c38aa11a451675f610d62ea2f425201
b651947d36ae5b190f63ea9e7dc05cccd5ba7e83
/bot/parsing.py
18cb82cd8876ef36643fffe17f25d930e2b0354c
[ "MIT" ]
permissive
andrewmaximoff/Schedule-Bot
733a910904dd2ddcba2d74fc87c6af6c5f295e28
59dcb3fcf04ef547a44da369021e825c5f75921a
refs/heads/master
2022-12-10T15:04:13.063306
2018-04-20T09:53:30
2018-04-20T09:59:16
130,342,287
1
0
MIT
2022-12-08T00:57:14
2018-04-20T09:41:25
Python
UTF-8
Python
false
false
1,678
py
import re import requests import pendulum from bs4 import BeautifulSoup def _exams(group_name): """""" r_json = requests.get( 'https://api.rozklad.org.ua/v2/groups/{}'.format(group_name)).json() group_url = r_json['data']['group_url'].rsplit('g=', 1) html_text = requests.get( 'http://rozklad.kpi.ua/Schedules/ViewSessionSchedule.aspx?g={}'.format(group_url[1])).text soup = BeautifulSoup(html_text, 'lxml') exams_list = soup.findAll('tr') number_exams = len(exams_list) exams = [] result_l = [] for i in range(number_exams): soup_2 = BeautifulSoup(str(exams_list[i]), 'lxml') if not soup_2.findAll('a'): continue exam = [] date_list = str(soup_2.find('td').text).split('/') time_exam = re.findall(r'\d\d:\d\d', str( soup_2.findAll('td')[1]))[0].split(':') date_exam = pendulum.create(year=int(date_list[2]), month=int(date_list[0]), day=int(date_list[1]), hour=int(time_exam[0]), minute=int(time_exam[1]), tz='Europe/Kiev') date = date_exam.format( 'dddd D MMMM YYYY о HH:mm', formatter='alternative', locale='uk').capitalize() for j in soup_2.findAll('a'): exam.append(str(j.text)) exam.append(date) exams.append(exam) for i in exams: result_l.append( '*{}* `{}`\n{}\n{}'.format(i[0], i[2], i[1], i[3])) result = '\n'.join(result_l) if result: return result else: return 'Дата экзаменов ещё неизвестна, спи спокойно :)'
017f8e8a008c7776d18c53f850cc4000f42f9981
50dd2a43daa8316fc11e0c176b5872738fcc5dde
/Learning/080_Send_more_money/smm.py
f810119d76ad911c83aa4df522952226bb7b069d
[]
no_license
FrenchBear/Python
58204d368e3e72071eef298ff00d06ff51bd7914
b41ab4b6a59ee9e145ef2cd887a5fe306973962b
refs/heads/master
2023-08-31T18:43:37.792427
2023-08-26T15:53:20
2023-08-26T15:53:20
124,466,047
0
0
null
null
null
null
UTF-8
Python
false
false
1,201
py
# send+more=money puzzle # 2021-03-10 PV # Brute force is acceptable here, only ~10! evals of the calc formula, acceptable # 9 5 6 7 + 1 0 8 5 = 1 0 6 5 2 for s in range(0, 10): for e in range(0, 10): if e != s: for n in range(0, 10): if n not in (s, e): for d in range(0, 10): if d not in (s, e, n): for m in range(1, 10): if m not in (s, e, n, d): for o in range(0, 10): if o not in (s, e, n, d, m): for r in range(0, 10): if r not in (s, e, n, d, m, o): for y in range(0, 10): if y not in (s, e, n, d, m, o, r): if s*1000+e*100+n*10+d+m*1000+o*100+r*10+e == m*10000+o*1000+n*100+e*10+y: print(s, e, n, d, ' + ', m, o, r, e, ' = ', m, o, n, e, y)
5877e3f3a02c8ba15ac1068debe5982a735d288d
881369ae601208e19608067f75527d71174ee9c5
/CH7P9.py
259cee70f68b47d50c7c626ab4b7f50c81dc4417
[]
no_license
ozmaws/Chapter-7
dc3c958876b4d49e3d2b1805debda1975ebaac2e
05358bed4cc010cafcaa40e59f6f1d882b67ffe0
refs/heads/master
2022-04-25T07:46:23.073206
2020-04-27T18:59:37
2020-04-27T18:59:37
259,424,922
0
0
null
null
null
null
UTF-8
Python
false
false
1,502
py
from images import Image def lighten(image, value): for y in range(image.getHeight()): for x in range(image.getWidth()): (r, g, b) = image.getPixel(x, y) r = r + value if r > 255: r = 255 g = g + value if g > 255: g = 255 b = b + value if b > 255: b = 255 image.setPixel(x, y, (r, g, b)) def darken(image, value): for y in range(image.getHeight()): for x in range(image.getWidth()): (r, g, b) = image.getPixel(x, y) r = r - value if r < 0: r = 0 g = g - value if g < 0: g = 0 b = b - value if b < 0: b = 0 image.setPixel(x, y, (r, g, b)) def colorFilter(image, cFilter): for y in range(image.getHeight()): for x in range(image.getWidth()): (r, g, b) = image.getPixel(x, y) (adjustedRed, adjustedGreen, adjustedBlue) = cFilter r = r + adjustedRed if r > 255: r = 255 elif r < 0: r = 0 g = g + adjustedGreen if g > 255: g = 255 elif g < 0: g = 0 b = b + adjustedBlue if b > 255: b = 255 elif b < 0: b = 0 image.setPixel(x, y, (r, g, b)) def main(filename = "example.gif"): image = Image(filename) print("Close to continue.") image.draw() colorFilter(image, (0, -100, 0)) print("Close window to quit.") image.draw() if __name__ == "__main__": main()
91e061654c76195b0f182c4aca38252914464bcb
6421489894e389d3d7d32fa276dabafa50772208
/app.py
0a30cbb4a977b74fbe7436e7cb943907c53a4f57
[]
no_license
Jardix/Jareds_Survey1
ab77448d3a3275a9712cc3719dc3e9b9311a0425
af5b073b86da0eeb9ebe9ffb0ad51f896f840191
refs/heads/main
2023-07-10T03:45:27.405309
2021-08-12T20:19:33
2021-08-12T20:19:33
395,434,592
0
0
null
null
null
null
UTF-8
Python
false
false
2,281
py
from flask import Flask, request, render_template, redirect, flash, session from flask_debugtoolbar import DebugToolbarExtension from surveys import satisfaction_survey as survey # key names will use to store some things in the session; # put here as constants so we're guaranteed to be consistent in # our spelling of these RESPONSES_KEY = "responses" app = Flask(__name__) app.config['SECRET_KEY'] = "never-tell!" app.config['DEBUG_TB_INTERCEPT_REDIRECTS'] = False debug = DebugToolbarExtension(app) @app.route("/") def show_survey_start(): """Select a survey.""" return render_template("survey_start.html", survey=survey) @app.route("/begin", methods=["POST"]) def start_survey(): """ Clear the session of responses.""" session[RESPONSES_KEY] = [] return redirect("/questions/0") @app.route("/answer", methods=["POST"]) def handle_question(): """Save responses and redirect to next question.""" #get the response choice choice = request.form['answer'] # add this response to the question responses = session[RESPONSES_KEY] responses.append(choice) session[RESPONSES_KEY] = responses if (len(responses) == len(survey.questions)): # User has answered all questions return redirect("/complete") else: return redirect(f"/questions/{len(responses)}") @app.route("/questions/<int:qid>") def show_questions(qid): """Display current question""" responses = session.get(RESPONSES_KEY) if (responses is None): # Trying to access question page too soon return redirect("/") if (len(responses) == len(survey.questions)): #They've answered all the questions, thank them. return redirect("/complete") if (len(responses) != qid): # Trying to access questions out of order. flash(f"Invalid Question Id: {qid}.") return redirect(f"/questions/{len(responses)}") question = survey.questions[qid] return render_template("question.html", question_num=qid, question=question) @app.route("/complete") def complete(): """Survey complete. Show completion page. Award cookie.""" return render_template("completion.html")
c8a135a13369285e7b7c9872324986de82fc5ce7
493b19d44a6f7f5e664d59267f4041d7e6370492
/coir/test_single_image.py
ad567dec1aae9540d0c5c8128306be555cc3f49a
[ "MIT" ]
permissive
OmarHamdoun/Yolo-on-vedai
41eb2514ed6c189b61a5be64ce9dd58317d7e3bb
0c055870f29537abed0d5b92f733a7a5f90c8245
refs/heads/master
2020-05-20T03:28:52.958217
2019-02-10T22:06:23
2019-02-10T22:06:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,930
py
