blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
ede6a7910e34d87a8089ec7a7a792cc145ae0a44
ec700463d9af81f68a477535ac233646f4d262f7
/python/__main__.py
2966615ac56651c81b277b34316ddc91361aca73
[]
no_license
gregjhansell97/grid-map
36579afa7beadb78a4b8cc53e2c7f45c75ac28a2
7d4c25b583474ec45265b01e524ed0884aaa2937
refs/heads/master
2020-03-16T20:42:24.156940
2018-10-02T23:29:58
2018-10-02T23:29:58
132,969,337
0
1
null
null
null
null
UTF-8
Python
false
false
453
py
from grid_map import GridMap import timeit if __name__ == "__main__": gm = GridMap(5, bit_depth=10) for x in range(1000): for y in range(1000): gm.add(x, y, "loc:" + str((x, y))) gm = gm.sub_grids[1][0] print(gm) gm = gm.sub_grids[0][0] print(gm) gm = gm.sub_grids[0][0] print(gm) gm = gm.sub_grids[0][0] print(gm) gm = gm.sub_grids[0][0] print(gm) gm = gm.sub_grids[0][0]
e35cce8f90ca96866959109432451fecbde33194
e7515012ccb999a499947bea3ef01e82b9a2b15f
/plaso/parsers/winjob.py
f971a8822e0f8e1fe7a3a3157e3264dd4c4eaa56
[ "Apache-2.0" ]
permissive
vonnopsled/plaso
ebfe5af84b955b9e40610bd76598671256ddea4f
c14e3a0c1db0b05280ff58219d33f487c0a40a6f
refs/heads/master
2020-12-31T04:07:25.047511
2016-01-04T07:07:01
2016-01-04T07:07:01
46,817,224
0
0
null
2015-11-24T20:38:20
2015-11-24T20:38:20
null
UTF-8
Python
false
false
10,311
py
# -*- coding: utf-8 -*- """Parser for Windows Scheduled Task job files.""" import construct from plaso.events import time_events from plaso.lib import binary from plaso.lib import errors from plaso.lib import eventdata from plaso.lib import timelib from plaso.parsers import interface from plaso.parsers import manager __author__ = 'Brian Baskin ([email protected])' class WinJobEvent(time_events.TimestampEvent): """Convenience class for a Windows Scheduled Task event. Attributes: application: string that contains the path to job executable. comment: string that contains the job description. parameter: string that contains the application command line parameters. trigger: an integer that contains the event trigger, e.g. DAILY. username: string that contains the username that scheduled the job. working_dir: string that contains the working path for task. """ DATA_TYPE = u'windows:tasks:job' def __init__( self, timestamp, timestamp_description, application, parameter, working_dir, username, trigger, description): """Initializes the event object. Args: timestamp: the timestamp which is an integer containing the number of micro seconds since January 1, 1970, 00:00:00 UTC. timestamp_description: the usage string for the timestamp value. application: string that contains the path to job executable. parameter: string that contains the application command line parameters. working_dir: string that contains the working path for task. username: string that contains the username that scheduled the job. trigger: an integer that contains the event trigger, e.g. DAILY. description: string that contains the job description. """ super(WinJobEvent, self).__init__(timestamp, timestamp_description) self.application = application self.comment = description self.parameter = parameter self.trigger = trigger self.username = username self.working_dir = working_dir class WinJobParser(interface.FileObjectParser): """Parse Windows Scheduled Task files for job events.""" NAME = u'winjob' DESCRIPTION = u'Parser for Windows Scheduled Task job (or At-job) files.' _PRODUCT_VERSIONS = { 0x0400: u'Windows NT 4.0', 0x0500: u'Windows 2000', 0x0501: u'Windows XP', 0x0600: u'Windows Vista', 0x0601: u'Windows 7', 0x0602: u'Windows 8', 0x0603: u'Windows 8.1' } _JOB_FIXED_STRUCT = construct.Struct( u'job_fixed', construct.ULInt16(u'product_version'), construct.ULInt16(u'format_version'), construct.Bytes(u'job_uuid', 16), construct.ULInt16(u'application_length_offset'), construct.ULInt16(u'trigger_offset'), construct.ULInt16(u'error_retry_count'), construct.ULInt16(u'error_retry_interval'), construct.ULInt16(u'idle_deadline'), construct.ULInt16(u'idle_wait'), construct.ULInt32(u'priority'), construct.ULInt32(u'max_run_time'), construct.ULInt32(u'exit_code'), construct.ULInt32(u'status'), construct.ULInt32(u'flags'), construct.ULInt16(u'ran_year'), construct.ULInt16(u'ran_month'), construct.ULInt16(u'ran_weekday'), construct.ULInt16(u'ran_day'), construct.ULInt16(u'ran_hour'), construct.ULInt16(u'ran_minute'), construct.ULInt16(u'ran_second'), construct.ULInt16(u'ran_millisecond'), ) # Using Construct's utf-16 encoding here will create strings with their # null terminators exposed. Instead, we'll read these variables raw and # convert them using Plaso's ReadUTF16() for proper formatting. _JOB_VARIABLE_STRUCT = construct.Struct( u'job_variable', construct.ULInt16(u'running_instance_count'), construct.ULInt16(u'application_length'), construct.String( u'application', lambda ctx: ctx.application_length * 2), construct.ULInt16(u'parameter_length'), construct.String( u'parameter', lambda ctx: ctx.parameter_length * 2), construct.ULInt16(u'working_dir_length'), construct.String( u'working_dir', lambda ctx: ctx.working_dir_length * 2), construct.ULInt16(u'username_length'), construct.String( u'username', lambda ctx: ctx.username_length * 2), construct.ULInt16(u'comment_length'), construct.String( u'comment', lambda ctx: ctx.comment_length * 2), construct.ULInt16(u'userdata_length'), construct.String( u'userdata', lambda ctx: ctx.userdata_length), construct.ULInt16(u'reserved_length'), construct.String( u'reserved', lambda ctx: ctx.reserved_length), construct.ULInt16(u'test'), construct.ULInt16(u'trigger_size'), construct.ULInt16(u'trigger_reserved1'), construct.ULInt16(u'sched_start_year'), construct.ULInt16(u'sched_start_month'), construct.ULInt16(u'sched_start_day'), construct.ULInt16(u'sched_end_year'), construct.ULInt16(u'sched_end_month'), construct.ULInt16(u'sched_end_day'), construct.ULInt16(u'sched_start_hour'), construct.ULInt16(u'sched_start_minute'), construct.ULInt32(u'sched_duration'), construct.ULInt32(u'sched_interval'), construct.ULInt32(u'trigger_flags'), construct.ULInt32(u'trigger_type'), construct.ULInt16(u'trigger_arg0'), construct.ULInt16(u'trigger_arg1'), construct.ULInt16(u'trigger_arg2'), construct.ULInt16(u'trigger_padding'), construct.ULInt16(u'trigger_reserved2'), construct.ULInt16(u'trigger_reserved3')) def ParseFileObject(self, parser_mediator, file_object, **kwargs): """Parses a Windows job file-like object. Args: parser_mediator: A parser mediator object (instance of ParserMediator). file_object: A file-like object. Raises: UnableToParseFile: when the file cannot be parsed. """ try: header_struct = self._JOB_FIXED_STRUCT.parse_stream(file_object) except (IOError, construct.FieldError) as exception: raise errors.UnableToParseFile( u'Unable to parse Windows Task Job file with error: {0:s}'.format( exception)) if not header_struct.product_version in self._PRODUCT_VERSIONS: raise errors.UnableToParseFile(( u'Unsupported product version in: 0x{0:04x} Scheduled Task ' u'file').format(header_struct.product_version)) if not header_struct.format_version == 1: raise errors.UnableToParseFile( u'Unsupported format version in: {0:d} Scheduled Task file'.format( header_struct.format_version)) try: job_variable_struct = self._JOB_VARIABLE_STRUCT.parse_stream(file_object) except (IOError, construct.FieldError) as exception: raise errors.UnableToParseFile( u'Unable to parse Windows Task Job file with error: {0:s}'.format( exception)) try: last_run_date = timelib.Timestamp.FromTimeParts( header_struct.ran_year, header_struct.ran_month, header_struct.ran_day, header_struct.ran_hour, header_struct.ran_minute, header_struct.ran_second, microseconds=header_struct.ran_millisecond * 1000, timezone=parser_mediator.timezone) except errors.TimestampError as exception: last_run_date = None parser_mediator.ProduceParseError( u'unable to determine last run date with error: {0:s}'.format( exception)) try: scheduled_date = timelib.Timestamp.FromTimeParts( job_variable_struct.sched_start_year, job_variable_struct.sched_start_month, job_variable_struct.sched_start_day, job_variable_struct.sched_start_hour, job_variable_struct.sched_start_minute, 0, # Seconds are not stored. timezone=parser_mediator.timezone) except errors.TimestampError as exception: scheduled_date = None parser_mediator.ProduceParseError( u'unable to determine scheduled date with error: {0:s}'.format( exception)) application = binary.ReadUTF16(job_variable_struct.application) description = binary.ReadUTF16(job_variable_struct.comment) parameter = binary.ReadUTF16(job_variable_struct.parameter) username = binary.ReadUTF16(job_variable_struct.username) working_dir = binary.ReadUTF16(job_variable_struct.working_dir) if last_run_date is not None: event_object = WinJobEvent( last_run_date, eventdata.EventTimestamp.LAST_RUNTIME, application, parameter, working_dir, username, job_variable_struct.trigger_type, description) parser_mediator.ProduceEvent(event_object) if scheduled_date is not None: event_object = WinJobEvent( scheduled_date, u'Scheduled To Start', application, parameter, working_dir, username, job_variable_struct.trigger_type, description) parser_mediator.ProduceEvent(event_object) # TODO: create a timeless event object if last_run_date and scheduled_date # are None? What should be the description of this event? if job_variable_struct.sched_end_year: try: scheduled_end_date = timelib.Timestamp.FromTimeParts( job_variable_struct.sched_end_year, job_variable_struct.sched_end_month, job_variable_struct.sched_end_day, 0, # Hours are not stored. 0, # Minutes are not stored. 0, # Seconds are not stored. timezone=parser_mediator.timezone) except errors.TimestampError as exception: scheduled_end_date = None parser_mediator.ProduceParseError( u'unable to determine scheduled end date with error: {0:s}'.format( exception)) if scheduled_end_date is not None: event_object = WinJobEvent( scheduled_end_date, u'Scheduled To End', application, parameter, working_dir, username, job_variable_struct.trigger_type, description) parser_mediator.ProduceEvent(event_object) manager.ParsersManager.RegisterParser(WinJobParser)
d2856e764575cdb8308c02b69d2303ddf1692b83
c6d852e5842cf6f74123445d20ff03876377ae26
/lemon/python22/lemon_14_190918_测试框架_unittest/test_练习相减02.py
447882bd4b22fb5aed635fbc7eb95a77abf6e076
[]
no_license
songyongzhuang/PythonCode_office
0b3d35ca5d58bc305ae90fea8b1e8c7214619979
cfadd3132c2c7c518c784589e0dab6510a662a6c
refs/heads/master
2023-02-13T14:06:10.610935
2021-01-14T09:11:32
2021-01-14T09:11:32
327,183,429
0
0
null
null
null
null
UTF-8
Python
false
false
1,436
py
# --*-- coding : utf-8 --*-- # Project : python22 # Current file : test_练习相减02.py # Author : Administrator # Create time : 2019-09-19 10:22 # IDE : PyCharm # TODO 成长很苦, 进步很甜, 加油! import unittest def minus(a, b): # add 加起来 """ 相减 """'' return a - b x = 3 y = 5 expected = -2 class TestMinus(unittest.TestCase): # 测试类方法,每一个测试类只运行一次 @classmethod def setUpClass(cls): print('每一个测试类之前只运行一次') @classmethod def tearDownClass(cls): print('每一个测试类之后只运行一次') # 测试用例的设计 # 前置条件 def setUp(self): """前置条件 测试用例方法之前自动运行 setUp 里面的程序""" print('每个测试用例执行前置条件') # 后置条件 def tearDown(self): """后置条件 测试用例方法之后自动运行 tearDown 里面的程序""" print('每个测试用例执行后置条件') def test_add_success(self): """ 判断表达式是否为真 """'' self.assertTrue(expected == minus(x, y)) def test_add_error(self): """如果确定两个对象不相等,则失败。"""'' try: self.assertEqual(-2, minus(x, y)) except SyntaxError: pass if __name__ == '__main__': unittest.main()
4cb569f1636bfc4eae939e6f9a0744d37db16326
20899d453bc61c169153338ac9d22d324df089c1
/abc/abc162/B.py
9eb9826bfab9e83ccd7c92096c9c66a9611d1f39
[]
no_license
mui-nyan/AtCoder
b2d926b113963915426af679bf9b28430569707c
a702280f11a5b0b1b29dd099dbfc7b1c31fb89fd
refs/heads/master
2022-07-04T16:32:41.164564
2022-06-19T07:24:11
2022-06-19T07:24:11
182,425,947
0
0
null
null
null
null
UTF-8
Python
false
false
778
py
import math from functools import reduce from collections import deque import sys sys.setrecursionlimit(10**7) # スペース区切りの入力を読み込んで数値リストにして返します。 def get_nums_l(): return [ int(s) for s in input().split(" ")] # 改行区切りの入力をn行読み込んで数値リストにして返します。 def get_nums_n(n): return [ int(input()) for _ in range(n)] # 改行またはスペース区切りの入力をすべて読み込んでイテレータを返します。 def get_all_int(): return map(int, open(0).read().split()) def log(*args): print("DEBUG:", *args, file=sys.stderr) n = int(input()) ans = 0 for i in range(1, n+1): if i%3 == 0 or i%5 == 0: continue ans += i print(ans)
85e88feb381eeaebe8cd19e82b3cf2a9e88051bc
c8d7f2da5ff9e13a5bb6f92b9387a336e7059644
/dolo/numeric/matrix_equations.py
0d3eb87483d5360957fdf884ec03b391a427d468
[ "BSD-2-Clause" ]
permissive
TomAugspurger/dolo
675e5c051e7fdcc8d0af441335d526408128b71f
5d9f0f772860eadf3b9df79e47d158155835bd6b
refs/heads/master
2020-12-25T12:47:30.156775
2013-02-11T20:13:56
2013-02-11T20:13:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,339
py
from dolo.numeric.tensor import sdot,mdot import numpy as np TOL = 1e-10 # credits : second_order_solver is adapted from Sven Schreiber's port of Uhlig's Toolkit. def second_order_solver(FF,GG,HH): from scipy.linalg import qz from dolo.numeric.extern.qz import qzdiv from numpy import array,mat,c_,r_,eye,zeros,real_if_close,diag,allclose,where,diagflat from numpy.linalg import solve Psi_mat = array(FF) Gamma_mat = array(-GG) Theta_mat = array(-HH) m_states = FF.shape[0] Xi_mat = r_[c_[Gamma_mat, Theta_mat], c_[eye(m_states), zeros((m_states, m_states))]] Delta_mat = r_[c_[Psi_mat, zeros((m_states, m_states))], c_[zeros((m_states, m_states)), eye(m_states)]] AAA,BBB,Q,Z = qz(Delta_mat, Xi_mat) Delta_up,Xi_up,UUU,VVV = [real_if_close(mm) for mm in (AAA,BBB,Q,Z)] Xi_eigval = diag(Xi_up)/where(diag(Delta_up)>TOL, diag(Delta_up), TOL) Xi_sortindex = abs(Xi_eigval).argsort() # (Xi_sortabs doesn't really seem to be needed) Xi_sortval = Xi_eigval[Xi_sortindex] Xi_select = slice(0, m_states) stake = (abs(Xi_sortval[Xi_select])).max() + TOL Delta_up,Xi_up,UUU,VVV = qzdiv(stake,Delta_up,Xi_up,UUU,VVV) try: # check that all unused roots are unstable assert abs(Xi_sortval[m_states]) > (1-TOL) # check that all used roots are stable assert abs(Xi_sortval[Xi_select]).max() < 1+TOL except: raise BKError('generic') # check for unit roots anywhere # assert (abs((abs(Xi_sortval) - 1)) > TOL).all() Lambda_mat = diagflat(Xi_sortval[Xi_select]) VVVH = VVV.T VVV_2_1 = VVVH[m_states:2*m_states, :m_states] VVV_2_2 = VVVH[m_states:2*m_states, m_states:2*m_states] UUU_2_1 = UUU[m_states:2*m_states, :m_states] PP = - solve(VVV_2_1, VVV_2_2) # slightly different check than in the original toolkit: assert allclose(real_if_close(PP), PP.real) PP = PP.real ## end of solve_qz! print(PP.__class__) return [Xi_sortval[Xi_select],PP] def solve_sylvester(A,B,C,D,Ainv = None): # Solves equation : A X + B X [C,...,C] + D = 0 # where X is a multilinear function whose dimension is determined by D # inverse of A can be optionally specified as an argument import slycot n_d = D.ndim - 1 n_v = C.shape[1] n_c = D.size/n_v**n_d # import dolo.config # opts = dolo.config.use_engine # if opts['sylvester']: # DD = D.flatten().reshape( n_c, n_v**n_d) # [err,XX] = dolo.config.engine.engine.feval(2,'gensylv',n_d,A,B,C,-DD) # X = XX.reshape( (n_c,)+(n_v,)*(n_d)) DD = D.reshape( n_c, n_v**n_d ) if n_d == 1: CC = C else: CC = np.kron(C,C) for i in range(n_d-2): CC = np.kron(CC,C) if Ainv != None: Q = sdot(Ainv,B) S = sdot(Ainv,DD) else: Q = np.linalg.solve(A,B) S = np.linalg.solve(A,DD) n = n_c m = n_v**n_d XX = slycot.sb04qd(n,m,Q,CC,-S) X = XX.reshape( (n_c,)+(n_v,)*(n_d) ) return X class BKError(Exception): def __init__(self,type): self.type = type def __str__(self): return 'Blanchard-Kahn error ({0})'.format(self.type)
9eb155ab168b320e301794c6d06721d8159379c8
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/329/usersdata/297/91364/submittedfiles/dec2bin.py
f499b6f8e6c0b866d68629df150aa2c83d3d617b
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
# -*- coding: utf-8 -*- while(true): p=int(input('digite um numero p: ')) q=int(input('digite um numero q: ')) if q>=p: break if str(p) in str(q): print('S') else : print('N')
91ed919fe4f82d66d4c1e181233dc01892ee1182
420376c5a1fbf8a4572545a9c891a0f8f204ed5b
/scrapy_amazon/items.py
d2aeed20eb2ea2833ebfb79da6fce00b903d6891
[]
no_license
kishoresurana/scrapy_amazon
946fb8fe198736ba4233a2f3727ca1a1873ae937
bbb72cdb5f468d5c8b605d273bb5c93b9a2b249a
refs/heads/master
2020-12-25T21:55:35.192394
2014-07-27T20:09:24
2014-07-27T20:09:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class ScrapyAmazonItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() price = scrapy.Field() condition = scrapy.Field() seller = scrapy.Field() delivery = scrapy.Field() title = scrapy.Field() date = scrapy.Field()
c4e8389d93f36f8805d8c3cdf58cabc747343f84
91fe8f479fa921fa84111d19222a5c6aa6eff030
/basis/execute-unit/aiohttp-and-asyncio-test.py
25312be5c6ecba564f33a7ed14ddc40b68021a95
[]
no_license
romanticair/python
2055c9cdaa46894c9788d5797643283786ed46dd
6f91fe5e7cbedcdf4b8f7baa7641fd615b4d6141
refs/heads/master
2022-11-03T17:17:17.608786
2019-07-05T07:07:29
2019-07-05T07:07:29
195,356,190
0
1
null
2022-10-14T20:51:14
2019-07-05T07:00:33
Python
UTF-8
Python
false
false
1,355
py
""" asyncio 可以实现单线程并发IO操作。如果仅用在客户端,发挥的威力不大。 如果把asyncio用在服务器端,例如Web服务器,由于HTTP连接就是IO操作, 因此可以用单线程+coroutine实现多用户的高并发支持 asyncio实现了TCP、UDP、SSL等协议,aiohttp则是基于asyncio实现的HTTP框架 aiohttp的初始化函数init()也是一个coroutine,loop.create_server()则利用asyncio创建TCP服务 编写一个HTTP服务器,分别处理以下URL 1. / - 首页返回b'<h1>Index</h1>'; 2. /hello/{name} - 根据URL参数返回文本hello, %s! """ import asyncio from aiohttp import web async def index(request): await asyncio.sleep(0.5) return web.Response(body=b'<h1>Index</h1>') async def hello(request): await asyncio.sleep(0.5) text = '<h1>hello, %s!</h1>' % request.match_info['name'] return web.Response(body=text.encode('utf-8')) async def init(loop): app = web.Application(loop=loop) app.router.add_route('GET', '/', index) app.router.add_route('GET', '/hello/{name}', hello) srv = await loop.create_server(app.make_handler(), '127.0.0.1', 3000) print('Server started at http://127.0.0.1:3000...') return srv if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(init(loop)) loop.run_forever()
6a42d49d7d83b0b0520c6e6d394d79b1e6c4fd48
b8302a17ad124b2432380c7274e4780ec5adfe55
/exercises/de/solution_04_03.py
e63f7c7a9d4320eaae8436a4c058573e32639ff4
[ "MIT", "CC-BY-NC-4.0" ]
permissive
FrankGrimm/spacy-course
10da4ebf976d93aec50aa1b200019b4217f4043e
5e09ef9d296dad2b0fd5ff1945f4cf9a55109906
refs/heads/master
2022-04-24T18:18:06.202131
2020-04-21T19:17:09
2020-04-21T19:17:09
257,692,388
1
0
MIT
2020-04-21T19:14:21
2020-04-21T19:14:20
null
UTF-8
Python
false
false
650
py
import json from spacy.matcher import Matcher from spacy.lang.de import German with open("exercises/de/iphone.json") as f: TEXTS = json.loads(f.read()) nlp = German() matcher = Matcher(nlp.vocab) # Zwei Tokens, deren kleingeschriebene Formen "iphone" und "x" sind pattern1 = [{"LOWER": "iphone"}, {"LOWER": "x"}] # Token mit der kleingeschriebenen Form "iphone" und eine Ziffer pattern2 = [{"LOWER": "iphone"}, {"IS_DIGIT": True}] # Füge Patterns zum Matcher hinzu und überprüfe die Resultate matcher.add("GADGET", None, pattern1, pattern2) for doc in nlp.pipe(TEXTS): print([doc[start:end] for match_id, start, end in matcher(doc)])
e9056dcc8a8628a344e0ddf4e9add6e257ddabae
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_310/ch25_2019_03_01_00_00_25_791523.py
70bb03eaebe4809ffcc0bcea7e9b4073d6f8312b
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
km=int(input(distancia): if km <=200: preco= km*0.5 print("{:.2f}".format(preco)) else: preco= km*0.45 print("{:.2f}".format(preco))
3cc7dc94fdb029bb70bc409a3dc8ffef0368bf06
2cec0797981b73c497866a75fb6d33f4c3a4c06c
/brain_tumor_classification/modules/data/utils.py
e5cd18bf3458f2de6aa299ac09b545c77cfc04b4
[]
no_license
Vadbeg/brain_tumor_classification
ed44e50076627a0682e2eca13cf115716c510ed1
ba87b65717cd1fe75871f3108db1394de271c62d
refs/heads/master
2023-08-01T13:46:27.176780
2021-09-19T15:14:32
2021-09-19T15:14:32
397,667,617
1
0
null
null
null
null
UTF-8
Python
false
false
2,718
py
"""Module with utilities for dataset""" from pathlib import Path from typing import List, Optional, Tuple, Union import numpy as np from monai.transforms import ( AddChanneld, Compose, LoadImaged, Resized, ScaleIntensityRanged, Transform, ) from torch.utils.data import DataLoader, Dataset def get_train_val_paths( train_path: Union[str, Path], train_split_percent: float = 0.7, ct_file_extension: str = '*.nii.gz', item_limit: Optional[int] = None, shuffle: bool = True, ) -> Tuple[List[Path], List[Path]]: train_path = Path(train_path) list_of_paths = list(train_path.glob(ct_file_extension)) if shuffle: np.random.shuffle(list_of_paths) edge_value = int(train_split_percent * len(list_of_paths)) train_list_of_paths = list_of_paths[:edge_value] val_list_of_paths = list_of_paths[edge_value:] if item_limit: train_list_of_paths = train_list_of_paths[:item_limit] val_list_of_paths = val_list_of_paths[:item_limit] return train_list_of_paths, val_list_of_paths def create_data_loader( dataset: Dataset, batch_size: int = 1, shuffle: bool = True, num_workers: int = 2 ) -> DataLoader: data_loader = DataLoader( dataset=dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, ) return data_loader def get_load_transforms( img_key: str, original_min: float = 0.0, original_max: float = 200.0, res_min: float = 0.0, res_max: float = 1.0, spatial_size: Tuple[int, int, int] = (196, 196, 128), ) -> Compose: preprocessing_transforms = get_preprocessing_transforms( img_key=img_key, original_min=original_min, original_max=original_max, res_min=res_min, res_max=res_max, spatial_size=spatial_size, ) load_transforms = Compose( [LoadImaged(keys=[img_key], dtype=np.float32), preprocessing_transforms] ) return load_transforms def get_preprocessing_transforms( img_key: str, original_min: float = 0.0, original_max: float = 200.0, res_min: float = 0.0, res_max: float = 1.0, spatial_size: Tuple[int, int, int] = (196, 196, 128), ) -> Compose: preprocessing_transforms = Compose( [ AddChanneld(keys=[img_key]), ScaleIntensityRanged( keys=[img_key], a_min=original_min, a_max=original_max, b_min=res_min, b_max=res_max, clip=True, ), Resized(keys=[img_key], spatial_size=spatial_size), ] ) return preprocessing_transforms
e3f9b9ccd9704d797def23c50f582b8c877f8f37
9059d9cbad4188ed2980f551151b9678ffb68b44
/Chapter12_logging/12-3.logging_config_example.py
0262db2fa4267b523bc6fa234849422e7c5042d2
[]
no_license
mhee4321/python_basic
ad0e64fa21ecfab231a6627ba6abeea82d725690
86031975a9121efe5785e83f663255a7b4e4ba77
refs/heads/master
2023-02-11T20:31:54.353219
2021-01-07T05:44:31
2021-01-07T05:44:31
326,850,491
0
0
null
null
null
null
UTF-8
Python
false
false
750
py
import logging # 로깅 모듈 탑재 import logging.config # 로깅 설정 모듈 탑재 # 설정 파일 읽어 오기 logging.config.fileConfig('12-2.logging.conf') # 로거 생성 logger = logging.getLogger(__name__) # 로거 생성 # 로그 메시지 출력 logger.debug('이 메시지는 개발자만 이해해요.') # DEBUG 로그 출력 logger.info('생각대로 동작 하고 있어요.') # INFO 로그 출력 logger.warning('곧 문제가 생길 가능성이 높습니다.') # WARNING 로그 출력 logger.error('문제가 생겼어요.기능이 동작 안해요.') # ERROR 로그 출력 logger.critical('시스템이 다운됩니다!!!!') # CRITICAL 로그 출력
8a4871b4d661ef4a0a122394b00d6b5f55566f2e
9d2bafb07baf657c447d09a6bc5a6e551ba1806d
/ros2_ws/build/std_msgs/rosidl_generator_py/std_msgs/msg/_multi_array_layout.py
e830a59dc03efc5d1893c4f8d32f97cabca4ecd6
[]
no_license
weidafan/ros2_dds
f65c4352899a72e1ade662b4106e822d80a99403
c0d9e6ff97cb7cc822fe25a62c0b1d56f7d12c59
refs/heads/master
2021-09-05T20:47:49.088161
2018-01-30T21:03:59
2018-01-30T21:03:59
119,592,597
1
0
null
null
null
null
UTF-8
Python
false
false
3,630
py
# generated from rosidl_generator_py/resource/_msg.py.em # generated code does not contain a copyright notice import logging import traceback class Metaclass(type): """Metaclass of message 'MultiArrayLayout'.""" _CONVERT_FROM_PY = None _CONVERT_TO_PY = None _DESTROY_ROS_MESSAGE = None _TYPE_SUPPORT = None __constants = { } @classmethod def __import_type_support__(cls): try: from rosidl_generator_py import import_type_support module = import_type_support('std_msgs') except ImportError: logger = logging.getLogger('rosidl_generator_py.MultiArrayLayout') logger.debug( 'Failed to import needed modules for type support:\n' + traceback.format_exc()) else: cls._CONVERT_FROM_PY = module.convert_from_py_msg_multi_array_layout cls._CONVERT_TO_PY = module.convert_to_py_msg_multi_array_layout cls._TYPE_SUPPORT = module.type_support_msg_multi_array_layout cls._DESTROY_ROS_MESSAGE = module.destroy_ros_message_msg_multi_array_layout from std_msgs.msg import MultiArrayDimension if MultiArrayDimension.__class__._TYPE_SUPPORT is None: MultiArrayDimension.__class__.__import_type_support__() @classmethod def __prepare__(cls, name, bases, **kwargs): # list constant names here so that they appear in the help text of # the message class under "Data and other attributes defined here:" # as well as populate each message instance return { } class MultiArrayLayout(metaclass=Metaclass): """Message class 'MultiArrayLayout'.""" __slots__ = [ '_dim', '_data_offset', ] def __init__(self, **kwargs): assert all(['_' + key in self.__slots__ for key in kwargs.keys()]), \ 'Invalid arguments passed to constructor: %r' % kwargs.keys() self.dim = kwargs.get('dim', list()) self.data_offset = kwargs.get('data_offset', int()) def __repr__(self): typename = self.__class__.__module__.split('.') typename.pop() typename.append(self.__class__.__name__) args = [s[1:] + '=' + repr(getattr(self, s, None)) for s in self.__slots__] return '%s(%s)' % ('.'.join(typename), ', '.join(args)) @property def dim(self): """Message field 'dim'.""" return self._dim @dim.setter def dim(self, value): from std_msgs.msg import MultiArrayDimension from collections import Sequence from collections import Set from collections import UserList from collections import UserString assert \ ((isinstance(value, Sequence) or isinstance(value, Set) or isinstance(value, UserList)) and not isinstance(value, str) and not isinstance(value, UserString) and all([isinstance(v, MultiArrayDimension) for v in value]) and True), \ "The 'dim' field must be a set or sequence and each value of type 'MultiArrayDimension'" self._dim = value @property def data_offset(self): """Message field 'data_offset'.""" return self._data_offset @data_offset.setter def data_offset(self, value): assert \ isinstance(value, int), \ "The 'data_offset' field must of type 'int'" assert value >= 0 and value < 4294967296, \ "The 'data_offset' field must be an unsigned integer in [0, 4294967296)" self._data_offset = value
4b32a00c650bafd26ad85ee0f76ed96d200dfce0
d99ac626d62c663704444a9cce7e7fc793a9e75e
/crypto_implementations/virgil-crypto-c/wrappers/python/virgil_crypto_lib/foundation/_c_bridge/_vscf_alg_info_der_serializer.py
222936908c80c90638db7d52f3cdf4d1a644e7ae
[ "LicenseRef-scancode-warranty-disclaimer", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Experiment5X/CryptoFunctionDetection
3ab32d5573a249d24db1faf772721bc80b8d905d
dac700193e7e84963943593e36844b173211a8a1
refs/heads/master
2023-04-19T09:12:35.828268
2021-05-13T22:39:27
2021-05-13T22:39:27
355,299,557
1
0
null
null
null
null
UTF-8
Python
false
false
6,174
py
# Copyright (C) 2015-2020 Virgil Security, Inc. # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # (1) Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # (3) Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Lead Maintainer: Virgil Security Inc. <[email protected]> from virgil_crypto_lib._libs import * from ctypes import * from ._vscf_impl import vscf_impl_t from virgil_crypto_lib.common._c_bridge import vsc_buffer_t class vscf_alg_info_der_serializer_t(Structure): pass class VscfAlgInfoDerSerializer(object): """Provide DER serializer of algorithm information.""" def __init__(self): """Create underlying C context.""" self._ll = LowLevelLibs() self._lib = self._ll.foundation def vscf_alg_info_der_serializer_new(self): vscf_alg_info_der_serializer_new = self._lib.vscf_alg_info_der_serializer_new vscf_alg_info_der_serializer_new.argtypes = [] vscf_alg_info_der_serializer_new.restype = POINTER(vscf_alg_info_der_serializer_t) return vscf_alg_info_der_serializer_new() def vscf_alg_info_der_serializer_delete(self, ctx): vscf_alg_info_der_serializer_delete = self._lib.vscf_alg_info_der_serializer_delete vscf_alg_info_der_serializer_delete.argtypes = [POINTER(vscf_alg_info_der_serializer_t)] vscf_alg_info_der_serializer_delete.restype = None return vscf_alg_info_der_serializer_delete(ctx) def vscf_alg_info_der_serializer_use_asn1_writer(self, ctx, asn1_writer): vscf_alg_info_der_serializer_use_asn1_writer = self._lib.vscf_alg_info_der_serializer_use_asn1_writer vscf_alg_info_der_serializer_use_asn1_writer.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t)] vscf_alg_info_der_serializer_use_asn1_writer.restype = None return vscf_alg_info_der_serializer_use_asn1_writer(ctx, asn1_writer) def vscf_alg_info_der_serializer_serialized_len(self, ctx, alg_info): """Return buffer size enough to hold serialized algorithm.""" vscf_alg_info_der_serializer_serialized_len = self._lib.vscf_alg_info_der_serializer_serialized_len vscf_alg_info_der_serializer_serialized_len.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t)] vscf_alg_info_der_serializer_serialized_len.restype = c_size_t return vscf_alg_info_der_serializer_serialized_len(ctx, alg_info) def vscf_alg_info_der_serializer_serialize(self, ctx, alg_info, out): """Serialize algorithm info to buffer class.""" vscf_alg_info_der_serializer_serialize = self._lib.vscf_alg_info_der_serializer_serialize vscf_alg_info_der_serializer_serialize.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t), POINTER(vsc_buffer_t)] vscf_alg_info_der_serializer_serialize.restype = None return vscf_alg_info_der_serializer_serialize(ctx, alg_info, out) def vscf_alg_info_der_serializer_setup_defaults(self, ctx): """Setup predefined values to the uninitialized class dependencies.""" vscf_alg_info_der_serializer_setup_defaults = self._lib.vscf_alg_info_der_serializer_setup_defaults vscf_alg_info_der_serializer_setup_defaults.argtypes = [POINTER(vscf_alg_info_der_serializer_t)] vscf_alg_info_der_serializer_setup_defaults.restype = None return vscf_alg_info_der_serializer_setup_defaults(ctx) def vscf_alg_info_der_serializer_serialize_inplace(self, ctx, alg_info): """Serialize by using internal ASN.1 writer. Note, that caller code is responsible to reset ASN.1 writer with an output buffer.""" vscf_alg_info_der_serializer_serialize_inplace = self._lib.vscf_alg_info_der_serializer_serialize_inplace vscf_alg_info_der_serializer_serialize_inplace.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t)] vscf_alg_info_der_serializer_serialize_inplace.restype = c_size_t return vscf_alg_info_der_serializer_serialize_inplace(ctx, alg_info) def vscf_alg_info_der_serializer_shallow_copy(self, ctx): vscf_alg_info_der_serializer_shallow_copy = self._lib.vscf_alg_info_der_serializer_shallow_copy vscf_alg_info_der_serializer_shallow_copy.argtypes = [POINTER(vscf_alg_info_der_serializer_t)] vscf_alg_info_der_serializer_shallow_copy.restype = POINTER(vscf_alg_info_der_serializer_t) return vscf_alg_info_der_serializer_shallow_copy(ctx) def vscf_alg_info_der_serializer_impl(self, ctx): vscf_alg_info_der_serializer_impl = self._lib.vscf_alg_info_der_serializer_impl vscf_alg_info_der_serializer_impl.argtypes = [POINTER(vscf_alg_info_der_serializer_t)] vscf_alg_info_der_serializer_impl.restype = POINTER(vscf_impl_t) return vscf_alg_info_der_serializer_impl(ctx)
519e6d1ad5bda54f6ed5b6ff5dc4202c57d10141
6f0d8416daeb787b13938d5fa49c3d2e08d15e02
/tests/test_cam.py
5a5dbc61b10d60caf62b858b4f880f2bed62d9ec
[ "MIT" ]
permissive
MartinHjelmare/matrixscreener
cbfc0ba95614c7dd6e152bb63a24b67ed03045ca
b6e93d9c96139cf5f2b8942d61681e45d7b6b4e5
refs/heads/master
2021-01-22T14:21:16.758654
2015-02-19T11:53:46
2015-02-19T11:53:46
57,959,734
0
0
null
2016-05-03T10:03:40
2016-05-03T10:03:40
null
UTF-8
Python
false
false
1,526
py
from matrixscreener.cam import * import pytest class EchoSocket: "Dummy echo socket for mocking." msg = '' def send(self, msg): self.msg = msg return len(msg) def recv(self, buffer_size): return self.msg[0:buffer_size] def connect(self, where): pass def settimeout(self, timeout): pass # TEST #- key (here cli) overrided if defined several times #- prefix added #- types (integer, float) should be converted to strings def test_echo(monkeypatch): "Prefix + command sent should be same as echoed socket message." # mock socket monkeypatch.setattr("socket.socket", EchoSocket) # setup cam cam = CAM() cmd = [('cli', 'custom'), ('cmd', 'enableall'), ('value', 'true'), ('integer', 1234), ('float', 0.00234)] # monkeypathced EchoSocket will never flush def flush(): pass cam.flush = flush echoed = cam.send(cmd)[0] sent = tuples_as_dict(cam.prefix + cmd) assert sent == echoed def test_commands(monkeypatch): "short hand commands should work as intended" # mock socket monkeypatch.setattr("socket.socket", EchoSocket) # setup cam cam = CAM() # monkeypathced EchoSocket will never flush def flush(): pass cam.flush = flush # get_information cmd = cam.prefix + [ ('cmd', 'getinfo'), ('dev', 'stage') ] information = cam.get_information() should_be = tuples_as_dict(cmd) assert information == should_be
20d215ab84216efee4da368d5a8ad6e24ed57fc4
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03679/s358798230.py
083bf4ccd4da704fe0bfff938691cf5dbc1ec004
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
X, A, B = map(int, input().split()) if A >= B: print('delicious') elif A + X < B: print('dangerous') else: print('safe')
da878145baa16b59947043420038f917d29d43bd
e7b483d88f80703c89553e1b9e2f5dd0322f7e38
/sketch/util/http.py
e69fe5f151af3818aae7e26ffc6a7d32826a3f52
[ "BSD-2-Clause" ]
permissive
nikcub/Sketch
0f559ff9948bd355407257c25c261c1e0f237021
5d2d5f7e51c3eed374a8b12441dc8577b16c101e
refs/heads/master
2016-09-09T23:32:10.243530
2011-11-04T13:56:03
2011-11-04T13:56:03
2,592,091
1
0
null
null
null
null
UTF-8
Python
false
false
5,451
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim:ts=2:sw=2:expandtab # # Copyright (c) 2011, Nik Cubrilovic. All rights reserved. # # <[email protected]> <http://nikcub.appspot.com> # # Licensed under a BSD license. You may obtain a copy of the License at # # http://nikcub.appspot.com/bsd-license # """ Sketch - TM_FILENAME} desc """ import webob import urlparse def extract_dataurl(dataurl): if not dataurl[:5] == 'data:': return (None, None) img_index = dataurl.index(',') if not img_index: return (None, None) img_type = dataurl[5:img_index].split(';')[0] img_dat_enc = dataurl[img_index + 1:] import base64 img_dat = base64.decodestring(img_dat_enc) return (img_dat, img_type) def urlunsplit(scheme=None, netloc=None, path=None, query=None, fragment=None): """Similar to ``urlparse.urlunsplit``, but will escape values and urlencode and sort query arguments. :param scheme: URL scheme, e.g., `http` or `https`. :param netloc: Network location, e.g., `localhost:8080` or `www.google.com`. :param path: URL path. :param query: URL query as an escaped string, or a dictionary or list of key-values tuples to build a query. :param fragment: Fragment identifier, also known as "anchor". :returns: An assembled absolute or relative URL. """ if not scheme or not netloc: scheme = None netloc = None if path: path = urllib.quote(to_utf8(path)) if query and not isinstance(query, basestring): if isinstance(query, dict): query = query.items() query_args = [] for key, values in query: if isinstance(values, basestring): values = (values,) for value in values: query_args.append((to_utf8(key), to_utf8(value))) # Sorting should be optional? Sorted args are commonly needed to build # URL signatures for services. query_args.sort() query = urllib.urlencode(query_args) if fragment: fragment = urllib.quote(to_utf8(fragment)) return urlparse.urlunsplit((scheme, netloc, path, query, fragment)) def test_normalize_url(): urls = [ # 'example.com', # 'example.com/', # 'http://example.com/', # 'http://example.com', # 'http://example.com?', # 'http://example.com/?', # 'http://example.com//', # 'http://example.com/a', # 'http://example.com/a/', # 'http://example.com/a/?', # 'http://example.com/a/../', # 'http://example.com/a/../?', # 'http://example.com/a/b/../?', # 'http://example.com/a/../', # 'http://example.com/a/b/?z=1', 'http://example.com/a/?', 'http://@example.com/a/?', 'http://example.com:/a/?', 'http://@example.com:/a/?', 'http://example.com:80/a/?', ] for url in urls: print "%s \t\t\t\t\t\tclean: %s" % (url, normalize_url(url)) def normalize_url(s, charset='utf-8'): """ function that attempts to mimic browser URL normalization. Partly taken from werkzeug.utils <http://www.bitbucket.org/mitsuhiko/werkzeug-main/src/tip/werkzeug/utils.py> There is a lot to URL normalization, see: <http://en.wikipedia.org/wiki/URL_normalization> :param charset: The target charset for the URL if the url was given as unicode string. """ if isinstance(s, unicode): s = s.encode(charset, 'ignore') scheme, netloc, path, qs, anchor = urlparse.urlsplit(s) # print "scheme: %s\n netloc:%s\n path:%s\n qs:%s\n anchor:%s\n" % (scheme, netloc, path, qs, anchor) path = urllib.unquote(path) if not netloc: netloc = path.strip("/\\:?&") path = '/' if not scheme: scheme = "http" if not path: path = '/' netloc = netloc.strip("/\\:@?&") path = posixpath.normpath(path) path = urlparse.urljoin('/', path) # path = urllib.quote(path, '/%') qs = urllib.quote_plus(qs, ':&=') # print "scheme: %s\n netloc:%s\n path:%s\n qs:%s\n anchor:%s\n" % (scheme, netloc, path, qs, anchor) return urlparse.urlunsplit((scheme, netloc, path, qs, anchor)) def redirect(location, code = 302): assert code in (301, 302, 303, 305, 307), 'invalid code' from sketch import Response display_location = location response = Response( '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">\n' '<title>Redirecting...</title>\n' '<h1>Redirecting...</h1>\n' '<p>You should be redirected automatically to target URL: ' '<a href="%s">%s</a>. If not click the link.' % (location, display_location), code, mimetype='text/html') response.headers['Location'] = location return response def abort_old(code, *args, **kwargs): """Raises an ``HTTPException``. The exception is instantiated passing *args* and *kwargs*. :param code: A valid HTTP error code from ``webob.exc.status_map``, a dictionary mapping status codes to subclasses of ``HTTPException``. :param args: Arguments to be used to instantiate the exception. :param kwargs: Keyword arguments to be used to instantiate the exception. """ cls = webob.exc.status_map.get(code) if not cls: raise KeyError('No exception is defined for code %r.' % code) raise cls(*args, **kwargs) def get_valid_methods(handler): """Returns a list of HTTP methods supported by a handler. :param handler: A :class:`RequestHandler` instance. :returns: A list of HTTP methods supported by the handler. """ return [method for method in Application.ALLOWED_METHODS if getattr(handler, method.lower().replace('-', '_'), None)]
2182531e49175062ac8b030e998b5c2c6ca3ae8d
cad91ae76d2746a6c28ddda0f33a58f9d461378f
/PyTorch/Recommendation/NCF/feature_spec.py
40d56a0e310d345e17261e9bbfbd4618f5acb691
[ "Apache-2.0" ]
permissive
NVIDIA/DeepLearningExamples
fe677521e7e2a16e3cb0b77e358f9aab72f8c11a
a5388a45f71a949639b35cc5b990bd130d2d8164
refs/heads/master
2023-08-31T20:57:08.798455
2023-08-23T10:09:12
2023-08-23T10:09:12
131,881,622
11,838
3,124
null
2023-08-28T16:57:33
2018-05-02T17:04:05
Jupyter Notebook
UTF-8
Python
false
false
1,943
py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import yaml import os from typing import List, Dict class FeatureSpec: def __init__(self, feature_spec, source_spec, channel_spec, metadata, base_directory): self.feature_spec: Dict = feature_spec self.source_spec: Dict = source_spec self.channel_spec: Dict = channel_spec self.metadata: Dict = metadata self.base_directory: str = base_directory @classmethod def from_yaml(cls, path): with open(path, 'r') as feature_spec_file: base_directory = os.path.dirname(path) feature_spec = yaml.safe_load(feature_spec_file) return cls.from_dict(feature_spec, base_directory=base_directory) @classmethod def from_dict(cls, source_dict, base_directory): return cls(base_directory=base_directory, **source_dict) def to_dict(self) -> Dict: attributes_to_dump = ['feature_spec', 'source_spec', 'channel_spec', 'metadata'] return {attr: self.__dict__[attr] for attr in attributes_to_dump} def to_string(self): return yaml.dump(self.to_dict()) def to_yaml(self, output_path=None): if not output_path: output_path = self.base_directory + '/feature_spec.yaml' with open(output_path, 'w') as output_file: print(yaml.dump(self.to_dict()), file=output_file)
ac4cec9c23d857374e16c812fac948e0c272797e
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03108/s870352488.py
0b87a41dcc411c3fbc8ae14366e08bef4bb0f7fc
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,652
py
import sys import collections readline = sys.stdin.readline class UnionFind(): def __init__(self, n): self.n = n self.parents = [-1]*n self.rank = [0]*n self.size = [1]*n def find(self, x): if self.parents[x] < 0: return x else: self.parents[x] = self.find(self.parents[x]) return self.parents[x] def union(self, x, y): x = self.find(x) y = self.find(y) if x == y: return if self.rank[x] < self.rank[y]: self.size[y] += self.size[x] self.parents[x] = y else: self.size[x] += self.size[y] self.parents[y] = x if self.rank[x] == self.rank[y]: self.rank[x] += 1 def msize(self, x): return -self.size[self.find(x)] def main(): N, M = map(int, readline().split()) nodelist = [] for _ in range(M): A, B = map(int, readline().split()) A -= 1; B -= 1 nodelist.append((A, B)) uf = UnionFind(N) anstmp = (N*(N-1))//2 anslist = [anstmp] for _ in range(M): node = nodelist.pop() n0 = uf.find(node[0]) n1 = uf.find(node[1]) if n0 != n1: n0size = uf.size[n0] n1size = uf.size[n1] else: n0size = 0; n1size = 0 uf.union(node[0], node[1]) anstmp = anslist[-1] ans = anstmp - n0size*n1size anslist.append(ans) anslist = anslist[:-1] for _ in range(len(anslist)): ans = anslist.pop() print(ans) if __name__ == "__main__": main()
9d31dd701cf90d929170893cddab05db06011ba7
c4544c22c0618451746795090e07c80bc85a0877
/file_upload/article/forms.py
fd00ffba0492b96c7d39b7f2448d488bfccf1d67
[]
no_license
RelaxedDong/Django_course
35f7027dc552ad148d2dc8679a19a1ffb12b8d14
2965089d15e4c80cd6402d362ee37f8cc675c08b
refs/heads/master
2022-01-09T14:28:40.503099
2019-05-24T07:07:03
2019-05-24T07:07:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
379
py
#encoding:utf-8 # __author__ = 'donghao' # __time__ = 2019/5/13 21:52 from django import forms from .models import Book from django.core import validators class BookForm(forms.ModelForm): cover_url = forms.FileField(validators=[validators.FileExtensionValidator(allowed_extensions=['jpg','jpeg'])]) class Meta: model = Book fields = ['title','cover_url']
bbb6268281ee09c15af62c26d0df2d1c6065e735
f9d5bc590bd6c6274d7a6efec0f60cac1d8286b2
/assets/coins/monero/moneroImportPrices.py
6a92df9ceca004c233c3ecc5ce2799c0931dad42
[]
no_license
pr0logas/grepblockBEpython
35c83c1bf2114fc9417bedff6cf2a6e2ad2e667e
bbeaa290d13d80f993d843c7f1dbbfd373eee332
refs/heads/master
2022-10-03T23:35:44.600740
2020-03-09T08:24:53
2020-03-09T08:24:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
#:: By GrepBlock.com developers // pr0logas #:: Modified date: 2019-11-30 #:: Description: This file is a workspace for Prices importation. import sys, time from time import gmtime, strftime from monero import * sys.path.append('../../../') from mongoDB import * from parsePrices import parseCoinGeckoPrices db = database col = collectionForPricesUSD # Init Classes; MC = mongoConnection(mongoAuth, db, col) PP = parseCoinGeckoPrices(apiProvider, vsCurrencyUSD, assetName) # CoinGecko result = PP.parsePrice() # Insert Unix Time aggregatedData = PP.aggregateInsertUnixTime(result) #Insert to MongoDB res = MC.insertPricesData(collectionForPricesUSD, aggregatedData) timeSet = strftime("%Y-%m-%d %H:%M:%S", gmtime()) print timeSet + " Succefully inserted asset price: $" + res
f6d2ffae909f5992e8ceea3bdc223d04acc73d4b
2c3da6e0bddf55d64d650040bbf286c47b31811a
/学习路线/1.python基础/day05/02-for-else语句.py
ec56422c4833eede814e9a25e0dca957f39f600e
[ "MIT" ]
