blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
f564700cdfd0e1bf8abdaccfd4573018373190c7
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv3/lib/python3.8/site-packages/ansible_collections/fortinet/fortimanager/plugins/modules/fmgr_system_locallog_syslogd_setting.py
a18bf7256e012bbdd51940685d4d6cc86acf3d10
[ "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
12,332
py
#!/usr/bin/python from __future__ import absolute_import, division, print_function # Copyright 2019-2020 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fmgr_system_locallog_syslogd_setting short_description: Settings for remote syslog server. description: - This module is able to configure a FortiManager device. - Examples include all parameters and values which need to be adjusted to data sources before usage. version_added: "2.10" author: - Link Zheng (@chillancezen) - Jie Xue (@JieX19) - Frank Shen (@fshen01) - Hongbin Lu (@fgtdev-hblu) notes: - Running in workspace locking mode is supported in this FortiManager module, the top level parameters workspace_locking_adom and workspace_locking_timeout help do the work. - To create or update an object, use state present directive. - To delete an object, use state absent directive. - Normally, running one module can fail when a non-zero rc is returned. you can also override the conditions to fail or succeed with parameters rc_failed and rc_succeeded options: bypass_validation: description: only set to True when module schema diffs with FortiManager API structure, module continues to execute without validating parameters required: false type: bool default: false workspace_locking_adom: description: the adom to lock for FortiManager running in workspace mode, the value can be global and others including root required: false type: str workspace_locking_timeout: description: the maximum time in seconds to wait for other user to release the workspace lock required: false type: int default: 300 state: description: the directive to create, update or delete an object type: str required: true choices: - present - absent rc_succeeded: description: the rc codes list with which the conditions to succeed will be overriden type: list required: false rc_failed: description: the rc codes list with which the conditions to fail will be overriden type: list required: false system_locallog_syslogd_setting: description: the top level parameters set required: false type: dict suboptions: csv: type: str default: 'disable' description: - 'CSV format.' - 'disable - Disable CSV format.' - 'enable - Enable CSV format.' choices: - 'disable' - 'enable' facility: type: str default: 'local7' description: - 'Remote syslog facility.' - 'kernel - Kernel messages.' - 'user - Random user-level messages.' - 'ntp - NTP daemon.' - 'audit - Log audit.' - 'alert - Log alert.' - 'clock - Clock daemon.' - 'mail - Mail system.' - 'daemon - System daemons.' - 'auth - Security/authorization messages.' - 'syslog - Messages generated internally by syslog daemon.' - 'lpr - Line printer subsystem.' - 'news - Network news subsystem.' - 'uucp - Network news subsystem.' - 'cron - Clock daemon.' - 'authpriv - Security/authorization messages (private).' - 'ftp - FTP daemon.' - 'local0 - Reserved for local use.' - 'local1 - Reserved for local use.' - 'local2 - Reserved for local use.' - 'local3 - Reserved for local use.' - 'local4 - Reserved for local use.' - 'local5 - Reserved for local use.' - 'local6 - Reserved for local use.' - 'local7 - Reserved for local use.' choices: - 'kernel' - 'user' - 'ntp' - 'audit' - 'alert' - 'clock' - 'mail' - 'daemon' - 'auth' - 'syslog' - 'lpr' - 'news' - 'uucp' - 'cron' - 'authpriv' - 'ftp' - 'local0' - 'local1' - 'local2' - 'local3' - 'local4' - 'local5' - 'local6' - 'local7' severity: type: str default: 'notification' description: - 'Least severity level to log.' - 'emergency - Emergency level.' - 'alert - Alert level.' - 'critical - Critical level.' - 'error - Error level.' - 'warning - Warning level.' - 'notification - Notification level.' - 'information - Information level.' - 'debug - Debug level.' choices: - 'emergency' - 'alert' - 'critical' - 'error' - 'warning' - 'notification' - 'information' - 'debug' status: type: str default: 'disable' description: - 'Remote syslog log.' - 'disable - Do not log to remote syslog server.' - 'enable - Log to remote syslog server.' choices: - 'disable' - 'enable' syslog-name: type: str description: 'Remote syslog server name.' ''' EXAMPLES = ''' - hosts: fortimanager-inventory collections: - fortinet.fortimanager connection: httpapi vars: ansible_httpapi_use_ssl: True ansible_httpapi_validate_certs: False ansible_httpapi_port: 443 tasks: - name: Settings for remote syslog server. fmgr_system_locallog_syslogd_setting: bypass_validation: False workspace_locking_adom: <value in [global, custom adom including root]> workspace_locking_timeout: 300 rc_succeeded: [0, -2, -3, ...] rc_failed: [-2, -3, ...] system_locallog_syslogd_setting: csv: <value in [disable, enable]> facility: <value in [kernel, user, ntp, ...]> severity: <value in [emergency, alert, critical, ...]> status: <value in [disable, enable]> syslog-name: <value of string> ''' RETURN = ''' request_url: description: The full url requested returned: always type: str sample: /sys/login/user response_code: description: The status of api request returned: always type: int sample: 0 response_message: description: The descriptive message of the api response type: str returned: always sample: OK. ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible_collections.fortinet.fortimanager.plugins.module_utils.napi import NAPIManager from ansible_collections.fortinet.fortimanager.plugins.module_utils.napi import check_galaxy_version from ansible_collections.fortinet.fortimanager.plugins.module_utils.napi import check_parameter_bypass def main(): jrpc_urls = [ '/cli/global/system/locallog/syslogd/setting' ] perobject_jrpc_urls = [ '/cli/global/system/locallog/syslogd/setting/{setting}' ] url_params = [] module_primary_key = None module_arg_spec = { 'bypass_validation': { 'type': 'bool', 'required': False, 'default': False }, 'workspace_locking_adom': { 'type': 'str', 'required': False }, 'workspace_locking_timeout': { 'type': 'int', 'required': False, 'default': 300 }, 'rc_succeeded': { 'required': False, 'type': 'list' }, 'rc_failed': { 'required': False, 'type': 'list' }, 'system_locallog_syslogd_setting': { 'required': False, 'type': 'dict', 'options': { 'csv': { 'required': False, 'choices': [ 'disable', 'enable' ], 'type': 'str' }, 'facility': { 'required': False, 'choices': [ 'kernel', 'user', 'ntp', 'audit', 'alert', 'clock', 'mail', 'daemon', 'auth', 'syslog', 'lpr', 'news', 'uucp', 'cron', 'authpriv', 'ftp', 'local0', 'local1', 'local2', 'local3', 'local4', 'local5', 'local6', 'local7' ], 'type': 'str' }, 'severity': { 'required': False, 'choices': [ 'emergency', 'alert', 'critical', 'error', 'warning', 'notification', 'information', 'debug' ], 'type': 'str' }, 'status': { 'required': False, 'choices': [ 'disable', 'enable' ], 'type': 'str' }, 'syslog-name': { 'required': False, 'type': 'str' } } } } params_validation_blob = [] check_galaxy_version(module_arg_spec) module = AnsibleModule(argument_spec=check_parameter_bypass(module_arg_spec, 'system_locallog_syslogd_setting'), supports_check_mode=False) fmgr = None if module._socket_path: connection = Connection(module._socket_path) fmgr = NAPIManager(jrpc_urls, perobject_jrpc_urls, module_primary_key, url_params, module, connection, top_level_schema_name='data') fmgr.validate_parameters(params_validation_blob) fmgr.process_partial_curd() else: module.fail_json(msg='MUST RUN IN HTTPAPI MODE') module.exit_json(meta=module.params) if __name__ == '__main__': main()
9957cfa6dcae5f7c12edbbbee6687a70d54e3523
0fc2b99fd8414dbce5f1f6057b9b800c968d5d05
/lpbio/swarm/__init__.py
293bff76afe1cd97181eb75f0eed192cfe8d24a1
[ "MIT" ]
permissive
widdowquinn/lpbio
9df898cb9580f62da1f66d5736cbf7a984633561
8b95642396d05a56c1c54389e3de6d88d7cbffb5
refs/heads/master
2020-03-29T02:08:56.675473
2019-11-07T14:27:44
2019-11-07T14:27:44
149,422,654
0
0
null
null
null
null
UTF-8
Python
false
false
5,395
py
# -*- coding: utf-8 -*- """Code for interaction with the Swarm clustering tool.""" import os import shlex import shutil import subprocess from collections import namedtuple from lpbio import LPBioNotExecutableError, is_exe class SwarmError(Exception): """Exception raised when swarm fails""" def __init__(self, msg): self.message = msg # factory class for Swarm run returned values SwarmRun = namedtuple("SwarmRun", "command outfilename stdout stderr") # factory class for Swarm parameter values SwarmParameters = namedtuple("SwarmParameters", "t d") SwarmParameters.__new__.__defaults__ = (1, 1) def build_cmd(infname, outfname, parameters): """Build a command-line for swarm""" params = [ "-{0} {1}".format(shlex.quote(str(k)), shlex.quote(str(v))) for k, v in parameters._asdict().items() if v is not None ] cmd = ["swarm", *params, "-o", shlex.quote(outfname), shlex.quote(infname)] return cmd class Swarm(object): """Class for working with SWARM""" def __init__(self, exe_path): """Instantiate with location of executable""" exe_path = shlex.quote(shutil.which(exe_path)) if not os.access(exe_path, os.X_OK): msg = "{0} is not an executable".format(exe_path) raise LPBioNotExecutableError(msg) self._exe_path = exe_path def run(self, infname, outdir, parameters, dry_run=False): """Run swarm to cluster sequences in the passed file - infname - path to sequences for clustering - outdir - output directory for clustered output - parameters - named tuple of Swarm parameters - dry_run - if True returns cmd-line but does not run Returns namedtuple with form: "command outfilename stdout stderr" """ self.__build_cmd(infname, outdir, parameters) if dry_run: return self._cmd pipe = subprocess.run( self._cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, shell=False, ) results = SwarmRun(self._cmd, self._outfname, pipe.stdout, pipe.stderr) return results def __build_cmd(self, infname, outdir, parameters): """Build a command-line for swarm""" self._outfname = os.path.join(shlex.quote(outdir), "swarm.out") self._cmd = build_cmd(infname, self._outfname, parameters) class SwarmCluster(object): """Describes a single Swarm cluster""" def __init__(self, amplicons, parent=None): self._amplicons = tuple(sorted(amplicons)) if parent: self._parent = parent def __len__(self): """Returns the number of amplicons in the cluster""" return len(self._amplicons) def __getitem__(self, item): """Return sequence IDs from the swarm like a list""" return self._amplicons[item] @property def amplicons(self): """The amplicons in a swarm cluster""" return self._amplicons @property def abundance(self): """Returns the total abundance of all amplicons in the cluster""" return sum(self.abundances) @property def abundances(self): """Returns a list of abundance of each amplicons in the cluster""" return [int(amp.split("_")[-1]) for amp in self._amplicons] class SwarmResult(object): """Describes the contents of a Swarm output file""" def __init__(self, name): self._name = name self._clusters = list() def add_swarm(self, amplicons): """Adds a list of amplicon IDs as a SwarmCluster""" self._clusters.append(SwarmCluster(amplicons, self)) def __eq__(self, other): """Returns True if all swarms match all swarms in passed result""" # this test relies on the amplicons being ordered tuples these_amplicons = {c.amplicons for c in self._clusters} other_amplicons = {c.amplicons for c in other._clusters} return these_amplicons == other_amplicons def __len__(self): """Returns the number of swarms in the result""" return len(self._clusters) def __str__(self): """Return human-readable representation of the SwarmResult""" outstr = "\n".join( ["SwarmResult: {}".format(self.name), "\tSwarms: {}".format(len(self))] ) swarmstr = [] for idx, swarm in enumerate(self._clusters): swarmstr.append("\t\tSwarm {}, size: {}".format(idx, len(swarm))) swarmstr = "\n".join(swarmstr) return "\n".join([outstr + swarmstr]) def __getitem__(self, item): """Return swarm clusters like a list""" return self._clusters[item] @property def swarms(self): """The clusters produced by a swarm run""" return self._clusters[:] @property def name(self): """The swarm result filename""" return self._name class SwarmParser(object): """Parser for Swarm cluster output""" @classmethod def read(SwarmParser, fname): """Parses the passed Swarm output file into a SwarmResult""" result = SwarmResult(fname) with open(fname, "r") as swarms: for swarm in swarms: result.add_swarm(swarm.strip().split()) return result def __init__(self): pass
7f128626999fdb25a08a0b49abd7399c216ba13b
4c83b4d7aca6bbcd15b922ad7314440fea7c9a70
/2020-07-27_modo_horario_cp_onda1_10d/script_modo_horario_2020-03-05_fchk_1036.py
d462e860f46dceffa88ab39003f27bd308ae8ade
[]
no_license
poloplanejamento/odmatrix-joinville
63b60a85055700698cdb590c181e7c8a4d5c7361
be7ce0814fb9dad2d289cd836dde51baa9c0850d
refs/heads/main
2023-01-23T11:43:45.451126
2020-12-10T23:17:58
2020-12-10T23:17:58
320,402,809
0
0
null
null
null
null
UTF-8
Python
false
false
2,339
py
#!/usr/bin/env python3 # Bibliotecas from http.client import HTTPSConnection from base64 import b64encode import json import csv import pandas as pd # Variáveis projectID = "40" # ID do projeto, conforme mostrado no frontend Web c = HTTPSConnection("api.odmatrix.app") userAndPass = b64encode(b"fe6b53f0280443d5bd40d5d30694f356").decode("ascii") headers = { 'Authorization' : 'Basic %s' % userAndPass } finall_list = [] # Formato da data: AAAA-MM-DD. Até três datas no array e o script parece rodar sem problemas # Datas desejadas: 12/11, 13/11, 19/11, 20/11, 21/11, 03/03, 04/03, 05/03, 11/03 e 12/03 for date in ["2020-03-05"] : for ftriptype in ["microtrip","bus","private_transport"] : for ftimeorigin in ["0000_0059","0100_0159","0200_0259","0300_0359","0400_0459","0500_0559","0600_0659","0700_0759","0800_0859","0900_0959","1000_1059","1100_1159","1200_1259","1300_1359","1400_1459","1500_1559","1600_1659","1700_1759","1800_1859","1900_1959","2000_2059","2100_2159","2200_2259","2300_2359"] : print(ftimeorigin) request = "/generatematrix?format=json&project={}&date={}&ftriptype={}&ftimeorigin={}&fchk_1036=true".format(projectID, date, ftriptype, ftimeorigin) c.request('GET', request, headers=headers) res = c.getresponse() data = res.read() matrix = json.loads(data) for i, column in enumerate(matrix['ColumnLabels']): for j, row in enumerate(matrix['RowLabels']): value = matrix['Data'][j][i] if value == 0: continue full_row = {} full_row['ProjectID'] = projectID full_row['Date'] = date full_row['TimeOrigin'] = ftimeorigin full_row['Origin'] = row full_row['Destination'] = column full_row['Modo'] = ftriptype full_row['Trips'] = value finall_list.append(full_row) print(full_row) #print(finall_list) data = pd.DataFrame(finall_list) final_data = pd.pivot_table(data, index=['ProjectID', 'Date', 'Origin', 'Destination', 'Modo'], columns='TimeOrigin', values='Trips') final_data.to_csv("OD_por_modo_horario_fchk_1036_2020-03-05.csv")
10c9a1c4063a9dbc167bea682133f4b74469d7c2
bce4a906faebfcab5db0e48ad587841d9ef3e74c
/train.py
6b93bc7a9fa165787181e7fd0a4ad5c992af7b36
[ "MIT" ]
permissive
scofield77/pytorch-action-recognition-toy
aecddd6da3c032ca25c2bd1facf6fc8f6d72b4e4
de0f8820c40d09d34a61849ee572f8af37f5725d
refs/heads/master
2020-07-20T21:39:46.453236
2019-03-05T00:52:39
2019-03-05T00:52:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,463
py
import torch import numpy as np import torch.nn as nn import torch.utils.data from net import ActionLSTM from data import ActionDataset from tensorboardX import SummaryWriter if __name__ == '__main__': batch_size = 8 dataset = ActionDataset() data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) net = ActionLSTM() criterion = nn.MSELoss() optimizer = torch.optim.SGD(net.parameters(), lr=0.01) writer = SummaryWriter('./log') sample = iter(data_loader).__next__() global_step = 0 for i in range(40): for j, sample in enumerate(data_loader): global_step += 1 net.zero_grad() optimizer.zero_grad() out = net(sample['values']) loss_value = criterion(out, sample['label']) pred = np.argmax(out.detach().numpy(), -1) tags = sample['raw_label'].detach().numpy() accuracy = float(np.where(pred == tags, 1, 0).sum() / batch_size) print( 'Epoch {}, Itertaion {}, Loss = {}, Accuracy = {:.2f} %'.format(i + 1, j + 1, loss_value, accuracy * 100)) writer.add_scalar('loss', loss_value, global_step=global_step) writer.add_scalar('accuracy', accuracy, global_step=global_step) loss_value.backward() optimizer.step() writer.close() state_dict = net.state_dict() torch.save(state_dict, 'model.pth')
a24a2db0228e5412adc4204bef7d76d48aec585c
7897caaabb1a963b98e723a6abfc53b99d300a86
/view/widgets/gallery/gallery.py
f183aba043c9138771a54a844dad6fd3c001e1d8
[ "MIT" ]
permissive
Wajdi-Mabroukeh/CvStudio
f6983c1372c29930e23c8a0d1775193cebf045be
b798ef7b3db7505a151f2df9cf55a6ce5828baa4
refs/heads/master
2021-04-20T14:10:08.228504
2020-03-20T02:34:34
2020-03-20T02:34:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,327
py
import mimetypes import os from enum import Enum,auto import cv2 import dask import imutils import numpy as np from PyQt5 import QtGui,QtCore from PyQt5.QtCore import QObject,QSize,pyqtSignal,QThreadPool from PyQt5.QtGui import QPixmap from PyQt5.QtWidgets import QWidget,QGridLayout,QLabel,QLayoutItem,QVBoxLayout from hurry.filesize import size,alternative from util import GUIUtilities,MiscUtilities,Worker from view.widgets.image_button import ImageButton from view.widgets.loading_dialog import QLoadingDialog from .base_gallery import Ui_Gallery from .card import GalleryCard,ImageCard class GalleryViewMode(Enum): GRID_MODE=auto() LIST_MODE=auto() class GalleryLayout(QGridLayout,QObject): def __init__(self,parent=None): super(GalleryLayout,self).__init__(parent) self.setAlignment(QtCore.Qt.AlignTop) self._items=[] self._view_mode=GalleryViewMode.GRID_MODE self._cols=8 @property def view_mode(self): return self._view_mode @view_mode.setter def view_mode(self,value): self._view_mode=value @property def items(self): return self._items @items.setter def items(self,value): self._items=value @property def cols(self): return self._cols @cols.setter def cols(self,value): self._cols=value self.notify_property_changed() def notify_property_changed(self): self.update() def arrange(self) -> None: self.clear() if len(self.items) > 0: row=col=0 n=max(len(self.items),self.cols) for idx in range(n): self.setColumnStretch(col,1) self.setRowStretch(row,1) if idx < len(self.items): widget=self.items[idx] self.addWidget(widget,row,col) else: self.addWidget(QWidget(),row,col) col+=1 if col%self.cols == 0: row+=1 col=0 def initialize(self,n_items): self.clear() row=col=0 n=max(n_items,self.cols) for idx in range(n): self.setColumnStretch(col,1) self.setRowStretch(row,1) self.addWidget(QWidget(),row,col) col+=1 if col%self.cols == 0: row+=1 col=0 def add_item(self,widget: QWidget): if self.rowCount() > 0: cols=self.columnCount() rows=self.rowCount() for r in range(rows): for c in range(cols): item: QLayoutItem=self.itemAtPosition(r,c) if not isinstance(item.widget(),type(widget)): self.removeWidget(item.widget()) self.addWidget(widget,r,c) self.items.append(widget) # self.update() return def clear(self): GUIUtilities.clear_layout(self) # clear the gridlayout class Gallery(QWidget,Ui_Gallery,QObject): doubleClicked=pyqtSignal(GalleryCard,QWidget) filesDropped=pyqtSignal(list) cardActionClicked=pyqtSignal(str,object) def __init__(self,parent=None): super(Gallery,self).__init__(parent) self.setupUi(self) self.setup_toolbar() self.setup_paginator() self._items: []=[] self._pages=[] self._page_size=50 self._curr_page=0 self._thread_pool=QThreadPool() self.setAcceptDrops(True) self.center_widget=None self.center_layout=None self._content_type="Images" self._tag=None self._actions=[] self._loading_dialog=QLoadingDialog(parent=self) def setup_toolbar(self): uncheck_all_icon=GUIUtilities.get_icon("uncheck_all.png") self.btn_uncheck_all=ImageButton(icon=uncheck_all_icon,size=QSize(20,20)) check_all_icon=GUIUtilities.get_icon("check_all.png") self.btn_check_all=ImageButton(icon=check_all_icon,size=QSize(20,20)) self.btn_check_all.setFixedWidth(40) self.btn_uncheck_all.setFixedWidth(40) self.btn_check_all.clicked.connect(self.btn_check_all_on_click_slot) self.btn_uncheck_all.clicked.connect(self.btn_uncheck_all_on_click_slot) @property def actions(self): return self._actions @actions.setter def actions(self,value): self._actions=value @property def content_type(self): return self._content_type @content_type.setter def content_type(self,value): self._content_type=value def enable_paginator(self,val): self.btn_check_all.setEnabled(val) self.btn_uncheck_all.setEnabled(val) self.btn_next_page.setEnabled(val) self.btn_prev_page.setEnabled(val) self.btn_last_page.setEnabled(val) self.btn_first_page.setEnabled(val) def setup_paginator(self): self.grid_actions_layout.addWidget(self.btn_check_all) self.grid_actions_layout.addWidget(self.btn_uncheck_all) self.btn_next_page.clicked.connect(self.btn_next_page_on_click) self.btn_prev_page.clicked.connect(self.btn_prev_page_on_click) self.btn_last_page.clicked.connect(self.btn_last_page_on_click) self.btn_first_page.clicked.connect(self.btn_first_page_on_click) self.btn_first_page.setIcon(GUIUtilities.get_icon("first.png")) self.btn_prev_page.setIcon(GUIUtilities.get_icon("left.png")) self.btn_next_page.setIcon(GUIUtilities.get_icon("right.png")) self.btn_last_page.setIcon(GUIUtilities.get_icon("last.png")) self.btn_first_page.setStyleSheet('QPushButton{border: 0px solid;}') self.btn_prev_page.setStyleSheet('QPushButton{border: 0px solid;}') self.btn_last_page.setStyleSheet('QPushButton{border: 0px solid;}') self.btn_next_page.setStyleSheet('QPushButton{border: 0px solid;}') self.grid_actions_layout.setAlignment(QtCore.Qt.AlignCenter) @property def tag(self): return self._tag @tag.setter def tag(self,value): self._tag=value @property def items(self): return self._items @items.setter def items(self,value): self._items=value @property def page_size(self): return self._page_size @page_size.setter def page_size(self,value): self._page_size=value self.update_pager() @property def current_page(self): return self._curr_page+1 @current_page.setter def current_page(self,val): self._curr_page=val self._curr_page=self._curr_page%self.total_pages self.lbl_current_page.setText(str(self.current_page)) self.bind() @property def total_pages(self): return len(self._pages) def update_pager(self): self._pages=list(MiscUtilities.chunk(self._items,self._page_size)) self.lbl_total_pages.setText("{}".format(len(self._pages))) self.lbl_current_page.setText(str(self.current_page)) def btn_next_page_on_click(self): if len(self._pages) == 0: return self._curr_page+=1 self.current_page=self._curr_page def btn_last_page_on_click(self): if len(self._pages) == 0: return self.current_page=len(self._pages)-1 def btn_first_page_on_click(self): if len(self._pages) == 0: return self.current_page=0 def btn_prev_page_on_click(self): if len(self._pages) == 0: return self._curr_page-=1 self.current_page=self._curr_page def dragEnterEvent(self,event: QtGui.QDragEnterEvent) -> None: data=event.mimeData() if data.hasUrls(): if any(url.isLocalFile() for url in data.urls()): event.accept() return else: event.ignore() def dragMoveEvent(self,event: QtGui.QDragMoveEvent) -> None: if event.mimeData().hasUrls: event.setDropAction(QtCore.Qt.CopyAction) event.accept() return else: event.ignore() def dropEvent(self,event: QtGui.QDropEvent) -> None: valid_files=[] files=[u.toLocalFile() for u in event.mimeData().urls()] for f in files: if os.path.isfile(f): mime_type,encoding=mimetypes.guess_type(f) # magic.from_file(f,mime=True) if mime_type.find("video") != -1 and self.content_type == "Videos": valid_files.append(f) elif mime_type.find("image") != -1 and self.content_type == "Images": valid_files.append(f) valid_files=sorted(valid_files,key=lambda v: os.path.basename(v)) self.filesDropped.emit(valid_files) def load_images(self): def do_work(): page=self._curr_page items=self._pages[page] def create_thumbnail(item): file_path=item.file_path if os.path.isfile(file_path): image=cv2.imread(file_path) h,w,_=np.shape(image) if w > h: thumbnail_array=imutils.resize(image,width=150) else: thumbnail_array=imutils.resize(image,height=150) thumbnail_array=cv2.cvtColor(thumbnail_array,cv2.COLOR_BGR2RGB) thumbnail=GUIUtilities.array_to_qimage(thumbnail_array) thumbnail=QPixmap.fromImage(thumbnail) del thumbnail_array del image return item,h,w,thumbnail,os.path.getsize(file_path), False thumbnail = GUIUtilities.get_image("placeholder.png") thumbnail = thumbnail.scaledToHeight(100) h, w = thumbnail.height(), thumbnail.width() return item, h, w, thumbnail, 0, True delayed_tasks=[dask.delayed(create_thumbnail)(item) for item in items] images=dask.compute(*delayed_tasks) return images def done_work(images): for img in images: if img: item,h,w,thumbnail,file_size, is_broken=img image_card=ImageCard() image_card.is_broken = is_broken image_card.tag=item image_card.source=thumbnail image_card.file_path=item.file_path image_size_str = size(file_size,system=alternative) if file_size > 0 else "0 MB" image_card.label.setText("\n ({0}px / {1}px) \n {2}".format(w,h, image_size_str)) image_card.setFixedHeight(240) image_card.doubleClicked.connect(self.gallery_card_double_click) image_card.add_buttons(self.actions) if self.actions: image_card.actionClicked.connect(lambda name,item: self.cardActionClicked.emit(name,item)) self.center_layout.add_item(image_card) def finished_work(): self._loading_dialog.close() self.enable_paginator(True) worker=Worker(do_work) worker.signals.result.connect(done_work) worker.signals.finished.connect(finished_work) self._thread_pool.start(worker) self.enable_paginator(False) self._loading_dialog.show() def bind(self): self.update_pager() if len(self._pages) > 0: self.center_widget=QWidget() self.center_layout=GalleryLayout() self.center_widget.setLayout(self.center_layout) self.center_layout.setAlignment(QtCore.Qt.AlignTop) self.scrollArea.setWidget(self.center_widget) self.center_layout.initialize(n_items=self.page_size) if self.content_type == "Images": self.load_images() else: raise NotImplementedError else: self.center_widget=QWidget() self.center_layout=QVBoxLayout() self.center_widget.setLayout(self.center_layout) self.center_layout.setAlignment(QtCore.Qt.AlignCenter) self.center_layout.addWidget(QLabel("Drag and Drop your files")) self.scrollArea.setWidget(self.center_widget) def gallery_card_double_click(self,card: GalleryCard): self.doubleClicked.emit(card,self) def btn_check_all_on_click_slot(self): if self.items is None: return layout=self.scrollArea.widget().layout() for i in reversed(range(layout.count())): child=layout.itemAt(i) widget=child.widget() if isinstance(child.widget(),GalleryCard): widget.is_selected=True def btn_uncheck_all_on_click_slot(self): if self.items is None: return layout=self.scrollArea.widget().layout() for i in reversed(range(layout.count())): child=layout.itemAt(i) widget=child.widget() if isinstance(child.widget(),GalleryCard): widget.is_selected=False