# coding: utf-8 from __future__ import division, print_function import tensorflow as tf import numpy as np import argparse import cv2 import time from modelcoir import yolov3 import sys sys.path[:0] = ['../'] from utils.misc_utils import parse_anchors, read_class_names from utils.nms_utils import gpu_nms from utils.plot_utils import get_color_table, plot_one_box gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) parser = argparse.ArgumentParser(description="YOLO-V3 test single image test procedure.") parser.add_argument("--input_image_ir", type=str, default = '../data/ir512/00001270_ir.png', help="The path of the ir input image.") parser.add_argument("--input_image_co", type=str, default = '../data/visible512/00001270_co.png', help="The path of the co input image.") parser.add_argument("--anchor_path", type=str, default="../data/yolo_anchors.txt", help="The path of the anchor txt file.") parser.add_argument("--new_size", nargs='*', type=int, default=[512, 512], help="Resize the input image with `new_size`, size format: [width, height]") parser.add_argument("--class_name_path", type=str, default="../data/vedai.names", help="The path of the class names.") parser.add_argument("--checkpoint_dir", type=str, default="./checkpoint/", help="The path of the weights to restore.") args = parser.parse_args() args.anchors = parse_anchors(args.anchor_path) args.classes = read_class_names(args.class_name_path) args.num_class = len(args.classes) color_table = get_color_table(args.num_class) img_co = cv2.imread(args.input_image_co) img_ori = cv2.imread(args.input_image_ir) height_ori, width_ori = img_ori.shape[:2] img_ir = cv2.resize(img_ori, tuple(args.new_size)) img_co = cv2.resize(img_co, tuple(args.new_size)) img_ir = cv2.cvtColor(img_ir, cv2.COLOR_BGR2RGB) img_co = cv2.cvtColor(img_co, cv2.COLOR_BGR2RGB) img_ir = np.asarray(img_ir, np.float32) img_co = np.asarray(img_co, np.float32) img_ir = img_ir[np.newaxis, :] / 255. img_co = img_co[np.newaxis, :] / 255. restore_path = tf.train.latest_checkpoint(args.checkpoint_dir) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: input_data_ir = tf.placeholder(tf.float32, [1, args.new_size[1], args.new_size[0], 3], name='input_data_ir') input_data_co = tf.placeholder(tf.float32, [1, args.new_size[1], args.new_size[0], 3], name='input_data_co') yolo_model = yolov3(args.num_class, args.anchors) with tf.variable_scope('yolov3'): pred_feature_maps = yolo_model.forward(input_data_ir, input_data_co, False) pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps) pred_scores = pred_confs * pred_probs boxes, scores, labels = gpu_nms(pred_boxes, pred_scores, args.num_class, max_boxes=30, score_thresh=0.4, iou_thresh=0.5) saver = tf.train.Saver() saver.restore(sess, restore_path) start = time.time() boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data_ir: img_ir, input_data_co: img_co}) print(time.time()-start) # rescale the coordinates to the original image boxes_[:, 0] *= (width_ori/float(args.new_size[0])) boxes_[:, 2] *= (width_ori/float(args.new_size[0])) boxes_[:, 1] *= (height_ori/float(args.new_size[1])) boxes_[:, 3] *= (height_ori/float(args.new_size[1])) print("box coords:") print(boxes_) print('*' * 30) print("scores:") print(scores_) print('*' * 30) print("labels:") print(labels_) for i in range(len(boxes_)): x0, y0, x1, y1 = boxes_[i] plot_one_box(img_ori, [x0, y0, x1, y1], label=args.classes[labels_[i]], color=color_table[labels_[i]]) cv2.imshow('Detection result', img_ori) cv2.imwrite('detection_result.jpg', img_ori) cv2.waitKey(10000)
2ffe9bd07b23131856aee4d0358d667d3db33aee
154b2ee78e764f800de199dda70d4dfde9e1b7e7
/checkfile.py
50e592d53b5a5f6fb190a9617cccd50752b3d39b
[]
no_license
AkashPatel1/PUBG_kaggle
bb904b293d9ca9256ecd91238a79762a40ec7663
0e8ea89c6ec7b3b0cf7d1bdc5f606d305c947293
refs/heads/master
2020-04-07T05:37:05.288138
2018-11-18T16:25:02
2018-11-18T16:25:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,112
py
import numpy as np import pandas as pd import os # Any results you write to the current directory are saved as output. dataset = pd.read_csv("train_V2.csv") dataset.drop(['matchType'],axis=1,inplace=True) pd.DataFrame(dataset).fillna(0, inplace=True) X_train = dataset.iloc[:1000, 3:27].values y_train = dataset.iloc[:1000, 27].values dataset1 = pd.read_csv("test_V2.csv") dataset1.drop(['matchType'],axis=1,inplace=True) pd.DataFrame(dataset1).fillna(0, inplace=True) ID = dataset1.iloc[:, 0:1].values X_test = dataset1.iloc[:, 3:].values from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators=20, random_state=0) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) ID = ID.reshape(-1) fmt='%s, %.8f' combined = np.vstack((ID, y_pred)).T np.savetxt("submission_V2.csv", combined, header="Id,winPlacePerc", delimiter=",",fmt=fmt,comments='')
e074c3726081150a53af76e76343370280b5ed44
bbb9a0a9e68c6da6aa72ac9ceecdcbf97a392788
/job4/db2.py
e4061196f7b75d0a9c7482ef9870621c4778ce56
[]
no_license
sskp9999/testing
9b4adf242c13b91c99a52c95a220b96260fe41ea
eb0415024fa442950d005617a06d4ba8188f3114
refs/heads/master
2023-08-25T20:18:19.137177
2021-10-19T07:03:25
2021-10-19T07:03:25
417,916,413
0
1
null
null
null
null
UTF-8
Python
false
false
3,911
py
import requests import json instance_id = '1871036088967188.8.gcp.databricks.com' api_version = '/api/2.0' job_name = 'Sample2_schedule' project_id = "zebra-cicd-327507" secret_id = "brick-sec-1" version_id = 1 def access_secret_version(project_id, secret_id, version_id): """ Access the payload for the given secret version if one exists. The version can be a version number as a string (e.g. "5") or an alias (e.g. "latest"). """ # Import the Secret Manager client library. from google.cloud import secretmanager import json # Create the Secret Manager client. client = secretmanager.SecretManagerServiceClient() # Build the resource name of the secret version. name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" # Access the secret version. response = client.access_secret_version(request={"name": name}) # Print the secret payload. # # WARNING: Do not print the secret in a production environment - this # snippet is showing how to access the secret material. pd = response.payload.data.decode("UTF-8") return json.loads(pd) def create_job(): api_command = '/jobs/create' url = f"https://{instance_id}{api_version}{api_command}" acc_token=access_secret_version(project_id, secret_id, version_id) response = requests.post(url, auth=(acc_token["login"], acc_token['password']), data = open('./create_job.json', 'rb')) print(json.dumps(json.loads(response.text), indent = 2)) def reset_job(): api_command = '/jobs/reset' url = f"https://{instance_id}{api_version}{api_command}" acc_token=access_secret_version(project_id, secret_id, version_id) response = requests.post(url, auth=(acc_token["login"], acc_token['password']), data = open('./create_job.json', 'rb')) print(json.dumps(json.loads(response.text), indent = 2)) def list_job(): api_command = '/jobs/list' url = f"https://{instance_id}{api_version}{api_command}" acc_token=access_secret_version(project_id, secret_id, version_id) response = requests.get(url, auth=(acc_token["login"], acc_token['password'])) # response = requests.get(url = url, headers={'Authorization': 'token apia2c2b104501763ff04b111938b261297'}) #a=json.loads(response.text) #print(type(a)) a=json.dumps(json.loads(response.text), indent = 2) print(a) if a == '{}': return False elif a != "{}": b=json.loads(a) f=[] for i in b['jobs']: f.append(i['settings']['name']) print("these jobs are exist", f) if job_name in f: job=True else: job=False return job else: return False def main(): status=list_job() if status == True: # reset_job() pass else: create_job() def get_job(): api_command = '/jobs/get' url = f"https://{instance_id}{api_version}{api_command}" acc_token=access_secret_version(project_id, secret_id, version_id) params = {"job_id":'Sample3_schedule'} response = requests.get(url, auth=(acc_token["login"], acc_token['password']), params = params) a=json.dumps(json.loads(response.text), indent = 2) print(a) def list_job_test(): api_command = '/jobs/list' url = f"https://{instance_id}{api_version}{api_command}" acc_token=access_secret_version(project_id, secret_id, version_id) response = requests.get(url, auth=(acc_token["login"], acc_token['password'])) a=json.dumps(json.loads(response.text), indent = 2) # print(a) if a == '{}': return False elif a != "{}": b=json.loads(a) f=[] for i in b['jobs']: if job_name == i["settings"]["name"]: print (i['job_id'], i["settings"]["name"] ) break # f.append(i['settings']['name']) # print("these jobs are exist", f) list_job_test() #create_job() #list_job() #main() #reset_job() #get_job()
2e3f1a46a36aad0dae7847e0e866a41c456e917b
7179913b31c30bb3d7cc9f932cf8b068bd7f88a0
/BFS.py
9375527d195266e6fe98dabc4d5aac7c8b899c31
[]
no_license
RinLaNir/homework_discrete_mathematics
29c4d79d978266541f17427955a42f3a59d9d952
1543ba2d66c25ff1e55f35c28342f0f0f4a27528
refs/heads/master
2020-05-04T18:42:21.351256
2019-04-04T13:29:06
2019-04-04T13:29:06
179,363,633
0
0
null
null
null
null
UTF-8
Python
false
false
3,531
py