permissive
Bngzifei/PythonNotes
76bd53db3033a9c51ab4bdd727842cd89607b584
01590e1b6c1bc0f04aa2d355fa2553c04cce27f2
refs/heads/master
2023-02-04T06:49:00.725463
2020-12-15T09:26:40
2020-12-15T09:26:40
155,154,662
1
2
MIT
2020-09-08T01:30:19
2018-10-29T05:02:48
Python
UTF-8
Python
false
false
670
py
list1 = ["zhansan", "lisi1", 'ww'] # for name in list1: # 运行2次,出现逻辑错误 # if name == 'lisi': # print('找到') # else: # print("没有找到") """当for执行完成后,默认for后面的else都会执行一次,如果不想让for后面的else执行,在for里面写个break""" for name in list1: # 批量查找数据 if ... in...(判断有没有,True或False) 判断有没有我要的那个并返回(因为后续要用这个返回的)用for(break) else (判断有没有我要的那个) if name == 'lisi': print('找到') break else: print('没找到') # for ...else ... 是一个循环体内的.用于批量查找并返回一次提示信息
e5029b3854dbaef24fb6cce6c6025ff4d71cca34
e8e2f3cb21e3f3c289b890dcf3cde567bb92dc32
/venv/bin/chardetect
a471d60fdc696af75d4b511e1d3b9a0af3f271c1
[]
no_license
Timur597/Feliz
a0071b93a87eab015dd205e14cba88bcb5f34926
6f712ded791c84dee71f75934fb77d0ae101f5e6
refs/heads/master
2023-05-27T15:54:54.782528
2021-06-09T16:34:45
2021-06-09T16:34:45
373,058,036
0
1
null
2021-06-09T16:47:59
2021-06-02T06:07:12
Python
UTF-8
Python
false
false
262
#!/home/timur/PyCharmProjects/feeliz-master/venv/bin/python # -*- coding: utf-8 -*- import re import sys from chardet.cli.chardetect import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
b66f70766f6fe3c97d830918ab3d7c33e5f9c1d4
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/59/usersdata/161/49113/submittedfiles/testes.py
3ede0d9001c5c08b41881d224976a6c2ae167e4c
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
n=int(input('numero:')) soma=0 for i in range(1,n+1,1): soma=4*(-1*i/(2*i+1) print('%.4f' %soma)
fea402ed06f40785cacbf954f34865f10e62de55
76dba08689db40edf2d01a98856fa2a20d98d679
/甲鱼python/课程代码/第11讲/第11讲课后作业.py
f38d6087bebb08ecebe94960c7ce4388591454c7
[]
no_license
pangfeiyo/PythonLearn
ce0747d75b53eb21acb6199acfe10934778420b2
b514b3d7baa62fa7b801d26ff49266f02cb9cbd2
refs/heads/master
2021-05-11T10:20:14.818774
2020-01-16T15:47:16
2020-01-16T15:47:16
118,096,858
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
# 从列表末尾取出一个元素,并将这个元素插入列表最前边 member = ['一','甲鱼','玩笑'] member.insert(0,member.pop()) print(member) #python支持负数下标,列表最后一个元素为-1 list2 = [1,3,2,9,7,8] print(list2[-3:-1]) #切片和赋值的区别 #切片相当于复制 sy1 = [1,3,2,9,7,8] sy2 = sy1[:] #切片复制sy1的内容给sy2 sy3 = sy1 #sy1赋值给sy3 sy1.sort() #对sy1进行大小排序 print('sy1:',sy1) print('sy2:',sy2) print('sy3:',sy3)
8edf7add9dd89a5a59c9d84008f56f0adbe83abc
b7b40fffd7d192b89a7ad3bdb791a7dbd072ac64
/axelrod/tests/test_memoryone.py
44167991b5bf6387399275371a16858e90bad540
[ "MIT" ]
permissive
DEFALT303/Axelrod
f91911ad7a404c30edfef38afd02319fcd12bc15
e59fc40ebb705afe05cea6f30e282d1e9c621259
refs/heads/master
2020-09-24T08:39:49.107919
2015-04-16T16:15:42
2015-04-16T16:15:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,640
py
"""Test for the memoryone strategies.""" import random import axelrod from test_player import TestPlayer class TestWinStayLostShift(TestPlayer): name = "Win-Stay Lose-Shift" player = axelrod.WinStayLoseShift def test_strategy(self): """Starts by cooperating""" P1 = self.player() P2 = axelrod.Player() self.assertEqual(P1.strategy(P2), 'C') def test_effect_of_strategy(self): """Check that switches if does not get best payoff.""" P1 = self.player() P2 = axelrod.Player() P1.history = ['C'] P2.history = ['C'] self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['D'] self.assertEqual(P1.strategy(P2), 'D') P1.history = ['D'] P2.history = ['C'] self.assertEqual(P1.strategy(P2), 'D') P1.history = ['D'] P2.history = ['D'] self.assertEqual(P1.strategy(P2), 'C') class TestGTFT(TestPlayer): name = "Generous Tit-For-Tat" player = axelrod.GTFT stochastic = True def test_strategy(self): P1 = self.player() P2 = axelrod.Player() self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['C'] random.seed(2) # With probability .05 will defect self.assertEqual(P1.strategy(P2), 'D') # But otherwise will cooperate self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['D'] random.seed(31) # With probability .05 will cooperate self.assertEqual(P1.strategy(P2), 'C') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') P1.history = ['D'] P2.history = ['C'] random.seed(2) # With probability .05 will defect self.assertEqual(P1.strategy(P2), 'D') # But otherwise will cooperate self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') P1.history = ['D'] P2.history = ['D'] random.seed(31) # With probability .05 will cooperate self.assertEqual(P1.strategy(P2), 'C') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') class TestStochasticCooperator(TestPlayer): name = "Stochastic Cooperator" player = axelrod.StochasticCooperator stochastic = True def test_strategy(self): P1 = self.player() P2 = axelrod.Player() self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['C'] random.seed(15) # With probability .065 will defect self.assertEqual(P1.strategy(P2), 'D') # But otherwise will cooperate self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['D'] random.seed(1) # With probability .229 will cooperate self.assertEqual(P1.strategy(P2), 'C') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') P1.history = ['D'] P2.history = ['C'] random.seed(3) # With probability .266 will cooperate self.assertEqual(P1.strategy(P2), 'C') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') P1.history = ['D'] P2.history = ['D'] random.seed(13) # With probability .42 will cooperate self.assertEqual(P1.strategy(P2), 'C') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') class TestStochasticWSLS(TestPlayer): name = "Stochastic WSLS" player = axelrod.StochasticWSLS stochastic = True def test_strategy(self): P1 = self.player() P2 = axelrod.Player() self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['C'] random.seed(2) # With probability .05 will defect self.assertEqual(P1.strategy(P2), 'D') # But otherwise will cooperate self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['D'] random.seed(31) # With probability .05 will cooperate self.assertEqual(P1.strategy(P2), 'C') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') P1.history = ['D'] P2.history = ['C'] random.seed(31) # With probability .05 will cooperate self.assertEqual(P1.strategy(P2), 'C') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') P1.history = ['D'] P2.history = ['D'] random.seed(2) # With probability .05 will defect self.assertEqual(P1.strategy(P2), 'D') # But otherwise will defect self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') class TestZDChi(TestPlayer): name = "ZDChi" player = axelrod.ZDChi stochastic = True def test_four_vector(self): P1 = self.player() expected_dictionary = {('C', 'D'): 0.5, ('D', 'C'): 0.75, ('D', 'D'): 0.0, ('C', 'C'): 1.1666666666666667} for key in sorted(expected_dictionary.keys()): self.assertAlmostEqual(P1._four_vector[key], expected_dictionary[key]) def test_strategy(self): # Testing the expected value is difficult here so these just ensure that # future changes that break these tests will be examined carefully. P1 = self.player() P2 = axelrod.Player() self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['C'] random.seed(2) self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') P1.history = ['C'] P2.history = ['D'] self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'C') P1.history = ['D'] P2.history = ['C'] self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') self.assertEqual(P1.strategy(P2), 'C') P1.history = ['D'] P2.history = ['D'] self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D') self.assertEqual(P1.strategy(P2), 'D')
2ca40c9745cafec57f504ad00865b8a15eb016d0
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_15419.py
b16cd84c9dd57f33adebb10f84dbec1286edafa9
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
# Python comparing individual lists of lists elements if x[i][0] &gt; y[i][0]:
46a2e88f482b70548c82568f1d10bf2234d6b0e0
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flasharray/FA_2_20/models/array.py
b454053102b55f917520181b04db56e7ba183f91
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
7,115
py
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.20 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_20 import models class Array(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'name': 'str', 'banner': 'str', 'capacity': 'int', 'console_lock_enabled': 'bool', 'encryption': 'ArrayEncryption', 'eradication_config': 'EradicationConfig', 'idle_timeout': 'int', 'ntp_servers': 'list[str]', 'os': 'str', 'parity': 'float', 'scsi_timeout': 'int', 'space': 'Space', 'version': 'str' } attribute_map = { 'id': 'id', 'name': 'name', 'banner': 'banner', 'capacity': 'capacity', 'console_lock_enabled': 'console_lock_enabled', 'encryption': 'encryption', 'eradication_config': 'eradication_config', 'idle_timeout': 'idle_timeout', 'ntp_servers': 'ntp_servers', 'os': 'os', 'parity': 'parity', 'scsi_timeout': 'scsi_timeout', 'space': 'space', 'version': 'version' } required_args = { } def __init__( self, id=None, # type: str name=None, # type: str banner=None, # type: str capacity=None, # type: int console_lock_enabled=None, # type: bool encryption=None, # type: models.ArrayEncryption eradication_config=None, # type: models.EradicationConfig idle_timeout=None, # type: int ntp_servers=None, # type: List[str] os=None, # type: str parity=None, # type: float scsi_timeout=None, # type: int space=None, # type: models.Space version=None, # type: str ): """ Keyword args: id (str): A globally unique, system-generated ID. The ID cannot be modified and cannot refer to another resource. name (str): A user-specified name. The name must be locally unique and can be changed. banner (str) capacity (int): The usable capacity in bytes. console_lock_enabled (bool) encryption (ArrayEncryption) eradication_config (EradicationConfig) idle_timeout (int): The idle timeout in milliseconds. Valid values include `0` and any multiple of `60000` in the range of `300000` and `10800000`. Any other values are rounded down to the nearest multiple of `60000`. ntp_servers (list[str]) os (str): Specifies the operating system. Valid values are `Purity`, `Purity//FA`, and `Purity//FB`. parity (float): A representation of data redundancy on the array. Data redundancy is rebuilt automatically by the system whenever parity is less than `1.0`. scsi_timeout (int): The SCSI timeout. If not specified, defaults to `60s`. space (Space) version (str) """ if id is not None: self.id = id if name is not None: self.name = name if banner is not None: self.banner = banner if capacity is not None: self.capacity = capacity if console_lock_enabled is not None: self.console_lock_enabled = console_lock_enabled if encryption is not None: self.encryption = encryption if eradication_config is not None: self.eradication_config = eradication_config if idle_timeout is not None: self.idle_timeout = idle_timeout if ntp_servers is not None: self.ntp_servers = ntp_servers if os is not None: self.os = os if parity is not None: self.parity = parity if scsi_timeout is not None: self.scsi_timeout = scsi_timeout if space is not None: self.space = space if version is not None: self.version = version def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Array`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Array`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Array`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Array`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Array, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Array): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
ec1a5719f569715605b75d20d9dea2e9ea1a20ef
eee741a9d6d55357fb597e0cc3379085f47c2c13
/processData.py
85071304b5d9fe473ea285664cbd0cd5dac57f28
[]
no_license
mbstacy/gdal_ok_mesonet_data_process
6505be783056eeade9664782035c284d76f29e1c
18fe989560d54cc0fff336462c26897778daeaef
refs/heads/master
2021-01-10T07:32:55.865328
2016-02-23T22:42:48
2016-02-23T22:42:48
52,396,676
0
0
null
null
null
null
UTF-8
Python
false
false
5,487
py
#!/usr/bin/env python ''' Created on Feb 2, 2016 @author: ledapsTwo ''' from osgeo import gdal,osr from os import path from csv import DictReader import shlex,sys import pandas as pd import numpy as np class raster: def __init__(self,inFile): gf = gdal.Open(inFile) self.raster = gf self.grid = gf.ReadAsArray() #get number of rows and columns in the shape self.numGrids = 1 if len(self.grid.shape) == 3: self.numGrids,self.numRows,self.numCols = self.grid.shape else: self.numRows,self.numCols = self.grid.shape #get projection and spatial reference infomation srs = osr.SpatialReference() srs.ImportFromWkt(gf.GetProjection()) srsLatLong = srs.CloneGeogCS() self.srs = srs ; self.srsLatLong = srsLatLong #create coordinate transform object for sample/line to lon/lat conversion self.ct = osr.CoordinateTransformation(srs, srsLatLong) #create coordinate transform object for lon/lat to sample/line conversion self.ctInv = osr.CoordinateTransformation(srsLatLong, srs) #get geographic transform information in cartesian space self.geoMatrix = gf.GetGeoTransform() #with no north correction this is equal to (pixel height * pixel width) = -900 dev = (self.geoMatrix[1] * self.geoMatrix[5]) - (self.geoMatrix[2] * self.geoMatrix[4]) #divide height/width components by this -900 to get a decimal degrees value self.gtinv = (self.geoMatrix[0], self.geoMatrix[5]/dev, -1 * self.geoMatrix[2]/dev, self.geoMatrix[3], -1 * self.geoMatrix[4]/dev, self.geoMatrix[1]/dev) def parseMesonetFile(): mesoCSV = "{0}.csv".format(mesoFile.split('.')[0]) #path.join(curDir,'%s.csv'%path.basename(mesoFile).split('.')[0]) if not path.exists(mesoCSV): with open(mesoFile,'r') as f1: data = f1.read() data_list=data.split('\n') table = [] for line in data_list[2:-1]: table.append(shlex.split(line)) headers = table.pop(0) df = pd.DataFrame(table,columns=headers) outFile = path.basename(mesoFile).split('.')[0] df.to_csv("%s.csv" % (outFile),index=False) f = open(mesoCSV,'r') aSites = DictReader(f) return aSites def convertLatLontoPixelLine(inGrid,lat,lon): #convert lon/lat to cartesian coordinates x,y,z = inGrid.ctInv.TransformPoint(lon,lat,0) #subtract out upper left pixel coordinates to move origin to upper-left corner of the grid u = x - inGrid.gtinv[0] v = y - inGrid.gtinv[3] #print lon,lat,x,y,u,v #multiply u & v by 0.333333 or -0.333333 to convert cartesian to pixel/line combo col = (inGrid.gtinv[1] * u) + (inGrid.gtinv[2] * v) row = (inGrid.gtinv[4] * u) + (inGrid.gtinv[5] * v) #print lon,lat,x,y,u,v,col,row return row,col def convertPixelLinetoLatLong(inGrid,row,col): X = (inGrid.geoMatrix[0] + (inGrid.geoMatrix[1] * col) + (inGrid.geoMatrix[2] * row)) + inGrid.geoMatrix[1]/2.0 Y = (inGrid.geoMatrix[3] + (inGrid.geoMatrix[4] * col) + (inGrid.geoMatrix[5] * row)) + inGrid.geoMatrix[5]/2.0 (lon, lat, height) = inGrid.ct.TransformPoint(X,Y) lon = round(lon,11) ; lat = round(lat,11) return lat,lon def main(): #read in TIF file as a raster object tif = raster(tifFile) #read in mesonet data and break at each new line aSites = parseMesonetFile() #print(aSites) aOut = [] #walk through each site, pull the lat/lon and determine point on raster grid for mesoSite in aSites: #print (mesoSite) siteID = mesoSite["STID"] #the site ID from the CSV stNum = mesoSite["STNM"] #station number stTime = mesoSite["TIME"] #station time lat = float(mesoSite["LATT"]) #the latitude from the CSV lon = float(mesoSite["LONG"]) #the longitude from the CSV #the row and column on the raster above this mesonet site rasterRow,rasterColumn = convertLatLontoPixelLine(tif, lat, lon) #the value on the raster at this grid point rasterValue = tif.grid[rasterRow,rasterColumn] #build skeleton for header and station lines header = "STID,STNM,TIME,LATT,LONG,RASTERVAL" strOut = "%s,%s,%s,%s,%s,%s"%(siteID,stNum,stTime,lat,lon,rasterValue) #walk through all attributes and place into above strings for param in sorted(mesoSite.keys()): #skip any of these as they have already been defined above if param in ["STID","STNM","TIME","LATT","LONG"]: continue header += ",%s"%param strOut += ",%s"%mesoSite[param] #add header first so it will be at the top of the output file if header not in aOut: aOut.append(header) #append station attributes to list aOut.append(strOut) #convert list to block of text and write to file outFile = open("summary%s.csv"%ext,'w') outFile.write("\n".join(aOut)) outFile.close() print ("DONE") if __name__ == "__main__": #global curDir ; curDir = path.dirname(path.realpath(__file__)) global tifFile ; tifFile = sys.argv[1] #path.join(curDir,'y12.modisSSEBopET.tif') global mesoFile ; mesoFile = sys.argv[2] #path.join(curDir,'2012_annual.mdf') global ext; ext = "" main()
044ef7733d33340e7cf093fa5b1b04a826c31548
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_summary.py
18d09be192ac1b4023f64ab173806411d3dcea87
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
#calss header class _SUMMARY(): def __init__(self,): self.name = "SUMMARY" self.definitions = [u'done suddenly, without discussion or legal arrangements: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
a0d550e2fdb493ba6c99d7490c06e07da09bcdde
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/helpers/typeshed/stubs/aws-xray-sdk/aws_xray_sdk/core/sampling/reservoir.pyi
322d1d38c3d821602e3e08cb5f590e0f85608dd7
[ "Apache-2.0", "MIT" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
337
pyi
from enum import Enum class Reservoir: def __init__(self) -> None: ... def borrow_or_take(self, now, can_borrow): ... def load_quota(self, quota, TTL, interval) -> None: ... @property def quota(self): ... @property def TTL(self): ... class ReservoirDecision(Enum): TAKE: str BORROW: str NO: str
60a71622737aa6e8a866253cebae37379422f533
7d84000f2977def7118b4c93a47b9d71c4ee38f8
/app/src/utils/log_streamer.py
ad37f010c1610fdbb84800feadcdb0afd9627020
[]
no_license
tensorci/core
d405d17099987163dfc589711345ce414ace406e
50d18bb43f73b1d5d47fefad543c2554e87a6520
refs/heads/master
2021-03-19T13:27:26.219591
2020-12-03T01:14:57
2020-12-03T01:14:57
110,917,313
0
0
null
2020-12-03T01:15:26
2017-11-16T03:20:09
Python
UTF-8
Python
false
false
3,800
py
import log_formatter from src import logger, dbi from pyredis import redis from src.helpers.definitions import tci_keep_alive # TODO: This file is disgusting -- make it less disgusting def should_complete_stream(data, deployment): # Check if last_entry was specified in the log. Complete the stream if so. complete = data.get('last_entry') == 'True' # Check to see if this was an error log. Complete the stream if so. if data.get('level') == 'error': # Fail the deployment and log that this happened internally logger.error('DEPLOYMENT FAILED: uid={}'.format(deployment.uid)) deployment.fail() complete = True return complete def stream_deploy_logs(deployment, stream_key=None, block=30000): complete = False first_log = redis.xrange(stream_key, count=1) # If logs already exist, yield the first one and then # iterate over timestamps to continue yielding if first_log: ts, data = first_log[0] first_log_yielded = False while not complete: try: # yield the first log and continue if not first_log_yielded: first_log_yielded = True complete = should_complete_stream(data, deployment) yield log_formatter.deploy_log(data) continue # Get all logs since timestamp=ts result = redis.xread(block=block, **{stream_key: ts}) if not result: yield tci_keep_alive + '\n' continue items = result.get(stream_key) if not items: yield tci_keep_alive + '\n' continue for item in items: ts, data = item complete = should_complete_stream(data, deployment) yield log_formatter.deploy_log(data) except: break else: ts = '0-0' while not complete: try: # Get all logs since timestamp=ts result = redis.xread(block=block, **{stream_key: ts}) if not result: yield tci_keep_alive + '\n' continue items = result.get(stream_key) if not items: yield tci_keep_alive + '\n' continue for item in items: ts, data = item complete = should_complete_stream(data, deployment) yield log_formatter.deploy_log(data) except: break def stream_train_logs(deployment, block=30000): stream_key = deployment.train_log() first_log = redis.xrange(stream_key, count=1) # If logs already exist, yield the first one and then # iterate over timestamps to continue yielding if first_log: ts, data = first_log[0] first_log_yielded = False while True: try: # yield the first log and continue if not first_log_yielded: first_log_yielded = True yield log_formatter.training_log(data, with_color=True) continue # Get all logs since timestamp=ts result = redis.xread(block=block, **{stream_key: ts}) if not result: yield tci_keep_alive + '\n' continue items = result.get(stream_key) if not items: yield tci_keep_alive + '\n' continue for item in items: ts, data = item yield log_formatter.training_log(data, with_color=True) except: break else: ts = '0-0' while True: try: # Get all logs since timestamp=ts result = redis.xread(block=block, **{stream_key: ts}) if not result: yield tci_keep_alive + '\n' continue items = result.get(stream_key) if not items: yield tci_keep_alive + '\n' continue for item in items: ts, data = item yield log_formatter.training_log(data, with_color=True) except: break
ee13787901e1cb2cb22e3ad0a896df200708d570
1a166165ab8287d01cbb377a13efdb5eff5dfef0
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations/_ddos_custom_policies_operations.py
374762f783c3c434a29e76a5bebf00abdd56790d
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
manoj0806/azure-sdk-for-python
7a14b202ff80f528abd068bf50334e91001a9686
aab999792db1132232b2f297c76800590a901142
refs/heads/master
2023-04-19T16:11:31.984930
2021-04-29T23:19:49
2021-04-29T23:19:49
363,025,016
1
0
MIT
2021-04-30T04:23:35
2021-04-30T04:23:35
null
UTF-8
Python
false
false
20,334
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class DdosCustomPoliciesOperations: """DdosCustomPoliciesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, ddos_custom_policy_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore async def begin_delete( self, resource_group_name: str, ddos_custom_policy_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified DDoS custom policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, ddos_custom_policy_name=ddos_custom_policy_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore async def get( self, resource_group_name: str, ddos_custom_policy_name: str, **kwargs ) -> "_models.DdosCustomPolicy": """Gets information about the specified DDoS custom policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DdosCustomPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.DdosCustomPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DdosCustomPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, ddos_custom_policy_name: str, parameters: "_models.DdosCustomPolicy", **kwargs ) -> "_models.DdosCustomPolicy": cls = kwargs.pop('cls', None) # type: ClsType["_models.DdosCustomPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'DdosCustomPolicy') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, ddos_custom_policy_name: str, parameters: "_models.DdosCustomPolicy", **kwargs ) -> AsyncLROPoller["_models.DdosCustomPolicy"]: """Creates or updates a DDoS custom policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :param parameters: Parameters supplied to the create or update operation. :type parameters: ~azure.mgmt.network.v2020_04_01.models.DdosCustomPolicy :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either DdosCustomPolicy or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_04_01.models.DdosCustomPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.DdosCustomPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, ddos_custom_policy_name=ddos_custom_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore async def update_tags( self, resource_group_name: str, ddos_custom_policy_name: str, parameters: "_models.TagsObject", **kwargs ) -> "_models.DdosCustomPolicy": """Update a DDoS custom policy tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :param parameters: Parameters supplied to update DDoS custom policy resource tags. :type parameters: ~azure.mgmt.network.v2020_04_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: DdosCustomPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.DdosCustomPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DdosCustomPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore
a42658845c9f20032a391940e548d739fa593468
c8453f83242cd525a98606f665d9f5d9e84c6335
/lib/googlecloudsdk/third_party/apis/bigquery/v2/bigquery_v2_messages.py
c9af6411f99770bce94fba3d09d11478fa6e7675
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
paulfoley/GCP-Cloud_SDK
5188a04d8d80a2709fa3dba799802d57c7eb66a1
bec7106686e99257cb91a50f2c1b1a374a4fc66f
refs/heads/master
2021-06-02T09:49:48.309328
2017-07-02T18:26:47
2017-07-02T18:26:47
96,041,222
1
1
NOASSERTION
2020-07-26T22:40:49
2017-07-02T18:19:52
Python
UTF-8
Python
false
false
98,916
py
"""Generated message classes for bigquery version v2. A data platform for customers to create, manage, share and query data. """ # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding from apitools.base.py import extra_types package = 'bigquery' class BigqueryDatasetsDeleteRequest(_messages.Message): """A BigqueryDatasetsDeleteRequest object. Fields: datasetId: Dataset ID of dataset being deleted deleteContents: If True, delete all the tables in the dataset. If False and the dataset contains tables, the request will fail. Default is False projectId: Project ID of the dataset being deleted """ datasetId = _messages.StringField(1, required=True) deleteContents = _messages.BooleanField(2) projectId = _messages.StringField(3, required=True) class BigqueryDatasetsDeleteResponse(_messages.Message): """An empty BigqueryDatasetsDelete response.""" class BigqueryDatasetsGetRequest(_messages.Message): """A BigqueryDatasetsGetRequest object. Fields: datasetId: Dataset ID of the requested dataset projectId: Project ID of the requested dataset """ datasetId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) class BigqueryDatasetsInsertRequest(_messages.Message): """A BigqueryDatasetsInsertRequest object. Fields: dataset: A Dataset resource to be passed as the request body. projectId: Project ID of the new dataset """ dataset = _messages.MessageField('Dataset', 1) projectId = _messages.StringField(2, required=True) class BigqueryDatasetsListRequest(_messages.Message): """A BigqueryDatasetsListRequest object. Fields: all: Whether to list all datasets, including hidden ones filter: An expression for filtering the results of the request by label. The syntax is "labels.<name>[:<value>]". Multiple filters can be ANDed together by connecting with a space. Example: "labels.department:receiving labels.active". See Filtering datasets using labels for details. maxResults: The maximum number of results to return pageToken: Page token, returned by a previous call, to request the next page of results projectId: Project ID of the datasets to be listed """ all = _messages.BooleanField(1) filter = _messages.StringField(2) maxResults = _messages.IntegerField(3, variant=_messages.Variant.UINT32) pageToken = _messages.StringField(4) projectId = _messages.StringField(5, required=True) class BigqueryDatasetsPatchRequest(_messages.Message): """A BigqueryDatasetsPatchRequest object. Fields: dataset: A Dataset resource to be passed as the request body. datasetId: Dataset ID of the dataset being updated projectId: Project ID of the dataset being updated """ dataset = _messages.MessageField('Dataset', 1) datasetId = _messages.StringField(2, required=True) projectId = _messages.StringField(3, required=True) class BigqueryDatasetsUpdateRequest(_messages.Message): """A BigqueryDatasetsUpdateRequest object. Fields: dataset: A Dataset resource to be passed as the request body. datasetId: Dataset ID of the dataset being updated projectId: Project ID of the dataset being updated """ dataset = _messages.MessageField('Dataset', 1) datasetId = _messages.StringField(2, required=True) projectId = _messages.StringField(3, required=True) class BigqueryJobsCancelRequest(_messages.Message): """A BigqueryJobsCancelRequest object. Fields: jobId: [Required] Job ID of the job to cancel projectId: [Required] Project ID of the job to cancel """ jobId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) class BigqueryJobsGetQueryResultsRequest(_messages.Message): """A BigqueryJobsGetQueryResultsRequest object. Fields: jobId: [Required] Job ID of the query job maxResults: Maximum number of results to read pageToken: Page token, returned by a previous call, to request the next page of results projectId: [Required] Project ID of the query job startIndex: Zero-based index of the starting row timeoutMs: How long to wait for the query to complete, in milliseconds, before returning. Default is 10 seconds. If the timeout passes before the job completes, the 'jobComplete' field in the response will be false """ jobId = _messages.StringField(1, required=True) maxResults = _messages.IntegerField(2, variant=_messages.Variant.UINT32) pageToken = _messages.StringField(3) projectId = _messages.StringField(4, required=True) startIndex = _messages.IntegerField(5, variant=_messages.Variant.UINT64) timeoutMs = _messages.IntegerField(6, variant=_messages.Variant.UINT32) class BigqueryJobsGetRequest(_messages.Message): """A BigqueryJobsGetRequest object. Fields: jobId: [Required] Job ID of the requested job projectId: [Required] Project ID of the requested job """ jobId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) class BigqueryJobsInsertRequest(_messages.Message): """A BigqueryJobsInsertRequest object. Fields: job: A Job resource to be passed as the request body. projectId: Project ID of the project that will be billed for the job """ job = _messages.MessageField('Job', 1) projectId = _messages.StringField(2, required=True) class BigqueryJobsListRequest(_messages.Message): """A BigqueryJobsListRequest object. Enums: ProjectionValueValuesEnum: Restrict information returned to a set of selected fields StateFilterValueValuesEnum: Filter for job state Fields: allUsers: Whether to display jobs owned by all users in the project. Default false maxResults: Maximum number of results to return pageToken: Page token, returned by a previous call, to request the next page of results projectId: Project ID of the jobs to list projection: Restrict information returned to a set of selected fields stateFilter: Filter for job state """ class ProjectionValueValuesEnum(_messages.Enum): """Restrict information returned to a set of selected fields Values: full: Includes all job data minimal: Does not include the job configuration """ full = 0 minimal = 1 class StateFilterValueValuesEnum(_messages.Enum): """Filter for job state Values: done: Finished jobs pending: Pending jobs running: Running jobs """ done = 0 pending = 1 running = 2 allUsers = _messages.BooleanField(1) maxResults = _messages.IntegerField(2, variant=_messages.Variant.UINT32) pageToken = _messages.StringField(3) projectId = _messages.StringField(4, required=True) projection = _messages.EnumField('ProjectionValueValuesEnum', 5) stateFilter = _messages.EnumField('StateFilterValueValuesEnum', 6, repeated=True) class BigqueryJobsQueryRequest(_messages.Message): """A BigqueryJobsQueryRequest object. Fields: projectId: Project ID of the project billed for the query queryRequest: A QueryRequest resource to be passed as the request body. """ projectId = _messages.StringField(1, required=True) queryRequest = _messages.MessageField('QueryRequest', 2) class BigqueryProjectsListRequest(_messages.Message): """A BigqueryProjectsListRequest object. Fields: maxResults: Maximum number of results to return pageToken: Page token, returned by a previous call, to request the next page of results """ maxResults = _messages.IntegerField(1, variant=_messages.Variant.UINT32) pageToken = _messages.StringField(2) class BigqueryTabledataInsertAllRequest(_messages.Message): """A BigqueryTabledataInsertAllRequest object. Fields: datasetId: Dataset ID of the destination table. projectId: Project ID of the destination table. tableDataInsertAllRequest: A TableDataInsertAllRequest resource to be passed as the request body. tableId: Table ID of the destination table. """ datasetId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) tableDataInsertAllRequest = _messages.MessageField('TableDataInsertAllRequest', 3) tableId = _messages.StringField(4, required=True) class BigqueryTabledataListRequest(_messages.Message): """A BigqueryTabledataListRequest object. Fields: datasetId: Dataset ID of the table to read maxResults: Maximum number of results to return pageToken: Page token, returned by a previous call, identifying the result set projectId: Project ID of the table to read startIndex: Zero-based index of the starting row to read tableId: Table ID of the table to read """ datasetId = _messages.StringField(1, required=True) maxResults = _messages.IntegerField(2, variant=_messages.Variant.UINT32) pageToken = _messages.StringField(3) projectId = _messages.StringField(4, required=True) startIndex = _messages.IntegerField(5, variant=_messages.Variant.UINT64) tableId = _messages.StringField(6, required=True) class BigqueryTablesDeleteRequest(_messages.Message): """A BigqueryTablesDeleteRequest object. Fields: datasetId: Dataset ID of the table to delete projectId: Project ID of the table to delete tableId: Table ID of the table to delete """ datasetId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) tableId = _messages.StringField(3, required=True) class BigqueryTablesDeleteResponse(_messages.Message): """An empty BigqueryTablesDelete response.""" class BigqueryTablesGetRequest(_messages.Message): """A BigqueryTablesGetRequest object. Fields: datasetId: Dataset ID of the requested table projectId: Project ID of the requested table tableId: Table ID of the requested table """ datasetId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) tableId = _messages.StringField(3, required=True) class BigqueryTablesInsertRequest(_messages.Message): """A BigqueryTablesInsertRequest object. Fields: datasetId: Dataset ID of the new table projectId: Project ID of the new table table: A Table resource to be passed as the request body. """ datasetId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) table = _messages.MessageField('Table', 3) class BigqueryTablesListRequest(_messages.Message): """A BigqueryTablesListRequest object. Fields: datasetId: Dataset ID of the tables to list maxResults: Maximum number of results to return pageToken: Page token, returned by a previous call, to request the next page of results projectId: Project ID of the tables to list """ datasetId = _messages.StringField(1, required=True) maxResults = _messages.IntegerField(2, variant=_messages.Variant.UINT32) pageToken = _messages.StringField(3) projectId = _messages.StringField(4, required=True) class BigqueryTablesPatchRequest(_messages.Message): """A BigqueryTablesPatchRequest object. Fields: datasetId: Dataset ID of the table to update projectId: Project ID of the table to update table: A Table resource to be passed as the request body. tableId: Table ID of the table to update """ datasetId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) table = _messages.MessageField('Table', 3) tableId = _messages.StringField(4, required=True) class BigqueryTablesUpdateRequest(_messages.Message): """A BigqueryTablesUpdateRequest object. Fields: datasetId: Dataset ID of the table to update projectId: Project ID of the table to update table: A Table resource to be passed as the request body. tableId: Table ID of the table to update """ datasetId = _messages.StringField(1, required=True) projectId = _messages.StringField(2, required=True) table = _messages.MessageField('Table', 3) tableId = _messages.StringField(4, required=True) class BigtableColumn(_messages.Message): """A BigtableColumn object. Fields: encoding: [Optional] The encoding of the values when the type is not STRING. Acceptable encoding values are: TEXT - indicates values are alphanumeric text strings. BINARY - indicates values are encoded using HBase Bytes.toBytes family of functions. 'encoding' can also be set at the column family level. However, the setting at this level takes precedence if 'encoding' is set at both levels. fieldName: [Optional] If the qualifier is not a valid BigQuery field identifier i.e. does not match [a-zA-Z][a-zA-Z0-9_]*, a valid identifier must be provided as the column field name and is used as field name in queries. onlyReadLatest: [Optional] If this is set, only the latest version of value in this column are exposed. 'onlyReadLatest' can also be set at the column family level. However, the setting at this level takes precedence if 'onlyReadLatest' is set at both levels. qualifierEncoded: [Required] Qualifier of the column. Columns in the parent column family that has this exact qualifier are exposed as . field. If the qualifier is valid UTF-8 string, it can be specified in the qualifier_string field. Otherwise, a base-64 encoded value must be set to qualifier_encoded. The column field name is the same as the column qualifier. However, if the qualifier is not a valid BigQuery field identifier i.e. does not match [a-zA-Z][a-zA-Z0-9_]*, a valid identifier must be provided as field_name. qualifierString: A string attribute. type: [Optional] The type to convert the value in cells of this column. The values are expected to be encoded using HBase Bytes.toBytes function when using the BINARY encoding value. Following BigQuery types are allowed (case-sensitive) - BYTES STRING INTEGER FLOAT BOOLEAN Default type is BYTES. 'type' can also be set at the column family level. However, the setting at this level takes precedence if 'type' is set at both levels. """ encoding = _messages.StringField(1) fieldName = _messages.StringField(2) onlyReadLatest = _messages.BooleanField(3) qualifierEncoded = _messages.BytesField(4) qualifierString = _messages.StringField(5) type = _messages.StringField(6) class BigtableColumnFamily(_messages.Message): """A BigtableColumnFamily object. Fields: columns: [Optional] Lists of columns that should be exposed as individual fields as opposed to a list of (column name, value) pairs. All columns whose qualifier matches a qualifier in this list can be accessed as .. Other columns can be accessed as a list through .Column field. encoding: [Optional] The encoding of the values when the type is not STRING. Acceptable encoding values are: TEXT - indicates values are alphanumeric text strings. BINARY - indicates values are encoded using HBase Bytes.toBytes family of functions. This can be overridden for a specific column by listing that column in 'columns' and specifying an encoding for it. familyId: Identifier of the column family. onlyReadLatest: [Optional] If this is set only the latest version of value are exposed for all columns in this column family. This can be overridden for a specific column by listing that column in 'columns' and specifying a different setting for that column. type: [Optional] The type to convert the value in cells of this column family. The values are expected to be encoded using HBase Bytes.toBytes function when using the BINARY encoding value. Following BigQuery types are allowed (case-sensitive) - BYTES STRING INTEGER FLOAT BOOLEAN Default type is BYTES. This can be overridden for a specific column by listing that column in 'columns' and specifying a type for it. """ columns = _messages.MessageField('BigtableColumn', 1, repeated=True) encoding = _messages.StringField(2) familyId = _messages.StringField(3) onlyReadLatest = _messages.BooleanField(4) type = _messages.StringField(5) class BigtableOptions(_messages.Message): """A BigtableOptions object. Fields: columnFamilies: [Optional] List of column families to expose in the table schema along with their types. This list restricts the column families that can be referenced in queries and specifies their value types. You can use this list to do type conversions - see the 'type' field for more details. If you leave this list empty, all column families are present in the table schema and their values are read as BYTES. During a query only the column families referenced in that query are read from Bigtable. ignoreUnspecifiedColumnFamilies: [Optional] If field is true, then the column families that are not specified in columnFamilies list are not exposed in the table schema. Otherwise, they are read with BYTES type values. The default value is false. readRowkeyAsString: [Optional] If field is true, then the rowkey column families will be read and converted to string. Otherwise they are read with BYTES type values and users need to manually cast them with CAST if necessary. The default value is false. """ columnFamilies = _messages.MessageField('BigtableColumnFamily', 1, repeated=True) ignoreUnspecifiedColumnFamilies = _messages.BooleanField(2) readRowkeyAsString = _messages.BooleanField(3) class CsvOptions(_messages.Message): """A CsvOptions object. Fields: allowJaggedRows: [Optional] Indicates if BigQuery should accept rows that are missing trailing optional columns. If true, BigQuery treats missing trailing columns as null values. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false. allowQuotedNewlines: [Optional] Indicates if BigQuery should allow quoted data sections that contain newline characters in a CSV file. The default value is false. encoding: [Optional] The character encoding of the data. The supported values are UTF-8 or ISO-8859-1. The default value is UTF-8. BigQuery decodes the data after the raw, binary data has been split using the values of the quote and fieldDelimiter properties. fieldDelimiter: [Optional] The separator for fields in a CSV file. BigQuery converts the string to ISO-8859-1 encoding, and then uses the first byte of the encoded string to split the data in its raw, binary state. BigQuery also supports the escape sequence "\t" to specify a tab separator. The default value is a comma (','). quote: [Optional] The value that is used to quote data sections in a CSV file. BigQuery converts the string to ISO-8859-1 encoding, and then uses the first byte of the encoded string to split the data in its raw, binary state. The default value is a double-quote ('"'). If your data does not contain quoted sections, set the property value to an empty string. If your data contains quoted newline characters, you must also set the allowQuotedNewlines property to true. skipLeadingRows: [Optional] The number of rows at the top of a CSV file that BigQuery will skip when reading the data. The default value is 0. This property is useful if you have header rows in the file that should be skipped. """ allowJaggedRows = _messages.BooleanField(1) allowQuotedNewlines = _messages.BooleanField(2) encoding = _messages.StringField(3) fieldDelimiter = _messages.StringField(4) quote = _messages.StringField(5, default=u'"') skipLeadingRows = _messages.IntegerField(6) class Dataset(_messages.Message): """A Dataset object. Messages: AccessValueListEntry: A AccessValueListEntry object. LabelsValue: [Experimental] The labels associated with this dataset. You can use these to organize and group your datasets. You can set this property when inserting or updating a dataset. See Labeling Datasets for more information. Fields: access: [Optional] An array of objects that define dataset access for one or more entities. You can set this property when inserting or updating a dataset in order to control who is allowed to access the data. If unspecified at dataset creation time, BigQuery adds default dataset access for the following entities: access.specialGroup: projectReaders; access.role: READER; access.specialGroup: projectWriters; access.role: WRITER; access.specialGroup: projectOwners; access.role: OWNER; access.userByEmail: [dataset creator email]; access.role: OWNER; creationTime: [Output-only] The time when this dataset was created, in milliseconds since the epoch. datasetReference: [Required] A reference that identifies the dataset. defaultTableExpirationMs: [Optional] The default lifetime of all tables in the dataset, in milliseconds. The minimum value is 3600000 milliseconds (one hour). Once this property is set, all newly-created tables in the dataset will have an expirationTime property set to the creation time plus the value in this property, and changing the value will only affect new tables, not existing ones. When the expirationTime for a given table is reached, that table will be deleted automatically. If a table's expirationTime is modified or removed before the table expires, or if you provide an explicit expirationTime when creating a table, that value takes precedence over the default expiration time indicated by this property. description: [Optional] A user-friendly description of the dataset. etag: [Output-only] A hash of the resource. friendlyName: [Optional] A descriptive name for the dataset. id: [Output-only] The fully-qualified unique name of the dataset in the format projectId:datasetId. The dataset name without the project name is given in the datasetId field. When creating a new dataset, leave this field blank, and instead specify the datasetId field. kind: [Output-only] The resource type. labels: [Experimental] The labels associated with this dataset. You can use these to organize and group your datasets. You can set this property when inserting or updating a dataset. See Labeling Datasets for more information. lastModifiedTime: [Output-only] The date when this dataset or any of its tables was last modified, in milliseconds since the epoch. location: [Experimental] The geographic location where the dataset should reside. Possible values include EU and US. The default value is US. selfLink: [Output-only] A URL that can be used to access the resource again. You can use this URL in Get or Update requests to the resource. """ class AccessValueListEntry(_messages.Message): """A AccessValueListEntry object. Fields: domain: [Pick one] A domain to grant access to. Any users signed in with the domain specified will be granted the specified access. Example: "example.com". groupByEmail: [Pick one] An email address of a Google Group to grant access to. role: [Required] Describes the rights granted to the user specified by the other member of the access object. The following string values are supported: READER, WRITER, OWNER. specialGroup: [Pick one] A special group to grant access to. Possible values include: projectOwners: Owners of the enclosing project. projectReaders: Readers of the enclosing project. projectWriters: Writers of the enclosing project. allAuthenticatedUsers: All authenticated BigQuery users. userByEmail: [Pick one] An email address of a user to grant access to. For example: [email protected]. view: [Pick one] A view from a different dataset to grant access to. Queries executed against that view will have read access to tables in this dataset. The role field is not required when this field is set. If that view is updated by any user, access to the view needs to be granted again via an update operation. """ domain = _messages.StringField(1) groupByEmail = _messages.StringField(2) role = _messages.StringField(3) specialGroup = _messages.StringField(4) userByEmail = _messages.StringField(5) view = _messages.MessageField('TableReference', 6) @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): """[Experimental] The labels associated with this dataset. You can use these to organize and group your datasets. You can set this property when inserting or updating a dataset. See Labeling Datasets for more information. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): """An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) access = _messages.MessageField('AccessValueListEntry', 1, repeated=True) creationTime = _messages.IntegerField(2) datasetReference = _messages.MessageField('DatasetReference', 3) defaultTableExpirationMs = _messages.IntegerField(4) description = _messages.StringField(5) etag = _messages.StringField(6) friendlyName = _messages.StringField(7) id = _messages.StringField(8) kind = _messages.StringField(9, default=u'bigquery#dataset') labels = _messages.MessageField('LabelsValue', 10) lastModifiedTime = _messages.IntegerField(11) location = _messages.StringField(12) selfLink = _messages.StringField(13) class DatasetList(_messages.Message): """A DatasetList object. Messages: DatasetsValueListEntry: A DatasetsValueListEntry object. Fields: datasets: An array of the dataset resources in the project. Each resource contains basic information. For full information about a particular dataset resource, use the Datasets: get method. This property is omitted when there are no datasets in the project. etag: A hash value of the results page. You can use this property to determine if the page has changed since the last request. kind: The list type. This property always returns the value "bigquery#datasetList". nextPageToken: A token that can be used to request the next results page. This property is omitted on the final results page. """ class DatasetsValueListEntry(_messages.Message): """A DatasetsValueListEntry object. Messages: LabelsValue: [Experimental] The labels associated with this dataset. You can use these to organize and group your datasets. Fields: datasetReference: The dataset reference. Use this property to access specific parts of the dataset's ID, such as project ID or dataset ID. friendlyName: A descriptive name for the dataset, if one exists. id: The fully-qualified, unique, opaque ID of the dataset. kind: The resource type. This property always returns the value "bigquery#dataset". labels: [Experimental] The labels associated with this dataset. You can use these to organize and group your datasets. """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): """[Experimental] The labels associated with this dataset. You can use these to organize and group your datasets. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): """An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) datasetReference = _messages.MessageField('DatasetReference', 1) friendlyName = _messages.StringField(2) id = _messages.StringField(3) kind = _messages.StringField(4, default=u'bigquery#dataset') labels = _messages.MessageField('LabelsValue', 5) datasets = _messages.MessageField('DatasetsValueListEntry', 1, repeated=True) etag = _messages.StringField(2) kind = _messages.StringField(3, default=u'bigquery#datasetList') nextPageToken = _messages.StringField(4) class DatasetReference(_messages.Message): """A DatasetReference object. Fields: datasetId: [Required] A unique ID for this dataset, without the project name. The ID must contain only letters (a-z, A-Z), numbers (0-9), or underscores (_). The maximum length is 1,024 characters. projectId: [Optional] The ID of the project containing this dataset. """ datasetId = _messages.StringField(1) projectId = _messages.StringField(2) class ErrorProto(_messages.Message): """A ErrorProto object. Fields: debugInfo: Debugging information. This property is internal to Google and should not be used. location: Specifies where the error occurred, if present. message: A human-readable description of the error. reason: A short error code that summarizes the error. """ debugInfo = _messages.StringField(1) location = _messages.StringField(2) message = _messages.StringField(3) reason = _messages.StringField(4) class ExplainQueryStage(_messages.Message): """A ExplainQueryStage object. Fields: computeRatioAvg: Relative amount of time the average shard spent on CPU- bound tasks. computeRatioMax: Relative amount of time the slowest shard spent on CPU- bound tasks. id: Unique ID for stage within plan. name: Human-readable name for stage. readRatioAvg: Relative amount of time the average shard spent reading input. readRatioMax: Relative amount of time the slowest shard spent reading input. recordsRead: Number of records read into the stage. recordsWritten: Number of records written by the stage. status: Current status for the stage. steps: List of operations within the stage in dependency order (approximately chronological). waitRatioAvg: Relative amount of time the average shard spent waiting to be scheduled. waitRatioMax: Relative amount of time the slowest shard spent waiting to be scheduled. writeRatioAvg: Relative amount of time the average shard spent on writing output. writeRatioMax: Relative amount of time the slowest shard spent on writing output. """ computeRatioAvg = _messages.FloatField(1) computeRatioMax = _messages.FloatField(2) id = _messages.IntegerField(3) name = _messages.StringField(4) readRatioAvg = _messages.FloatField(5) readRatioMax = _messages.FloatField(6) recordsRead = _messages.IntegerField(7) recordsWritten = _messages.IntegerField(8) status = _messages.StringField(9) steps = _messages.MessageField('ExplainQueryStep', 10, repeated=True) waitRatioAvg = _messages.FloatField(11) waitRatioMax = _messages.FloatField(12) writeRatioAvg = _messages.FloatField(13) writeRatioMax = _messages.FloatField(14) class ExplainQueryStep(_messages.Message): """A ExplainQueryStep object. Fields: kind: Machine-readable operation type. substeps: Human-readable stage descriptions. """ kind = _messages.StringField(1) substeps = _messages.StringField(2, repeated=True) class ExternalDataConfiguration(_messages.Message): """A ExternalDataConfiguration object. Fields: autodetect: [Experimental] Try to detect schema and format options automatically. Any option specified explicitly will be honored. bigtableOptions: [Optional] Additional options if sourceFormat is set to BIGTABLE. compression: [Optional] The compression type of the data source. Possible values include GZIP and NONE. The default value is NONE. This setting is ignored for Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats. csvOptions: Additional properties to set if sourceFormat is set to CSV. googleSheetsOptions: [Optional] Additional options if sourceFormat is set to GOOGLE_SHEETS. ignoreUnknownValues: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false. The sourceFormat property determines what BigQuery treats as an extra value: CSV: Trailing columns JSON: Named values that don't match any column names Google Cloud Bigtable: This setting is ignored. Google Cloud Datastore backups: This setting is ignored. Avro: This setting is ignored. maxBadRecords: [Optional] The maximum number of bad records that BigQuery can ignore when reading data. If the number of bad records exceeds this value, an invalid error is returned in the job result. The default value is 0, which requires that all records are valid. This setting is ignored for Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats. schema: [Optional] The schema for the data. Schema is required for CSV and JSON formats. Schema is disallowed for Google Cloud Bigtable, Cloud Datastore backups, and Avro formats. sourceFormat: [Required] The data format. For CSV files, specify "CSV". For Google sheets, specify "GOOGLE_SHEETS". For newline-delimited JSON, specify "NEWLINE_DELIMITED_JSON". For Avro files, specify "AVRO". For Google Cloud Datastore backups, specify "DATASTORE_BACKUP". [Experimental] For Google Cloud Bigtable, specify "BIGTABLE". Please note that reading from Google Cloud Bigtable is experimental and has to be enabled for your project. Please contact Google Cloud Support to enable this for your project. sourceUris: [Required] The fully-qualified URIs that point to your data in Google Cloud. For Google Cloud Storage URIs: Each URI can contain one '*' wildcard character and it must come after the 'bucket' name. Size limits related to load jobs apply to external data sources. For Google Cloud Bigtable URIs: Exactly one URI can be specified and it has be a fully specified and valid HTTPS URL for a Google Cloud Bigtable table. For Google Cloud Datastore backups, exactly one URI can be specified, and it must end with '.backup_info'. Also, the '*' wildcard character is not allowed. """ autodetect = _messages.BooleanField(1) bigtableOptions = _messages.MessageField('BigtableOptions', 2) compression = _messages.StringField(3) csvOptions = _messages.MessageField('CsvOptions', 4) googleSheetsOptions = _messages.MessageField('GoogleSheetsOptions', 5) ignoreUnknownValues = _messages.BooleanField(6) maxBadRecords = _messages.IntegerField(7, variant=_messages.Variant.INT32) schema = _messages.MessageField('TableSchema', 8) sourceFormat = _messages.StringField(9) sourceUris = _messages.StringField(10, repeated=True) class GetQueryResultsResponse(_messages.Message): """A GetQueryResultsResponse object. Fields: cacheHit: Whether the query result was fetched from the query cache. errors: [Output-only] All errors and warnings encountered during the running of the job. Errors here do not necessarily mean that the job has completed or was unsuccessful. etag: A hash of this response. jobComplete: Whether the query has completed or not. If rows or totalRows are present, this will always be true. If this is false, totalRows will not be available. jobReference: Reference to the BigQuery Job that was created to run the query. This field will be present even if the original request timed out, in which case GetQueryResults can be used to read the results once the query has completed. Since this API only returns the first page of results, subsequent pages can be fetched via the same mechanism (GetQueryResults). kind: The resource type of the response. numDmlAffectedRows: [Output-only, Experimental] The number of rows affected by a DML statement. Present only for DML statements INSERT, UPDATE or DELETE. pageToken: A token used for paging results. rows: An object with as many results as can be contained within the maximum permitted reply size. To get any additional rows, you can call GetQueryResults and specify the jobReference returned above. Present only when the query completes successfully. schema: The schema of the results. Present only when the query completes successfully. totalBytesProcessed: The total number of bytes processed for this query. totalRows: The total number of rows in the complete query result set, which can be more than the number of rows in this single page of results. Present only when the query completes successfully. """ cacheHit = _messages.BooleanField(1) errors = _messages.MessageField('ErrorProto', 2, repeated=True) etag = _messages.StringField(3) jobComplete = _messages.BooleanField(4) jobReference = _messages.MessageField('JobReference', 5) kind = _messages.StringField(6, default=u'bigquery#getQueryResultsResponse') numDmlAffectedRows = _messages.IntegerField(7) pageToken = _messages.StringField(8) rows = _messages.MessageField('TableRow', 9, repeated=True) schema = _messages.MessageField('TableSchema', 10) totalBytesProcessed = _messages.IntegerField(11) totalRows = _messages.IntegerField(12, variant=_messages.Variant.UINT64) class GoogleSheetsOptions(_messages.Message): """A GoogleSheetsOptions object. Fields: skipLeadingRows: [Optional] The number of rows at the top of a sheet that BigQuery will skip when reading the data. The default value is 0. This property is useful if you have header rows that should be skipped. When autodetect is on, behavior is the following: * skipLeadingRows unspecified - Autodetect tries to detect headers in the first row. If they are not detected, the row is read as data. Otherwise data is read starting from the second row. * skipLeadingRows is 0 - Instructs autodetect that there are no headers and data should be read starting from the first row. * skipLeadingRows = N > 0 - Autodetect skips N-1 rows and tries to detect headers in row N. If headers are not detected, row N is just skipped. Otherwise row N is used to extract column names for the detected schema. """ skipLeadingRows = _messages.IntegerField(1) class Job(_messages.Message): """A Job object. Fields: configuration: [Required] Describes the job configuration. etag: [Output-only] A hash of this resource. id: [Output-only] Opaque ID field of the job jobReference: [Optional] Reference describing the unique-per-user name of the job. kind: [Output-only] The type of the resource. selfLink: [Output-only] A URL that can be used to access this resource again. statistics: [Output-only] Information about the job, including starting time and ending time of the job. status: [Output-only] The status of this job. Examine this value when polling an asynchronous job to see if the job is complete. user_email: [Output-only] Email address of the user who ran the job. """ configuration = _messages.MessageField('JobConfiguration', 1) etag = _messages.StringField(2) id = _messages.StringField(3) jobReference = _messages.MessageField('JobReference', 4) kind = _messages.StringField(5, default=u'bigquery#job') selfLink = _messages.StringField(6) statistics = _messages.MessageField('JobStatistics', 7) status = _messages.MessageField('JobStatus', 8) user_email = _messages.StringField(9) class JobCancelResponse(_messages.Message): """A JobCancelResponse object. Fields: job: The final state of the job. kind: The resource type of the response. """ job = _messages.MessageField('Job', 1) kind = _messages.StringField(2, default=u'bigquery#jobCancelResponse') class JobConfiguration(_messages.Message): """A JobConfiguration object. Messages: LabelsValue: [Experimental] The labels associated with this job. You can use these to organize and group your jobs. Label keys and values can be no longer than 63 characters, can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter and each label in the list must have a different key. Fields: copy: [Pick one] Copies a table. dryRun: [Optional] If set, don't actually run this job. A valid query will return a mostly empty response with some processing statistics, while an invalid query will return the same error it would if it wasn't a dry run. Behavior of non-query jobs is undefined. extract: [Pick one] Configures an extract job. labels: [Experimental] The labels associated with this job. You can use these to organize and group your jobs. Label keys and values can be no longer than 63 characters, can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter and each label in the list must have a different key. load: [Pick one] Configures a load job. query: [Pick one] Configures a query job. """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): """[Experimental] The labels associated with this job. You can use these to organize and group your jobs. Label keys and values can be no longer than 63 characters, can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter and each label in the list must have a different key. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): """An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) copy = _messages.MessageField('JobConfigurationTableCopy', 1) dryRun = _messages.BooleanField(2) extract = _messages.MessageField('JobConfigurationExtract', 3) labels = _messages.MessageField('LabelsValue', 4) load = _messages.MessageField('JobConfigurationLoad', 5) query = _messages.MessageField('JobConfigurationQuery', 6) class JobConfigurationExtract(_messages.Message): """A JobConfigurationExtract object. Fields: compression: [Optional] The compression type to use for exported files. Possible values include GZIP and NONE. The default value is NONE. destinationFormat: [Optional] The exported file format. Possible values include CSV, NEWLINE_DELIMITED_JSON and AVRO. The default value is CSV. Tables with nested or repeated fields cannot be exported as CSV. destinationUri: [Pick one] DEPRECATED: Use destinationUris instead, passing only one URI as necessary. The fully-qualified Google Cloud Storage URI where the extracted table should be written. destinationUris: [Pick one] A list of fully-qualified Google Cloud Storage URIs where the extracted table should be written. fieldDelimiter: [Optional] Delimiter to use between fields in the exported data. Default is ',' printHeader: [Optional] Whether to print out a header row in the results. Default is true. sourceTable: [Required] A reference to the table being exported. """ compression = _messages.StringField(1) destinationFormat = _messages.StringField(2) destinationUri = _messages.StringField(3) destinationUris = _messages.StringField(4, repeated=True) fieldDelimiter = _messages.StringField(5) printHeader = _messages.BooleanField(6, default=True) sourceTable = _messages.MessageField('TableReference', 7) class JobConfigurationLoad(_messages.Message): """A JobConfigurationLoad object. Fields: allowJaggedRows: [Optional] Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false. Only applicable to CSV, ignored for other formats. allowQuotedNewlines: Indicates if BigQuery should allow quoted data sections that contain newline characters in a CSV file. The default value is false. autodetect: [Experimental] Indicates if we should automatically infer the options and schema for CSV and JSON sources. createDisposition: [Optional] Specifies whether the job is allowed to create new tables. The following values are supported: CREATE_IF_NEEDED: If the table does not exist, BigQuery creates the table. CREATE_NEVER: The table must already exist. If it does not, a 'notFound' error is returned in the job result. The default value is CREATE_IF_NEEDED. Creation, truncation and append actions occur as one atomic update upon job completion. destinationTable: [Required] The destination table to load the data into. encoding: [Optional] The character encoding of the data. The supported values are UTF-8 or ISO-8859-1. The default value is UTF-8. BigQuery decodes the data after the raw, binary data has been split using the values of the quote and fieldDelimiter properties. fieldDelimiter: [Optional] The separator for fields in a CSV file. The separator can be any ISO-8859-1 single-byte character. To use a character in the range 128-255, you must encode the character as UTF8. BigQuery converts the string to ISO-8859-1 encoding, and then uses the first byte of the encoded string to split the data in its raw, binary state. BigQuery also supports the escape sequence "\t" to specify a tab separator. The default value is a comma (','). ignoreUnknownValues: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false. The sourceFormat property determines what BigQuery treats as an extra value: CSV: Trailing columns JSON: Named values that don't match any column names maxBadRecords: [Optional] The maximum number of bad records that BigQuery can ignore when running the job. If the number of bad records exceeds this value, an invalid error is returned in the job result. The default value is 0, which requires that all records are valid. nullMarker: [Optional] Specifies a string that represents a null value in a CSV file. For example, if you specify "\N", BigQuery interprets "\N" as a null value when loading a CSV file. The default value is the empty string. If you set this property to a custom value, BigQuery still interprets the empty string as a null value for all data types except for STRING and BYTE. For STRING and BYTE columns, BigQuery interprets the empty string as an empty value. projectionFields: [Experimental] If sourceFormat is set to "DATASTORE_BACKUP", indicates which entity properties to load into BigQuery from a Cloud Datastore backup. Property names are case sensitive and must be top-level properties. If no properties are specified, BigQuery loads all properties. If any named property isn't found in the Cloud Datastore backup, an invalid error is returned in the job result. quote: [Optional] The value that is used to quote data sections in a CSV file. BigQuery converts the string to ISO-8859-1 encoding, and then uses the first byte of the encoded string to split the data in its raw, binary state. The default value is a double-quote ('"'). If your data does not contain quoted sections, set the property value to an empty string. If your data contains quoted newline characters, you must also set the allowQuotedNewlines property to true. schema: [Optional] The schema for the destination table. The schema can be omitted if the destination table already exists, or if you're loading data from Google Cloud Datastore. schemaInline: [Deprecated] The inline schema. For CSV schemas, specify as "Field1:Type1[,Field2:Type2]*". For example, "foo:STRING, bar:INTEGER, baz:FLOAT". schemaInlineFormat: [Deprecated] The format of the schemaInline property. schemaUpdateOptions: [Experimental] Allows the schema of the desitination table to be updated as a side effect of the load job. Schema update options are supported in two cases: when writeDisposition is WRITE_APPEND; when writeDisposition is WRITE_TRUNCATE and the destination table is a partition of a table, specified by partition decorators. For normal tables, WRITE_TRUNCATE will always overwrite the schema. One or more of the following values are specified: ALLOW_FIELD_ADDITION: allow adding a nullable field to the schema. ALLOW_FIELD_RELAXATION: allow relaxing a required field in the original schema to nullable. skipLeadingRows: [Optional] The number of rows at the top of a CSV file that BigQuery will skip when loading the data. The default value is 0. This property is useful if you have header rows in the file that should be skipped. sourceFormat: [Optional] The format of the data files. For CSV files, specify "CSV". For datastore backups, specify "DATASTORE_BACKUP". For newline-delimited JSON, specify "NEWLINE_DELIMITED_JSON". For Avro, specify "AVRO". The default value is CSV. sourceUris: [Required] The fully-qualified URIs that point to your data in Google Cloud Storage. Each URI can contain one '*' wildcard character and it must come after the 'bucket' name. writeDisposition: [Optional] Specifies the action that occurs if the destination table already exists. The following values are supported: WRITE_TRUNCATE: If the table already exists, BigQuery overwrites the table data. WRITE_APPEND: If the table already exists, BigQuery appends the data to the table. WRITE_EMPTY: If the table already exists and contains data, a 'duplicate' error is returned in the job result. The default value is WRITE_APPEND. Each action is atomic and only occurs if BigQuery is able to complete the job successfully. Creation, truncation and append actions occur as one atomic update upon job completion. """ allowJaggedRows = _messages.BooleanField(1) allowQuotedNewlines = _messages.BooleanField(2) autodetect = _messages.BooleanField(3) createDisposition = _messages.StringField(4) destinationTable = _messages.MessageField('TableReference', 5) encoding = _messages.StringField(6) fieldDelimiter = _messages.StringField(7) ignoreUnknownValues = _messages.BooleanField(8) maxBadRecords = _messages.IntegerField(9, variant=_messages.Variant.INT32) nullMarker = _messages.StringField(10) projectionFields = _messages.StringField(11, repeated=True) quote = _messages.StringField(12, default=u'"') schema = _messages.MessageField('TableSchema', 13) schemaInline = _messages.StringField(14) schemaInlineFormat = _messages.StringField(15) schemaUpdateOptions = _messages.StringField(16, repeated=True) skipLeadingRows = _messages.IntegerField(17, variant=_messages.Variant.INT32) sourceFormat = _messages.StringField(18) sourceUris = _messages.StringField(19, repeated=True) writeDisposition = _messages.StringField(20) class JobConfigurationQuery(_messages.Message): """A JobConfigurationQuery object. Messages: TableDefinitionsValue: [Optional] If querying an external data source outside of BigQuery, describes the data format, location and other properties of the data source. By defining these properties, the data source can then be queried as if it were a standard BigQuery table. Fields: allowLargeResults: If true, allows the query to produce arbitrarily large result tables at a slight cost in performance. Requires destinationTable to be set. createDisposition: [Optional] Specifies whether the job is allowed to create new tables. The following values are supported: CREATE_IF_NEEDED: If the table does not exist, BigQuery creates the table. CREATE_NEVER: The table must already exist. If it does not, a 'notFound' error is returned in the job result. The default value is CREATE_IF_NEEDED. Creation, truncation and append actions occur as one atomic update upon job completion. defaultDataset: [Optional] Specifies the default dataset to use for unqualified table names in the query. destinationTable: [Optional] Describes the table where the query results should be stored. If not present, a new table will be created to store the results. flattenResults: [Optional] Flattens all nested and repeated fields in the query results. The default value is true. allowLargeResults must be true if this is set to false. maximumBillingTier: [Optional] Limits the billing tier for this job. Queries that have resource usage beyond this tier will fail (without incurring a charge). If unspecified, this will be set to your project default. maximumBytesBilled: [Optional] Limits the bytes billed for this job. Queries that will have bytes billed beyond this limit will fail (without incurring a charge). If unspecified, this will be set to your project default. parameterMode: [Experimental] Standard SQL only. Set to POSITIONAL to use positional (?) query parameters or to NAMED to use named (@myparam) query parameters in this query. preserveNulls: [Deprecated] This property is deprecated. priority: [Optional] Specifies a priority for the query. Possible values include INTERACTIVE and BATCH. The default value is INTERACTIVE. query: [Required] BigQuery SQL query to execute. queryParameters: Query parameters for standard SQL queries. schemaUpdateOptions: [Experimental] Allows the schema of the destination table to be updated as a side effect of the query job. Schema update options are supported in two cases: when writeDisposition is WRITE_APPEND; when writeDisposition is WRITE_TRUNCATE and the destination table is a partition of a table, specified by partition decorators. For normal tables, WRITE_TRUNCATE will always overwrite the schema. One or more of the following values are specified: ALLOW_FIELD_ADDITION: allow adding a nullable field to the schema. ALLOW_FIELD_RELAXATION: allow relaxing a required field in the original schema to nullable. tableDefinitions: [Optional] If querying an external data source outside of BigQuery, describes the data format, location and other properties of the data source. By defining these properties, the data source can then be queried as if it were a standard BigQuery table. useLegacySql: Specifies whether to use BigQuery's legacy SQL dialect for this query. The default value is true. If set to false, the query will use BigQuery's standard SQL: https://cloud.google.com/bigquery/sql- reference/ When useLegacySql is set to false, the values of allowLargeResults and flattenResults are ignored; query will be run as if allowLargeResults is true and flattenResults is false. useQueryCache: [Optional] Whether to look for the result in the query cache. The query cache is a best-effort cache that will be flushed whenever tables in the query are modified. Moreover, the query cache is only available when a query does not have a destination table specified. The default value is true. userDefinedFunctionResources: [Experimental] Describes user-defined function resources used in the query. writeDisposition: [Optional] Specifies the action that occurs if the destination table already exists. The following values are supported: WRITE_TRUNCATE: If the table already exists, BigQuery overwrites the table data. WRITE_APPEND: If the table already exists, BigQuery appends the data to the table. WRITE_EMPTY: If the table already exists and contains data, a 'duplicate' error is returned in the job result. The default value is WRITE_EMPTY. Each action is atomic and only occurs if BigQuery is able to complete the job successfully. Creation, truncation and append actions occur as one atomic update upon job completion. """ @encoding.MapUnrecognizedFields('additionalProperties') class TableDefinitionsValue(_messages.Message): """[Optional] If querying an external data source outside of BigQuery, describes the data format, location and other properties of the data source. By defining these properties, the data source can then be queried as if it were a standard BigQuery table. Messages: AdditionalProperty: An additional property for a TableDefinitionsValue object. Fields: additionalProperties: Additional properties of type TableDefinitionsValue """ class AdditionalProperty(_messages.Message): """An additional property for a TableDefinitionsValue object. Fields: key: Name of the additional property. value: A ExternalDataConfiguration attribute. """ key = _messages.StringField(1) value = _messages.MessageField('ExternalDataConfiguration', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) allowLargeResults = _messages.BooleanField(1) createDisposition = _messages.StringField(2) defaultDataset = _messages.MessageField('DatasetReference', 3) destinationTable = _messages.MessageField('TableReference', 4) flattenResults = _messages.BooleanField(5, default=True) maximumBillingTier = _messages.IntegerField(6, variant=_messages.Variant.INT32, default=1) maximumBytesBilled = _messages.IntegerField(7) parameterMode = _messages.StringField(8) preserveNulls = _messages.BooleanField(9) priority = _messages.StringField(10) query = _messages.StringField(11) queryParameters = _messages.MessageField('QueryParameter', 12, repeated=True) schemaUpdateOptions = _messages.StringField(13, repeated=True) tableDefinitions = _messages.MessageField('TableDefinitionsValue', 14) useLegacySql = _messages.BooleanField(15) useQueryCache = _messages.BooleanField(16, default=True) userDefinedFunctionResources = _messages.MessageField('UserDefinedFunctionResource', 17, repeated=True) writeDisposition = _messages.StringField(18) class JobConfigurationTableCopy(_messages.Message): """A JobConfigurationTableCopy object. Fields: createDisposition: [Optional] Specifies whether the job is allowed to create new tables. The following values are supported: CREATE_IF_NEEDED: If the table does not exist, BigQuery creates the table. CREATE_NEVER: The table must already exist. If it does not, a 'notFound' error is returned in the job result. The default value is CREATE_IF_NEEDED. Creation, truncation and append actions occur as one atomic update upon job completion. destinationTable: [Required] The destination table sourceTable: [Pick one] Source table to copy. sourceTables: [Pick one] Source tables to copy. writeDisposition: [Optional] Specifies the action that occurs if the destination table already exists. The following values are supported: WRITE_TRUNCATE: If the table already exists, BigQuery overwrites the table data. WRITE_APPEND: If the table already exists, BigQuery appends the data to the table. WRITE_EMPTY: If the table already exists and contains data, a 'duplicate' error is returned in the job result. The default value is WRITE_EMPTY. Each action is atomic and only occurs if BigQuery is able to complete the job successfully. Creation, truncation and append actions occur as one atomic update upon job completion. """ createDisposition = _messages.StringField(1) destinationTable = _messages.MessageField('TableReference', 2) sourceTable = _messages.MessageField('TableReference', 3) sourceTables = _messages.MessageField('TableReference', 4, repeated=True) writeDisposition = _messages.StringField(5) class JobList(_messages.Message): """A JobList object. Messages: JobsValueListEntry: A JobsValueListEntry object. Fields: etag: A hash of this page of results. jobs: List of jobs that were requested. kind: The resource type of the response. nextPageToken: A token to request the next page of results. """ class JobsValueListEntry(_messages.Message): """A JobsValueListEntry object. Fields: configuration: [Full-projection-only] Specifies the job configuration. errorResult: A result object that will be present only if the job has failed. id: Unique opaque ID of the job. jobReference: Job reference uniquely identifying the job. kind: The resource type. state: Running state of the job. When the state is DONE, errorResult can be checked to determine whether the job succeeded or failed. statistics: [Output-only] Information about the job, including starting time and ending time of the job. status: [Full-projection-only] Describes the state of the job. user_email: [Full-projection-only] Email address of the user who ran the job. """ configuration = _messages.MessageField('JobConfiguration', 1) errorResult = _messages.MessageField('ErrorProto', 2) id = _messages.StringField(3) jobReference = _messages.MessageField('JobReference', 4) kind = _messages.StringField(5, default=u'bigquery#job') state = _messages.StringField(6) statistics = _messages.MessageField('JobStatistics', 7) status = _messages.MessageField('JobStatus', 8) user_email = _messages.StringField(9) etag = _messages.StringField(1) jobs = _messages.MessageField('JobsValueListEntry', 2, repeated=True) kind = _messages.StringField(3, default=u'bigquery#jobList') nextPageToken = _messages.StringField(4) class JobReference(_messages.Message): """A JobReference object. Fields: jobId: [Required] The ID of the job. The ID must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). The maximum length is 1,024 characters. projectId: [Required] The ID of the project containing this job. """ jobId = _messages.StringField(1) projectId = _messages.StringField(2) class JobStatistics(_messages.Message): """A JobStatistics object. Fields: creationTime: [Output-only] Creation time of this job, in milliseconds since the epoch. This field will be present on all jobs. endTime: [Output-only] End time of this job, in milliseconds since the epoch. This field will be present whenever a job is in the DONE state. extract: [Output-only] Statistics for an extract job. load: [Output-only] Statistics for a load job. query: [Output-only] Statistics for a query job. startTime: [Output-only] Start time of this job, in milliseconds since the epoch. This field will be present when the job transitions from the PENDING state to either RUNNING or DONE. totalBytesProcessed: [Output-only] [Deprecated] Use the bytes processed in the query statistics instead. """ creationTime = _messages.IntegerField(1) endTime = _messages.IntegerField(2) extract = _messages.MessageField('JobStatistics4', 3) load = _messages.MessageField('JobStatistics3', 4) query = _messages.MessageField('JobStatistics2', 5) startTime = _messages.IntegerField(6) totalBytesProcessed = _messages.IntegerField(7) class JobStatistics2(_messages.Message): """A JobStatistics2 object. Fields: billingTier: [Output-only] Billing tier for the job. cacheHit: [Output-only] Whether the query result was fetched from the query cache. numDmlAffectedRows: [Output-only, Experimental] The number of rows affected by a DML statement. Present only for DML statements INSERT, UPDATE or DELETE. queryPlan: [Output-only, Experimental] Describes execution plan for the query. referencedTables: [Output-only, Experimental] Referenced tables for the job. Queries that reference more than 50 tables will not have a complete list. schema: [Output-only, Experimental] The schema of the results. Present only for successful dry run of non-legacy SQL queries. statementType: [Output-only, Experimental] The type of query statement, if valid. totalBytesBilled: [Output-only] Total bytes billed for the job. totalBytesProcessed: [Output-only] Total bytes processed for the job. undeclaredQueryParameters: [Output-only, Experimental] Standard SQL only: list of undeclared query parameters detected during a dry run validation. """ billingTier = _messages.IntegerField(1, variant=_messages.Variant.INT32) cacheHit = _messages.BooleanField(2) numDmlAffectedRows = _messages.IntegerField(3) queryPlan = _messages.MessageField('ExplainQueryStage', 4, repeated=True) referencedTables = _messages.MessageField('TableReference', 5, repeated=True) schema = _messages.MessageField('TableSchema', 6) statementType = _messages.StringField(7) totalBytesBilled = _messages.IntegerField(8) totalBytesProcessed = _messages.IntegerField(9) undeclaredQueryParameters = _messages.MessageField('QueryParameter', 10, repeated=True) class JobStatistics3(_messages.Message): """A JobStatistics3 object. Fields: inputFileBytes: [Output-only] Number of bytes of source data in a load job. inputFiles: [Output-only] Number of source files in a load job. outputBytes: [Output-only] Size of the loaded data in bytes. Note that while a load job is in the running state, this value may change. outputRows: [Output-only] Number of rows imported in a load job. Note that while an import job is in the running state, this value may change. """ inputFileBytes = _messages.IntegerField(1) inputFiles = _messages.IntegerField(2) outputBytes = _messages.IntegerField(3) outputRows = _messages.IntegerField(4) class JobStatistics4(_messages.Message): """A JobStatistics4 object. Fields: destinationUriFileCounts: [Output-only] Number of files per destination URI or URI pattern specified in the extract configuration. These values will be in the same order as the URIs specified in the 'destinationUris' field. """ destinationUriFileCounts = _messages.IntegerField(1, repeated=True) class JobStatus(_messages.Message): """A JobStatus object. Fields: errorResult: [Output-only] Final error result of the job. If present, indicates that the job has completed and was unsuccessful. errors: [Output-only] All errors encountered during the running of the job. Errors here do not necessarily mean that the job has completed or was unsuccessful. state: [Output-only] Running state of the job. """ errorResult = _messages.MessageField('ErrorProto', 1) errors = _messages.MessageField('ErrorProto', 2, repeated=True) state = _messages.StringField(3) @encoding.MapUnrecognizedFields('additionalProperties') class JsonObject(_messages.Message): """Represents a single JSON object. Messages: AdditionalProperty: An additional property for a JsonObject object. Fields: additionalProperties: Additional properties of type JsonObject """ class AdditionalProperty(_messages.Message): """An additional property for a JsonObject object. Fields: key: Name of the additional property. value: A JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) JsonValue = extra_types.JsonValue class ProjectList(_messages.Message): """A ProjectList object. Messages: ProjectsValueListEntry: A ProjectsValueListEntry object. Fields: etag: A hash of the page of results kind: The type of list. nextPageToken: A token to request the next page of results. projects: Projects to which you have at least READ access. totalItems: The total number of projects in the list. """ class ProjectsValueListEntry(_messages.Message): """A ProjectsValueListEntry object. Fields: friendlyName: A descriptive name for this project. id: An opaque ID of this project. kind: The resource type. numericId: The numeric ID of this project. projectReference: A unique reference to this project. """ friendlyName = _messages.StringField(1) id = _messages.StringField(2) kind = _messages.StringField(3, default=u'bigquery#project') numericId = _messages.IntegerField(4, variant=_messages.Variant.UINT64) projectReference = _messages.MessageField('ProjectReference', 5) etag = _messages.StringField(1) kind = _messages.StringField(2, default=u'bigquery#projectList') nextPageToken = _messages.StringField(3) projects = _messages.MessageField('ProjectsValueListEntry', 4, repeated=True) totalItems = _messages.IntegerField(5, variant=_messages.Variant.INT32) class ProjectReference(_messages.Message): """A ProjectReference object. Fields: projectId: [Required] ID of the project. Can be either the numeric ID or the assigned ID of the project. """ projectId = _messages.StringField(1) class QueryParameter(_messages.Message): """A QueryParameter object. Fields: name: [Optional] If unset, this is a positional parameter. Otherwise, should be unique within a query. parameterType: [Required] The type of this parameter. parameterValue: [Required] The value of this parameter. """ name = _messages.StringField(1) parameterType = _messages.MessageField('QueryParameterType', 2) parameterValue = _messages.MessageField('QueryParameterValue', 3) class QueryParameterType(_messages.Message): """A QueryParameterType object. Messages: StructTypesValueListEntry: A StructTypesValueListEntry object. Fields: arrayType: [Optional] The type of the array's elements, if this is an array. structTypes: [Optional] The