df9f2ebddc59d18e8456ed82a9f87bc2a8b14002
74081581575e80b2b0f6b75ba912d58ea4f37ac6
/maskrcnn_benchmark/modeling/rpn/inference.py
26c6cbe68d37d714dcd22effb92a28c06445a4ba
[]
no_license
youngfly11/LCMCG-PyTorch
5f6b9f231613b86ac7b250ca0f34229402e1615e
e95299b9a9f1b13e21750ef0dcde0941d703d009
refs/heads/master
2021-10-25T19:29:12.967318
2021-10-25T03:35:14
2021-10-25T03:35:14
221,908,808
56
12
null
null
null
null
UTF-8
Python
false
false
8,755
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes from ..utils import cat from .utils import permute_and_flatten class RPNPostProcessor(torch.nn.Module): """ Performs post-processing on the outputs of the RPN boxes, before feeding the proposals to the heads apply the proposal regression result on the anchor boxes """ def __init__( self, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, box_coder=None, fpn_post_nms_top_n=None, ): """ Arguments: two nms operation pre_nms_top_n (int) for single feature level post_nms_top_n (int) for all feature level, image wise nms nms_thresh (float) min_size (int) box_coder (BoxCoder) fpn_post_nms_top_n (int) """ super(RPNPostProcessor, self).__init__() self.pre_nms_top_n = pre_nms_top_n self.post_nms_top_n = post_nms_top_n self.nms_thresh = nms_thresh self.min_size = min_size if box_coder is None: box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) self.box_coder = box_coder if fpn_post_nms_top_n is None: fpn_post_nms_top_n = post_nms_top_n self.fpn_post_nms_top_n = fpn_post_nms_top_n def add_gt_proposals(self, proposals, targets): """ Arguments: proposals: list[BoxList] targets: list[BoxList] """ # Get the device we're operating on device = proposals[0].bbox.device gt_boxes = [target.copy_with_fields([]) for target in targets] # later cat of bbox requires all fields to be present for all bbox # so we need to add a dummy for objectness that's missing for gt_box in gt_boxes: gt_box.add_field("objectness", torch.ones(len(gt_box), device=device)) proposals = [ # put the gt to front cat_boxlist((gt_box, proposal)) for proposal, gt_box in zip(proposals, gt_boxes) ] return proposals def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ apply the RPN result on anchors generate from single feature level from ont batch(has multiple images) Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ device = objectness.device N, A, H, W = objectness.shape # put in the same format as anchors objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1) objectness = objectness.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W # decrease the proposal anchor number before the nms pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) # filter the proposal bboxes by objectness score, # only left the hign objectness proposals for following operation objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) batch_idx = torch.arange(N, device=device)[:, None] # take out the high objectness bbox regression result box_regression = box_regression[batch_idx, topk_idx] # preprocess the anchors for easy to process image_shapes = [box.size for box in anchors] concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] # apply the regression on the anchor boxes proposals = self.box_coder.decode( box_regression.view(-1, 4), concat_anchors.view(-1, 4) ) proposals = proposals.view(N, -1, 4) result = [] # collect the processed anchor boxes in to BoxList form # and apply the nms to generate the final proposals for proposal, score, im_shape in zip(proposals, objectness, image_shapes): boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist.add_field("objectness", score) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result def forward(self, anchors, objectness, box_regression, targets=None): """ Arguments: rpn model output of multiple feature levels. anchors: list[list[BoxList]] objectness: list[tensor] box_regression: list[tensor] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS """ sampled_boxes = [] num_levels = len(objectness) anchors = list(zip(*anchors)) # the pre-nms first time nms one each level features for a, o, b in zip(anchors, objectness, box_regression): sampled_boxes.append(self.forward_for_single_feature_map(a, o, b)) boxlists = list(zip(*sampled_boxes)) boxlists = [cat_boxlist(boxlist) for boxlist in boxlists] # collect the bounding boxes for same image into one list # the post-nms on global image if num_levels > 1: boxlists = self.select_over_all_levels(boxlists) # append ground-truth bboxes to proposals for supervision if self.training and targets is not None: boxlists = self.add_gt_proposals(boxlists, targets) return boxlists def select_over_all_levels(self, boxlists): num_images = len(boxlists) # different behavior during training and during testing: # during training, post_nms_top_n is over *all* the proposals combined, while # during testing, it is over the proposals for each image # TODO resolve this difference and make it consistent. It should be per image, # and not per batch if self.training: objectness = torch.cat( [boxlist.get_field("objectness") for boxlist in boxlists], dim=0 ) box_sizes = [len(boxlist) for boxlist in boxlists] post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness)) _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True) inds_mask = torch.zeros_like(objectness, dtype=torch.uint8) inds_mask[inds_sorted] = 1 inds_mask = inds_mask.split(box_sizes) for i in range(num_images): boxlists[i] = boxlists[i][inds_mask[i]] else: for i in range(num_images): objectness = boxlists[i].get_field("objectness") post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness)) _, inds_sorted = torch.topk( objectness, post_nms_top_n, dim=0, sorted=True ) boxlist = boxlists[i][inds_sorted] boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) boxlists[i] = boxlist return boxlists def make_rpn_postprocessor(config, rpn_box_coder, is_train): fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN if not is_train: fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TRAIN post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TRAIN if not is_train: pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TEST post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TEST nms_thresh = config.MODEL.RPN.NMS_THRESH min_size = config.MODEL.RPN.MIN_SIZE box_selector = RPNPostProcessor( pre_nms_top_n=pre_nms_top_n, post_nms_top_n=post_nms_top_n, nms_thresh=nms_thresh, min_size=min_size, box_coder=rpn_box_coder, fpn_post_nms_top_n=fpn_post_nms_top_n, ) return box_selector
f13ffc91ce07bbf34c92634a9fc7e5c133c1bdbe
f337bc5f179b25969ba73e7680ffb0a0616e3b97
/python/BOJ/1XXX/1525.py
230082c879b52617c741e0d9d696d6414422de10
[]
no_license
raiders032/PS
31771c5496a70f4730402698f743bbdc501e49a3
08e1384655975b868e80521167ec876b96fa01c8
refs/heads/master
2023-06-08T10:21:00.230154
2023-06-04T01:38:08
2023-06-04T01:38:08
349,925,005
1
0
null
null
null
null
UTF-8
Python
false
false
74
py
""" https://www.acmicpc.net/problem/1525 1525.퍼즐 골드2 풀이2. """
4a9d371ca2d986c987d3aff9a4005a5dd3da1364
eacfc1c0b2acd991ec2cc7021664d8e79c9e58f6
/ccpnmr2.4/python/paris/aria/AriaRunFrame.py
389054dd281b65767174a9163b4c4474e8987a19
[]
no_license
edbrooksbank/ccpnmr2.4
cfecb0896dcf8978d796e6327f7e05a3f233a921
f279ca9bb2d972b1ce075dad5fcc16e6f4a9496c
refs/heads/master
2021-06-30T22:29:44.043951
2019-03-20T15:01:09
2019-03-20T15:01:09
176,757,815
0
1
null
2020-07-24T14:40:26
2019-03-20T14:59:23
HTML
UTF-8
Python
false
false
11,914
py
import os, sys import Tkinter from memops.gui.Button import Button from memops.gui.DataEntry import askString from memops.gui.Entry import Entry from memops.gui.Frame import Frame from memops.gui.FileSelectPopup import FileSelectPopup from memops.gui.FileSelect import FileType from memops.gui.Label import Label from memops.gui.LabelFrame import LabelFrame from memops.gui.MessageReporter import showWarning, showOkCancel from memops.gui.PulldownList import PulldownList from memops.gui.ScrolledMatrix import ScrolledMatrix from ccp.util.NmrCalc import getObjBooleanParameter, toggleObjBooleanParameter, setRunParameter, getRunTextParameter from ccpnmr.analysis.core.ExperimentBasic import getThroughSpacePeakLists from ccpnmr.analysis.popups.EditCalculation import NmrCalcRunFrame, PEAK_DATA, CONSTRAINT_DATA from ccpnmr.analysis.popups.BasePopup import BasePopup PARAM_ATTR_DICT = {type(1.0):'floatValue', type(1):'intValue', type(True):'booleanValue'} FILTER_VIOL = 'FilterViol' KEEP_ASSIGN = 'KeepAssign' AMBIG_PROTOCOL = 'AmbigProtocol' USE_IN_CALC = 'UseInCalc' CNS_EXE = 'CnsExe' FILE_PREFIX = 'FilePrefix' WORKING_DIR = 'WorkingDir' TEMP_DIR = 'TempDir' class AriaRunFrame(NmrCalcRunFrame): def __init__(self, parent, project, calcStore, *args, **kw): NmrCalcRunFrame.__init__(self, parent, project, calcStore, inputTypes=(PEAK_DATA, CONSTRAINT_DATA), chainSelection=True, *args, **kw) self.calcStore = calcStore self.optPeakList = None self.optConstraintList = None frame = self.tabbedFrame.frames[1] headingList = ['PeakList','Filter\nViolated?', 'Keep\nAssignments?','Shift List'] editWidgets = [None, None, None, None] editGetCallbacks = [None, self.toggleFilterViol, self.toggleKeepAssign, None] editSetCallbacks = [None, None, None, None] row = 0 subFrame = Frame(frame, grid=(row,0)) subFrame.expandGrid(0,1) label = Label(subFrame, text='File Name Prefix:', grid=(0,0)) self.filePrefixEntry = Entry(subFrame, text='aria', grid=(0,1), sticky="ew") self.filePrefixEntry.bind('<Leave>', self.updateEntryParams) label = Label(subFrame, text='CNS Executable:', grid=(1,0)) self.cnsExeEntry = Entry(subFrame, text='', grid=(1,1), sticky="ew") self.cnsExeEntry.bind('<Leave>', self.updateEntryParams) button = Button(subFrame, text='Select File',bd=1,bg='#C0E0FF', command=self.selectCnsExe, grid=(1,2)) label = Label(subFrame, text='Working Directory:', grid=(2,0)) self.workingDirEntry = Entry(subFrame, text='', grid=(2,1), sticky="ew") self.workingDirEntry.bind('<Leave>', self.updateEntryParams) button = Button(subFrame, text='Select File',bd=1,bg='#C0E0FF', command=self.selectWorkingDir, grid=(2,2)) label = Label(subFrame, text='Temporary Directory:', grid=(3,0)) self.tempDirEntry = Entry(subFrame, text='', grid=(3,1), sticky="ew") self.tempDirEntry.bind('<Leave>', self.updateEntryParams) button = Button(subFrame, text='Select File',bd=1,bg='#C0E0FF', command=self.selectTempDir, grid=(3,2)) row += 1 frame.expandGrid(row,0) self.grid_rowconfigure(row, weight=1) self.optPeakListMatrix = ScrolledMatrix(frame, headingList=headingList, editSetCallbacks=editSetCallbacks, editGetCallbacks=editGetCallbacks, editWidgets=editWidgets, multiSelect=True, grid=(row,0), callback=self.selectOptPeakList) row += 1 frame.expandGrid(row,0) headingList = ['Constraint List', 'Name', 'Filter\nViolated?', 'Ambiguous\nProtocol?',] editWidgets = [None, None, None, None] editGetCallbacks = [None, None, self.toggleFilterViol, self.toggleAmbig] editSetCallbacks = [None, None, None, None] self.optConstraintMatrix = ScrolledMatrix(frame, headingList=headingList, editSetCallbacks=editSetCallbacks, editGetCallbacks=editGetCallbacks, editWidgets=editWidgets, multiSelect=True, grid=(row,0), callback=self.selectConstraintList) self.optConstraintMatrix.doEditMarkExtraRules = self.doEditMarkExtraRules self.update(calcStore) def update(self, calcStore=None): NmrCalcRunFrame.update(self, calcStore) self.updateSettings() # Need to run NmrCalcRunFrame.update before # this to get new self.run, self.project if self.run: repository = self.project.findFirstRepository(name='userData') defaultDir = repository.url.path filePrefix = getRunTextParameter(self.run, FILE_PREFIX) or self.project.name cnsExe = getRunTextParameter(self.run, CNS_EXE) or '/usr/bin/cns' workingDir = getRunTextParameter(self.run, WORKING_DIR) or defaultDir tempDir = getRunTextParameter(self.run, TEMP_DIR) or defaultDir self.filePrefixEntry.set(filePrefix) self.cnsExeEntry.set(cnsExe) self.workingDirEntry.set(workingDir) self.tempDirEntry.set(tempDir) self.updateEntryParams() def updateEntryParams(self, event=None): if self.run: repository = self.project.findFirstRepository(name='userData') defaultDir = repository.url.path filePrefix = self.filePrefixEntry.get() or self.project.name cnsExe = self.cnsExeEntry.get() or '/usr/bin/cns' workingDir = self.workingDirEntry.get() or defaultDir tempDir = self.tempDirEntry.get() or defaultDir setRunParameter(self.run, FILE_PREFIX, filePrefix) setRunParameter(self.run, CNS_EXE, cnsExe) setRunParameter(self.run, WORKING_DIR, workingDir) setRunParameter(self.run, TEMP_DIR, tempDir) def selectCnsExe(self): fileTypes = [ FileType("All", ["*"]), FileType("EXE", ["*.exe"]) ] popup = FileSelectPopup(self, fileTypes) file = popup.getFile() if file: self.cnsExeEntry.set( file ) popup.destroy() self.updateEntryParams() def selectWorkingDir(self): popup = FileSelectPopup(self, show_file=False) directory = popup.getDirectory() if directory: self.workingDirEntry.set( directory ) popup.destroy() self.updateEntryParams() def selectTempDir(self): popup = FileSelectPopup(self, show_file=False) directory = popup.getDirectory() if directory: self.tempDirEntry.set( directory ) popup.destroy() self.updateEntryParams() def getPeakLists(self): # overwrites superclass return getThroughSpacePeakLists(self.project) def administerNotifiers(self, notifyFunc): NmrCalcRunFrame.administerNotifiers(self, notifyFunc) for func in ('__init__','delete','setName'): #notifyFunc(self.updateSettings, 'ccp.nmr.NmrConstraint.AbstractConstraintList', func) notifyFunc(self.updateSettings, 'ccp.nmr.NmrConstraint.DistanceConstraintList', func) notifyFunc(self.updateSettings, 'ccp.nmr.NmrConstraint.DihedralConstraintList', func) notifyFunc(self.updateSettings, 'ccp.nmr.NmrConstraint.HBondConstraintList', func) def selectOptPeakList(self, obj, row, col): self.optPeakList = obj def selectConstraintList(self, obj, row, col): self.optConstraintList = obj def doEditMarkExtraRules(self, obj, row, col): if col in (2,3): cSet = obj.nmrConstraintStore if cSet: for cList in obj.constraintLists: if cList.className[:-14] != 'Distance': # i.e. ambig protocols and viol filtering # is only for dist constraints, not dihedral etc return False return True def toggleUseInCalc(self, dataObj): toggleObjBooleanParameter(dataObj, USE_IN_CALC) self.updateSettings() def toggleFilterViol(self, dataObj): toggleObjBooleanParameter(dataObj, FILTER_VIOL) self.updateSettings() def toggleKeepAssign(self, dataObj): toggleObjBooleanParameter(dataObj, KEEP_ASSIGN) self.updateSettings() def toggleAmbig(self, dataObj): toggleObjBooleanParameter(dataObj, AMBIG_PROTOCOL) self.updateSettings() def updateSettings(self, obj=None): textMatrix = [] objectList = [] run = self.run if run: peakListsData = [] constraintData = [] molSystemData = None for dataObj in run.sortedInputs(): className = dataObj.className if className == 'PeakListData': peakList = dataObj.peakList if peakList: peakListsData.append((dataObj, peakList)) elif className == 'MolSystemData': molSystem = dataObj.molSystem if molSystem: molSystemData = (dataObj, molSystem) elif className == 'ConstraintStoreData': nmrConstraintStore = dataObj.nmrConstraintStore if nmrConstraintStore: constraintLists = dataObj.constraintLists or \ nmrConstraintStore.sortedConstraintLists() # Chould be only one for constraintList in constraintLists: if constraintList is None: # Prob happens when serial no longer exists continue constraintData.append((dataObj, constraintList)) for dataObj, peakList in peakListsData: spectrum = peakList.dataSource experiment = spectrum.experiment filterViol = getObjBooleanParameter(dataObj, FILTER_VIOL) keepAssign = getObjBooleanParameter(dataObj, KEEP_ASSIGN) shiftList = peakList.dataSource.experiment.shiftList if shiftList: shiftListName = '%d:%s' % (shiftList.serial,shiftList.name) else: shiftListName = None ident = '%s:%s:%d' % (experiment.name,spectrum.name,peakList.serial) textMatrix.append([ident, filterViol and 'Yes' or 'No', keepAssign and 'Yes' or 'No', shiftListName]) objectList.append(dataObj) self.optPeakListMatrix.update(textMatrix=textMatrix,objectList=objectList) textMatrix = [] objectList = [] for dataObj, constraintList in constraintData: #useInCalc = getObjBooleanParameter(dataObj, USE_IN_CALC) cSet = dataObj.constraintStoreSerial cType = constraintList.className[:-14] if cType == 'Distance': filterViol = getObjBooleanParameter(dataObj, FILTER_VIOL) ambigProtocol = getObjBooleanParameter(dataObj, AMBIG_PROTOCOL) ambigProtocol = ambigProtocol and 'Yes' or 'No' filterViol = filterViol and 'Yes' or 'No' else: ambigProtocol = None filterViol = None ident = '%s - %d:%d' % (cType, cSet, constraintList.serial) textMatrix.append([ident, constraintList.name, filterViol, ambigProtocol]) objectList.append(dataObj) self.optConstraintMatrix.update(textMatrix=textMatrix, objectList=objectList)
5fe28bbb5bc93700043f88a007f3546307b639c3
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/class_def_attr-big-240.py
b5bd95ff2c12b474eee61f9edfe88fbe2ca06b44
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,288
py
class A(object): x:int = 1 class A2(object): x:int = 1 x2:int = 1 class A3(object): x:int = 1 x2:int = 1 x3:int = 1 class A4(object): x:int = 1 x2:int = 1 x3:int = 1 x4:int = 1 class A5(object): x:int = 1 x2:int = 1 x3:int = 1 x4:int = 1 x5:int = 1 class B(A): def __init__(self: "B"): pass class B2(A): def __init__(self: "B2"): pass class B3(A): def __init__(self: "B3"): pass class B4(A): def __init__(self: "B4"): pass class B5(A): def $ID(self: "B5"): pass class C(B): z:bool = True class C2(B): z:bool = True z2:bool = True class C3(B): z:bool = True z2:bool = True z3:bool = True class C4(B): z:bool = True z2:bool = True z3:bool = True z4:bool = True class C5(B): z:bool = True z2:bool = True z3:bool = True z4:bool = True z5:bool = True a:A = None a2:A = None a3:A = None a4:A = None a5:A = None b:B = None b2:B = None b3:B = None b4:B = None b5:B = None c:C = None c2:C = None c3:C = None c4:C = None c5:C = None a = A() a2 = A() a3 = A() a4 = A() a5 = A() b = B() b2 = B() b3 = B() b4 = B() b5 = B() c = C() c2 = C() c3 = C() c4 = C() c5 = C() a.x = 1 b.x = a.x c.z = a.x == b.x
35e4783fdc79bd2c34545d469bcb5e0bd5cd5ee1
969fed6b9f4c0daa728bda52fea73d94bda6faad
/fakeTempControl/oxford/SIM_MERCURY.py
8052e93e5bcb55584ef3d3095d82cb5133ffb948
[]
no_license
ess-dmsc/essiip-fakesinqhw
7d4c0cb3e412a510db02f011fb9c20edfbd8a84f
ad65844c99e64692f07e7ea04d624154a92d57cd
refs/heads/master
2021-01-18T22:50:50.182268
2020-10-01T08:39:30
2020-10-01T08:39:30
87,077,121
0
0
null
2018-12-07T08:43:00
2017-04-03T13:28:23
Python
UTF-8
Python
false
false
4,643
py
#!/usr/bin/env python # vim: ft=python ts=8 sts=4 sw=4 expandtab autoindent smartindent nocindent # Author: Douglas Clowes ([email protected]) 2013-06-03 from twisted.internet.task import LoopingCall from twisted.internet import reactor from twisted.python import log, usage from MercurySCPI import MercurySCPI as MYBASE from MercuryFactory import MercuryFactory from MercuryProtocol import MercuryProtocol import os import sys sys.path.insert(0, os.path.realpath(os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]),"../../util")))) from displayscreen import Screen class MyOptions(usage.Options): optFlags = [ ["window", "w", "Create a display window"], ] optParameters = [ ["logfile", "l", None, "output logfile name"], ["port", "p", None, "port number to listen on"], ] def __init__(self): usage.Options.__init__(self) self['files'] = [] def parseArgs(self, *args): for arg in args: self['files'].append(arg) class MyScreen(Screen): def __init__(self, stdscr): Screen.__init__(self, stdscr) def sendLine(self, txt): global myDev myDev.protocol = self myDev.dataReceived(txt) def write(self, txt): try: newLine = self.lines[-1] + " => " + txt del self.lines[-1] self.addLine(newLine) except: pass class MYDEV(MYBASE): def __init__(self): MYBASE.__init__(self) print MYDEV.__name__, "ctor" def device_display(): global screen, myDev, myOpts, myPort, myFactory try: myDev.doIteration(); except: raise if not myOpts["window"]: return try: rows, cols = screen.stdscr.getmaxyx() screen.stdscr.addstr(0, 0, "Lnks:%2d" % myFactory.numProtocols) screen.stdscr.addstr(0, 10, "Rnd:%6.3f" % myDev.RANDOM) screen.stdscr.addstr(0, 22, "Identity : %s (%d)" % (myDev.IDN, myPort)) screen.stdscr.addstr(1, 0, "Valve: %8.4f%%" % myDev.valve_open) screen.stdscr.addstr(1, 20, "Helium: %8.4f%%" % myDev.hlev) screen.stdscr.addstr(1, 40, "Nitrogen: %8.4f%%" % myDev.nlev) base = 1 screen.stdscr.addstr(base + 1, 0, "Sensor :") screen.stdscr.addstr(base + 2, 0, "PV :") screen.stdscr.addstr(base + 3, 0, "Setpoint :") screen.stdscr.addstr(base + 4, 0, "T Delta :") screen.stdscr.addstr(base + 5, 0, "PV Delta :") for idx in myDev.CONFIG_SNSRS: if 12 + (idx - 1) * 12 > cols - 1: break screen.stdscr.addstr(base + 1, 12 + (idx - 1) * 12, "%8.3f" % myDev.Loops[idx].sensor) for idx in myDev.CONFIG_LOOPS: if 12 + (idx - 1) * 12 > cols - 1: break screen.stdscr.addstr(base + 2, 12 + (idx - 1) * 12, "%8.3f" % myDev.Loops[idx].pv) screen.stdscr.addstr(base + 3, 12 + (idx - 1) * 12, "%8.3f" % myDev.Loops[idx].setpoint) screen.stdscr.addstr(base + 4, 12 + (idx - 1) * 12, "%8.3f" % (myDev.Loops[idx].setpoint - myDev.Loops[idx].sensor)) screen.stdscr.addstr(base + 5, 12 + (idx - 1) * 12, "%8.3f" % (myDev.Loops[idx].setpoint - myDev.Loops[idx].pid_delta)) except: pass finally: try: screen.stdscr.refresh() except: pass if __name__ == "__main__": global screen, myDev, myOpts, myPort, myFactory myOpts = MyOptions() try: myOpts.parseOptions() except usage.UsageError, errortext: print '%s: %s' % (sys.argv[0], errortext) print '%s: Try --help for usage details.' % (sys.argv[0]) raise SystemExit, 1 myDev = MYDEV() default_port = 7020 myPort = default_port logfile = None if myOpts["port"]: myPort = int(myOpts["port"]) if myPort < 1025 or myPort > 65535: myPort = default_port if myOpts["window"]: logfile = "/tmp/Fake_Mercury_%d.log" % (myPort) if myOpts["logfile"]: logfile = myOpts["logfile"] if logfile: log.startLogging(open(logfile, "w")) else: log.startLogging(sys.stdout) #log.startLogging(sys.stderr) if myOpts["window"]: import curses stdscr = curses.initscr() screen = MyScreen(stdscr) # add screen object as a reader to the reactor reactor.addReader(screen) myFactory = MercuryFactory(MercuryProtocol, myDev, "\r") lc = LoopingCall(device_display) lc.start(0.250) reactor.listenTCP(myPort, myFactory) # server reactor.run()
47db47b32423507921839a5579f5c66157eed44b
d115cf7a1b374d857f6b094d4b4ccd8e9b1ac189
/pyplusplus_dev/pyplusplus/_logging_/__init__.py
a888e10fb87659587d0fef6b90646c31533e1bb1
[ "BSL-1.0" ]
permissive
gatoatigrado/pyplusplusclone
30af9065fb6ac3dcce527c79ed5151aade6a742f
a64dc9aeeb718b2f30bd6a5ff8dcd8bfb1cd2ede
refs/heads/master
2016-09-05T23:32:08.595261
2010-05-16T10:53:45
2010-05-16T10:53:45
700,369
4
2
null
null
null
null
UTF-8
Python
false
false
2,227
py
# Copyright 2004-2008 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) #TODO: find better place for it """defines logger classes""" import os import sys import logging import cStringIO from multi_line_formatter import multi_line_formatter_t def create_handler( stream=None ): handler = None if stream: handler = logging.StreamHandler(stream) else: handler = logging.StreamHandler(stream) handler.setFormatter( multi_line_formatter_t( os.linesep + '%(levelname)s: %(message)s' ) ) return handler def _create_logger_( name, stream=None ): """implementation details""" logger = logging.getLogger(name) logger.propagate = False logger.addHandler( create_handler(stream) ) logger.setLevel(logging.INFO) return logger class loggers: """class-namespace, defines few loggers classes, used in the project""" stream = None file_writer = _create_logger_( 'pyplusplus.file_writer' ) """logger for classes that write code to files""" declarations = _create_logger_( 'pyplusplus.declarations' ) """logger for declaration classes This is very import logger. All important messages: problems with declarations, warnings or hints are written to this logger. """ module_builder = _create_logger_( 'pyplusplus.module_builder' ) """logger that in use by :class:`module_builder.module_builder_t` class. Just another logger. It exists mostly for `Py++` developers. """ #root logger exists for configuration purpose only root = logging.getLogger( 'pyplusplus' ) """root logger exists for your convenience only""" all = [ root, file_writer, module_builder, declarations ] """contains all logger classes, defined by the class""" @staticmethod def make_inmemory(): loggers.stream = cStringIO.StringIO() for logger in loggers.all: map( lambda h: logger.removeHandler( h ), logger.handlers[:] ) logger.addHandler( create_handler( loggers.stream ) )
[ "roman_yakovenko@dc5859f9-2512-0410-ae5c-dd123cda1f76" ]
roman_yakovenko@dc5859f9-2512-0410-ae5c-dd123cda1f76
f5fded1a9cdae582a279e092b4b999bd1c6375da
c1c39c5e9456a4c175c651ba224a53c4a76f902a
/helpers/azure.py
dd8023fe4596e2fb34fbe94615ca383e28d235ef
[]
no_license
syllogy/cloud_sizes
5312c190c88303e78601496f3cc0206e5f7d0991
b97b782a2e786373992ca0ca51b40625d2d2ea91
refs/heads/master
2023-07-11T19:00:57.057759
2021-08-27T03:53:08
2021-08-27T03:54:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
987
py
#!/usr/bin/env python3 from netaddr import IPSet, IPNetwork from itertools import chain from requests import get import re def get_and_parse(): # I'm shocked, shocked I tell you to see that MS requires you do # something oddball like dig into an HTML page to get the latest # data file. url = "https://www.microsoft.com/en-us/download/confirmation.aspx?id=56519" data = get(url).text m = re.search('(?P<json>https://download.*?\.json)', data) url = m.group("json") data = get(url).json() # Pull out all of the IPs azure = IPSet(IPNetwork(y) for y in chain.from_iterable(x['properties']['addressPrefixes'] for x in data['values'])) # Pull out the v4 and v6 cidrs v4 = IPSet([x for x in azure.iter_cidrs() if x.network.version == 4]) v6 = IPSet([x for x in azure.iter_cidrs() if x.network.version == 6]) return "azure", "Azure", v4, v6, True if __name__ == "__main__": print("This module is not meant to be run directly")
9640b58c5a0cb8df3d449504d5764902b2ec7211
59df4e1fd50d2e81b6490bb5322084165033cefc
/seed.py
b773b252a7d0b6c0a87526060a0884f95e697567
[]
no_license
JKinsler/ratings-lab
0cfafd345e27f19dfcedb249a23d5bf7fc6eebb0
6c7196c36dd6c09074b84deca0653ae445ca7651
refs/heads/master
2023-02-08T11:03:30.762832
2020-02-06T20:12:57
2020-02-06T20:12:57
238,305,896
1
0
null
2023-02-02T05:13:18
2020-02-04T21:03:13
Python
UTF-8
Python
false
false
3,561
py