import random import numpy as np import collections while True: n = int(input("Задайте розмір суміжної матриці [5-100]: ")) if 5<=n<=100: break #генерація матриці суміжності matrix = np.random.randint(0,2,size=(n,n)) #без використання пакету NumPy: #matrix = [[random.randint(0,1) for j in range(n)] for i in range(n)] print('\n') #робить матрицю симетричною for i in range(0, n): for j in range(0, i+1): if i == j: matrix[i][j] = 0 else: matrix[i][j] = matrix[j][i] print('Матриця суміжності: \n{}\n'.format(matrix)) #без використання пакету NumPy: #for i in range(len(matrix)): # print(matrix[i]) #створення словника графу. Вершина - ключ, а значення - вершини, з якими вона з'єднана graph ={} for i in range(n): ls = [] for j in range(n): if matrix[i][j] == 1: ls.append(j) graph[i] = set(ls) def bfs(graph, start, end): visited, queue = set(), collections.deque([(start, [start])]) visited.add(start) while queue: (vertex, path) = queue.popleft() for neighbour in graph[vertex] - set(path): if neighbour not in visited: if neighbour == end: yield path + [neighbour] else: visited.add(neighbour) queue.append((neighbour, path + [neighbour])) #Знаючи, що найкоротший шлях буде повернуто першим з методу генератора шляху BFS, #ми можемо створити метод, який просто повертає найкоротший знайдений шлях або "None", якщо немає шляху. def shortest_path(graph, start, end): try: return next(bfs(graph, start, end)) except StopIteration: return None distance = np.random.randint(0,1,size=(n,n)) #без використання пакету NumPy: #distance = [[0 for j in range(n)] for i in range(n)] for i in range(0, n): for j in range(0, i+1): if i == j: distance[i][j] = 10**9 else: if shortest_path(graph, i, j) == None: distance[i][j] = 10**9 distance[j][i] = distance[i][j] else: ls = len(list(shortest_path(graph, i, j))) if ls == 0: distance[i][j] = 10**9 distance[j][i] = distance[i][j] else: distance[i][j] = ls - 1 distance[j][i] = distance[i][j] #перевірити найкоротші шляхи та єх довжину для двох точок. Потрібно для зручності перевірки з великими матрицями print('Матриця відстані: \n{}\n'.format(distance)) print('Перевірити для двох точок') while True: i = int(input('Початкова точка [0 - {}]: '.format(n))) j = int(input('Початкова точка [0 - {}]: '.format(n))) print('\n') print('Найкоротший шлях: {}\nДовжина шляху: {}\n'.format(list(shortest_path(graph, i, j)),len(list(shortest_path(graph, i, j)))-1))
063b15567e855884541fac9dd792242013f313a0
72306656e0a0e7daa59468ce6cde0024db7962ff
/201312/201312-3.py
5de291a8013fd85ecc7fa38ebcd0327cf6581be2
[]
no_license
HUSTERGS/CSP
ea584254abb60298a6e6492b80cf23a9ab0a4850
1328eaffb54b03f9a97b951366b1160342aae7bf
refs/heads/master
2022-12-10T07:54:29.531296
2020-09-15T14:01:51
2020-09-15T14:01:51
201,618,751
2
0
null
null
null
null
UTF-8
Python
false
false
983
py
# score 100 """ 每次添加一个矩形,那么最大值必定为以下两者之一 1. 之前的最大值 2. 添加的最右边的矩形之后从该矩形开始向左延伸的最大矩形 其中2的计算中需要计算最小值,可以不用调用min函数,从而减少时间复杂度 """ from sys import stdin n = int(stdin.readline()) nums = tuple(int(x) for x in stdin.readline().split()) queue = [] max_rect = nums[0] def find_max(): length = len(queue) index = length - 1 max_value = queue[-1] min_one = queue[-1] while index >= 0: if queue[index] < min_one: min_one = queue[index] temp_value = min_one * (length - index) if temp_value > max_value: max_value = temp_value index -= 1 return max_value i = 0 while i < len(nums): next_num = nums[i] queue.insert(len(queue), next_num) temp = find_max() if temp > max_rect: max_rect = temp i += 1 print(max_rect)
58ecea86d5b4170dd2c1fbfa9bef55b7c2dedc0f
9023909d2776e708755f98d5485c4cffb3a56000
/oneflow/python/nn/modules/acos.py
64bd494444673f26b34ecc02a3e7fc7db0dd081b
[ "Apache-2.0" ]
permissive
sailfish009/oneflow
f6cf95afe67e284d9f79f1a941e7251dfc58b0f7
4780aae50ab389472bd0b76c4333e7e0a1a56ef7
refs/heads/master
2023-06-24T02:06:40.957297
2021-07-26T09:35:29
2021-07-26T09:35:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,663
py
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import oneflow as flow from oneflow.python.oneflow_export import oneflow_export from oneflow.python.nn.module import Module from oneflow.python.framework.tensor import register_tensor_op class Acos(Module): def __init__(self) -> None: super().__init__() def forward(self, x): return flow.F.acos(x) @oneflow_export("acos") @register_tensor_op("acos") def acos_op(tensor): r""" Returns a new tensor with the inverse cosine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \arccos(\text{input}_{i}) Args: input (Tensor): the input tensor. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> arr = np.array([0.5, 0.6, 0.7]) >>> input = flow.Tensor(arr, dtype=flow.float32) >>> output = flow.acos(input) >>> output tensor([1.0472, 0.9273, 0.7954], dtype=oneflow.float32) """ return Acos()(tensor) if __name__ == "__main__": import doctest doctest.testmod(raise_on_error=True)
fca4b392599e38d2b6e36e42a928c8a37a5028d4
6bcee1f9e345985b461353f99e0ccf93b753a807
/venv/bin/wheel
b0a15c76ae7bc0e975f84acba3d640a01f8b0f6c
[]
no_license
pipesjr/volumetracker
dcd98eb5c794a2ff0a5e8c21b436f3f89b26af37
ab68b644466e06d801ebc9736290ecca5ecc0ca8
refs/heads/master
2022-09-27T08:13:57.397497
2019-11-19T13:40:28
2019-11-19T13:40:28
222,704,944
0
0
null
2022-09-16T18:13:14
2019-11-19T13:39:42
Python
UTF-8
Python
false
false
249
#!/Users/peterpeluso/Desktop/flask_rp/venv/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from wheel.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
5a122b62eb01f2b1116a7650429bf6fec1b490e1
af904de02a5949b57648b0393f7827856b2947b9
/QLFactChecker/code/classification/answers/combine_best_feature_groups.py
77c325268ec91a450ae5891327668f087b6d54c7
[]
no_license
EtiChaudhary/FCPLus
f69731fe48bae8cfb1ac7886e697f5a9056e1ea0
f76a020b1dfe8e86fb4a9e2e36654eca2a398dad
refs/heads/master
2022-11-12T16:38:20.773773
2020-07-02T17:17:08
2020-07-02T17:17:08
276,702,102
1
0
null
null
null
null
UTF-8
Python
false
false
2,088
py
import RunCV import csv, operator ################################ # Combine the best features groups. # ################################ # This is the index of the column of the result we are comparing in the results file. ACCURACY_INDEX = 5 MAP_INDEX = 9 # To change whether runs should be sorted by accuracy or MAP, change the values below: RESULT_SCORE_INDEX = ACCURACY_INDEX RUN_PREFIX = 'TOP_' SET_NAME = 'dev+test' RESULTS_FILE = "../../../data/results/results-answers-cross-validation-"+SET_NAME+".tsv" TOP_N_FROM = 2 TOP_N_TO = 40 def main(): # 1. Read the results file and sort the scores (only the single feature groups: -incl) # 2. combine the features from the feature group best_results = read_best_results() max_index = min(TOP_N_TO, len(best_results)) # for group_score in best_results: # group = group_score[0] # score = group_score[1] groups_names = [] # groups_names_str = '' groups_names_str = 'USER_EXPERTISE, ' + 'ANSWER_QUALITY, ' + 'READABILITY, ' for i in range(0, max_index): n = i+1 index_name = RUN_PREFIX+str(n) groups_names.append(best_results[i][0]) if groups_names_str != '': groups_names_str += ', ' groups_names_str += best_results[i][0] if n >= TOP_N_FROM: run_id = index_name + ' ('+groups_names_str + ')' print('!!! Running...', run_id) RunCV.run(run_id, groups_names) def read_best_results(): group_scores = {} with open(RESULTS_FILE,encoding="utf8") as csvfile: csvreader = csv.reader(csvfile, delimiter='\t') for row in csvreader: group = row[0] score = row[RESULT_SCORE_INDEX] if (group.endswith('-incl')): group_scores[group] = score print('BEFORE SORT:', group_scores) sorted_group_scores = sorted(group_scores.items(), key=operator.itemgetter(1), reverse=True) print('AFTER SORT:', sorted_group_scores) return sorted_group_scores # Start here: main()
295a1c7eeb4b7fb02b3fe930155e6f4753c5bbf9
ea1b3613fa137e812e2e8d3a95f3d649bcab7162
/SportsRegistration/wsgi.py
f01e94cbb86095d1789189fc8482e4dddb3abc43
[]
no_license
garbagemayor/sports
aa15dd077c53a9f6ef0fab8e792425b00e64d667
92580468004b9d1a3488f81f1d319911fbeddcb8
refs/heads/master
2021-09-06T06:28:40.488916
2018-02-03T06:04:22
2018-02-03T06:04:22
111,417,476
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
""" WSGI config for SportsRegistration project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "SportsRegistration.settings") application = get_wsgi_application()
42b2917a16ba451c8ad5096c5c9b576f076affa0
1455db7ea72218bd184e29f4daca3fcddf05a630
/main.py
32a395e0a62a3ecc3c94e4c81344197c2040459c
[]
no_license
hiaiproject/hiaiproject
4dc9300244ddc3914db1a0c893241ca2da27952b
52b4f29a2601f97f6f3c545397a31c5a41295abf
refs/heads/master
2023-05-06T22:46:11.366746
2021-05-27T06:51:41