types of the fields of this struct, in order, if this is a struct. type: [Required] The top level type of this field. """ class StructTypesValueListEntry(_messages.Message): """A StructTypesValueListEntry object. Fields: description: [Optional] Human-oriented description of the field. name: [Optional] The name of this field. type: [Required] The type of this field. """ description = _messages.StringField(1) name = _messages.StringField(2) type = _messages.MessageField('QueryParameterType', 3) arrayType = _messages.MessageField('QueryParameterType', 1) structTypes = _messages.MessageField('StructTypesValueListEntry', 2, repeated=True) type = _messages.StringField(3) class QueryParameterValue(_messages.Message): """A QueryParameterValue object. Messages: StructValuesValue: [Optional] The struct field values, in order of the struct type's declaration. Fields: arrayValues: [Optional] The array values, if this is an array type. structValues: [Optional] The struct field values, in order of the struct type's declaration. value: [Optional] The value of this value, if a simple scalar type. """ @encoding.MapUnrecognizedFields('additionalProperties') class StructValuesValue(_messages.Message): """[Optional] The struct field values, in order of the struct type's declaration. Messages: AdditionalProperty: An additional property for a StructValuesValue object. Fields: additionalProperties: Additional properties of type StructValuesValue """ class AdditionalProperty(_messages.Message): """An additional property for a StructValuesValue object. Fields: key: Name of the additional property. value: A QueryParameterValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('QueryParameterValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) arrayValues = _messages.MessageField('QueryParameterValue', 1, repeated=True) structValues = _messages.MessageField('StructValuesValue', 2) value = _messages.StringField(3) class QueryRequest(_messages.Message): """A QueryRequest object. Fields: defaultDataset: [Optional] Specifies the default datasetId and projectId to assume for any unqualified table names in the query. If not set, all table names in the query string must be qualified in the format 'datasetId.tableId'. dryRun: [Optional] If set to true, BigQuery doesn't run the job. Instead, if the query is valid, BigQuery returns statistics about the job such as how many bytes would be processed. If the query is invalid, an error returns. The default value is false. kind: The resource type of the request. maxResults: [Optional] The maximum number of rows of data to return per page of results. Setting this flag to a small value such as 1000 and then paging through results might improve reliability when the query result set is large. In addition to this limit, responses are also limited to 10 MB. By default, there is no maximum row count, and only the byte limit applies. parameterMode: [Experimental] Standard SQL only. Set to POSITIONAL to use positional (?) query parameters or to NAMED to use named (@myparam) query parameters in this query. preserveNulls: [Deprecated] This property is deprecated. query: [Required] A query string, following the BigQuery query syntax, of the query to execute. Example: "SELECT count(f1) FROM [myProjectId:myDatasetId.myTableId]". queryParameters: [Experimental] Query parameters for Standard SQL queries. timeoutMs: [Optional] How long to wait for the query to complete, in milliseconds, before the request times out and returns. Note that this is only a timeout for the request, not the query. If the query takes longer to run than the timeout value, the call returns without any results and with the 'jobComplete' flag set to false. You can call GetQueryResults() to wait for the query to complete and read the results. The default value is 10000 milliseconds (10 seconds). useLegacySql: Specifies whether to use BigQuery's legacy SQL dialect for this query. The default value is true. If set to false, the query will use BigQuery's standard SQL: https://cloud.google.com/bigquery/sql- reference/ When useLegacySql is set to false, the values of allowLargeResults and flattenResults are ignored; query will be run as if allowLargeResults is true and flattenResults is false. useQueryCache: [Optional] Whether to look for the result in the query cache. The query cache is a best-effort cache that will be flushed whenever tables in the query are modified. The default value is true. """ defaultDataset = _messages.MessageField('DatasetReference', 1) dryRun = _messages.BooleanField(2) kind = _messages.StringField(3, default=u'bigquery#queryRequest') maxResults = _messages.IntegerField(4, variant=_messages.Variant.UINT32) parameterMode = _messages.StringField(5) preserveNulls = _messages.BooleanField(6) query = _messages.StringField(7) queryParameters = _messages.MessageField('QueryParameter', 8, repeated=True) timeoutMs = _messages.IntegerField(9, variant=_messages.Variant.UINT32) useLegacySql = _messages.BooleanField(10, default=True) useQueryCache = _messages.BooleanField(11, default=True) class QueryResponse(_messages.Message): """A QueryResponse object. Fields: cacheHit: Whether the query result was fetched from the query cache. errors: [Output-only] All errors and warnings encountered during the running of the job. Errors here do not necessarily mean that the job has completed or was unsuccessful. jobComplete: Whether the query has completed or not. If rows or totalRows are present, this will always be true. If this is false, totalRows will not be available. jobReference: Reference to the Job that was created to run the query. This field will be present even if the original request timed out, in which case GetQueryResults can be used to read the results once the query has completed. Since this API only returns the first page of results, subsequent pages can be fetched via the same mechanism (GetQueryResults). kind: The resource type. numDmlAffectedRows: [Output-only, Experimental] The number of rows affected by a DML statement. Present only for DML statements INSERT, UPDATE or DELETE. pageToken: A token used for paging results. rows: An object with as many results as can be contained within the maximum permitted reply size. To get any additional rows, you can call GetQueryResults and specify the jobReference returned above. schema: The schema of the results. Present only when the query completes successfully. totalBytesProcessed: The total number of bytes processed for this query. If this query was a dry run, this is the number of bytes that would be processed if the query were run. totalRows: The total number of rows in the complete query result set, which can be more than the number of rows in this single page of results. """ cacheHit = _messages.BooleanField(1) errors = _messages.MessageField('ErrorProto', 2, repeated=True) jobComplete = _messages.BooleanField(3) jobReference = _messages.MessageField('JobReference', 4) kind = _messages.StringField(5, default=u'bigquery#queryResponse') numDmlAffectedRows = _messages.IntegerField(6) pageToken = _messages.StringField(7) rows = _messages.MessageField('TableRow', 8, repeated=True) schema = _messages.MessageField('TableSchema', 9) totalBytesProcessed = _messages.IntegerField(10) totalRows = _messages.IntegerField(11, variant=_messages.Variant.UINT64) class StandardQueryParameters(_messages.Message): """Query parameters accepted by all methods. Enums: AltValueValuesEnum: Data format for the response. Fields: alt: Data format for the response. fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. Overrides userIp if both are provided. trace: A tracing token of the form "token:<tokenid>" to include in api requests. userIp: IP address of the site where the request originates. Use this if you want to enforce per-user limits. """ class AltValueValuesEnum(_messages.Enum): """Data format for the response. Values: json: Responses with Content-Type of application/json """ json = 0 alt = _messages.EnumField('AltValueValuesEnum', 1, default=u'json') fields = _messages.StringField(2) key = _messages.StringField(3) oauth_token = _messages.StringField(4) prettyPrint = _messages.BooleanField(5, default=True) quotaUser = _messages.StringField(6) trace = _messages.StringField(7) userIp = _messages.StringField(8) class Streamingbuffer(_messages.Message): """A Streamingbuffer object. Fields: estimatedBytes: [Output-only] A lower-bound estimate of the number of bytes currently in the streaming buffer. estimatedRows: [Output-only] A lower-bound estimate of the number of rows currently in the streaming buffer. oldestEntryTime: [Output-only] Contains the timestamp of the oldest entry in the streaming buffer, in milliseconds since the epoch, if the streaming buffer is available. """ estimatedBytes = _messages.IntegerField(1, variant=_messages.Variant.UINT64) estimatedRows = _messages.IntegerField(2, variant=_messages.Variant.UINT64) oldestEntryTime = _messages.IntegerField(3, variant=_messages.Variant.UINT64) class Table(_messages.Message): """A Table object. Messages: LabelsValue: [Experimental] The labels associated with this table. You can use these to organize and group your tables. Label keys and values can be no longer than 63 characters, can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter and each label in the list must have a different key. Fields: creationTime: [Output-only] The time when this table was created, in milliseconds since the epoch. description: [Optional] A user-friendly description of this table. etag: [Output-only] A hash of this resource. expirationTime: [Optional] The time when this table expires, in milliseconds since the epoch. If not present, the table will persist indefinitely. Expired tables will be deleted and their storage reclaimed. externalDataConfiguration: [Optional] Describes the data format, location, and other properties of a table stored outside of BigQuery. By defining these properties, the data source can then be queried as if it were a standard BigQuery table. friendlyName: [Optional] A descriptive name for this table. id: [Output-only] An opaque ID uniquely identifying the table. kind: [Output-only] The type of the resource. labels: [Experimental] The labels associated with this table. You can use these to organize and group your tables. Label keys and values can be no longer than 63 characters, can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter and each label in the list must have a different key. lastModifiedTime: [Output-only] The time when this table was last modified, in milliseconds since the epoch. location: [Output-only] The geographic location where the table resides. This value is inherited from the dataset. numBytes: [Output-only] The size of this table in bytes, excluding any data in the streaming buffer. numLongTermBytes: [Output-only] The number of bytes in the table that are considered "long-term storage". numRows: [Output-only] The number of rows of data in this table, excluding any data in the streaming buffer. schema: [Optional] Describes the schema of this table. selfLink: [Output-only] A URL that can be used to access this resource again. streamingBuffer: [Output-only] Contains information regarding this table's streaming buffer, if one is present. This field will be absent if the table is not being streamed to or if there is no data in the streaming buffer. tableReference: [Required] Reference describing the ID of this table. timePartitioning: [Experimental] If specified, configures time-based partitioning for this table. type: [Output-only] Describes the table type. The following values are supported: TABLE: A normal BigQuery table. VIEW: A virtual table defined by a SQL query. EXTERNAL: A table that references data stored in an external storage system, such as Google Cloud Storage. The default value is TABLE. view: [Optional] The view definition. """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): """[Experimental] The labels associated with this table. You can use these to organize and group your tables. Label keys and values can be no longer than 63 characters, can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter and each label in the list must have a different key. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): """An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) creationTime = _messages.IntegerField(1) description = _messages.StringField(2) etag = _messages.StringField(3) expirationTime = _messages.IntegerField(4) externalDataConfiguration = _messages.MessageField('ExternalDataConfiguration', 5) friendlyName = _messages.StringField(6) id = _messages.StringField(7) kind = _messages.StringField(8, default=u'bigquery#table') labels = _messages.MessageField('LabelsValue', 9) lastModifiedTime = _messages.IntegerField(10, variant=_messages.Variant.UINT64) location = _messages.StringField(11) numBytes = _messages.IntegerField(12) numLongTermBytes = _messages.IntegerField(13) numRows = _messages.IntegerField(14, variant=_messages.Variant.UINT64) schema = _messages.MessageField('TableSchema', 15) selfLink = _messages.StringField(16) streamingBuffer = _messages.MessageField('Streamingbuffer', 17) tableReference = _messages.MessageField('TableReference', 18) timePartitioning = _messages.MessageField('TimePartitioning', 19) type = _messages.StringField(20) view = _messages.MessageField('ViewDefinition', 21) class TableCell(_messages.Message): """A TableCell object. Fields: v: A extra_types.JsonValue attribute. """ v = _messages.MessageField('extra_types.JsonValue', 1) class TableDataInsertAllRequest(_messages.Message): """A TableDataInsertAllRequest object. Messages: RowsValueListEntry: A RowsValueListEntry object. Fields: ignoreUnknownValues: [Optional] Accept rows that contain values that do not match the schema. The unknown values are ignored. Default is false, which treats unknown values as errors. kind: The resource type of the response. rows: The rows to insert. skipInvalidRows: [Optional] Insert all valid rows of a request, even if invalid rows exist. The default value is false, which causes the entire request to fail if any invalid rows exist. templateSuffix: [Experimental] If specified, treats the destination table as a base template, and inserts the rows into an instance table named "{destination}{templateSuffix}". BigQuery will manage creation of the instance table, using the schema of the base template table. See https://cloud.google.com/bigquery/streaming-data-into-bigquery#template- tables for considerations when working with templates tables. """ class RowsValueListEntry(_messages.Message): """A RowsValueListEntry object. Fields: insertId: [Optional] A unique ID for each row. BigQuery uses this property to detect duplicate insertion requests on a best-effort basis. json: [Required] A JSON object that contains a row of data. The object's properties and values must match the destination table's schema. """ insertId = _messages.StringField(1) json = _messages.MessageField('JsonObject', 2) ignoreUnknownValues = _messages.BooleanField(1) kind = _messages.StringField(2, default=u'bigquery#tableDataInsertAllRequest') rows = _messages.MessageField('RowsValueListEntry', 3, repeated=True) skipInvalidRows = _messages.BooleanField(4) templateSuffix = _messages.StringField(5) class TableDataInsertAllResponse(_messages.Message): """A TableDataInsertAllResponse object. Messages: InsertErrorsValueListEntry: A InsertErrorsValueListEntry object. Fields: insertErrors: An array of errors for rows that were not inserted. kind: The resource type of the response. """ class InsertErrorsValueListEntry(_messages.Message): """A InsertErrorsValueListEntry object. Fields: errors: Error information for the row indicated by the index property. index: The index of the row that error applies to. """ errors = _messages.MessageField('ErrorProto', 1, repeated=True) index = _messages.IntegerField(2, variant=_messages.Variant.UINT32) insertErrors = _messages.MessageField('InsertErrorsValueListEntry', 1, repeated=True) kind = _messages.StringField(2, default=u'bigquery#tableDataInsertAllResponse') class TableDataList(_messages.Message): """A TableDataList object. Fields: etag: A hash of this page of results. kind: The resource type of the response. pageToken: A token used for paging results. Providing this token instead of the startIndex parameter can help you retrieve stable results when an underlying table is changing. rows: Rows of results. totalRows: The total number of rows in the complete table. """ etag = _messages.StringField(1) kind = _messages.StringField(2, default=u'bigquery#tableDataList') pageToken = _messages.StringField(3) rows = _messages.MessageField('TableRow', 4, repeated=True) totalRows = _messages.IntegerField(5) class TableFieldSchema(_messages.Message): """A TableFieldSchema object. Fields: description: [Optional] The field description. The maximum length is 16K characters. fields: [Optional] Describes the nested schema fields if the type property is set to RECORD. mode: [Optional] The field mode. Possible values include NULLABLE, REQUIRED and REPEATED. The default value is NULLABLE. name: [Required] The field name. The name must contain only letters (a-z, A-Z), numbers (0-9), or underscores (_), and must start with a letter or underscore. The maximum length is 128 characters. type: [Required] The field data type. Possible values include STRING, BYTES, INTEGER, INT64 (same as INTEGER), FLOAT, FLOAT64 (same as FLOAT), BOOLEAN, BOOL (same as BOOLEAN), TIMESTAMP, DATE, TIME, DATETIME, RECORD (where RECORD indicates that the field contains a nested schema) or STRUCT (same as RECORD). """ description = _messages.StringField(1) fields = _messages.MessageField('TableFieldSchema', 2, repeated=True) mode = _messages.StringField(3) name = _messages.StringField(4) type = _messages.StringField(5) class TableList(_messages.Message): """A TableList object. Messages: TablesValueListEntry: A TablesValueListEntry object. Fields: etag: A hash of this page of results. kind: The type of list. nextPageToken: A token to request the next page of results. tables: Tables in the requested dataset. totalItems: The total number of tables in the dataset. """ class TablesValueListEntry(_messages.Message): """A TablesValueListEntry object. Messages: LabelsValue: [Experimental] The labels associated with this table. You can use these to organize and group your tables. ViewValue: Additional details for a view. Fields: friendlyName: The user-friendly name for this table. id: An opaque ID of the table kind: The resource type. labels: [Experimental] The labels associated with this table. You can use these to organize and group your tables. tableReference: A reference uniquely identifying the table. type: The type of table. Possible values are: TABLE, VIEW. view: Additional details for a view. """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): """[Experimental] The labels associated with this table. You can use these to organize and group your tables. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): """An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) class ViewValue(_messages.Message): """Additional details for a view. Fields: useLegacySql: True if view is defined in legacy SQL dialect, false if in standard SQL. """ useLegacySql = _messages.BooleanField(1) friendlyName = _messages.StringField(1) id = _messages.StringField(2) kind = _messages.StringField(3, default=u'bigquery#table') labels = _messages.MessageField('LabelsValue', 4) tableReference = _messages.MessageField('TableReference', 5) type = _messages.StringField(6) view = _messages.MessageField('ViewValue', 7) etag = _messages.StringField(1) kind = _messages.StringField(2, default=u'bigquery#tableList') nextPageToken = _messages.StringField(3) tables = _messages.MessageField('TablesValueListEntry', 4, repeated=True) totalItems = _messages.IntegerField(5, variant=_messages.Variant.INT32) class TableReference(_messages.Message): """A TableReference object. Fields: datasetId: [Required] The ID of the dataset containing this table. projectId: [Required] The ID of the project containing this table. tableId: [Required] The ID of the table. The ID must contain only letters (a-z, A-Z), numbers (0-9), or underscores (_). The maximum length is 1,024 characters. """ datasetId = _messages.StringField(1) projectId = _messages.StringField(2) tableId = _messages.StringField(3) class TableRow(_messages.Message): """A TableRow object. Fields: f: Represents a single row in the result set, consisting of one or more fields. """ f = _messages.MessageField('TableCell', 1, repeated=True) class TableSchema(_messages.Message): """A TableSchema object. Fields: fields: Describes the fields in a table. """ fields = _messages.MessageField('TableFieldSchema', 1, repeated=True) class TimePartitioning(_messages.Message): """A TimePartitioning object. Fields: expirationMs: [Optional] Number of milliseconds for which to keep the storage for a partition. type: [Required] The only type supported is DAY, which will generate one partition per day based on data loading time. """ expirationMs = _messages.IntegerField(1) type = _messages.StringField(2) class UserDefinedFunctionResource(_messages.Message): """A UserDefinedFunctionResource object. Fields: inlineCode: [Pick one] An inline resource that contains code for a user- defined function (UDF). Providing a inline code resource is equivalent to providing a URI for a file containing the same code. resourceUri: [Pick one] A code resource to load from a Google Cloud Storage URI (gs://bucket/path). """ inlineCode = _messages.StringField(1) resourceUri = _messages.StringField(2) class ViewDefinition(_messages.Message): """A ViewDefinition object. Fields: query: [Required] A query that BigQuery executes when the view is referenced. useLegacySql: Specifies whether to use BigQuery's legacy SQL for this view. The default value is true. If set to false, the view will use BigQuery's standard SQL: https://cloud.google.com/bigquery/sql- reference/ Queries and views that reference this view must use the same flag value. userDefinedFunctionResources: [Experimental] Describes user-defined function resources used in the query. """ query = _messages.StringField(1) useLegacySql = _messages.BooleanField(2) userDefinedFunctionResources = _messages.MessageField('UserDefinedFunctionResource', 3, repeated=True)
67d8405dae494c985db55a7991291fe6a81e390a
38c10c01007624cd2056884f25e0d6ab85442194
/third_party/chromite/cbuildbot/autotest_rpc_errors.py
1ee19f4a5238f93886962b5f9968b1f009275cf6
[ "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
zenoalbisser/chromium
6ecf37b6c030c84f1b26282bc4ef95769c62a9b2
e71f21b9b4b9b839f5093301974a45545dad2691
refs/heads/master
2022-12-25T14:23:18.568575
2016-07-14T21:49:52
2016-07-23T08:02:51
63,980,627
0
2
BSD-3-Clause
2022-12-12T12:43:41
2016-07-22T20:14:04
null
UTF-8
Python
false
false
670
py
# Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Error codes used for the Autotest RPC Client, Proxy, and Server. This is a copy of scripts/slave-internal/autotest_rpc/autotest_rpc_errors.py from https://chrome-internal.googlesource.com/chrome/tools/build. """ CLIENT_CANNOT_CONNECT = 1 CLIENT_HTTP_CODE = 2 CLIENT_EMPTY_RESPONSE = 3 CLIENT_NO_RETURN_CODE = 4 PROXY_CANNOT_SEND_REQUEST = 11 PROXY_CONNECTION_LOST = 12 PROXY_TIMED_OUT = 13 SERVER_NO_COMMAND = 21 SERVER_NO_ARGUMENTS = 22 SERVER_UNKNOWN_COMMAND = 23 SERVER_BAD_ARGUMENT_COUNT = 24
46b142b96d6ec205f215bf65fe76cf618722fad6
7236d1d4873faa9735fd5e2d4598b211a370f731
/project/n/projects/projects/ecommapp/users/migrations/0007_myuser_date_join.py
d2f2c4be22f4cc171f14f93f40710f105bb9009e
[]
no_license
Dreambigxz/my_first_django_app
05f5a5d330d72084489f9306fca9ca232af13999
9e21ebcbe63c7394280558d2977ef8a796960e0d
refs/heads/main
2023-01-03T18:45:20.712074
2020-10-23T09:05:47
2020-10-23T09:05:47
306,180,592
1
0
null
null
null
null
UTF-8
Python
false
false
453
py
# Generated by Django 3.0.8 on 2020-09-03 16:55 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('users', '0006_auto_20200903_1752'), ] operations = [ migrations.AddField( model_name='myuser', name='date_join', field=models.DateField(default=django.utils.timezone.now), ), ]
116d387dd717fabe096b4ea161ad403d2870e88a
33976fddb32feae0b6b5d38b0a8994490fc4b1db
/src/ar6/constants/gases.py
4df95e992cbd6ed95181fc2ed1bf4bafd19e54c8
[ "MIT" ]
permissive
chrisroadmap/ar6
e72e4bad8d1c1fa2751513dbecddb8508711859c
2f948c862dbc158182ba47b863395ec1a4aa7998
refs/heads/main
2023-04-16T22:57:02.280787
2022-09-27T13:31:38
2022-09-27T13:31:38
305,981,969
27
20
MIT
2022-09-27T13:31:38
2020-10-21T10:02:03
Jupyter Notebook
UTF-8
Python
false
false
6,315
py
""" Gas properties """ # Number of bromine atoms br_atoms = { 'CCl4': 0, 'CFC11': 0, 'CFC113': 0, 'CFC114': 0, 'CFC115': 0, 'CFC12': 0, 'CH2Cl2': 0, 'CH3Br': 1, 'CH3CCl3': 0, 'CH3Cl': 0, 'CHCl3': 0, 'HCFC141b': 0, 'HCFC142b': 0, 'HCFC22': 0, 'Halon1211': 1, 'Halon1301': 1, 'Halon2402': 2, } # Number of chlorine atoms cl_atoms = { 'CCl4': 4, 'CFC11': 3, 'CFC113': 3, 'CFC114': 2, 'CFC115': 1, 'CFC12': 2, 'CH2Cl2': 2, 'CH3Br': 0, 'CH3CCl3': 3, 'CH3Cl': 1, 'CHCl3': 3, 'HCFC141b': 2, 'HCFC142b': 1, 'HCFC22': 1, 'Halon1211': 0, 'Halon1301': 0, 'Halon2402': 0, } # Fractional release (for ozone depletion) # References: # Daniel, J. and Velders, G.: A focus on information and options for # policymakers, in: Scientific Assessment of Ozone Depletion, WMO, 2011 # Newman et al., 2007: A new formulation of equivalent effective stratospheric # chlorine (EESC) fracrel = { 'CCl4': 0.56, 'CFC11': 0.47, 'CFC113': 0.29, 'CFC114': 0.12, 'CFC115': 0.04, 'CFC12': 0.23, 'CH2Cl2': 0, # no literature value available 'CH3Br': 0.60, 'CH3CCl3': 0.67, 'CH3Cl': 0.44, 'CHCl3': 0, # no literature value available 'HCFC141b': 0.34, 'HCFC142b': 0.17, 'HCFC22': 0.13, 'Halon1211': 0.62, 'Halon1301': 0.28, 'Halon2402': 0.65, } # Conversion between GHG names in GHG spreadsheet and RCMIP. ghg_to_rcmip_names={ 'HFC-125': 'HFC125', 'HFC-134a': 'HFC134a', 'HFC-143a': 'HFC143a', 'HFC-152a': 'HFC152a', 'HFC-227ea': 'HFC227ea', 'HFC-23': 'HFC23', 'HFC-236fa': 'HFC236fa', 'HFC-245fa': 'HFC245fa', 'HFC-32': 'HFC32', 'HFC-365mfc': 'HFC365mfc', 'HFC-43-10mee': 'HFC4310mee', 'NF3': 'NF3', 'C2F6': 'C2F6', 'C3F8': 'C3F8', 'n-C4F10': 'C4F10', 'n-C5F12': 'C5F12', 'n-C6F14': 'C6F14', 'i-C6F14': None, 'C7F16': 'C7F16', 'C8F18': 'C8F18', 'CF4': 'CF4', 'c-C4F8': 'cC4F8', 'SF6': 'SF6', 'SO2F2': 'SO2F2', 'CCl4': 'CCl4', 'CFC-11': 'CFC11', 'CFC-112': 'CFC112', 'CFC-112a': None, 'CFC-113': 'CFC113', 'CFC-113a': None, 'CFC-114': 'CFC114', 'CFC-114a': None, 'CFC-115': 'CFC115', 'CFC-12': 'CFC12', 'CFC-13': None, 'CH2Cl2': 'CH2Cl2', 'CH3Br': 'CH3Br', 'CH3CCl3': 'CH3CCl3', 'CH3Cl': 'CH3Cl', 'CHCl3': 'CHCl3', 'HCFC-124': None, 'HCFC-133a': None, 'HCFC-141b': 'HCFC141b', 'HCFC-142b': 'HCFC142b', 'HCFC-22': 'HCFC22', 'HCFC-31': None, 'Halon-1211': 'Halon1211', 'Halon-1301': 'Halon1301', 'Halon-2402': 'Halon2402', } # Hodnebrog et al., 2020: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000691 # unless stated lifetimes = { 'CH4': 11.8, # chapter 6 'N2O': 109, # AR6 SOD 'HFC-125': 30, 'HFC-134a': 14, 'HFC-143a': 51, 'HFC-152a': 1.6, 'HFC-227ea': 36, 'HFC-23': 228, 'HFC-236fa': 213, 'HFC-245fa': 7.9, 'HFC-32': 5.4, 'HFC-365mfc': 8.9, 'HFC-43-10mee': 17, 'NF3': 569, 'C2F6': 10000, 'C3F8': 2600, 'n-C4F10': 2600, 'n-C5F12': 4100, 'n-C6F14': 3100, 'i-C6F14': 3100, # assumed 'C7F16': 3000, 'C8F18': 3000, 'CF4': 50000, 'c-C4F8': 3200, 'SF6': 3200, 'SO2F2': 36, 'CCl4': 32, 'CFC-11': 52, 'CFC-112': 63.6, 'CFC-112a': 52, 'CFC-113': 93, 'CFC-113a': 55, 'CFC-114': 189, 'CFC-114a': 105, 'CFC-115': 540, 'CFC-12': 102, 'CFC-13': 640, 'CH2Cl2': 0.4932, 'CH3Br': 0.8, 'CH3CCl3': 5, 'CH3Cl': 0.9, 'CHCl3': 0.5014, 'HCFC-124': 5.9, 'HCFC-133a': 4.6, 'HCFC-141b': 9.4, 'HCFC-142b': 18, 'HCFC-22': 11.9, 'HCFC-31': 1.2, 'Halon-1211': 16, 'Halon-1301': 72, 'Halon-2402': 28, } # Ozone depleting substances ods_species = [ 'CCl4', 'CFC11', 'CFC113', 'CFC114', 'CFC115', 'CFC12', 'CH2Cl2', 'CH3Br', 'CH3CCl3', 'CH3Cl', 'CHCl3', 'HCFC141b', 'HCFC142b', 'HCFC22', 'Halon1211', 'Halon1301', 'Halon2402', ] # radiative efficiencies # source: Hodnebrog et al 2020 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000691 radeff = { 'HFC-125': 0.23378, 'HFC-134a': 0.16714, 'HFC-143a': 0.168, 'HFC-152a': 0.10174, 'HFC-227ea': 0.27325, 'HFC-23': 0.19111, 'HFC-236fa': 0.25069, 'HFC-245fa': 0.24498, 'HFC-32': 0.11144, 'HFC-365mfc': 0.22813, 'HFC-43-10mee': 0.35731, 'NF3': 0.20448, 'C2F6': 0.26105, 'C3F8': 0.26999, 'n-C4F10': 0.36874, 'n-C5F12': 0.4076, 'n-C6F14': 0.44888, 'i-C6F14': 0.44888, 'C7F16': 0.50312, 'C8F18': 0.55787, 'CF4': 0.09859, 'c-C4F8': 0.31392, 'SF6': 0.56657, 'SO2F2': 0.21074, 'CCl4': 0.16616, 'CFC-11': 0.25941, 'CFC-112': 0.28192, 'CFC-112a': 0.24564, 'CFC-113': 0.30142, 'CFC-113a': 0.24094, 'CFC-114': 0.31433, 'CFC-114a': 0.29747, 'CFC-115': 0.24625, 'CFC-12': 0.31998, 'CFC-13': 0.27752, 'CH2Cl2': 0.02882, 'CH3Br': 0.00432, 'CH3CCl3': 0.06454, 'CH3Cl': 0.00466, 'CHCl3': 0.07357, 'HCFC-124': 0.20721, 'HCFC-133a': 0.14995, 'HCFC-141b': 0.16065, 'HCFC-142b': 0.19329, 'HCFC-22': 0.21385, 'HCFC-31': 0.068, 'Halon-1211': 0.30014, 'Halon-1301': 0.29943, 'Halon-2402': 0.31169, } rcmip_to_ghg_names = {v: k for k, v in ghg_to_rcmip_names.items()}
2592cd0cd2bea747a58634eb2386b2e46bdca291
a0015a3dc121c8fcdd5d2eadd522ece03b4ceec8
/docs/cornell CS class/Lesson 29. Coroutines/demos/read2.py
fe3ecc58b16f7d80b45c890599a931e740dcc82a
[ "MIT" ]
permissive
LizzieDeng/kalman_fliter_analysis
fc40d475797dbddba5f9f2dfb224fbf68d77865f
50e728f32c496c3fcbb8ca3ee00857b999b88d99
refs/heads/main
2023-03-03T02:46:19.020078
2021-02-05T07:53:10
2021-02-05T07:53:10
329,243,328
0
0
null
null
null
null
UTF-8
Python
false
false
5,137
py
""" A module to show off a long-running function as a coroutine. This module shows another advantage of a coroutine. We can interleave two functions as they load from a file. There are reasons we might want to do this when working with large data, but they are beyond the scope of this course. Author: Walker M. White Date: November 2, 2020 """ def merge(dict1,dict2): """ Returns a new dictionary merging (joining keys) dict1 and dict2. If a key appears in only one of dict1 or dict2, the value is the value from that dictionary. If it is in both, the value is the sum of values. Example: merge({'a':1,'b':2},{'b':3,'c':4}) returns {'a':1,'b':5,'c':4} Parameter dict1: The first dictionary to merge Precondition: dict1 a dictionary with int or float values Parameter dict2: The second dictionary to merge Precondition: dict2 a dictionary with int or float values """ result = dict(dict1) # Makes a (shallow) copy for k in dict2: if k in dict1: result[k] = result[k]+1 else: result[k] = 1 return result def add_word(word,counts): """ Adds a word to a word-count dictionary. The keys of the dictionaries are strings, and the values are integers. If the word is already in the dictionary, adding it will increase the value by 1. Otherwise it will add the key and assign it a value for 1. Example: If count = ['a':1,'b':1}, add_word('a',count) alters count to be {'a':2,'b':1} Parameter word: The word to add Precondition: word is a string Parameter counts: The word-count dictionary Precondition: count is a dictionary with string keys and integer values """ if word in counts: counts[word] = counts[word]+1 else: counts[word] = 1 def wordcount(fname): """ Returns a dictionary with the individual word count of fname The is function opens the specified text file and creates a dictionary from it. The keys of the dictionaries are words (i.e. adjacent letters with no spaces or punctuation). For example, in the string 'Who are you?', the words are 'Who', 'are', and 'you'. The values are the number of times that word (paying attention to capitalization) appears in the file. This function is a generator-based coroutine that stops at every 10% of the file to return its amount of progress to the original caller (the function that calls next()). Parameter fname: The file name Precondition: fname is a string and the name of a text file """ # Load the entire file into a single string file = open(fname) text = file.read() file.close() counts = {} word = '' # Accumulator to build a word for pos in range(len(text)): # Yield every 10% if pos % (len(text)//10) == 0: # Indicate the amount of progress we made yield round(100*pos/len(text)) # Build up the word, one letter at a time x = text[pos] if x.isalpha(): word = word+x else: # Word ends # Add it if not empty if word != '': add_word(word,counts) word = '' # Reset the accumulator # Add the last word if word != '': add_word(word,counts) return counts def loadfiles(fname1,fname2): """ Creates a word-count dictionary for fname1, fname2 and prints the combined size The size of the word-count dictionary is the number of distinct words in the file. This function is the parent of wordcount, pushing it forward with the next() function until it is done reading the file. This function creates two wordcount coroutines and interleaves them. Parameter fname1: The first file name Precondition: fname1 is a string and the name of a text file Parameter fname2: The second file name Precondition: fname2 is a string and the name of a text file """ loader1 = wordcount(fname1) loader2 = wordcount(fname2) result = {} # We keep going as long as either loader is working while (not loader1 is None) or (not loader2 is None): # Load the next batch from fname1 if not loader1 is None: try: amount = next(loader1) print('Loaded '+str(amount)+'% of '+repr(fname1)) except StopIteration as e: result = merge(result,e.args[0]) # Access the return value loader1 = None # We are done # Load the next batch from fname2 if not loader2 is None: try: amount = next(loader2) print('Loaded '+str(amount)+'% of '+repr(fname2)) except StopIteration as e: result = merge(result,e.args[0]) # Access the return value loader2 = None # We are done print('Read a total of '+str(len(result))+' words.') if __name__ == '__main__': loadfiles('warpeace10.txt','kingjames10.txt')
2cb33275754ec783f5f546a411cf0fe226a579eb
f7982a468b6f76dc72c53e7c3644ae4e7e6f2f49
/pyEX/refdata/ric.py
6e4ab19987f1f4ec33a268a2b177446c705a78b6
[ "Apache-2.0" ]
permissive
timkpaine/pyEX
55002c3718214c6e207976ab3661a47108c6c114
f678c791d05bc28911e25807241c392a9ee8134f
refs/heads/main
2023-08-20T00:17:53.162803
2022-11-22T02:51:13
2022-11-22T02:51:13
109,551,372
350
95
Apache-2.0
2023-09-11T12:26:54
2017-11-05T04:21:16
Python
UTF-8
Python
false
false
1,129
py
# ***************************************************************************** # # Copyright (c) 2021, the pyEX authors. # # This file is part of the pyEX library, distributed under the terms of # the Apache License 2.0. The full license can be found in the LICENSE file. # from functools import wraps import pandas as pd from ..common import _get def ricLookup(ric, token="", version="stable", filter="", format="json"): """This call converts a RIC to an iex symbol https://iexcloud.io/docs/api/#ric-mapping 8am, 9am, 12pm, 1pm UTC daily Args: ric (str): ric to lookup token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results format (str): return format, defaults to json Returns: dict or DataFrame or list: result """ return _get( "ref-data/ric?ric={}".format(ric), token=token, version=version, filter=filter, format=format, ) @wraps(ricLookup) def ricLookupDF(*args, **kwargs): return pd.DataFrame(ricLookup(*args, **kwargs))
726083e657d4bfe7dfdd3ffc0d4860c40b2161b0
98d9305b1717642bcfb842eecd84d63b6eeaf759
/Funtions/Passing_Information.py
95f7621fc81d57dd2ebdb67a24a82da35ae5f6f4
[]
no_license
er-aditi/Learning-Python
5ceb020f4df8db9e34df78edfaecca3e1854c8a9
297eda435ee2e1cee643f94ea4c5de6a82e3c8a7
refs/heads/master
2020-03-24T17:22:22.129081
2019-06-19T05:47:26
2019-06-19T05:47:26
142,856,993
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
def greet_user(username): print("Hello! " + username + ". ") greet_user('jess') greet_user('sarah')
0f7d8ae5196b70d080e081d05be8478206494a1d
82cd10c024f284555845f006e518924fed3254c7
/Day-06[09-10-2021]/EmployeeProject/EmployeeProject/urls.py
256d1ab7ebea77beebcb3a9ed2b40858b129c6a2
[]
no_license
AP-Skill-Development-Corporation/APSSDC-Workshop2021
61acba18eb55ec2e4bb96ded95d339c73c8ea1ac
fe1f5517f99b17bd0ebcf07c70ee26bd23f262ea
refs/heads/main
2023-08-12T16:29:53.208949
2021-10-16T15:47:22
2021-10-16T15:47:22
413,299,596
1
1
null
null
null
null
UTF-8
Python
false
false
1,549
py
"""EmployeeProject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from Employee import views urlpatterns = [ path('admin/', admin.site.urls), path('demo/',views.sample), path('de/<str:name>/',views.dsname), path('fe/<str:name>/<int:age>/',views.fname), path('g/<str:fname>/<str:lname>/<int:sal>/',views.emp), path('gt/<str:empname>/<int:sal>/',views.empdetials), path('fy/<str:sname>/',views.dname), path('sty/<str:stname>/<int:year>/<str:branch>/',views.stname), path('reg/',views.regis), path('se/',views.index,name="ind"), path('about/',views.about,name="ab"), path('contact/',views.contact,name="cnt"), path('sam/',views.sample), path('re/',views.register,name="rg"), path('',views.operations,name="op"), path('emv/<int:t>/',views.eview,name="ev"), path('eup/<int:p>/',views.emup,name="ep"), path('ed/<int:f>/',views.emdl,name="edl"), ]
b53fb27016d732c08a7869d38d13162383b30b32
1e09bc56bf2904b349df1873e11da3d527437880
/lecture-27/AdjListGraph.py
8a03efffe1f2ce76c121133adbb645df489cf2d6
[]
no_license
codeforcauseorg-archive/DSA-Live-Python-Jun-0621
f3444f5671cb4985644c7432517477c3585c70fb
e4fe544178d7851c24755242390f39675b99fabe
refs/heads/main
2023-08-09T08:31:41.449120
2021-09-14T16:44:39
2021-09-14T16:44:39
384,725,085
4
2
null
null
null
null
UTF-8
Python
false
false
2,095
py
class Vertex: def __init__(self, value): self.value = value self.neighbours = {} class AdjListGraph: def __init__(self): self.vertices = dict() def add_vertex(self, value): if value not in self.vertices: self.vertices[value] = Vertex(value) def add_edge(self, first, second, weight): if (first in self.vertices) and (second in self.vertices): vfirst = self.vertices[first] vsecond = self.vertices[second] vfirst.neighbours[vsecond] = weight vsecond.neighbours[vfirst] = weight def min_spanning_tree(self): edges = [] for vertex in self.vertices.values(): # print(vertex.neighbours.items()) for neighbour, weight in vertex.neighbours.items(): edges.append([weight, vertex.value, neighbour.value]) sorted_edges = sorted(edges) acc = 0 for [weight, source, dest] in sorted_edges: if self.union(source, dest): acc += weight return acc # parents = {} # for vertex in self.vertices: # parents[vertex.value] = None def union(self, parents, first, second): first = self.find(parents, first) second = self.find(parents, second) if first == second: return False else: parents[first] = second def find(self, parents, item): while parents[item] != None: item = parents[item] return item def represent(self): for vertex in self.vertices.values(): print(vertex.value, end="-> ") for neighbour in vertex.neighbours: print("[{} : {}]".format(neighbour.value, vertex.neighbours[neighbour]), end=", ") print() graph = AdjListGraph() graph.add_vertex("A") graph.add_vertex("B") graph.add_vertex("C") graph.add_vertex("D") graph.add_edge("A", "B", 10) graph.add_edge("B", "C", 15) graph.add_edge("D", "C", 10) graph.add_edge("A", "D", 20) graph.min_spanning_tree()
cd3d97d846876037d74f4ccc46eefb915c555830
823b69dffc4a6e28b9e4c27ec176f8ce54d2e586
/args/arg_parser.py
c2cea4c5d26614670271806fddc28b28fb6b4b19
[]
no_license
potlee/pbt
1f5af632aa100561da1c284b522a6ca181ea21c1
05160eca9f3a557a25d043502f90aca1a7b76b46
refs/heads/master
2020-03-25T23:48:47.867151
2018-06-23T19:40:16
2018-06-23T19:40:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,599
py
import argparse import util class ArgParser(object): def __init__(self): self.parser = argparse.ArgumentParser(description='Population-Based Training') self.parser.add_argument('--gpu_ids', type=str, default='0', help='Comma-separated list of GPUs to use.') self.parser.add_argument('--batch_size', type=int, default=32, help='Batch size.') self.parser.add_argument('--num_workers', type=int, default=4, help='Number of workers per data loader.') self.parser.add_argument('--num_epochs', type=int, default=30, help='Number of epochs to train for. If 0, train forever.') self.parser.add_argument('--population_size', type=int, default=3, help='Number of models in a population.') self.parser.add_argument('--dataset', type=str, default='CIFAR10', choices=('CIFAR10',), help='Dataset to train on.') self.parser.add_argument('--ckpt_dir', type=str, default='ckpts/', help='Directory to save checkpoints and population info.') self.parser.add_argument('--name', type=str, required=True, help='Experiment name.') self.parser.add_argument('--model', type=str, default='resnet50', help='Model name.') self.parser.add_argument('--metric_name', type=str, default='val_loss', help='Metric to optimize during PBT. Make sure to also set --maximize_metric') self.parser.add_argument('--maximize_metric', type=util.str_to_bool, default=False, help='If true, maximize the metric. Else minimize.') self.parser.add_argument('--max_eval', type=int, default=1000, help='Max number of examples to evaluate from the training set.') self.parser.add_argument('--max_ckpts', type=int, default=3, help='Max number of recent checkpoints to keep per model.') self.parser.add_argument('--save_dir', type=str, default='logs', help='Directory for saving logs.') self.parser.add_argument('--learning_rate', type=float, default=1e-1, help='Initial learning rate.') self.parser.add_argument('--optimizer', type=str, default='sgd', choices=('sgd', 'adam'), help='Optimizer.') self.parser.add_argument('--sgd_momentum', type=float, default=0.9, help='SGD momentum (SGD only).') self.parser.add_argument('--sgd_dampening', type=float, default=0.9, help='SGD momentum (SGD only).') self.parser.add_argument('--adam_beta_1', type=float, default=0.9, help='Adam beta 1 (Adam only).') self.parser.add_argument('--adam_beta_2', type=float, default=0.999, help='Adam beta 2 (Adam only).') self.parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (i.e., L2 regularization factor).') self.parser.add_argument('--iters_per_print', type=int, default=4, help='Number of iterations between printing loss to the console and TensorBoard.') self.parser.add_argument('--search_space', type=str, default='lr,momentum,weight_decay') def parse_args(self): args = self.parser.parse_args() args.gpu_ids = [int(i) for i in str(args.gpu_ids).split(',') if int(i) >= 0] args.device = 'cpu' if len(args.gpu_ids) == 0 else 'cuda:{}'.format(args.gpu_ids[0]) args.search_space = str(args.search_space).split(',') return args
1a5cc4dd4b02297aa61785f8fe17d28cdf7bae2c
99e494d9ca83ebafdbe6fbebc554ab229edcbacc
/.history/Day 1/Test/Answers/NegativeMarking_20210304211811.py
d220b7261e6beb16198606a036f3688522eaee56
[]
no_license
Datta2901/CCC
c0364caa1e4937bc7bce68e4847c8d599aef0f59
4debb2c1c70df693d0e5f68b5798bd9c7a7ef3dc
refs/heads/master
2023-04-19T10:05:12.372578
2021-04-23T12:50:08
2021-04-23T12:50:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
t = int(input()) for i in range(t): questions,requiredscore = map(int,input().split()) if questions * 4 < requiredscore: print(-1) continue attempt = (requiredscore/questions) + 3 accuracy = attempt / 7 print(format(accuracy*100,'.2f') # # Here Accuracy can be find by using two linear equations # They are Total Score(Required Score) = 4 * x - 3 * y # Total Questions = x + y # Here x is the total number of crct answers # y is the total number of wrong answers
39764d8d79f6697d5e9b2cffeb3f3e9487f9ea0a
2eee2da886d2574f030b22771e707e32f56cbaed
/chaospy/distributions/collection/chi.py
cb04231c2d16b7f21de4aa90574562d6e927b4fc
[ "MIT" ]
permissive
lblonk/chaospy
1759f050229d1365802320d9b13f6195ec55a72c
1759a4307c6134b74ce63ff44973195f1e185f94
refs/heads/master
2022-11-12T19:50:15.108219
2020-07-03T11:13:42
2020-07-03T11:13:42
276,879,282
0
0
MIT
2020-07-03T11:03:14
2020-07-03T11:03:13
null
UTF-8
Python
false
false
3,779
py