"""Utility file to seed ratings database from MovieLens data in seed_data/""" from sqlalchemy import func from datetime import datetime from model import User from model import Rating from model import Movie from model import connect_to_db, db from server import app def load_users(): """Load users from u.user into database.""" print("Users") # Delete all rows in table, so if we need to run this a second time, # we won't be trying to add duplicate users User.query.delete() # Read u.user file and insert data for row in open("seed_data/u.user"): row = row.rstrip() user_id, age, gender, occupation, zipcode = row.split("|") user = User(user_id=user_id, age=age, zipcode=zipcode) # We need to add to the session or it won't ever be stored db.session.add(user) # Once we're done, we should commit our work db.session.commit() def load_movies(): """Load movies from u.item into database.""" # >>> date_str6 = "01-Jan-1995" # >>> format6 = "%d-%b-%Y" # >>> date6 = datetime.strptime(date_str6, format6) # >>> date6 # datetime.datetime(1995, 1, 1, 0, 0) # >>> date6.year # 1995 print("Movies") # Delete all rows in table, so if we need to run this a second time, # we won't be trying to add duplicate users Movie.query.delete() # Read u.user file and insert data for row in open("seed_data/u.item"): row = row.rstrip() movie_data = row.split("|") # movie_id, title, released_at, _, imdb_url = movie_data[:5] title = movie_data[1].split() title.pop() title = ' '.join(title) released_at = movie_data[2] format_released_at = "%d-%b-%Y" date_released = datetime.strptime(released_at, format_released_at) movie = Movie(movie_id=movie_data[0], title=title, release_at=date_released, imdb_url = movie_data[4]) # We need to add to the session or it won't ever be stored db.session.add(movie) # Once we're done, we should commit our work db.session.commit() def load_ratings(): """Load ratings from u.data into database.""" print("Ratings") # Delete all rows in table, so if we need to run this a second time, # we won't be trying to add duplicate users Rating.query.delete() # Read u.user file and insert data for row in open("seed_data/u.data"): row = row.rstrip() user_id, movie_id, score = row.split()[:3] rating = Rating(user_id=user_id, movie_id=movie_id, score=score) # We need to add to the session or it won't ever be stored db.session.add(rating) # Once we're done, we should commit our work db.session.commit() def set_val_user_id(): """Set value for the next user_id after seeding database""" # Get the Max user_id in the database result = db.session.query(func.max(User.user_id)).one() max_id = int(result[0]) # Set the value for the next user_id to be max_id + 1 query = "SELECT setval('users_user_id_seq', :new_id)" db.session.execute(query, {'new_id': max_id + 1}) db.session.commit() if __name__ == "__main__": connect_to_db(app) # In case tables haven't been created, create them db.create_all() # Import different types of data load_users() load_movies() load_ratings() set_val_user_id()
d29db2d8b3506d66b6f9f90e3eb98490ae2db3e2
bcfa02c21a73798872bbb28303233d1f0039cf00
/server/www/packages/packages-darwin/x64/ldap3/protocol/sasl/kerberos.py
5000ebf430968b22f94a18fd3c42a8d85112d7ea
[ "Apache-2.0" ]
permissive
zhoulhb/teleport
6301cd50c951bcbac21cbe24017eb8421ff57adc
54da194697898ef77537cfe7032d774555dc1335
refs/heads/master
2021-11-10T17:10:59.661130
2021-11-09T11:16:19
2021-11-09T11:16:19
192,643,069
0
0
Apache-2.0
2019-06-19T02:20:53
2019-06-19T02:20:52
null
UTF-8
Python
false
false
5,038
py
""" """ # Created on 2015.04.08 # # Author: Giovanni Cannata # # Copyright 2015 - 2018 Giovanni Cannata # # This file is part of ldap3. # # ldap3 is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ldap3 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with ldap3 in the COPYING and COPYING.LESSER files. # If not, see <http://www.gnu.org/licenses/>. # original code by Hugh Cole-Baker, modified by Peter Foley # it needs the gssapi package import socket from ...core.exceptions import LDAPPackageUnavailableError, LDAPCommunicationError try: # noinspection PyPackageRequirements,PyUnresolvedReferences import gssapi except ImportError: raise LDAPPackageUnavailableError('package gssapi missing') from .sasl import send_sasl_negotiation, abort_sasl_negotiation NO_SECURITY_LAYER = 1 INTEGRITY_PROTECTION = 2 CONFIDENTIALITY_PROTECTION = 4 def sasl_gssapi(connection, controls): """ Performs a bind using the Kerberos v5 ("GSSAPI") SASL mechanism from RFC 4752. Does not support any security layers, only authentication! sasl_credentials can be empty or a tuple with one or two elements. The first element determines which service principal to request a ticket for and can be one of the following: - None or False, to use the hostname from the Server object - True to perform a reverse DNS lookup to retrieve the canonical hostname for the hosts IP address - A string containing the hostname The optional second element is what authorization ID to request. - If omitted or None, the authentication ID is used as the authorization ID - If a string, the authorization ID to use. Should start with "dn:" or "user:". """ target_name = None authz_id = b"" if connection.sasl_credentials: if len(connection.sasl_credentials) >= 1 and connection.sasl_credentials[0]: if connection.sasl_credentials[0] is True: hostname = socket.gethostbyaddr(connection.socket.getpeername()[0])[0] target_name = gssapi.Name('ldap@' + hostname, gssapi.NameType.hostbased_service) else: target_name = gssapi.Name('ldap@' + connection.sasl_credentials[0], gssapi.NameType.hostbased_service) if len(connection.sasl_credentials) >= 2 and connection.sasl_credentials[1]: authz_id = connection.sasl_credentials[1].encode("utf-8") if target_name is None: target_name = gssapi.Name('ldap@' + connection.server.host, gssapi.NameType.hostbased_service) creds = gssapi.Credentials(name=gssapi.Name(connection.user), usage='initiate') if connection.user else None ctx = gssapi.SecurityContext(name=target_name, mech=gssapi.MechType.kerberos, creds=creds) in_token = None try: while True: out_token = ctx.step(in_token) if out_token is None: out_token = '' result = send_sasl_negotiation(connection, controls, out_token) in_token = result['saslCreds'] try: # This raised an exception in gssapi<1.1.2 if the context was # incomplete, but was fixed in # https://github.com/pythongssapi/python-gssapi/pull/70 if ctx.complete: break except gssapi.exceptions.MissingContextError: pass unwrapped_token = ctx.unwrap(in_token) if len(unwrapped_token.message) != 4: raise LDAPCommunicationError("Incorrect response from server") server_security_layers = unwrapped_token.message[0] if not isinstance(server_security_layers, int): server_security_layers = ord(server_security_layers) if server_security_layers in (0, NO_SECURITY_LAYER): if unwrapped_token.message[1:] != '\x00\x00\x00': raise LDAPCommunicationError("Server max buffer size must be 0 if no security layer") if not (server_security_layers & NO_SECURITY_LAYER): raise LDAPCommunicationError("Server requires a security layer, but this is not implemented") client_security_layers = bytearray([NO_SECURITY_LAYER, 0, 0, 0]) out_token = ctx.wrap(bytes(client_security_layers)+authz_id, False) return send_sasl_negotiation(connection, controls, out_token.message) except (gssapi.exceptions.GSSError, LDAPCommunicationError): abort_sasl_negotiation(connection, controls) raise
242f05cd4aae7555fbe6bf5702093febdcbb83e4
81eff1c9bc75cd524153400cdbd7c453ee8e3635
/zxcar_ws/devel/lib/python2.7/dist-packages/astra_camera/srv/_GetDeviceType.py
09fd9a871d38977c6e36077b57b4a6a1ceed594b
[]
no_license
sukai33/zxcar_all
bbacbf85c5e7c93d2e98b03958342ec01e3dafd9
af389f095591a70cae01c1d116aa74d68223f317
refs/heads/master
2023-01-03T13:32:00.864543
2020-10-29T05:22:43
2020-10-29T05:22:43
300,556,457
0
0
null
null
null
null
UTF-8
Python
false
false
7,207
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from astra_camera/GetDeviceTypeRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GetDeviceTypeRequest(genpy.Message): _md5sum = "d41d8cd98f00b204e9800998ecf8427e" _type = "astra_camera/GetDeviceTypeRequest" _has_header = False # flag to mark the presence of a Header object _full_text = """""" __slots__ = [] _slot_types = [] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GetDeviceTypeRequest, self).__init__(*args, **kwds) def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: pass except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: pass except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I # This Python file uses the following encoding: utf-8 """autogenerated by genpy from astra_camera/GetDeviceTypeResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GetDeviceTypeResponse(genpy.Message): _md5sum = "4c8e9dd50b39344412b92ce9e1e9615c" _type = "astra_camera/GetDeviceTypeResponse" _has_header = False # flag to mark the presence of a Header object _full_text = """string device_type """ __slots__ = ['device_type'] _slot_types = ['string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: device_type :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GetDeviceTypeResponse, self).__init__(*args, **kwds) # message fields cannot be None, assign default values for those that are if self.device_type is None: self.device_type = '' else: self.device_type = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self.device_type length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.device_type = str[start:end].decode('utf-8') else: self.device_type = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self.device_type length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.device_type = str[start:end].decode('utf-8') else: self.device_type = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I class GetDeviceType(object): _type = 'astra_camera/GetDeviceType' _md5sum = '4c8e9dd50b39344412b92ce9e1e9615c' _request_class = GetDeviceTypeRequest _response_class = GetDeviceTypeResponse
de4a7ed167183486e87b3d21fa8d14dc7a5e85a7
0e887d0cd010434e101eece419229aa4813ad893
/image_captioning/data/datasets/coco.py
ddf7c7b787cd99e21faba7310fda4ee6fb6bb0f6
[]
no_license
congve1/image_captioning
2c11d3ee80f0836853c7decf1255ac879f7a90b6
64cadfb9e072313f45f536f539b3cb8deb0432cd
refs/heads/master
2020-04-10T07:49:14.748923
2019-01-28T10:47:33
2019-01-28T10:47:33
160,889,848
1
0
null
null
null
null
UTF-8
Python
false
false
4,524
py
import pickle import json import os import torch import lmdb import numpy as np import logging import time class COCODataset(torch.utils.data.dataset.Dataset): def __init__( self, root, att_features_paths_file, fc_features_paths_file, encoded_captions_file, encoded_captions_lens_file, cocoids_file, seq_per_img, **kwargs ): self.root = root self.seq_per_img = seq_per_img with open(att_features_paths_file, 'r') as f: self.att_features_paths = json.load(f) with open(fc_features_paths_file, 'r') as f: self.fc_features_paths = json.load(f) with open(cocoids_file, 'r') as f: self.cocoids = json.load(f) self.encoded_captions = torch.load(encoded_captions_file, map_location='cpu') self.encoded_captions_lens = torch.load(encoded_captions_lens_file, map_location='cpu') def __getitem__(self, index): att_feature = torch.load( self.att_features_paths[index//self.seq_per_img], map_location='cpu' ) fc_feature = torch.load( self.fc_features_paths[index//self.seq_per_img], map_location='cpu' ) cap_len = self.encoded_captions_lens[index] caption = self.encoded_captions[index] all_captions = self.encoded_captions[ (index//self.seq_per_img)*self.seq_per_img: ((index//self.seq_per_img)+1)*self.seq_per_img ] cocoid = self.cocoids[index//self.seq_per_img] data = dict() data['att_feature'] = att_feature.unsqueeze(0) data['fc_feature'] = fc_feature.unsqueeze(0) data['cap_len'] = cap_len data['caption'] = caption data['all_captions'] = all_captions data['cocoid'] = cocoid return att_feature.unsqueeze(0), fc_feature.unsqueeze(0), caption, cap_len, all_captions, cocoid def __len__(self): return len(self.encoded_captions_lens) class COCODatasetLMDB(torch.utils.data.dataset.Dataset): def __init__( self, root, att_features_lmdb, fc_features_lmdb, encoded_captions_file, encoded_captions_lens_file, cocoids_file, seq_per_img, att_feature_shape, fc_feature_shape, ): self.root = root self.seq_per_img = seq_per_img self.att_feature_shape = att_feature_shape self.fc_feature_shape = fc_feature_shape with open(cocoids_file, 'r') as f: self.cocoids = json.load(f) self.encoded_captions = torch.load( encoded_captions_file, map_location='cpu' ) self.encoded_captions_lens = torch.load( encoded_captions_lens_file, map_location='cpu' ) self.att_features_lmdb = lmdb.open( att_features_lmdb, readonly=True, max_readers=1, lock=False, readahead=False, meminit=False ) self.fc_features_lmdb = lmdb.open( fc_features_lmdb, readonly=True, max_readers=1, lock=False, readahead=False, meminit=False ) def __getitem__(self, index): att_features_lmdb = self.att_features_lmdb fc_features_lmdb = self.fc_features_lmdb cocoid = self.cocoids[index//self.seq_per_img] cocoid_enc = "{:8d}".format(cocoid).encode() with att_features_lmdb.begin(write=False) as txn: att_feature = txn.get(cocoid_enc) att_feature = np.frombuffer(att_feature, dtype=np.float32) att_feature = att_feature.reshape(self.att_feature_shape) att_feature = torch.from_numpy(att_feature) with fc_features_lmdb.begin(write=False) as txn: fc_feature = txn.get(cocoid_enc) fc_feature = np.frombuffer(fc_feature, dtype=np.float32) fc_feature = fc_feature.reshape(self.fc_feature_shape) fc_feature = torch.from_numpy(fc_feature) caption = self.encoded_captions[index] caption_len = self.encoded_captions_lens[index] all_captions = self.encoded_captions[ (index//self.seq_per_img)*self.seq_per_img: ((index//self.seq_per_img)+1)*self.seq_per_img ] return att_feature, fc_feature, caption, caption_len, all_captions, cocoid def __len__(self): return len(self.encoded_captions_lens)
8464caf19dff35b15183b1d7669a91eeb8c8a1aa
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02712/s290713931.py
2f012061dba1cd50f56bd01af90ace84c3b45931
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
def resolve(): n = int(input()) ans = 0 for i in range(1,n+1): if i%3!=0 and i%5!=0: ans += i print(ans) resolve()
d1e7e62a9d44e4e9e7610fc1d65b6f674190a87f
649bd422025e421d86025743eac324c9b882a2e8
/exam/1_three-dimensional_atomic_system/dump/phasetrans/temp39_5000.py
29c3c85bcf5c2204ff27a92509062b40b32f8297
[]
no_license
scheuclu/atom_class
36ddee1f6a5995872e858add151c5942c109847c
0c9a8c63d9b38898c1869fe8983126cef17662cd
refs/heads/master
2021-01-21T10:52:28.448221
2017-03-07T23:04:41
2017-03-07T23:04:41
83,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
68,887
py
ITEM: TIMESTEP 5000 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp 7.5068537206807662e-01 4.6449314627930377e+01 7.5068537206807662e-01 4.6449314627930377e+01 7.5068537206807662e-01 4.6449314627930377e+01 ITEM: ATOMS id type xs ys zs 8 1 0.121758 0.058572 0.0589443 35 1 0.0657156 0.12252 0.0621003 130 1 0.0596188 0.0579964 0.119268 165 1 0.120955 0.124623 0.123852 4 1 0.998358 0.060293 0.0630413 529 1 0.4999 0.0028381 0.50232 157 1 0.877879 0.00292259 0.127808 1545 1 0.249464 0.498355 0.498707 1437 1 0.872011 0.500278 0.371233 12 1 0.245815 0.054499 0.0646524 39 1 0.183149 0.120109 0.0581227 43 1 0.310374 0.123157 0.0573648 134 1 0.18413 0.0614764 0.12203 138 1 0.310009 0.0594074 0.1251 169 1 0.250985 0.117757 0.11759 133 1 0.123192 0.00101281 0.124813 517 1 0.128825 -0.000420227 0.500043 1435 1 0.808862 0.497389 0.437086 287 1 0.94097 0.00746005 0.31242 1439 1 0.937119 0.49925 0.433094 126 1 0.935772 0.43593 0.00114865 16 1 0.373926 0.0622225 0.063841 47 1 0.431975 0.128575 0.060588 142 1 0.442034 0.0637686 0.123524 173 1 0.372627 0.123082 0.12359 20 1 0.505102 0.0606663 0.0618842 177 1 0.499706 0.124292 0.114763 512 1 0.876805 0.435466 0.43424 1413 1 0.126736 0.498404 0.377649 149 1 0.627315 -0.00373566 0.124541 24 1 0.624646 0.0672208 0.0679062 51 1 0.567129 0.123396 0.067843 146 1 0.55643 0.0623638 0.129298 181 1 0.625827 0.129378 0.129421 511 1 0.938829 0.374069 0.439332 94 1 0.933518 0.31385 0.00328413 153 1 0.751841 0.00210927 0.122782 28 1 0.753254 0.0619327 0.0557759 55 1 0.685718 0.128101 0.0594816 59 1 0.814752 0.126312 0.0624364 150 1 0.684319 0.0671745 0.123824 154 1 0.813859 0.064354 0.119806 185 1 0.749826 0.123459 0.126332 510 1 0.936745 0.436082 0.371372 387 1 0.0652053 0.00426827 0.437261 509 1 0.874709 0.373651 0.380012 151 1 0.688717 0.00236977 0.185034 161 1 0.0036233 0.124917 0.121295 32 1 0.876098 0.0648643 0.063624 63 1 0.938357 0.120754 0.0586687 158 1 0.941356 0.0657517 0.129667 189 1 0.874457 0.120056 0.130156 569 1 0.753055 0.125166 0.502056 155 1 0.812983 0.00690763 0.183537 40 1 0.125086 0.182955 0.0598963 67 1 0.0620775 0.245924 0.0580646 72 1 0.125766 0.310767 0.0627179 162 1 0.0675743 0.189851 0.126325 194 1 0.0620894 0.312353 0.121928 197 1 0.13153 0.248765 0.122406 193 1 -0.00158864 0.25072 0.12488 283 1 0.813054 0.000492586 0.316246 279 1 0.683538 0.00325612 0.309613 277 1 0.628304 0.002408 0.247509 1293 1 0.378026 0.502305 0.24918 65 1 0.997671 0.248942 -0.00195186 44 1 0.252664 0.187673 0.060867 71 1 0.18938 0.247468 0.0572194 75 1 0.316654 0.249191 0.0621181 76 1 0.255657 0.311777 0.0606825 166 1 0.189157 0.185589 0.119575 170 1 0.312539 0.188992 0.12852 198 1 0.191035 0.31549 0.122251 201 1 0.24366 0.250947 0.124443 202 1 0.319594 0.311354 0.125291 630 1 0.68519 0.439551 0.493959 626 1 0.556744 0.439507 0.49568 48 1 0.373101 0.186222 0.0608044 79 1 0.435622 0.252903 0.0638071 80 1 0.375973 0.3119 0.064777 174 1 0.431026 0.18651 0.124345 205 1 0.372361 0.248709 0.128824 206 1 0.436694 0.311619 0.124062 84 1 0.497552 0.31307 0.0625616 209 1 0.498225 0.24896 0.123572 52 1 0.496669 0.190402 0.0596287 56 1 0.627596 0.189689 0.0616254 83 1 0.56717 0.248555 0.055723 88 1 0.625055 0.310131 0.0587769 178 1 0.559983 0.189012 0.125392 210 1 0.566993 0.30622 0.11962 213 1 0.630606 0.246345 0.122209 281 1 0.74729 0.000812234 0.250073 60 1 0.751268 0.183809 0.0569283 87 1 0.687137 0.248891 0.0616348 91 1 0.813028 0.249002 0.0606998 92 1 0.75124 0.310388 0.0593712 182 1 0.698188 0.187218 0.124255 186 1 0.805642 0.193389 0.122938 214 1 0.687007 0.31196 0.126033 217 1 0.750461 0.256795 0.124552 218 1 0.809928 0.314053 0.126518 634 1 0.808358 0.435949 0.497141 546 1 0.0650096 0.181395 0.495536 1561 1 0.748913 0.502005 0.495137 68 1 0.999191 0.305538 0.0611265 36 1 1.00022 0.191796 0.0648101 64 1 0.875636 0.187238 0.0685257 95 1 0.934503 0.246324 0.0658631 96 1 0.875993 0.311539 0.0654339 190 1 0.934385 0.185427 0.129537 221 1 0.871159 0.249006 0.128886 222 1 0.934495 0.310071 0.131591 99 1 0.0636752 0.375702 0.0637083 104 1 0.124966 0.432453 0.0610073 226 1 0.0617737 0.436781 0.123571 229 1 0.12916 0.374246 0.123462 225 1 0.995792 0.373027 0.124833 103 1 0.193444 0.373967 0.061916 107 1 0.315441 0.376126 0.065408 108 1 0.250716 0.437268 0.0591993 230 1 0.187187 0.441444 0.123869 233 1 0.256128 0.373229 0.126387 234 1 0.316938 0.437597 0.120317 263 1 0.189654 -0.00117489 0.308592 53 1 0.626087 0.124695 -0.00112051 19 1 0.563051 0.000464923 0.0662376 111 1 0.440613 0.379951 0.0645694 112 1 0.375435 0.439242 0.0610576 237 1 0.378057 0.379546 0.125126 238 1 0.441019 0.438119 0.124049 116 1 0.50079 0.438875 0.0638467 1411 1 0.0585582 0.494165 0.437284 508 1 0.747951 0.434528 0.432202 21 1 0.631327 -0.000680646 0.00385419 593 1 0.497438 0.250702 0.496495 241 1 0.50091 0.372685 0.124378 115 1 0.559125 0.376714 0.0609987 120 1 0.627586 0.440749 0.0584936 242 1 0.566833 0.439836 0.125204 245 1 0.625692 0.375349 0.122784 118 1 0.688305 0.435379 0.00127316 507 1 0.814042 0.373336 0.434754 506 1 0.813942 0.43782 0.376696 119 1 0.691172 0.370317 0.0585065 123 1 0.808916 0.373964 0.0621546 124 1 0.751649 0.435983 0.0617957 246 1 0.693842 0.44017 0.118864 249 1 0.74973 0.37447 0.125263 250 1 0.813593 0.435008 0.124195 505 1 0.751208 0.373042 0.376369 405 1 0.621404 0.00225951 0.367083 261 1 0.120834 0.00288589 0.252862 100 1 0.9969 0.439546 0.0649233 127 1 0.938058 0.371648 0.0621113 128 1 0.870658 0.440649 0.0593219 253 1 0.872457 0.377462 0.124828 254 1 0.937705 0.435528 0.129625 29 1 0.873961 0.00011144 0.00289383 503 1 0.686836 0.373315 0.433273 136 1 0.121025 0.0614066 0.18618 163 1 0.06323 0.120623 0.186336 258 1 0.0611854 0.0647285 0.248766 264 1 0.122193 0.0607799 0.309324 291 1 0.0661837 0.127426 0.308504 293 1 0.127238 0.126999 0.241331 132 1 0.00617616 0.0572664 0.18476 260 1 0.000757671 0.0653824 0.311059 289 1 0.00118341 0.123875 0.245589 1295 1 0.439093 0.499642 0.31502 597 1 0.625932 0.251855 0.497587 1179 1 0.815015 0.495985 0.186797 49 1 0.498865 0.121995 0.00771856 140 1 0.245071 0.0622996 0.181947 167 1 0.190211 0.125974 0.181876 171 1 0.309709 0.126984 0.189424 262 1 0.182668 0.0636008 0.245119 266 1 0.313478 0.0585878 0.243803 268 1 0.249265 0.0637293 0.303433 295 1 0.187577 0.128377 0.307111 297 1 0.249786 0.122944 0.248843 299 1 0.315891 0.122233 0.304919 403 1 0.559851 -0.000495284 0.438007 393 1 0.249714 0.00275317 0.372882 1541 1 0.121161 0.496888 0.499172 144 1 0.376427 0.0616385 0.188816 175 1 0.436055 0.12153 0.187297 270 1 0.435277 0.0665724 0.252044 272 1 0.3737 0.062903 0.310578 301 1 0.373749 0.127256 0.246671 303 1 0.433748 0.124311 0.315413 276 1 0.500886 0.0597201 0.316422 305 1 0.497364 0.125751 0.253326 502 1 0.684712 0.437359 0.374925 148 1 0.496513 0.0565015 0.190569 152 1 0.622572 0.0592656 0.181894 179 1 0.555401 0.126118 0.187101 274 1 0.565191 0.0650265 0.246389 280 1 0.620876 0.0691536 0.311418 307 1 0.559319 0.125999 0.312231 309 1 0.628875 0.12599 0.248062 514 1 0.0640562 0.0626954 0.49734 156 1 0.751345 0.0643039 0.189544 183 1 0.68793 0.127598 0.190361 187 1 0.812362 0.120584 0.189297 278 1 0.686025 0.064702 0.25297 282 1 0.813166 0.0608465 0.249989 284 1 0.750295 0.0581787 0.311199 311 1 0.692462 0.124184 0.31822 313 1 0.7505 0.125176 0.253121 315 1 0.816728 0.12192 0.310265 160 1 0.876842 0.0657998 0.192061 191 1 0.939783 0.125214 0.185331 286 1 0.940792 0.0679575 0.248748 288 1 0.874652 0.0609606 0.314595 317 1 0.872687 0.127143 0.251116 319 1 0.939618 0.127404 0.3139 558 1 0.439104 0.191641 0.495904 159 1 0.939554 0.00388893 0.187451 168 1 0.130981 0.186064 0.183337 195 1 0.0662406 0.248504 0.186608 200 1 0.12462 0.309844 0.183955 290 1 0.0649318 0.187681 0.246449 296 1 0.129034 0.192133 0.314016 322 1 0.0620802 0.308843 0.252227 323 1 0.0613101 0.247859 0.313334 325 1 0.128432 0.254414 0.254625 328 1 0.123509 0.311927 0.31467 164 1 0.0049422 0.187174 0.184884 292 1 1.00186 0.181017 0.313505 321 1 0.00162419 0.243766 0.246965 172 1 0.245328 0.190286 0.185914 199 1 0.189675 0.252217 0.187067 203 1 0.312181 0.253009 0.189691 204 1 0.250082 0.311463 0.182997 294 1 0.18267 0.188915 0.249941 298 1 0.315182 0.192713 0.246007 300 1 0.250008 0.186311 0.311657 326 1 0.189792 0.312582 0.250856 327 1 0.186067 0.25531 0.317331 329 1 0.247412 0.248668 0.254271 330 1 0.310715 0.316876 0.250867 331 1 0.31594 0.249602 0.30715 332 1 0.252521 0.316058 0.3104 176 1 0.375086 0.187273 0.189353 207 1 0.438346 0.251413 0.184849 208 1 0.37761 0.311936 0.190053 302 1 0.437205 0.18358 0.249734 304 1 0.381255 0.185957 0.310839 333 1 0.379612 0.251136 0.251415 334 1 0.438691 0.313175 0.251342 335 1 0.43926 0.251261 0.313341 336 1 0.375568 0.315865 0.314962 308 1 0.500299 0.185899 0.312454 212 1 0.502669 0.310199 0.186458 180 1 0.497223 0.186079 0.187428 340 1 0.495686 0.315478 0.314796 337 1 0.504312 0.249428 0.254915 184 1 0.62028 0.188628 0.190794 211 1 0.563571 0.250133 0.186314 216 1 0.622064 0.308594 0.187609 306 1 0.5649 0.187583 0.252212 312 1 0.623082 0.185981 0.31229 338 1 0.56547 0.311684 0.24645 339 1 0.561926 0.249528 0.315014 341 1 0.624547 0.248136 0.251119 344 1 0.626478 0.309389 0.314662 188 1 0.7524 0.189035 0.192408 215 1 0.686782 0.25233 0.189017 219 1 0.811231 0.255884 0.189892 220 1 0.748175 0.314171 0.192363 310 1 0.689192 0.189126 0.251463 314 1 0.812614 0.18689 0.256784 316 1 0.749651 0.184053 0.316675 342 1 0.686997 0.311207 0.254139 343 1 0.686184 0.248 0.315239 345 1 0.750841 0.251459 0.250534 346 1 0.812882 0.314554 0.253469 347 1 0.811721 0.25092 0.314639 348 1 0.746014 0.308483 0.314289 324 1 1.00097 0.309314 0.314811 196 1 0.00635607 0.306134 0.184186 192 1 0.870776 0.185378 0.18257 223 1 0.938148 0.245643 0.18817 224 1 0.870532 0.314837 0.187698 318 1 0.933926 0.186584 0.246966 320 1 0.878269 0.188893 0.309845 349 1 0.87574 0.250895 0.249268 350 1 0.938863 0.312436 0.244878 351 1 0.940205 0.247113 0.308881 352 1 0.875276 0.311819 0.313365 227 1 0.0609381 0.374037 0.185224 232 1 0.126789 0.436061 0.185524 354 1 0.0687151 0.43646 0.245666 355 1 0.0648274 0.374729 0.314661 357 1 0.124953 0.371541 0.252105 360 1 0.126141 0.435232 0.310228 353 1 0.00737459 0.378881 0.248953 228 1 0.00381557 0.436524 0.188822 267 1 0.312093 -0.00049466 0.307208 497 1 0.49499 0.377431 0.372602 231 1 0.187222 0.372828 0.19109 235 1 0.313505 0.374949 0.189294 236 1 0.248646 0.433923 0.182088 358 1 0.192508 0.439827 0.244313 359 1 0.187587 0.379727 0.312496 361 1 0.250858 0.381277 0.250927 362 1 0.314139 0.437583 0.249859 363 1 0.313008 0.3777 0.309896 364 1 0.253606 0.438689 0.31572 239 1 0.441768 0.372497 0.190964 240 1 0.378127 0.435464 0.189936 365 1 0.377515 0.37445 0.252692 366 1 0.440855 0.441743 0.253763 367 1 0.434434 0.375493 0.312563 368 1 0.379997 0.439741 0.308989 244 1 0.501217 0.440576 0.187389 369 1 0.503724 0.376941 0.249609 1309 1 0.875994 0.496591 0.252356 1181 1 0.874792 0.49866 0.127367 1565 1 0.875756 0.498908 0.499188 372 1 0.508022 0.436674 0.312475 243 1 0.56229 0.371895 0.181302 248 1 0.632584 0.437727 0.18616 370 1 0.567735 0.433438 0.246972 371 1 0.567269 0.372743 0.312967 373 1 0.63176 0.378234 0.255137 376 1 0.622851 0.436406 0.313314 1287 1 0.189665 0.495646 0.309865 501 1 0.621857 0.372332 0.372864 247 1 0.687484 0.375408 0.190952 251 1 0.810412 0.374425 0.190794 252 1 0.753058 0.434795 0.185291 374 1 0.688513 0.439401 0.255694 375 1 0.690382 0.374161 0.316567 377 1 0.747358 0.373712 0.254308 378 1 0.814447 0.435486 0.251336 379 1 0.811543 0.377306 0.31407 380 1 0.748318 0.439322 0.314531 17 1 0.497943 0.00276012 0.00291542 498 1 0.561003 0.44036 0.376134 385 1 0.999865 0.000934292 0.376688 504 1 0.621817 0.43511 0.435609 1285 1 0.128438 0.499969 0.245161 356 1 0.00184031 0.439498 0.312041 255 1 0.941522 0.374264 0.187374 256 1 0.871888 0.436971 0.190209 381 1 0.874326 0.378328 0.251864 382 1 0.943787 0.43293 0.249767 383 1 0.938133 0.373349 0.310048 384 1 0.874534 0.438204 0.311295 499 1 0.558973 0.368158 0.433046 386 1 0.064877 0.0636408 0.374009 392 1 0.129404 0.0575586 0.432717 419 1 0.0670459 0.1273 0.434088 421 1 0.130044 0.12216 0.370122 417 1 0.00544874 0.12703 0.375008 388 1 -0.000244197 0.0637013 0.442593 1283 1 0.0682755 0.49879 0.314322 500 1 0.495769 0.43184 0.438929 1429 1 0.618668 0.504868 0.374214 494 1 0.439654 0.439615 0.379303 390 1 0.18843 0.0613245 0.370132 394 1 0.312685 0.0589823 0.378104 396 1 0.250094 0.0643323 0.438472 423 1 0.189701 0.123093 0.434757 425 1 0.252303 0.118784 0.371318 427 1 0.310632 0.1241 0.435746 1171 1 0.568008 0.499429 0.182841 398 1 0.439975 0.0591869 0.372688 400 1 0.379241 0.0638334 0.442318 429 1 0.375426 0.124688 0.378197 431 1 0.4365 0.125335 0.436723 433 1 0.499048 0.124148 0.372995 404 1 0.496377 0.0651992 0.437046 496 1 0.376009 0.440814 0.437518 415 1 0.935124 5.72347e-05 0.445273 409 1 0.745756 -0.000689034 0.371486 402 1 0.560739 0.059479 0.368698 408 1 0.622335 0.0592218 0.439296 435 1 0.561079 0.124158 0.439661 437 1 0.623559 0.125218 0.378577 1291 1 0.314864 0.496423 0.311275 406 1 0.684947 0.0599263 0.374174 410 1 0.815994 0.0639174 0.379697 412 1 0.749387 0.061466 0.437791 439 1 0.683923 0.124642 0.43735 441 1 0.749736 0.121159 0.375072 443 1 0.811818 0.122212 0.437563 1031 1 0.188034 0.499609 0.062535 493 1 0.370022 