2021-05-27T06:51:41
367,259,234
0
1
null
null
null
null
UTF-8
Python
false
false
43
py
def main(): print("Hello, AI") main()
a938268e6e7a211edccad018a4b6418271b2bdb2
bdf7b3ff5b8fd5d18003705f0cb893220788a179
/tests/verification/test_build_stage.py
74bb795273dd5e258e567d7d38765bb56ba6a4ce
[ "Apache-2.0" ]
permissive
ianlet/spaceship-ci
a055afecc58456274ae3fdffe53b0978eee49750
c61df12778b024078a19d9d97e44dc7d219201b9
refs/heads/master
2021-03-30T17:41:40.060784
2018-09-23T19:55:43
2018-09-23T19:55:43
122,879,597
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
from unittest import TestCase from mockito import mock, verify, when from challenge.challenge import Challenge from challenge.submission import Submission from verification.build_stage import BuildStage class TestBuildStage(TestCase): ORG_NAME = 'org-name' CHALLENGE_NAME = 'challenge-name' SUBMISSION_NAME = 'submission-01' SUBMISSION_URL = '[email protected]:org/submission.git' BASE_PATH = 'tests' CONTAINER_COMMAND = ['./gradlew', 'build', '-x', 'test'] challenge = Challenge(ORG_NAME, CHALLENGE_NAME) submission = Submission(SUBMISSION_NAME, SUBMISSION_URL, challenge) submission_path = f'{BASE_PATH}/{submission.path}' container_name = f'{submission.slug}--build' def setUp(self): self.executor = mock() self.stage = BuildStage(self.BASE_PATH, self.executor) def test_run_submission_container(self): container = mock() when(self.executor).create_container(self.submission.slug, self.container_name, self.CONTAINER_COMMAND, self.submission_path).thenReturn(container) self.stage.execute(self.submission) verify(container).run()
604c698499ac73b30f20bbc78ebd91207f9538a6
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/pkgs/astropy-1.1.2-np110py27_0/lib/python2.7/site-packages/astropy/units/tests/py3_test_quantity_annotations.py
e0eceac14e6e744ab5d600b14ee0ae04223bd509
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
6,014
py
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst from functools import wraps from textwrap import dedent from ... import units as u from ...extern import six from ...tests.helper import pytest def py3only(func): if not six.PY3: return pytest.mark.skipif('not six.PY3')(func) else: @wraps(func) def wrapper(*args, **kwargs): if func.__doc__ is None: pytest.skip('unable to run this test due to missing ' 'docstrings (maybe the module was compiled with ' 'optimization flags?)') code = compile(dedent(func.__doc__), __file__, 'exec') # This uses an unqualified exec statement illegally in Python 2, # but perfectly allowed in Python 3 so in fact we eval the exec # call :) eval('exec(code)') return wrapper @py3only def test_args3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary: u.arcsec): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec, 1*u.arcsec) assert isinstance(solarx, u.Quantity) assert isinstance(solary, u.Quantity) assert solarx.unit == u.arcsec assert solary.unit == u.arcsec """ @py3only def test_args_noconvert3(): """ @u.quantity_input() def myfunc_args(solarx: u.arcsec, solary: u.arcsec): return solarx, solary solarx, solary = myfunc_args(1*u.deg, 1*u.arcmin) assert isinstance(solarx, u.Quantity) assert isinstance(solary, u.Quantity) assert solarx.unit == u.deg assert solary.unit == u.arcmin """ @py3only def test_args_nonquantity3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec, 100) assert isinstance(solarx, u.Quantity) assert isinstance(solary, int) assert solarx.unit == u.arcsec """ @py3only def test_arg_equivalencies3(): """ @u.quantity_input(equivalencies=u.mass_energy()) def myfunc_args(solarx: u.arcsec, solary: u.eV): return solarx, solary+(10*u.J) # Add an energy to check equiv is working solarx, solary = myfunc_args(1*u.arcsec, 100*u.gram) assert isinstance(solarx, u.Quantity) assert isinstance(solary, u.Quantity) assert solarx.unit == u.arcsec assert solary.unit == u.gram """ @py3only def test_wrong_unit3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary: u.deg): return solarx, solary with pytest.raises(u.UnitsError) as e: solarx, solary = myfunc_args(1*u.arcsec, 100*u.km) assert str(e.value) == "Argument 'solary' to function 'myfunc_args' must be in units convertable to 'deg'." """ @py3only def test_not_quantity3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary: u.deg): return solarx, solary with pytest.raises(TypeError) as e: solarx, solary = myfunc_args(1*u.arcsec, 100) assert str(e.value) == "Argument 'solary' to function 'myfunc_args' has no 'unit' attribute. You may want to pass in an astropy Quantity instead." """ @py3only def test_decorator_override(): """ @u.quantity_input(solarx=u.arcsec) def myfunc_args(solarx: u.km, solary: u.arcsec): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec, 1*u.arcsec) assert isinstance(solarx, u.Quantity) assert isinstance(solary, u.Quantity) assert solarx.unit == u.arcsec assert solary.unit == u.arcsec """ @py3only def test_kwargs3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary, myk: u.arcsec=1*u.arcsec): return solarx, solary, myk solarx, solary, myk = myfunc_args(1*u.arcsec, 100, myk=100*u.deg) assert isinstance(solarx, u.Quantity) assert isinstance(solary, int) assert isinstance(myk, u.Quantity) assert myk.unit == u.deg """ @py3only def test_unused_kwargs3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary, myk: u.arcsec=1*u.arcsec, myk2=1000): return solarx, solary, myk, myk2 solarx, solary, myk, myk2 = myfunc_args(1*u.arcsec, 100, myk=100*u.deg, myk2=10) assert isinstance(solarx, u.Quantity) assert isinstance(solary, int) assert isinstance(myk, u.Quantity) assert isinstance(myk2, int) assert myk.unit == u.deg assert myk2 == 10 """ @py3only def test_kwarg_equivalencies3(): """ @u.quantity_input(equivalencies=u.mass_energy()) def myfunc_args(solarx: u.arcsec, energy: u.eV=10*u.eV): return solarx, energy+(10*u.J) # Add an energy to check equiv is working solarx, energy = myfunc_args(1*u.arcsec, 100*u.gram) assert isinstance(solarx, u.Quantity) assert isinstance(energy, u.Quantity) assert solarx.unit == u.arcsec assert energy.unit == u.gram """ @py3only def test_kwarg_wrong_unit3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary: u.deg=10*u.deg): return solarx, solary with pytest.raises(u.UnitsError) as e: solarx, solary = myfunc_args(1*u.arcsec, solary=100*u.km) assert str(e.value) == "Argument 'solary' to function 'myfunc_args' must be in units convertable to 'deg'." """ @py3only def test_kwarg_not_quantity3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary: u.deg=10*u.deg): return solarx, solary with pytest.raises(TypeError) as e: solarx, solary = myfunc_args(1*u.arcsec, solary=100) assert str(e.value) == "Argument 'solary' to function 'myfunc_args' has no 'unit' attribute. You may want to pass in an astropy Quantity instead." """ @py3only def test_kwarg_default3(): """ @u.quantity_input def myfunc_args(solarx: u.arcsec, solary: u.deg=10*u.deg): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec) """
bf19842a2b0d50475b0ddf15ecdd803a42097161
bd3df2f18b1aabda2d157fdec32b1c4c6074b60b
/scripts/get_state_dict.py
99bc50a49eacd2757f2ef82e68f6432982b527da
[]
no_license
wushuang01/Focal_loss_for_object_detection
dcc0f25da0577bd6bf9a7a2276ac31440bd6de2d
f3c66b975510fa697c46838ec7e548c93959b42d
refs/heads/master
2020-04-15T17:32:14.239187
2019-01-13T14:19:32
2019-01-13T14:19:32
164,874,626
17
2
null
null
null
null
UTF-8
Python
false
false
1,072
py
'''Init RestinaNet50 with pretrained ResNet50 model. Download pretrained ResNet50 params from: https://download.pytorch.org/models/resnet50-19c8e357.pth ''' import math import torch import torch.nn as nn import torch.nn.init as init from fpn import FPN50 from retinanet import RetinaNet print('Loading pretrained ResNet50 model..') d = torch.load('/home/wushuanchen/PycharmProjects/pytorch-retinanet-master/model/resnet50-19c8e357.pth') print('Loading into FPN50..') fpn = FPN50() dd = fpn.state_dict() for k in d.keys(): if not k.startswith('fc'): # skip fc layers dd[k] = d[k] print('Saving RetinaNet..') net = RetinaNet() for m in net.modules(): if isinstance(m, nn.Conv2d): init.normal(m.weight, mean=0, std=0.01) if m.bias is not None: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() pi = 0.01 init.constant(net.cls_head[-1].bias, -math.log((1-pi)/pi)) net.fpn.load_state_dict(dd) torch.save(net.state_dict(), 'net.pth') print('Done!')