"""Chi distribution.""" import numpy from scipy import special from ..baseclass import Dist from ..operators.addition import Add class chi(Dist): """Chi distribution.""" def __init__(self, df=1): Dist.__init__(self, df=df) def _pdf(self, x, df): return x**(df-1.)*numpy.exp(-x*x*0.5)/(2.0)**(df*0.5-1)\ /special.gamma(df*0.5) def _cdf(self, x, df): return special.gammainc(df*0.5,0.5*x*x) def _ppf(self, q, df): return numpy.sqrt(2*special.gammaincinv(df*0.5, q)) def _lower(self, df): return 0. def _mom(self, k, df): return 2**(.5*k)*special.gamma(.5*(df+k))\ /special.gamma(.5*df) class Chi(Add): """ Chi distribution. Args: df (float, Dist): Degrees of freedom scale (float, Dist): Scaling parameter shift (float, Dist): Location parameter Examples: >>> distribution = chaospy.Chi(2, 4, 1) >>> distribution Chi(df=2, scale=4, shift=1) >>> q = numpy.linspace(0, 1, 5) >>> distribution.inv(q).round(4) array([ 1. , 4.0341, 5.7096, 7.6604, 28.1446]) >>> distribution.fwd(distribution.inv(q)).round(4) array([0. , 0.25, 0.5 , 0.75, 1. ]) >>> distribution.pdf(distribution.inv(q)).round(4) array([0. , 0.1422, 0.1472, 0.1041, 0. ]) >>> distribution.sample(4).round(4) array([ 6.8244, 2.9773, 10.8003, 5.5892]) >>> distribution.mom(1).round(4) 6.0133 """ def __init__(self, df=1, scale=1, shift=0): self._repr = {"df": df, "scale": scale, "shift": shift} Add.__init__(self, left=chi(df)*scale, right=shift) class Maxwell(Add): """ Maxwell-Boltzmann distribution Chi distribution with 3 degrees of freedom Args: scale (float, Dist): Scaling parameter shift (float, Dist): Location parameter Examples: >>> distribution = chaospy.Maxwell(2, 3) >>> distribution Maxwell(scale=2, shift=3) >>> q = numpy.linspace(0, 1, 5) >>> distribution.inv(q).round(4) array([ 3. , 5.2023, 6.0763, 7.0538, 17.0772]) >>> distribution.fwd(distribution.inv(q)).round(4) array([0. , 0.25, 0.5 , 0.75, 1. ]) >>> distribution.pdf(distribution.inv(q)).round(4) array([0. , 0.2638, 0.2892, 0.2101, 0. ]) >>> distribution.sample(4).round(4) array([6.6381, 4.6119, 8.5955, 6.015 ]) >>> distribution.mom(1).round(4) 6.1915 """ def __init__(self, scale=1, shift=0): self._repr = {"scale": scale, "shift": shift} Add.__init__(self, left=chi(3)*scale, right=shift) class Rayleigh(Add): """ Rayleigh distribution Args: scale (float, Dist): Scaling parameter shift (float, Dist): Location parameter Examples: >>> distribution = chaospy.Rayleigh(2, 3) >>> distribution Rayleigh(scale=2, shift=3) >>> q = numpy.linspace(0, 1, 5) >>> distribution.inv(q).round(4) array([ 3. , 4.5171, 5.3548, 6.3302, 16.5723]) >>> distribution.fwd(distribution.inv(q)).round(4) array([0. , 0.25, 0.5 , 0.75, 1. ]) >>> distribution.pdf(distribution.inv(q)).round(4) array([0. , 0.2844, 0.2944, 0.2081, 0. ]) >>> distribution.sample(4).round(4) array([5.9122, 3.9886, 7.9001, 5.2946]) >>> distribution.mom(1).round(4) 5.5066 """ def __init__(self, scale=1, shift=0): self._repr = {"scale": scale, "shift": shift} Add.__init__(self, left=chi(2)*scale, right=shift)
c0593805d9fcc7d217660376fbb2688f706642e2
0798277f2706998ab80442ac931579eb47f676e5
/boundary/property_handler.py
45635669e8b5a3731f321b2d7a0d6eb87f6a6557
[ "Apache-2.0" ]
permissive
isabella232/pulse-api-cli
49ed38b0694ab289802f69ee6df4911cf3378e3f
b01ca65b442eed19faac309c9d62bbc3cb2c098f
refs/heads/master
2023-03-18T00:23:15.295727
2016-05-13T15:44:08
2016-05-13T15:44:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,244
py
# # Copyright 2016 BMC Software, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # class PropertyHandler(object): def __init__(self): self._properties = None def _process_properties(self, properties): """ Transforms the command line properties into python dictionary :return: """ if properties is not None: self._properties = {} for p in properties: d = p.split('=') self._properties[d[0]] = d[1] def _add_property_argument(self, parser, help_text): parser.add_argument('-p', '--property', dest='properties', action='append', required=False, metavar='property=value', help=help_text)
87339e4385a890dc9a46c6e5efc4674cb85aefa2
4073f351551c2f73c5659cb3038a68360cc5b369
/Arbetsbok/kap 14/övn 14.1, sid. 36 - söka tal.py
9b318176e080635b41a000e7aeb4734430c42602
[ "MIT" ]
permissive
Pharou/programmering1python
b9a5aca72354d3e7e91a5023a621d22a962ecd7c
9b689027db1f7fbf06925f3094fcb126880453e4
refs/heads/master
2022-11-28T06:33:17.295157
2020-07-25T11:02:07
2020-07-25T11:02:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,437
py
#!/usr/bin/python3.8 # Filnamn: övn 14.1, sid. 36 - söka tal.py # Sökning # Programmeringsövningar till kapitel 14 # Programmet slumpar först fram 20 tal mellan 1 och 100 och lagrar alla talen i # en lista och sedan skrivs listan ut på skärmen. Därefter frågar programmet # användaren efter ett tal som ska eftersökas. Slutligen undersöker programmet # om talet finns i listan och om det finns, skriva ut på indexet det finns på. # Om inte talet finns så ska användaren informeras om att det inte finns. # Sökmetod: Linjär sökning # Import av modul from random import randint # Funktionsdefinitioner # Huvudprogram def main(): lista = [] # Slumpa 20 st heltal mellan 1 och 100 och lägg dem eftervarandra i listan for c in range(20): lista.append(randint(1,100)) # Skriv ut listan print(lista) # Fråga användaren efte tal som eftersöks tal = int(input('Anget tal som eftersöks: ')) # Utför en linjär sökning i hela listan # Utgå ifrån att talet inte finns index = -1 for i in range(len(lista)): if tal == lista[i]: # Om talet hittas sätt index till det och avbryt loopen index = i break if index >= 0: print('Talet ' + str(tal) + ' finns på index ' + str(index) + ' i listan.') else: print('Talet ' + str(tal) + ' finns inte i listan.') ## Huvudprogram anropas main()
4ad42cd6418d521ed2f275b7b73aaa4e7036fbea
964b063c2461aad267ddd991fefaf7ab53b1ca94
/6-kyu/iq-test/python/solution.py
2221bc57375308dc79e1d3f085e299509f860057
[]
no_license
lucasbflopes/codewars-solutions
26c4e2cd1be19db50cc8c1d9fc117c51c82a2259
72ef2c02dde7bd0d5a691e04e3b2a383e892f84b
refs/heads/master
2022-03-14T01:26:41.816498
2019-11-23T17:17:19
2019-11-23T17:17:19
114,834,447
0
1
null
null
null
null
UTF-8
Python
false
false
193
py
def iq_test(numbers): arr = [i % 2 == 0 for i in [int(j) for j in numbers.split()]] if arr.count(True) > 1: return arr.index(False)+1 else: return arr.index(True)+1
5be34879011c0f4d0308e93c05824f2a437ec963
44b87d9faad99d542914c35410ba7d354d5ba9cd
/1/collection/list/divisible by 8 using compre.py
857a0b6ada0c2d9dc98bd9180ec1370a09173462
[]
no_license
append-knowledge/pythondjango
586292d1c7d0ddace3630f0d77ca53f442667e54
0e5dab580e8cc48e9940fb93a71bcd36e8e6a84e
refs/heads/master
2023-06-24T07:24:53.374998
2021-07-13T05:55:25
2021-07-13T05:55:25
385,247,677
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
num=[i for i in range(1,1000) if i%8==0] print(num) print("length of num is",len(num)) # odd=[i for i in range(1000) if i%2!=0] # print(odd)
00f065d20644809c36a60a0fbfe0ad0aa3cd6ef9
4a0f2cc27cd39b8b8901ade728f3b1dc20c2a2ee
/controller/qt_classes/UbNewDocumentViewDelegate.py
096e2b7becda90dbfcb58540466702c64771dd6f
[]
no_license
teamlm2/lm2_mgis
2c016423983a31fcdf15e34508401acf48177f35
9144b1234b25665737986995bd1da7492871151c
refs/heads/master
2021-11-11T23:43:12.647749
2021-10-26T07:55:58
2021-10-26T07:55:58
155,568,182
0
1
null
null
null
null
UTF-8
Python
false
false
3,303
py
# coding=utf8 __author__ = 'B.Ankhbold' from PyQt4.QtCore import * from PyQt4.QtGui import * from sqlalchemy.exc import SQLAlchemyError from ...model import SettingsConstants from ...model.SetOfficialDocument import SetOfficialDocument from ...utils.FileUtils import FileUtils from ...utils.PluginUtils import PluginUtils from ...utils.SessionHandler import SessionHandler from ...utils.DatabaseUtils import * from ...utils.FilePath import * from ftplib import * import shutil import codecs NAME_COLUMN = 0 DESCRIPTION_COLUMN = 1 VIEW_COLUMN = 2 FILE_PDF = 'pdf' FILE_IMAGE = 'png' class UbNewDocumentViewDelegate(QStyledItemDelegate): def __init__(self, widget, parent): super(UbNewDocumentViewDelegate, self).__init__(parent) self.widget = widget self.parent = parent self.session = SessionHandler().session_instance() self.button = QPushButton("", parent) self.button.hide() self.viewIcon = QIcon(":/plugins/lm2/file.png") def paint(self, painter, option, index): if index.column() == VIEW_COLUMN: self.button.setIcon(self.viewIcon) else: super(UbNewDocumentViewDelegate, self).paint(painter, option, index) return self.button.setGeometry(option.rect) button_picture = QPixmap.grabWidget(self.button) painter.drawPixmap(option.rect.x(), option.rect.y(), button_picture) def editorEvent(self, event, model, option, index): if index is not None: if index.isValid() and event.type() == QEvent.MouseButtonRelease: if event.button() == Qt.RightButton: return False if index.column() == VIEW_COLUMN: ftp = self.widget.item(index.row(), NAME_COLUMN).data(Qt.UserRole) file_name = self.widget.item(index.row(), NAME_COLUMN).data(Qt.UserRole + 1) file_type = self.widget.item(index.row(), NAME_COLUMN).data(Qt.UserRole + 2) # print file_name # print file_type # print ftp.pwd() # print ftp.nlst() view_pdf = open(FilePath.view_file_path(), 'wb') view_png = open(FilePath.view_file_png_path(), 'wb') if file_type == FILE_IMAGE: ftp.retrbinary('RETR ' + file_name, view_png.write) else: ftp.retrbinary('RETR ' + file_name, view_pdf.write) try: if file_type == FILE_IMAGE: QDesktopServices.openUrl(QUrl.fromLocalFile(FilePath.view_file_png_path())) else: QDesktopServices.openUrl(QUrl.fromLocalFile(FilePath.view_file_path())) except SQLAlchemyError, e: PluginUtils.show_error(self.parent, self.tr("File Error"), self.tr("Could not execute: {0}").format(e.message)) return True elif index.column() == DESCRIPTION_COLUMN or index.column() == NAME_COLUMN: return True else: index.model().setData(index, 0, Qt.EditRole) return False
116f6963b88edfdb0db9fda927ba4e4947b376fa
5ec7d0bad8a77c79843a2813f5effcb3a2b7e288
/lean/models/brokerages/cloud/tradier.py
fd5e10b9f48bced5ac4faae3e74d4fac7886ec50
[ "Apache-2.0" ]
permissive
xdpknx/lean-cli
aca9b9c9c4e156c9faefcfa8ccdfc20423b510a0
c1051bd3e8851ae96f6e84f608a7116b1689c9e9
refs/heads/master
2023-08-08T02:30:09.827647
2021-09-21T21:36:24
2021-09-21T21:36:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,163
py
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean CLI v1.0. Copyright 2021 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import click from lean.components.util.logger import Logger from lean.models.brokerages.cloud.base import CloudBrokerage class TradierBrokerage(CloudBrokerage): """A CloudBrokerage implementation for Tradier.""" def __init__(self, account_id: str, access_token: str, environment: str) -> None: self._account_id = account_id self._access_token = access_token self._environment = environment @classmethod def get_id(cls) -> str: return "TradierBrokerage" @classmethod def get_name(cls) -> str: return "Tradier" @classmethod def build(cls, logger: Logger) -> CloudBrokerage: logger.info(""" Your Tradier account id and API token can be found on your Settings/API Access page (https://dash.tradier.com/settings/api). The account id is the alpha-numeric code in a dropdown box on that page. Your account details are not saved on QuantConnect. """.strip()) account_id = click.prompt("Account id") access_token = logger.prompt_password("Access token") environment = click.prompt("Environment", type=click.Choice(["demo", "real"], case_sensitive=False)) return TradierBrokerage(account_id, access_token, environment) def _get_settings(self) -> Dict[str, str]: return { "account": self._account_id, "token": self._access_token, "environment": "live" if self._environment == "real" else "paper" }
19f3c8b7d94aae6549e86646e36334cb826a906e
6e820756b82ffbe9837348937e53f1a0ce0e6cca
/Lib/site-packages/pandas_datareader/io/jsdmx.py
d602ca88beb058636aceaac714662ee2f457a6c4
[]
no_license
AndreasPatsimas/pms_papei
c2afd941de6ae234dd37784d746e794183ebb8d3
da10220ea468304c1066bed55b8f92ba9e5ada8a
refs/heads/master
2023-02-01T23:33:39.221747
2020-12-19T12:17:59
2020-12-19T12:17:59
321,115,913
0
0
null
null
null
null
UTF-8
Python
false
false
3,167
py
# pylint: disable-msg=E1101,W0613,W0603 from __future__ import unicode_literals from collections import OrderedDict import itertools import re import sys import numpy as np import pandas as pd from pandas_datareader.io.util import _read_content def read_jsdmx(path_or_buf): """ Convert a SDMX-JSON string to panda object Parameters ---------- path_or_buf : a valid SDMX-JSON string or file-like https://github.com/sdmx-twg/sdmx-json Returns ------- results : Series, DataFrame, or dictionary of Series or DataFrame. """ jdata = _read_content(path_or_buf) try: import simplejson as json except ImportError: if sys.version_info[:2] < (2, 7): raise ImportError("simplejson is required in python 2.6") import json if isinstance(jdata, dict): data = jdata else: data = json.loads(jdata, object_pairs_hook=OrderedDict) structure = data["structure"] index = _parse_dimensions(structure["dimensions"]["observation"]) columns = _parse_dimensions(structure["dimensions"]["series"]) dataset = data["dataSets"] if len(dataset) != 1: raise ValueError("length of 'dataSets' must be 1") dataset = dataset[0] values = _parse_values(dataset, index=index, columns=columns) df = pd.DataFrame(values, columns=columns, index=index) return df def _get_indexer(index): if index.nlevels == 1: return [str(i) for i in range(len(index))] else: it = itertools.product(*[range(len(level)) for level in index.levels]) return [":".join(map(str, i)) for i in it] def _fix_quarter_values(value): """Make raw quarter values Pandas-friendly (e.g. 'Q4-2018' -> '2018Q4').""" m = re.match(r"Q([1-4])-(\d\d\d\d)", value) if not m: return value quarter, year = m.groups() value = "%sQ%s" % (quarter, year) return value def _parse_values(dataset, index, columns): size = len(index) series = dataset["series"] values = [] # for s_key, s_value in iteritems(series): for s_key in _get_indexer(columns): try: observations = series[s_key]["observations"] observed = [] for o_key in _get_indexer(index): try: observed.append(observations[o_key][0]) except KeyError: observed.append(np.nan) except KeyError: observed = [np.nan] * size values.append(observed) return np.transpose(np.array(values)) def _parse_dimensions(dimensions): arrays = [] names = [] for key in dimensions: values = [v["name"] for v in key["values"]] role = key.get("role", None) if role in ("time", "TIME_PERIOD"): values = [_fix_quarter_values(v) for v in values] values = pd.DatetimeIndex(values) arrays.append(values) names.append(key["name"]) midx = pd.MultiIndex.from_product(arrays, names=names) if len(arrays) == 1 and isinstance(midx, pd.MultiIndex): # Fix for panda >= 0.21 midx = midx.levels[0] return midx
42242438bea8875d7471ea2ddf09291f67a15799
30a34b3503decf1b4516039df3106cd152631819
/4AL17IS050_T_K_HARSHITH_PRASAD/19_05_2020/2.py
90236ef15cb59e0d27deb74598351d1745cafda7
[]
no_license
alvas-education-foundation/ISE_3rd_Year_Coding_challenge
8ddb6c325bf6ab63e2f73d16573fa0b6e2484136
b4074cab4a47aad07ed0fa426eacccbfafdef7f8
refs/heads/master
2022-11-23T20:52:19.204693
2020-07-23T11:28:15
2020-07-23T11:28:15
265,195,514
4
1
null
null
null
null
UTF-8
Python
false
false
196
py
# This program adds two numbers num1 = 1.5 num2 = 6.3 # Add two numbers sum = float(num1) + float(num2) # Display the sum print('The sum of {0} and {1} is {2}'.format(num1, num2, sum))
190c0b7174e3ee074dcee7447dd6149444d96d20
9030481ef925278a174cbbf58c74bc5058e8d302
/contrib/testgen/base58.py
0b6e6e1ae339c3c25f894b09b621c4777509d655
[ "MIT" ]
permissive
hideoussquid/aureus-13-gui
1b8f85f262cbc1970c3d8072b064956073bc4182
8865c958ba1680d4615128dabcc3cc4d47a24c51
refs/heads/master
2021-01-19T08:22:45.795165
2017-04-26T07:34:19
2017-04-26T07:34:19
87,622,430
0
0
null
null
null
null
UTF-8
Python
false
false
2,999
py
# Copyright (c) 2012 The Aureus Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Aureus base58 encoding and decoding. Based on https://aureustalk.org/index.php?topic=1026.0 (public domain) ''' import hashlib # for compatibility with following code... class SHA256: new = hashlib.sha256 if str != bytes: # Python 3.x def ord(c): return c def chr(n): return bytes( (n,) ) __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' __b58base = len(__b58chars) b58chars = __b58chars def b58encode(v): """ encode v, which is a string of bytes, to base58. """ long_value = 0 for (i, c) in enumerate(v[::-1]): long_value += (256**i) * ord(c) result = '' while long_value >= __b58base: div, mod = divmod(long_value, __b58base) result = __b58chars[mod] + result long_value = div result = __b58chars[long_value] + result # Aureus does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == '\0': nPad += 1 else: break return (__b58chars[0]*nPad) + result def b58decode(v, length = None): """ decode v into a string of len bytes """ long_value = 0 for (i, c) in enumerate(v[::-1]): long_value += __b58chars.find(c) * (__b58base**i) result = bytes() while long_value >= 256: div, mod = divmod(long_value, 256) result = chr(mod) + result long_value = div result = chr(long_value) + result nPad = 0 for c in v: if c == __b58chars[0]: nPad += 1 else: break result = chr(0)*nPad + result if length is not None and len(result) != length: return None return result def checksum(v): """Return 32-bit checksum based on SHA256""" return SHA256.new(SHA256.new(v).digest()).digest()[0:4] def b58encode_chk(v): """b58encode a string, with 32-bit checksum""" return b58encode(v + checksum(v)) def b58decode_chk(v): """decode a base58 string, check and remove checksum""" result = b58decode(v) if result is None: return None h3 = checksum(result[:-4]) if result[-4:] == checksum(result[:-4]): return result[:-4] else: return None def get_bcaddress_version(strAddress): """ Returns None if strAddress is invalid. Otherwise returns integer version of address. """ addr = b58decode_chk(strAddress) if addr is None or len(addr)!=21: return None version = addr[0] return ord(version) if __name__ == '__main__': # Test case (from http://gitorious.org/aureus/python-base58.git) assert get_bcaddress_version('15VjRaDX9zpbA8LVnbrCAFzrVzN7ixHNsC') is 0 _ohai = 'o hai'.encode('ascii') _tmp = b58encode(_ohai) assert _tmp == 'DYB3oMS' assert b58decode(_tmp, 5) == _ohai print("Tests passed")
58bb40f95b996bb5aaf4c9706c5271c0c5978cc2
25d8bac5635ac1cc3577a3593a4512e042ea7ecd
/scripts/asyncore-example-2.py
27a4738c22e98525faf3534d4f880e283ad582e0
[]
no_license
mtslong/demo
2333fa571d6d9def7bdffc90f7bcb623b15e6e4b
a78b74e0eea7f84df489f5c70969b9b4797a4873
refs/heads/master
2020-05-18T18:28:48.237100
2013-11-11T16:10:11
2013-11-11T16:10:11
4,136,487
0
0
null
null
null
null
UTF-8
Python
false
false
885
py
import asyncore import socket, time # reference time TIME1970 = 2208988800L class TimeChannel(asyncore.dispatcher): def handle_write(self): t = int(time.time()) + TIME1970 t = chr(t>>24&255) + chr(t>>16&255) + chr(t>>8&255) + chr(t&255) self.send(t) self.close() class TimeServer(asyncore.dispatcher): def __init__(self, port=37): self.port = port self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.bind(("", port)) self.listen(5) print "listening on port", self.port def handle_accept(self): channel, addr = self.accept() TimeChannel(channel) server = TimeServer(8037) asyncore.loop() ## log: adding channel <TimeServer at 8cb940> ## listening on port 8037 ## log: adding channel <TimeChannel at 8b2fd0> ## log: closing channel 52:<TimeChannel connected at 8b2fd0>
deece369baf689aed3e350790563652c99e1df4c
ca0d710ed0469beb7f87ae53f5efdef7bac19a27
/MainView/migrations/0001_initial.py
c421c7915ab1a3ced242749c9b05288a7231a3c2
[ "MIT" ]
permissive
CiganOliviu/wedding_invitation
5d441d786f742d6a4baf5ff418370c0cfbb1b81e
8b243b287b6577b4f5f899e33ade1fec651152f0
refs/heads/main
2023-03-03T08:12:36.345173
2021-02-08T15:37:04
2021-02-08T15:37:04
333,568,503
0
0
MIT
2021-02-08T15:37:05
2021-01-27T21:43:34
null
UTF-8
Python
false
false
646
py
# Generated by Django 3.0.8 on 2020-08-10 08:01 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ConfirmAnswer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, unique=True)), ('submitted', models.BooleanField(default=True)), ('answer_sent', models.DateTimeField(auto_now_add=True)), ], ), ]
86a20d0a802a3b77e91c16b62fb4c5702450b991
dc69872f21492d34d7da6eee9f0d03f7c09a8a8d
/libraries/edge/opensearch/granuleisoresponse.py
fd3ed16eb03bd91778c8ff34354a963de13a58c8
[ "Apache-2.0" ]
permissive
isabella232/incubator-sdap-edge
125e9ba8cb1738d8407222f9d21f5452fc5fa840
c725dad1098096048faed9a42a56f3cfc5c25bc5
refs/heads/master
2022-03-19T18:49:03.752184
2019-12-02T23:40:12
2019-12-02T23:40:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,127
py
import datetime from edge.opensearch.isoresponsebysolr import IsoResponseBySolr class GranuleIsoResponse(IsoResponseBySolr): def __init__(self, linkToGranule): super(GranuleIsoResponse, self).__init__() self.linkToGranule = linkToGranule.split(',') def _populateChannel(self, solrResponse): pass def _populateItem(self, solrResponse, doc, item): link = self._getLinkToGranule(doc) if link is not None: doc['link'] = link def _getLinkToGranule(self, doc): link = None if 'GranuleReference-Type' in doc and len(self.linkToGranule) > 0: granuleRefDict = dict(list(zip(doc['GranuleReference-Type'], list(zip(doc['GranuleReference-Path'], doc['GranuleReference-Status']))))) for type in self.linkToGranule: # check if reference type exists if type in granuleRefDict: # check if reference is online if granuleRefDict[type][1] == 'ONLINE': link = granuleRefDict[type][0] break return link
22cce56ad1cf624ac9db09d203ea57c2bd8a72fe
e34d4bf879910b8f41068c1efb90915897e53d53
/sprint/SquaresOfSortedArray.py
a58ff6bd16baa33b009ff18fbabf44af40766e9e
[]
no_license
ZhouningMan/LeetCodePython
6cfc30f0b76f6162502410fef5639fde4801bd74
cad9585c440efb329c9321648f94c58ded198438
refs/heads/master
2020-12-10T03:53:48.824344
2020-01-13T02:29:02
2020-01-13T02:29:02
233,494,907
0
0
null
null
null
null
UTF-8
Python
false
false
618
py
class Solution: def sortedSquares(self, A): size = len(A) squares = [0] * size for i in range(size): squares[i] = A[i] * A[i] copy = [0] * size begin = 0 end = size - 1 i = size - 1 while begin <= end: if squares[begin] > squares[end]: copy[i] = squares[begin] begin += 1 else: copy[i] = squares[end] end -= 1 i -= 1 return copy if __name__ == '__main__': s = Solution() ans = s.sortedSquares([-3,-3,-2,1]) print(ans)
81286eab7404c79ae264329c873fd324031b3ce5
b7054c7dc39eeb79aa4aecb77a8de222400b19a7
/object.py
deee2a4715df5ac355f73bac61921bfff028351c
[]
no_license
csuxh/python_fullstack
89027133c7f9585931455a6a85a24faf41792379
f78571976b3bef104309e95304892fdb89739d9e
refs/heads/master
2023-05-11T09:36:40.482788
2019-06-12T14:21:26
2019-06-12T14:21:26
145,090,531
0
0
null
null
null
null
UTF-8
Python
false
false
988
py
#!/usr/bin/env python #!-*-coding:utf-8 -*- #!@Auther : jack.xia #!@Time : 2018/5/29 21:56 #!@File : object.py class Stuf(object): count = 0 __slots__ = ('name', 'id', 'position') def __init__(self, name, id, position): self.__name = name self.__id = id self.__position = position def print_obj(self): print('name: %s ;id: %d ;position %s ' %(self.__name, self.__id, self.__position)) class Account(Stuf): pass class IT(Stuf): pass if Stuf.count != 0: print('测试失败!') else: bart = Stuf('Bart', 12, '2-4') if Stuf.count != 1: print('测试失败!') Stuf.count +=1 print('%d' %(Stuf.count + 1) ) else: lisa = Stuf('lisa', 11, '2-5') if Stuf.count != 2: print('测试失败!') else: print('Stuf:', Stuf.count) print('测试通过!') #stu1 = Stuf('jack', 13, '1-2') #stu1.print_obj() #print(stu1.id) #print(stu1.__name)
08f4aced36fe56bcec48deaa99f0e5ad628d5792
b978cf7f47c5cd6295f3c0c104752d3e1e9d89d6
/test.py
f88b6b9a5b2b21a543c221161f595e2588fd53b5
[]
no_license
sepidmnorozy/backup-crawler
1e4cd62d5a48b6e3bf974f89d1d513765e5d9c5b
73beddd2febd0dec3a0d1f5706557de073035a06
refs/heads/master
2022-11-18T19:56:43.507394
2020-07-22T13:11:53
2020-07-22T13:11:53
281,674,079
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
from pymongo import MongoClient from rss import rss_reader import json if rss_reader('https://www.khabaronline.ir/rss') == 'Success': with open("links.json", 'r') as f: urls = json.load(f) else: urls = [] client = MongoClient() db = client['newsdb_week'] articles = db.weekarticles start_urls = [] for url in urls: if articles.find_one({"url": url}) is None: start_urls.append(url) print(start_urls) print(len(start_urls))
e286247caef6608e64d3f83668b0e57d5c35c469
07e6fc323f657d1fbfc24f861a278ab57338b80a
/python/test_chem_reaction.py
a45fb01f6793461a249921c48059b569c7d781b2
[ "MIT" ]
permissive
ProkopHapala/SimpleSimulationEngine
99cf2532501698ee8a03b2e40d1e4bedd9a12609
47543f24f106419697e82771289172d7773c7810
refs/heads/master
2022-09-05T01:02:42.820199
2022-08-28T10:22:41
2022-08-28T10:22:41
40,007,027
35
4
null
null
null
null
UTF-8
Python
false
false
462
py
#!/usr/bin/python import re import numpy as np import sys from pySimE import chemistry as ch #print ch.str2composition( sys.argv[1] ) #sides = ch.parseReaction( 'Fe+O2=Fe2O3' ) #sides = ch.parseReaction( 'C12H22O11+KNO3=H2O+CO2+K2CO3+N2' ) #print sides #print ch.reaction2string( sides ) #print ch.balanceReactionString( 'Fe+O2=Fe2O3' ) print ch.balanceReactionString( 'C12H22O11+KNO3=H2O+CO2+K2CO3+N2' ) #print atomicBalance( reaction[0], reaction[1] )
fb4d6144389ec8eb93a016186bb5908c2683cdc8
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_clattering.py
3893e7f6289447dca25d947171005c4f61ce3729
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _CLATTERING(): def __init__(self,): self.name = "CLATTERING" self.definitions = clatter self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['clatter']
a0c529fe9ac1114d4ea620a3a09ab644868c12c2
7c59bbd4ff413a95dc9d25fbfccd11c6db60202a
/python_stack/full_stack_django/test_orm/apps/test_orm_app/migrations/0001_initial.py
ff84e3ca46db76c12c5baaeb018a42283bcbe193
[]
no_license
soikatesc/DojoAssignments
9a185a1164e42a985aea5e49d0ee270fd476d42a
c5c84bc9bd4aedd0fe6aa26bf75793e284edb248
refs/heads/master
2021-01-23T04:34:19.617679
2017-05-16T03:52:58
2017-05-16T03:52:58
86,211,544
0
0
null
null
null
null
UTF-8
Python
false
false
1,310
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-04-19 00:12 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Blog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('blog', models.TextField(max_length=1000)), ('created_at', models.DateField(auto_now_add=True)), ('updated_at', models.DateField(auto_now=True)), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.TextField(max_length=1000)), ('created_at', models.DateField(auto_now_add=True)), ('updated_at', models.DateField(auto_now=True)), ('blog', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='test_orm_app.Blog')), ], ), ]
b6cd32dd7c58e44b484925d0981c527b8eb6d61f
ddd09683d9cbd681db5dae4e2d036d28bd4d24c1
/PA3/BAL3.py
f82978400cd729be26ca286631abcea6caa2356a
[]
no_license
nivedn3/DL4CV-EE6132-
41f9cd877a4c43db0a2f511a57df8b624fbc0a07
2cd97c7d2170a8e4fe36b6ccc8443c009e3d003a
refs/heads/master
2021-01-20T05:41:37.019460
2017-11-22T10:17:16
2017-11-22T10:17:16
101,465,640
2
2
null
null
null
null
UTF-8
Python
false
false
4,240
py
import tensorflow as tf import numpy as np sess = tf.InteractiveSession() def data(number,size): a = [] b = [] out = [] for i in range(number): a_in = np.random.choice([0,1],size) a_in = a_in.tolist() #a_in = [1,0,0,0,0] b_in = np.random.choice([0,1],size) b_in = b_in.tolist() #b_in = [1,0,0,0,0] a_str = ','.join(str(x) for x in a_in).replace(',','') b_str = ','.join(str(x) for x in b_in).replace(',','') c = bin(int(a_str,2) + int(b_str,2)).split('b')[1] c = [int(i) for i in list(c)] c_out = np.array(c) if len(c_out) == size: c_out = np.insert(c_out,0,0) if len(c_out) < size: while(len(c_out) != size+1): c_out = np.insert(c_out,0,0) test = [] for j in range(len(a_in)): test.append(a_in[j]) test.append(b_in[j]) a.append(test) #b.append(b_in) out.append(c_out) return a,out size = 3 hs = 5 x = tf.placeholder(tf.float32,shape = [None,size,2]) y = tf.placeholder(tf.float32,shape = [None,size+1]) w = tf.Variable(tf.random_normal([hs,size+1])) b = tf.Variable(tf.random_normal([size+1])) rnn_inp = tf.unstack(x,size,1) lstm = tf.contrib.rnn.BasicRNNCell(hs) outputs, states = tf.contrib.rnn.static_rnn(lstm, rnn_inp, dtype=tf.float32) logits = tf.sigmoid(tf.matmul(outputs[-1], w) + b) logitst = tf.add(logits,tf.scalar_mul(-0.5,tf.ones_like(logits))) logitst = tf.nn.relu(logits) logitst = tf.scalar_mul(1000000,logits) logitst = tf.clip_by_value(logits,0,1) logitsc = tf.cast(logitst,tf.int32) yc = tf.cast(y,tf.int32) with tf.name_scope("cross_entropy"): #cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,labels = y)) cross_entropy = tf.losses.mean_squared_error(labels = y, predictions = logits) tf.summary.scalar('cross entropy',cross_entropy) with tf.name_scope("train"): train_step = tf.train.AdamOptimizer(0.1).minimize(cross_entropy) with tf.name_scope("accuracy"): correct_prediction = tf.equal(logitsc,yc) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.summary.scalar('accuracy',accuracy) merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter("/home/psycholearner/projects//DL4CV-EE6132-/PA3/2035") writer.add_graph(sess.graph) writer2 = tf.summary.FileWriter("/home/psycholearner/projects/DL4CV-EE6132-/PA3/20351") writer2.add_graph(sess.graph) sess.run(tf.global_variables_initializer()) for i in range(20000): a,batch_y = data(500,size) batch_x = np.array(a) batch_x = batch_x.reshape(500,size,2) batch_x = [j[::-1] for j in batch_x] batch_x = np.array(batch_x) batch_x.astype(float) batch_y = np.array(batch_y) #batch_y.astype(float) if i % 25 == 0: s = sess.run(merged_summary,feed_dict = {x: batch_x,y: batch_y}) writer.add_summary(s,i) at,batch_yt = data(500,size) batch_xt = np.array(at) batch_xt = batch_xt.reshape(500,size,2) batch_xt = [j[::-1] for j in batch_xt] batch_xt = np.array(batch_xt) batch_xt.astype(float) batch_yt = np.array(batch_yt) k = sess.run(merged_summary,feed_dict = {x: batch_xt,y: batch_yt}) writer2.add_summary(k,i) #train_accuracy = sess.run(accuracy.eval(feed_dict={x: batch[0], y: batch[1]})) #[train_accuracy] = sess.run([cross_entropy],feed_dict = {x: batch_x, y:batch_y}) #[test] = sess.run([accuracy],feed_dict = {x: batch_x, y:batch_y}) #logits = sess.run([accuracy],feed_dict = {x: batch_x, y:batch_y}) #print('step %d, training accuracy %g %g' % (i, train_accuracy,test)) #[test_acc] = sess.run([test_accuracy],feed_dict = {x: mnist.test.images, y:mnist.test.labels}) #print('step %d, test accuracy %g' % (i, test_acc)) #saver.restore(sess, "/home/psycholearner/projects//DL4CV-EE6132-/PA2/model.ckpt") sess.run(train_step,feed_dict = {x:batch_x,y:batch_y}) ''' test_data = mnist.test.images[:128].reshape((-1, 28, 28)) test_label = mnist.test.labels[:128] print("Testing Accuracy:",sess.run([accuracy], feed_dict={x: test_data, y: test_label})) ''' a,batch_y = data(500,size) batch_x = np.array(a) batch_x = batch_x.reshape(500,size,2) batch_x = [j[::-1] for j in batch_x] batch_x = np.array(batch_x) batch_x.astype(float) batch_y = np.array(batch_y) print("Testing Accuracy:",sess.run([accuracy], feed_dict={x: batch_x, y: batch_y}))
f0921f29f3f682945a8f671213dc391d565db088
9d41570295cc05b66fd52584a90fe87f29155943
/src/crawler/delay.py
649fb6282c26a77936487a5bcd18eeda56ff6aa7
[ "MIT" ]
permissive
diegojromerolopez/relwrac
ed56feeb2a5e455e0fa58f6bc130445e5a0831bd
23ee278ab4019b98269419c53feed2194f079c25
refs/heads/master
2022-12-11T08:06:19.888698
2019-11-16T12:35:34
2019-11-16T12:35:34
219,372,323
0
0
MIT
2022-12-08T06:49:05
2019-11-03T22:09:35
Python
UTF-8
Python
false
false
294
py
import random class Delay(object): @classmethod def none(cls): return None @classmethod def uniform(cls, lower_bound: float, upper_bound: float): def uniform_delay_(): return random.uniform(lower_bound, upper_bound) return uniform_delay_
5f1c2a99593a7553184a6e88dacd5cfddfa94dc2
11286e7989264134a8a8d610e0f609e6fbff9140
/ch06/ch06_6.py
611bb36abeda2b0457a21b95c8675ec3d9cc42ed
[]
no_license
p2c2e/machine_learning_with_python_cookbook
04eeed2e00e0a3e9c0681d4b2f4125aa85485a1d
b176323a02f5b5722e312a579ad764a0276ec9c6
refs/heads/main
2023-01-30T06:54:34.138786
2020-12-13T05:02:07
2020-12-13T05:02:07
320,987,171
0
0
null
null
null
null
UTF-8
Python
false
false
472
py
# Load libraries import unicodedata import sys # Create text text_data = ['Hi!!!! I. Love. This. Song....', '10000% Agree!!!! #LoveIT', 'Right?!?!'] # Create a dictionary of punctuation characters punctuation = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith('P')) # For each string, remove any punctuation characters [string.translate(punctuation) for string in text_data]
2b59d2bc871b13882aa71629e364e5ee5cde3a00
186736f265fa7954e95198955546305ab1b9b981
/notesApi/settings.py
d3fd465d97e808c8f69bde9fd61320c402413ffb
[]
no_license
nova-sangeeth/notes-api
6449669870dfb69a72e1aad71c8859ca9de8bfbb
d5d15a4df615b0b276ccf8f49efc9e21eb177b65
refs/heads/master
2022-12-22T11:38:03.065884
2020-09-23T19:58:14
2020-09-23T19:58:14
298,022,798
0
0
null
null
null
null
UTF-8
Python
false
false
3,607
py
""" Django settings for notesApi project. Generated by 'django-admin startproject' using Django 3.1.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "v1jk=4%^w9@)42-xumnuc3ho+7!&ug#q3*^y)x^@rlu#-96o*d" # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", # crispy forms "crispy_forms", # all auth apps "django.contrib.sites", "allauth", "allauth.account", "allauth.socialaccount", # apps "rest_framework", "api_notes", ] SITE_ID = 1 MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "notesApi.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "notesApi.wsgi.application" # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": BASE_DIR / "db.sqlite3", } } EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] AUTHENTICATION_BACKENDS = [ "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = "/static/" ACCOUNT_EMAIL_VERIFICATION = "required" ACCOUNT_AUTHENTICATED_LOGIN_REDIRECTS = True ACCOUNT_EMAIL_REQUIRED = False
4c92871a9b092599b369eba37b5e69ca438f451d
3f7240da3dc81205a0a3bf3428ee4e7ae74fb3a2
/src/Week4/Practice/Trace1.py
6db80027484d73a47f843382e033603034f1470c
[]
no_license
theguyoverthere/CMU15-112-Spring17
b4ab8e29c31410b4c68d7b2c696a76b9d85ab4d8
b8287092b14e82d2a3aeac6c27bffbc95382eb34
refs/heads/master
2021-04-27T08:52:45.237631
2018-10-02T15:38:18
2018-10-02T15:38:18
107,882,442
0
0
null
null
null
null
UTF-8
Python
false
false
267
py
def onesDigit(n): return n%10 def ct1(L): for i in range(len(L)): L[i] += sum(L) + max(L) # The function onesDigit is called on each element before # making comparison. return sorted(L, key=onesDigit) a = [2,1,0] print(ct1(a)) print(a)
ddb617b3840deff9580b1979fa5f9a1accfb1906
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/you-get/2016/8/common.py
a5a0fbab63c9d5e6a52916b9ad5356b87ef836b7
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
46,179
py
#!/usr/bin/env python SITES = { '163' : 'netease', '56' : 'w56', 'acfun' : 'acfun', 'archive' : 'archive', 'baidu' : 'baidu', 'bandcamp' : 'bandcamp', 'baomihua' : 'baomihua', 'bigthink' : 'bigthink', 'bilibili' : 'bilibili', 'cctv' : 'cntv', 'cntv' : 'cntv', 'cbs' : 'cbs', 'dailymotion' : 'dailymotion', 'dilidili' : 'dilidili', 'dongting' : 'dongting', 'douban' : 'douban', 'douyu' : 'douyutv', 'ehow' : 'ehow', 'facebook' : 'facebook', 'fc2' : 'fc2video', 'flickr' : 'flickr', 'freesound' : 'freesound', 'fun' : 'funshion', 'google' : 'google', 'heavy-music' : 'heavymusic', 'huaban' : 'huaban', 'iask' : 'sina', 'ifeng' : 'ifeng', 'imgur' : 'imgur', 'in' : 'alive', 'infoq' : 'infoq', 'instagram' : 'instagram', 'interest' : 'interest', 'iqilu' : 'iqilu', 'iqiyi' : 'iqiyi', 'isuntv' : 'suntv', 'joy' : 'joy', 'jpopsuki' : 'jpopsuki', 'kankanews' : 'bilibili', 'khanacademy' : 'khan', 'ku6' : 'ku6', 'kugou' : 'kugou', 'kuwo' : 'kuwo', 'le' : 'le', 'letv' : 'le', 'lizhi' : 'lizhi', 'magisto' : 'magisto', 'metacafe' : 'metacafe', 'mgtv' : 'mgtv', 'miomio' : 'miomio', 'mixcloud' : 'mixcloud', 'mtv81' : 'mtv81', 'musicplayon' : 'musicplayon', 'naver' : 'naver', '7gogo' : 'nanagogo', 'nicovideo' : 'nicovideo', 'panda' : 'panda', 'pinterest' : 'pinterest', 'pixnet' : 'pixnet', 'pptv' : 'pptv', 'qianmo' : 'qianmo', 'qq' : 'qq', 'showroom-live' : 'showroom', 'sina' : 'sina', 'smgbb' : 'bilibili', 'sohu' : 'sohu', 'soundcloud' : 'soundcloud', 'ted' : 'ted', 'theplatform' : 'theplatform', 'thvideo' : 'thvideo', 'tucao' : 'tucao', 'tudou' : 'tudou', 'tumblr' : 'tumblr', 'twimg' : 'twitter', 'twitter' : 'twitter', 'videomega' : 'videomega', 'vidto' : 'vidto', 'vimeo' : 'vimeo', 'wanmen' : 'wanmen', 'weibo' : 'miaopai', 'veoh' : 'veoh', 'vine' : 'vine', 'vk' : 'vk', 'xiami' : 'xiami', 'xiaokaxiu' : 'yixia', 'xiaojiadianvideo' : 'fc2video', 'yinyuetai' : 'yinyuetai', 'miaopai' : 'yixia', 'youku' : 'youku', 'youtu' : 'youtube', 'youtube' : 'youtube', 'zhanqi' : 'zhanqi', } import getopt import json import locale import logging import os import platform import re import socket import sys import time from urllib import request, parse, error from http import cookiejar from importlib import import_module from .version import __version__ from .util import log, term from .util.git import get_version from .util.strings import get_filename, unescape_html from . import json_output as json_output_ dry_run = False json_output = False force = False player = None extractor_proxy = None cookies = None output_filename = None fake_headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'UTF-8,*;q=0.5', 'Accept-Encoding': 'gzip,deflate,sdch', 'Accept-Language': 'en-US,en;q=0.8', 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:13.0) Gecko/20100101 Firefox/13.0' } if sys.stdout.isatty(): default_encoding = sys.stdout.encoding.lower() else: default_encoding = locale.getpreferredencoding().lower() def maybe_print(*s): try: print(*s) except: pass def tr(s): if default_encoding == 'utf-8': return s else: return s #return str(s.encode('utf-8'))[2:-1] # DEPRECATED in favor of match1() def r1(pattern, text): m = re.search(pattern, text) if m: return m.group(1) # DEPRECATED in favor of match1() def r1_of(patterns, text): for p in patterns: x = r1(p, text) if x: return x def match1(text, *patterns): """Scans through a string for substrings matched some patterns (first-subgroups only). Args: text: A string to be scanned. patterns: Arbitrary number of regex patterns. Returns: When only one pattern is given, returns a string (None if no match found). When more than one pattern are given, returns a list of strings ([] if no match found). """ if len(patterns) == 1: pattern = patterns[0] match = re.search(pattern, text) if match: return match.group(1) else: return None else: ret = [] for pattern in patterns: match = re.search(pattern, text) if match: ret.append(match.group(1)) return ret def matchall(text, patterns): """Scans through a string for substrings matched some patterns. Args: text: A string to be scanned. patterns: a list of regex pattern. Returns: a list if matched. empty if not. """ ret = [] for pattern in patterns: match = re.findall(pattern, text) ret += match return ret def launch_player(player, urls): import subprocess import shlex subprocess.call(shlex.split(player) + list(urls)) def parse_query_param(url, param): """Parses the query string of a URL and returns the value of a parameter. Args: url: A URL. param: A string representing the name of the parameter. Returns: The value of the parameter. """ try: return parse.parse_qs(parse.urlparse(url).query)[param][0] except: return None def unicodize(text): return re.sub(r'\\u([0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f])', lambda x: chr(int(x.group(0)[2:], 16)), text) # DEPRECATED in favor of util.legitimize() def escape_file_path(path): path = path.replace('/', '-') path = path.replace('\\', '-') path = path.replace('*', '-') path = path.replace('?', '-') return path def ungzip(data): """Decompresses data for Content-Encoding: gzip. """ from io import BytesIO import gzip buffer = BytesIO(data) f = gzip.GzipFile(fileobj=buffer) return f.read() def undeflate(data): """Decompresses data for Content-Encoding: deflate. (the zlib compression is used.) """ import zlib decompressobj = zlib.decompressobj(-zlib.MAX_WBITS) return decompressobj.decompress(data)+decompressobj.flush() # DEPRECATED in favor of get_content() def get_response(url, faker = False): # install cookies if cookies: opener = request.build_opener(request.HTTPCookieProcessor(cookies)) request.install_opener(opener) if faker: response = request.urlopen(request.Request(url, headers = fake_headers), None) else: response = request.urlopen(url) data = response.read() if response.info().get('Content-Encoding') == 'gzip': data = ungzip(data) elif response.info().get('Content-Encoding') == 'deflate': data = undeflate(data) response.data = data return response # DEPRECATED in favor of get_content() def get_html(url, encoding = None, faker = False): content = get_response(url, faker).data return str(content, 'utf-8', 'ignore') # DEPRECATED in favor of get_content() def get_decoded_html(url, faker = False): response = get_response(url, faker) data = response.data charset = r1(r'charset=([\w-]+)', response.headers['content-type']) if charset: return data.decode(charset, 'ignore') else: return data def get_location(url): response = request.urlopen(url) # urllib will follow redirections and it's too much code to tell urllib # not to do that return response.geturl() def get_content(url, headers={}, decoded=True): """Gets the content of a URL via sending a HTTP GET request. Args: url: A URL. headers: Request headers used by the client. decoded: Whether decode the response body using UTF-8 or the charset specified in Content-Type. Returns: The content as a string. """ logging.debug('get_content: %s' % url) req = request.Request(url, headers=headers) if cookies: cookies.add_cookie_header(req) req.headers.update(req.unredirected_hdrs) for i in range(10): try: response = request.urlopen(req) break except socket.timeout: logging.debug('request attempt %s timeout' % str(i + 1)) data = response.read() # Handle HTTP compression for gzip and deflate (zlib) content_encoding = response.getheader('Content-Encoding') if content_encoding == 'gzip': data = ungzip(data) elif content_encoding == 'deflate': data = undeflate(data) # Decode the response body if decoded: charset = match1(response.getheader('Content-Type'), r'charset=([\w-]+)') if charset is not None: data = data.decode(charset) else: data = data.decode('utf-8') return data def url_size(url, faker = False, headers = {}): if faker: response = request.urlopen(request.Request(url, headers = fake_headers), None) elif headers: response = request.urlopen(request.Request(url, headers = headers), None) else: response = request.urlopen(url) size = response.headers['content-length'] return int(size) if size!=None else float('inf') def urls_size(urls, faker = False, headers = {}): return sum([url_size(url, faker=faker, headers=headers) for url in urls]) def get_head(url, headers = {}): if headers: req = request.Request(url, headers = headers) else: req = request.Request(url) req.get_method = lambda : 'HEAD' res = request.urlopen(req) return dict(res.headers) def url_info(url, faker = False, headers = {}): if faker: response = request.urlopen(request.Request(url, headers = fake_headers), None) elif headers: response = request.urlopen(request.Request(url, headers = headers), None) else: response = request.urlopen(request.Request(url)) headers = response.headers type = headers['content-type'] if type == 'image/jpg; charset=UTF-8' or type == 'image/jpg' : type = 'audio/mpeg' #fix for netease mapping = { 'video/3gpp': '3gp', 'video/f4v': 'flv', 'video/mp4': 'mp4', 'video/MP2T': 'ts', 'video/quicktime': 'mov', 'video/webm': 'webm', 'video/x-flv': 'flv', 'video/x-ms-asf': 'asf', 'audio/mp4': 'mp4', 'audio/mpeg': 'mp3', 'image/jpeg': 'jpg', 'image/png': 'png', 'image/gif': 'gif', 'application/pdf': 'pdf', } if type in mapping: ext = mapping[type] else: type = None if headers['content-disposition']: try: filename = parse.unquote(r1(r'filename="?([^"]+)"?', headers['content-disposition'])) if len(filename.split('.')) > 1: ext = filename.split('.')