0.378832 0.377106 414 1 0.93692 0.0615694 0.379828 416 1 0.873608 0.0616969 0.440451 445 1 0.878736 0.121915 0.378693 447 1 0.93903 0.121833 0.43909 418 1 0.0624907 0.187799 0.373822 424 1 0.12709 0.187881 0.437602 450 1 0.0616973 0.30977 0.3745 451 1 0.0612117 0.246298 0.439194 453 1 0.126112 0.245237 0.376643 456 1 0.119273 0.313442 0.438764 452 1 0.997035 0.312531 0.437166 573 1 0.871482 0.12432 0.497534 422 1 0.193485 0.186957 0.378415 426 1 0.313403 0.185759 0.369218 428 1 0.256748 0.196372 0.436127 454 1 0.183375 0.315188 0.376502 455 1 0.186643 0.249465 0.437483 457 1 0.252139 0.253187 0.376602 458 1 0.309407 0.31475 0.372479 459 1 0.314808 0.252292 0.438579 460 1 0.247343 0.309088 0.439929 1409 1 0.00174099 0.498602 0.37189 257 1 0.998864 0.00260438 0.252913 521 1 0.256174 -0.000763557 0.498856 430 1 0.435266 0.186431 0.375228 432 1 0.377291 0.193068 0.436476 461 1 0.376363 0.248815 0.369227 462 1 0.4337 0.314681 0.374554 463 1 0.434929 0.254086 0.434956 464 1 0.372315 0.316552 0.43115 468 1 0.496623 0.312206 0.434692 436 1 0.499354 0.184368 0.439305 1421 1 0.373684 0.496454 0.377061 1055 1 0.937527 0.494366 0.0645669 465 1 0.497851 0.245441 0.375794 434 1 0.561656 0.184707 0.374857 440 1 0.625771 0.188291 0.43779 466 1 0.562517 0.3068 0.375596 467 1 0.562669 0.24671 0.436285 469 1 0.627358 0.250604 0.372349 472 1 0.624344 0.312861 0.438128 1029 1 0.127575 0.498452 0.00406185 395 1 0.315662 0.00480552 0.440841 489 1 0.248989 0.372069 0.376717 474 1 0.808983 0.310106 0.37763 473 1 0.747976 0.2455 0.378493 471 1 0.687224 0.25308 0.439811 470 1 0.68893 0.312048 0.37819 476 1 0.750264 0.313718 0.440371 475 1 0.81331 0.244447 0.438752 438 1 0.688248 0.185105 0.376755 442 1 0.815682 0.185215 0.372668 444 1 0.751112 0.187272 0.439451 486 1 0.187087 0.43757 0.373392 1419 1 0.312927 0.498066 0.437536 420 1 0.00274823 0.18393 0.438084 449 1 0.998735 0.245569 0.374978 448 1 0.87644 0.186307 0.43644 446 1 0.940905 0.183089 0.379532 480 1 0.873181 0.308411 0.437074 478 1 0.934562 0.313423 0.376982 479 1 0.93882 0.247799 0.43924 477 1 0.877912 0.249941 0.374555 1047 1 0.691523 0.497523 0.059984 490 1 0.30521 0.437248 0.380208 481 1 -0.00139533 0.372541 0.369746 483 1 0.0595194 0.374613 0.432325 485 1 0.12642 0.374417 0.373764 482 1 0.0617108 0.434056 0.371718 484 1 0.998784 0.439876 0.43707 488 1 0.121673 0.434201 0.441063 495 1 0.432605 0.374863 0.439407 1051 1 0.809304 0.49941 0.0567784 491 1 0.313951 0.37703 0.440025 487 1 0.182825 0.377333 0.43545 618 1 0.319445 0.440074 0.502059 492 1 0.246527 0.434032 0.437157 125 1 0.876371 0.378322 0.00254029 557 1 0.37545 0.130688 0.499845 553 1 0.252846 0.12515 0.498654 582 1 0.185908 0.309419 0.496193 578 1 0.0617518 0.310891 0.497621 538 1 0.810159 0.0639959 0.498127 594 1 0.56288 0.3154 0.49927 121 1 0.750357 0.372788 0.000433584 601 1 0.747641 0.250041 0.501852 90 1 0.814572 0.311062 0.00171089 613 1 0.123851 0.37395 0.499244 621 1 0.374282 0.376939 0.501238 518 1 0.190035 0.063357 0.497535 622 1 0.432884 0.440806 0.5037 533 1 0.623938 -0.000145783 0.496925 629 1 0.622314 0.37576 0.497223 550 1 0.187098 0.188303 0.500558 1553 1 0.500665 0.502998 0.497335 109 1 0.373667 0.374696 0.000291177 625 1 0.492717 0.372066 0.496932 61 1 0.875302 0.122114 -0.00198008 10 1 0.311793 0.0535469 0.000124659 41 1 0.253993 0.120961 1.58014e-05 78 1 0.436094 0.316141 0.00302446 549 1 0.127649 0.122337 0.49693 117 1 0.627605 0.378247 0.00473189 114 1 0.55773 0.435181 -0.000762633 105 1 0.255909 0.374148 0.00321326 70 1 0.186348 0.307939 0.00265403 54 1 0.689772 0.186742 -0.000555825 14 1 0.431188 0.0612439 0.00674459 93 1 0.875572 0.248555 0.00145584 2 1 0.0574664 0.0581058 -0.000244689 22 1 0.687998 0.0605449 0.00340977 98 1 0.0641755 0.432895 0.00456919 74 1 0.316258 0.309007 0.0020419 97 1 1.00101 0.373305 0.00180931 18 1 0.564557 0.0607683 0.00303077 81 1 0.497673 0.249871 -0.000734111 73 1 0.254072 0.251463 0.00011784 50 1 0.558294 0.183935 0.00613584 62 1 0.935075 0.184814 0.00076914 1033 1 0.25193 0.500914 0.0034667 101 1 0.127435 0.374932 0.000771703 520 1 0.126347 0.0621627 0.561358 547 1 0.0601259 0.124776 0.557245 642 1 0.066521 0.0674857 0.621459 677 1 0.12641 0.128299 0.62336 673 1 0.00202445 0.13024 0.621019 516 1 1.00037 0.0588065 0.560662 1025 1 0.996916 0.499407 0.998923 524 1 0.252123 0.0604567 0.562308 551 1 0.19087 0.121406 0.560148 555 1 0.312639 0.124845 0.564346 646 1 0.192098 0.0642654 0.627797 650 1 0.31149 0.0654973 0.626587 681 1 0.251661 0.131008 0.624964 996 1 0.00107826 0.436774 0.937315 534 1 0.686281 0.0642217 0.498538 519 1 0.190127 -0.000218844 0.559619 528 1 0.374129 0.0654484 0.56473 559 1 0.435473 0.13026 0.559615 654 1 0.440981 0.0655679 0.618902 685 1 0.370277 0.125181 0.628748 532 1 0.501435 0.0694454 0.562196 515 1 0.0628206 0.00647217 0.558313 1921 1 0.00115534 0.497472 0.874509 1024 1 0.876592 0.436727 0.933702 689 1 0.502004 0.126014 0.627058 536 1 0.623459 0.0686708 0.561101 563 1 0.560992 0.130997 0.567443 658 1 0.562816 0.0679724 0.623046 693 1 0.628689 0.129969 0.627219 1925 1 0.127782 0.49882 0.878824 540 1 0.747524 0.0632775 0.566718 567 1 0.684687 0.125822 0.560796 571 1 0.807582 0.123752 0.561071 662 1 0.686335 0.0612372 0.626329 666 1 0.808974 0.0641091 0.628617 697 1 0.747783 0.126788 0.628297 577 1 0.0024803 0.243415 0.504426 793 1 0.74884 0.00145008 0.751619 544 1 0.870912 0.062261 0.560401 575 1 0.935708 0.127166 0.562369 670 1 0.938012 0.0652989 0.626683 701 1 0.876719 0.12823 0.6241 602 1 0.80961 0.313318 0.503876 527 1 0.441533 0.000190652 0.562335 797 1 0.873885 0.000192011 0.752661 1923 1 0.0648927 0.49384 0.938456 552 1 0.128444 0.188909 0.56031 579 1 0.0623633 0.25144 0.561487 584 1 0.130436 0.317502 0.562526 674 1 0.0678005 0.189598 0.623621 706 1 0.0692976 0.310244 0.629504 709 1 0.130847 0.25305 0.627392 580 1 0.00361365 0.311059 0.56572 705 1 0.00455333 0.250184 0.628653 581 1 0.118906 0.253434 0.502983 556 1 0.251762 0.190185 0.564679 583 1 0.185307 0.252261 0.563623 587 1 0.313258 0.251586 0.567029 588 1 0.250699 0.30791 0.56411 678 1 0.187236 0.187732 0.625021 682 1 0.310346 0.190875 0.629857 710 1 0.188049 0.314638 0.624194 713 1 0.244691 0.25128 0.624284 714 1 0.309363 0.310771 0.627737 667 1 0.810818 0.00284162 0.690633 663 1 0.687762 0.00187379 0.692127 1053 1 0.876981 0.497275 0.996213 560 1 0.369902 0.188325 0.568292 591 1 0.434084 0.244099 0.565408 592 1 0.373883 0.308857 0.56644 686 1 0.439691 0.185726 0.627921 717 1 0.377547 0.244943 0.629304 718 1 0.436701 0.311927 0.622748 596 1 0.496777 0.30805 0.55794 781 1 0.37394 0.00168455 0.748374 899 1 0.0605541 0.00225163 0.930636 785 1 0.501451 0.00288286 0.750465 564 1 0.500265 0.191332 0.564006 721 1 0.497337 0.249582 0.628271 568 1 0.624153 0.190292 0.562079 595 1 0.565305 0.249681 0.561779 600 1 0.617267 0.315835 0.56234 690 1 0.563307 0.189245 0.624029 722 1 0.561434 0.312495 0.625077 725 1 0.627097 0.248534 0.627351 522 1 0.314563 0.0676797 0.500465 572 1 0.749762 0.184839 0.562293 599 1 0.683557 0.257447 0.559728 603 1 0.806566 0.248331 0.562979 604 1 0.746783 0.314032 0.56197 694 1 0.69193 0.188261 0.626218 698 1 0.808999 0.185673 0.625035 726 1 0.685065 0.314654 0.626426 729 1 0.741306 0.249149 0.623144 730 1 0.804958 0.312588 0.620183 548 1 0.00341449 0.189785 0.562142 576 1 0.87049 0.186972 0.560913 607 1 0.941137 0.251862 0.563788 608 1 0.875283 0.311779 0.568197 702 1 0.941061 0.190543 0.626345 733 1 0.875607 0.250526 0.622121 734 1 0.936675 0.312675 0.623909 530 1 0.565077 0.0639073 0.500453 791 1 0.687933 0.000629886 0.815558 606 1 0.93879 0.311472 0.505514 611 1 0.0608009 0.377099 0.56777 616 1 0.124974 0.438803 0.561301 738 1 0.0638334 0.443524 0.628356 741 1 0.122935 0.379267 0.625218 565 1 0.620971 0.130746 0.501995 615 1 0.187519 0.375378 0.558169 619 1 0.319554 0.371103 0.566676 620 1 0.250536 0.435017 0.564973 742 1 0.183175 0.441162 0.624257 745 1 0.249529 0.378725 0.622201 746 1 0.313876 0.437082 0.625788 1815 1 0.686058 0.499688 0.807529 1543 1 0.18694 0.501266 0.567065 897 1 0.998749 0.0028245 0.871997 1673 1 0.252741 0.499618 0.6212 623 1 0.434563 0.374283 0.564211 624 1 0.376514 0.43895 0.564143 749 1 0.378338 0.373248 0.630675 750 1 0.43917 0.434081 0.621447 628 1 0.500731 0.440017 0.560138 773 1 0.124118 0.00519189 0.748547 574 1 0.934912 0.189016 0.503339 643 1 0.0608905 0.00631407 0.683468 610 1 0.0610486 0.432385 0.503139 1677 1 0.374632 0.498823 0.62102 753 1 0.497118 0.372556 0.62028 627 1 0.560498 0.379374 0.561243 632 1 0.623485 0.435459 0.557836 754 1 0.555659 0.441571 0.621252 757 1 0.619625 0.376848 0.627592 1023 1 0.938772 0.375945 0.940173 769 1 0.996347 0.000678135 0.750923 617 1 0.252133 0.372706 0.504653 1022 1 0.938985 0.43819 0.875554 631 1 0.681344 0.37586 0.562646 635 1 0.812524 0.376208 0.563026 636 1 0.747519 0.437272 0.555423 758 1 0.684803 0.435183 0.620203 761 1 0.745557 0.378214 0.621513 762 1 0.807839 0.436123 0.624517 1021 1 0.875072 0.372394 0.883398 771 1 0.0618268 0.00500239 0.808597 612 1 0.999598 0.437622 0.570134 737 1 0.000824907 0.37275 0.626886 639 1 0.93695 0.375761 0.562903 640 1 0.869398 0.436701 0.563827 765 1 0.87617 0.372017 0.627045 766 1 0.936758 0.437935 0.624495 1951 1 0.937366 0.498583 0.935587 42 1 0.314434 0.187761 1.00119 648 1 0.123312 0.0670946 0.683689 675 1 0.0665792 0.127853 0.682936 770 1 0.0618022 0.0683261 0.751108 776 1 0.12438 0.0630865 0.811577 803 1 0.0621952 0.126394 0.809845 805 1 0.121451 0.128145 0.747279 644 1 0.001552 0.0668854 0.683088 1945 1 0.748211 0.499928 0.877335 1683 1 0.562316 0.503278 0.684983 652 1 0.24775 0.0648802 0.687819 679 1 0.18836 0.123478 0.686951 683 1 0.310815 0.122081 0.692633 774 1 0.184573 0.0637662 0.751167 778 1 0.309861 0.0597477 0.747788 780 1 0.248527 0.0613747 0.812806 807 1 0.187075 0.122308 0.815035 809 1 0.245521 0.125936 0.752047 811 1 0.308772 0.122839 0.807285 1685 1 0.621736 0.495308 0.621509 783 1 0.43481 0.000620293 0.812497 656 1 0.378338 0.0597646 0.683506 687 1 0.434784 0.123761 0.685947 782 1 0.43724 0.0606781 0.753273 784 1 0.371186 0.0614025 0.811205 813 1 0.376699 0.122274 0.754824 815 1 0.439096 0.126024 0.815079 1020 1 0.746876 0.435822 0.934793 1019 1 0.81245 0.374206 0.942003 788 1 0.496651 0.0634725 0.815363 660 1 0.497156 0.0666959 0.685204 817 1 0.496773 0.126424 0.749206 664 1 0.631763 0.0651053 0.690325 691 1 0.562712 0.124755 0.692614 786 1 0.56492 0.0693013 0.756573 792 1 0.624028 0.0632781 0.816277 819 1 0.563964 0.12919 0.820524 821 1 0.629565 0.128479 0.758828 1018 1 0.816685 0.438211 0.877858 668 1 0.749235 0.0636167 0.688623 695 1 0.689683 0.128789 0.692346 699 1 0.813637 0.125285 0.685876 790 1 0.688305 0.0609989 0.753427 794 1 0.813534 0.0647293 0.75236 796 1 0.75147 0.0648768 0.817274 823 1 0.68936 0.125548 0.819435 825 1 0.751266 0.124986 0.751807 827 1 0.814743 0.128337 0.80921 1821 1 0.869483 0.497716 0.749254 1017 1 0.751274 0.371841 0.874893 772 1 1.00134 0.0636102 0.810444 801 1 1.00114 0.130414 0.751347 672 1 0.875452 0.063867 0.684633 703 1 0.937936 0.127616 0.685502 798 1 0.940371 0.0698378 0.74924 800 1 0.875612 0.0628713 0.811362 829 1 0.876339 0.126959 0.748747 831 1 0.938427 0.127979 0.806915 680 1 0.125427 0.190676 0.688808 707 1 0.0665544 0.251306 0.687671 712 1 0.12902 0.319033 0.688077 802 1 0.0645018 0.189444 0.75579 808 1 0.124175 0.187503 0.814951 834 1 0.055776 0.318029 0.749383 835 1 0.0604769 0.251483 0.80748 837 1 0.126139 0.250736 0.752781 840 1 0.128881 0.308875 0.814949 804 1 1.0016 0.189763 0.813436 708 1 0.00117191 0.311007 0.68719 684 1 0.24595 0.188052 0.688019 711 1 0.188821 0.249572 0.691854 715 1 0.30924 0.247335 0.689234 716 1 0.247625 0.307526 0.685924 806 1 0.187468 0.188387 0.752231 810 1 0.307229 0.187266 0.746687 812 1 0.25236 0.184866 0.814522 838 1 0.186049 0.313417 0.754577 839 1 0.191481 0.245494 0.815729 841 1 0.249976 0.249182 0.751222 842 1 0.310913 0.311209 0.750741 843 1 0.311907 0.246027 0.814581 844 1 0.25255 0.311868 0.813113 688 1 0.37525 0.187307 0.693377 719 1 0.440223 0.249058 0.689747 720 1 0.37128 0.311096 0.686922 814 1 0.435684 0.185744 0.753532 816 1 0.374164 0.18816 0.813645 845 1 0.372635 0.248091 0.748422 846 1 0.436091 0.312462 0.755121 847 1 0.4303 0.249066 0.815209 848 1 0.367972 0.31073 0.815357 849 1 0.496408 0.24856 0.752863 724 1 0.500845 0.316069 0.687949 692 1 0.499222 0.182466 0.686809 852 1 0.501179 0.316192 0.812801 820 1 0.49918 0.190216 0.815343 696 1 0.623865 0.191398 0.697133 723 1 0.560032 0.253962 0.688293 728 1 0.623346 0.313172 0.685211 818 1 0.559448 0.189202 0.751733 824 1 0.626459 0.189493 0.818535 850 1 0.563524 0.31792 0.751718 851 1 0.563661 0.250127 0.814962 853 1 0.623049 0.253801 0.75712 856 1 0.62577 0.31451 0.815248 700 1 0.750544 0.184788 0.689998 727 1 0.685448 0.250993 0.694084 731 1 0.807927 0.249388 0.684982 732 1 0.748546 0.314427 0.690306 822 1 0.690456 0.188642 0.756322 826 1 0.812911 0.189694 0.748737 828 1 0.752009 0.186361 0.815935 854 1 0.689714 0.31333 0.749631 855 1 0.691612 0.24878 0.816126 857 1 0.750259 0.24991 0.749616 858 1 0.810397 0.310238 0.748201 859 1 0.815373 0.2507 0.813521 860 1 0.7484 0.311878 0.813233 676 1 0.00391129 0.194227 0.689276 836 1 0.994684 0.311723 0.809612 833 1 0.999155 0.25082 0.750977 704 1 0.87526 0.189042 0.685945 735 1 0.935744 0.250903 0.688561 736 1 0.876245 0.307972 0.685358 830 1 0.941066 0.189004 0.745056 832 1 0.874886 0.188287 0.808429 861 1 0.87461 0.252028 0.75047 862 1 0.939524 0.313524 0.747904 863 1 0.940096 0.249043 0.812767 864 1 0.876725 0.314199 0.813054 739 1 0.0646925 0.375063 0.682799 744 1 0.129716 0.434607 0.692162 866 1 0.0657112 0.433651 0.746848 867 1 0.06211 0.374102 0.811055 869 1 0.127403 0.378778 0.753057 872 1 0.124514 0.439156 0.811476 868 1 0.00129738 0.439308 0.813766 740 1 1.00186 0.438995 0.68496 865 1 0.995426 0.381542 0.752081 1015 1 0.690871 0.374874 0.938724 1014 1 0.686703 0.4371 0.87353 777 1 0.243314 -0.00236871 0.749398 651 1 0.309999 -0.00175909 0.685734 743 1 0.187312 0.375265 0.685216 747 1 0.311336 0.371111 0.68595 748 1 0.249134 0.434417 0.680361 870 1 0.189568 0.435602 0.750248 871 1 0.187698 0.375258 0.816381 873 1 0.250276 0.377825 0.752079 874 1 0.310964 0.435699 0.745785 875 1 0.312006 0.379924 0.809235 876 1 0.249128 0.437763 0.811231 586 1 0.318015 0.317025 0.50111 751 1 0.442905 0.377379 0.688431 752 1 0.372756 0.438137 0.687401 877 1 0.372192 0.375817 0.741384 878 1 0.435312 0.438523 0.745934 879 1 0.435145 0.375941 0.81091 880 1 0.372484 0.44053 0.810905 881 1 0.498003 0.37756 0.751346 661 1 0.623368 0.00613988 0.623461 884 1 0.499817 0.435115 0.813438 756 1 0.498158 0.441874 0.684633 755 1 0.5587 0.379326 0.683169 760 1 0.623787 0.439932 0.684579 882 1 0.565077 0.433888 0.751252 883 1 0.560312 0.374768 0.817505 885 1 0.626993 0.373119 0.75257 888 1 0.626454 0.434394 0.814017 1013 1 0.62636 0.372697 0.870817 1011 1 0.559902 0.373683 0.93155 759 1 0.684327 0.373132 0.689474 763 1 0.805582 0.376801 0.688946 764 1 0.745321 0.44181 0.687193 886 1 0.682741 0.440665 0.745401 887 1 0.691054 0.375739 0.810848 889 1 0.750639 0.378059 0.752701 890 1 0.815239 0.433561 0.754928 891 1 0.812501 0.370156 0.812942 892 1 0.7518 0.437118 0.81646 767 1 0.93473 0.377305 0.689875 768 1 0.869606 0.433609 0.683018 893 1 0.875511 0.368356 0.746367 894 1 0.935224 0.438138 0.750758 895 1 0.941298 0.376207 0.81575 896 1 0.875859 0.432416 0.814532 543 1 0.936602 0.00516388 0.563019 898 1 0.0640299 0.0621665 0.873452 904 1 0.12302 0.0604664 0.938518 931 1 0.0550696 0.124007 0.939053 933 1 0.126203 0.124722 0.879944 900 1 1.00077 0.0600465 0.93888 1016 1 0.622489 0.431861 0.936818 1943 1 0.68154 0.498891 0.935323 1809 1 0.500773 0.494338 0.749713 902 1 0.184369 0.0587125 0.87489 906 1 0.311673 0.0588984 0.874255 908 1 0.250948 0.0575788 0.935326 935 1 0.18708 0.121024 0.934634 937 1 0.247958 0.122108 0.875593 939 1 0.312844 0.122111 0.938531 535 1 0.685664 0.00598196 0.563762 1671 1 0.193209 0.49644 0.690638 523 1 0.314908 0.00219211 0.565088 1010 1 0.561271 0.437467 0.876238 1667 1 0.0686599 0.499685 0.696245 910 1 0.438158 0.0581569 0.879641 912 1 0.369886 0.0611745 0.94035 941 1 0.373737 0.115849 0.874698 943 1 0.434257 0.122023 0.937225 945 1 0.496318 0.129174 0.877576 1801 1 0.250536 0.499612 0.751874 122 1 0.810233 0.434407 0.99724 659 1 0.557639 0.0107309 0.691152 645 1 0.128784 0.00157827 0.624922 913 1 0.50235 0.00189444 0.873804 641 1 -0.000756542 0.00106895 0.622664 916 1 0.502609 0.060089 0.936461 914 1 0.560998 0.0647564 0.877202 920 1 0.621743 0.0640805 0.938186 947 1 0.559321 0.127514 0.939661 949 1 0.627741 0.123137 0.88159 671 1 0.933959 0.00347584 0.688856 787 1 0.562487 0.00586293 0.818398 918 1 0.689549 0.0612183 0.877842 922 1 0.816079 0.0645706 0.874412 924 1 0.752925 0.0590491 0.941435 951 1 0.687906 0.123771 0.937229 953 1 0.753563 0.125931 0.879885 955 1 0.812957 0.122471 0.939929 901 1 0.12611 0.00301738 0.870431 649 1 0.247751 0.00261608 0.624346 789 1 0.621214 0.000167579 0.753748 1691 1 0.808507 0.499999 0.68856 929 1 1.00024 0.123151 0.872979 926 1 0.935197 0.066132 0.876304 928 1 0.872329 0.0591538 0.934159 957 1 0.873841 0.123818 0.871585 959 1 0.937064 0.126174 0.937385 26 1 0.816972 0.058596 0.995949 1009 1 0.495404 0.372963 0.874275 1555 1 0.564912 0.502359 0.559064 930 1 0.0626097 0.186416 0.873993 936 1 0.127431 0.187745 0.937875 962 1 0.0634968 0.307161 0.873532 963 1 0.0651595 0.244297 0.939516 965 1 0.122997 0.241722 0.873603 968 1 0.1271 0.307948 0.935178 964 1 0.995754 0.310382 0.931822 110 1 0.432568 0.440981 0.998731 934 1 0.189076 0.185891 0.876061 938 1 0.307457 0.183376 0.874036 940 1 0.253027 0.183523 0.936463 966 1 0.187824 0.312407 0.876674 967 1 0.192982 0.24765 0.940071 969 1 0.248142 0.24798 0.87765 970 1 0.313278 0.314461 0.880242 971 1 0.312083 0.24903 0.939887 972 1 0.251274 0.311318 0.939989 942 1 0.436084 0.186753 0.874924 944 1 0.372966 0.186816 0.933052 973 1 0.374303 0.247706 0.874374 974 1 0.438665 0.308098 0.873307 975 1 0.435177 0.251389 0.936999 976 1 0.379448 0.309816 0.937749 980 1 0.497012 0.309514 0.941775 977 1 0.497988 0.246386 0.876171 948 1 0.493136 0.190613 0.939258 657 1 0.504531 0.0047631 0.620169 1819 1 0.812343 0.496875 0.814488 33 1 0.996929 0.124486 1.00188 1929 1 0.259335 0.495642 0.86907 946 1 0.560156 0.188446 0.879471 952 1 0.623099 0.186315 0.939396 978 1 0.557369 0.307554 0.875047 979 1 0.559212 0.248356 0.942579 981 1 0.623173 0.250192 0.878149 984 1 0.625267 0.313535 0.939608 1012 1 0.502102 0.43888 0.934178 85 1 0.626347 0.25121 0.998034 1001 1 0.24638 0.374311 0.877399 988 1 0.750374 0.311557 0.937225 987 1 0.816827 0.249375 0.933857 986 1 0.809811 0.31041 0.877438 985 1 0.750491 0.247047 0.87704 983 1 0.686316 0.247599 0.93911 982 1 0.689072 0.31125 0.872421 950 1 0.687982 0.189976 0.877225 954 1 0.819426 0.187536 0.873459 956 1 0.751143 0.184463 0.935504 1005 1 0.375409 0.372836 0.872213 961 1 1.0022 0.247292 0.88078 960 1 0.875278 0.181898 0.932087 932 1 0.998039 0.185514 0.932971 990 1 0.934697 0.315372 0.873785 991 1 0.936344 0.241397 0.937213 992 1 0.87515 0.312354 0.942937 989 1 0.879335 0.250676 0.87025 958 1 0.936444 0.184389 0.870943 1004 1 0.253254 0.433254 0.935229 1003 1 0.313093 0.371151 0.939597 999 1 0.188545 0.373335 0.936837 102 1 0.194564 0.433573 0.995777 998 1 0.183243 0.436754 0.877322 993 1 0.00250488 0.3744 0.87416 994 1 0.0637793 0.433975 0.871452 995 1 0.0628693 0.370792 0.937168 1000 1 0.127772 0.43563 0.940383 997 1 0.12368 0.374368 0.872891 1002 1 0.314033 0.434919 0.876625 637 1 0.876127 0.375045 0.503148 1006 1 0.436686 0.445062 0.873065 1008 1 0.374663 0.446123 0.933781 1007 1 0.434534 0.374356 0.935109 86 1 0.688836 0.311072 0.999864 46 1 0.432714 0.187977 0.99595 1559 1 0.687137 0.499089 0.557045 1689 1 0.748333 0.495859 0.624712 1931 1 0.306956 0.500659 0.939743 113 1 0.493144 0.378954 0.998643 106 1 0.314148 0.441271 0.997907 45 1 0.371779 0.123494 0.998256 37 1 0.121267 0.124337 0.996347 669 1 0.872601 0.00214532 0.625259 34 1 0.0601609 0.185325 0.998064 1927 1 0.190904 0.493934 0.940214 38 1 0.189277 0.182461 1.00015 66 1 0.0629067 0.312999 0.998636 57 1 0.747862 0.121907 0.999691 77 1 0.375909 0.248376 0.999377 1537 1 0.995838 0.494698 0.501265 638 1 0.938066 0.435761 0.502522 6 1 0.18724 0.0581216 0.997394 526 1 0.437394 0.0625276 0.501914 58 1 0.813465 0.188978 0.99853 69 1 0.125419 0.245944 0.999796 554 1 0.311469 0.191418 0.503468 525 1 0.380591 0.000323428 0.501104 82 1 0.562228 0.313944 0.999389 562 1 0.561437 0.190746 0.500286 614 1 0.185971 0.438298 0.501263 561 1 0.500173 0.12712 0.502592 566 1 0.685311 0.190601 0.504643 89 1 0.755655 0.249771 0.993717 30 1 0.936975 0.0629172 1.00021 585 1 0.247182 0.253182 0.503637 633 1 0.748476 0.373501 0.500833 598 1 0.686483 0.317594 0.497146 537 1 0.747962 0.00383647 0.506396 605 1 0.875298 0.254551 0.502455 570 1 0.810797 0.185387 0.498203 545 1 0.997564 0.126104 0.502605 590 1 0.432143 0.30994 0.503197 542 1 0.936351 0.0641536 0.503581 589 1 0.376362 0.250174 0.500518 609 1 0.999949 0.368207 0.501767 1032 1 0.125767 0.561459 0.060743 1059 1 0.0610375 0.625794 0.0649325 1154 1 0.0620083 0.560073 0.127965 1189 1 0.129923 0.622606 0.125175 1305 1 0.754139 0.500793 0.249621 1533 1 0.87403 0.872844 0.382954 1026 1 0.0619276 0.564884 -0.000984422 413 1 0.874533 0.999333 0.376884 1036 1 0.252233 0.571285 0.0599187 1063 1 0.185738 0.62574 0.0640159 1067 1 0.31512 0.627708 0.063978 1158 1 0.193774 0.562262 0.123349 1162 1 0.308448 0.57469 0.125884 1193 1 0.250077 0.628466 0.125041 1534 1 0.937846 0.932348 0.374923 1535 1 0.937167 0.875493 0.441112 1175 1 0.689064 0.502129 0.191774 1173 1 0.62881 0.499171 0.122056 1040 1 0.372481 0.562554 0.0666167 1071 1 0.428644 0.625038 0.0582269 1166 1 0.439651 0.567962 0.119346 1197 1 0.376047 0.627268 0.127556 1044 1 0.50441 0.56401 0.0615763 1415 1 0.18603 0.502124 0.439119 1536 1 0.870004 0.936995 0.441295 1201 1 0.498039 0.625611 0.122418 1048 1 0.631882 0.564537 0.0585892 1075 1 0.561575 0.625263 0.0607029 1170 1 0.558473 0.56639 0.125869 1205 1 0.622354 0.622382 0.121545 1090 1 0.0621559 0.815716 0.00199568 1052 1 0.752094 0.563358 0.059422 1079 1 0.691881 0.627684 0.055667 1083 1 0.812148 0.624911 0.0655166 1174 1 0.692339 0.563505 0.125884 1178 1 0.812005 0.554707 0.120199 1209 1 0.749149 0.625813 0.129242 1094 1 0.18054 0.81626 0.00337423 1423 1 0.435239 0.503907 0.43956 1157 1 0.123466 0.499456 0.123534 1526 1 0.688221 0.937269 0.374646 1185 1 -0.000111463 0.62162 0.123182 1028 1 -0.000564023 0.558686 0.0632115 1056 1 0.877843 0.562604 0.0608859 1087 1 0.939784 0.617775 0.0624325 1182 1 0.935854 0.560489 0.12616 1213 1 0.872501 0.620793 0.123106 1527 1 0.685575 0.874819 0.441296 1529 1 0.749231 0.876951 0.371456 23 1 0.688396 0.995777 0.0658222 1130 1 0.309853 0.93489 0.00430294 1064 1 0.125621 0.687768 0.059842 1091 1 0.0607655 0.749378 0.0651772 1096 1 0.122041 0.809054 0.0610999 1186 1 0.061773 0.68387 0.127474 1218 1 0.0613684 0.810363 0.123429 1221 1 0.124252 0.752852 0.126611 1092 1 0.999646 0.810075 0.0606563 513 1 0.000989628 0.998966 0.499276 1027 1 0.0668873 0.501329 0.0627873 13 1 0.373206 0.998466 0.000143206 1068 1 0.252676 0.687951 0.0655994 1095 1 0.187127 0.750859 0.0605552 1099 1 0.310229 0.755729 0.0614194 1100 1 0.250126 0.815195 0.061941 1190 1 0.187956 0.688262 0.128362 1194 1 0.317369 0.691012 0.122913 1222 1 0.189839 0.810637 0.121789 1225 1 0.251298 0.751576 0.124977 1226 1 0.313186 0.812825 0.12299 1137 1 0.496642 0.876976 -0.00204598 1417 1 0.247981 0.501129 0.377092 1072 1 0.377539 0.689515 0.0585422 1103 1 0.435944 0.751449 0.0626017 1104 1 0.375716 0.814266 0.0657097 1198 1 0.436168 0.69001 0.125994 1229 1 0.377488 0.747701 0.122732 1230 1 0.437958 0.80912 0.126589 1076 1 0.496368 0.686251 0.0612752 401 1 0.499568 0.994891 0.377189 1161 1 0.257349 0.50639 0.126144 1108 1 0.503555 0.815573 0.0677181 1233 1 0.498641 0.749489 0.119829 1080 1 0.625412 0.684553 0.0591183 1107 1 0.56262 0.751433 0.0605165 1112 1 0.625766 0.809386 0.0594739 1202 1 0.564871 0.688413 0.121424 1234 1 0.569871 0.812816 0.1271 1237 1 0.627944 0.752203 0.123508 1098 1 0.314474 0.814309 0.000686939 1030 1 0.191739 0.562272 0.00591593 1084 1 0.754991 0.686643 0.0622717 1111 1 0.691987 0.74908 0.0574515 1115 1 0.812762 0.745049 0.0640924 1116 1 0.756588 0.809514 0.0643404 1206 1 0.686981 0.684053 0.124887 1210 1 0.813339 0.685534 0.128338 1238 1 0.688376 0.811085 0.119257 1241 1 0.751852 0.747409 0.125552 1242 1 0.813458 0.81369 0.126092 1303 1 0.681121 0.501429 0.319658 1129 1 0.243909 0.874313 0.00235551 1060 1 0.995298 0.688653 0.0608616 1217 1 0.998609 0.75555 0.125739 1088 1 0.877636 0.684329 0.0606875 1119 1 0.938688 0.751474 0.0611687 1120 1 0.872325 0.80966 0.0594682 1214 1 0.938874 0.687552 0.127003 1245 1 0.876354 0.746976 0.125826 1246 1 0.93046 0.809746 0.126346 1089 1 0.00180767 0.745301 0.000110669 1150 1 0.932636 0.935086 0.00100559 1123 1 0.0620409 0.877376 0.0635255 1128 1 0.122434 0.938267 0.0667015 1250 1 0.0614328 0.940281 0.123881 1253 1 0.122594 0.874896 0.124358 1249 1 0.997938 0.87661 0.123679 1124 1 0.992703 0.93556 0.0612118 1530 1 0.8132 0.93783 0.377297 1163 1 0.315479 0.503607 0.186368 1425 1 0.49981 0.503346 0.382398 1127 1 0.181987 0.876477 0.0643293 1131 1 0.316116 0.877906 0.061479 1132 1 0.25105 0.932033 0.0625577 1254 1 0.191563 0.937555 0.124653 1257 1 0.250832 0.874612 0.125178 1258 1 0.309704 0.934777 0.123256 1093 1 0.125708 0.750574 -0.000607007 1135 1 0.437849 0.87389 0.0648777 1136 1 0.376698 0.938946 0.0644228 1261 1 0.371837 0.872908 0.128303 1262 1 0.437432 0.936701 0.128666 1265 1 0.497387 0.875687 0.125534 1140 1 0.495924 0.937563 0.0605125 1531 1 0.808402 0.876261 0.43919 1139 1 0.558893 0.876937 0.0639072 1144 1 0.62842 0.938086 0.0669376 1266 1 0.557651 0.940906 0.124353 1269 1 0.631385 0.872512 0.119492 1141 1 0.621071 0.873103 0.000866847 1143 1 0.689983 0.874308 0.0635764 1147 1 0.813802 0.878362 0.0641201 1148 1 0.746898 0.934205 0.0589784 1270 1 0.687765 0.937971 0.128543 1273 1 0.750978 0.876384 0.123959 1274 1 0.813135 0.938342 0.125369 1532 1 0.749445 0.936481 0.436571 1289 1 0.2496 0.499066 0.252663 1153 1 0.995997 0.502204 0.125142 1151 1 0.929814 0.873157 0.0646986 1152 1 0.870782 0.936747 0.0619466 1277 1 0.872982 0.872429 0.124995 1278 1 0.936605 0.938991 0.126167 1307 1 0.807284 0.500724 0.314447 1125 1 0.121068 0.878429 -0.000144257 259 1 0.0589729 0.997234 0.314199 411 1 0.808181 1.00069 0.439184 1297 1 0.509215 0.505208 0.247146 1160 1 0.126116 0.562377 0.185875 1187 1 0.0633011 0.620057 0.186755 1282 1 0.0677735 0.558672 0.25247 1288 1 0.12879 0.560206 0.31425 1315 1 0.0657427 0.618948 0.312556 1317 1 0.124648 0.623926 0.247687 1284 1 0.0011013 0.559144 0.311258 1156 1 0.00312114 0.56438 0.185004 3 1 0.0571732 0.997785 0.0622496 1525 1 0.62691 0.87536 0.374369 1164 1 0.249765 0.566271 0.189738 1191 1 0.187968 0.623639 0.186634 1195 1 0.310094 0.629448 0.188746 1286 1 0.186416 0.561992 0.253106 1290 1 0.31521 0.561877 0.246071 1292 1 0.250052 0.561899 0.309813 1319 1 0.183886 0.62654 0.309444 1321 1 0.249885 0.626161 0.251095 1323 1 0.31117 0.63038 0.309547 1523 1 0.559259 0.880335 0.438211 1168 1 0.376014 0.565534 0.18027 1199 1 0.436409 0.622812 0.188356 1294 1 0.436328 0.562562 0.253716 1296 1 0.374541 0.564777 0.314199 1325 1 0.376305 0.623845 0.245877 1327 1 0.438026 0.63155 0.310698 1329 1 0.501027 