5008856705ec2cf86f13825b73dca55b21601e6a
9b521bf3e768d07c323c681ae9be96ef9e3796a1
/src/app.py
0fdd3f56012aea49ddc862d66bbe6baa26668875
[]
no_license
vineethnnn/Nanba
2187689f73b88f17f2c7969ffa0a5171afc7d4e8
30f4a745a89bc8a2754da9b87deeb33c875bf2c1
refs/heads/master
2022-11-10T10:49:25.027976
2020-06-22T13:57:42
2020-06-22T14:08:07
274,066,310
0
0
null
null
null
null
UTF-8
Python
false
false
44
py
#Developer A : Line 1 #Developer B : Line 1
07c972209a7ff04f110cabe114711e157eeb5729
70dd72b7837907f69eef0ee5d877cd54534eff21
/POC_Scan/information/informationmain.py
4ea171e6683067a3d20bdf0dc73134cc8ca9bd1e
[]
no_license
scsdev-cyber/JR-scan
077b12c4fc4d1d1ec7542ee01a22b0d3833ce77b
f4c014e86fc43d2032de8f350b1273d988afa42a
refs/heads/master
2023-08-09T20:09:45.589994
2021-08-27T02:25:32
2021-08-27T02:25:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
904
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: information漏洞库 referer: unknow author: Lucifer description: 包含所有information漏洞类型,封装成一个模块 ''' from POC_Scan.information.springboot_api import springboot_api_BaseVerify from POC_Scan.information.options_method import options_method_BaseVerify from POC_Scan.information.robots_find import robots_find_BaseVerify from POC_Scan.information.git_check import git_check_BaseVerify from POC_Scan.information.jsp_conf_find import jsp_conf_find_BaseVerify from POC_Scan.information.svn_check import svn_check_BaseVerify from POC_Scan.information.jetbrains_ide_workspace_disclosure import jetbrains_ide_workspace_disclosure_BaseVerify from POC_Scan.information.apache_server_status_disclosure import apache_server_status_disclosure_BaseVerify from POC_Scan.information.crossdomain_find import crossdomain_find_BaseVerify
92792e9874397cc6ff3d79a132acca0cd6f5a226
363feefc8c5268e0a7b883a4cfcebc9706b3e0aa
/manage.py
68989438932d195e8a72ad2b891e595514f62810
[]
no_license
viniciuspaulo/food
9438e2ba428dc48d1c0b9ced516d8b33fc472400
94436b46af89610aa7b8c82ac82d8aa830142f29
refs/heads/master
2022-12-08T21:55:26.176266
2020-01-02T08:35:00
2020-01-02T08:35:00
231,315,718
0
0
null
2022-12-08T03:22:42
2020-01-02T05:47:10
JavaScript
UTF-8
Python
false
false
540
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'vinicius.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
7d58a752b08f9e4e6440bc904e81f9ff2b9878b2
b79dc44cf659d86b3157737084545eae85da98bf
/flasky/app/__init__.py
0d190f84fb16b10a3a0d31705bcc5ae8538aeb67
[]
no_license
coral1412/Flask-Blog
fc6fc4af47fb2d8df5dce0a97decdfbe473529b6
3603e7f56323b70ee23e481891aa524acfcd775e
refs/heads/master
2021-01-11T08:57:08.666210
2017-01-21T08:31:07
2017-01-21T08:31:07
77,498,695
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
from flask import Flask,render_template from flask_bootstrap import Bootstrap from flask_mail import Mail from flask_moment import Moment from flask_sqlalchemy import SQLAlchemy from config import config bootstrap=Bootstrap() mail=Mail() moment=Moment() db=SQLAlchemy() def create_app(config_name): app=Flask(__name__) app.config.from_object(config[config_name]) config[config_name].init_app(app) bootstrap.init_app(app) mail.init_app(app) moment.init_app(app) db.init_app(app) from .main import main as main_blueprint app.register_blueprint(main_blueprint) return app
d54e5d3ce6cc47fbad810f3b6dbb87a511b19a32
b6b380e6f5353dba2256211033cebec638dffe4a
/packages/pd/tests/db/default_TestCase.py
41e5dd8ef384968e14126b398fdb1b4a32feedd2
[]
no_license
danse-inelastic/pyre-all
0ddf640b68f6089e40345e9a8e20562a8b035b3c
59cc235b6481586c58415535bbec660470218e31
refs/heads/master
2021-01-18T12:31:27.905459
2015-04-26T04:57:46
2015-04-26T04:57:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,917
py
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2009 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # import unittest class TestCase(unittest.TestCase): def dbManager(self): from pd.db import connect db = connect(db ='postgres:///test') db.autocommit(True) return db def test1(self): 'dsaw.db.ReferenceSet: ' db = self.dbManager() defaults = { 'boolean': True, 'integer': 10, 'real': 100., 'char': 'abc', #'doubleArray': [1,2,3], } initkwds = { 'char': {'length': 10}, } from pd.Table import Table class Test(Table): name = "test" import pd for type, default in defaults.iteritems(): kwds = initkwds.get(type) or {} name = '%svar' % type code = '%s = pd.%s(name="%s", default=%r, **kwds)' % ( name, type, name, default) exec code continue t = Test() for type, default in defaults.iteritems(): varname = '%svar' % type self.assertEqual(getattr(t, varname), default) continue return pass # end of TestCase def pysuite(): suite1 = unittest.makeSuite(TestCase) return unittest.TestSuite( (suite1,) ) def main(): pytests = pysuite() alltests = unittest.TestSuite( (pytests, ) ) unittest.TextTestRunner(verbosity=2).run(alltests) return if __name__ == '__main__': main() # version __id__ = "$Id$" # End of file
7ba646953f0f1a15f5634f06ac357280c66783ce
fb72aef4db762749f3ac4bc08da36d6accee0697
/modules/photons_tile_paint/set_64.py
a5dad90fe6b7d8f9d4f9b8643e4dac851f4fb956
[ "MIT" ]
permissive
xbliss/photons-core
47698cc44ea80354e0dcabe42d8d370ab0623f4b
3aca907ff29adffcab4fc22551511c5d25b8c2b7
refs/heads/master
2022-11-07T12:33:09.951104
2020-05-07T09:10:35
2020-05-07T09:45:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,373
py
""" Tile animations requires packing many Set64 messages in a short amount of time. This file exists to make that as efficient as possible by creating a class that can pack a Set64 for tile animation with as much caching power as possible Don't use this directly, always use it via the photons_tile_paint.animation.canvas_to_msgs function """ from photons_messages.fields import hsbk, Color as ProtocolColor from photons_messages import TileMessages from photons_protocol.messages import T from delfick_project.norms import sb from bitarray import bitarray from lru import LRU import functools import binascii import operator import struct class Set64Maker: """ One of these is made as the set_64_maker callable. It contains as much of the Set64 message packd as we can and then provides a fake Set64 that photons can use to create the messages """ class Target: """Used to cache the bits for our target""" def __init__(self, val): self.bytes = val self.serial = binascii.hexlify(val[:6]).decode() self.packd = bitarray(endian="little") self.packd.frombytes(val) class Set64: """ The actual fake message We assume this is used via canvas_to_msgs and so we expect kwargs to contain "ack_required", "tile_index", "width", "duration" and "colors" And we assume target is set via a setter property and .update() is called with source and sequence Because this is for tile animations, the rest of the payload is always length=1, x=0, y=0; and res_required is always False We use a real TileMessages.Set64 to get the packed bits for the parts that do not change, which is stored on the maker (the instance of Set64Maker) """ def __init__(self, maker, **kwargs): self.kwargs = kwargs self.maker = maker self.extra = {} def pack(self): bits = [] # Frame header bits.append(self.maker.frame_header_start) bits.append(self.maker.source_bits(self.extra["source"])) # Frame Address bits.append(self.extra["target"].packd) if self.kwargs["ack_required"]: bits.append(self.maker.frame_address_with_acks_middle) else: bits.append(self.maker.frame_address_without_acks_middle) bits.append(self.maker.sequence_bits[self.extra["sequence"]]) # Protocol Header bits.append(self.maker.protocol_header_packd) # Payload bits.append(self.maker.tile_index_bits[self.kwargs["tile_index"]]) bits.append(self.maker.payload_middle) bits.append(self.maker.width_bits[self.kwargs["width"]]) bits.append(self.maker.duration_bits(self.kwargs["duration"])) bits.append(self.maker.colors_bits(self.kwargs["colors"])) return functools.reduce(operator.add, bits) def tobytes(self, serial=None): return self.pack().tobytes() def simplify(self): return self def clone(self): res = self.