[-1] else: ext = None except: ext = None else: ext = None if headers['transfer-encoding'] != 'chunked': size = headers['content-length'] and int(headers['content-length']) else: size = None return type, ext, size def url_locations(urls, faker = False, headers = {}): locations = [] for url in urls: if faker: response = request.urlopen(request.Request(url, headers = fake_headers), None) elif headers: response = request.urlopen(request.Request(url, headers = headers), None) else: response = request.urlopen(request.Request(url)) locations.append(response.url) return locations def url_save(url, filepath, bar, refer = None, is_part = False, faker = False, headers = {}): file_size = url_size(url, faker = faker, headers = headers) if os.path.exists(filepath): if not force and file_size == os.path.getsize(filepath): if not is_part: if bar: bar.done() print('Skipping %s: file already exists' % tr(os.path.basename(filepath))) else: if bar: bar.update_received(file_size) return else: if not is_part: if bar: bar.done() print('Overwriting %s' % tr(os.path.basename(filepath)), '...') elif not os.path.exists(os.path.dirname(filepath)): os.mkdir(os.path.dirname(filepath)) temp_filepath = filepath + '.download' if file_size!=float('inf') else filepath received = 0 if not force: open_mode = 'ab' if os.path.exists(temp_filepath): received += os.path.getsize(temp_filepath) if bar: bar.update_received(os.path.getsize(temp_filepath)) else: open_mode = 'wb' if received < file_size: if faker: headers = fake_headers elif headers: headers = headers else: headers = {} if received: headers['Range'] = 'bytes=' + str(received) + '-' if refer: headers['Referer'] = refer response = request.urlopen(request.Request(url, headers = headers), None) try: range_start = int(response.headers['content-range'][6:].split('/')[0].split('-')[0]) end_length = end = int(response.headers['content-range'][6:].split('/')[1]) range_length = end_length - range_start except: content_length = response.headers['content-length'] range_length = int(content_length) if content_length!=None else float('inf') if file_size != received + range_length: received = 0 if bar: bar.received = 0 open_mode = 'wb' with open(temp_filepath, open_mode) as output: while True: buffer = response.read(1024 * 256) if not buffer: if received == file_size: # Download finished break else: # Unexpected termination. Retry request headers['Range'] = 'bytes=' + str(received) + '-' response = request.urlopen(request.Request(url, headers = headers), None) output.write(buffer) received += len(buffer) if bar: bar.update_received(len(buffer)) assert received == os.path.getsize(temp_filepath), '%s == %s == %s' % (received, os.path.getsize(temp_filepath), temp_filepath) if os.access(filepath, os.W_OK): os.remove(filepath) # on Windows rename could fail if destination filepath exists os.rename(temp_filepath, filepath) def url_save_chunked(url, filepath, bar, refer = None, is_part = False, faker = False, headers = {}): if os.path.exists(filepath): if not force: if not is_part: if bar: bar.done() print('Skipping %s: file already exists' % tr(os.path.basename(filepath))) else: if bar: bar.update_received(os.path.getsize(filepath)) return else: if not is_part: if bar: bar.done() print('Overwriting %s' % tr(os.path.basename(filepath)), '...') elif not os.path.exists(os.path.dirname(filepath)): os.mkdir(os.path.dirname(filepath)) temp_filepath = filepath + '.download' received = 0 if not force: open_mode = 'ab' if os.path.exists(temp_filepath): received += os.path.getsize(temp_filepath) if bar: bar.update_received(os.path.getsize(temp_filepath)) else: open_mode = 'wb' if faker: headers = fake_headers elif headers: headers = headers else: headers = {} if received: headers['Range'] = 'bytes=' + str(received) + '-' if refer: headers['Referer'] = refer response = request.urlopen(request.Request(url, headers = headers), None) with open(temp_filepath, open_mode) as output: while True: buffer = response.read(1024 * 256) if not buffer: break output.write(buffer) received += len(buffer) if bar: bar.update_received(len(buffer)) assert received == os.path.getsize(temp_filepath), '%s == %s == %s' % (received, os.path.getsize(temp_filepath)) if os.access(filepath, os.W_OK): os.remove(filepath) # on Windows rename could fail if destination filepath exists os.rename(temp_filepath, filepath) class SimpleProgressBar: term_size = term.get_terminal_size()[1] def __init__(self, total_size, total_pieces = 1): self.displayed = False self.total_size = total_size self.total_pieces = total_pieces self.current_piece = 1 self.received = 0 self.speed = '' self.last_updated = time.time() total_pieces_len = len(str(total_pieces)) # 38 is the size of all statically known size in self.bar total_str = '%5s' % round(self.total_size / 1048576, 1) total_str_width = max(len(total_str), 5) self.bar_size = self.term_size - 27 - 2*total_pieces_len - 2*total_str_width self.bar = '{:>4}%% ({:>%s}/%sMB) ├{:─<%s}┤[{:>%s}/{:>%s}] {}' % ( total_str_width, total_str, self.bar_size, total_pieces_len, total_pieces_len) def update(self): self.displayed = True bar_size = self.bar_size percent = round(self.received * 100 / self.total_size, 1) if percent >= 100: percent = 100 dots = bar_size * int(percent) // 100 plus = int(percent) - dots // bar_size * 100 if plus > 0.8: plus = '█' elif plus > 0.4: plus = '>' else: plus = '' bar = '█' * dots + plus bar = self.bar.format(percent, round(self.received / 1048576, 1), bar, self.current_piece, self.total_pieces, self.speed) sys.stdout.write('\r' + bar) sys.stdout.flush() def update_received(self, n): self.received += n time_diff = time.time() - self.last_updated bytes_ps = n / time_diff if time_diff else 0 if bytes_ps >= 1024 ** 3: self.speed = '{:4.0f} GB/s'.format(bytes_ps / 1024 ** 3) elif bytes_ps >= 1024 ** 2: self.speed = '{:4.0f} MB/s'.format(bytes_ps / 1024 ** 2) elif bytes_ps >= 1024: self.speed = '{:4.0f} kB/s'.format(bytes_ps / 1024) else: self.speed = '{:4.0f} B/s'.format(bytes_ps) self.last_updated = time.time() self.update() def update_piece(self, n): self.current_piece = n def done(self): if self.displayed: print() self.displayed = False class PiecesProgressBar: def __init__(self, total_size, total_pieces = 1): self.displayed = False self.total_size = total_size self.total_pieces = total_pieces self.current_piece = 1 self.received = 0 def update(self): self.displayed = True bar = '{0:>5}%[{1:<40}] {2}/{3}'.format('', '=' * 40, self.current_piece, self.total_pieces) sys.stdout.write('\r' + bar) sys.stdout.flush() def update_received(self, n): self.received += n self.update() def update_piece(self, n): self.current_piece = n def done(self): if self.displayed: print() self.displayed = False class DummyProgressBar: def __init__(self, *args): pass def update_received(self, n): pass def update_piece(self, n): pass def done(self): pass def get_output_filename(urls, title, ext, output_dir, merge): # lame hack for the --output-filename option global output_filename if output_filename: return output_filename merged_ext = ext if (len(urls) > 1) and merge: from .processor.ffmpeg import has_ffmpeg_installed if ext in ['flv', 'f4v']: if has_ffmpeg_installed(): merged_ext = 'mp4' else: merged_ext = 'flv' elif ext == 'mp4': merged_ext = 'mp4' elif ext == 'ts': if has_ffmpeg_installed(): merged_ext = 'mkv' else: merged_ext = 'ts' return '%s.%s' % (title, merged_ext) def download_urls(urls, title, ext, total_size, output_dir='.', refer=None, merge=True, faker=False, headers = {}, **kwargs): assert urls if json_output: json_output_.download_urls(urls=urls, title=title, ext=ext, total_size=total_size, refer=refer) return if dry_run: print('Real URLs:\n%s' % '\n'.join(urls)) return if player: launch_player(player, urls) return if not total_size: try: total_size = urls_size(urls, faker=faker, headers=headers) except: import traceback traceback.print_exc(file=sys.stdout) pass title = tr(get_filename(title)) output_filename = get_output_filename(urls, title, ext, output_dir, merge) output_filepath = os.path.join(output_dir, output_filename) if total_size: if not force and os.path.exists(output_filepath) and os.path.getsize(output_filepath) >= total_size * 0.9: print('Skipping %s: file already exists' % output_filepath) print() return bar = SimpleProgressBar(total_size, len(urls)) else: bar = PiecesProgressBar(total_size, len(urls)) if len(urls) == 1: url = urls[0] print('Downloading %s ...' % tr(output_filename)) bar.update() url_save(url, output_filepath, bar, refer = refer, faker = faker, headers = headers) bar.done() else: parts = [] print('Downloading %s.%s ...' % (tr(title), ext)) bar.update() for i, url in enumerate(urls): filename = '%s[%02d].%s' % (title, i, ext) filepath = os.path.join(output_dir, filename) parts.append(filepath) #print 'Downloading %s [%s/%s]...' % (tr(filename), i + 1, len(urls)) bar.update_piece(i + 1) url_save(url, filepath, bar, refer = refer, is_part = True, faker = faker, headers = headers) bar.done() if not merge: print() return if 'av' in kwargs and kwargs['av']: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_av ret = ffmpeg_concat_av(parts, output_filepath, ext) print('Merged into %s' % output_filename) if ret == 0: for part in parts: os.remove(part) elif ext in ['flv', 'f4v']: try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_flv_to_mp4 ffmpeg_concat_flv_to_mp4(parts, output_filepath) else: from .processor.join_flv import concat_flv concat_flv(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) elif ext == 'mp4': try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_mp4_to_mp4 ffmpeg_concat_mp4_to_mp4(parts, output_filepath) else: from .processor.join_mp4 import concat_mp4 concat_mp4(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) elif ext == "ts": try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_ts_to_mkv ffmpeg_concat_ts_to_mkv(parts, output_filepath) else: from .processor.join_ts import concat_ts concat_ts(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) else: print("Can't merge %s files" % ext) print() def download_urls_chunked(urls, title, ext, total_size, output_dir='.', refer=None, merge=True, faker=False, headers = {}): assert urls if dry_run: print('Real URLs:\n%s\n' % urls) return if player: launch_player(player, urls) return title = tr(get_filename(title)) filename = '%s.%s' % (title, ext) filepath = os.path.join(output_dir, filename) if total_size and ext in ('ts'): if not force and os.path.exists(filepath[:-3] + '.mkv'): print('Skipping %s: file already exists' % filepath[:-3] + '.mkv') print() return bar = SimpleProgressBar(total_size, len(urls)) else: bar = PiecesProgressBar(total_size, len(urls)) if len(urls) == 1: parts = [] url = urls[0] print('Downloading %s ...' % tr(filename)) filepath = os.path.join(output_dir, filename) parts.append(filepath) url_save_chunked(url, filepath, bar, refer = refer, faker = faker, headers = headers) bar.done() if not merge: print() return if ext == 'ts': from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_convert_ts_to_mkv if ffmpeg_convert_ts_to_mkv(parts, os.path.join(output_dir, title + '.mkv')): for part in parts: os.remove(part) else: os.remove(os.path.join(output_dir, title + '.mkv')) else: print('No ffmpeg is found. Conversion aborted.') else: print("Can't convert %s files" % ext) else: parts = [] print('Downloading %s.%s ...' % (tr(title), ext)) for i, url in enumerate(urls): filename = '%s[%02d].%s' % (title, i, ext) filepath = os.path.join(output_dir, filename) parts.append(filepath) #print 'Downloading %s [%s/%s]...' % (tr(filename), i + 1, len(urls)) bar.update_piece(i + 1) url_save_chunked(url, filepath, bar, refer = refer, is_part = True, faker = faker, headers = headers) bar.done() if not merge: print() return if ext == 'ts': from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_ts_to_mkv if ffmpeg_concat_ts_to_mkv(parts, os.path.join(output_dir, title + '.mkv')): for part in parts: os.remove(part) else: os.remove(os.path.join(output_dir, title + '.mkv')) else: print('No ffmpeg is found. Merging aborted.') else: print("Can't merge %s files" % ext) print() def download_rtmp_url(url,title, ext,params={}, total_size=0, output_dir='.', refer=None, merge=True, faker=False): assert url if dry_run: print('Real URL:\n%s\n' % [url]) if params.get("-y",False): #None or unset ->False print('Real Playpath:\n%s\n' % [params.get("-y")]) return if player: from .processor.rtmpdump import play_rtmpdump_stream play_rtmpdump_stream(player, url, params) return from .processor.rtmpdump import has_rtmpdump_installed, download_rtmpdump_stream assert has_rtmpdump_installed(), "RTMPDump not installed." download_rtmpdump_stream(url, title, ext,params, output_dir) def download_url_ffmpeg(url,title, ext,params={}, total_size=0, output_dir='.', refer=None, merge=True, faker=False): assert url if dry_run: print('Real URL:\n%s\n' % [url]) if params.get("-y",False): #None or unset ->False print('Real Playpath:\n%s\n' % [params.get("-y")]) return if player: launch_player(player, [url]) return from .processor.ffmpeg import has_ffmpeg_installed, ffmpeg_download_stream assert has_ffmpeg_installed(), "FFmpeg not installed." ffmpeg_download_stream(url, title, ext, params, output_dir) def playlist_not_supported(name): def f(*args, **kwargs): raise NotImplementedError('Playlist is not supported for ' + name) return f def print_info(site_info, title, type, size): if json_output: json_output_.print_info(site_info=site_info, title=title, type=type, size=size) return if type: type = type.lower() if type in ['3gp']: type = 'video/3gpp' elif type in ['asf', 'wmv']: type = 'video/x-ms-asf' elif type in ['flv', 'f4v']: type = 'video/x-flv' elif type in ['mkv']: type = 'video/x-matroska' elif type in ['mp3']: type = 'audio/mpeg' elif type in ['mp4']: type = 'video/mp4' elif type in ['mov']: type = 'video/quicktime' elif type in ['ts']: type = 'video/MP2T' elif type in ['webm']: type = 'video/webm' elif type in ['jpg']: type = 'image/jpeg' elif type in ['png']: type = 'image/png' elif type in ['gif']: type = 'image/gif' if type in ['video/3gpp']: type_info = "3GPP multimedia file (%s)" % type elif type in ['video/x-flv', 'video/f4v']: type_info = "Flash video (%s)" % type elif type in ['video/mp4', 'video/x-m4v']: type_info = "MPEG-4 video (%s)" % type elif type in ['video/MP2T']: type_info = "MPEG-2 transport stream (%s)" % type elif type in ['video/webm']: type_info = "WebM video (%s)" % type #elif type in ['video/ogg']: # type_info = "Ogg video (%s)" % type elif type in ['video/quicktime']: type_info = "QuickTime video (%s)" % type elif type in ['video/x-matroska']: type_info = "Matroska video (%s)" % type #elif type in ['video/x-ms-wmv']: # type_info = "Windows Media video (%s)" % type elif type in ['video/x-ms-asf']: type_info = "Advanced Systems Format (%s)" % type #elif type in ['video/mpeg']: # type_info = "MPEG video (%s)" % type elif type in ['audio/mp4']: type_info = "MPEG-4 audio (%s)" % type elif type in ['audio/mpeg']: type_info = "MP3 (%s)" % type elif type in ['image/jpeg']: type_info = "JPEG Image (%s)" % type elif type in ['image/png']: type_info = "Portable Network Graphics (%s)" % type elif type in ['image/gif']: type_info = "Graphics Interchange Format (%s)" % type else: type_info = "Unknown type (%s)" % type maybe_print("Site: ", site_info) maybe_print("Title: ", unescape_html(tr(title))) print("Type: ", type_info) print("Size: ", round(size / 1048576, 2), "MiB (" + str(size) + " Bytes)") print() def mime_to_container(mime): mapping = { 'video/3gpp': '3gp', 'video/mp4': 'mp4', 'video/webm': 'webm', 'video/x-flv': 'flv', } if mime in mapping: return mapping[mime] else: return mime.split('/')[1] def parse_host(host): """Parses host name and port number from a string. """ if re.match(r'^(\d+)$', host) is not None: return ("0.0.0.0", int(host)) if re.match(r'^(\w+)://', host) is None: host = "//" + host o = parse.urlparse(host) hostname = o.hostname or "0.0.0.0" port = o.port or 0 return (hostname, port) def set_proxy(proxy): proxy_handler = request.ProxyHandler({ 'http': '%s:%s' % proxy, 'https': '%s:%s' % proxy, }) opener = request.build_opener(proxy_handler) request.install_opener(opener) def unset_proxy(): proxy_handler = request.ProxyHandler({}) opener = request.build_opener(proxy_handler) request.install_opener(opener) # DEPRECATED in favor of set_proxy() and unset_proxy() def set_http_proxy(proxy): if proxy == None: # Use system default setting proxy_support = request.ProxyHandler() elif proxy == '': # Don't use any proxy proxy_support = request.ProxyHandler({}) else: # Use proxy proxy_support = request.ProxyHandler({'http': '%s' % proxy, 'https': '%s' % proxy}) opener = request.build_opener(proxy_support) request.install_opener(opener) def download_main(download, download_playlist, urls, playlist, **kwargs): for url in urls: if url.startswith('https://'): url = url[8:] if not url.startswith('http://'): url = 'http://' + url if playlist: download_playlist(url, **kwargs) else: download(url, **kwargs) def script_main(script_name, download, download_playlist, **kwargs): def version(): log.i('version %s, a tiny downloader that scrapes the web.' % get_version(kwargs['repo_path'] if 'repo_path' in kwargs else __version__)) logging.basicConfig(format='[%(levelname)s] %(message)s') help = 'Usage: %s [OPTION]... [URL]...\n\n' % script_name help += '''Startup options: -V | --version Print version and exit. -h | --help Print help and exit. \n''' help += '''Dry-run options: (no actual downloading) -i | --info Print extracted information. -u | --url Print extracted information with URLs. --json Print extracted URLs in JSON format. \n''' help += '''Download options: -n | --no-merge Do not merge video parts. --no-caption Do not download captions. (subtitles, lyrics, danmaku, ...) -f | --force Force overwriting existed files. -F | --format <STREAM_ID> Set video format to STREAM_ID. -O | --output-filename <FILE> Set output filename. -o | --output-dir <PATH> Set output directory. -p | --player <PLAYER [OPTIONS]> Stream extracted URL to a PLAYER. -c | --cookies <COOKIES_FILE> Load cookies.txt or cookies.sqlite. -x | --http-proxy <HOST:PORT> Use an HTTP proxy for downloading. -y | --extractor-proxy <HOST:PORT> Use an HTTP proxy for extracting only. --no-proxy Never use a proxy. -s | --socks-proxy <HOST:PORT> Use an SOCKS5 proxy for downloading. -t | --timeout <SECONDS> Set socket timeout. -d | --debug Show traceback and other debug info. ''' short_opts = 'Vhfiuc:ndF:O:o:p:x:y:s:t:' opts = ['version', 'help', 'force', 'info', 'url', 'cookies', 'no-caption', 'no-merge', 'no-proxy', 'debug', 'json', 'format=', 'stream=', 'itag=', 'output-filename=', 'output-dir=', 'player=', 'http-proxy=', 'socks-proxy=', 'extractor-proxy=', 'lang=', 'timeout='] if download_playlist: short_opts = 'l' + short_opts opts = ['playlist'] + opts try: opts, args = getopt.getopt(sys.argv[1:], short_opts, opts) except getopt.GetoptError as err: log.e(err) log.e("try 'you-get --help' for more options") sys.exit(2) global force global dry_run global json_output global player global extractor_proxy global cookies global output_filename info_only = False playlist = False caption = True merge = True stream_id = None lang = None output_dir = '.' proxy = None socks_proxy = None extractor_proxy = None traceback = False timeout = 600 for o, a in opts: if o in ('-V', '--version'): version() sys.exit() elif o in ('-h', '--help'): version() print(help) sys.exit() elif o in ('-f', '--force'): force = True elif o in ('-i', '--info'): info_only = True elif o in ('-u', '--url'): dry_run = True elif o in ('--json', ): json_output = True # to fix extractors not use VideoExtractor dry_run = True info_only = False elif o in ('-c', '--cookies'): try: cookies = cookiejar.MozillaCookieJar(a) cookies.load() except: import sqlite3 cookies = cookiejar.MozillaCookieJar() con = sqlite3.connect(a) cur = con.cursor() try: cur.execute("SELECT host, path, isSecure, expiry, name, value FROM moz_cookies") for item in cur.fetchall(): c = cookiejar.Cookie(0, item[4], item[5], None, False, item[0], item[0].startswith('.'), item[0].startswith('.'), item[1], False, item[2], item[3], item[3]=="", None, None, {}) cookies.set_cookie(c) except: pass # TODO: Chromium Cookies # SELECT host_key, path, secure, expires_utc, name, encrypted_value FROM cookies # http://n8henrie.com/2013/11/use-chromes-cookies-for-easier-downloading-with-python-requests/ elif o in ('-l', '--playlist'): playlist = True elif o in ('--no-caption',): caption = False elif o in ('-n', '--no-merge'): merge = False elif o in ('--no-proxy',): proxy = '' elif o in ('-d', '--debug'): traceback = True # Set level of root logger to DEBUG logging.getLogger().setLevel(logging.DEBUG) elif o in ('-F', '--format', '--stream', '--itag'): stream_id = a elif o in ('-O', '--output-filename'): output_filename = a elif o in ('-o', '--output-dir'): output_dir = a elif o in ('-p', '--player'): player = a caption = False elif o in ('-x', '--http-proxy'): proxy = a elif o in ('-s', '--socks-proxy'): socks_proxy = a elif o in ('-y', '--extractor-proxy'): extractor_proxy = a elif o in ('--lang',): lang = a elif o in ('-t', '--timeout'): timeout = int(a) else: log.e("try 'you-get --help' for more options") sys.exit(2) if not args: print(help) sys.exit() if (socks_proxy): try: import socket import socks socks_proxy_addrs = socks_proxy.split(':') socks.set_default_proxy(socks.SOCKS5, socks_proxy_addrs[0], int(socks_proxy_addrs[1])) socket.socket = socks.socksocket def getaddrinfo(*args): return [(socket.AF_INET, socket.SOCK_STREAM, 6, '', (args[0], args[1]))] socket.getaddrinfo = getaddrinfo except ImportError: log.w('Error importing PySocks library, socks proxy ignored.' 'In order to use use socks proxy, please install PySocks.') else: import socket set_http_proxy(proxy) socket.setdefaulttimeout(timeout) try: if stream_id: if not extractor_proxy: download_main(download, download_playlist, args, playlist, stream_id=stream_id, output_dir=output_dir, merge=merge, info_only=info_only, json_output=json_output, caption=caption) else: download_main(download, download_playlist, args, playlist, stream_id=stream_id, extractor_proxy=extractor_proxy, output_dir=output_dir, merge=merge, info_only=info_only, json_output=json_output, caption=caption) else: if not extractor_proxy: download_main(download, download_playlist, args, playlist, output_dir=output_dir, merge=merge, info_only=info_only, json_output=json_output, caption=caption) else: download_main(download, download_playlist, args, playlist, extractor_proxy=extractor_proxy, output_dir=output_dir, merge=merge, info_only=info_only, json_output=json_output, caption=caption) except KeyboardInterrupt: if traceback: raise else: sys.exit(1) except UnicodeEncodeError: log.e('[error] oops, the current environment does not seem to support Unicode.') log.e('please set it to a UTF-8-aware locale first,') log.e('so as to save the video (with some Unicode characters) correctly.') log.e('you can do it like this:') log.e(' (Windows) % chcp 65001 ') log.e(' (Linux) $ LC_CTYPE=en_US.UTF-8') sys.exit(1) except Exception: if not traceback: log.e('[error] oops, something went wrong.') log.e('don\'t panic, c\'est la vie. please try the following steps:') log.e(' (1) Rule out any network problem.') log.e(' (2) Make sure you-get is up-to-date.') log.e(' (3) Check if the issue is already known, on') log.e(' https://github.com/soimort/you-get/wiki/Known-Bugs') log.e(' https://github.com/soimort/you-get/issues') log.e(' (4) Run the command with \'--debug\' option,') log.e(' and report this issue with the full output.') else: version() log.i(args) raise sys.exit(1) def google_search(url): keywords = r1(r'https?://(.*)', url) url = 'https://www.google.com/search?tbm=vid&q=%s' % parse.quote(keywords) page = get_content(url, headers=fake_headers) videos = re.findall(r'<a href="(https?://[^"]+)" onmousedown="[^"]+">([^<]+)<', page) vdurs = re.findall(r'<span class="vdur _dwc">([^<]+)<', page) durs = [r1(r'(\d+:\d+)', unescape_html(dur)) for dur in vdurs] print("Google Videos search:") for v in zip(videos, durs): print("- video: %s [%s]" % (unescape_html(v[0][1]), v[1] if v[1] else '?')) print("# you-get %s" % log.sprint(v[0][0], log.UNDERLINE)) print() print("Best matched result:") return(videos[0][0]) def url_to_module(url): try: video_host = r1(r'https?://([^/]+)/', url) video_url = r1(r'https?://[^/]+(.*)', url) assert video_host and video_url except: url = google_search(url) video_host = r1(r'https?://([^/]+)/', url) video_url = r1(r'https?://[^/]+(.*)', url) if video_host.endswith('.com.cn'): video_host = video_host[:-3] domain = r1(r'(\.[^.]+\.[^.]+)$', video_host) or video_host assert domain, 'unsupported url: ' + url k = r1(r'([^.]+)', domain) if k in SITES: return import_module('.'.join(['you_get', 'extractors', SITES[k]])), url else: import http.client conn = http.client.HTTPConnection(video_host) conn.request("HEAD", video_url, headers=fake_headers) res = conn.getresponse() location = res.getheader('location') if location and location != url and not location.startswith('/'): return url_to_module(location) else: return import_module('you_get.extractors.universal'), url def any_download(url, **kwargs): m, url = url_to_module(url) m.download(url, **kwargs) def any_download_playlist(url, **kwargs): m, url = url_to_module(url) m.download_playlist(url, **kwargs) def main(**kwargs): script_main('you-get', any_download, any_download_playlist, **kwargs)
67c8f6e68f42cf14fa5dda19c602fbd7976c47fc
b61efe2686feb44c5b0d2fb3094dd2ea94e6ca93
/src/control_decision_4.py
be6dc49f088a3f399c8bf5df9b0a6c7de0b509ca
[]
no_license
idrissahil/bat_wifi_exploration
888f0f7243cc4bedeba6fe8d702762e6e2ad5da9
5a1bc74c1b35360d21d01e5e2a721b38fb380ac8
refs/heads/master
2020-05-31T16:38:49.118742
2019-06-29T14:03:28
2019-06-29T14:03:28
190,386,321
1
0
null
null
null
null
UTF-8
Python
false
false
2,239
py
#! /usr/bin/env python import rospy import math from sensor_msgs.msg import BatteryState from geometry_msgs.msg import Twist, PoseArray, Pose, PoseStamped rospy.init_node('control_decision_drone') control_decision_pub = rospy.Publisher('/mavros/setpoint_position/local', PoseStamped, queue_size=1) state=1 curr_pos = [0,0,0] rrt_list=[] index=0 def callback_gps(gps): global curr_pos global rrt_list global state global index curr_pos[0] = gps.pose.position.x curr_pos[1] = gps.pose.position.y curr_pos[2] = gps.pose.position.z if state==1: print(state) #curr_pos[0]=gps.pose.position.x #curr_pos[1]=gps.pose.position.y #curr_pos[2]=gps.pose.position.z if len(rrt_list)>1: state=2 print(state) dist_point = math.sqrt(math.pow(rrt_list[index].position.x - curr_pos[0], 2)+math.pow(rrt_list[index].position.y - curr_pos[1], 2)+math.pow(rrt_list[index].position.z - curr_pos[2], 2)) if dist_point<0.3: index=index+1 if index==len(rrt_list): index=index-1 curr_position=PoseStamped() #hold_position.pose.position.x= 0 #hold_position.pose.position.y = 14 #hold_position.pose.position.z= 1 curr_position.pose.position.x= rrt_list[index].position.x curr_position.pose.position.y= rrt_list[index].position.y curr_position.pose.position.z= rrt_list[index].position.z curr_position.header.frame_id = "map" control_decision_pub.publish(curr_position) def callback_battery(rrt): global state global curr_pos global rrt_list rrt_list=rrt.poses def callback_exploration(explore): global state global exploration_point_x exploration_point_x = explore.pose.position.x print(state) if state ==1: control_decision_pub.publish(explore) def main(): exploration_sub = rospy.Subscriber('/mavros/setpoint_position/local1', PoseStamped, callback_exploration) battery_sub = rospy.Subscriber('visual_marker_rrt', PoseArray, callback_battery) gps_sub = rospy.Subscriber('/mavros/local_position/pose', PoseStamped, callback_gps) rospy.spin() if __name__ == '__main__': main()
c2137568a2e94f717e43fd034e129651b46804a3
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/streamanalytics/azure-mgmt-streamanalytics/azure/mgmt/streamanalytics/operations/_inputs_operations.py
890d33f1b8b1901067d5182d5396b9ae6a0bfef4
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
28,587
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class InputsOperations(object): """InputsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~stream_analytics_management_client.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def create_or_replace( self, resource_group_name, # type: str job_name, # type: str input_name, # type: str input, # type: "models.Input" if_match=None, # type: Optional[str] if_none_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "models.Input" """Creates an input or replaces an already existing input under an existing streaming job. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param job_name: The name of the streaming job. :type job_name: str :param input_name: The name of the input. :type input_name: str :param input: The definition of the input that will be used to create a new input or replace the existing one under the streaming job. :type input: ~stream_analytics_management_client.models.Input :param if_match: The ETag of the input. Omit this value to always overwrite the current input. Specify the last-seen ETag value to prevent accidentally overwriting concurrent changes. :type if_match: str :param if_none_match: Set to '*' to allow a new input to be created, but to prevent updating an existing input. Other values will result in a 412 Pre-condition Failed response. :type if_none_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Input, or the result of cls(response) :rtype: ~stream_analytics_management_client.models.Input :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.Input"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-04-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_replace.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'jobName': self._serialize.url("job_name", job_name, 'str'), 'inputName': self._serialize.url("input_name", input_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') if if_none_match is not None: header_parameters['If-None-Match'] = self._serialize.header("if_none_match", if_none_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(input, 'Input') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} if response.status_code == 200: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Input', pipeline_response) if response.status_code == 201: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Input', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized create_or_replace.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobName}/inputs/{inputName}'} # type: ignore def update( self, resource_group_name, # type: str job_name, # type: str input_name, # type: str input, # type: "models.Input" if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "models.Input" """Updates an existing input under an existing streaming job. This can be used to partially update (ie. update one or two properties) an input without affecting the rest the job or input definition. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param job_name: The name of the streaming job. :type job_name: str :param input_name: The name of the input. :type input_name: str :param input: An Input object. The properties specified here will overwrite the corresponding properties in the existing input (ie. Those properties will be updated). Any properties that are set to null here will mean that the corresponding property in the existing input will remain the same and not change as a result of this PATCH operation. :type input: ~stream_analytics_management_client.models.Input :param if_match: The ETag of the input. Omit this value to always overwrite the current input. Specify the last-seen ETag value to prevent accidentally overwriting concurrent changes. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Input, or the result of cls(response) :rtype: ~stream_analytics_management_client.models.Input :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.Input"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-04-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'jobName': self._serialize.url("job_name", job_name, 'str'), 'inputName': self._serialize.url("input_name", input_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(input, 'Input') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Input', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobName}/inputs/{inputName}'} # type: ignore def delete( self, resource_group_name, # type: str job_name, # type: str input_name, # type: str **kwargs # type: Any ): # type: (...) -> None """Deletes an input from the streaming job. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param job_name: The name of the streaming job. :type job_name: str :param input_name: The name of the input. :type input_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-04-01-preview" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'jobName': self._serialize.url("job_name", job_name, 'str'), 'inputName': self._serialize.url("input_name", input_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobName}/inputs/{inputName}'} # type: ignore def get( self, resource_group_name, # type: str job_name, # type: str input_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.Input" """Gets details about the specified input. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param job_name: The name of the streaming job. :type job_name: str :param input_name: The name of the input. :type input_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Input, or the result of cls(response) :rtype: ~stream_analytics_management_client.models.Input :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.Input"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-04-01-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'jobName': self._serialize.url("job_name", job_name, 'str'), 'inputName': self._serialize.url("input_name", input_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Input', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobName}/inputs/{inputName}'} # type: ignore def list_by_streaming_job( self, resource_group_name, # type: str job_name, # type: str select=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["models.InputListResult"] """Lists all of the inputs under the specified streaming job. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param job_name: The name of the streaming job. :type job_name: str :param select: The $select OData query parameter. This is a comma-separated list of structural properties to include in the response, or "\ *" to include all properties. By default, all properties are returned except diagnostics. Currently only accepts '*\ ' as a valid value. :type select: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either InputListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~stream_analytics_management_client.models.InputListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.InputListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-04-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_streaming_job.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'jobName': self._serialize.url("job_name", job_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('InputListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_streaming_job.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobName}/inputs'} # type: ignore def _test_initial( self, resource_group_name, # type: str job_name, # type: str input_name, # type: str input=None, # type: Optional["models.Input"] **kwargs # type: Any ): # type: (...) -> Optional["models.ResourceTestStatus"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ResourceTestStatus"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-04-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._test_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'jobName': self._serialize.url("job_name", job_name, 'str'), 'inputName': self._serialize.url("input_name", input_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if input is not None: body_content = self._serialize.body(input, 'Input') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ResourceTestStatus', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _test_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobName}/inputs/{inputName}/test'} # type: ignore def begin_test( self, resource_group_name, # type: str job_name, # type: str input_name, # type: str input=None, # type: Optional["models.Input"] **kwargs # type: Any ): # type: (...) -> LROPoller["models.ResourceTestStatus"] """Tests whether an input’s datasource is reachable and usable by the Azure Stream Analytics service. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param job_name: The name of the streaming job. :type job_name: str :param input_name: The name of the input. :type input_name: str :param input: If the input specified does not already exist, this parameter must contain the full input definition intended to be tested. If the input specified already exists, this parameter can be left null to test the existing input as is or if specified, the properties specified will overwrite the corresponding properties in the existing input (exactly like a PATCH operation) and the resulting input will be tested. :type input: ~stream_analytics_management_client.models.Input :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ResourceTestStatus or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~stream_analytics_management_client.models.ResourceTestStatus] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ResourceTestStatus"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._test_initial( resource_group_name=resource_group_name, job_name=job_name, input_name=input_name, input=input, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ResourceTestStatus', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_test.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobName}/inputs/{inputName}/test'} # type: ignore
59944bb8fa971396a0f7e49931ba6f9bf8ed1091
4b29c3e3c8a2cad5071a3fb2ea674253c6f0ef21
/pycharm/digiin/case/TestLogin.py
70e3880684b38a0a5d5a1bb7b50cd59768931663
[]
no_license
yz9527-1/1YZ
a0303b00fd1c7f782b7e4219c52f9589dd3b27b7
5f843531d413202f4f4e48ed0c3d510db21f4396
refs/heads/master
2022-11-30T23:50:56.682852
2020-08-10T02:11:13
2020-08-10T02:11:13
286,354,211
0
0
null
null
null
null
UTF-8
Python
false
false
3,586
py
#coding=utf-8 import ddt,data from common.ExcelUtil import ExcelUtil import time import unittest from selenium import webdriver def self(args): pass class Case(object): def __init__(self): pass def get_case(self): """ 获取数据 得到有用的数据,并且使数据以邮箱地址、密码、预期结果定位、预期结果的顺序返回 :return: """ #获取Excel中的文件数据 sheet='Login' file=ExcelUtil(sheet_name=sheet) data=file.get_data() #得到所需要数据的索引,然后根据索引获取相应顺序的数据 email_index=data[0].index("邮箱地址") password_index=data[1].index("密码") expected_element_index=data[2].index("预期结果定位") expected_index=data[3].index("预期结果") data_length=data.__len__() all_cass=[] #去除header行,和其他无用的数据 for i in range(1,data_length): case=[] case.append(data[i][email_index]) case.append(data[i][password_index]) case.append(data[i][expected_element_index]) case.append(data[i][expected_index]) all_cass.append(case) return all_cass class Login(object): def __init__(self,driver): self.driver=driver def login(self,email,password): """登录步骤""" #driver=webdriver.Chrome() #self.driver=driver #邮箱地址、密码、点击登录按钮操作 time.sleep(1) if email!=None: email_element=self.driver.find_element_by_xpath('//*[@id="app"]/div/div[1]/div/div[1]/input') email_element.send_keys(email) time.sleep(1) if password!=None: password_element=self.driver.find_element_by_xpath('//*[@id="app"]/div/div[1]/div/div[2]/input') password_element.send_keys(password) time.sleep(1) login_btn=self.driver.find_element_by_xpath('//*[@id="app"]/div/div[1]/div/div[3]/input') login_btn.click() def login_assert(self,assert_type,assert_message): """登录断言""" time.sleep(1) if assert_type=='email error': email_message=self.driver.find_element_by_xpath('//*[@id="app"]/div/div[1]/div/div[1]/input').text assert email_message==assert_message elif assert_type=='password error': password_message=self.driver.find_element_by_xpath('//*[@id="app"]/div/div[1]/div/div[2]/input').text assert password_message==assert_message elif assert_type=='login sucess'or assert_type=='login fail': login_message=self.driver.find_element_by_xpath('//*[@id="app"]/div/div[1]/div/div[3]/input').text assert login_message==assert_message else: print("输入的断言类型不正确") @ddt class TextLogin(unittest.TestCase): """测试登录""" def setUp(self): self.driver=webdriver.Chrome() url="http://192.168.0.30:18069" self.driver.implicitly_wait(20) self.driver.maximize_window() self.driver.get(url=url) def tearDown(self): self.driver.quit() case=Case().get_case() @data(*case) @unpack def test_login(self,password,assert_type,assert_message): login=Login(driver=self.driver) login.login(email=email,password=password) login.login_assert(assert_type=assert_type,assert_message=assert_message) if __name__=='__main__': unittest.main
2d24c2b1849fbb578426985672e634ca4e13e282
ccf94dcb6b1500fcbbd56964ae8c4832a496b8b3
/python/baiduads-sdk-auto/baiduads/keyword/api/__init__.py
d86d7640ef2ab230105e5b576757bc5d81a011fe
[ "Apache-2.0" ]
permissive
baidu/baiduads-sdk
24c36b5cf3da9362ec5c8ecd417ff280421198ff
176363de5e8a4e98aaca039e4300703c3964c1c7
refs/heads/main
2023-06-08T15:40:24.787863
2023-05-20T03:40:51
2023-05-20T03:40:51
446,718,177
16
11
Apache-2.0
2023-06-02T05:19:40
2022-01-11T07:23:17
Python
UTF-8
Python
false
false
151
py
from __future__ import absolute_import # flake8: noqa # import apis into api package from baiduads.keyword.api.keyword_service import KeywordService
6bb7357e4c3c78a71da4398592fc78ff38a7ab5c
53fab060fa262e5d5026e0807d93c75fb81e67b9
/gaussiana/ch3_2020_09_14_14_36_41_642784.py
986bff292e3d397ff9a597fd31a1ee3912e49175
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
import math def calcula_gaussiana (x,mu,sigma) : f1 = 1/(sigma*math.sqrt(2*math.pi)) f2 = math.exp((-0.5*((x-mu)/(sigma)**2)) y = f1*f2 return y
91b306ecb2af69f0d6d781d57251266678f159f2
f8d3f814067415485bb439d7fe92dc2bbe22a048
/models/research/syntaxnet/dragnn/python/file_diff_test.py
9e9f1daa40a64ff9595724e30dbc95591ae299c2
[ "Apache-2.0" ]
permissive
gmonkman/python
2f9ab8f159c01f6235c86cb0cd52062cd3fdedd3
9123aa6baf538b662143b9098d963d55165e8409
refs/heads/master
2023-04-09T15:53:29.746676
2022-11-26T20:35:21
2022-11-26T20:35:21
60,254,898
0
2
null
2023-03-24T22:58:39
2016-06-02T10:25:27
Python
UTF-8
Python
false
false
1,631
py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Diff test that compares two files are identical.""" from absl import flags import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_string('actual_file', None, 'File to test.') flags.DEFINE_string('expected_file', None, 'File with expected contents.') class DiffTest(tf.test.TestCase): def testEqualFiles(self): content_actual = None content_expected = None try: with open(FLAGS.actual_file) as actual: content_actual = actual.read() except IOError as e: self.fail("Error opening '%s': %s" % (FLAGS.actual_file, e.strerror)) try: with open(FLAGS.expected_file) as expected: content_expected = expected.read() except IOError as e: self.fail("Error opening '%s': %s" % (FLAGS.expected_file, e.strerror)) self.assertTrue(content_actual == content_expected) if __name__ == '__main__': tf.test.main()
22e70becf6b691016982f2b828b13d8eeaf45564
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02571/s663642129.py
60a84cc30f58c36b037db16bb95f49473b02d187
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
def main(): s = input() t = input() min = int(1e9) for i in range(len(s)-len(t)+1): cnt = 0 for j in range(len(t)): if s[i+j] != t[j]: cnt += 1 if min > cnt: min = cnt print(min) if __name__ == "__main__": main()
200e9917ea1a71489173315c12ac6c736aac3a7c
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/PyBox/pybox2d/library/Box2D/examples/chain.py
c1f19e55dbac3e2fa63532f8b24c48d5d1e22b19
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:e79af0d06dbe1710b8ba767355096adc26f63f6435e754284e2a3caa01b35291 size 2366
cf37aac9d227dfbd4c7430df7abe6facb7d78387
9bb01fa882e713aa59345051fec07f4e3d3478b0
/tests/cysparse_/sparse/memory/test_copy_CSCSparseMatrix_INT32_t_COMPLEX64_t.py
647b1079524c4d905c0e53d370b23d6cd9d3eca0
[]
no_license