0.629981 0.246648 1300 1 0.501848 0.561438 0.309393 1528 1 0.622216 0.939593 0.436498 1172 1 0.498173 0.563793 0.188206 1176 1 0.627224 0.560466 0.185863 1203 1 0.565759 0.627177 0.186512 1298 1 0.565455 0.569001 0.249135 1304 1 0.620814 0.564671 0.31001 1331 1 0.558284 0.630979 0.308864 1333 1 0.621887 0.629351 0.248065 1522 1 0.566304 0.938771 0.373236 1159 1 0.191498 0.503578 0.183482 1180 1 0.746818 0.562608 0.185048 1207 1 0.683763 0.624504 0.188446 1211 1 0.811865 0.621388 0.185017 1302 1 0.683269 0.567397 0.250472 1306 1 0.81726 0.56159 0.253848 1308 1 0.747719 0.562245 0.309338 1335 1 0.683879 0.627531 0.305048 1337 1 0.749987 0.623708 0.249066 1339 1 0.809632 0.626649 0.314797 1183 1 0.941704 0.49719 0.189336 271 1 0.439713 0.996864 0.31294 1313 1 0.00582392 0.621884 0.249599 1184 1 0.870473 0.558676 0.187875 1215 1 0.934434 0.620441 0.185457 1310 1 0.939538 0.560928 0.248278 1312 1 0.87605 0.563894 0.315839 1341 1 0.880481 0.622428 0.252489 1343 1 0.940378 0.623396 0.316786 1192 1 0.122504 0.689071 0.18724 1219 1 0.0552215 0.75376 0.19005 1224 1 0.125323 0.816155 0.183918 1314 1 0.0593458 0.688213 0.246948 1320 1 0.122544 0.689192 0.311894 1346 1 0.0621724 0.808881 0.253802 1347 1 0.0635312 0.75071 0.315814 1349 1 0.127307 0.749551 0.248402 1352 1 0.127283 0.812877 0.314475 1348 1 0.997548 0.811265 0.313786 1220 1 0.999485 0.813384 0.189815 1188 1 0.997338 0.684991 0.188065 1196 1 0.252597 0.692518 0.187213 1223 1 0.188131 0.750588 0.182484 1227 1 0.314642 0.753606 0.189402 1228 1 0.249363 0.815644 0.181124 1318 1 0.18639 0.681614 0.24603 1322 1 0.316182 0.692512 0.25175 1324 1 0.249224 0.684726 0.316567 1350 1 0.184249 0.812825 0.249019 1351 1 0.18923 0.748741 0.317203 1353 1 0.246986 0.749721 0.25826 1354 1 0.309984 0.815011 0.255377 1355 1 0.315198 0.753786 0.315198 1356 1 0.248502 0.812618 0.313989 1200 1 0.374737 0.692033 0.189113 1231 1 0.438551 0.754741 0.185662 1232 1 0.37525 0.812503 0.189964 1326 1 0.43468 0.683289 0.245238 1328 1 0.374139 0.685378 0.313168 1357 1 0.377467 0.752386 0.255702 1358 1 0.435605 0.812484 0.249408 1359 1 0.436917 0.746814 0.312257 1360 1 0.377278 0.810122 0.315411 1332 1 0.503607 0.690787 0.309599 1236 1 0.498429 0.817312 0.186224 1364 1 0.502174 0.811792 0.310934 1361 1 0.500291 0.751465 0.2468 1204 1 0.498827 0.693338 0.182521 1208 1 0.622414 0.68978 0.186458 1235 1 0.564082 0.749727 0.181445 1240 1 0.63001 0.817668 0.187193 1330 1 0.562414 0.692053 0.245942 1336 1 0.625806 0.696412 0.310025 1362 1 0.560914 0.812465 0.244975 1363 1 0.567357 0.756581 0.308253 1365 1 0.627912 0.749868 0.24697 1368 1 0.625639 0.817801 0.30717 1212 1 0.746674 0.686038 0.187383 1239 1 0.686482 0.754894 0.18632 1243 1 0.819061 0.745292 0.193112 1244 1 0.753866 0.813031 0.187292 1334 1 0.686528 0.69224 0.2443 1338 1 0.809737 0.681379 0.249642 1340 1 0.744918 0.68415 0.311532 1366 1 0.693315 0.814302 0.244587 1367 1 0.691488 0.752885 0.306274 1369 1 0.75205 0.746577 0.243184 1370 1 0.81344 0.811291 0.24947 1371 1 0.804389 0.745613 0.310056 1372 1 0.754062 0.815856 0.309537 1345 1 0.996429 0.747139 0.25514 1316 1 0.00328464 0.683442 0.31194 1216 1 0.877463 0.682865 0.194523 1247 1 0.935338 0.749457 0.190527 1248 1 0.871626 0.811544 0.187135 1342 1 0.938549 0.68609 0.251979 1344 1 0.870932 0.684641 0.313464 1373 1 0.872901 0.747298 0.258613 1374 1 0.934813 0.809566 0.248412 1375 1 0.932897 0.741891 0.317082 1376 1 0.875057 0.810362 0.314933 1301 1 0.624026 0.506319 0.249221 1251 1 0.0551141 0.871023 0.186027 1256 1 0.124406 0.933649 0.184688 1378 1 0.0595745 0.940943 0.249267 1379 1 0.0641607 0.872474 0.310326 1381 1 0.125519 0.876742 0.251533 1384 1 0.124037 0.937264 0.312607 1520 1 0.371104 0.93751 0.439598 1255 1 0.186055 0.876121 0.184447 1259 1 0.312232 0.875796 0.187218 1260 1 0.254873 0.938406 0.183924 1382 1 0.184079 0.93865 0.248707 1383 1 0.185051 0.875897 0.313462 1385 1 0.247899 0.875905 0.250106 1386 1 0.317957 0.939072 0.250307 1387 1 0.311854 0.876023 0.315793 1388 1 0.248995 0.939366 0.309877 1519 1 0.436876 0.873476 0.442935 1263 1 0.436801 0.875388 0.189028 1264 1 0.373274 0.934155 0.187108 1389 1 0.374446 0.874266 0.251936 1390 1 0.438794 0.935327 0.253532 1391 1 0.442067 0.871134 0.315783 1392 1 0.37606 0.935649 0.319149 1268 1 0.501496 0.93453 0.190083 1396 1 0.499343 0.933434 0.319196 1393 1 0.502084 0.881314 0.254572 1267 1 0.564628 0.878705 0.183352 1272 1 0.624412 0.9349 0.185053 1394 1 0.568596 0.934758 0.250342 1395 1 0.561966 0.87488 0.313322 1397 1 0.628953 0.872866 0.246752 1400 1 0.628404 0.931784 0.312628 269 1 0.376897 0.995586 0.252179 1521 1 0.497724 0.869546 0.378941 1518 1 0.437799 0.933198 0.37834 1105 1 0.49685 0.752997 -0.00211334 1271 1 0.693415 0.876886 0.185396 1275 1 0.810361 0.874754 0.184454 1276 1 0.75467 0.941063 0.187649 1398 1 0.688416 0.937434 0.249768 1399 1 0.693303 0.87384 0.308505 1401 1 0.754778 0.877855 0.248127 1402 1 0.814939 0.943735 0.24984 1403 1 0.813484 0.879271 0.314531 1404 1 0.751747 0.938683 0.308766 1517 1 0.374753 0.868437 0.375205 1524 1 0.498939 0.938592 0.440294 1311 1 0.93644 0.501305 0.311185 407 1 0.685229 0.99669 0.437604 1252 1 -0.000789679 0.939011 0.185117 1377 1 -0.00144689 0.870959 0.249485 1380 1 -0.000191761 0.93258 0.315061 1279 1 0.936862 0.872372 0.18642 1280 1 0.877291 0.937914 0.1932 1405 1 0.874067 0.874993 0.247248 1406 1 0.938815 0.938077 0.247646 1407 1 0.93561 0.873437 0.313561 1408 1 0.8757 0.935062 0.314227 1431 1 0.685555 0.50476 0.431496 1516 1 0.250884 0.938512 0.433848 1281 1 0.00200662 0.50144 0.248308 1410 1 0.0638753 0.561664 0.376378 1416 1 0.124443 0.558057 0.436874 1443 1 0.0586509 0.624445 0.440588 1445 1 0.11959 0.622124 0.374208 1412 1 -0.00421378 0.556843 0.43662 1510 1 0.188718 0.933831 0.371715 147 1 0.560406 0.999167 0.18719 1414 1 0.187915 0.564682 0.376708 1418 1 0.313137 0.565876 0.374801 1420 1 0.254582 0.56203 0.437721 1447 1 0.185589 0.623398 0.437367 1449 1 0.253497 0.619598 0.376087 1451 1 0.313446 0.630976 0.435526 397 1 0.379188 0.997742 0.373086 1511 1 0.1899 0.878099 0.43767 1562 1 0.817839 0.560925 0.505562 1422 1 0.437376 0.561346 0.370533 1424 1 0.374783 0.564424 0.443185 1453 1 0.377197 0.625884 0.370455 1455 1 0.43776 0.626731 0.433169 1428 1 0.499177 0.567103 0.437666 391 1 0.188454 0.99732 0.434305 1515 1 0.311976 0.874362 0.438031 1457 1 0.501346 0.626539 0.368354 1426 1 0.562426 0.567906 0.373239 1432 1 0.622447 0.566534 0.435019 1459 1 0.560957 0.628332 0.43661 1461 1 0.620528 0.634054 0.364994 1177 1 0.749338 0.501451 0.124366 1513 1 0.248021 0.876875 0.376378 1514 1 0.310309 0.941408 0.373658 1430 1 0.679733 0.568394 0.369639 1434 1 0.807592 0.559861 0.371421 1436 1 0.745723 0.5649 0.434411 1463 1 0.682455 0.625064 0.440463 1465 1 0.748585 0.622645 0.370658 1467 1 0.807039 0.622897 0.440788 1546 1 0.312469 0.562151 0.501129 1155 1 0.0661242 0.499676 0.187409 1122 1 0.057863 0.938701 0.00404616 1441 1 0.00290502 0.625726 0.376123 1438 1 0.937853 0.560228 0.370759 1440 1 0.872967 0.558038 0.431828 1469 1 0.874368 0.62098 0.376165 1471 1 0.937671 0.616555 0.43632 143 1 0.435197 0.997978 0.189143 1442 1 0.0640996 0.68828 0.374289 1448 1 0.12426 0.685764 0.434732 1474 1 0.0619203 0.813942 0.373688 1475 1 0.0648174 0.747766 0.439456 1477 1 0.125543 0.752458 0.374275 1480 1 0.120766 0.808641 0.438686 1473 1 -0.000977802 0.748122 0.377722 1444 1 0.995967 0.684538 0.439167 1476 1 0.00212947 0.813611 0.443951 389 1 0.128014 0.999482 0.371994 1638 1 0.193083 0.937217 0.499614 1446 1 0.187386 0.690342 0.375733 1450 1 0.317626 0.687284 0.373266 1452 1 0.250487 0.689599 0.434125 1478 1 0.186165 0.814744 0.376459 1479 1 0.186119 0.749877 0.438791 1481 1 0.254982 0.74709 0.372928 1482 1 0.310032 0.812019 0.377239 1483 1 0.311877 0.746068 0.43939 1484 1 0.24609 0.813061 0.436465 1299 1 0.562826 0.501933 0.307823 131 1 0.0626603 0.99638 0.188903 1454 1 0.440618 0.688396 0.375128 1456 1 0.377435 0.687883 0.438031 1485 1 0.375387 0.752972 0.381964 1486 1 0.43743 0.808946 0.376871 1487 1 0.439229 0.750774 0.438006 1488 1 0.369941 0.813245 0.441387 1492 1 0.498921 0.809614 0.43863 1460 1 0.500707 0.692788 0.429947 1489 1 0.497812 0.753698 0.370586 1458 1 0.561918 0.692765 0.37275 1464 1 0.625253 0.691909 0.435971 1496 1 0.623782 0.813696 0.438927 1490 1 0.566046 0.815482 0.372545 1493 1 0.632674 0.753854 0.375583 1491 1 0.56194 0.751501 0.437359 1035 1 0.314714 0.501521 0.0631581 1050 1 0.810681 0.563381 0.00151904 1500 1 0.747626 0.816108 0.438587 1499 1 0.808507 0.747637 0.432981 1498 1 0.811826 0.814257 0.370099 1497 1 0.751329 0.753182 0.372855 1495 1 0.685646 0.754344 0.439595 1494 1 0.687624 0.81575 0.373184 1468 1 0.749064 0.687404 0.444078 1466 1 0.807641 0.683644 0.376803 1462 1 0.6921 0.690184 0.375579 145 1 0.49796 0.99871 0.128648 139 1 0.312443 0.999159 0.183991 275 1 0.561018 0.995364 0.308531 265 1 0.25007 1.00179 0.244402 1509 1 0.128583 0.873395 0.372047 1506 1 0.0625761 0.933113 0.372413 1472 1 0.874004 0.688283 0.437515 1470 1 0.936435 0.680093 0.37547 1502 1 0.93999 0.810071 0.376372 1503 1 0.937232 0.747198 0.439586 1501 1 0.867141 0.752463 0.374757 1504 1 0.872105 0.811023 0.442357 27 1 0.813451 0.997738 0.0667339 1507 1 0.0634205 0.872938 0.436591 1505 1 0.00136566 0.873235 0.375909 1512 1 0.127783 0.936052 0.436177 1508 1 0.998483 0.938208 0.435188 1558 1 0.687541 0.566133 0.499147 1590 1 0.688082 0.684938 0.497027 1043 1 0.566632 0.50459 0.069253 1039 1 0.439051 0.505295 0.0581556 141 1 0.376195 0.998992 0.123189 273 1 0.49743 0.996966 0.249045 15 1 0.438417 1.00141 0.0697862 1167 1 0.438831 0.505958 0.188841 7 1 0.180436 0.996543 0.0643882 1650 1 0.563048 0.940454 0.498124 129 1 0.997327 0.998527 0.126512 137 1 0.250725 0.995958 0.127051 11 1 0.31216 0.998054 0.0629995 1586 1 0.557959 0.687542 0.493554 399 1 0.436865 0.9994 0.438127 1630 1 0.936913 0.810932 0.500029 135 1 0.183825 0.99878 0.186954 285 1 0.876563 1.00279 0.254722 31 1 0.932436 0.99641 0.0634226 1427 1 0.562851 0.500999 0.435433 1601 1 0.00464089 0.748473 0.498407 1569 1 -0.00129373 0.622596 0.501452 1550 1 0.440481 0.569513 0.498881 1433 1 0.745265 0.504654 0.372854 1165 1 0.382261 0.500266 0.123954 1169 1 0.499515 0.50172 0.122447 9 1 0.245246 0.996248 0.00518754 1613 1 0.37577 0.749294 0.499095 1582 1 0.439364 0.686809 0.495527 1542 1 0.190648 0.559186 0.498818 1577 1 0.250354 0.624805 0.49902 1570 1 0.0612152 0.683949 0.499545 1634 1 0.0636138 0.939482 0.498752 1574 1 0.188716 0.685079 0.496675 1645 1 0.378158 0.873332 0.497835 1145 1 0.754162 0.87451 0.00417923 1589 1 0.623157 0.62904 0.502657 1657 1 0.750279 0.876097 0.502688 1113 1 0.753019 0.750139 0.0024171 1554 1 0.56313 0.563927 0.496679 1101 1 0.372436 0.754585 0.00244362 1110 1 0.686976 0.815633 0.00211632 1557 1 0.624851 0.505656 0.49581 1134 1 0.433758 0.937051 0.00691625 1114 1 0.811161 0.811752 0.000845608 1057 1 0.000815897 0.624655 0.00145528 1045 1 0.619896 0.50303 -7.29835e-05 1 1 0.995333 0.996435 0.000580338 1544 1 0.131184 0.557266 0.55776 1571 1 0.0641142 0.617936 0.565619 1666 1 0.0643051 0.559696 0.627354 1701 1 0.129879 0.61896 0.625031 1539 1 0.0651591 0.500029 0.562722 911 1 0.437705 0.999826 0.943241 1697 1 0.00101279 0.625862 0.627016 1609 1 0.247777 0.752937 0.504813 1637 1 0.126883 0.877078 0.502998 1041 1 0.499996 0.503643 1.00011 1548 1 0.249073 0.563001 0.561019 1575 1 0.189833 0.625819 0.565685 1579 1 0.310413 0.625517 0.56257 1670 1 0.189666 0.556515 0.628524 1674 1 0.317936 0.563166 0.621013 1705 1 0.249112 0.623027 0.623427 1567 1 0.932498 0.498904 0.565411 1552 1 0.381432 0.569159 0.559159 1583 1 0.437222 0.633017 0.56208 1678 1 0.436796 0.565077 0.622285 1709 1 0.371853 0.622711 0.625953 1556 1 0.5016 0.562692 0.562752 2045 1 0.874101 0.874354 0.870892 1669 1 0.12415 0.502212 0.62602 799 1 0.936459 1.00074 0.812705 1693 1 0.874676 0.497695 0.629948 1713 1 0.503619 0.624313 0.62175 1560 1 0.627071 0.560143 0.559029 1587 1 0.56116 0.630314 0.561509 1682 1 0.565585 0.560923 0.625386 1717 1 0.624861 0.629076 0.632172 2046 1 0.937103 0.939756 0.874894 2047 1 0.937558 0.876495 0.93444 2048 1 0.875887 0.934103 0.939016 923 1 0.812721 0.993159 0.935054 1564 1 0.752331 0.560362 0.565245 1591 1 0.680296 0.63003 0.55979 1595 1 0.813028 0.620581 0.564127 1686 1 0.687611 0.564862 0.624931 1690 1 0.811271 0.560614 0.6291 1721 1 0.749656 0.625352 0.626397 1617 1 0.498927 0.748459 0.503315 1540 1 0.999603 0.558977 0.56696 1566 1 0.932453 0.56286 0.506144 903 1 0.186244 1.00031 0.938827 1568 1 0.875324 0.562333 0.566066 1599 1 0.937418 0.625827 0.562719 1694 1 0.938991 0.563156 0.627633 1725 1 0.87381 0.624763 0.624377 2020 1 0.0045729 0.938796 0.930603 1665 1 -0.000498244 0.501255 0.63093 1576 1 0.126077 0.687156 0.559569 1603 1 0.0603163 0.751194 0.561356 1608 1 0.12542 0.813363 0.563389 1698 1 0.065712 0.68666 0.620344 1730 1 0.0640082 0.806539 0.624758 1733 1 0.126438 0.747977 0.623615 1604 1 0.00329107 0.819491 0.566424 1572 1 1.00196 0.681966 0.56452 1605 1 0.122436 0.746746 0.501257 1941 1 0.621685 0.501075 0.874012 1580 1 0.252434 0.687226 0.562953 1607 1 0.189591 0.751612 0.561352 1611 1 0.315549 0.752012 0.561113 1612 1 0.254879 0.812715 0.56832 1702 1 0.18552 0.689212 0.624016 1706 1 0.315486 0.692601 0.624561 1734 1 0.187181 0.816714 0.621888 1737 1 0.250678 0.74525 0.624756 1738 1 0.314583 0.8139 0.624783 1610 1 0.312187 0.814385 0.502852 1037 1 0.376876 0.503326 1.00019 1578 1 0.312715 0.688429 0.503058 1584 1 0.373433 0.685985 0.563584 1615 1 0.438654 0.746874 0.562506 1616 1 0.376604 0.812633 0.565497 1710 1 0.436448 0.683844 0.625459 1741 1 0.374831 0.751042 0.620491 1742 1 0.443087 0.813497 0.622981 1588 1 0.501094 0.687354 0.565835 1793 1 0.000825161 0.506262 0.748754 1805 1 0.370619 0.505487 0.747318 779 1 0.309652 0.990327 0.810384 1745 1 0.495733 0.747842 0.630883 1620 1 0.502009 0.815 0.566855 1675 1 0.312314 0.505498 0.686627 1592 1 0.61937 0.68973 0.556831 1619 1 0.557622 0.751862 0.566298 1624 1 0.617842 0.813821 0.568816 1714 1 0.563044 0.68486 0.625236 1746 1 0.563687 0.810248 0.631263 1749 1 0.626152 0.742728 0.622318 1596 1 0.751752 0.682302 0.566912 1623 1 0.690175 0.74244 0.563594 1627 1 0.814548 0.744678 0.56752 1628 1 0.747493 0.812501 0.563665 1718 1 0.686366 0.684904 0.630249 1722 1 0.813379 0.682591 0.627588 1750 1 0.681891 0.80797 0.627555 1753 1 0.751538 0.750789 0.62754 1754 1 0.814225 0.811707 0.628724 1949 1 0.874558 0.496392 0.871489 909 1 0.376205 0.998383 0.876283 1729 1 0.999937 0.751073 0.621504 1600 1 0.877752 0.687316 0.565755 1631 1 0.943167 0.748484 0.558304 1632 1 0.875851 0.81027 0.566002 1726 1 0.936555 0.685551 0.623306 1757 1 0.877108 0.749216 0.620648 1758 1 0.94319 0.814547 0.625375 919 1 0.689783 0.995221 0.942081 1635 1 0.0658207 0.878825 0.567176 1640 1 0.122119 0.943561 0.566647 1762 1 0.0599541 0.946515 0.62114 1765 1 0.130616 0.879214 0.625871 1761 1 1.00122 0.875556 0.628331 1636 1 -0.00213147 0.9437 0.561248 1646 1 0.438923 0.937565 0.498799 927 1 0.937044 0.99697 0.939747 1641 1 0.253026 0.874457 0.501303 1649 1 0.501015 0.873257 0.502604 925 1 0.877091 0.998725 0.871395 1597 1 0.87518 0.625661 0.503127 1639 1 0.187444 0.87712 0.561043 1643 1 0.317264 0.87598 0.56238 1644 1 0.252665 0.94134 0.560765 1766 1 0.18864 0.93982 0.625424 1769 1 0.251819 0.877149 0.625987 1770 1 0.313191 0.935604 0.623419 1081 1 0.755416 0.62801 0.995144 1817 1 0.752754 0.496274 0.752783 1642 1 0.315171 0.937263 0.500819 1661 1 0.87258 0.874278 0.504323 917 1 0.623176 0.998773 0.878898 1618 1 0.562024 0.815883 0.50449 1647 1 0.439602 0.875372 0.562668 1648 1 0.37813 0.937812 0.564253 1773 1 0.381977 0.877218 0.624235 1774 1 0.444091 0.940436 0.622318 1652 1 0.50245 0.935935 0.56124 1777 1 0.503775 0.872325 0.631088 1551 1 0.438997 0.503645 0.562931 1614 1 0.436519 0.811955 0.502311 1947 1 0.811637 0.501696 0.936154 1651 1 0.565895 0.877755 0.56464 1656 1 0.621666 0.938394 0.560999 1778 1 0.558631 0.93872 0.62853 1781 1 0.628061 0.884352 0.628738 907 1 0.314005 0.995655 0.937404 647 1 0.186282 0.99778 0.688097 1146 1 0.810313 0.933907 1.00034 1655 1 0.684668 0.875592 0.571468 1659 1 0.811717 0.872952 0.564319 1660 1 0.751237 0.9331 0.565566 1782 1 0.688524 0.943115 0.624176 1785 1 0.750982 0.87321 0.627986 1786 1 0.810699 0.935055 0.625991 539 1 0.812804 1.00328 0.564124 1606 1 0.190544 0.817084 0.498598 1593 1 0.753511 0.619184 0.501284 1573 1 0.127328 0.622143 0.500465 1658 1 0.80994 0.933108 0.499767 1823 1 0.936994 0.500695 0.806719 655 1 0.441305 0.995514 0.685223 1663 1 0.940742 0.870188 0.56078 1664 1 0.872464 0.937263 0.563985 1789 1 0.876587 0.872006 0.622692 1790 1 0.933593 0.936235 0.622102 905 1 0.248559 0.999029 0.871012 921 1 0.748599 0.993216 0.875288 1563 1 0.810914 0.499736 0.56704 1672 1 0.131005 0.557552 0.686584 1699 1 0.0652758 0.626374 0.678387 1794 1 0.0646806 0.564355 0.752471 1800 1 0.13044 0.564554 0.816129 1827 1 0.0641454 0.62546 0.812223 1829 1 0.128429 0.619533 0.747541 1046 1 0.688563 0.56228 0.997924 1142 1 0.681953 0.931361 0.998166 1668 1 0.00245066 0.568162 0.686234 1681 1 0.501184 0.502 0.619976 1653 1 0.626928 0.874023 0.501839 1676 1 0.249584 0.563704 0.686138 1703 1 0.187202 0.628099 0.686377 1707 1 0.311539 0.623462 0.685981 1798 1 0.191458 0.563385 0.749531 1802 1 0.315535 0.570437 0.749376 1804 1 0.249562 0.562841 0.815578 1831 1 0.191203 0.625725 0.814747 1833 1 0.247249 0.622757 0.7464 1835 1 0.30478 0.629071 0.81188 2038 1 0.685599 0.930656 0.87092 2039 1 0.689201 0.875245 0.936382 1680 1 0.375977 0.563442 0.680777 1711 1 0.440156 0.621694 0.686375 1806 1 0.436922 0.555907 0.74781 1808 1 0.373245 0.565834 0.816382 1837 1 0.377496 0.629616 0.74451 1839 1 0.43745 0.622941 0.80991 1841 1 0.501055 0.626954 0.754191 1795 1 0.066314 0.500506 0.811778 1654 1 0.691429 0.937386 0.506809 1065 1 0.250859 0.634259 0.995184 2041 1 0.754086 0.872986 0.869404 1684 1 0.499884 0.563256 0.682376 1812 1 0.501075 0.563236 0.817497 1688 1 0.62495 0.563396 0.687906 1715 1 0.560406 0.620173 0.686254 1810 1 0.551516 0.562806 0.748378 1816 1 0.620409 0.563071 0.8082 1843 1 0.559379 0.624772 0.81356 1845 1 0.62008 0.622916 0.749451 1939 1 0.56191 0.501636 0.939134 1692 1 0.749508 0.557106 0.688432 1719 1 0.688175 0.623923 0.68866 1723 1 0.813738 0.621518 0.688034 1814 1 0.687188 0.563948 0.747061 1818 1 0.813252 0.565178 0.751442 1820 1 0.747219 0.561174 0.816975 1847 1 0.68246 0.62977 0.810064 1849 1 0.748484 0.623349 0.748134 1851 1 0.809563 0.625699 0.809571 2042 1 0.813149 0.934366 0.872156 1109 1 0.622343 0.749425 0.994421 2043 1 0.815924 0.870273 0.936815 1086 1 0.935676 0.684937 0.997967 1825 1 0.999323 0.621803 0.748562 1796 1 0.00410722 0.560466 0.810116 1696 1 0.87667 0.563148 0.688395 1727 1 0.937643 0.628692 0.685654 1822 1 0.936263 0.564036 0.747728 1824 1 0.874066 0.559264 0.813051 1853 1 0.875665 0.627089 0.74967 1855 1 0.939412 0.624638 0.811732 2044 1 0.750102 0.933471 0.935761 1704 1 0.118757 0.690609 0.687066 1731 1 0.063724 0.74834 0.684531 1736 1 0.121714 0.810294 0.688051 1826 1 0.0617892 0.686664 0.750576 1832 1 0.127211 0.687216 0.811964 1858 1 0.0613646 0.81199 0.745116 1859 1 0.0606001 0.750622 0.811957 1861 1 0.124838 0.753696 0.753632 1864 1 0.127923 0.815217 0.811272 1828 1 0.00459976 0.688113 0.811647 1708 1 0.246065 0.688291 0.690164 1735 1 0.186228 0.75285 0.686688 1739 1 0.318714 0.749055 0.689086 1740 1 0.246921 0.811823 0.684017 1830 1 0.185041 0.687458 0.749693 1834 1 0.315222 0.686622 0.749006 1836 1 0.248445 0.691003 0.814001 1862 1 0.192158 0.812067 0.75013 1863 1 0.189843 0.751786 0.813176 1865 1 0.246516 0.746693 0.753684 1866 1 0.306536 0.806189 0.748283 1867 1 0.314218 0.749434 0.813334 1868 1 0.247964 0.812125 0.811652 1712 1 0.378464 0.689001 0.684778 1743 1 0.43558 0.74997 0.688889 1744 1 0.379269 0.811619 0.683718 1838 1 0.436377 0.686791 0.754963 1840 1 0.374893 0.687531 0.81473 1869 1 0.374832 0.749594 0.75205 1870 1 0.437006 0.815435 0.752483 1871 1 0.434201 0.75055 0.815167 1872 1 0.375166 0.815299 0.813473 1873 1 0.497551 0.752233 0.749253 1844 1 0.500744 0.688702 0.812767 1876 1 0.498923 0.811357 0.812176 1748 1 0.500867 0.815074 0.691281 1716 1 0.49675 0.68161 0.684717 1720 1 0.621684 0.689152 0.689579 1747 1 0.558407 0.74885 0.688318 1752 1 0.623012 0.814921 0.687295 1842 1 0.559631 0.685256 0.748466 1848 1 0.625011 0.687058 0.8139 1874 1 0.560239 0.810375 0.748426 1875 1 0.565443 0.756098 0.814525 1877 1 0.626524 0.747242 0.755448 1880 1 0.627025 0.817504 0.814831 1724 1 0.748734 0.688187 0.690008 1751 1 0.686706 0.750626 0.690907 1755 1 0.813982 0.750064 0.688267 1756 1 0.747432 0.812198 0.683722 1846 1 0.685096 0.686028 0.748686 1850 1 0.812805 0.686611 0.746596 1852 1 0.744657 0.688405 0.807671 1878 1 0.686558 0.812314 0.750858 1879 1 0.687655 0.752586 0.815229 1881 1 0.744994 0.752555 0.74563 1882 1 0.813769 0.812807 0.745704 1883 1 0.810022 0.746827 0.809331 1884 1 0.7516 0.813124 0.810037 1732 1 0.00434117 0.807848 0.685502 1857 1 0.00202087 0.750461 0.746208 1860 1 0.000742219 0.813584 0.816069 1700 1 0.00183898 0.686313 0.688347 1728 1 0.876728 0.688393 0.685689 1759 1 0.938294 0.750311 0.683295 1760 1 0.883357 0.812096 0.685406 1854 1 0.939033 0.689419 0.752558 1856 1 0.873767 0.690626 0.813515 1885 1 0.874133 0.753273 0.751638 1886 1 0.943884 0.814541 0.748105 1887 1 0.94006 0.751077 0.810444 1888 1 0.87445 0.812 0.813774 1097 1 0.25158 0.752042 1.00098 1763 1 0.0615453 0.87352 0.684141 1768 1 0.119185 0.941129 0.688039 1890 1 0.0615561 0.941243 0.748796 1891 1 0.0640223 0.874763 0.812717 1893 1 0.123498 0.875668 0.747888 1896 1 0.123432 0.940655 0.810815 1892 1 1.00179 0.941164 0.812664 1085 1 0.871801 0.623493 0.999126 2014 1 0.938381 0.814918 0.876578 2036 1 0.498414 0.940274 0.933337 1767 1 0.18585 0.873425 0.686126 1771 1 0.316739 0.872746 0.684743 1772 1 0.251854 0.940783 0.6876 1894 1 0.182906 0.935652 0.744122 1895 1 0.18602 0.876384 0.81458 1897 1 0.249717 0.876824 0.747558 1898 1 0.309196 0.936261 0.746945 1899 1 0.312138 0.874955 0.812297 1900 1 0.244433 0.937448 0.807856 2033 1 0.501881 0.875935 0.874994 2040 1 0.624028 0.931462 0.932471 2037 1 0.620672 0.875979 0.872103 1775 1 0.438062 0.873948 0.686728 1776 1 0.373323 0.939743 0.687092 1901 1 0.368278 0.874433 0.747191 1902 1 0.434913 0.941403 0.748369 1903 1 0.434886 0.875543 0.811476 1904 1 0.375132 0.936943 0.812977 1905 1 0.497308 0.876451 0.752366 1780 1 0.503047 0.937166 0.697386 2034 1 0.557944 0.93655 0.874297 1908 1 0.50105 0.939947 0.811853 1779 1 0.56335 0.877784 0.691266 1784 1 0.623767 0.940373 0.690185 1906 1 0.563188 0.937975 0.753556 1907 1 0.563614 0.874888 0.810311 1909 1 0.627645 0.87739 0.74952 1912 1 0.623426 0.936573 0.813491 2035 1 0.557926 0.87739 0.935068 1069 1 0.375997 0.626584 0.995787 2015 1 0.938026 0.750217 0.938311 1783 1 0.687855 0.876647 0.690463 1787 1 0.810003 0.87326 0.688399 1788 1 0.749181 0.939281 0.689048 1910 1 0.687723 0.940426 0.754826 1911 1 0.688362 0.873559 0.807744 1913 1 0.751411 0.875225 0.749898 1914 1 0.810965 0.937238 0.748481 1915 1 0.816307 0.873077 0.808197 1916 1 0.747764 0.935152 0.813141 1695 1 0.939909 0.501464 0.684511 2016 1 0.87596 0.80901 0.936873 1889 1 0.00146052 0.879986 0.751409 1764 1 0.00273847 0.939316 0.684651 1791 1 0.936579 0.879817 0.687136 1792 1 0.874823 0.937435 0.688806 1917 1 0.877207 0.869975 0.751506 1918 1 0.937065 0.940315 0.749963 1919 1 0.939668 0.878015 0.814506 1920 1 0.874149 0.939541 0.811956 1082 1 0.811698 0.690228 0.995983 1985 1 0.99812 0.751231 0.874967 1922 1 0.066375 0.558391 0.875186 1928 1 0.129095 0.559396 0.94493 1955 1 0.0608541 0.624321 0.936301 1957 1 0.122593 0.621237 0.878058 2011 1 0.813076 0.749287 0.934323 1117 1 0.875417 0.744967 0.998849 1982 1 0.943135 0.686319 0.874159 1926 1 0.194126 0.559775 0.879972 1930 1 0.311892 0.562573 0.874017 1932 1 0.252148 0.56307 0.946039 1959 1 0.18729 0.625258 0.935787 1961 1 0.252737 0.630461 0.877056 1963 1 0.314282 0.62413 0.93856 1984 1 0.876927 0.684275 0.934788 2031 1 0.440998 0.876092 0.933002 2032 1 0.374362 0.937322 0.941536 1934 1 0.438871 0.56231 0.875217 1936 1 0.3722 0.562465 0.93693 1965 1 0.375898 0.624073 0.875353 1967 1 0.438675 0.630866 0.935475 1969 1 0.4999 0.63193 0.87321 2029 1 0.373497 0.873898 0.874877 1940 1 0.499392 0.5677 0.934958 1938 1 0.56315 0.564238 0.876156 1944 1 0.620276 0.565027 0.93736 1971 1 0.558568 0.627042 0.934926 1973 1 0.628646 0.62935 0.875984 1803 1 0.31322 0.502069 0.8078 1066 1 0.317386 0.68899 0.996258 2010 1 0.812137 0.809527 0.873565 1070 1 0.437617 0.688415 1.00117 2030 1 0.439669 0.937741 0.87601 1942 1 0.684027 0.562481 0.874143 1946 1 0.8149 0.56616 0.873516 1948 1 0.752095 0.562458 0.931546 1975 1 0.685376 0.626099 0.938354 1977 1 0.742431 0.624688 0.870686 1979 1 0.815123 0.622517 0.934871 2026 1 0.318559 0.934862 0.875606 2027 1 0.307271 0.875551 0.939738 2025 1 0.246241 0.8698 0.873615 1924 1 1.00186 0.558262 0.937402 1953 1 0.00523075 0.621593 0.872209 1950 1 0.937631 0.562908 0.878937 1952 1 0.880397 0.562562 0.939844 1981 1 0.87675 0.621673 0.872268 1983 1 0.942701 0.624317 0.933104 2028 1 0.248469 0.93567 0.937676 2022 1 0.186129 0.932301 0.875001 2013 1 0.87387 0.747693 0.873809 1954 1 0.0616096 0.686691 0.87602 1960 1 0.126658 0.684353 0.9375 1986 1 0.0660698 0.809096 0.873682 1987 1 0.0668256 0.746446 0.936967 1989 1 0.123707 0.748414 0.870347 1992 1 0.119994 0.810629 0.937251 1988 1 0.00438262 0.805856 0.94129 1956 1 -0.00111202 0.689491 0.938787 1102 1 0.435455 0.810649 0.998078 2018 1 0.0623638 0.940204 0.871578 1958 1 0.188315 0.688127 0.876508 1962 1 0.31559 0.687799 0.873842 1964 1 0.250473 0.689546 0.934035 1990 1 0.185582 0.812969 0.881603 1991 1 0.182839 0.750197 0.935975 1993 1 0.25054 0.747898 0.878017 1994 1 0.311032 0.814256 0.876054 1995 1 0.311436 0.75445 0.939565 1996 1 0.250657 0.811817 0.940711 2009 1 0.75087 0.748422 0.874082 2024 1 0.119946 0.935379 0.934118 2000 1 0.376115 0.814007 0.935153 1999 1 0.434497 0.749057 0.93992 1998 1 0.444171 0.812873 0.874502 1997 1 0.375931 0.750203 0.874785 1968 1 0.376465 0.684797 0.933924 1966 1 0.432626 0.691459 0.87784 2004 1 0.497408 0.813914 0.938349 1972 1 0.497636 0.692235 0.938482 2017 1 0.999363 0.877187 0.874366 2019 1 0.0594102 0.874333 0.935479 2001 1 0.500138 0.749024 0.874577 1970 1 0.563676 0.688344 0.873398 1976 1 0.621188 0.687262 0.936287 2002 1 0.560512 0.814681 0.87468 2003 1 0.563253 0.753424 0.938844 2005 1 0.625188 0.754025 0.87794 2008 1 0.623921 0.814124 0.936628 2021 1 0.12048 0.873308 0.874524 2023 1 0.182449 0.875026 0.937458 2012 1 0.750221 0.813283 0.942514 1974 1 0.690197 0.692354 0.876663 1978 1 0.812218 0.683644 0.87362 1980 1 0.747816 0.685201 0.937401 2006 1 0.689818 0.809601 0.878023 2007 1 0.686516 0.751052 0.941677 1118 1 0.937157 0.810661 0.998288 915 1 0.563117 1.00011 0.940767 531 1 0.562514 0.998866 0.563157 1549 1 0.373295 0.503719 0.501409 1807 1 0.437975 0.499716 0.811439 1933 1 0.374304 0.503076 0.868762 653 1 0.37799 0.997712 0.622029 5 1 0.125875 0.999414 0.997202 1935 1 0.442289 0.501857 0.938147 1937 1 0.503536 0.503193 0.877134 1679 1 0.439449 0.503879 0.677673 795 1 0.809249 1.00008 0.814186 1813 1 0.623334 0.504384 0.746454 1547 1 0.309186 0.500684 0.559368 1811 1 0.561849 0.501308 0.812329 1687 1 0.68339 0.503208 0.687437 775 1 0.184945 0.997588 0.809936 1799 1 0.190797 0.500078 0.813134 1797 1 0.129001 0.500752 0.750045 665 1 0.752176 0.997251 0.628981 1042 1 0.560808 0.568335 0.995748 1074 1 0.561711 0.690457 0.998685 1054 1 0.940094 0.563372 0.999061 1073 1 0.499877 0.625229 0.999898 1077 1 0.619968 0.626165 0.996878 1049 1 0.746645 0.505037 0.993304 1078 1 0.68835 0.687153 0.996857 1062 1 0.188543 0.687854 1.00087 25 1 0.753621 0.994113 0.999069 1133 1 0.378705 0.872142 0.998021 1038 1 0.439437 0.565698 0.993351 1121 1 0.998665 0.876078 0.999044 1126 1 0.184965 0.935588 1.0009 1034 1 0.315241 0.564153 0.998404 1058 1 0.0671651 0.683574 1.00004 1662 1 0.936424 0.940552 0.501964 1106 1 0.560225 0.814806 1.00219 1602 1 0.0665675 0.811397 0.501273 1621 1 0.628634 0.755834 0.502689 1622 1 0.688836 0.815943 0.502029 1625 1 0.751714 0.74799 0.50018 1061 1 0.128046 0.623713 0.997985 1138 1 0.562257 0.934687 0.999678 1598 1 0.942395 0.681058 0.5001 1594 1 0.815271 0.685803 0.505199 1629 1 0.873658 0.749564 0.505553 1149 1 0.870647 0.871454 0.999944 1538 1 0.0608075 0.556074 0.500175 1626 1 0.806283 0.808395 0.501996 1581 1 0.371147 0.630411 0.502187 541 1 0.870951 1.00055 0.502622 1585 1 0.498042 0.625469 0.502329 1633 1 0.00195968 0.878352 0.501528