__class__(self.maker, **self.kwargs) res.update(self.extra) return res def update(self, extra): self.extra.update(extra) if "target" in extra and not isinstance(extra["target"], self.maker.Target): self.target = extra["target"] @property def target(self): if "target" in self.extra: return self.extra["target"].bytes return sb.NotSpecified @target.setter def target(self, val): self.update({"target": self.maker.make_target(val)}) @property def serial(self): if "target" not in self.extra: return "000000000000" return self.extra["target"].serial @property def res_required(self): return False @property def ack_required(self): return self.kwargs["ack_required"] @ack_required.setter def ack_required(self, value): self.kwargs["ack_required"] = value @property def source(self): return self.extra["source"] @source.setter def source(self, val): """Source is set on the clone by the photons_transport writer""" self.extra["source"] = val @property def sequence(self): return self.extra["sequence"] @sequence.setter def sequence(self, val): self.extra["sequence"] = val @property def pkt_type(self): return TileMessages.Set64.Payload.message_type @property def protocol(self): return 1024 @property def is_dynamic(self): return False @property def colors(self): return self.kwargs.get("colors", []) def actual(self, key): if key == "source": return self.extra.get("source", sb.NotSpecified) return getattr(self, key) def __init__(self): self.targets_cache = LRU(1000) self.source_bits_cache = LRU(10) self.duration_bits_cache = LRU(10) self.cache = ProtocolColor.Meta.cache msg = TileMessages.Set64( source=0, sequence=0, target="d073d5000000", res_required=False, ack_required=True, tile_index=0, length=1, x=0, y=0, width=8, duration=0, colors=[{"hue": 0, "saturation": 0, "brightness": 0, "kelvin": 3500}], ) self.frame_header_start = msg.frame_header.pack()[:-32] self.frame_address_with_acks_middle = msg.frame_address.pack()[64:-8] msg.ack_required = False self.frame_address_without_acks_middle = msg.frame_address.pack()[64:-8] self.protocol_header_packd = msg.protocol_header.pack() # tile_index, width, duration and colors are variable self.payload_middle = msg.payload.pack()[8 : -8 - 32 - (64 * 64)] self.uint8_bits = {val: self.bits(T.Uint8, val) for val in range(256)} self.width_bits = self.uint8_bits self.sequence_bits = self.uint8_bits self.tile_index_bits = self.uint8_bits def bits(self, typ, val): bits = bitarray(endian="little") bits.frombytes(struct.pack(typ.struct_format, val)) return bits def source_bits(self, val): if val not in self.source_bits_cache: self.source_bits_cache[val] = self.bits(T.Uint32, val) return self.source_bits_cache[val] def duration_bits(self, val): if val not in self.duration_bits_cache: self.duration_bits_cache[val] = self.bits(T.Uint32, int(val * 1000)) return self.duration_bits_cache[val] def colors_bits(self, colors): res = [] for color in colors: fields = color.cache_key if fields not in self.cache: bits = [] bits.append(self.bits(hsbk[0][1], int(65535 * (color.hue / 360)))) bits.append(self.bits(hsbk[1][1], int(65535 * color.saturation))) bits.append(self.bits(hsbk[2][1], int(65535 * color.brightness))) bits.append(self.bits(hsbk[3][1], color.kelvin)) self.cache[fields] = functools.reduce(operator.add, bits) res.append(self.cache[fields]) return functools.reduce(operator.add, res) def make_target(self, target): if target not in self.targets_cache: val = target if isinstance(target, str): val = binascii.unhexlify(target) if isinstance(val, bytes) and len(val) == 6: val += b"\x00\x00" self.targets_cache[target] = self.Target(val) return self.targets_cache[target] def __call__(self, **kwargs): return self.Set64(self, **kwargs) # Used to create a message that photons thinks is a valid Set64 # It is a callable that requires keyword arguments for # ack_required, tile_index, width, duration, colors set_64_maker = Set64Maker()
32f734117fa4c780a440899047f60a411c1659eb
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=3.0_rd=1_rw=0.06_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=37/params.py
5b58a1e8644383c673b55f63426dd5dad45e4f82
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
{'cpus': 4, 'duration': 30, 'final_util': '3.104810', 'max_util': '3.0', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '1', 'res_nmb': '4', 'res_weight': '0.06', 'scheduler': 'GSN-EDF', 'trial': 37, 'utils': 'uni-medium-3'}
7198ffbf88e31f94904be634ca44e9c91dbf2cee
08df87a0be17699c99c812cfdfe4d5f56d226696
/python/optkit/api.py.bak
2ab9d39226427fb8bc6a6f4858e7625b51ac148f
[]
no_license
mengpanqingyun/optkit
e5d48ad4dc9c16143e5fdf3c3cf0ba45d72493ef
bfe44937c701ee8d79cb6b6714e76934412de0cc
refs/heads/master
2021-06-25T12:58:28.028884
2018-12-20T01:59:26
2018-12-20T01:59:26
162,408,788
0
0
null
2018-12-19T08:46:33
2018-12-19T08:46:32
null
UTF-8
Python
false
false
1,302
bak
from optkit.backends import OKBackend from optkit.types import PogsTypes, ClusteringTypes from os import getenv """ Version query """ OPTKIT_VERSION = None """ Backend handle """ backend = OKBackend() """ C implementations """ pogs_types = None PogsSolver = None PogsObjective = None clustering_types = None ClusteringSettings = None Clustering = None """ Backend switching """ def set_backend(gpu=False, double=True): # Backend global OPTKIT_VERSION global backend ## C implementations global pogs_types global PogsSolver global PogsObjective global clustering_types global ClusteringSettings global Clustering # change backend backend_name=backend.change(gpu=gpu, double=double) OPTKIT_VERSION = backend.version ## C implemenetations pogs_types = PogsTypes(backend) PogsSolver = pogs_types.Solver PogsObjective = pogs_types.Objective clustering_types = ClusteringTypes(backend) ClusteringSettings = clustering_types.ClusteringSettings Clustering = clustering_types.Clustering print "optkit backend set to {}".format(backend.config) """ INITIALIZATION BEHAVIOR: """ default_device = getenv('OPTKIT_DEFAULT_DEVICE', 'cpu') default_precision = getenv('OPTKIT_DEFAULT_FLOATBITS', '64') set_backend(gpu=(default_device == 'gpu'), double=(default_precision == '64'))
324f3103534545e93ad452e9cbd39a329d543299
3248a00b88d1e1f02b608cfb162fabf8d69fc070
/Python/Functions/recursion.py
4b6d365122b22dae47325e3861a0990e422aee0b
[ "MIT" ]
permissive
steveachu/Lectures
74b72aeb0691a05d127ebbe0f89f4d00165bce7e
41438bec21f6d3525f508f3a1ecf4751d95fa58c
refs/heads/master
2021-01-18T20:59:14.239293
2015-08-21T01:18:42
2015-08-21T01:18:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
573
py
# A simple recursive implementation of factorial def factorial(n): if n <= 1: return 1 return n * factorial(n-1) print factorial(5) # A tail-recursive implementation of factorial def factorial_tail(n, prod): if n <= 1: return prod return factorial_tail(n-1, prod * n)# Why does this work? # Why is it better? # Names can be re-bound to new values at any time. def factorial(n): print "Tail factorial" # To be sure our new version is running return factorial_tail(n, 1) print factorial(5)
cd20aa8d6cd0173f26163f8b63d1921cf755961b
faa93ef63edf80e6276c2c20192e726a0b24ac33
/docbook-backend/DocBook/urls.py
9d4adaf0f7739a1342f1197ec03da5f488e6be02
[]
no_license
Livingstone99/abs_doc_book
ef03a3674363c0f9af05050611b4b8698623d55d
fe83968ae4525d9daad1166aafcee5bf9ce500f5
refs/heads/master
2022-12-24T06:53:20.394509
2020-10-07T22:50:30
2020-10-07T22:50:30
302,182,352
0
0
null
null
null
null
UTF-8
Python
false
false
505
py
from django.contrib import admin from django.urls import path, include from rest_framework_jwt.views import obtain_jwt_token urlpatterns = [ path('token-auth', obtain_jwt_token), # path('api-auth/', include('rest_framework.urls')), # path('rest-auth/', include('rest_auth.urls')), # path('rest-auth/registration/', include('rest_auth.registration.urls')), # path('api/', include('articles.api.urls')), path('admin/', admin.site.urls), path('', include('hospital.urls')), ]
c39f1ad13f13ac93ca81747b9ddc950c34e3efc6
3cbfc79ae539389ff0e31f832107d3dbbd4e311a
/machine_learning_filtering_data.py
3a5c659fdfe521709e8eb5030b18d7f9cc7ffce7
[]
no_license
elijahfr27/CSE163-Final-Project
cf08015ebabfd8b3eaf3f61616cc435cec38f176
c2f4aebdce2e67cb36f414e93674ad160fcb7b4a
refs/heads/master
2023-05-09T21:19:20.444253
2021-06-10T14:07:06
2021-06-10T14:07:06
373,659,870
0
0
null
null
null
null
UTF-8
Python
false
false
5,966
py
""" CSE163 Final Project This file contains the functions for filtering the original datasets in terms of the state data for the maching learning model. """ def state_graduation_rates(data, visualizations=True): """ This function takes in the Washington State graduation dataset as a datframe and returns a dataframe containing the graduation rates for students graduating in 4 years for each included year. """ # reducing to relevant columns if visualizations: columns = [ "SchoolYear", "DistrictName", "StudentGroup", "Cohort", "GraduationRate", ] else: columns = [ "SchoolCode", "DistrictCode", "SchoolYear", "Cohort", "StudentGroup", "GraduationRate", "DistrictName", ] cut_data = data[columns] # masks for data area = cut_data["DistrictName"] == "State Total" student_group = cut_data["StudentGroup"] == "All Students" cohort = cut_data["Cohort"] == "Four Year" return cut_data[area & student_group & cohort] def state_enrollment(data, visualization=True): """Takes in enrollment data as dataframe. Filters to only state data for all high school grades""" # reducing to relevant columns if visualization: columns = [ "SchoolYear", "DistrictName", "Gradelevel", "All Students", "American Indian/ Alaskan Native", "Asian", "Black/ African American", "Hispanic/ Latino of any race(s)", "Native Hawaiian/ Other Pacific Islander", "Two or More Races", "White", ] else: columns = [ "SchoolYear", "DistrictName", "Gradelevel", "All Students", "American Indian/ Alaskan Native", "Asian", "Black/ African American", "Hispanic/ Latino of any race(s)", "Native Hawaiian/ Other Pacific Islander", "Two or More Races", "White", "SchoolCode", ] cut_data = data[columns] # masks for data if visualization: area = cut_data["DistrictName"] == "State Total" grade = ( (cut_data["Gradelevel"] == "9th Grade") | (cut_data["Gradelevel"] == "10th Grade") | (cut_data["Gradelevel"] == "11th Grade") | (cut_data["Gradelevel"] == "12th Grade") ) else: area = cut_data["DistrictName"] != "State Total" grade = cut_data["Gradelevel"] == "12th Grade" return cut_data[area & grade] def state_assessment(data, visualization=True): """Takes in testing data as dataframe and filters to the appropriate