syarra/cysparse
f1169c496b54d61761fdecbde716328fd0fb131b
7654f7267ab139d0564d3aa3b21c75b364bcfe72
refs/heads/master
2020-05-25T16:15:38.160443
2017-03-14T21:17:39
2017-03-14T21:17:39
84,944,993
0
0
null
2017-03-14T12:11:48
2017-03-14T12:11:48
null
UTF-8
Python
false
false
4,646
py
#!/usr/bin/env python """ This file tests ``copy()`` for all sparse-likes objects. """ import unittest from cysparse.sparse.ll_mat import * from cysparse.common_types.cysparse_types import * ######################################################################################################################## # Tests ######################################################################################################################## ####################################################################### # Case: store_symmetry == False, Store_zero==False ####################################################################### class CySparseCopyNoSymmetryNoZero_CSCSparseMatrix_INT32_t_COMPLEX64_t_TestCase(unittest.TestCase): def setUp(self): self.nrow = 10 self.ncol = 14 self.A = LinearFillLLSparseMatrix(nrow=self.nrow, ncol=self.ncol, dtype=COMPLEX64_T, itype=INT32_T) self.C = self.A.to_csc() def test_copy_not_same_reference(self): """ Test we have a real deep copy for matrices and views and proxies are singletons. Warning: If the matrix element type is real, proxies may not be returned. """ self.assertTrue(id(self.C) != id(self.C.copy())) def test_copy_element_by_element(self): C_copy = self.C.copy() for i in range(self.nrow): for j in range(self.ncol): self.assertTrue(self.C[i, j] == C_copy[i, j]) ####################################################################### # Case: store_symmetry == True, Store_zero==False ####################################################################### class CySparseCopyWithSymmetryNoZero_CSCSparseMatrix_INT32_t_COMPLEX64_t_TestCase(unittest.TestCase): def setUp(self): self.size = 10 self.A = LinearFillLLSparseMatrix(size=self.size, dtype=COMPLEX64_T, itype=INT32_T, store_symmetry=True) self.C = self.A.to_csc() def test_copy_not_same_reference(self): """ Test we have a real deep copy for matrices and views and proxies are singletons. Warning: If the matrix element type is real, proxies may not be returned. """ self.assertTrue(id(self.C) != id(self.C.copy())) def test_copy_element_by_element(self): C_copy = self.C.copy() for i in range(self.size): for j in range(self.size): self.assertTrue(self.C[i, j] == C_copy[i, j]) ####################################################################### # Case: store_symmetry == False, Store_zero==True ####################################################################### class CySparseCopyNoSymmetrySWithZero_CSCSparseMatrix_INT32_t_COMPLEX64_t_TestCase(unittest.TestCase): def setUp(self): self.nrow = 10 self.ncol = 14 self.A = LinearFillLLSparseMatrix(nrow=self.nrow, ncol=self.ncol, dtype=COMPLEX64_T, itype=INT32_T, store_zero=True) self.C = self.A.to_csc() def test_copy_not_same_reference(self): """ Test we have a real deep copy for matrices and views and proxies are singletons. Warning: If the matrix element type is real, proxies may not be returned. """ self.assertTrue(id(self.C) != id(self.C.copy())) def test_copy_element_by_element(self): C_copy = self.C.copy() for i in range(self.nrow): for j in range(self.ncol): self.assertTrue(self.C[i, j] == C_copy[i, j]) ####################################################################### # Case: store_symmetry == True, Store_zero==True ####################################################################### class CySparseCopyWithSymmetrySWithZero_CSCSparseMatrix_INT32_t_COMPLEX64_t_TestCase(unittest.TestCase): def setUp(self): self.size = 10 self.A = LinearFillLLSparseMatrix(size=self.size, dtype=COMPLEX64_T, itype=INT32_T, store_symmetry=True, store_zero=True) self.C = self.A.to_csc() def test_copy_not_same_reference(self): """ Test we have a real deep copy for matrices and views and proxies are singletons. Warning: If the matrix element type is real, proxies may not be returned. """ self.assertTrue(id(self.C) != id(self.C.copy())) def test_copy_element_by_element(self): C_copy = self.C.copy() for i in range(self.size): for j in range(self.size): self.assertTrue(self.C[i, j] == C_copy[i, j]) if __name__ == '__main__': unittest.main()
1bb7b97ff0d7ed871f4280d115fe7d2651c8300f
e2334e514d9a0321fc834d6398519fa86dc1ba93
/cira_ml_short_course/utils/upconvnet.py
2c80a660190e61d2e1945a456101ea1ecc85d46e
[ "MIT" ]
permissive
ChanJeunlam/cira_ml_short_course
4fc99da5a6e051a51fe7fdc307df17eeb06516eb
23741f7ebba9dde8e4f5985ed43bed50b4f99cc3
refs/heads/master
2023-04-30T20:33:37.974674
2021-05-10T17:14:36
2021-05-10T17:14:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,151
py
"""Helper methods for upconvnets (upconvolutional networks).""" import copy import numpy import keras.models from cira_ml_short_course.utils import cnn, utils, image_utils, \ image_normalization KERNEL_INITIALIZER_NAME = cnn.KERNEL_INITIALIZER_NAME BIAS_INITIALIZER_NAME = cnn.BIAS_INITIALIZER_NAME PLATEAU_PATIENCE_EPOCHS = cnn.PLATEAU_PATIENCE_EPOCHS PLATEAU_LEARNING_RATE_MULTIPLIER = cnn.PLATEAU_LEARNING_RATE_MULTIPLIER PLATEAU_COOLDOWN_EPOCHS = cnn.PLATEAU_COOLDOWN_EPOCHS EARLY_STOPPING_PATIENCE_EPOCHS = cnn.EARLY_STOPPING_PATIENCE_EPOCHS LOSS_PATIENCE = cnn.LOSS_PATIENCE DEFAULT_INPUT_DIMENSIONS = numpy.array([4, 4, 256], dtype=int) DEFAULT_CONV_BLOCK_LAYER_COUNTS = numpy.array([2, 2, 2, 2], dtype=int) DEFAULT_CONV_CHANNEL_COUNTS = numpy.array( [256, 128, 128, 64, 64, 32, 32, 4], dtype=int ) DEFAULT_CONV_DROPOUT_RATES = numpy.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0]) DEFAULT_CONV_FILTER_SIZES = numpy.full(8, 3, dtype=int) DEFAULT_INNER_ACTIV_FUNCTION_NAME = copy.deepcopy(utils.RELU_FUNCTION_NAME) DEFAULT_INNER_ACTIV_FUNCTION_ALPHA = 0.2 DEFAULT_OUTPUT_ACTIV_FUNCTION_NAME = None DEFAULT_OUTPUT_ACTIV_FUNCTION_ALPHA = 0. DEFAULT_L1_WEIGHT = 0. DEFAULT_L2_WEIGHT = 0.001 def _get_transposed_conv_layer( num_rows_in_filter, num_columns_in_filter, upsampling_factor, num_filters, weight_regularizer=None): """Creates layer for 2-D transposed convolution. :param num_rows_in_filter: Number of rows in each filter (kernel). :param num_columns_in_filter: Number of columns in each filter (kernel). :param upsampling_factor: Upsampling factor (integer >= 1). :param num_filters: Number of filters (output channels). :param weight_regularizer: Will be used to regularize weights in the new layer. This may be instance of `keras.regularizers` or None (if you want no regularization). :return: layer_object: Instance of `keras.layers.Conv2DTranspose`. """ return keras.layers.Conv2DTranspose( filters=num_filters, kernel_size=(num_rows_in_filter, num_columns_in_filter), strides=(upsampling_factor, upsampling_factor), padding='same', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=KERNEL_INITIALIZER_NAME, bias_initializer=BIAS_INITIALIZER_NAME, kernel_regularizer=weight_regularizer, bias_regularizer=weight_regularizer ) def _get_upsampling_layer(upsampling_factor): """Creates layer for 2-D upsampling. :param upsampling_factor: Upsampling factor (integer >= 1). :return: layer_object: Instance of `keras.layers.Upsampling2D`. """ try: return keras.layers.UpSampling2D( size=(upsampling_factor, upsampling_factor), data_format='channels_last', interpolation='bilinear' ) except: return keras.layers.UpSampling2D( size=(upsampling_factor, upsampling_factor), data_format='channels_last' ) def setup_upconvnet( input_dimensions=DEFAULT_INPUT_DIMENSIONS, conv_block_layer_counts=DEFAULT_CONV_BLOCK_LAYER_COUNTS, conv_layer_channel_counts=DEFAULT_CONV_CHANNEL_COUNTS, conv_layer_dropout_rates=DEFAULT_CONV_DROPOUT_RATES, conv_layer_filter_sizes=DEFAULT_CONV_FILTER_SIZES, inner_activ_function_name=DEFAULT_INNER_ACTIV_FUNCTION_NAME, inner_activ_function_alpha=DEFAULT_INNER_ACTIV_FUNCTION_ALPHA, output_activ_function_name=DEFAULT_OUTPUT_ACTIV_FUNCTION_NAME, output_activ_function_alpha=DEFAULT_OUTPUT_ACTIV_FUNCTION_ALPHA, l1_weight=DEFAULT_L1_WEIGHT, l2_weight=DEFAULT_L2_WEIGHT, use_transposed_conv=True, use_batch_norm_inner=True, use_batch_norm_output=True): """Sets up (but does not train) upconvnet. This method sets up the architecture, loss function, and optimizer. B = number of convolutional blocks C = number of convolutional layers D = number of dense layers :param input_dimensions: numpy array with dimensions of input data. Entries should be (num_grid_rows, num_grid_columns, num_channels). :param conv_block_layer_counts: length-B numpy array with number of convolutional layers in each block. Remember that each conv block except the last upsamples the image by a factor of 2. :param conv_layer_channel_counts: length-C numpy array with number of channels (filters) produced by each convolutional layer. :param conv_layer_dropout_rates: length-C numpy array of dropout rates. To turn off dropout for a given layer, use NaN or a non-positive number. :param conv_layer_filter_sizes: length-C numpy array of filter sizes. All filters will be square (num rows = num columns). :param inner_activ_function_name: Name of activation function for all inner (non-output) layers. :param inner_activ_function_alpha: Alpha (slope parameter) for activation function for all inner layers. Applies only to ReLU and eLU. :param output_activ_function_name: Same as `inner_activ_function_name` but for output layer. This may be None. :param output_activ_function_alpha: Same as `inner_activ_function_alpha` but for output layer. :param l1_weight: Weight for L_1 regularization. :param l2_weight: Weight for L_2 regularization. :param use_transposed_conv: Boolean flag. If True (False), will use transposed convolution (upsampling followed by normal convolution). :param use_batch_norm_inner: Boolean flag. If True, will use batch normalization after each inner layer. :param use_batch_norm_output: Same but for output layer. :return: model_object: Untrained instance of `keras.models.Model`. """ num_conv_layers = len(conv_layer_channel_counts) assert numpy.sum(conv_block_layer_counts) == num_conv_layers num_input_rows = input_dimensions[0] num_input_columns = input_dimensions[1] num_input_channels = input_dimensions[2] input_layer_object = keras.layers.Input( shape=(numpy.prod(input_dimensions),) ) regularizer_object = utils._get_weight_regularizer( l1_weight=l1_weight, l2_weight=l2_weight ) layer_object = keras.layers.Reshape( target_shape=(num_input_rows, num_input_columns, num_input_channels) )(input_layer_object) for i in range(num_conv_layers): if ( i + 1 in numpy.cumsum(conv_block_layer_counts) and i != num_conv_layers - 1 ): if use_transposed_conv: layer_object = _get_transposed_conv_layer( num_rows_in_filter=conv_layer_filter_sizes[i], num_columns_in_filter=conv_layer_filter_sizes[i], upsampling_factor=2, num_filters=conv_layer_channel_counts[i], weight_regularizer=regularizer_object )(layer_object) else: layer_object = _get_upsampling_layer( upsampling_factor=2 )(layer_object) layer_object = cnn._get_2d_conv_layer( num_rows_in_filter=conv_layer_filter_sizes[i], num_columns_in_filter=conv_layer_filter_sizes[i], num_rows_per_stride=1, num_columns_per_stride=1, num_filters=conv_layer_channel_counts[i], use_edge_padding=True, weight_regularizer=regularizer_object )(layer_object) else: layer_object = cnn._get_2d_conv_layer( num_rows_in_filter=conv_layer_filter_sizes[i], num_columns_in_filter=conv_layer_filter_sizes[i], num_rows_per_stride=1, num_columns_per_stride=1, num_filters=conv_layer_channel_counts[i], use_edge_padding=True, weight_regularizer=regularizer_object )(layer_object) if i == num_conv_layers - 1: if output_activ_function_name is not None: layer_object = utils._get_activation_layer( function_name=output_activ_function_name, slope_param=output_activ_function_alpha )(layer_object) else: layer_object = utils._get_activation_layer( function_name=inner_activ_function_name, slope_param=inner_activ_function_alpha )(layer_object) if conv_layer_dropout_rates[i] > 0: layer_object = utils._get_dropout_layer( dropout_fraction=conv_layer_dropout_rates[i] )(layer_object) if i != num_conv_layers - 1 and use_batch_norm_inner: layer_object = utils._get_batch_norm_layer()(layer_object) if i == num_conv_layers - 1 and use_batch_norm_output: layer_object = utils._get_batch_norm_layer()(layer_object) model_object = keras.models.Model( inputs=input_layer_object, outputs=layer_object ) model_object.compile( loss=keras.losses.mean_squared_error, optimizer=keras.optimizers.Adam() ) model_object.summary() return model_object def create_data(image_file_names, normalization_dict, cnn_model_object): """Creates input data for upconvnet. E = number of examples (storm objects) M = number of rows in each storm-centered grid N = number of columns in each storm-centered grid C = number of channels (predictor variables) Z = number of features (from CNN's flattening layer) :param image_file_names: 1-D list of paths to input files (readable by `image_utils.read_file`). :param normalization_dict: Dictionary with params used to normalize predictors. See doc for `image_normalization.normalize_data`. :param cnn_model_object: Trained CNN (instance of `keras.models.Model` or `keras.models.Sequential`). Inputs for upconvnet will be outputs from CNN's flattening layer. :return: feature_matrix: E-by-Z numpy array of features. These are inputs for the upconvnet. :return: target_matrix: E-by-M-by-N-by-C numpy array of target values. These are targets for the upconvnet but inputs for the CNN. """ image_dict = image_utils.read_many_files(image_file_names) target_matrix, _ = image_normalization.normalize_data( predictor_matrix=image_dict[image_utils.PREDICTOR_MATRIX_KEY], predictor_names=image_dict[image_utils.PREDICTOR_NAMES_KEY], normalization_dict=normalization_dict ) feature_matrix = cnn.apply_model( model_object=cnn_model_object, predictor_matrix=target_matrix, verbose=True, output_layer_name=cnn.get_flattening_layer(cnn_model_object) ) return feature_matrix, target_matrix def train_model_sans_generator( model_object, cnn_model_object, training_file_names, validation_file_names, num_examples_per_batch, normalization_dict, num_epochs, output_dir_name): """Trains upconvnet without generator. :param model_object: Untrained upconvnet (instance of `keras.models.Model` or `keras.models.Sequential`). :param cnn_model_object: Trained CNN (instance of `keras.models.Model` or `keras.models.Sequential`). :param training_file_names: 1-D list of paths to training files (readable by `image_utils.read_file`). :param validation_file_names: Same but for validation files. :param num_examples_per_batch: Batch size. :param normalization_dict: See doc for `create_data`. :param num_epochs: Number of epochs. :param output_dir_name: Path to output directory (model will be saved here). """ utils._mkdir_recursive_if_necessary(directory_name=output_dir_name) model_file_name = ( output_dir_name + '/model_epoch={epoch:03d}_val-loss={val_loss:.6f}.h5' ) history_object = keras.callbacks.CSVLogger( filename='{0:s}/history.csv'.format(output_dir_name), separator=',', append=False ) checkpoint_object = keras.callbacks.ModelCheckpoint( filepath=model_file_name, monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='min', period=1 ) early_stopping_object = keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=LOSS_PATIENCE, patience=EARLY_STOPPING_PATIENCE_EPOCHS, verbose=1, mode='min' ) plateau_object = keras.callbacks.ReduceLROnPlateau( monitor='val_loss', factor=PLATEAU_LEARNING_RATE_MULTIPLIER, patience=PLATEAU_PATIENCE_EPOCHS, verbose=1, mode='min', min_delta=LOSS_PATIENCE, cooldown=PLATEAU_COOLDOWN_EPOCHS ) list_of_callback_objects = [ history_object, checkpoint_object, early_stopping_object, plateau_object ] training_feature_matrix, training_target_matrix = create_data( image_file_names=training_file_names, normalization_dict=normalization_dict, cnn_model_object=cnn_model_object ) print('\n') validation_feature_matrix, validation_target_matrix = create_data( image_file_names=validation_file_names, normalization_dict=normalization_dict, cnn_model_object=cnn_model_object ) print('\n') model_object.fit( x=training_feature_matrix, y=training_target_matrix, batch_size=num_examples_per_batch, epochs=num_epochs, steps_per_epoch=None, shuffle=True, verbose=1, callbacks=list_of_callback_objects, validation_data=(validation_feature_matrix, validation_target_matrix), validation_steps=None ) def read_model(hdf5_file_name): """Reads model from HDF5 file. :param hdf5_file_name: Path to input file. """ return keras.models.load_model(hdf5_file_name) def apply_model(model_object, cnn_model_object, cnn_predictor_matrix, verbose=True): """Applies trained upconvnet to new data. E = number of examples (storm objects) M = number of rows in each storm-centered grid N = number of columns in each storm-centered grid C = number of channels (predictor variables) :param model_object: Trained upconvnet (instance of `keras.models.Model` or `keras.models.Sequential`). :param cnn_model_object: Trained CNN (instance of `keras.models.Model` or `keras.models.Sequential`). :param cnn_predictor_matrix: E-by-M-by-N-by-C numpy array of predictor values for CNN. :param verbose: Boolean flag. If True, will print progress messages. :return: reconstructed_predictor_matrix: Upconvnet reconstruction of `cnn_predictor_matrix`. """ num_examples = cnn_predictor_matrix.shape[0] num_examples_per_batch = 1000 reconstructed_predictor_matrix = numpy.full( cnn_predictor_matrix.shape, numpy.nan ) for i in range(0, num_examples, num_examples_per_batch): this_first_index = i this_last_index = min( [i + num_examples_per_batch - 1, num_examples - 1] ) if verbose: print(( 'Applying upconvnet to examples {0:d}-{1:d} of {2:d}...' ).format( this_first_index, this_last_index, num_examples )) these_indices = numpy.linspace( this_first_index, this_last_index, num=this_last_index - this_first_index + 1, dtype=int ) this_feature_matrix = cnn.apply_model( model_object=cnn_model_object, predictor_matrix=cnn_predictor_matrix[these_indices, ...], verbose=False, output_layer_name=cnn.get_flattening_layer(cnn_model_object) ) reconstructed_predictor_matrix[these_indices, ...] = ( model_object.predict( this_feature_matrix, batch_size=len(these_indices) ) ) if verbose: print('Have applied upconvnet to all {0:d} examples!'.format( num_examples )) return reconstructed_predictor_matrix
4e554d1fb9a88ed2d04b9397feb311493507f223
289da5146b8991942ba22eefe948289ee024d3ff
/sheng/tutorial/L3函数/8 global.py
380ea400f5deb82c17c96c689facbc7d471efff3
[]
no_license
a1424186319/tutorial
263585961ab40e7a9a55405263d80057a88298d4
909bfc9f850118af7892a7ba4b0f7e3d0798db8a
refs/heads/master
2022-12-09T01:05:36.063099
2019-02-18T12:12:52
2019-02-18T12:12:52
166,967,437
0
0
null
2021-06-01T23:20:20
2019-01-22T09:38:51
Python
UTF-8
Python
false
false
500
py
# #(老写法 a是全局变量) 从1 加到 100的和 # a = 0 # for i in range(1,101): # a = a + i # print(a) ## global(全局) 显示声明变量为全局变量 # total = 0 # def add1(n): # global total # total = total + 1 # add1() # add1() # add1() # print(total) ## nonlocal(局部的)https://www.cnblogs.com/saintdingspage/p/7788958.html def outer(): num = 10 def inner(): nonlocal num num = 100 print(num) inner() print(num) outer()
86dce18c7b5d76d01f32df22306412f7ca2feb73
d7d19d6918029de88bcf060cea23d5b4a1f7efb1
/xiab/apps/subjects/models.py
85c54cc05e21150cfe80e2ddb9d412d7c622452e
[]
no_license
petercollingridge/xiab
8abe2b2b7124eeb0cfa06d2f21ce858a4ffbd975
ae84d3d228f3fe9392d0fd894652e290b219b1d2
refs/heads/master
2020-03-26T04:25:28.163381
2019-09-29T16:20:25
2019-09-29T16:20:25
144,503,055
1
1
null
null
null
null
UTF-8
Python
false
false
535
py
from django.db import models from wagtail.core.models import Page from wagtail.core.fields import RichTextField from wagtail.admin.edit_handlers import FieldPanel class SubjectPage(Page): summary = RichTextField(blank=True) content_panels = Page.content_panels + [ FieldPanel('summary'), ] def get_context(self, request): # Update context to include only published posts context = super().get_context(request) context['children'] = self.get_children().live() return context
3999cde4262817329bdd68fd5ae82079cf8e5078
1b382fa35424074f6e93d5efa26412057507ef7e
/brax/experimental/composer/composer.py
4a850f3ccb8b2b5020d9be7537077256b6e02021
[ "Apache-2.0" ]
permissive
LARS12llt/brax
91f2914f78480308930dc83435f076de8a55b470
8cf936d60a393f586daa145e8f378c7aa4bafce6
refs/heads/main
2023-07-27T22:49:59.609896
2021-09-17T11:16:49
2021-09-17T15:06:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,125
py
# Copyright 2021 The Brax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Composer for environments. ComponentEnv composes a scene from descriptions of the form below: composer = Composer( components=dict( ant1=dict(component='ant', pos=(0, 1, 0)), ant2=dict(component='ant', pos=(0, -1, 0)), ), edges=dict(ant1__ant2=dict(collide_type='full'),), ) env = ComposeEnv(composer=composer) (more examples available in experimental/composer/env_descs.py) During loading, it: - creates components: loads and pieces together brax.Config() components defined in experimental/composer/components/ such as ant.py or ground.py - support multiple instances of the same component through suffixes - each component requires: ROOT=root body, SYS_CONFIG=config in string form, TERM_FN=termination function of this component, COLLIDES=bodies that are allowed to collide, DEFAULT_OBSERVERS=a list of observers ( see experimental/composer/observers.py for references) - creates edges: automatically create necessary edge information between components, such as collide_include's in brax.Config() - optionally edge information can be supplied, e.g. `collide_type`={'full', 'root', None} specifying full collisons, collision only between roots, or no collision between two components - sets termination as any(termination_fn of each component) - sets observation to concatenation of observations of each component defined by each component's `observers` argument """ import collections import copy import functools import itertools from typing import Dict, Any, Callable, Tuple import brax from brax import envs from brax.envs import Env from brax.envs import State from brax.experimental.braxlines.common import sim_utils from brax.experimental.composer import component_editor from brax.experimental.composer import env_descs from brax.experimental.composer import observers import jax from jax import numpy as jnp MetaData = collections.namedtuple('MetaData', [ 'components', 'edges', 'global_options', 'config_str', 'config_json', 'extra_observers' ]) class Composer(object): """Compose a brax system.""" def __init__(self, components: Dict[str, Dict[str, Any]], edges: Dict[str, Dict[str, Any]] = None, extra_observers: Tuple[observers.Observer] = (), add_ground: bool = True, global_options: Dict[str, Any] = None): components = copy.deepcopy(components) edges = copy.deepcopy(edges or {}) # load components if add_ground: components['ground'] = dict(component='ground') components = { name: component_editor.load_component(**value) for name, value in components.items() } component_keys = sorted(components.keys()) components_ = collections.OrderedDict([ (k, components[k]) for k in component_keys ]) # set global v = dict( json=component_editor.json_global_options(**(global_options or {}))) v['message_str'] = component_editor.json2message_str(v['json']) global_options_ = v for k, v in components_.items(): # convert to json format for easy editing v['json'] = component_editor.message_str2json(v['message_str']) # add suffices suffix = v.get('suffix', k) if suffix: rename_fn = functools.partial( component_editor.json_add_suffix, suffix=suffix) v['json'] = rename_fn(v['json']) v['collides'] = rename_fn(v['collides'], force_add=True) v['root'] = rename_fn(v['root'], force_add=True) v['bodies'] = [b['name'] for b in v['json'].get('bodies', [])] v['joints'] = [b['name'] for b in v['json'].get('joints', [])] v['suffix'] = suffix # convert back to str v['message_str'] = component_editor.json2message_str(v['json']) # set transform or not if 'pos' in v or 'quat' in v: v['transform'] = True v['pos'] = jnp.array(v.get('pos', [0, 0, 0]), dtype='float') v['quat_origin'] = jnp.array( v.get('quat_origin', [0, 0, 0]), dtype='float') v['quat'] = jnp.array(v.get('quat', [1., 0., 0., 0.]), dtype='float') else: v['transform'] = False edges_ = {} for k1, k2 in itertools.combinations(list(components_.keys()), 2): if k1 == k2: continue k1, k2 = sorted([k1, k2]) # ensure the name is always sorted in order edge_name = f'{k1}__{k2}' v, new_v = edges.pop(edge_name, {}), {} v1, v2 = [components_[k] for k in [k1, k2]] collide_type = v.pop('collide_type', 'full') v_json = {} # add colliders if collide_type == 'full': v_json.update( component_editor.json_collides(v1['collides'], v2['collides'])) elif collide_type == 'root': v_json.update( component_editor.json_collides([v1['root']], [v2['root']])) else: assert not collide_type, collide_type if v_json: # convert back to str new_v['message_str'] = component_editor.json2message_str(v_json) else: new_v['message_str'] = '' new_v['json'] = v_json assert not v, f'unused edges[{edge_name}]: {v}' edges_[edge_name] = new_v assert not edges, f'unused edges: {edges}' edge_keys = sorted(edges_.keys()) edges_ = collections.OrderedDict([(k, edges_[k]) for k in edge_keys]) # merge all message strs message_str = '' for _, v in sorted(components_.items()): message_str += v.get('message_str', '') for _, v in sorted(edges_.items()): message_str += v.get('message_str', '') message_str += global_options_.get('message_str', '') config_str = message_str config_json = component_editor.message_str2json(message_str) metadata = MetaData( components=components_, edges=edges_, global_options=global_options_, config_str=config_str, config_json=config_json, extra_observers=extra_observers, ) config = component_editor.message_str2message(message_str) self.config, self.metadata = config, metadata def reset_fn(self, sys, qp: brax.QP): """Reset state.""" # apply translations and rotations for _, v in sorted(self.metadata.components.items()): if v['transform']: _, _, mask = sim_utils.names2indices(sys.config, v['bodies'], 'body') qp = sim_utils.transform_qp(qp, mask[..., None], v['quat'], v['quat_origin'], v['pos']) return qp def term_fn(self, done: jnp.ndarray, sys, qp: brax.QP, info: brax.Info): """Termination.""" for k, v in self.metadata.components.items(): term_fn = v['term_fn'] if term_fn: done = term_fn(done, sys, qp, info, k) return done def obs_fn(self, sys, qp: brax.QP, info: brax.Info): """Return observation as OrderedDict.""" cached_obs_dict = {} obs_dict = collections.OrderedDict() for _, v in self.metadata.components.items(): for observer in v['observers']: obs_dict_ = observers.get_obs_dict(sys, qp, info, observer, cached_obs_dict, v) obs_dict = collections.OrderedDict( list(obs_dict.items()) + list(obs_dict_.items())) for observer in self.metadata.extra_observers: obs_dict_ = observers.get_obs_dict(sys, qp, info, observer, cached_obs_dict, None) obs_dict = collections.OrderedDict( list(obs_dict.items()) + list(obs_dict_.items())) return obs_dict class ComponentEnv(Env): """Make a brax Env fromc config/metadata for training and inference.""" def __init__(self, composer: Composer, *args, **kwargs): self.observer_shapes = None self.composer = composer super().__init__( *args, config=self.composer.metadata.config_str, **kwargs) def reset(self, rng: jnp.ndarray) -> State: """Resets the environment to an initial state.""" qp = self.sys.default_qp() qp = self.composer.reset_fn(self.sys, qp) info = self.sys.info(qp) obs = self._get_obs(qp, info) reward, done = jnp.zeros(2) metrics = {} return State(qp, obs, reward, done, metrics, info) def step(self, state: State, action: jnp.ndarray) -> State: """Run one timestep of the environment's dynamics.""" qp, info = self.sys.step(state.qp, action) obs = self._get_obs(qp, info) reward = 0.0 done = False done = self.composer.term_fn(done, self.sys, qp, info) metrics = {} return State(qp, obs, reward, done, metrics, info) def _get_obs( self, qp: brax.QP, info: brax.Info, ) -> jnp.ndarray: """Observe.""" obs_dict = self.composer.obs_fn(self.sys, qp, info) if self.observer_shapes is None: self.observer_shapes = observers.get_obs_dict_shape(obs_dict) return jnp.concatenate(list(obs_dict.values())) def get_env_obs_dict_shape(env: Env): """Gets an Env's observation shape(s).""" if isinstance(env, ComponentEnv): assert env.observation_size # ensure env.observer_shapes is set return env.observer_shapes else: return (env.observation_size,) def create(env_name: str = None, components: Dict[str, Dict[str, Any]] = None, edges: Dict[str, Dict[str, Any]] = None, add_ground: bool = True, global_options: Dict[str, Any] = None, **kwargs) -> Env: """Creates an Env with a specified brax system.""" if env_name in env_descs.ENV_DESCS: composer = Composer( add_ground=add_ground, global_options=global_options, **env_descs.ENV_DESCS[env_name]) return ComponentEnv(composer=composer, **kwargs) elif components: composer = Composer( components=components, edges=edges, add_ground=add_ground, global_options=global_options) return ComponentEnv(composer=composer, **kwargs) else: return envs.create(env_name, **kwargs) def create_fn(env_name: str = None, components: Dict[str, Dict[str, Any]] = None, edges: Dict[str, Dict[str, Any]] = None, add_ground: bool = True, global_options: Dict[str, Any] = None, **kwargs) -> Callable[..., Env]: """Returns a function that when called, creates an Env.""" return functools.partial( create, env_name=env_name, components=components, edges=edges, add_ground=add_ground, global_options=global_options, **kwargs)
8aa017b49485a93529f5842ebd6c1605b6019aba
e63c45db069ea20b41fb850c5940e6f99db94914
/TranskribusDU/tasks/TablePrototypes/DU_Table_Row.py
c69734cdcc09f2b14bb86df4a56c86e3b895773d
[ "BSD-3-Clause" ]
permissive
Transkribus/TranskribusDU
669607cc32af98efe7380831d15b087b3fc326c9
9f2fed81672dc222ca52ee4329eac3126b500d21
refs/heads/master
2021-12-29T10:14:49.153914
2021-12-22T10:53:10
2021-12-22T10:53:10
72,862,342
24
6
BSD-3-Clause
2019-07-22T08:49:02
2016-11-04T15:52:04
Python
UTF-8
Python
false
false
5,449
py
# -*- coding: utf-8 -*- """ *** Same as its parent apart that text baselines are reflected as a LineString (instead of its centroid) DU task for ABP Table: doing jointly row BIO and near horizontal cuts SIO block2line edges do not cross another block. The cut are based on baselines of text blocks, with some positive or negative inclination. - the labels of cuts are SIO Copyright Naver Labs Europe(C) 2018 JL Meunier Developed for the EU project READ. The READ project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 674943. """ import sys, os import math try: #to ease the use without proper Python installation import TranskribusDU_version except ImportError: sys.path.append( os.path.dirname(os.path.dirname( os.path.abspath(sys.argv[0]) )) ) import TranskribusDU_version TranskribusDU_version from common.trace import traceln from tasks import _exit from tasks.DU_CRF_Task import DU_CRF_Task from tasks.DU_Table.DU_ABPTableSkewed import GraphSkewedCut, main from tasks.DU_Table.DU_ABPTableSkewed_CutAnnotator import SkewedCutAnnotator from tasks.DU_Table.DU_ABPTableSkewed_txtBIO_sepSIO_line import DU_ABPTableSkewedRowCutLine from tasks.DU_Table.DU_ABPTableSkewed_txtBIOH_sepSIO_line import DU_ABPTableSkewedRowCutLine_BIOH # ---------------------------------------------------------------------------- if __name__ == "__main__": version = "v.01" usage, description, parser = DU_CRF_Task.getBasicTrnTstRunOptionParser(sys.argv[0], version) # parser.add_option("--annotate", dest='bAnnotate', action="store_true",default=False, help="Annotate the textlines with BIES labels") #FOR GCN # parser.add_option("--revertEdges", dest='bRevertEdges', action="store_true", help="Revert the direction of the edges") parser.add_option("--detail", dest='bDetailedReport', action="store_true", default=False,help="Display detailed reporting (score per document)") parser.add_option("--baseline", dest='bBaseline', action="store_true", default=False, help="report baseline method") parser.add_option("--line_see_line", dest='iLineVisibility', action="store", type=int, default=GraphSkewedCut.iLineVisibility, help="seeline2line: how far in pixel can a line see another cut line?") parser.add_option("--block_see_line", dest='iBlockVisibility', action="store", type=int, default=GraphSkewedCut.iBlockVisibility, help="seeblock2line: how far in pixel can a block see a cut line?") parser.add_option("--height", dest="fCutHeight", default=GraphSkewedCut.fCutHeight , action="store", type=float, help="Minimal height of a cut") # parser.add_option("--cut-above", dest='bCutAbove', action="store_true", default=False # ,help="Each object defines one or several cuts above it (instead of below as by default)") parser.add_option("--angle", dest='lsAngle' , action="store", type="string", default="-1,0,+1" ,help="Allowed cutting angles, in degree, comma-separated") parser.add_option("--graph", dest='bGraph', action="store_true", help="Store the graph in the XML for displaying it") parser.add_option("--bioh", "--BIOH", dest='bBIOH', action="store_true", help="Text are categorised along BIOH instead of BIO") parser.add_option("--text", "--txt", dest='bTxt', action="store_true", help="Use textual features.") # --- #parse the command line (options, args) = parser.parse_args() options.bCutAbove = True # Forcing this! if options.bBIOH: DU_CLASS = DU_ABPTableSkewedRowCutLine_BIOH else: DU_CLASS = DU_ABPTableSkewedRowCutLine if options.bGraph: import os.path # hack DU_CLASS.bCutAbove = options.bCutAbove traceln("\t%s.bCutAbove=" % DU_CLASS.__name__, DU_CLASS.bCutAbove) DU_CLASS.lRadAngle = [math.radians(v) for v in [float(s) for s in options.lsAngle.split(",")]] traceln("\t%s.lRadAngle=" % DU_CLASS.__name__, DU_CLASS.lRadAngle) for sInputFilename in args: sp, sf = os.path.split(sInputFilename) sOutFilename = os.path.join(sp, "graph-" + sf) doer = DU_CLASS("debug", "." , iBlockVisibility=options.iBlockVisibility , iLineVisibility=options.iLineVisibility , fCutHeight=options.fCutHeight , bCutAbove=options.bCutAbove , lRadAngle=[math.radians(float(s)) for s in options.lsAngle.split(",")] , bTxt=options.bTxt) o = doer.cGraphClass() o.parseDocFile(sInputFilename, 9) o.addEdgeToDoc() print('Graph edges added to %s'%sOutFilename) o.doc.write(sOutFilename, encoding='utf-8',pretty_print=True,xml_declaration=True) SkewedCutAnnotator.gtStatReport() exit(0) # --- try: sModelDir, sModelName = args except Exception as e: traceln("Specify a model folder and a model name!") _exit(usage, 1, e) main(DU_CLASS, sModelDir, sModelName, options)
5fb152a03b97239720932a800dcb93ed2841278e
fd6fab64e64031b319b7dc88b66ad960d30fdfc7
/assignment02_ModelQueryProcess/run_assignment.py
12b99e32a4e8faed2c013945d46efacf258c313c
[]
no_license
mkadhirvel/DSC650
297fa63da3668f91d9ce17c6195522dc21d8b5f2
75556e3a11a3b5801cad7df124dcc19df219934d
refs/heads/master
2023-03-17T12:19:34.332707
2021-02-11T00:29:11
2021-02-11T00:29:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
268
py
""" Author: Alan Danque Date: 20201205 Class: DSC 650 Exercise: Week 2 Assignment - Run all assignments """ import os os.system('python ./kvdb.py') os.system('python ./documentdb.py') os.system('python ./objectdb.py') os.system('python ./rdbms.py')
1beeb283036f8942d827ce37f399f0e69c19519f
ad5f3ed89e0fed30fa3e2eff6a4baa12e8391504
/tensorflow/python/keras/applications/mobilenet.py
224e8c84496ef63c1a35e1597b4b253dc1747dab
[ "Apache-2.0" ]
permissive
DunyaELBASAN/Tensorflow-C-
aa5c66b32f7e5dcfc93092021afee1bf3c97e04b
7a435c0946bdd900e5c0df95cad64005c8ad22f9
refs/heads/master
2022-11-29T23:37:53.695820
2020-02-21T18:16:44
2020-02-21T18:21:51
242,206,767
1
0
Apache-2.0
2022-11-21T22:39:51
2020-02-21T18:38:41
C++
UTF-8
Python
false
false
19,201
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """MobileNet v1 models for Keras. MobileNet is a general architecture and can be used for multiple use cases. Depending on the use case, it can use different input layer size and different width factors. This allows different width models to reduce the number of multiply-adds and thereby reduce inference cost on mobile devices. MobileNets support any input size greater than 32 x 32, with larger image sizes offering better performance. The number of parameters and number of multiply-adds can be modified by using the `alpha` parameter, which increases/decreases the number of filters in each layer. By altering the image size and `alpha` parameter, all 16 models from the paper can be built, with ImageNet weights provided. The paper demonstrates the performance of MobileNets using `alpha` values of 1.0 (also called 100 % MobileNet), 0.75, 0.5 and 0.25. For each of these `alpha` values, weights for 4 different input image sizes are provided (224, 192, 160, 128). The following table describes the size and accuracy of the 100% MobileNet on size 224 x 224: ---------------------------------------------------------------------------- Width Multiplier (alpha) | ImageNet Acc | Multiply-Adds (M) | Params (M) ---------------------------------------------------------------------------- | 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 | | 0.75 MobileNet-224 | 68.4 % | 325 | 2.6 | | 0.50 MobileNet-224 | 63.7 % | 149 | 1.3 | | 0.25 MobileNet-224 | 50.6 % | 41 | 0.5 | ---------------------------------------------------------------------------- The following table describes the performance of the 100 % MobileNet on various input sizes: ------------------------------------------------------------------------ Resolution | ImageNet Acc | Multiply-Adds (M) | Params (M) ------------------------------------------------------------------------ | 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 | | 1.0 MobileNet-192 | 69.1 % | 529 | 4.2 | | 1.0 MobileNet-160 | 67.2 % | 529 | 4.2 | | 1.0 MobileNet-128 | 64.4 % | 529 | 4.2 | ------------------------------------------------------------------------ Reference paper: - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.python.keras import backend from tensorflow.python.keras import layers from tensorflow.python.keras.applications import imagenet_utils from tensorflow.python.keras.engine import training from tensorflow.python.keras.utils import data_utils from tensorflow.python.keras.utils import layer_utils from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import keras_export BASE_WEIGHT_PATH = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/mobilenet/') @keras_export('keras.applications.mobilenet.MobileNet', 'keras.applications.MobileNet') def MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000, classifier_activation='softmax', **kwargs): """Instantiates the MobileNet architecture. Reference paper: - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in the `tf.keras.backend.image_data_format()`. Arguments: input_shape: Optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or (3, 224, 224) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. Default to `None`. `input_shape` will be ignored if the `input_tensor` is provided. alpha: Controls the width of the network. This is known as the width multiplier in the MobileNet paper. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. Default to 1.0. depth_multiplier: Depth multiplier for depthwise convolution. This is called the resolution multiplier in the MobileNet paper. Default to 1.0. dropout: Dropout rate. Default to 0.001. include_top: Boolean, whether to include the fully-connected layer at the top of the network. Default to `True`. weights: One of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. Default to `imagenet`. input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. `input_tensor` is useful for sharing inputs between multiple different networks. Default to None. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` (default) means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Defaults to 1000. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. **kwargs: For backwards compatibility only. Returns: A `keras.Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. ValueError: if `classifier_activation` is not `softmax` or `None` when using a pretrained top layer. """ if 'layers' in kwargs: global layers layers = kwargs.pop('layers') if kwargs: raise ValueError('Unknown argument(s): %s' % (kwargs,)) if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top` ' 'as true, `classes` should be 1000') # Determine proper input shape and default size. if input_shape is None: default_size = 224 else: if backend.image_data_format() == 'channels_first': rows = input_shape[1] cols = input_shape[2] else: rows = input_shape[0] cols = input_shape[1] if rows == cols and rows in [128, 160, 192, 224]: default_size = rows else: default_size = 224 input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=default_size, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if backend.image_data_format() == 'channels_last': row_axis, col_axis = (0, 1) else: row_axis, col_axis = (1, 2) rows = input_shape[row_axis] cols = input_shape[col_axis] if weights == 'imagenet': if depth_multiplier != 1: raise ValueError('If imagenet weights are being loaded, ' 'depth multiplier must be 1') if alpha not in [0.25, 0.50, 0.75, 1.0]: raise ValueError('If imagenet weights are being loaded, ' 'alpha can be one of' '`0.25`, `0.50`, `0.75` or `1.0` only.') if rows != cols or rows not in [128, 160, 192, 224]: rows = 224 logging.warning('`input_shape` is undefined or non-square, ' 'or `rows` is not in [128, 160, 192, 224]. ' 'Weights for input shape (224, 224) will be' ' loaded as the default.') if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = _conv_block(img_input, 32, alpha, strides=(2, 2)) x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1) x = _depthwise_conv_block( x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2) x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3) x = _depthwise_conv_block( x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4) x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5) x = _depthwise_conv_block( x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11) x = _depthwise_conv_block( x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13) if include_top: if backend.image_data_format() == 'channels_first': shape = (int(1024 * alpha), 1, 1) else: shape = (1, 1, int(1024 * alpha)) x = layers.GlobalAveragePooling2D()(x) x = layers.Reshape(shape, name='reshape_1')(x) x = layers.Dropout(dropout, name='dropout')(x) x = layers.Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x) x = layers.Reshape((classes,), name='reshape_2')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Activation(activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows)) # Load weights. if weights == 'imagenet': if alpha == 1.0: alpha_text = '1_0' elif alpha == 0.75: alpha_text = '7_5' elif alpha == 0.50: alpha_text = '5_0' else: alpha_text = '2_5' if include_top: model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows) weight_path = BASE_WEIGHT_PATH + model_name weights_path = data_utils.get_file( model_name, weight_path, cache_subdir='models') else: model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows) weight_path = BASE_WEIGHT_PATH + model_name weights_path = data_utils.get_file( model_name, weight_path, cache_subdir='models') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)): """Adds an initial convolution layer (with batch normalization and relu6). Arguments: inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` data format) or (3, rows, cols) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. kernel: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. Returns: Output tensor of block. """ channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 filters = int(filters * alpha) x = layers.ZeroPadding2D(padding=((0, 1), (0, 1)), name='conv1_pad')(inputs) x = layers.Conv2D( filters, kernel, padding='valid', use_bias=False, strides=strides, name='conv1')( x) x = layers.BatchNormalization(axis=channel_axis, name='conv1_bn')(x) return layers.ReLU(6., name='conv1_relu')(x) def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1): """Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, relu6, pointwise convolution, batch normalization and relu6 activation. Arguments: inputs: Input tensor of shape `(rows, cols, channels)` (with `channels_last` data format) or (channels, rows, cols) (with `channels_first` data format). pointwise_conv_filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the pointwise convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `filters_in * depth_multiplier`. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. block_id: Integer, a unique identification designating the block number. # Input shape 4D tensor with shape: `(batch, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(batch, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. Returns: Output tensor of block. """ channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 pointwise_conv_filters = int(pointwise_conv_filters * alpha) if strides == (1, 1): x = inputs else: x = layers.ZeroPadding2D(((0, 1), (0, 1)), name='conv_pad_%d' % block_id)( inputs) x = layers.DepthwiseConv2D((3, 3), padding='same' if strides == (1, 1) else 'valid', depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name='conv_dw_%d' % block_id)( x) x = layers.BatchNormalization( axis=channel_axis, name='conv_dw_%d_bn' % block_id)( x) x = layers.ReLU(6., name='conv_dw_%d_relu' % block_id)(x) x = layers.Conv2D( pointwise_conv_filters, (1, 1), padding='same', use_bias=False, strides=(1, 1), name='conv_pw_%d' % block_id)( x) x = layers.BatchNormalization( axis=channel_axis, name='conv_pw_%d_bn' % block_id)( x) return layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x) @keras_export('keras.applications.mobilenet.preprocess_input') def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input(x, data_format=data_format, mode='tf') @keras_export('keras.applications.mobilenet.decode_predictions') def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top)