3a0cca8abc3ef3909ea5fe190d9189a0f0d90ae8
d5b48163d236ca770be8e687f92192e2971397e8
/globalvariableFunction1.py
3477ac1307caf7853c39640dc6a0019cd95789a2
[]
no_license
Kunal352000/python_program
191f5d9c82980eb706e11457c2b5af54b0d2ae95
7a1c645f9eab87cc45a593955dcb61b35e2ce434
refs/heads/main
2023-07-12T19:06:19.121741
2021-08-21T11:58:41
2021-08-21T11:58:41
376,606,535
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
x=10#global variable def f1(): print(x)#10 x+=5 print(x)#error f1() print(x)#error def f2(): print(x)#error f2()
61e08cd88ef23fb7e87890a5b36fc050d8df3f6d
4a2a0cfc984a9faa45903732d776cd61ea361779
/pwncat/modules/agnostic/implant.py
545178a75fb449321c95997dc09fb7844b0c1a07
[]
no_license
PremHcz/pwncat
2a746cfc546158fa288994b376fd71768672a33a
cb203349d7ca815c9350eb53f4bd2e0b0ee659fa
refs/heads/master
2023-05-30T19:07:16.327320
2021-06-14T13:01:19
2021-06-14T13:01:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,437
py
#!/usr/bin/env python3 from typing import List from rich.prompt import Prompt from pwncat.util import console from pwncat.facts import Implant, KeepImplantFact from pwncat.modules import Bool, Status, Argument, BaseModule, ModuleFailed class Module(BaseModule): """Interact with installed implants in an open session. This module provides the ability to remove implants as well as manually escalate with a given implant. Implants implementing local escalation will automatically be picked up by the `escalate` command, however this module provides an alternative way to trigger escalation manually.""" PLATFORM = None """ No platform restraints """ ARGUMENTS = { "remove": Argument(Bool, default=False, help="remove installed implants"), "escalate": Argument( Bool, default=False, help="escalate using an installed local implant" ), } def run(self, session, remove, escalate): """ Perform the requested action """ if (not remove and not escalate) or (remove and escalate): raise ModuleFailed("expected one of escalate or remove") # Look for matching implants implants = list( implant for implant in session.run("enumerate", types=["implant.*"]) if not escalate or "implant.replace" in implant.types or "implant.spawn" in implant.types ) try: session._progress.stop() console.print("Found the following implants:") for i, implant in enumerate(implants): console.print(f"{i+1}. {implant.title(session)}") if remove: prompt = "Which should we remove (e.g. '1 2 4', default: all)? " elif escalate: prompt = "Which should we attempt escalation with (e.g. '1 2 4', default: all)? " while True: selections = Prompt.ask(prompt, console=console) if selections == "": break try: implant_ids = [int(idx.strip()) for idx in selections] # Filter the implants implants: List[Implant] = [implants[i - 1] for i in implant_ids] break except (IndexError, ValueError): console.print("[red]error[/red]: invalid selection!") finally: session._progress.start() nremoved = 0 for implant in implants: if remove: try: yield Status(f"removing: {implant.title(session)}") implant.remove(session) session.target.facts.remove(implant) nremoved += 1 except KeepImplantFact: # Remove implant types but leave the fact implant.types.remove("implant.remote") implant.types.remove("implant.replace") implant.types.remove("implant.spawn") nremoved += 1 except ModuleFailed: session.log( f"[red]error[/red]: removal failed: {implant.title(session)}" ) elif escalate: try: yield Status( f"attempting escalation with: {implant.title(session)}" ) result = implant.escalate(session) if "implant.spawn" in implant.types: # Move to the newly established session session.manager.target = result else: # Track the new shell layer in the current session session.layers.append(result) session.platform.refresh_uid() session.log( f"escalation [green]succeeded[/green] with: {implant.title(session)}" ) break except ModuleFailed: continue else: if escalate: raise ModuleFailed("no working local escalation implants found") if nremoved: session.log(f"removed {nremoved} implants from target") # Save database modifications session.db.transaction_manager.commit()
b83dddb0ba5cc289c6faf02198f34fa7f1efb501
bd1362c60313784c90013dfc9f0169e64389bf27
/scripts/dbutil/set_wfo.py
7790328ad4c796e3e0c601f831caf22e45761999
[]
no_license
ForceCry/iem
391aa9daf796591909cb9d4e60e27375adfb0eab
4b0390d89e6570b99ca83a5fa9b042226e17c1ad
refs/heads/master
2020-12-24T19:04:55.517409
2013-04-09T14:25:36
2013-04-09T14:25:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
917
py
""" Assign a WFO to sites in the metadata tables that have no WFO set $Id: $: """ import re import iemdb MESOSITE = iemdb.connect('mesosite') mcursor = MESOSITE.cursor() mcursor2 = MESOSITE.cursor() # Find sites we need to check on mcursor.execute("""select s.id, c.wfo, s.iemid, s.network from stations s, cwa c WHERE s.geom && c.the_geom and contains(c.the_geom, s.geom) and (s.wfo IS NULL or s.wfo = '') and s.country = 'US' """) for row in mcursor: id = row[0] wfo = row[1] iemid = row[2] network = row[3] if wfo is not None: print 'Assinging WFO: %s to IEMID: %s ID: %s NETWORK: %s' % (wfo, iemid, id, network) mcursor2.execute("UPDATE stations SET wfo = '%s' WHERE iemid = %s" % ( wfo, iemid) ) else: print 'ERROR assigning WFO to IEMID: %s ID: %s NETWORK: %s' % ( iemid, id, network) mcursor.close() mcursor2.close() MESOSITE.commit() MESOSITE.close()
[ "akrherz@95f8c243-6001-0410-b151-932e6a9ed213" ]
akrherz@95f8c243-6001-0410-b151-932e6a9ed213
613e4837a9f63c8b247a8e460f07e655fe9e2904
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2210/60716/276310.py
155107bcaf3512fb1bad228a6138043e1592acac
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
713
py
def checkin(substr:list,parstr:str): check = True for t in range(len(parstr)): if parstr[t] in substr: substr.remove(parstr[t]) else: break return check ucnum = int(input()) ans = list() for i in range(ucnum): str1 = input() str2 = input() anstr = str() # lens = len(str1) for j in range(len(str2),len(str1)+1):#length of substring for k in range(len(str1)-j):#start of substring tempstr = str1[k:k+j] templist = list(tempstr) if checkin(templist,str2): ans.append(tempstr) break if len(ans)==i+1: break ans.append(anstr) for i in ans: print(i)
0351042e28eadd00d7b26fdc3576ef296ac9ee15
99d7a6448a15e7770e3b6f3859da043300097136
/src/database/migrate/isotopedb/versions/010_Add_aliquot_to_LabTable.py
a8e30e8ecebd6498a1eda6c619ef3184b2accad3
[]
no_license
softtrainee/arlab
125c5943f83b37bc7431ae985ac7b936e08a8fe4
b691b6be8214dcb56921c55daed4d009b0b62027
refs/heads/master
2020-12-31T07:54:48.447800
2013-05-06T02:49:12
2013-05-06T02:49:12
53,566,313
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
from sqlalchemy import * from migrate import * def upgrade(migrate_engine): # Upgrade operations go here. Don't create your own engine; bind # migrate_engine to your metadata meta = MetaData(bind=migrate_engine) t = Table('LabTable', meta, autoload=True) col = Column('aliquot', Integer) col.create(t) def downgrade(migrate_engine): # Operations to reverse the above upgrade go here. meta = MetaData(bind=migrate_engine) t = Table('LabTable', meta, autoload=True) t.c.aliquot.drop()
[ "jirhiker@localhost" ]
jirhiker@localhost
3b611d0a8558f770c80aa297e878934cb325eab4
fbbe424559f64e9a94116a07eaaa555a01b0a7bb
/Keras_tensorflow_nightly/source2.7/tensorflow/contrib/distributions/python/ops/binomial.py
6a1bb39ab28218a411bdf4329965186bcf32bf30
[ "MIT" ]
permissive
ryfeus/lambda-packs
6544adb4dec19b8e71d75c24d8ed789b785b0369
cabf6e4f1970dc14302f87414f170de19944bac2
refs/heads/master
2022-12-07T16:18:52.475504
2022-11-29T13:35:35
2022-11-29T13:35:35
71,386,735
1,283
263
MIT
2022-11-26T05:02:14
2016-10-19T18:22:39
Python
UTF-8
Python
false
false
10,299
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Binomial distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util _binomial_sample_note = """ For each batch member of counts `value`, `P[value]` is the probability that after sampling `self.total_count` draws from this Binomial distribution, the number of successes is `value`. Since different sequences of draws can result in the same counts, the probability includes a combinatorial coefficient. Note: `value` must be a non-negative tensor with dtype `dtype` and whose shape can be broadcast with `self.probs` and `self.total_count`. `value` is only legal if it is less than or equal to `self.total_count` and its components are equal to integer values. """ def _bdtr(k, n, p): """The binomial cumulative distribution function. Args: k: floating point `Tensor`. n: floating point `Tensor`. p: floating point `Tensor`. Returns: `sum_{j=0}^k p^j (1 - p)^(n - j)`. """ # Trick for getting safe backprop/gradients into n, k when # betainc(a = 0, ..) = nan # Write: # where(unsafe, safe_output, betainc(where(unsafe, safe_input, input))) ones = array_ops.ones_like(n - k) k_eq_n = math_ops.equal(k, n) safe_dn = array_ops.where(k_eq_n, ones, n - k) dk = math_ops.betainc(a=safe_dn, b=k + 1, x=1 - p) return array_ops.where(k_eq_n, ones, dk) class Binomial(distribution.Distribution): """Binomial distribution. This distribution is parameterized by `probs`, a (batch of) probabilities for drawing a `1` and `total_count`, the number of trials per draw from the Binomial. #### Mathematical Details The Binomial is a distribution over the number of `1`'s in `total_count` independent trials, with each trial having the same probability of `1`, i.e., `probs`. The probability mass function (pmf) is, ```none pmf(k; n, p) = p**k (1 - p)**(n - k) / Z Z = k! (n - k)! / n! ``` where: * `total_count = n`, * `probs = p`, * `Z` is the normalizing constant, and, * `n!` is the factorial of `n`. #### Examples Create a single distribution, corresponding to 5 coin flips. ```python dist = Binomial(total_count=5., probs=.5) ``` Create a single distribution (using logits), corresponding to 5 coin flips. ```python dist = Binomial(total_count=5., logits=0.) ``` Creates 3 distributions with the third distribution most likely to have successes. ```python p = [.2, .3, .8] # n will be broadcast to [4., 4., 4.], to match p. dist = Binomial(total_count=4., probs=p) ``` The distribution functions can be evaluated on counts. ```python # counts same shape as p. counts = [1., 2, 3] dist.prob(counts) # Shape [3] # p will be broadcast to [[.2, .3, .8], [.2, .3, .8]] to match counts. counts = [[1., 2, 1], [2, 2, 4]] dist.prob(counts) # Shape [2, 3] # p will be broadcast to shape [5, 7, 3] to match counts. counts = [[...]] # Shape [5, 7, 3] dist.prob(counts) # Shape [5, 7, 3] ``` """ def __init__(self, total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name="Binomial"): """Initialize a batch of Binomial distributions. Args: total_count: Non-negative floating point tensor with shape broadcastable to `[N1,..., Nm]` with `m >= 0` and the same dtype as `probs` or `logits`. Defines this as a batch of `N1 x ... x Nm` different Binomial distributions. Its components should be equal to integer values. logits: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and the same dtype as `total_count`. Each entry represents logits for the probability of success for independent Binomial distributions. Only one of `logits` or `probs` should be passed in. probs: Positive floating point tensor with shape broadcastable to `[N1,..., Nm]` `m >= 0`, `probs in [0, 1]`. Each entry represents the probability of success for independent Binomial distributions. Only one of `logits` or `probs` should be passed in. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = locals() with ops.name_scope(name, values=[total_count, logits, probs]): self._total_count = self._maybe_assert_valid_total_count( ops.convert_to_tensor(total_count, name="total_count"), validate_args) self._logits, self._probs = distribution_util.get_logits_and_probs( logits=logits, probs=probs, validate_args=validate_args, name=name) super(Binomial, self).__init__( dtype=self._probs.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._total_count, self._logits, self._probs], name=name) @property def total_count(self): """Number of trials.""" return self._total_count @property def logits(self): """Log-odds of drawing a `1`.""" return self._logits @property def probs(self): """Probability of drawing a `1`.""" return self._probs def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.total_count), array_ops.shape(self.probs)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.total_count.get_shape(), self.probs.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.scalar() @distribution_util.AppendDocstring(_binomial_sample_note) def _log_prob(self, counts): return self._log_unnormalized_prob(counts) - self._log_normalization(counts) @distribution_util.AppendDocstring(_binomial_sample_note) def _prob(self, counts): return math_ops.exp(self._log_prob(counts)) def _cdf(self, counts): counts = self._maybe_assert_valid_sample(counts) probs = self.probs if not (counts.shape.is_fully_defined() and self.probs.shape.is_fully_defined() and counts.shape.is_compatible_with(self.probs.shape)): # If both shapes are well defined and equal, we skip broadcasting. probs += array_ops.zeros_like(counts) counts += array_ops.zeros_like(self.probs) return _bdtr(k=counts, n=self.total_count, p=probs) def _log_unnormalized_prob(self, counts): counts = self._maybe_assert_valid_sample(counts) return (counts * math_ops.log(self.probs) + (self.total_count - counts) * math_ops.log1p(-self.probs)) def _log_normalization(self, counts): counts = self._maybe_assert_valid_sample(counts) return (math_ops.lgamma(1. + self.total_count - counts) + math_ops.lgamma(1. + counts) - math_ops.lgamma(1. + self.total_count)) def _mean(self): return self.total_count * self.probs def _variance(self): return self._mean() * (1. - self.probs) @distribution_util.AppendDocstring( """Note that when `(1 + total_count) * probs` is an integer, there are actually two modes. Namely, `(1 + total_count) * probs` and `(1 + total_count) * probs - 1` are both modes. Here we return only the larger of the two modes.""") def _mode(self): return math_ops.floor((1. + self.total_count) * self.probs) def _maybe_assert_valid_total_count(self, total_count, validate_args): if not validate_args: return total_count return control_flow_ops.with_dependencies([ check_ops.assert_non_negative( total_count, message="total_count must be non-negative."), distribution_util.assert_integer_form( total_count, message="total_count cannot contain fractional components."), ], total_count) def _maybe_assert_valid_sample(self, counts): """Check counts for proper shape, values, then return tensor version.""" if not self.validate_args: return counts counts = distribution_util.embed_check_nonnegative_integer_form(counts) return control_flow_ops.with_dependencies([ check_ops.assert_less_equal( counts, self.total_count, message="counts are not less than or equal to n."), ], counts)
6778fcb3d7e2e4b3c99b3c9d800ed919c050db8f
21c09799d006ed6bede4123d57d6d54d977c0b63
/python/bTag_signalStudies_scan_CSVv2_2017_LMT_down.py
3cb5809abbff613cd9c8fa51a1f5bb22722d4a64
[]
no_license
corvettettt/DijetRootTreeAnalyzer
68cb12e6b280957e1eb22c9842b0b9b30ae2c779
e65624ffc105798209436fc80fb82e2c252c6344
refs/heads/master
2021-05-06T09:57:12.816787
2019-04-18T15:32:38
2019-04-18T15:32:38
114,043,763
1
0
null
2017-12-12T22:02:46
2017-12-12T22:02:46
null
UTF-8
Python
false
false
12,869
py
import ROOT as rt import math as math import sys, os from bTag_signalStudies import * from optparse import OptionParser from rootTools import tdrstyle as setTDRStyle ### plots for signals ### # tagging rate vs mass for signals (b, udcs, g) # scale factors vs mass for signals with uncertainty # selections acceptance vs mass for signals # shape comparison before and after b-tag selection (normalized to 1) usage = """usage: python python/bTag_signalStudies.py -f bb -m qq""" #eosPrefix = "root://eoscms.cern.ch//eos/cms" #eosPath = "/store/group/phys_exotica/dijet/Dijet13TeV/deguio/fall16_red_MC/RSGravitonToQuarkQuark_kMpl01_Spring16_20161201_145940/" eosPrefix = "" eosPath = "/tmp/TylerW/" sampleNames_qg = { 500: 1000: 2000: 3000: 4000: 5000: 6000: 7000: 8000: 9000: } #CHANGE FILE NAME AS SOON AS THE NTUPLES ARE READY sampleNames_qq = { 500: 1000: 2000: 3000: 4000: 5000: 6000: 7000: 8000: 9000: } CSV_Value = { 'L':0.5803, 'M':0.8838, 'T':0.9693 } treeName = "rootTupleTree/tree" massRange = {500: [75,0,1500], #750: [75,0,1500], 1000: [50,0,2000], 2000: [50,0,5000], 3000: [50,0,5000], 4000: [35,0,7000], 5000: [35,0,8000], 6000: [30,0,9000], 7000: [20,0,10000], 8000: [20,0,12000], 9000: [20,0,12000] } #book histos hDict={} for i,j in CSV_Value.items(): hDict[i] = {} for i,j in CSV_Value.items(): prefix = str(mass)+"_"+i hDict[i]["h_mass_all"] = rt.TH1F(prefix+"_mass_all", prefix+"_mass_all", massRange[mass][0],massRange[mass][1],massRange[mass][2]) hDict[i]["h_mass_passed"] = rt.TH1F(prefix+"_mass_passed_deepCSV",prefix+"_mass_passed_deepCSV",massRange[mass][0],massRange[mass][1],massRange[mass][2]) hDict[i]["h_mass_passed"].SetLineColor(rt.kOrange+8) hDict[i]["h_mass_passed"].SetMarkerColor(rt.kOrange+8) hDict[i]["h_mass_passed"].SetLineWidth(3) hDict[i]["h_mass_passed"].GetXaxis().SetTitle("Resonance Mass [GeV]") hDict[i]["h_mass_passed_0b"] = rt.TH1F(prefix+"_mass_passed_deepCSV_0b",prefix+"_mass_passed_deepCSV_0b",massRange[mass][0],massRange[mass][1],massRange[mass][2]) hDict[i]["h_mass_passed_0b"].SetMarkerSize(0.5) hDict[i]["h_mass_passed_1b"] = rt.TH1F(prefix+"_mass_passed_deepCSV_1b",prefix+"_mass_passed_deepCSV_1b",massRange[mass][0],massRange[mass][1],massRange[mass][2]) hDict[i]["h_mass_passed_1b"].SetLineColor(rt.kRed) hDict[i]["h_mass_passed_1b"].SetMarkerColor(rt.kRed) hDict[i]["h_mass_passed_1b"].SetMarkerSize(0.5) hDict[i]["h_mass_passed_2b"] = rt.TH1F(prefix+"_mass_passed_deepCSV_2b",prefix+"_mass_passed_deepCSV_2b",massRange[mass][0],massRange[mass][1],massRange[mass][2]) hDict[i]["h_mass_passed_2b"].SetLineColor(rt.kBlue) hDict[i]["h_mass_passed_2b"].SetMarkerColor(rt.kBlue) hDict[i]["h_mass_passed_2b"].SetMarkerSize(0.5) hDict[i]["h_mass_passed_le1b"] = rt.TH1F(prefix+"_mass_passed_deepCSV_le1b",prefix+"_mass_passed_deepCSV_le1b",massRange[mass][0],massRange[mass][1],massRange[mass][2]) hDict[i]["h_mass_passed_le1b"].SetLineColor(rt.kGreen) hDict[i]["h_mass_passed_le1b"].SetMarkerColor(rt.kGreen) hDict[i]["h_mass_passed_le1b"].SetMarkerSize(0.5) hDict[i]["h_weight_0b"] = rt.TH1F(prefix+"_weight_0b",prefix+"_weight_0b",2000,0.,2.) hDict[i]["h_weight_1b"] = rt.TH1F(prefix+"_weight_1b",prefix+"_weight_1b",2000,0.,2.) hDict[i]["h_weight_2b"] = rt.TH1F(prefix+"_weight_2b",prefix+"_weight_2b",2000,0.,2.) #loop over the tree and fill the histos tchain = rt.TChain(treeName) tchain.Add(sample) nEntries = tchain.GetEntries() for k in progressbar(range(nEntries), "Mass "+str(mass)+": ", 40): tchain.GetEntry(k) for i,j in CSV_Value.items(): hDict[i]["h_mass_all"].Fill(tchain.mjj) #implement analysis if not (abs(tchain.deltaETAjj)<1.3 and abs(tchain.etaWJ_j1)<2.5 and abs(tchain.etaWJ_j2)<2.5 and tchain.pTWJ_j1>60 and #tchain.pTWJ_j1<6500 and tchain.pTWJ_j2>30 and #tchain.pTWJ_j2<6500 and #tchain.mjj > 1246 and #tchain.mjj < 14000 and tchain.PassJSON): continue hDict[i]["h_mass_passed"].Fill(tchain.mjj) SFs = [] if tchain.jetCSVAK4_j1>j: SFs.append(getattr(tchain,'CSVv2SF_%s_j1'%i.low())) if tchain.jetCSVAK4_j2>j: SFs.append(getattr(tchain,'CSVv2SF_%s_j2'%i.low())) #hDict[i]["h_mass_passed_0b"].Fill(tchain.mjj,tchain.evtBweight_m) hDict[i]["h_mass_passed_0b"].Fill(tchain.mjj,bWeight(SFs,0)) hDict[i]["h_mass_passed_1b"].Fill(tchain.mjj,bWeight(SFs,1)) hDict[i]["h_mass_passed_2b"].Fill(tchain.mjj,bWeight(SFs,2)) hDict[i]["h_mass_passed_le1b"].Fill(tchain.mjj,bWeight(SFs,1)) hDict[i]["h_mass_passed_le1b"].Fill(tchain.mjj,bWeight(SFs,2)) return hDict if __name__ == '__main__': rt.gROOT.SetBatch() setTDRStyle.setTDRStyle() ################################################################### parser = OptionParser(usage=usage) parser.add_option('-f','--flavour',dest="flavour",type="string",default="none", help="Name of the signal flavour") parser.add_option('-m','--model',dest="model",type="string",default="qq", help="Name of the signal model") (options,args) = parser.parse_args() flavour = options.flavour model = options.model print "selected flavour:",flavour print "signal model :",model ################################################################### # CSV_Value = [0.05,0.1,0.1522,0.2,0.25,0.3,0.35,0.4,0.45,0.4941,0.5803,0.6,0.65,0.7,0.75,0.8,0.85,0.8838,0.9693] # book histos and graphs mDict = {} sampleNames = {} # loop over the MC samples if (model == "qq"): sampleNames = sampleNames_qq elif (model == "qg"): sampleNames = sampleNames_qg elif (model == "gg"): sampleNames = sampleNames_gg else: print "model unknown" exit for mass, sample in sorted(sampleNames.iteritems()): mDict[mass] = bookAndFill(mass,sample,flavour) #Create ROOT file and save plain histos outName = "signalHistos_"+flavour outFolder = "signalHistos_"+flavour+'_Dec_ForScan_CSVv2_down' if not os.path.exists(outFolder): os.makedirs(outFolder) if (flavour == "none"): outName = ("ResonanceShapes_%s_13TeV_Spring16.root"%model) g_an_acc={} g_0btag_rate={} g_1btag_rate={} g_2btag_rate={} g_le1btag_rate={} g_0btag_weight={} g_1btag_weight={} g_2btag_weight={} #make analysis vs mass for i,j in CSV_Value.items(): g_an_acc[i] = rt.TGraphAsymmErrors() g_0btag_rate[i] = rt.TGraphAsymmErrors() g_0btag_rate[i].SetTitle("g_0btag_rate;Resonance Mass [GeV];Tagging Rate") g_0btag_rate[i].SetLineWidth(2) g_1btag_rate[i] = rt.TGraphAsymmErrors() g_1btag_rate[i].SetMarkerColor(rt.kRed) g_1btag_rate[i].SetLineColor(rt.kRed) g_1btag_rate[i].SetLineWidth(2) g_2btag_rate[i] = rt.TGraphAsymmErrors() g_2btag_rate[i].SetMarkerColor(rt.kBlue) g_2btag_rate[i].SetLineColor(rt.kBlue) g_2btag_rate[i].SetLineWidth(2) g_le1btag_rate[i] = rt.TGraphAsymmErrors() g_le1btag_rate[i].SetMarkerColor(rt.kGreen) g_le1btag_rate[i].SetLineColor(rt.kGreen) g_le1btag_rate[i].SetLineWidth(2) g_0btag_weight[i] = rt.TGraphAsymmErrors() g_1btag_weight[i] = rt.TGraphAsymmErrors() g_2btag_weight[i] = rt.TGraphAsymmErrors() bin=0 for mass,hDict in sorted(mDict.iteritems()): for i,j in CSV_Value.items(): num = hDict[i]["h_mass_passed"].GetSumOfWeights() den = hDict[i]["h_mass_all"].GetSumOfWeights() #g_an_acc.SetPoint(bin,mass,num/den) #wrong. the reduced ntuples have already the selection implemented num = hDict[i]["h_mass_passed_0b"].GetSumOfWeights() den = hDict[i]["h_mass_passed"].GetSumOfWeights() g_0btag_rate[i].SetPoint(bin,mass,num/den) g_0btag_weight[i].SetPoint(bin,mass,hDict[i]["h_weight_0b"].GetMean()) num = hDict[i]["h_mass_passed_1b"].GetSumOfWeights() g_1btag_rate[i].SetPoint(bin,mass,num/den) g_1btag_weight[i].SetPoint(bin,mass,hDict[i]["h_weight_1b"].GetMean()) num = hDict[i]["h_mass_passed_2b"].GetSumOfWeights() g_2btag_rate[i].SetPoint(bin,mass,num/den) g_2btag_weight[i].SetPoint(bin,mass,hDict[i]["h_weight_2b"].GetMean()) num = hDict[i]["h_mass_passed_le1b"].GetSumOfWeights() g_le1btag_rate[i].SetPoint(bin,mass,num/den) bin += 1 for i,j in CSV_Value.items(): rootFile = rt.TFile(outFolder+"/"+outName+"_"+i+".root", 'recreate') for mass,hDict in sorted(mDict.iteritems()): # shape comparison 0 btag h1 = rt.TCanvas() h1.SetGridx() h1.SetGridy() h1.cd() hDict[i]["h_mass_passed"].DrawNormalized() hDict[i]["h_mass_passed_0b"].DrawNormalized("sames") hDict[i]["h_mass_passed_1b"].DrawNormalized("sames") hDict[i]["h_mass_passed_2b"].DrawNormalized("sames") leg = rt.TLegend(0.87, 0.80, 0.96, 0.89) leg.AddEntry(hDict[i]["h_mass_passed"],"untagged","L") leg.AddEntry(hDict[i]["h_mass_passed_0b"],"0-tag","P") leg.AddEntry(hDict[i]["h_mass_passed_1b"],"1-tag","P") leg.AddEntry(hDict[i]["h_mass_passed_2b"],"2-tag","P") leg.Draw("same") h1.Print(outFolder+"/shapes_"+str(mass)+"_"+flavour+"_"+i+".pdf") for n,h in hDict[i].items(): h.Write() g_an_acc[i].Write("g_an_acc") g_0btag_rate_Q=Do_Inter(g_0btag_rate[i]) g_1btag_rate_Q=Do_Inter(g_1btag_rate[i]) g_2btag_rate_Q=Do_Inter(g_2btag_rate[i]) g_le1btag_rate_Q=Do_Inter(g_le1btag_rate[i]) # g_0btag_rate_Q.Write("g_0btag_rate") g_0btag_rate_Q.SetLineWidth(2) # g_1btag_rate_Q.Write("g_1btag_rate") g_1btag_rate_Q.SetMarkerColor(rt.kRed) g_1btag_rate_Q.SetLineColor(rt.kRed) g_1btag_rate_Q.SetLineWidth(2) # g_2btag_rate_Q.Write("g_2btag_rate") g_2btag_rate_Q.SetMarkerColor(rt.kBlue) g_2btag_rate_Q.SetLineColor(rt.kBlue) g_2btag_rate_Q.SetLineWidth(2) g_le1btag_rate_Q.SetMarkerColor(rt.kGreen) g_le1btag_rate_Q.SetLineColor(rt.kGreen) g_le1btag_rate_Q.SetLineWidth(2) g_0btag_rate_Q.Write("g_0btag_rate") g_1btag_rate_Q.Write("g_1btag_rate") g_2btag_rate_Q.Write("g_2btag_rate") g_le1btag_rate_Q.Write("g_le1btag_rate") g_0btag_weight[i].Write("g_0btag_weight") g_1btag_weight[i].Write("g_1btag_weight") g_2btag_weight[i].Write("g_2btag_weight") rootFile.Close() for i,j in CSV_Value.items(): # Draw and print # tagging rate vs mass c1 = rt.TCanvas() c1.SetGridx() c1.SetGridy() c1.cd() g_0btag_rate_Q=Do_Inter(g_0btag_rate[i]) g_1btag_rate_Q=Do_Inter(g_1btag_rate[i]) g_2btag_rate_Q=Do_Inter(g_2btag_rate[i]) g_le1btag_rate_Q=Do_Inter(g_le1btag_rate[i]) g_0btag_rate_Q.SetLineWidth(2) #g_0btag_rate_Q.Write("g_0btag_rate") g_1btag_rate_Q.SetMarkerColor(rt.kRed) g_1btag_rate_Q.SetLineColor(rt.kRed) g_1btag_rate_Q.SetLineWidth(2) #g_1btag_rate_Q.Write("g_1btag_rate") g_2btag_rate_Q.SetMarkerColor(rt.kBlue) g_2btag_rate_Q.SetLineColor(rt.kBlue) g_2btag_rate_Q.SetLineWidth(2) #g_2btag_rate_Q.Write("g_2btag_rate") g_le1btag_rate_Q.SetMarkerColor(rt.kGreen) g_le1btag_rate_Q.SetLineColor(rt.kGreen) g_le1btag_rate_Q.SetLineWidth(2) #g_le1btag_rate_Q.Write("g_le1btag_rate") g_0btag_rate_Q.Draw("APL") g_0btag_rate_Q.GetYaxis().SetRangeUser(0,1) g_1btag_rate_Q.Draw("PL,sames") g_2btag_rate_Q.Draw("PL,sames") g_le1btag_rate_Q.Draw("PL,sames") leg = rt.TLegend(0.87, 0.80, 0.96, 0.89) leg.AddEntry(g_0btag_rate_Q,"0-tag","L") leg.AddEntry(g_1btag_rate_Q,"1-tag","L") leg.AddEntry(g_2btag_rate_Q,"2-tag","L") leg.AddEntry(g_le1btag_rate_Q,"le1-tag","L") leg.Draw("same") c1.Print(outFolder+"/tagRate_"+flavour+"_"+i+".pdf") # close file #raw_input("Press Enter to continue...")