columns.""" # reducing to relevant columns if visualization: columns = [ "SchoolYear", "DistrictName", "StudentGroup", "GradeLevel", "Test Administration (group)", "TestSubject", "PercentMetTestedOnly", ] else: columns = [ "DistrictName", "DistrictCode", "SchoolCode", "GradeLevel", "StudentGroup", "TestSubject", "PercentMetStandard", "PercentMetTestedOnly", ] cut_data = data[columns] # masks for data if visualization: area = cut_data["DistrictName"] == "State Total" grade = ( (cut_data["GradeLevel"] == "9th Grade") | (cut_data["GradeLevel"] == "10th Grade") | (cut_data["GradeLevel"] == "11th Grade") | (cut_data["GradeLevel"] == "12th Grade") ) test = cut_data["Test Administration (group)"] == "General" area = cut_data["DistrictName"] != "State Total" grade = cut_data["GradeLevel"] == "12th Grade" student_group = cut_data["StudentGroup"] == "All Students" return cut_data[area & student_group & grade & test] else: area = cut_data["DistrictName"] != "State Total" grade = cut_data["GradeLevel"] == "12th Grade" return cut_data[area & grade] def state_classes(data, visualization=True): """Takes in data about class enrollment and filters down to the appropriate columns.""" # reducing to relevant columns if visualization: columns = [ "SchoolYear", "DistrictName", "StudentGroup", "GradeLevel", "Measures", "PercentTakingAP", "PercentTakingIB", "PercentTakingCollegeInTheHighSchool", "PercentTakingCambridge", "PercentTakingRunningStart", "PercentTakingCTETechPrep", ] else: columns = [ "SchoolYear", "SchoolCode", "DistrictName", "GradeLevel", "PercentTakingAP", "PercentTakingIB", "PercentTakingCollegeInTheHighSchool", "PercentTakingRunningStart", "StudentGroup", ] cut_data = data[columns] # masks for data student_group = cut_data["StudentGroup"] == "All Students" if visualization: area = cut_data["DistrictName"] == "State Total" grade = ( (cut_data["GradeLevel"] == "9") | (cut_data["GradeLevel"] == "10") | (cut_data["GradeLevel"] == "11") | (cut_data["GradeLevel"] == "12") ) measures = cut_data["Measures"] == "Dual Credit" return cut_data[area & student_group & grade & measures] else: area = cut_data["DistrictName"] != "State Total" grade = cut_data["GradeLevel"] == "12" student_group = cut_data["StudentGroup"] == "All Students" return cut_data[area & student_group & grade]
5b6f9ab6b7718a4104f546e53ec542a780495dd6
154f80fe8ce2ec389407bcd811d74e39ac8d7772
/model/run.py
d5b48657cdd9807e02d2865e4891261c00063829
[]
no_license
fagan2888/Kaggle_SpeechRecognition
fbf945b64352d5def904487fa79b169fd56d380c
b84e7731fb11440cde4a659d1248dd9c75f12eec
refs/heads/master
2021-09-03T17:18:26.373277
2018-01-10T17:28:01
2018-01-10T17:28:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
#!/usr/local/miniconda2/bin/python # _*_ coding: utf-8 _*_ """ @author: Jing Guo @time : 12/29/17 """ from __future__ import absolute_import, division, print_function import os import sys module_path = os.path.abspath(os.path.join('..')) sys.path.append(module_path) cmd = 'rm ../output/subm*.csv' os.system(cmd) cmd = 'python lightWeight_CNN.py' os.system(cmd) #cmd = 'python GS_CNN2.py' #os.system(cmd)
00b3a87b42969e21e1afe115847ae465906bb7a5
a9d792254cb8e3b45aaa4cffdef79823b4ea969d
/main.py
4964805787dcd9d71dd76dfa83950b56859b4e79
[]
no_license
Shauryayamdagni/IITM_python
20d96e926b35e54d6f6d80c2ec5f488bf27160a7
73239d4a6e8c2293ce01ee529c5a4074b12fc472
refs/heads/master
2023-06-12T00:49:30.120778
2021-06-19T16:31:36
2021-06-19T16:31:36
377,646,753
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
n=int(input("enter the dimension")) l1=[] zero=[] s=[] a=[] b=[] for x in range(0,n): for y in range(0,n): num=int(input()) l1.append(num) a.append(l1) l1=[] for x in range(0,n): for y in range(0,n): num=int(input()) l1.append(num) zero.append(0) b.append(l1) s.append(zero) zero=[] l1=[] #print(s) for i in range(0,n): for j in range(0,n): s[i][j]=a[i][j]+b[i][j] print(a) print(b) print(s)
d7e58c3c6ff50fdc934de20808883e8695911613
469af60a0fd332ac2e06b5141b7aba19696e8abe
/front/webkitgtk3/srt_wkgtk/window.py
efe040a1d3d2e8295b005dba2de07c7a2dd72adb
[]
no_license
yuyichao/srtctrl
7091d03c2358a045cac34302d26432347f3bdccf
55e2eb227940c9bb3bb5bab1b4f7d2e84db2b96f
refs/heads/master
2021-01-15T17:02:59.838631
2012-08-26T00:56:53
2012-08-26T00:56:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,156
py
# Copyright (C) 2012~2012 by Yichao Yu # [email protected] # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function, division from gi.repository import WebKit, Gtk from pywkjs import * class SrtWindow: def __init__(self): self.window = Gtk.Window() self.window.set_default_size(500, 400) self.webview = WebKit.WebView() self.webview.connect("new-window-policy-decision-requested", self._new_window_requested) self.window.add(self.webview) self.helper = Helper(self.webview) settings = self.webview.get_settings() settings.set_property('enable-universal-access-from-file-uris', True) settings.set_property('enable-file-access-from-file-uris', True) settings.set_property('javascript-can-access-clipboard', True) settings.set_property('enable-default-context-menu', True) settings.set_property('enable-page-cache', True) settings.set_property('tab-key-cycles-through-elements', True) settings.set_property('enable-spell-checking', False) settings.set_property('enable-caret-browsing', False) def _new_window_requested(self, view, frame, request, action, decision): decision.ignore() uri = request.get_uri() import subprocess browser = 'xdg-open' subprocess.Popen([browser, uri]) return True def show_all(self): self.window.show_all() def load_uri(self, uri): self.webview.load_uri(uri)
9284e1ffe308213cd426453d63e3cac78b1ad2b6
177c481a40e88dc0eedf773496561d05be7772d8
/mod_repair_extended/_build_manual.py
ab85e8e38a9d1c0449daee652f07708a739ceb53
[ "WTFPL" ]
permissive
vizzz/spoter-mods
f0792caa742b7d5d74eeb20bae65377511d16d86
e0a275a08532aed1be2b2cdeac3be1c9fa15f2ac
refs/heads/master
2020-03-11T03:11:01.039580
2018-04-07T09:57:17
2018-04-07T09:57:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,238
py
# -*- coding: utf-8 -*- import codecs import datetime import glob import json import os import re import shutil import subprocess import base64 CLIENT_VERSION = '1.0.0' BUILD = 'manual' NAME = 'spoter.repair_extended' ADD_LICENSE = True class Build(object): OUT_PATH = '.out' PYC_PATH = os.path.join(OUT_PATH, 'res', 'scripts', 'client', 'gui', 'mods') BUILD_PATH = os.path.join('source', BUILD) VERSION = None RELEASE = '%s.wotmod' % NAME DATE = datetime.datetime.now().strftime("%Y-%m-%d") CONFIG_NAME = None def __init__(self): self.clear() if not os.path.exists('release'): subprocess.check_call(['powershell', 'mkdir', 'release']) self.readVersion() self.createFileDict() self.packWotmod() self.clear() print 'created: %s v%s (%s) to %s' % (self.RELEASE, self.VERSION["version"], self.DATE, CLIENT_VERSION) def clear(self): try: shutil.rmtree(self.OUT_PATH, True) except OSError: pass def readVersion(self): filePath = os.path.join(self.BUILD_PATH, 'VERSION') with codecs.open(filePath, 'r', encoding='utf-8') as versionFile: data = versionFile.read().decode('utf-8') versionFile.close() self.VERSION = json.loads(data) def createFileDict(self): version = '{:.2f}'.format(float(self.VERSION["version"])) files = [] if self.VERSION["source"]: files.append((os.path.join(self.BUILD_PATH, self.VERSION["source"]), 'self.version = ', "'v%s (%s)'" % (version, self.DATE))) files.append((os.path.join(self.BUILD_PATH, self.VERSION["source"]), 'self.version_id = ', re.sub('[.\s]', '', '%s' % version))) if self.VERSION["meta"]: files.append((os.path.join(self.BUILD_PATH, self.VERSION["meta"]), '<version>', '%s</version>' % version)) if self.VERSION["config"]: files.append((os.path.join(self.BUILD_PATH, self.VERSION["config"]), '"version": ', re.sub('[.\s]', '', '%s' % version))) if self.VERSION["i18n"]: for path in glob.glob(os.path.join(self.BUILD_PATH, self.VERSION["i18n"], "*.json")): files.append((path, '"version": ', re.sub('[.