a26ec63f56bad3f7991ace4eb345ea52f222d5e9
44032f82bcb767175cf86aeccee623eb6cfbd40e
/deploy/compose/gpu/__init__.py
2303c0b0cf1621e03ddbbda08853f070befb4247
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
veyselkoparal/DeepVideoAnalytics
3628d41f8e06547e177a7badd20b399bd7f9028a
013f7e1efcc11f9ed5762192a91589aa6b4df359
refs/heads/master
2020-03-16T04:22:46.603989
2018-05-07T06:55:47
2018-05-07T06:55:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,462
py
""" Code in this file assumes that it is being run via dvactl and git repo root as current directory """ CONFIG = { "deploy/gpu/docker-compose-2-gpus.yml": {"global_model_gpu_id": 0, "global_model_memory_fraction": 0.1, "workers": [(0, 0.25, "LAUNCH_BY_NAME_indexer_inception", "inception"), (0, 0.2, "LAUNCH_BY_NAME_analyzer_crnn", "crnn"), (0, 0.5, "LAUNCH_BY_NAME_detector_coco", "coco"), (1, 0.5, "LAUNCH_BY_NAME_detector_textbox", "textbox"), (1, 0.19, "LAUNCH_BY_NAME_detector_face", "face"), (1, 0.15, "LAUNCH_BY_NAME_indexer_facenet", "facenet"), (1, 0.15, "LAUNCH_BY_NAME_analyzer_tagger", "tagger")] }, "deploy/gpu/docker-compose-4-gpus.yml": {"global_model_gpu_id": 2, "global_model_memory_fraction": 0.29, "workers": [(0, 0.3, "LAUNCH_BY_NAME_indexer_inception", "inception"), (0, 0.4, "LAUNCH_BY_NAME_analyzer_tagger", "tagger"), (0, 0.2, "LAUNCH_BY_NAME_analyzer_crnn", "crnn"), (1, 1.0, "LAUNCH_BY_NAME_detector_coco", "coco"), (2, 0.7, "LAUNCH_BY_NAME_detector_face", "face"), (3, 0.5, "LAUNCH_BY_NAME_detector_textbox", "textbox"), (3, 0.45, "LAUNCH_BY_NAME_indexer_facenet", "facenet") ] }, } SKELETON = """ version: '3' services: db: image: postgres:9.6.6 container_name: dva-pg volumes: - dvapgdata:/var/lib/postgresql/data env_file: - ../../../custom.env rabbit: image: rabbitmq container_name: dva-rmq env_file: - ../../../custom.env volumes: - dvarabbit:/var/lib/rabbitmq redis: image: bitnami/redis:latest container_name: dva-redis env_file: - ../../../custom.env volumes: - dvaredis:/bitnami webserver: image: akshayubhat/dva-auto:gpu container_name: webserver env_file: - ../../../custom.env environment: - LAUNCH_SERVER_NGINX=1 - LAUNCH_NOTEBOOK=1 command: bash -c "git reset --hard && git pull && sleep 10 && ./start_container.py" ports: - "127.0.0.1:8000:80" - "127.0.0.1:8888:8888" depends_on: - db - redis - rabbit volumes: - dvadata:/root/media non-gpu-workers: image: akshayubhat/dva-auto:gpu env_file: - ../../../custom.env environment: - LAUNCH_BY_NAME_retriever_inception=1 - LAUNCH_BY_NAME_retriever_facenet=1 - LAUNCH_Q_qextract=1 - LAUNCH_Q_qstreamer=1 - LAUNCH_SCHEDULER=1 - LAUNCH_Q_GLOBAL_RETRIEVER=1 command: bash -c "git reset --hard && git pull && sleep 45 && ./start_container.py" depends_on: - db - redis - rabbit volumes: - dvadata:/root/media {gpu_workers} global-model: image: akshayubhat/dva-auto:gpu env_file: - ../../../custom.env environment: - GPU_AVAILABLE=1 - NVIDIA_VISIBLE_DEVICES={global_model_gpu_id} - GPU_MEMORY={global_model_memory_fraction} - LAUNCH_Q_GLOBAL_MODEL=1 command: bash -c "git reset --hard && git pull && sleep 45 && ./start_container.py" depends_on: - db - redis - rabbit volumes: - dvadata:/root/media volumes: dvapgdata: dvadata: dvarabbit: dvaredis: """ BLOCK = """ {worker_name}: image: akshayubhat/dva-auto:gpu env_file: - ../../../custom.env environment: - GPU_AVAILABLE=1 - NVIDIA_VISIBLE_DEVICES={gpu_id} - GPU_MEMORY={memory_fraction} - {env_key}={env_value} command: bash -c "git reset --hard && git pull && sleep 45 && ./start_container.py" depends_on: - db - redis - rabbit volumes: - dvadata:/root/media""" def generate_multi_gpu_compose(): for fname in CONFIG: blocks = [] worker_specs = CONFIG[fname]['workers'] for gpu_id, fraction, env_key, worker_name, in worker_specs: blocks.append( BLOCK.format(worker_name=worker_name, gpu_id=gpu_id, memory_fraction=fraction, env_key=env_key, env_value=1)) with open(fname, 'w') as out: out.write(SKELETON.format(gpu_workers="\n".join(blocks), global_model_gpu_id=CONFIG[fname]['global_model_gpu_id'], global_model_memory_fraction=CONFIG[fname]['global_model_memory_fraction']))
7266db340ad3c001b2476e0d9677e9d1a795cf48
46a5df524f1d96baf94f6eb0f6222f2b856235f3
/src/data/image/sliced_grid.py
7612a11c9ffd5b6b038a1658df956563308349f9
[ "MIT" ]
permissive
PhilHarnish/forge
5dfbb0aa2afdb91e55d85187bd86fbeb9b6b2888
c544fb8b499e1e13793c94159f4c35bce187311e
refs/heads/master
2023-03-11T17:23:46.569359
2023-02-25T15:09:01
2023-02-25T15:09:01
1,818,598
2
0
MIT
2023-02-25T15:09:02
2011-05-29T19:36:53
Jupyter Notebook
UTF-8
Python
false
false
2,215
py
import math from typing import Iterable import cv2 import numpy as np from data.image import coloring, image, model from puzzle.constraints.image import sliced_grid_constraints from util.geometry import np2d class SlicedGrid(model.LineSpecification): _source: image.Image _constraints: sliced_grid_constraints.SlicedGridConstraints def __init__( self, source: image.Image, constraints: sliced_grid_constraints) -> None: self._source = source self._constraints = constraints def set_source(self, source: image.Image) -> None: self._source = source self._constraints.set_source(source) def get_debug_data(self) -> np.ndarray: data = cv2.cvtColor(self._source.get_debug_data(), cv2.COLOR_GRAY2RGB) c = self._constraints.center cv2.circle(data, c, 3, coloring.WHITE, thickness=3) for (theta, distances, divisions), color in zip( self._constraints.get_specs(), coloring.colors(self._constraints.slices)): for distance in distances: x, y = np2d.move_from(c, theta, distance) cv2.circle(data, (round(x), round(y)), 3, color, thickness=3) return data def __iter__(self) -> Iterable[model.Divisions]: c = self._constraints.center max_distance = sum(self._source.shape) for theta, distances, divisions in self._constraints.get_specs(): endpoints = [] total_distance = 0 for distance in distances: moved = np2d.move_from(c, theta, distance) endpoints.append(moved) total_distance += abs(distance) start, end = endpoints division_distance = math.copysign( total_distance / divisions, -distances[0]) right_angle = theta + math.pi / 2 dx = round(math.cos(right_angle) * max_distance) dy = round(math.sin(right_angle) * max_distance) result = [] for i in range(0, divisions + 1): # n_divisions requires n+1 iterations. x, y = np2d.move_from(start, theta, division_distance * i) result.append(( theta, (round(x - dx), round(y - dy)), (round(x + dx), round(y + dy)), i / divisions)) yield result def __len__(self) -> int: return self._constraints.slices
f1979087cd1398a523b893f6bdb223fc4f3c142e
65585dce782bb50d92caa69be2431e094ac36a1f
/examples/recursive_dirtree_generator.py
50307af4a1c3021c3703469a8d1c6028f5d8ab66
[ "Apache-2.0" ]
permissive
vishalbelsare/treelib
6e52f594cecb69210332b7092abcf1456be14666
12d7efd50829a5a18edaab01911b1e546bff2ede
refs/heads/master
2023-08-31T07:38:06.461212
2022-04-13T15:07:52
2022-04-13T15:07:52
153,905,842
0
0
NOASSERTION
2023-03-27T15:17:00
2018-10-20T12:59:18
Python
UTF-8
Python
false
false
1,691
py
#!/usr/bin/env python """ Example of treelib usage to generate recursive tree of directories. It could be useful to implement Directory Tree data structure 2016 samuelsh """ import treelib import random import hashlib from string import digits, letters MAX_FILES_PER_DIR = 10 def get_random_string(length): return ''.join(random.choice(digits + letters) for _ in range(length)) def build_recursive_tree(tree, base, depth, width): """ Args: tree: Tree base: Node depth: int width: int Returns: """ if depth >= 0: depth -= 1 for i in xrange(width): directory = Directory() tree.create_node("{0}".format(directory.name), "{0}".format(hashlib.md5(directory.name)), parent=base.identifier, data=directory) # node identifier is md5 hash of it's name dirs_nodes = tree.children(base.identifier) for dir in dirs_nodes: newbase = tree.get_node(dir.identifier) build_recursive_tree(tree, newbase, depth, width) else: return class Directory(object): def __init__(self): self._name = get_random_string(64) self._files = [File() for _ in xrange(MAX_FILES_PER_DIR)] # Each directory contains 1000 files @property def name(self): return self._name @property def files(self): return self._files class File(object): def __init__(self): self._name = get_random_string(64) @property def name(self): return self._name tree = treelib.Tree() base = tree.create_node('Root', 'root') build_recursive_tree(tree, base, 2, 10) tree.show()
4425e109b0efe53b2e51a04bcddab969c531489c
d27bf22683710ff090642c05c1df2d13b18c2509
/allauth/openid/admin.py
0967c5c39ae1d4e1a60416bffb65e3f68ea3ecd1
[ "MIT" ]
permissive
snswa/django-allauth
b8db554519111e5d022fb137d259e272db9998f4
0b58191f5d954d7f5a7c4e5bc8c33cf6fdf0c416
refs/heads/master
2021-01-18T10:29:31.434368
2010-10-21T18:24:56
2010-10-21T18:24:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
from django.contrib import admin from models import OpenIDAccount class OpenIDAccountAdmin(admin.ModelAdmin): raw_id_fields = ('user',) admin.site.register(OpenIDAccount, OpenIDAccountAdmin)
88199abd4462b61b8c1e468a0166393a1ea355c4
699cad5fee497cce94463decf1bf2b811e3fd244
/06프로그램의 흐름 제어하기/if.py
95d092e7f3d31f5adce1aa2a57ab88f03995c7b0
[]
no_license
Jeonghwan-Yoo/brain_python3
91974019a29013abe8c9f9ed132c48b404259e2f
a22e870515e760aaa497cbc99305977cf2f01a3d
refs/heads/master
2020-07-27T00:02:29.604848
2019-09-16T13:16:09
2019-09-16T13:16:09
208,802,993
0
0
null
null
null
null
UTF-8
Python
false
false
315
py
import sys #파이썬 프로그램을 종료하는 exit()을 사용하기 위해 print('수를 입력하세요 : ') a=int(input()) if a==0: print('0은 나눗셈에 이용할 수 없습니다.') #경고 메시지를 출력한 뒤 sys.exit(0) #프로그램을 종료시킵니다. print('3 /', a, '=', 3/a)
42e9fe3ab57bd3c1e296f665413fc82fba5070e3
21e6a09131ac76d734102c829260c3b8e3a0094b
/solutions/21_textfsm/task_21_4.py
9986cf1ad1531aef03cb29f28f968dc09e18cec7
[]
no_license
Egor-Ozhmegoff/Python-for-network-engineers
5fbe8f3a754263ab65c28093fed667684ae76ded
6b70f4f9df658698ea0d770a064ee0e12b4e4de2
refs/heads/master
2023-08-11T20:52:12.999495
2021-09-09T14:42:14
2021-09-09T14:42:14
306,354,285
1
0
null
null
null
null
UTF-8
Python
false
false
2,879
py
# -*- coding: utf-8 -*- """ Задание 21.4 Создать функцию send_and_parse_show_command. Параметры функции: * device_dict - словарь с параметрами подключения к одному устройству * command - команда, которую надо выполнить * templates_path - путь к каталогу с шаблонами TextFSM * index - имя индекс файла, значение по умолчанию "index" Функция должна подключаться к одному устройству, отправлять команду show с помощью netmiko, а затем парсить вывод команды с помощью TextFSM. Функция должна возвращать список словарей с результатами обработки вывода команды (как в задании 21.1a): * ключи - имена переменных в шаблоне TextFSM * значения - части вывода, которые соответствуют переменным Проверить работу функции на примере вывода команды sh ip int br и устройствах из devices.yaml. """ import os from pprint import pprint from netmiko import ConnectHandler import yaml def send_and_parse_show_command(device_dict, command, templates_path): if "NET_TEXTFSM" not in os.environ: os.environ["NET_TEXTFSM"] = templates_path with ConnectHandler(**device_dict) as ssh: ssh.enable() output = ssh.send_command(command, use_textfsm=True) return output if __name__ == "__main__": full_pth = os.path.join(os.getcwd(), "templates") with open("devices.yaml") as f: devices = yaml.safe_load(f) for dev in devices: result = send_and_parse_show_command( dev, "sh ip int br", templates_path=full_pth ) pprint(result, width=120) # Второй вариант без использования use_textfsm в netmiko from task_21_3 import parse_command_dynamic def send_and_parse_show_command(device_dict, command, templates_path, index="index"): attributes = {"Command": command, "Vendor": device_dict["device_type"]} with ConnectHandler(**device_dict) as ssh: ssh.enable() output = ssh.send_command(command) parsed_data = parse_command_dynamic( output, attributes, templ_path=templates_path, index_file=index ) return parsed_data if __name__ == "__main__": full_pth = os.path.join(os.getcwd(), "templates") with open("devices.yaml") as f: devices = yaml.safe_load(f) for dev in devices: result = send_and_parse_show_command( dev, "sh ip int br", templates_path=full_pth ) pprint(result, width=120)
aba8fcd3ea58d7fe66b3bbe8099f8f60d5f4097d
b64fcb9da80d12c52bd24a7a1b046ed9952b0026
/client_sdk_python/providers/eth_tester/main.py
68fdf1d3a68dcfcbb67e83434e4836cccf5581b6
[ "MIT" ]
permissive
PlatONnetwork/client-sdk-python
e59f44a77690806c8763ed6db938ed8447d42417
94ad57bb34b5ee7bb314ac858071686382c55402
refs/heads/master
2022-07-09T08:49:07.312759
2021-12-24T08:15:46
2021-12-24T08:15:46
173,032,954
7
16
MIT
2022-08-31T02:19:42
2019-02-28T03:18:03
Python
UTF-8
Python
false
false
1,773
py
from client_sdk_python.providers import ( BaseProvider, ) from .middleware import ( default_transaction_fields_middleware, ethereum_tester_fixture_middleware, ethereum_tester_middleware, ) class EthereumTesterProvider(BaseProvider): middlewares = [ default_transaction_fields_middleware, ethereum_tester_fixture_middleware, ethereum_tester_middleware, ] ethereum_tester = None api_endpoints = None def __init__(self, ethereum_tester=None, api_endpoints=None): if ethereum_tester is None: # do not import eth_tester until runtime, it is not a default dependency from eth_tester import EthereumTester self.ethereum_tester = EthereumTester() else: self.ethereum_tester = ethereum_tester if api_endpoints is None: # do not import eth_tester derivatives until runtime, it is not a default dependency from .defaults import API_ENDPOINTS self.api_endpoints = API_ENDPOINTS else: self.api_endpoints = api_endpoints def make_request(self, method, params): namespace, _, endpoint = method.partition('_') try: delegator = self.api_endpoints[namespace][endpoint] except KeyError: return { "error": "Unknown RPC Endpoint: {0}".format(method), } try: response = delegator(self.ethereum_tester, params) except NotImplementedError: return { "error": "RPC Endpoint has not been implemented: {0}".format(method), } else: return { 'result': response, } def isConnected(self): return True
0915102cfa0343f989eef246184cd916f8cc46c4
4bdbec7ad33b31c392b9d1f88ddf84e4b9230467
/cross_origin_test/cross_origin_test/wsgi.py
5bf61a3cc71d9dc0d96e87531d460711a5070d70
[ "BSD-2-Clause", "MIT" ]
permissive
mohawkhq/django-cross-origin
4aa775b15612e505404a9eb6cfe24a568561d265
f73f5c9a49d4044c34e443153c071b6bb0acda31
refs/heads/master
2020-06-08T20:13:02.690261
2013-11-19T15:33:34
2013-11-19T15:33:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" WSGI config for cross_origin_test project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "cross_origin_test.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
1c07e950336bf700663363367fa33ecf43c0f407
0cb1ff9d0be4387e33f1003ab5cc72bab0345e7a
/wildcard/dashboards/settings/password/tests.py
3372ec782591fc679b4e3a892d89731e3b8335cc
[ "Apache-2.0" ]
permissive
kickstandproject/wildcard
65995fb0090c4cfcad34f8373cfc912199ecf5da
0ef2a15d8ac6b1d37db964d0baa7e40f9f771bc9
refs/heads/master
2020-05-17T00:41:09.908059
2015-01-27T20:25:33
2015-01-28T03:30:22
14,288,349
2
0
null
null
null
null
UTF-8
Python
false
false
3,365
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2013 Centrin Data Systems Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.urlresolvers import NoReverseMatch # noqa from django.core.urlresolvers import reverse # noqa from django import http from mox import IsA # noqa from wildcard import api from wildcard.test import helpers as test # TODO(mrunge): remove, when keystone v3 supports # change_own_password, incl. password validation kver = api.keystone.VERSIONS.active if kver == 2: INDEX_URL = reverse('horizon:settings:password:index') class ChangePasswordTests(test.TestCase): @test.create_stubs({api.keystone: ('user_update_own_password', )}) def test_change_password(self): if kver == 3: self.skipTest('Password change in keystone v3 unsupported') api.keystone.user_update_own_password(IsA(http.HttpRequest), 'oldpwd', 'normalpwd',).AndReturn(None) self.mox.ReplayAll() formData = {'method': 'PasswordForm', 'current_password': 'oldpwd', 'new_password': 'normalpwd', 'confirm_password': 'normalpwd'} res = self.client.post(INDEX_URL, formData) self.assertNoFormErrors(res) def test_change_validation_passwords_not_matching(self): if kver == 3: self.skipTest('Password change in keystone v3 unsupported') formData = {'method': 'PasswordForm', 'current_password': 'currpasswd', 'new_password': 'testpassword', 'confirm_password': 'doesnotmatch'} res = self.client.post(INDEX_URL, formData) self.assertFormError(res, "form", None, ['Passwords do not match.']) @test.create_stubs({api.keystone: ('user_update_own_password', )}) def test_change_password_shows_message_on_login_page(self): if kver == 3: self.skipTest('Password change in keystone v3 unsupported') api.keystone.user_update_own_password(IsA(http.HttpRequest), 'oldpwd', 'normalpwd').AndReturn(None) self.mox.ReplayAll() formData = {'method': 'PasswordForm', 'current_password': 'oldpwd', 'new_password': 'normalpwd', 'confirm_password': 'normalpwd'} res = self.client.post(INDEX_URL, formData, follow=True) info_msg = "Password changed. Please log in again to continue." self.assertContains(res, info_msg) def test_on_keystone_v3_disabled(self): try: reverse('horizon:settings:password:index') except NoReverseMatch: pass
8c4de2642d9752e64cfff1c79de8129758f696fc
f5d0be87bad113cd3ec0dabc4db0683442c794bf
/alphastarmini/core/arch/spatial_encoder.py
96cbd701618415f6f2794855072f3791699f3169
[ "Apache-2.0" ]
permissive
ZHQ-air/mini-AlphaStar
8aa22242334bd397fa398f2b865d2fc20fb1cab6
6039fd105bd263ee1f7c3276fea7fe7b660e0701
refs/heads/main
2023-07-03T16:10:13.712321
2021-08-17T02:59:56
2021-08-17T02:59:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,731
py
#!/usr/bin/env python # -*- coding: utf-8 -*- " Spatial Encoder." import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from alphastarmini.core.arch.entity_encoder import EntityEncoder from alphastarmini.core.arch.entity_encoder import Entity from alphastarmini.lib import utils as L from alphastarmini.lib.hyper_parameters import Arch_Hyper_Parameters as AHP from alphastarmini.lib.hyper_parameters import MiniStar_Arch_Hyper_Parameters as MAHP __author__ = "Ruo-Ze Liu" debug = False class SpatialEncoder(nn.Module): ''' Inputs: map, entity_embeddings Outputs: embedded_spatial - A 1D tensor of the embedded map map_skip - Tensors of the outputs of intermediate computations ''' def __init__(self, n_resblocks=4, original_32=AHP.original_32, original_64=AHP.original_64, original_128=AHP.original_128, original_256=AHP.original_256, original_512=AHP.original_512): super().__init__() self.inplanes = AHP.map_channels self.project = nn.Conv2d(self.inplanes, original_32, kernel_size=1, stride=1, padding=0, bias=True) # ds means downsampling self.ds_1 = nn.Conv2d(original_32, original_64, kernel_size=4, stride=2, padding=1, bias=True) self.ds_2 = nn.Conv2d(original_64, original_128, kernel_size=4, stride=2, padding=1, bias=True) self.ds_3 = nn.Conv2d(original_128, original_128, kernel_size=4, stride=2, padding=1, bias=True) self.resblock_stack = nn.ModuleList([ ResBlock(inplanes=original_128, planes=original_128, stride=1, downsample=None) for _ in range(n_resblocks)]) if AHP == MAHP: # note: in mAS, we replace 128x128 to 64x64, and the result 16x16 also to 8x8 self.fc = nn.Linear(8 * 8 * original_128, original_256) else: self.fc = nn.Linear(16 * 16 * original_128, original_256) # position-wise self.conv1 = nn.Conv1d(original_256, original_32, kernel_size=1, stride=1, padding=0, bias=False) self.map_width = AHP.minimap_size def preprocess(self, obs, entity_embeddings): map_data = get_map_data(obs) return map_data def scatter(self, entity_embeddings, entity_x_y): # `entity_embeddings` are embedded through a size 32 1D convolution, followed by a ReLU, print("entity_embeddings.shape:", entity_embeddings.shape) if debug else None reduced_entity_embeddings = F.relu(self.conv1(entity_embeddings.transpose(1, 2))).transpose(1, 2) print("reduced_entity_embeddings.shape:", reduced_entity_embeddings.shape) if debug else None # then scattered into a map layer so that the size 32 vector at a specific # location corresponds to the units placed there. def bits2value(bits): # change from the bits to dec values. l = len(bits) v = 0 g = 1 for i in range(l - 1, -1, -1): v += bits[i] * g g *= 2 return v # shape [batch_size x entity_size x embedding_size] batch_size = reduced_entity_embeddings.shape[0] entity_size = reduced_entity_embeddings.shape[1] device = next(self.parameters()).device scatter_map = torch.zeros(batch_size, AHP.original_32, self.map_width, self.map_width, device=device) print("scatter_map.shape:", scatter_map.shape) if debug else None for i in range(batch_size): for j in range(entity_size): # can not be masked entity if entity_x_y[i, j, 0] != -1e9: x = entity_x_y[i, j, :8] y = entity_x_y[i, j, 8:] x = bits2value(x) y = bits2value(y) print('x', x) if debug else None print('y', y) if debug else None # note, we reduce 128 to 64, so the x and y should also be # 128 is half of 256, 64 is half of 128, so we divide by 4 x = int(x / 4) y = int(y / 4) scatter_map[i, :, y, x] += reduced_entity_embeddings[i, j, :] #print("scatter_map:", scatter_map[0, :, 23, 19]) if 1 else None return scatter_map def forward(self, x, entity_embeddings, entity_x_y): scatter_map = self.scatter(entity_embeddings, entity_x_y) x = torch.cat([scatter_map, x], dim=1) # After preprocessing, the planes are concatenated, projected to 32 channels # by a 2D convolution with kernel size 1, passed through a ReLU x = F.relu(self.project(x)) # then downsampled from 128x128 to 16x16 through 3 2D convolutions and ReLUs # with channel size 64, 128, and 128 respectively. # The kernel size for those 3 downsampling convolutions is 4, and the stride is 2. # note: in mAS, we replace 128x128 to 64x64, and the result 16x16 also to 8x8 # note: here we should add a relu after each conv2d x = F.relu(self.ds_1(x)) x = F.relu(self.ds_2(x)) x = F.relu(self.ds_3(x)) # 4 ResBlocks with 128 channels and kernel size 3 and applied to the downsampled map, # with the skip connections placed into `map_skip`. map_skip = x for resblock in self.resblock_stack: x = resblock(x) # note if we add the follow line, it will output "can not comput gradient error" # map_skip += x # so we try to change to the follow line, which will not make a in-place operation map_skip = map_skip + x x = x.reshape(x.shape[0], -1) # The ResBlock output is embedded into a 1D tensor of size 256 by a linear layer # and a ReLU, which becomes `embedded_spatial`. x = self.fc(x) embedded_spatial = F.relu(x) return map_skip, embedded_spatial def get_map_data(obs, map_width=AHP.minimap_size, verbose=False): ''' TODO: camera: One-hot with maximum 2 of whether a location is within the camera, this refers to mimimap TODO: scattered_entities: 32 float values from entity embeddings default map_width is 128 ''' if "feature_minimap" in obs: feature_minimap = obs["feature_minimap"] else: feature_minimap = obs save_type = np.float32 # A: height_map: Float of (height_map / 255.0) height_map = np.expand_dims(feature_minimap["height_map"].reshape(-1, map_width, map_width) / 255.0, -1).astype(save_type) print('height_map:', height_map) if verbose else None print('height_map.shape:', height_map.shape) if verbose else None # A: visibility: One-hot with maximum 4 visibility = L.np_one_hot(feature_minimap["visibility_map"].reshape(-1, map_width, map_width), 4).astype(save_type) print('visibility:', visibility) if verbose else None print('visibility.shape:', visibility.shape) if verbose else None # A: creep: One-hot with maximum 2 creep = L.np_one_hot(feature_minimap["creep"].reshape(-1, map_width, map_width), 2).astype(save_type) print('creep:', creep) if verbose else None # A: entity_owners: One-hot with maximum 5 entity_owners = L.np_one_hot(feature_minimap["player_relative"].reshape(-1, map_width, map_width), 5).astype(save_type) print('entity_owners:', entity_owners) if verbose else None # the bottom 3 maps are missed in pysc1.2 and pysc2.0 # however, the 3 maps can be found on s2clientprotocol/spatial.proto # actually, the 3 maps can be found on pysc3.0 # A: alerts: One-hot with maximum 2 alerts = L.np_one_hot(feature_minimap["alerts"].reshape(-1, map_width, map_width), 2).astype(save_type) print('alerts:', alerts) if verbose else None # A: pathable: One-hot with maximum 2 pathable = L.np_one_hot(feature_minimap["pathable"].reshape(-1, map_width, map_width), 2).astype(save_type) print('pathable:', pathable) if verbose else None # A: buildable: One-hot with maximum 2 buildable = L.np_one_hot(feature_minimap["buildable"].reshape(-1, map_width, map_width), 2).astype(save_type) print('buildable:', buildable) if verbose else None out_channels = 1 + 4 + 2 + 5 + 2 + 2 + 2 map_data = np.concatenate([height_map, visibility, creep, entity_owners, alerts, pathable, buildable], axis=3) map_data = np.transpose(map_data, [0, 3, 1, 2]) print('map_data.shape:', map_data.shape) if verbose else None map_data = torch.tensor(map_data) print('torch map_data.shape:', map_data.shape) if verbose else None return map_data class ResBlock(nn.Module): def __init__(self, inplanes=128, planes=128, stride=1, downsample=None): super(ResBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.relu = nn.ReLU() self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out = out + identity out = self.relu(out) return out class GatedResBlock(nn.Module): def __init__(self, inplanes=128, planes=128, stride=1, downsample=None): super(ResBlock, self).__init__() self.sigmoid = nn.Sigmoid() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.conv1_mask = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.conv2_mask = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) def forward(self, x): residual = x x = F.relu(self.bn1(self.conv1(x) * self.sigmoid(self.conv1_mask(x)))) x = self.bn2(self.conv2(x) * self.sigmoid(self.conv2_mask(x))) x += residual x = F.relu(x) return x class ResBlockImproved(nn.Module): def __init__(self, inplanes=128, planes=128, stride=1, downsample=None): super(ResBlockImproved, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) '''From paper Identity Mappings in Deep Residual Networks''' def forward(self, x): residual = x x = F.relu(self.bn1(x)) x = self.conv1(x) x = F.relu(self.bn2(x)) x = self.conv2(x) x = x + residual return x class ResBlock1D(nn.Module): def __init__(self, inplanes, planes, seq_len, stride=1, downsample=None): super(ResBlock1D, self).__init__() self.conv1 = nn.Conv1d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.ln1 = nn.LayerNorm([planes, seq_len]) self.conv2 = nn.Conv1d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.ln2 = nn.LayerNorm([planes, seq_len]) def forward(self, x): residual = x x = F.relu(self.ln1(x)) x = self.conv1(x) x = F.relu(self.ln2(x)) x = self.conv2(x) x = x + residual return x def test(): spatial_encoder = SpatialEncoder() batch_size = 2 # dummy map list map_list = [] map_data_1 = torch.zeros(batch_size, 1, AHP.minimap_size, AHP.minimap_size) map_data_1_one_hot = L.to_one_hot(map_data_1, 2) print('map_data_1_one_hot.shape:', map_data_1_one_hot.shape) if debug else None map_list.append(map_data_1) map_data_2 = torch.zeros(batch_size, 17, AHP.minimap_size, AHP.minimap_size) map_list.append(map_data_2) map_data = torch.cat(map_list, dim=1) map_skip, embedded_spatial = spatial_encoder.forward(map_data) print('map_skip:', map_skip) if debug else None print('embedded_spatial:', embedded_spatial) if debug else None print('map_skip.shape:', map_skip.shape) if debug else None print('embedded_spatial.shape:', embedded_spatial.shape) if debug else None if debug: print("This is a test!") if __name__ == '__main__': test()
ba497dd3afdf87eae4b1e1d9fa84bbe788335f77
385ed58325dd0cc75bdb9fd3e61c5e005f7a4f28
/source/hall/src/hall/entity/hallfree.py
63e7e839d8986e8730bf43df1ef165e4c0acc70a
[]
no_license
csirui/hall37
17dfa4e4f1f8bf719d0c11ac7738fa4c14fd06db
5c4eb4b2bf57bbbee4731470c830d8d81915d603
refs/heads/master
2021-09-04T03:55:12.460035
2018-01-15T15:12:30
2018-01-15T15:12:30
117,560,615
0
3
null
null
null
null
UTF-8
Python
false
false
5,420
py
# -*- coding=utf-8 -*- from sre_compile import isstring from datetime import datetime import freetime.util.log as ftlog import poker.entity.events.tyeventbus as pkeventbus from hall.entity import hallconf, hallpopwnd, datachangenotify from hall.entity.hallconf import HALL_GAMEID from hall.entity.hallusercond import UserConditionRegister from poker.entity.biz.exceptions import TYBizConfException from poker.entity.events.tyevent import EventConfigure, ItemCountChangeEvent class HallFree(object): def __init__(self): self.freeItemId = None self.iconRes = None self.itemName = None # 前端图片上显示的字 self.states = [] def decodeFromDict(self, d): self.freeItemId = d.get('freeItemId') self.iconRes = d.get('iconRes') self.itemName = d.get("itemName", "") self.states = [] for state in d.get('states', []): self.states.append(HallFreeState().decodeFromDict(state)) return self class HallFreeState(object): def __init__(self): # str self.desc = '' # str self.btnText = '' # bool self.hasMark = False # int self.enable = True # bool self.visible = True # 条件 self.conditionList = None # todotask self.todotaskList = None def decodeFromDict(self, d): self.desc = d.get('desc', '') self.btnText = d.get('btnText', '') self.hasMark = d.get('hasMark', False) self.enable = d.get('enable', True) self.visible = d.get('visible', True) self.conditionList = UserConditionRegister.decodeList(d.get('conditions', [])) self.todotaskList = [] for todotaskDict in d.get('todotasks', []): self.todotaskList.append(hallpopwnd.decodeTodotaskFactoryByDict(todotaskDict)) return self class HallFreeTemplate(object): def __init__(self): self.name = None self.freeItems = None def decodeFromDict(self, d, freeItemMap): self.name = d.get('name') if not isstring(self.name) or not self.name: raise TYBizConfException(d, 'HallFreeTemplate.name must be not empty string') self.freeItems = [] for itemId in d.get('freeItems', []): if freeItemMap.has_key(itemId): self.freeItems.append(freeItemMap[itemId]) return self _inited = False # key=promotionId, value=HallPromotion _freeItemMap = {} # key=templateName, value=HallPromoteTemplate _templateMap = {} def _reloadConf(): global _freeItemMap global _templateMap freeItemMap = {} templateMap = {} conf = hallconf.getFreeConf() for freeDict in conf.get('freeItems', []): freeItem = HallFree().decodeFromDict(freeDict) if freeItem.freeItemId in freeItemMap: raise TYBizConfException(freeDict, 'Duplicate freeId %s' % (freeItem.freeItemId)) freeItemMap[freeItem.freeItemId] = freeItem if ftlog.is_debug(): ftlog.debug('hallfree._reloadConf freeIds=', freeItemMap.keys()) for templateDict in conf.get('templates', []): template = HallFreeTemplate().decodeFromDict(templateDict, freeItemMap) if template.name in templateMap: raise TYBizConfException(templateDict, 'Duplicate templateName %s' % (template.name)) templateMap[template.name] = template _freeItemMap = freeItemMap _templateMap = templateMap ftlog.debug('hallfree._reloadConf successed freeIds=', _freeItemMap.keys(), 'templateNames=', _templateMap.keys()) def _onConfChanged(event): if _inited and event.isChanged('game:9999:free:tc'): ftlog.debug('hallfree._onConfChanged') _reloadConf() def _onItemCountChanged(event): if _inited: ftlog.debug('hallfree._onItemCountChanged', event.userId) datachangenotify.sendDataChangeNotify(HALL_GAMEID, event.userId, ['free', 'promotion_loc']) def _initialize(): ftlog.debug('hallfree._initialize begin') global _inited if not _inited: _inited = True _reloadConf() pkeventbus.globalEventBus.subscribe(EventConfigure, _onConfChanged) pkeventbus.globalEventBus.subscribe(ItemCountChangeEvent, _onItemCountChanged) ftlog.debug('hallfree._initialize end') # 获取用户对应的免费列表配置数据 def getFree(gameId, userId, clientId, timestamp): ret = [] templateName = hallconf.getFreeTemplateName(clientId) template = _templateMap.get(templateName) if ftlog.is_debug(): ftlog.debug('hallfree.getFree gameId=', gameId, 'userId=', userId, 'clientId=', clientId, 'timestamp=', datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S'), 'templateName=', templateName) if not template: template = _templateMap.get('default') if ftlog.is_debug(): ftlog.debug('hallfree.getFree gameId=', gameId, 'userId=', userId, 'clientId=', clientId, 'timestamp=', datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S'), 'freeItems=', [fi.freeItemId for fi in template.freeItems] if template else []) if template: for freeItem in template.freeItems: ret.append(freeItem) return ret
2892ca34dda7c6bac350599fac9f051e71e64ce2
f0c6b43e325064511c4e2d7ce9c59e88a12d81d5
/Assignment/DataTypes/problem10.py
0565ed8531943f1e8764d0ac461c28ed26bea342
[]
no_license
kendraregmi/Assignment1
bda8402fa216bf54789c4d3b5092a5540d4ee68d
83a8365e508f5b83cee71fc14155b7838103b3ba
refs/heads/main
2023-03-26T17:42:54.255731
2021-03-08T07:29:04
2021-03-08T07:29:04
344,406,856
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
# 10. Write a Python program to remove the characters which have odd index # values of a given string. my_string= "Kathmandu" result="" for i in range(len(my_string)): if i%2==0: result= result+my_string[i] print(result)
eb2c8258f0156a186c1b5525851bf8627d0ebad7
d7f43ee7b91c216b1740dead4cc348f3704d2f5a
/src/beginner_tutorials/scripts/add_two_ints_server.py~
ef69b404916f90b0f5cf43bc27b89200b6fda426
[]
no_license
capslockqq/catkin_ws
26f734cf45cb5fe15301f5448a6005f2b21073b5
a0989427e42988f36ae9e4d83ba7eb871a56b64e
refs/heads/master
2021-08-24T07:04:07.551220
2017-12-08T14:42:19
2017-12-08T14:42:19
113,569,359
0
0
null
null
null
null
UTF-8
Python
false
false
465
#!/usr/bin/env python from beginner_tutorials.srv import import rospy def handle_add_two_ints(req): print "Returning [%s + %s = %s]"%(req.a, req.b, (req.a + req.b)) return AddTwoIntsResponse(req.a + req.b) def add_two_ints_server(): rospy.init_node('add_two_ints_server') s = rospy.Service('add_two_ints', AddTwoInts, handle_add_two_ints) print "Ready to add two ints." rospy.spin() if __name__ == "__main__": add_two_ints_server()
[ "ubuntu@ubuntu.(none)" ]
ubuntu@ubuntu.(none)
58d0a8905b5a6546432140bf05e9ab8f06dfb857
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/77/usersdata/216/42255/submittedfiles/exercicio24.py
f70202f0601ef08a2d7723413c6c64658abd3963
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
# -*- coding: utf-8 -*- import math a=int(input('Digite um número:')) b=int(input('Digite um número:')) i=0 for i in range(1,a,1): if a%i==0 and b%i==0: print(i)
f82d1bfc18cf23dccc01d4ee011811e1f567837a
0092041336a420af59b73e2ab1bf6e7077b11f6e
/autoeq/constants.py
9e3aa99e634a4cadadc3b973ff61a777af07f613
[ "MIT" ]
permissive
jaakkopasanen/AutoEq
e10280a5413a406623ddbc8b87ddf7953ffd020c
ab5869c8f4996f8eea88abca50a41510263ed098
refs/heads/master
2023-08-22T22:43:51.969927
2023-08-09T11:13:24
2023-08-09T11:13:24
123,807,729
11,367
2,940
MIT
2023-08-11T08:23:26
2018-03-04T16:37:35
Python
UTF-8
Python
false
false
9,711
py
# -*- coding: utf-8 -* import os import math DEFAULT_F_MIN = 20.0 DEFAULT_F_MAX = 20000.0 DEFAULT_STEP = 1.01 DEFAULT_MAX_GAIN = 6.0 DEFAULT_TREBLE_F_LOWER = 6000.0 DEFAULT_TREBLE_F_UPPER = 8000.0 DEFAULT_TREBLE_MAX_GAIN = 6.0 DEFAULT_TREBLE_GAIN_K = 1.0 DEFAULT_SMOOTHING_WINDOW_SIZE = 1 / 12 DEFAULT_SMOOTHING_ITERATIONS = 1 DEFAULT_TREBLE_SMOOTHING_F_LOWER = 6000.0 DEFAULT_TREBLE_SMOOTHING_F_UPPER = 8000.0 DEFAULT_TREBLE_SMOOTHING_WINDOW_SIZE = 2.0 DEFAULT_TREBLE_SMOOTHING_ITERATIONS = 1 DEFAULT_SOUND_SIGNATURE_SMOOTHING_WINDOW_SIZE = None DEFAULT_FS = 44100 DEFAULT_BIT_DEPTH = 16 DEFAULT_PHASE = 'minimum' DEFAULT_F_RES = 10.0 DEFAULT_TILT = 0.0 DEFAULT_BASS_BOOST_GAIN = 0.0 DEFAULT_BASS_BOOST_FC = 105.0 DEFAULT_BASS_BOOST_Q = 0.7 DEFAULT_TREBLE_BOOST_GAIN = 0.0 DEFAULT_TREBLE_BOOST_FC = 10000.0 DEFAULT_TREBLE_BOOST_Q = 0.7 DEFAULT_PEQ_OPTIMIZER_MIN_F = 20.0 DEFAULT_PEQ_OPTIMIZER_MAX_F = 20000.0 DEFAULT_PEQ_OPTIMIZER_MAX_TIME = None DEFAULT_PEQ_OPTIMIZER_TARGET_LOSS = None DEFAULT_PEQ_OPTIMIZER_MIN_CHANGE_RATE = None DEFAULT_PEQ_OPTIMIZER_MIN_STD = 0.002 DEFAULT_FIXED_BAND_FILTER_MIN_GAIN = -12.0 DEFAULT_FIXED_BAND_FILTER_MAX_GAIN = 12.0 DEFAULT_PEAKING_FILTER_MIN_FC = 20.0 DEFAULT_PEAKING_FILTER_MAX_FC = 10000.0 DEFAULT_PEAKING_FILTER_MIN_Q = 0.18248 # AUNBandEq has maximum bandwidth of 5 octaves which is Q of 0.182479 DEFAULT_PEAKING_FILTER_MAX_Q = 6.0 DEFAULT_PEAKING_FILTER_MIN_GAIN = -20.0 DEFAULT_PEAKING_FILTER_MAX_GAIN = 20.0 DEFAULT_SHELF_FILTER_MIN_FC = 20.0 DEFAULT_SHELF_FILTER_MAX_FC = 10000.0 DEFAULT_SHELF_FILTER_MIN_Q = 0.4 # Shelf filters start to overshoot below 0.4 DEFAULT_SHELF_FILTER_MAX_Q = 0.7 # Shelf filters start to overshoot above 0.7 DEFAULT_SHELF_FILTER_MIN_GAIN = -20.0 DEFAULT_SHELF_FILTER_MAX_GAIN = 20.0 DEFAULT_BIQUAD_OPTIMIZATION_F_STEP = 1.02 DEFAULT_MAX_SLOPE = 18.0 DEFAULT_PREAMP = 0.0 DEFAULT_GRAPHIC_EQ_STEP = 1.0563 # Produces 127 samples with greatest frequency of 19871 ROOT_DIR = os.path.abspath(os.path.dirname(os.path.abspath(__file__))) MOD_REGEX = r' \((sample|serial number) [a-zA-Z0-9\-]+\)$' DBS = ['crinacle', 'headphonecom', 'innerfidelity', 'oratory1990', 'rtings'] HARMAN_OVEREAR_PREFERENCE_FREQUENCIES = [20.0, 21.0, 22.0, 24.0, 25.0, 27.0, 28.0, 30.0, 32.0, 34.0, 36.0, 38.0, 40.0, 43.0, 45.0, 48.0, 50.0, 53.0, 56.0, 60.0, 63.0, 67.0, 71.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, 106.0, 112.0, 118.0, 125.0, 132.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 212.0, 224.0, 236.0, 250.0, 265.0, 280.0, 300.0, 315.0, 335.0, 355.0, 375.0, 400.0, 425.0, 450.0, 475.0, 500.0, 530.0, 560.0, 600.0, 630.0, 670.0, 710.0, 750.0, 800.0, 850.0, 900.0, 950.0, 1000.0, 1060.0, 1120.0, 1180.0, 1250.0, 1320.0, 1400.0, 1500.0, 1600.0, 1700.0, 1800.0, 1900.0, 2000.0, 2120.0, 2240.0, 2360.0, 2500.0, 2650.0, 2800.0, 3000.0, 3150.0, 3350.0, 3550.0, 3750.0, 4000.0, 4250.0, 4500.0, 4750.0, 5000.0, 5300.0, 5600.0, 6000.0, 6300.0, 6700.0, 7100.0, 7500.0, 8000.0, 8500.0, 9000.0, 9500.0, 10000.0, 10600.0, 11200.0, 11800.0, 12500.0, 13200.0, 14000.0, 15000.0, 16000.0, 17000.0, 18000.0, 19000.0, 20000.0] HARMAN_INEAR_PREFENCE_FREQUENCIES = [20.0, 21.2, 22.4, 23.6, 25.0, 26.5, 28.0, 30.0, 31.5, 33.5, 35.5, 37.5, 40.0, 42.5, 45.0, 47.5, 50.0, 53.0, 56.0, 60.0, 63.0, 67.0, 71.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, 106.0, 112.0, 118.0, 125.0, 132.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 212.0, 224.0, 236.0, 250.0, 265.0, 280.0, 300.0, 315.0, 335.0, 355.0, 375.0, 400.0, 425.0, 450.0, 475.0, 500.0, 530.0, 560.0, 600.0, 630.0, 670.0, 710.0, 750.0, 800.0, 850.0, 900.0, 950.0, 1000.0, 1060.0, 1120.0, 1180.0, 1250.0, 1320.0, 1400.0, 1500.0, 1600.0, 1700.0, 1800.0, 1900.0, 2000.0, 2120.0, 2240.0, 2360.0, 2500.0, 2650.0, 2800.0, 3000.0, 3150.0, 3350.0, 3550.0, 3750.0, 4000.0, 4250.0, 4500.0, 4750.0, 5000.0, 5300.0, 5600.0, 6000.0, 6300.0, 6700.0, 7100.0, 7500.0, 8000.0, 8500.0, 9000.0, 9500.0, 10000.0, 10600.0, 11200.0, 11800.0, 12500.0, 13200.0, 14000.0, 15000.0, 16000.0, 17000.0, 18000.0, 19000.0, 20000.0] PREAMP_HEADROOM = 0.2 PEQ_CONFIGS = { '10_BAND_GRAPHIC_EQ': { 'optimizer': {'min_std': 0.01}, 'filter_defaults': {'q': math.sqrt(2), 'min_gain': -12.0, 'max_gain': 12.0, 'type': 'PEAKING'}, 'filters': [{'fc': 31.25 * 2 ** i} for i in range(10)] }, '31_BAND_GRAPHIC_EQ': { 'optimizer': {'min_std': 0.01}, 'filter_defaults': {'q': 4.318473, 'min_gain': -12.0, 'max_gain': 12.0, 'type': 'PEAKING'}, 'filters': [{'fc': 20 * 2 ** (i / 3), 'type': 'PEAKING'} for i in range(31)] }, '10_PEAKING': { 'filters': [{'type': 'PEAKING'}] * 10 }, '8_PEAKING_WITH_SHELVES': { 'optimizer': { 'min_std': 0.008 }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10000.0, 'q': 0.7 }] + [{'type': 'PEAKING'}] * 8 }, '4_PEAKING_WITH_LOW_SHELF': { 'optimizer': { 'max_f': 10000.0, }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }] + [{'type': 'PEAKING'}] * 4 }, '4_PEAKING_WITH_HIGH_SHELF': { 'filters': [{ 'type': 'HIGH_SHELF', 'fc': 10000.0, 'q': 0.7 }] + [{'type': 'PEAKING'}] * 4 }, 'AUNBANDEQ': { 'optimizer': { 'min_std': 0.008 }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10000.0, 'q': 0.7 }] + [{ 'type': 'PEAKING', 'min_fc': 20.0, # Can go to 16 Hz 'max_fc': 10000.0, # Can go to 20 kHz 'min_q': 0.182479, # Max bw of 5.0 'max_q': 10.0 # Min bw of 0.01 = 144.27 Q }] * 8 }, 'MINIDSP_2X4HD': { 'optimizer': { 'min_std': 0.008 }, 'filter_defaults': { 'min_gain': -16.0, 'max_gain': 16.0, }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10000.0, 'q': 0.7 }] + [{ 'type': 'PEAKING', 'min_q': 0.5, 'max_q': 6.0, 'min_fc': 20.0, 'max_fc': 10000.0, }] * 8 }, 'MINIDSP_IL_DSP': { 'optimizer': { 'min_std': 0.008 }, 'filter_defaults': { 'min_gain': -16.0, 'max_gain': 16.0, }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10000.0, 'q': 0.7 }] + [{ 'type': 'PEAKING', 'min_q': 0.5, 'max_q': 6.0, 'min_fc': 20.0, 'max_fc': 10000.0, }] * 8 }, 'NEUTRON_MUSIC_PLAYER': { 'optimizer': { 'min_std': 0.008 }, 'filter_defaults': { 'min_gain': -12.0, 'max_gain': 12.0, }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10000.0, 'q': 0.7 }] + [{ 'type': 'PEAKING', 'min_q': 0.1, 'max_q': 5.0, 'min_fc': 20.0, 'max_fc': 10000.0, }] * 8 }, 'POWERAMP_EQUALIZER': { 'optimizer': { 'min_std': 0.008 }, 'filter_defaults': { 'min_gain': -15.0, 'max_gain': 15.0, }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10e3, 'q': 0.7 }] + [{ 'type': 'PEAKING', 'min_q': 0.1, 'max_q': 12.0, 'min_fc': 20.0, 'max_fc': 10000.0, }] * 8 }, 'QUDELIX_5K': { 'optimizer': { 'min_std': 0.008 }, 'filter_defaults': { 'min_gain': -12.0, 'max_gain': 12.0, }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10e3, 'q': 0.7 }] + [{ 'type': 'PEAKING', 'min_q': 0.1, 'max_q': 7.0, 'min_fc': 20.0, 'max_fc': 10000.0, }] * 8 }, 'SPOTIFY': { 'optimizer': {'min_std': 0.01}, 'filters': [ {'fc': 60.0, 'q': 1.0, 'type': 'PEAKING'}, {'fc': 150.0, 'q': 1.0, 'type': 'PEAKING'}, {'fc': 400.0, 'q': 1.0, 'type': 'PEAKING'}, {'fc': 2400.0, 'q': 1.0, 'type': 'PEAKING'}, {'fc': 15000.0, 'q': 1.0, 'type': 'PEAKING'}, ] }, 'USB_AUDIO_PLAYER_PRO': { 'optimizer': { 'min_std': 0.008 }, 'filter_defaults': { 'min_gain': -20.0, 'max_gain': 20.0, }, 'filters': [{ 'type': 'LOW_SHELF', 'fc': 105.0, 'q': 0.7 }, { 'type': 'HIGH_SHELF', 'fc': 10000.0, 'q': 0.7 }] + [{ 'type': 'PEAKING', 'min_q': 0.1, 'max_q': 10.0, 'min_fc': 20.0, 'max_fc': 10000.0, }] * 8 }, }