9df92ff5844f388a0d92870ce2ceab590cc8a89d
64870a6b0a38c63dd69387a2b9d591378dcaedfa
/setup.py
d9015e62651456081c3657bf72391f27c76df5af
[ "Unlicense" ]
permissive
andrewp-as-is/setuppy-generator.py
28ff31d8fd6a66fb4d0ca77244fcc8acb5a53912
ae27ae4d534a373f34ebe24a16353a214abf8fc5
refs/heads/master
2021-07-11T05:40:52.834761
2020-12-03T21:25:00
2020-12-03T21:25:00
217,581,540
13
0
null
null
null
null
UTF-8
Python
false
false
201
py
import setuptools setuptools.setup( name='setuppy-generator', version='2020.12.2', install_requires=open('requirements.txt').read().splitlines(), packages=setuptools.find_packages() )
8e8f8f023aaacf37507d97b5a08cd7038235cb03
76255205d52cb81da0f8e0014775b98195ae83a1
/osticket/env/bin/django-admin
25c1965788b29f4f38330119aa9805526df6877b
[]
no_license
vuvandang1995/OSticket
6c4fafbadffd99f635f049ca19a3dd120152d159
80c364cf9a7313cb102b7d618c43411c394b09f4
refs/heads/master
2020-03-09T10:08:16.715876
2018-07-11T00:11:52
2018-07-11T00:11:52
128,729,604
5
3
null
2018-07-11T00:11:53
2018-04-09T07:08:35
JavaScript
UTF-8
Python
false
false
281
#!/home/osticket/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
e3ce904d92a58307e91532be437be396e12719b0
e5483ab737acd9fb222f0b7d1c770cfdd45d2ba7
/ecommerce/core/migrations/0015_auto_20200617_0543.py
ed6c2dc12074874bcb1dfb5cfa5901daff8e3542
[]
no_license
mxmaslin/otus_web
6c1e534047444d7a1fc4cd1bf8245c25d9fc4835
b90ad69e1b5c1828fa2ace165710422d113d1d17
refs/heads/master
2022-12-09T19:52:58.626199
2020-07-07T19:15:52
2020-07-07T19:15:52
226,154,128
1
1
null
2022-12-08T03:23:10
2019-12-05T17:25:11
JavaScript
UTF-8
Python
false
false
2,038
py
# Generated by Django 2.2.12 on 2020-06-17 02:43 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('core', '0014_orderitem_ordered'), ] operations = [ migrations.AddField( model_name='order', name='ref_code', field=models.CharField(blank=True, max_length=20, null=True), ), migrations.AlterField( model_name='item', name='category', field=models.CharField(choices=[('S', 'Футболки'), ('SW', 'Спортивная одежда'), ('OW', 'Верхняя одежда')], max_length=2, verbose_name='Категория'), ), migrations.CreateModel( name='Address', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('street_address', models.CharField(max_length=100, verbose_name='Улица')), ('house_number', models.CharField(max_length=10, verbose_name='Дом, корпус')), ('apartment_number', models.CharField(max_length=10, verbose_name='Номер квартиры')), ('address_zip', models.CharField(max_length=6)), ('default', models.BooleanField(default=False)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Адрес', 'verbose_name_plural': 'Адреса', }, ), migrations.AddField( model_name='order', name='shipping_address', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='shipping_address', to='core.Address'), ), ]
ed526ae369d2eed2d321a2449ab09942936d0194
b0af2f57aec5f6620fe73361f5aee18c3d12d7c5
/code/robotics/PyAdvancedControl-master/mpc_sample/main.py
be94f52068f09aded7a128b2e28f37c4a582accf
[ "GPL-2.0-or-later", "eCos-exception-2.0", "MIT" ]
permissive
vicb1/python-reference
c7d3a7fee1b181cd4a80883467dc743b935993a2
40b9768124f2b9ef80c222017de068004d811d92
refs/heads/master
2022-10-09T08:41:56.699722
2022-10-04T00:53:58
2022-10-04T00:54:06
171,308,233
1
0
MIT
2022-06-21T23:43:38
2019-02-18T15:27:28
Jupyter Notebook
UTF-8
Python
false
false
2,028
py
#! /usr/bin/python # -*- coding: utf-8 -*- """ Simple Model Predictive Control Simulation author Atsushi Sakai """ import time from cvxpy import * import numpy as np import matplotlib.pyplot as plt print("Simulation start") np.random.seed(1) n = 4 # state size m = 2 # input size T = 50 # number of horizon # simulation parameter alpha = 0.2 beta = 5.0 # Model Parameter A = np.eye(n) + alpha * np.random.randn(n, n) B = np.random.randn(n, m) x_0 = beta * np.random.randn(n, 1) x = Variable(n, T + 1) u = Variable(m, T) states = [] for t in range(T): cost = sum_squares(x[:, t + 1]) + sum_squares(u[:, t]) constr = [x[:, t + 1] == A * x[:, t] + B * u[:, t], norm(u[:, t], 'inf') <= 1] states.append(Problem(Minimize(cost), constr)) # sums problem objectives and concatenates constraints. prob = sum(states) prob.constraints += [x[:, T] == 0, x[:, 0] == x_0] start = time.time() result = prob.solve(verbose=True) elapsed_time = time.time() - start print ("calc time:{0}".format(elapsed_time) + "[sec]") if result == float("inf"): print("Cannot optimize") import sys sys.exit() # return f = plt.figure() # Plot (u_t)_1. ax = f.add_subplot(211) u1 = np.array(u[0, :].value[0, :])[0].tolist() u2 = np.array(u[1, :].value[0, :])[0].tolist() plt.plot(u1, '-r', label="u1") plt.plot(u2, '-b', label="u2") plt.ylabel(r"$u_t$", fontsize=16) plt.yticks(np.linspace(-1.0, 1.0, 3)) plt.legend() plt.grid(True) # Plot (u_t)_2. plt.subplot(2, 1, 2) x1 = np.array(x[0, :].value[0, :])[0].tolist() x2 = np.array(x[1, :].value[0, :])[0].tolist() x3 = np.array(x[2, :].value[0, :])[0].tolist() x4 = np.array(x[3, :].value[0, :])[0].tolist() plt.plot(range(T + 1), x1, '-r', label="x1") plt.plot(range(T + 1), x2, '-b', label="x2") plt.plot(range(T + 1), x3, '-g', label="x3") plt.plot(range(T + 1), x4, '-k', label="x4") plt.yticks([-25, 0, 25]) plt.ylim([-25, 25]) plt.ylabel(r"$x_t$", fontsize=16) plt.xlabel(r"$t$", fontsize=16) plt.grid(True) plt.legend() plt.tight_layout() plt.show()
f6f4a37a17afcc48c0753be5d4751a06f2db2689
28b2144816ce1bf62b7481cd857fdc831a501f6b
/tabook/__init__.py
bcaae7c44a21c61773c0a480aee5d8b109854021
[]
no_license
t0ster/Turbo-Address-Book
3191a837d7d28cf9b8c9d20331fe0518062b3892
8c5463b1d4423a0c41d7ed75ff9a512ae1bc515b
refs/heads/master
2020-05-31T14:10:46.449799
2011-06-28T14:07:49
2011-06-28T14:07:49
1,953,556
0
0
null
null
null
null
UTF-8
Python
false
false
61
py
# -*- coding: utf-8 -*- """The Turbo-Address-Book package"""
354af91557abc5587e4c6a68abaf64e39f6c2d67
6e64eb9a4353dc6bd89c649d27bb20aa61173d7d
/core/products/views/product/views.py
cd1644f54713f542333f36d4ef3078e2019fa4f8
[]
no_license
RoodrigoRoot/deploy_django
0d4b76ae41bab907d5d69b4e7c34d5151f9827bd
593b4613f1c224e236ac7f798e771e447ada677d
refs/heads/master
2022-11-28T05:39:37.350224
2020-03-19T19:42:04
2020-03-19T19:42:04
248,580,750
0
0
null
2022-11-22T03:38:31
2020-03-19T18:50:40
JavaScript
UTF-8
Python
false
false
2,418
py
from django.contrib.auth.decorators import login_required from django.shortcuts import render from django.urls import reverse_lazy from django.utils.decorators import method_decorator from django.views.generic import ListView, CreateView, UpdateView, DeleteView from core.products.forms import ProductForm from core.products.models import Product class ProductListView(ListView): model = Product template_name = 'product/list.html' @method_decorator(login_required) def dispatch(self, request, *args, **kwargs): return super(ProductListView, self).dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['title'] = 'Listado de Productos' return context class ProductCreate(CreateView): model = Product template_name = 'product/create.html' form_class = ProductForm success_url = reverse_lazy('product_list') @method_decorator(login_required) def dispatch(self, request, *args, **kwargs): return super(ProductCreate, self).dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['title'] = 'Nuevo registro de un Producto' context['action'] = 'add' return context class ProductUpdate(UpdateView): model = Product template_name = 'product/create.html' form_class = ProductForm success_url = reverse_lazy('product_list') @method_decorator(login_required) def dispatch(self, request, *args, **kwargs): return super(ProductUpdate, self).dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['title'] = 'Edición de un Producto' context['action'] = 'edit' return context class ProductDelete(DeleteView): model = Product template_name = 'product/delete.html' success_url = reverse_lazy('product_list') @method_decorator(login_required) def dispatch(self, request, *args, **kwargs): return super(ProductDelete, self).dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['title'] = 'Notificación de eliminación' context['url'] = reverse_lazy('product_list') return context
996800500c74f15861191e0d0013276f1dbb2768
673f9b85708affe260b892a4eb3b1f6a0bd39d44
/Botnets/App/App Web/PDG-env/lib/python3.6/site-packages/pandas/tests/base/test_ops.py
2693eb12dda711c9a9025040a68ec054f6b7c9e1
[ "MIT" ]
permissive
i2tResearch/Ciberseguridad_web
feee3fe299029bef96b158d173ce2d28ef1418e4
e6cccba69335816442c515d65d9aedea9e7dc58b
refs/heads/master
2023-07-06T00:43:51.126684
2023-06-26T00:53:53
2023-06-26T00:53:53
94,152,032
14
0
MIT
2023-09-04T02:53:29
2017-06-13T00:21:00
Jupyter Notebook
UTF-8
Python
false
false
33,362
py
from datetime import datetime, timedelta from io import StringIO import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, needs_i8_conversion, ) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) import pandas._testing as tm from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series() self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, f"{t}_index") for t in types] self.series = [getattr(self, f"{t}_series") for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, f"{t}_series") for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(np.transpose(obj), obj) with pytest.raises(ValueError, match=self.errmsg): np.transpose(obj, axes=1) class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize", "base", "data"]: assert not hasattr(o, p) with pytest.raises(ValueError): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, type(o)) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 def test_value_counts_inferred(self, index_or_series): klass = index_or_series s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) def test_value_counts_bins(self, index_or_series): klass = index_or_series s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) if klass is dict else klass({}, dtype=object) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 def test_value_counts_datetime64(self, index_or_series): klass = index_or_series # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=r"drop_duplicates\(\) got an unexpected keyword argument", ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( isinstance(o, Series) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) def test_getitem(self): for i in self.indexes: s = pd.Series(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, pd.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(len(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = pd.Series(idx) tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_get_indexer_non_unique_dtype_mismatch(self): # GH 25459 indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing)
e6874392c8edf6d718560d3a91ebeb226324e9b0
bd7f75e3acebad3f08959223365f0dfc84990f1b
/voc_label_multiClass_with_poly_non_interest.py
b51db2f55b8ab681e3427a2cebd54e58a8be0e7f
[ "MIT" ]
permissive
nghigd10/PyScripts
b6fcfb83dc9fe61f8c4f9972775b4b8ac53ffe2e
df8a37696b92b452b108d74f69e027b6a004670a
refs/heads/master
2023-01-03T05:41:37.280633
2020-10-30T10:15:21
2020-10-30T10:15:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,328
py
import xml.etree.ElementTree as ET import pickle import os import re import sys import shutil import math from os import listdir, getcwd from os.path import join import cv2 import numpy as np car = ["saloon_car", "suv", "van", "pickup"] other = ["shop_truck", "unknown"] bicycle = ["bicycle", "motorcycle"] targettypes = ["car", "car_front", "car_rear", "bicycle", "person", "cyclist", "tricycle", "motorcycle", "non_interest_zone", "non_interest_zones"] classes_c9 = ["car", "truck", "waggon", "passenger_car", "other", "bicycle", "person", "cyclist", "tricycle", "non_interest_zone"] classes_c6 = ['car', "bicycle", "person", "cyclist", "tricycle", "car_fr", "non_interest_zone", "non_interest_zones"] classes_c5 = ['car', # 0 "bicycle", # 1 "person", # 2 "cyclist", # 3 "tricycle", # 4 "non_interest_zone"] # classes = classes_c6 classes = classes_c5 class_num = len(classes) - 1 # 减1减的是non_interest_zone car_fr = ["car_front", "car_rear"] nCount = 0 def convert(size, box): dw = 1./size[0] dh = 1./size[1] xmin = box[0] xmax = box[1] ymin = box[2] ymax = box[3] if xmin < 0: xmin = 0 if xmax < 0 or xmin >= size[0]: return None if xmax >= size[0]: xmax = size[0] - 1 if ymin < 0: ymin = 0 if ymax < 0 or ymin >= size[1]: return None if ymax >= size[1]: ymax = size[1] - 1 x = (xmin + xmax)/2.0 y = (ymin + ymax)/2.0 w = abs(xmax - xmin) h = abs(ymax - ymin) x = x*dw w = w*dw y = y*dh h = h*dh if w == 0 or h == 0: return None return (x, y, w, h) def convert_annotation(imgpath, xmlpath, labelpath, filename): in_file = open(xmlpath+'/'+filename+'.xml') out_file = open(labelpath+'/'+filename+'.txt', 'w') xml_info = in_file.read() if xml_info.find('dataroot') < 0: print("Can not find dataroot") out_file.close() in_file.close() return [], [] #xml_info = xml_info.decode('GB2312').encode('utf-8') #xml_info = xml_info.replace('GB2312', 'utf-8') try: root = ET.fromstring(xml_info) except(Exception, e): print("Error: cannot parse file") #n = raw_input() out_file.close() in_file.close() return [], [] boxes_non = [] poly_non = [] # Count = 0 label_statis = [0 for i in range(class_num)] if root.find('markNode') != None: obj = root.find('markNode').find('object') if obj != None: w = int(root.find('width').text) h = int(root.find('height').text) print("w:%d, h%d" % (w, h)) # print 'w=' + str(w) + ' h=' + str(h) for obj in root.iter('object'): target_type = obj.find('targettype') cls_name = target_type.text print(cls_name) if cls_name not in targettypes: print("********************************* "+cls_name + " is not in targetTypes list *************************") continue # # classes_c9 # if cls_name == "car": # cartype = obj.find('cartype').text # # print(cartype) # if cartype == 'motorcycle': # cls_name = "bicycle" # elif cartype == 'truck': # cls_name = "truck" # elif cartype == 'waggon': # cls_name = 'waggon' # elif cartype == 'passenger_car': # cls_name = 'passenger_car' # elif cartype == 'unkonwn' or cartype == "shop_truck": # cls_name = "other" # classes_c5 if cls_name == 'car_front' or cls_name == 'car_rear': cls_name = 'car_fr' if cls_name == 'car': cartype = obj.find('cartype').text if cartype == 'motorcycle': cls_name = 'bicycle' if cls_name == "motorcycle": cls_name = "bicycle" if cls_name not in classes: print("********************************* " + cls_name + " is not in class list *************************") continue cls_id = classes.index(cls_name) # print(cls,cls_id) cls_no = cls_id # elif 'non_interest_zone' == cls: # imgfile = imgpath + '/'+filename+'.jpg' # img = cv2.imread(imgfile) # xmin = int(xmlbox.find('xmin').text) # xmax = int(xmlbox.find('xmax').text) # ymin = int(xmlbox.find('ymin').text) # ymax = int(xmlbox.find('ymax').text) # print(xmin,xmax,ymin,ymax,img.shape) # tmp = np.zeros((ymax-ymin,xmax-xmin,3),img.dtype) # img[ymin:ymax,xmin:xmax] = tmp # cv2.imwrite(imgfile,img) # print("has non_interest_zone*************************************************************") # continue # print(cls_no) # if cls_no != 6: # continue if cls_name == "non_interest_zones": # 有个bug, non_interest_zones时为bndbox,胡老板已修复。 try: xmlpoly = obj.find('polygonPoints').text print('xml_poly:', xmlpoly) poly_ = re.split('[,;]', xmlpoly) poly_non.append(poly_) continue except: continue # Count += 1 xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) if cls_name == "non_interest_zone": boxes_non.append(b) continue # label_statis[cls_no] += 1 bb = convert((w, h), b) if bb is None: print("++++++++++++++++++++++++++++++box is error++++++++++++++++++++") # sleep(10) continue out_file.write(str(cls_no) + " " + " ".join([str(a) for a in bb]) + '\n') print(str(cls_no) + " " + " ".join([str(a) for a in bb])) out_file.close() in_file.close() # if Count > 0: # return 0 # else: # # if os.path.exists(labelpath+'/'+filename+'.txt'): # # os.remove(labelpath+'/'+filename+'.txt') # return -1 return poly_non, boxes_non, label_statis if __name__ == "__main__": # rootdir = '/users/maqiao/mq/Data_checked/multiClass/multiClass0320' # root_path = "/users/maqiao/mq/Data_checked/multiClass/pucheng20191101" # rootdirs = [ # '/users/maqiao/mq/Data_checked/multiClass/multiClass0320', # '/users/maqiao/mq/Data_checked/multiClass/multiClass0507', # '/users/maqiao/mq/Data_checked/multiClass/multiClass0606', # '/users/maqiao/mq/Data_checked/multiClass/multiClass0704', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190808', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190814', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190822-1', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190822-3', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190823', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190826', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190827', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190827_1', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190830', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190830_1', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190830_2', # '/users/maqiao/mq/Data_checked/multiClass/multiClass190830_3' # "/users/maqiao/mq/Data_checked/multiClass/mark/houhaicui", # "/users/maqiao/mq/Data_checked/multiClass/mark/limingqing", # "/users/maqiao/mq/Data_checked/multiClass/mark/mayanzhuo", # "/users/maqiao/mq/Data_checked/multiClass/mark/quanqingfang", # "/users/maqiao/mq/Data_checked/multiClass/mark/shenjinyan", # "/users/maqiao/mq/Data_checked/multiClass/mark/wanglinan", # "/users/maqiao/mq/Data_checked/multiClass/mark/yangyanping", # "/users/maqiao/mq/Data_checked/multiClass/duomubiao/houhaicui", # "/users/maqiao/mq/Data_checked/multiClass/duomubiao/limingqing", # "/users/maqiao/mq/Data_checked/multiClass/duomubiao/mayanzhuo", # "/users/maqiao/mq/Data_checked/multiClass/duomubiao/quanqingfang", # "/users/maqiao/mq/Data_checked/multiClass/duomubiao/shenjinyan", # "/users/maqiao/mq/Data_checked/multiClass/duomubiao/wanglinan", # "/users/maqiao/mq/Data_checked/multiClass/duomubiao/yangyanping", # "/users/maqiao/mq/Data_checked/multiClass/tricycle_bigCar20190912", # "/users/maqiao/mq/Data_checked/multiClass/tricycle_bigCar20190920", # "/users/maqiao/mq/Data_checked/multiClass/tricycle_bigCar20190925", # "/users/maqiao/mq/Data_checked/multiClass/tricycle_bigCar20190930", # "/users/maqiao/mq/Data_checked/multiClass/tricycle_bigCar20191011", # "/users/maqiao/mq/Data_checked/multiClass/tricycle_bigCar20191018", # "/users/maqiao/mq/Data_checked/multiClass/pucheng20191012", # "/users/maqiao/mq/Data_checked/multiClass/pucheng20191017", # "/users/maqiao/mq/Data_checked/multiClass/pucheng20191025", # "/users/maqiao/mq/Data_checked/multiClass/pucheng20191101"] # changsha_test_poly_nointer # /mnt/diskb/maqiao/multiClass/beijing20200110 # /mnt/diskb/maqiao/multiClass/changsha20191224-2 root_path = '/mnt/diskb/maqiao/multiClass/c5_puer_20200611' rootdirs = ["/mnt/diskb/maqiao/multiClass/c5_puer_20200611"] # root_path = '/users/duanyou/backup_c5/changsha_c5/test_new_chuiting' # rootdirs = ["/users/duanyou/backup_c5/changsha_c5/test_new_chuiting"] # root_path = 'F:/mq1/test_data' # rootdirs = [root_path+'/1'] all_list_file = os.path.join(root_path, 'multiClass_train.txt') all_list = open(os.path.join(root_path, all_list_file), 'w') dir_num = len(rootdirs) for j, rootdir in enumerate(rootdirs): imgpath = rootdir + '/' + "JPEGImages_ori" imgpath_dst = rootdir + '/' + "JPEGImages" xmlpath = rootdir + '/' + "Annotations" labelpath = rootdir + '/' + "labels" if not os.path.exists(labelpath): os.makedirs(labelpath) if not os.path.exists(imgpath_dst): os.makedirs(imgpath_dst) list_file = open(rootdir + '/' + "train.txt", 'w') file_lists = os.listdir(imgpath) file_num = len(file_lists) label_count = [0 for i in range(class_num)] for i, imgname in enumerate(file_lists): print("**************************************************************************************" + str(i) + '/' + str(file_num)+' ' + str(j) + '/' + str(dir_num)) print(imgpath + '/' + imgname) print(xmlpath+'/' + imgname[:-4] + ".xml") if imgname.endswith('.jpg') and os.path.exists(xmlpath+'/'+imgname[:-4]+".xml"): if not os.path.exists(imgpath): # 没有对应的图片则跳过 continue poly_non, boxes_non, label_statis = convert_annotation( imgpath, xmlpath, labelpath, imgname[:-4]) print('boxes_on:', boxes_non) if label_statis == []: continue label_count = [label_count[i] + label_statis[i] for i in range(class_num)] img_ori = imgpath + '/' + imgname img = cv2.imread(img_ori) if img is None: continue # 把不感兴趣区域替换成颜色随机的图像块 is_data_ok = True if len(boxes_non) > 0: for b in boxes_non: xmin = int(min(b[0], b[1])) xmax = int(max(b[0], b[1])) ymin = int(min(b[2], b[3])) ymax = int(max(b[2], b[3])) if xmax > img.shape[1] or ymax > img.shape[0]: is_data_ok = False break if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > img.shape[1] - 1: xmax = img.shape[1] - 1 if ymax > img.shape[0] - 1: ymax = img.shape[0] - 1 h = int(ymax - ymin) w = int(xmax - xmin) img[ymin:ymax, xmin:xmax, :] = np.random.randint( 0, 255, (h, w, 3)) # 替换为马赛克 # 把不感兴趣多边形区域替换成黑色 if len(poly_non) > 0: for poly in poly_non: arr = [] i = 0 while i < len(poly) - 1: arr.append([int(poly[i]), int(poly[i + 1])]) i = i + 2 arr = np.array(arr) print('arr:', arr) cv2.fillPoly(img, [arr], 0) if not is_data_ok: continue img_dst = imgpath_dst + '/' + imgname print(img_dst) cv2.imwrite(img_dst, img) list_file.write(img_dst+'\n') all_list.write(img_dst+'\n') print("label_count ", label_count) list_file.close() all_list.close()
b53fe631fbbe3bae49798ea486ad1b37cf7a89b5
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part002589.py
e50690dda9b20734f0885f36379c31fb7774fe82
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,304
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher26020(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.2.1.2.1.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.1.2.1.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher26020._instance is None: CommutativeMatcher26020._instance = CommutativeMatcher26020() return CommutativeMatcher26020._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 26019 return yield from collections import deque
2d573fe5931b3f1063ba73647b84291d080f1c8a
2ad32d08c66cc02f5a19b3a9e2fbb7c5c25ed99c
/wolf_alg/Data_structures_and_algorithms_py/floyd.py
e459f00b0c5d7f500a47fb6c30e2f2b617c4b4ac
[]
no_license
wqjzzgci/wolf-ai
5038dee45748809d16482ff6ecac7a2ae00dcbcf
42cb88a312e1137ad1c59c8a82fc3c15b3cd5092
refs/heads/master
2020-03-10T03:20:58.453867
2018-04-09T10:23:10
2018-04-09T10:23:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
703
py
#coding=utf-8 def floyd(double_list, vertexs): for k in xrange(1, vertexs + 1): for i in xrange(1, vertexs + 1): for j in xrange(1, vertexs + 1): tmp = min_value if double_list[i][k] >= min_value or double_list[k][j] >= min_value else double_list[i][k] + double_list[k][j] if double_list[i][j] > tmp: double_list[i][j] = tmp return double_list if __name__ == '__main__': min_value = 999999999 ll = [ [min_value,min_value,min_value,min_value,min_value], [min_value,0,2,6,4], [min_value,min_value,0,3,min_value], [min_value,7,min_value,0,1], [min_value,5,min_value,12,0]] print floyd(ll, 4)
43c07454753909afed5dc71cb7ef52426b278069
b34d7c5f810287ebaab09c58754bc59f03589ac3
/ltc/controller/migrations/0005_auto_20220316_1624.py
df6da7a23d585093998fc8bdab84b883a059ef11
[ "MIT" ]
permissive
r1990v/JMeter-Control-Center
11d00276a35a502f91f05bf2adf5c88bf56fbfed
6bfd13f008fce42c78badcb9d2579f069b064fe9
refs/heads/master
2023-01-07T12:40:43.370688
2022-09-27T11:05:56
2022-09-27T11:05:56
162,960,150
0
0
null
2018-12-24T06:53:26
2018-12-24T06:53:26
null
UTF-8
Python
false
false
567
py
# Generated by Django 2.2 on 2022-03-16 15:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('controller', '0004_auto_20210608_1506'), ] operations = [ migrations.DeleteModel( name='Proxy', ), migrations.RemoveField( model_name='testrunningdata', name='test_running', ), migrations.DeleteModel( name='TestRunning', ), migrations.DeleteModel( name='TestRunningData', ), ]
e26833183e66a8213241f6e0351fc7da369a112b
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/aloe/aloe/common/plot_2d.py
b295d55c7794a134eb4930874648ecfc1df9b8c4
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
2,275
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np def plot_heatmap(pdf_func, out_name, size=3): w = 100 x = np.linspace(-size, size, w) y = np.linspace(-size, size, w) xx, yy = np.meshgrid(x, y) coords = np.stack([xx.flatten(), yy.flatten()]).transpose() scores = pdf_func(coords) a = scores.reshape((w, w)) plt.imshow(a) plt.axis('equal') plt.axis('off') plt.savefig(out_name, bbox_inches='tight') plt.close() def plot_samples(samples, out_name, lim=None, axis=True): plt.scatter(samples[:, 0], samples[:, 1], marker='.') plt.axis('equal') if lim is not None: plt.xlim(-lim, lim) plt.ylim(-lim, lim) if not axis: plt.axis('off') plt.savefig(out_name, bbox_inches='tight') plt.close() def plot_joint(dataset, samples, out_name): x = np.max(dataset) y = np.max(-dataset) z = np.ceil(max((x, y))) plt.scatter(dataset[:, 0], dataset[:, 1], c='r', marker='x') plt.scatter(samples[:, 0], samples[:, 1], c='b', marker='.') plt.legend(['training data', 'ADE sampled']) plt.axis('equal') plt.xlim(-z, z) plt.ylim(-z, z) plt.savefig(out_name, bbox_inches='tight') plt.close() fname = out_name.split('/')[-1] out_name = '/'.join(out_name.split('/')[:-1]) + '/none-' + fname plt.figure(figsize=(8, 8)) plt.scatter(dataset[:, 0], dataset[:, 1], c='r', marker='x') plt.scatter(samples[:, 0], samples[:, 1], c='b', marker='.') plt.axis('equal') plt.xlim(-z, z) plt.ylim(-z, z) plt.savefig(out_name, bbox_inches='tight') plt.close()
7df713c6d27a30122bb093277d9212602c441695
6a0b9581195400a93027aca881b1bc687401913d
/hackerrank-python/contests/world_cup/world_cup_team_formation.py
e702e9c67af3d7c45e54f7514b371704816cfd93
[]
no_license
108krohan/codor
1d7ff503106ad6b2c18bc202d4c88f296600f28e
2e485607080f919f273aa6c8c0d9cb3516cf4443
refs/heads/master
2021-04-28T21:13:34.604020
2018-02-18T11:55:26
2018-02-18T11:55:26
86,153,540
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
"""world_cup_team_formation at hackerrank.com""" lst = [int(raw_input()) for _ in xrange(10)] lst.sort(reverse = True) print lst[0] + lst[2] + lst[4] """ take sum of the first odd three numbers sorted in reverse order. """
b25ad99d54465169e298d7e083d8bdab4876bdd9
bc035331453d2f10e6179700ba74702158f28abf
/week1_2/storage/exceptions.py
6ce04351444f3c784d6488edafd7fa99d4f4735b
[]
no_license
NikolaPavlov/Hack_Bulgaria_Django
ade6813ae19d7fb7f00f74b6ec800d5927313f12
74ee14ddae885e0ea457ef89cee361b9dc34206c
refs/heads/master
2021-01-17T14:05:40.444361
2017-05-19T19:12:32
2017-05-19T19:12:32
83,479,831
2
0
null
null
null
null
UTF-8
Python
false
false
44
py
class UserDoesNotExist(Exception): pass
6ecb0830a31ef2f1511f5a0b3920344955ddcfee
641fa8341d8c436ad24945bcbf8e7d7d1dd7dbb2
/components/exo/wayland/DEPS
067074d486aaceee495cbd61658e383ec476bff5
[ "BSD-3-Clause" ]
permissive
massnetwork/mass-browser
7de0dfc541cbac00ffa7308541394bac1e945b76
67526da9358734698c067b7775be491423884339
refs/heads/master
2022-12-07T09:01:31.027715
2017-01-19T14:29:18
2017-01-19T14:29:18
73,799,690
4
4
BSD-3-Clause
2022-11-26T11:53:23
2016-11-15T09:49:29
null
UTF-8
Python
false
false
54
include_rules = [ "+third_party/wayland/include", ]
568fad17206fd645defb2cc4276ae1fc93ba66bc
06a2a44e2de6f9f6ac815762468ba63b82cd00e1
/apps/account/context_processors.py
932c6e47b78fb03f1996728b8cd4ab0d9ddf9feb
[]
no_license
hqpr/marketcsgo
153e0f3b180e6cc5eb771ba60e7cf5b6e7f31929
dec9cdf1cafb836f5303a773ad77cf4824665722
refs/heads/master
2021-01-10T10:08:33.323776
2019-03-17T10:13:40
2019-03-17T10:13:40
48,641,743
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
from apps.account.models import UserProfile def check_profile(request): if request.user.is_authenticated(): try: UserProfile.objects.get(user=request.user) return {'valid': 1} except UserProfile.DoesNotExist: return {'valid': 0, 'user_id': request.user.id} return {'valid': 1} def debug_mode(request): if request.user.is_authenticated(): try: u = UserProfile.objects.get(user=request.user) if u.debug_mode: return {'debug': 1} else: return {'debug': 0} except UserProfile.DoesNotExist: return {'debug': 0, 'user_id': request.user.id} return {'debug': 1}
1dc11d54d1dfac5b787fddc7a6e886173250838b
cbc5e26bb47ae69e80a3649c90275becf25ce404
/xlsxwriter/test/contenttypes/test_contenttypes01.py
616bc445ea0552bde833c1b5083dd3f662857947
[ "BSD-2-Clause-Views", "BSD-3-Clause", "MIT" ]
permissive
mst-solar-car/kicad-bom-generator
c3549409c3139f787ad28391372b5cb03791694a
2aae905056d06f3d25343a8d784049c141d05640
refs/heads/master
2021-09-07T14:00:40.759486
2018-02-23T23:21:13
2018-02-23T23:21:13
107,868,801
3
0
null
null
null
null
UTF-8
Python
false
false
2,590
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2017, John McNamara, [email protected] # import unittest from ...compatibility import StringIO from ..helperfunctions import _xml_to_list from ...contenttypes import ContentTypes class TestAssembleContentTypes(unittest.TestCase): """ Test assembling a complete ContentTypes file. """ def test_assemble_xml_file(self): """Test writing an ContentTypes file.""" self.maxDiff = None fh = StringIO() content = ContentTypes() content._set_filehandle(fh) content._add_worksheet_name('sheet1') content._add_default(('jpeg', 'image/jpeg')) content._add_shared_strings() content._add_calc_chain() content._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <Types xmlns="http://schemas.openxmlformats.org/package/2006/content-types"> <Default Extension="rels" ContentType="application/vnd.openxmlformats-package.relationships+xml"/> <Default Extension="xml" ContentType="application/xml"/> <Default Extension="jpeg" ContentType="image/jpeg"/> <Override PartName="/docProps/app.xml" ContentType="application/vnd.openxmlformats-officedocument.extended-properties+xml"/> <Override PartName="/docProps/core.xml" ContentType="application/vnd.openxmlformats-package.core-properties+xml"/> <Override PartName="/xl/styles.xml" ContentType="application/vnd.openxmlformats-officedocument.spreadsheetml.styles+xml"/> <Override PartName="/xl/theme/theme1.xml" ContentType="application/vnd.openxmlformats-officedocument.theme+xml"/> <Override PartName="/xl/workbook.xml" ContentType="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet.main+xml"/> <Override PartName="/xl/worksheets/sheet1.xml" ContentType="application/vnd.openxmlformats-officedocument.spreadsheetml.worksheet+xml"/> <Override PartName="/xl/sharedStrings.xml" ContentType="application/vnd.openxmlformats-officedocument.spreadsheetml.sharedStrings+xml"/> <Override PartName="/xl/calcChain.xml" ContentType="application/vnd.openxmlformats-officedocument.spreadsheetml.calcChain+xml"/> </Types> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp)
3ed03d4991ef4fa680cfdf726f1c96e4d2300b78
fa82dad9e83206d4630a55141bf44f50cbf0c3a8
/day1_python/01_python200_src/151.py
49b83dba5bc8007dbb2ae77e379ddb2c54516d06
[]
no_license
jsh2333/pyml
8f8c53a43af23b8490b25f35f28d85f1087df28d
157dfa7cc2f1458f12e451691a994ac6ef138cab
refs/heads/master
2021-03-27T22:26:38.254206
2020-04-26T06:35:11
2020-04-26T06:35:11
249,114,580
3
1
null
null
null
null
UTF-8
Python
false
false
113
py
import os pdir = os.getcwd(); print(pdir) os.chdir('..'); print(os.getcwd()) os.chdir(pdir); print(os.getcwd())
1381edf36fb363b531e4ef1d84b51910010dc909
cace862c1d95f6b85a9750a427063a8b0e5ed49c
/binaryapi/ws/chanels/buy_contract_for_multiple_accounts.py
014f93aa8f29ed48abbf5dc467f1f260ff845547
[]
no_license
HyeongD/binaryapi
65486532389210f1ca83f6f2098276ecf984702b
e8daa229c04de712242e8e9b79be3b774b409e35
refs/heads/master
2023-08-29T13:24:58.364810
2021-10-26T19:00:59
2021-10-26T19:00:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,349
py
"""Module for Binary buy_contract_for_multiple_accounts websocket channel.""" from binaryapi.ws.chanels.base import Base from decimal import Decimal from typing import Any, List, Union, Optional # https://developers.binary.com/api/#buy_contract_for_multiple_accounts class BuyContractForMultipleAccounts(Base): """Class for Binary buy_contract_for_multiple_accounts websocket channel.""" name = "buy_contract_for_multiple_accounts" def __call__(self, buy_contract_for_multiple_accounts: str, price: Union[int, float, Decimal], tokens: List, parameters=None, passthrough: Optional[Any] = None, req_id: Optional[int] = None): """Method to send message to buy_contract_for_multiple_accounts websocket channel. Buy Contract for Multiple Accounts (request) Buy a Contract for multiple Accounts specified by the `tokens` parameter. Note, although this is an authorized call, the contract is not bought for the authorized account. :param buy_contract_for_multiple_accounts: Either the ID received from a Price Proposal (`proposal` call), or `1` if contract buy parameters are passed in the `parameters` field. :type buy_contract_for_multiple_accounts: str :param price: Maximum price at which to purchase the contract. :type price: Union[int, float, Decimal] :param tokens: List of API tokens identifying the accounts for which the contract is bought. Note: If the same token appears multiple times or if multiple tokens designate the same account, the contract is bought multiple times for this account. :type tokens: List :param parameters: [Optional] Used to pass the parameters for contract buy. :type parameters: :param passthrough: [Optional] Used to pass data through the websocket, which may be retrieved via the `echo_req` output field. :type passthrough: Optional[Any] :param req_id: [Optional] Used to map request to response. :type req_id: Optional[int] """ data = { "buy_contract_for_multiple_accounts": buy_contract_for_multiple_accounts, "price": price, "tokens": tokens } if parameters: data['parameters'] = parameters return self.send_websocket_request(self.name, data, passthrough=passthrough, req_id=req_id)
bd7a9a26fd311ea7acdf131684a5e555675fccf7
719853613b5b96f02072be1fde736d883e799f02
/server/photos/migrations/0013_fill_in_iiw.py
28e85fb066fa8095a74481b03e994527ba4f4b4b
[ "MIT" ]
permissive
anmolkabra/opensurfaces
5ba442123586533a93eb29890fa1694e3efdbfe8
a42420083a777d7e1906506cc218f681c5cd145b
refs/heads/master
2020-03-20T01:11:05.182880
2018-06-13T14:55:45
2018-06-13T14:55:45
137,068,945
0
0
MIT
2018-06-12T12:32:53
2018-06-12T12:32:52
null
UTF-8
Python
false
false
28,398