\s]', '', '%s' % version))) for path in files: self.updateFiles(*path) def updateFiles(self, path, string, text): with open(path, 'a+') as xfile: data = xfile.readlines() newData = [] for line in data: if 'self.ids = ' in line: self.configName = re.split('self.ids = ', line)[1] if string in line: newData.append('%s%s%s\n' % (re.split(string, line)[0], string, text)) continue newData.append(line) xfile.close() with open(path, 'w') as xfile: xfile.writelines(newData) xfile.close() def packWotmod(self): self.RELEASE = '%s_%s.wotmod' % (NAME, '{:.2f}'.format(float(self.VERSION["version"]))) subprocess.check_call(['powershell', 'mkdir', self.PYC_PATH]) py = '%s' % os.path.join(self.BUILD_PATH, self.VERSION["source"]) pyc = '%sc' % self.VERSION["source"] ps = '%s\%s' % (os.path.realpath(self.OUT_PATH), 'create-7zip.ps1') metaPath = '%s' % os.path.join(self.BUILD_PATH, os.path.dirname(self.VERSION["meta"])) metaFile = os.path.basename(self.VERSION["meta"]) subprocess.check_call(['python', '-m', 'compileall', py]) subprocess.call('powershell robocopy %s %s %s /COPYALL /MOV' % (os.path.realpath(self.BUILD_PATH), os.path.realpath(self.PYC_PATH), pyc)) subprocess.call('powershell robocopy %s %s %s /COPYALL' % (os.path.realpath(metaPath), os.path.realpath(self.OUT_PATH), metaFile)) if self.VERSION["resources"]: for directory in self.VERSION["resources"]: if os.path.exists(os.path.join(self.BUILD_PATH, directory)): subprocess.call('powershell robocopy %s %s /COPYALL /E' % (os.path.realpath(os.path.join(self.BUILD_PATH, directory)), os.path.realpath(os.path.join(self.OUT_PATH, 'res', directory)))) with open(ps, 'w') as xfile: xfile.write('function create-7zip([String] $aDirectory, [String] $aZipfile){ [string]$pathToZipExe = "C:\Program Files\\7-zip\\7z.exe"; [Array]$arguments = "a", "-tzip", "-ssw", "-mx0", "$aZipfile", "$aDirectory"; & $pathToZipExe $arguments; }\n' 'create-7zip "%s" "%s"\n' 'create-7zip "%s" "%s"\n' % (os.path.realpath(os.path.join(self.OUT_PATH, 'res')), os.path.realpath(os.path.join('release', self.RELEASE)), os.path.realpath(os.path.join(self.OUT_PATH, metaFile)), os.path.realpath(os.path.join('release', self.RELEASE)))) if ADD_LICENSE: xfile.write('create-7zip "%s" "%s"\n' % (self.createLicense(), os.path.realpath(os.path.join('release', self.RELEASE)))) xfile.close() subprocess.call('powershell -executionpolicy bypass -command "& {Set-ExecutionPolicy AllSigned; %s; Set-ExecutionPolicy Undefined}"' % ps) def createLicense(self): b64 = "DQogICAgICAgIERPIFdIQVQgVEhFIEZVQ0sgWU9VIFdBTlQgVE8gUFVCTElDIExJQ0VOU0UgDQogICAgICAgICAgICAgICAgICAgIFZlcnNpb24gMiwgRGVjZW1iZXIgMjAwNCANCg0KIENvcHlyaWdodCAoQykgMjAwNCBTYW0gSG9jZXZhciA8c2FtQGhvY2V2YXIubmV0PiANCg0KIEV2ZXJ5b25lIGlzIHBlcm1pdHRlZCB0byBjb3B5IGFuZCBkaXN0cmlidXRlIHZlcmJhdGltIG9yIG1vZGlmaWVkIA0KIGNvcGllcyBvZiB0aGlzIGxpY2Vuc2UgZG9jdW1lbnQsIGFuZCBjaGFuZ2luZyBpdCBpcyBhbGxvd2VkIGFzIGxvbmcgDQogYXMgdGhlIG5hbWUgaXMgY2hhbmdlZC4gDQoNCiAgICAgICAgICAgIERPIFdIQVQgVEhFIEZVQ0sgWU9VIFdBTlQgVE8gUFVCTElDIExJQ0VOU0UgDQogICBURVJNUyBBTkQgQ09ORElUSU9OUyBGT1IgQ09QWUlORywgRElTVFJJQlVUSU9OIEFORCBNT0RJRklDQVRJT04gDQoNCiAgMC4gWW91IGp1c3QgRE8gV0hBVCBUSEUgRlVDSyBZT1UgV0FOVCBUTy4NCg==" output_name = os.path.realpath(os.path.join(self.OUT_PATH, 'LICENSE')) data = base64.b64decode(b64) with open(output_name, "wb") as output_file: output_file.write(data) output_file.close() return output_name build = Build()
ab1386762776bda1772c77591ca769769ffd917e
8e24e8bba2dd476f9fe612226d24891ef81429b7
/geeksforgeeks/python/python_all/93_5.py
4d0d66a1531f89f026f67385657698d9be34adb7
[]
no_license
qmnguyenw/python_py4e
fb56c6dc91c49149031a11ca52c9037dc80d5dcf
84f37412bd43a3b357a17df9ff8811eba16bba6e
refs/heads/master
2023-06-01T07:58:13.996965
2021-06-15T08:39:26
2021-06-15T08:39:26
349,059,725
1
1
null
null
null
null
UTF-8
Python
false
false
2,768
py
Python | Even Front digits Test in List Sometimes we may face a problem in which we need to find for a list if it contains numbers which are even. This particular utility has an application in day-day programming. Let’s discuss certain ways in which this task can be achieved. **Method #1 : Using list comprehension +map()** We can approach this problem by converting the elements to the strings and then testing the starting element of string and if they are even we can return true and then convert to set and test for size of result to be one. The conversion is done by map, set function converts to set and list comprehension checks for first element of string. __ __ __ __ __ __ __ # Python3 code to demonstrate # Even Front digits Test in List # using list comprehension + map() # initializing list test_list = [25, 6, 828829, 432] # printing original list print("The original list : " + str(test_list)) # using list comprehension + map() # Even Front digits Test in List res = len(set((int(sub[0]) % 2) for sub in map(str, test_list))) == 1 # print result print("Does each element start with even digit ? " + str(res)) --- __ __ **Output :** The original list : [25, 6, 828829, 432] Does each element start with even digit ? True **Method #2 : Using all() \+ list comprehension** This is yet another approach in which this problem can be solved. In this we use all function to check for all elements and return a Boolean result and list comprehension does the part of conversion of string by str function and checking for all elements with the first digit of first element to be even. __ __ __ __ __ __ __ # Python3 code to demonstrate # Even Front digits Test in List # using all() + list comprehension # initializing list test_list = [25, 6, 828829, 432] # printing original list print("The original list : " + str(test_list)) # using all() + list comprehension # Even Front digits Test in List res = all(not int(str(i)[0]) % 2 for i in test_list) # print result print("Does each element start with even digit ? " + str(res)) --- __ __ **Output :** The original list : [25, 6, 828829, 432] Does each element start with even digit ? True Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics. To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. My Personal Notes _arrow_drop_up_ Save
c96dcad8ec65c2a84f7547eb6003c0caa5b79839
16a375a4750241533614065deaef4b3951d4e8bb
/cmdstanpy_attempt1.py
6ab55b28f72a31e6e457d0fc067f49ac5c830fa9
[]
no_license
tommylees112/stan_hydro_model
d625b20fec2e67de5addb97fea93538c6adadb55
8570638004521e5a80478bc1f42ad62cb5dbb602
refs/heads/master
2022-11-22T02:22:25.395025
2020-07-07T18:00:38
2020-07-07T18:00:38
277,887,213
0
0
null
null
null
null
UTF-8
Python
false
false
1,590
py
from pathlib import Path import cmdstanpy from cmdstanpy import cmdstan_path, CmdStanModel, CmdStanMCMC import pandas as pd import numpy as np import matplotlib.pyplot as plt from typing import Dict import arviz as az import os cmdstanpy.CMDSTAN_PATH = "/Users/tommylees/.cmdstanpy/cmdstan-2.21.0" print(cmdstan_path()) def clear_pre_existing_files(): os.system( """ pchs=`find . -name "*.gch"`; for f in $pchs; do rm $f; done; """ ) os.system( """ hpps=`find . -name "*.hpp"`; for f in $hpps; do rm $f; done; """ ) print("Deleted *.hpp and *.gch files") if __name__ == "__main__": clear_pre_existing_files() # set the directories model_dir = Path("stan_code") data_dir = Path("data") data = pd.read_csv(data_dir / "cherwell_station.csv") # ---- data ---- # Q: np.ndarray = data["discharge_spec"].values precip: np.ndarray = data["precipitation"].values initial_state: float = 0.0 discharge_data: Dict = { "T" : len(Q), "Q" : Q , "P": precip, "S_t0": initial_state} # ---- model ---- #  stan_file = model_dir / "bernoulli.stan" stan_model = CmdStanModel(stan_file=stan_file) stan_model.compile() # ---- fit parameters ---- #  abcmodel_fit: CmdStanMCMC = stan_model.sample( data=discharge_data, chains=4, cores=1, seed=1111, show_progress=True, ) # ---- get simulations ---- # posterior = az.from_cmdstanpy( posterior=bern_fit, posterior_predictive="y", )
3b1a146bea831d8de9a8abf40740088fce48b2aa
a3b8082e2d6160545591953d718fe197f2a1e8c2
/pecobro/consts.py
53d620c3c00d0a7e54836a10f558d5592fcec200
[]
no_license
asutherland/pecobro
887cc49509c4ce012bba133f9e2604b92b736bcc
6c59619c4b33cfcc232620ab29d8d9da1362cf9c
refs/heads/master
2021-01-10T21:23:59.238520
2008-05-20T11:27:22
2008-05-20T11:27:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,907
py
# ***** BEGIN LICENSE BLOCK ***** # Version: MPL 1.1/GPL 2.0/LGPL 2.1 # # The contents of this file are subject to the Mozilla Public License Version # 1.1 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # # The Original Code is the "pecobro" Peformance Code Browser. # # The Initial Developer of the Original Code is # Mozilla Messaging, Inc. # Portions created by the Initial Developer are Copyright (C) 2008 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Andrew Sutherland <[email protected]> # # Alternatively, the contents of this file may be used under the terms of # either the GNU General Public License Version 2 or later (the "GPL"), or # the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), # in which case the provisions of the GPL or the LGPL are applicable instead # of those above. If you wish to allow use of your version of this file only # under the terms of either the GPL or the LGPL, and not to allow others to # use your version of this file under the terms of the MPL, indicate your # decision by deleting the provisions above and replace them with the notice # and other provisions required by the GPL or the LGPL. If you do not delete # the provisions above, a recipient may use your version of this file under # the terms of any one of the MPL, the GPL or the LGPL. # # ***** END LICENSE BLOCK ***** defines = {'XP_UNIX': True, 'AB_CD': 'en-us', 'APP_UA_NAME': 'Dummy', 'APP_VERSION': '1.0', 'MOZ_UPDATE_CHANNEL': 'http://www.example.com/'}
df236f657fa4f27802eff0c8f610c5aa3d356661
222f2534b9ac7a32bd7eec939f296b23ecb9db8b
/construce_array.py
ab6e55c0b4208a72cb0dcbabc48e943ab3252af5
[]
no_license
hzphzp/acm
0900774a4e3ca08873941dc213db0c54736723a6
4bd9cf793b3e09e21db93cc3ca51e9c2a3b8b715
refs/heads/master
2020-03-27T06:56:06.795492
2018-09-22T08:15:36
2018-09-22T08:15:36
146,148,332
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
# Complete the countArray function below. def countArray(n, k, x): if (n % 2) == 1: count = (x == 1) add = k - 2 if (n % 2) == 0: count = (x != 1) add = (k - 2) * (k - 1) for i in range((n - 3) // 2 + 1): count += add add *= (k - 1) * (k - 1) add = add % 1000000007 count = count % 1000000007 return count % 1000000007 print(countArray(17048, 14319, 1))