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models from django.db.models import Q class Migration(SchemaMigration): def forwards(self, orm): Photo = orm['photos.Photo'] Photo.objects.all() \ .update(in_iiw_dataset=False) Photo.objects \ .filter(synthetic=False, rotated=False, stylized=False, inappropriate=False, nonperspective=False) \ .filter(num_intrinsic_comparisons__gt=0) \ .filter(Q(license__publishable=True) | Q(light_stack__isnull=False)) \ .update(in_iiw_dataset=True) def backwards(self, orm): pass models = { u'accounts.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'always_approve': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'blocked': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'blocked_reason': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'exclude_from_aggregation': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mturk_worker_id': ('django.db.models.fields.CharField', [], {'max_length': '127', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'user'", 'unique': 'True', 'primary_key': 'True', 'to': u"orm['auth.User']"}) }, u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'licenses.license': { 'Meta': {'object_name': 'License'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'cc_attribution': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'cc_no_deriv': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'cc_noncommercial': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'cc_share_alike': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'creative_commons': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'publishable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '255', 'blank': 'True'}) }, u'mturk.experiment': { 'Meta': {'ordering': "['slug', 'variant']", 'unique_together': "(('slug', 'variant'),)", 'object_name': 'Experiment'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'completed_id': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'cubam_dirty': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'examples_group_attr': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'has_tutorial': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'module': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'new_hit_settings': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'experiments'", 'null': 'True', 'to': u"orm['mturk.ExperimentSettings']"}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'template_dir': ('django.db.models.fields.CharField', [], {'default': "'mturk/experiments'", 'max_length': '255'}), 'test_contents_per_assignment': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'variant': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'version': ('django.db.models.fields.IntegerField', [], {'default': '1'}) }, u'mturk.experimentsettings': { 'Meta': {'object_name': 'ExperimentSettings'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'auto_add_hits': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'auto_approval_delay': ('django.db.models.fields.IntegerField', [], {'default': '2592000'}), 'content_filter': ('django.db.models.fields.TextField', [], {'default': "'{}'"}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'experiment_settings_in'", 'to': u"orm['contenttypes.ContentType']"}), 'contents_per_hit': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'duration': ('django.db.models.fields.IntegerField', [], {'default': '1800'}), 'feedback_bonus': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '4', 'blank': 'True'}), 'frame_height': ('django.db.models.fields.IntegerField', [], {'default': '800'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'keywords': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'lifetime': ('django.db.models.fields.IntegerField', [], {'default': '2678400'}), 'max_active_hits': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'max_total_hits': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'min_output_consensus': ('django.db.models.fields.IntegerField', [], {'default': '4'}), 'num_outputs_max': ('django.db.models.fields.IntegerField', [], {'default': '5'}), 'out_content_attr': ('django.db.models.fields.CharField', [], {'max_length': '127', 'blank': 'True'}), 'out_content_type': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'experiment_settings_out'", 'null': 'True', 'to': u"orm['contenttypes.ContentType']"}), 'out_count_ratio': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'qualifications': ('django.db.models.fields.TextField', [], {'default': "'{}'"}), 'requirements': ('django.db.models.fields.TextField', [], {'default': "'{}'"}), 'reward': ('django.db.models.fields.DecimalField', [], {'max_digits': '8', 'decimal_places': '4'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'mturk.experimenttestcontent': { 'Meta': {'ordering': "['-id']", 'object_name': 'ExperimentTestContent'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'test_contents'", 'to': u"orm['mturk.Experiment']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'priority': ('django.db.models.fields.FloatField', [], {'default': '0', 'db_index': 'True'}) }, u'mturk.mtassignment': { 'Meta': {'object_name': 'MtAssignment'}, 'accept_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'action_log': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'approval_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'approve_message': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'auto_approval_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'bonus': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '2', 'blank': 'True'}), 'bonus_message': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'deadline': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'feedback': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'feedback_bonus_given': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'has_feedback': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'hit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'assignments'", 'to': u"orm['mturk.MtHit']"}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'primary_key': 'True'}), 'manually_rejected': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'num_test_contents': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_test_correct': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_test_incorrect': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'partially_completed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'post_data': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'post_meta': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'reject_message': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'rejection_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'screen_height': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'screen_width': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'submission_complete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'submit_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'test_contents': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'assignments'", 'symmetrical': 'False', 'to': u"orm['mturk.ExperimentTestContent']"}), 'time_active_ms': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'time_load_ms': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'time_ms': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'user_agent': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'wage': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'worker': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['accounts.UserProfile']", 'null': 'True', 'blank': 'True'}) }, u'mturk.mthit': { 'Meta': {'object_name': 'MtHit'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'all_submitted_assignments': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'any_submitted_assignments': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'compatible_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'expired': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'hit_status': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'hit_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'hits'", 'to': u"orm['mturk.MtHitType']"}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'primary_key': 'True'}), 'incompatible_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'lifetime': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'max_assignments': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'num_assignments_available': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_assignments_completed': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_assignments_pending': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_contents': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'out_count_ratio': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'review_status': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'sandbox': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'mturk.mthittype': { 'Meta': {'object_name': 'MtHitType'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'auto_approval_delay': ('django.db.models.fields.IntegerField', [], {'default': '2592000'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'duration': ('django.db.models.fields.IntegerField', [], {'default': '3600'}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'hit_types'", 'to': u"orm['mturk.Experiment']"}), 'experiment_settings': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'hit_types'", 'to': u"orm['mturk.ExperimentSettings']"}), 'external_url': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'feedback_bonus': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '2', 'blank': 'True'}), 'frame_height': ('django.db.models.fields.IntegerField', [], {'default': '800'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'primary_key': 'True'}), 'keywords': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'blank': 'True'}), 'reward': ('django.db.models.fields.DecimalField', [], {'default': "'0.01'", 'max_digits': '8', 'decimal_places': '4'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'photos.flickruser': { 'Meta': {'ordering': "['-id']", 'object_name': 'FlickrUser'}, 'blacklisted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'display_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'family_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'given_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'sub_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '127'}), 'website_name': ('django.db.models.fields.CharField', [], {'max_length': '1023', 'blank': 'True'}), 'website_url': ('django.db.models.fields.URLField', [], {'max_length': '1023', 'blank': 'True'}) }, u'photos.photo': { 'Meta': {'ordering': "['aspect_ratio', '-id']", 'object_name': 'Photo'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'aspect_ratio': ('django.db.models.fields.FloatField', [], {'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'exif': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'flickr_id': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'flickr_user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'photos'", 'null': 'True', 'to': u"orm['photos.FlickrUser']"}), 'focal_y': ('django.db.models.fields.FloatField', [], {'null': 'True'}), 'fov': ('django.db.models.fields.FloatField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image_orig': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'in_iiw_dataset': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'inappropriate': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'license': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'photos'", 'null': 'True', 'to': u"orm['licenses.License']"}), 'light_stack': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'photos'", 'null': 'True', 'to': u"orm['photos.PhotoLightStack']"}), 'md5': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'median_intrinsic_error': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'nonperspective': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'num_intrinsic_comparisons': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'num_intrinsic_points': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'num_shapes': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'num_vertices': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'orig_height': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'orig_width': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'rotated': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'scene_category': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'photos'", 'null': 'True', 'to': u"orm['photos.PhotoSceneCategory']"}), 'scene_category_correct': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'scene_category_correct_method': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'scene_category_correct_score': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'stylized': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'synthetic': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['accounts.UserProfile']"}), 'vanishing_length': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'vanishing_lines': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'vanishing_points': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'whitebalanced': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'whitebalanced_score': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}) }, u'photos.photolightstack': { 'Meta': {'ordering': "['-id']", 'object_name': 'PhotoLightStack'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}) }, u'photos.photoscenecategory': { 'Meta': {'ordering': "['name']", 'object_name': 'PhotoSceneCategory'}, 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '127'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['photos.PhotoSceneCategory']", 'null': 'True', 'blank': 'True'}) }, u'photos.photoscenequalitylabel': { 'Meta': {'ordering': "['photo', '-time_ms']", 'object_name': 'PhotoSceneQualityLabel'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'correct': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'invalid': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mturk_assignment': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': u"orm['mturk.MtAssignment']"}), 'photo': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'scene_qualities'", 'to': u"orm['photos.Photo']"}), 'quality_method': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'reward': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '4', 'blank': 'True'}), 'sandbox': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'time_active_ms': ('django.db.models.fields.IntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'time_ms': ('django.db.models.fields.IntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['accounts.UserProfile']"}) }, u'photos.photowhitebalancelabel': { 'Meta': {'ordering': "['photo', '-time_ms']", 'object_name': 'PhotoWhitebalanceLabel'}, 'added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'chroma_median': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'invalid': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mturk_assignment': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': u"orm['mturk.MtAssignment']"}), 'num_points': ('django.db.models.fields.IntegerField', [], {}), 'photo': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'whitebalances'", 'to': u"orm['photos.Photo']"}), 'points': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'quality_method': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'reward': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '4', 'blank': 'True'}), 'sandbox': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'time_active_ms': ('django.db.models.fields.IntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'time_ms': ('django.db.models.fields.IntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['accounts.UserProfile']"}), 'whitebalanced': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) } } complete_apps = ['photos']
407bf5e3d865565a63d71d38351ec11784634a45
6745bd6b607bbfb00dcf641980925753ec60f7d8
/company/migrations/0025_auto_20170507_1103.py
0800c545ee6393dc10ad6d843f09ee8a4204948f
[]
no_license
happychallenge/chemicals
4a1822d32354ce85499f42ada47103d3f27e163c
aa2b08c92cefe1650591d965f2e7f4872c445363
refs/heads/master
2021-01-20T09:21:55.769758
2017-05-07T06:03:54
2017-05-07T06:03:54
90,245,438
0
0
null
null
null
null
UTF-8
Python
false
false
5,089
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-07 02:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('company', '0024_remove_allprocess_send_msds'), ] operations = [ migrations.AlterField( model_name='company', name='category', field=models.CharField(choices=[('T', '贸易'), ('P', '生产'), ('M', '生产&贸易')], default='P', max_length=1, verbose_name='公司种类'), ), migrations.AlterField( model_name='company', name='en_name', field=models.CharField(max_length=50, verbose_name='English Name'), ), migrations.AlterField( model_name='company', name='name', field=models.CharField(max_length=30, verbose_name='中文名字'), ), migrations.AlterField( model_name='companyproduct', name='currency', field=models.CharField(choices=[('D', 'USD'), ('R', 'RMB')], default='R', max_length=1), ), migrations.AlterField( model_name='customer', name='en_name', field=models.CharField(max_length=30, verbose_name='English Name'), ), migrations.AlterField( model_name='product', name='atomic_amount', field=models.FloatField(verbose_name='分子量'), ), migrations.AlterField( model_name='product', name='cn_name', field=models.CharField(max_length=50, verbose_name='中文名字'), ), migrations.AlterField( model_name='product', name='en_name', field=models.CharField(max_length=30, verbose_name='English Name'), ), migrations.AlterField( model_name='product', name='image', field=models.ImageField(upload_to='chemical/', verbose_name='结构式'), ), migrations.AlterField( model_name='product', name='usage', field=models.TextField(blank=True, null=True, verbose_name='用途'), ), migrations.AlterField( model_name='purchasecontract', name='actualdelivery_at', field=models.DateField(blank=True, null=True, verbose_name='实际到达日子'), ), migrations.AlterField( model_name='purchasecontract', name='actualshipping_at', field=models.DateField(blank=True, null=True, verbose_name='实际出发日子'), ), migrations.AlterField( model_name='purchasecontract', name='contracted_at', field=models.DateField(verbose_name='合同日子'), ), migrations.AlterField( model_name='purchasecontract', name='currency', field=models.CharField(choices=[('D', 'USD'), ('R', 'RMB')], default='R', max_length=1), ), migrations.AlterField( model_name='purchasecontract', name='portofdestination', field=models.CharField(max_length=100, verbose_name='货到的港口'), ), migrations.AlterField( model_name='purchasecontract', name='predictdelivery_at', field=models.DateField(verbose_name='到达计划日子'), ), migrations.AlterField( model_name='purchasecontract', name='shipping_at', field=models.DateField(verbose_name='出发计划日子'), ), migrations.AlterField( model_name='salescontract', name='actualshipping_at', field=models.DateField(blank=True, null=True, verbose_name='实际 Shipping 日子'), ), migrations.AlterField( model_name='salescontract', name='contracted_at', field=models.DateField(verbose_name='合同日子'), ), migrations.AlterField( model_name='salescontract', name='currency', field=models.CharField(choices=[('D', 'USD'), ('R', 'RMB')], default='D', max_length=1), ), migrations.AlterField( model_name='salescontract', name='devliveryrequest', field=models.CharField(blank=True, max_length=50, null=True, verbose_name='其他'), ), migrations.AlterField( model_name='salescontract', name='portofdestination', field=models.CharField(max_length=100, verbose_name='目的地 港口'), ), migrations.AlterField( model_name='salescontract', name='portofloading', field=models.CharField(max_length=100, verbose_name='Shipping 港口'), ), migrations.AlterField( model_name='salescontract', name='shipping_at', field=models.DateField(verbose_name='Shipping 计划日子'), ), ]
98fab1f0de73796ef769a8a4f729188096167ece
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/MybankCreditLoantradePayerBillrepayConsultResponse.py
384aaa839bacae7ad07341b1ed1c53574be2462c
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,716
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.CreditPayBillDetailVO import CreditPayBillDetailVO class MybankCreditLoantradePayerBillrepayConsultResponse(AlipayResponse): def __init__(self): super(MybankCreditLoantradePayerBillrepayConsultResponse, self).__init__() self._bill_details = None self._exist_bill = None self._repay_url = None @property def bill_details(self): return self._bill_details @bill_details.setter def bill_details(self, value): if isinstance(value, list): self._bill_details = list() for i in value: if isinstance(i, CreditPayBillDetailVO): self._bill_details.append(i) else: self._bill_details.append(CreditPayBillDetailVO.from_alipay_dict(i)) @property def exist_bill(self): return self._exist_bill @exist_bill.setter def exist_bill(self, value): self._exist_bill = value @property def repay_url(self): return self._repay_url @repay_url.setter def repay_url(self, value): self._repay_url = value def parse_response_content(self, response_content): response = super(MybankCreditLoantradePayerBillrepayConsultResponse, self).parse_response_content(response_content) if 'bill_details' in response: self.bill_details = response['bill_details'] if 'exist_bill' in response: self.exist_bill = response['exist_bill'] if 'repay_url' in response: self.repay_url = response['repay_url']
e81b997e68036cdf35265aa603f9459629fc05d1
8a8bae1fc33dc503e55b1c6a5a67d90469331891
/ppy_terminal/sketches/tarbell/happyplace_port/archive_code/happyplace_port_2880275_20200918_112602_000.png.py
8a9f02346216e30caa2158a2bb5e3042747bd85c
[ "MIT" ]
permissive
LSturtew/generative_art
071f168c92d2bb31b57558058d881bad6cf4d7aa
76d98d8fa63e2c952055481d14ab53f56717b6dd
refs/heads/master
2022-12-30T02:41:36.391487
2020-10-12T01:43:48
2020-10-12T01:43:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,542
py
################################################################################ # porting Jared Tarbell's Happy Place to Python Processing # all credit for the algorithm goes to them # # code and images by Aaron Penne # https://github.com/aaronpenne # # released under MIT License (https://opensource.org/licenses/MIT) ################################################################################ ################################################################################ # Imports ################################################################################ # Processing mode uses Python 2.7 but I prefer Python 3.x, pull in future tools from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import with_statement # Normal Python imports import os import sys import shutil import logging from datetime import datetime from collections import OrderedDict from random import seed, shuffle, sample ################################################################################ # Globals ################################################################################ # Knobs to turn w = 900 h = 900 use_seed = True rand_seed = 2880275 num = 240 # number of friends numpal = 512 # number of colors in palette good_colors = [] friends = [] # Utility variables timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') script_path = os.path.abspath(__file__) script_name = os.path.basename(script_path) script_ext = os.path.splitext(script_name)[1] sketch_name = os.path.splitext(script_name)[0] # Initialize random number generators with seed if not use_seed: rand_seed = int(random(99999,9999999)) randomSeed(rand_seed) noiseSeed(rand_seed) seed(rand_seed) ################################################################################ # Helper methods # # These exist here in the script instead of a separate centralized file to # preserve portability and ability to recreate image with a single script ################################################################################ # Standardizes log formats # ex. 2020-06-31 12:30:55 - INFO - log is better than print logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') log = logging.getLogger(__name__) def get_filename(counter): """Standardizes filename string format ex. comet_12345_20200631_123055_001.png """ return '{}_{}_{}_{:03d}.png'.format(sketch_name, rand_seed, timestamp, counter) def make_dir(path): """Creates dir if it does not exist""" try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def save_code(pg=None, path='output', counter=0): """Saves image and creates copy of this script""" make_dir(path) output_file = get_filename(counter) output_path = os.path.join(path, output_file) make_dir('archive_code') src = script_path dst = os.path.join('archive_code', output_file + script_ext) shutil.copy(src, dst) def save_graphic(pg=None, path='output', counter=0): """Saves image and creates copy of this script""" make_dir(path) output_file = get_filename(counter) output_path = os.path.join(path, output_file) if pg: pg.save(output_path) else: save(output_path) log.info('Saved to {}'.format(output_path)) def color_tuple(c, color_space='HSB', rounded=True): """Takes color (Processing datatype) and returns human readable tuple.""" if color_space == 'HSB': c_tuple = (hue(c), saturation(c), brightness(c), alpha(c)) if color_space == 'RGB': c_tuple = (red(c), green(c), blue(c), alpha(c)) if rounded: c_tuple = (round(c_tuple[0]), round(c_tuple[1]), round(c_tuple[2]), round(c_tuple[3])) return c_tuple def extract_colors(img_filename, max_colors=100, randomize=True): """Extracts unique pixels from a source image to create a color palette. If randomize=False then the image is sampled left to right, then top to bottom. """ colors_list = [] img = loadImage(img_filename) img.loadPixels() if randomize: shuffle(img.pixels) num_colors = 0 for i,c in enumerate(img.pixels): # only grab new colors (no repeats) if color_tuple(c) not in [color_tuple(gc) for gc in colors_list]: colors_list.append(c) num_colors += 1 if num_colors == max_colors: break return colors_list def sort_color_hues(colors_list, sort_on='hsb'): """Takes list of colors (Processing datatype) and sorts the list on hue""" colors_tuples = [color_tuple(c) for c in colors_list] if sort_on == 'hsb': colors = sorted(zip(colors_tuples, colors_list), key=lambda x: (x[0][0], x[0][1], x[0][2])) if sort_on == 'bsh': colors = sorted(zip(colors_tuples, colors_list), key=lambda x: (x[0][2], x[0][1], x[0][0])) return [c for _,c in colors] def some_color(): return good_colors[int(random(numpal))] def reset_all(): global friends for i in range(num): fx = w/2 + 0.4*w*cos(TAU*i/num) fy = h/2 + 0.4*h*sin(TAU*i/num) friends[i] = Friend(fx, fy, i) for i in range(int(num*2.2)): a = int(floor(random(num))) b = int(floor(a+random(22))%num) if (b >= num) or (b < 0): b = 0 print('+') if a != b: friends[a].connect_to(b) friends[b].connect_to(a) print('{} made friends with {}'.format(a,b)) ################################################################################ # Setup ################################################################################ def setup(): size(w, h) colorMode(HSB, 360, 100, 100, 100) #colorMode(HSB) strokeWeight(2) global good_colors good_colors = extract_colors('mojave.png', numpal) background(0, 0, 100) frameRate(30) global friends friends = [Friend() for i in range(num)] print(len(friends)) reset_all() save_code(None, 'output', frameCount) #noLoop() ################################################################################ # Draw ################################################################################ def draw(): #for c in good_colors: # print(color_tuple(c)) for f in friends: f.move() for f in friends: f.expose() f.expose_connections() for f in friends: f.find_happy_place() if frameCount % 200 == 0: save_graphic(None, 'output', frameCount) if frameCount % 20 == 0: print(frameCount, frameRate) #exit() def mousePressed(): save_graphic(None, 'output', frameCount) class Friend: def __init__(self, x=0, y=0, identifier=0): self.x = x self.y = y self.vx = 0 self.vy = 0 self.id = identifier self.numcon = 0 self.maxcon = 10 self.lencon = 10+int(random(50)) self.connections = [0 for i in range(self.maxcon)] self.myc = some_color() self.myc = color(hue(self.myc), saturation(self.myc), brightness(self.myc), 5) self.numsands = 3 self.sands = [SandPainter() for i in range(self.numsands)] def connect_to(self, f): if (self.numcon < self.maxcon): if not self.friend_of(f): self.connections[self.numcon] = f self.numcon += 1 def friend_of(self, f): #FIXME possibly replace with simple is in? is_friend = False for i in range(self.numcon): if self.connections[i] == f: is_friend = True return is_friend def expose(self): for dx in range(-2,3): a = 0.3-abs(dx)/5 stroke(0, 0, 0, 100*a) point(self.x+dx, self.y) stroke(0, 0, 100,100*a) point(self.x+dx-1, self.y-1) for dy in range(-2,3): a = 0.3-abs(dy)/5 stroke(0, 0, 0, 100*a) point(self.x, self.y+dy) stroke(0, 0, 100, 100*a) point(self.x-1, self.y+dy-1) def expose_connections(self): stroke(self.myc) for i in range(self.numcon): ox = friends[self.connections[i]].x oy = friends[self.connections[i]].y #line(self.x, self.y, ox, oy) for s in range(self.numsands): self.sands[s].render(self.x, self.y, ox, oy) def find_happy_place(self): # self.vx += random(-w*0.001, w*0.001) # self.vy += random(-h*0.001, h*0.001) ax = 0 ay = 0 for n in range(num): if friends[n] <> this: ddx = friends[n].x - self.x ddy = friends[n].y - self.y d = sqrt(ddx*ddx + ddy*ddy) t = atan2(ddy, ddx) friend = False for j in range(self.numcon): if self.connections[j]==n: friend=True if friend: # attract if d>self.lencon: ax += 4*cos(t) ay += 4*sin(t) self.vx += ax/80 self.vy += ay/80 def move(self): self.x += self.vx self.y += self.vy self.vx *= 0.99 self.vy *= 0.99 class SandPainter: def __init__(self): self.p = random(1) self.c = some_color() self.g = random(0.01, 0.1) def render(self, x, y, ox, oy): stroke(hue(self.c), saturation(self.c), brightness(self.c), 10) point(ox + (x-ox)*sin(self.p), oy+(y-oy)*sin(self.p)) self.g += random(-0.05, 0.05) maxg = 0.22 if (self.g < -maxg): self.g = -maxg if (self.g > maxg): self.g = maxg w = self.g/10 for i in range(11): a = 0.1 - i/110 stroke(hue(self.c), saturation(self.c), brightness(self.c), 100*a) point(ox+(x-ox)*sin(self.p+sin(i*w)), oy+(y-oy)*sin(self.p+sin(i*w))) point(ox+(x-ox)*sin(self.p-sin(i*w)), oy+(y-oy)*sin(self.p-sin(i*w)))
eb19a9e76546f3274aeb55a5941ccfbf0c448ec4
23611933f0faba84fc82a1bc0a85d97cf45aba99
/google-cloud-sdk/.install/.backup/lib/googlecloudsdk/command_lib/util/time_util.py
fa4aca709d2e13980911d752c895797f68fe0372
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
KaranToor/MA450
1f112d1caccebdc04702a77d5a6cee867c15f75c
c98b58aeb0994e011df960163541e9379ae7ea06
refs/heads/master
2021-06-21T06:17:42.585908
2020-12-24T00:36:28
2020-12-24T00:36:28
79,285,433
1
1
Apache-2.0
2020-12-24T00:38:09
2017-01-18T00:05:44
Python
UTF-8
Python
false
false
3,224
py
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module for capturing time-related functions. This makes mocking for time-related functionality easier. """ import calendar import datetime import re import time def CurrentTimeSec(): """Returns a float of the current time in seconds.""" return time.time() def Sleep(duration_sec): """Sleeps for the given duration.""" time.sleep(duration_sec) def CurrentDatetimeUtc(): """Returns the current date and time in the UTC timezone.""" return datetime.datetime.utcnow() def IsExpired(timestamp_rfc3993_str): no_expiration = '' if timestamp_rfc3993_str == no_expiration: return False timestamp_unix = Strptime(timestamp_rfc3993_str) if timestamp_unix < CurrentTimeSec(): return True return False # Parsing code for rfc3339 timestamps, taken from Google's rfc3339.py. # TODO(user): Investigate opensourcing rfc3999.py def Strptime(rfc3339_str): """Converts an RFC 3339 timestamp to Unix time in seconds since the epoch. Args: rfc3339_str: a timestamp in RFC 3339 format (yyyy-mm-ddThh:mm:ss.sss followed by a time zone, given as Z, +hh:mm, or -hh:mm) Returns: a number of seconds since January 1, 1970, 00:00:00 UTC Raises: ValueError: if the timestamp is not in an acceptable format """ match = re.match(r'(\d\d\d\d)-(\d\d)-(\d\d)T' r'(\d\d):(\d\d):(\d\d)(?:\.(\d+))?' r'(?:(Z)|([-+])(\d\d):(\d\d))', rfc3339_str) if not match: raise ValueError('not a valid timestamp: %r' % rfc3339_str) (year, month, day, hour, minute, second, frac_seconds, zulu, zone_sign, zone_hours, zone_minutes) = match.groups() time_tuple = map(int, [year, month, day, hour, minute, second]) # Parse the time zone offset. if zulu == 'Z': # explicit zone_offset = 0 else: zone_offset = int(zone_hours) * 3600 + int(zone_minutes) * 60 if zone_sign == '-': zone_offset = -zone_offset integer_time = calendar.timegm(time_tuple) - zone_offset if frac_seconds: sig_dig = len(frac_seconds) return ((integer_time * (10 ** sig_dig) + int(frac_seconds)) * (10 ** -sig_dig)) else: return integer_time def CalculateExpiration(num_seconds): """Takes a number of seconds and returns the expiration time in RFC 3339.""" if num_seconds is None: return None utc_now = CurrentDatetimeUtc() adjusted = utc_now + datetime.timedelta(0, int(num_seconds)) formatted_expiration = _FormatDateString(adjusted) return formatted_expiration def _FormatDateString(d): return ('%04d-%02d-%02dT%02d:%02d:%02dZ' % (d.year, d.month, d.day, d.hour, d.minute, d.second))
643d8479d0d4be592474bfdee79d5f9f22cb89e1
bb87579e47fc04b299694b8a8fe318f022f54ee8
/Automate the Boring Stuff/Ch.12 - Web Scraping/attribute.py
c4f59a6a44dfa7c2b6213063120b221b7c1a6447
[]
no_license
QaisZainon/Learning-Coding
7bbc45197085dfa8f41ac298d26cf54e99e7b877
a3991842e79c30f24d7bc0cca77dbd09bc03372f
refs/heads/master
2022-12-23T05:47:26.512814
2020-09-25T08:10:20
2020-09-25T08:10:20
297,945,320
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
from selenium import webdriver browser = webdriver.Firefox() browser.get('https://inventwithpython.com') try: elem = browser.find_element_by_class_name('cover-thumb') print('Found <%s> element with that class name!' %(elem.tag_name)) except: print('Was not able to find an element with that name.')
6959b4c9ba3b87040a8e31e260f2243d2fc88cba
b5f5c749ad8ba774da04a3dcf44ea2e66aea6cd6
/background/05geo/coverage.py
a80d605b766bf88a40e1d82d403f040d271128b2
[]
no_license
yj-git/SearchRescueSys
2329be5f3caf57f11a2e606da87382344698eff4
44347aef4cd5f75f1c9adcea76c21aa97b41e8ae
refs/heads/master
2022-08-05T12:41:54.967248
2020-05-21T04:55:37
2020-05-21T04:55:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
522
py
from geoserver.support import ResourceInfo from geoserver.catalog import Catalog class Coverage(ResourceInfo): def __init__(self, catalog: Catalog, store_name, work_space): super().__init__() self.catalog = catalog self.store_name = store_name self.work_space = work_space self.gs_version = self.catalog.get_short_version() @property def href(self): return f"{self.catalog.service_url}/workspaces/{self.work_space}/coveragestores/{self.store_name}/coverages"
0bc60f23731424fe5898e28b2074f5662c17e943
e05c6a78b16f1d39b8e77db3ee5cea83b44ddf8a
/migrations/versions/0305m_add_pinpoint.py
6dd09943085a1a433ea9ebe35523a519e6c9f0ff
[ "MIT" ]
permissive
cds-snc/notification-api
7da0928f14608a2c7db1e229e17b9dbfaaf3d0f0
99558db51784925942d031511af3cfb03338a28d
refs/heads/main
2023-08-18T00:08:42.787361
2023-08-17T20:58:47
2023-08-17T20:58:47
194,884,758
49
12
MIT
2023-09-14T18:55:07
2019-07-02T14:57:01
Python
UTF-8
Python
false
false
896
py
""" Revision ID: 0305m_add_pinpoint Revises: 0305l_smtp_template Create Date: 2020-04-20 12:00:00 """ import uuid from alembic import op revision = "0305m_add_pinpoint" down_revision = "0305l_smtp_template" id = uuid.uuid4() def upgrade(): op.execute( f""" INSERT INTO provider_details (id, display_name, identifier, priority, notification_type, active, version) VALUES ('{id}', 'AWS Pinpoint', 'pinpoint', 50, 'sms', true, 1) """ ) op.execute( f""" INSERT INTO provider_details_history (id, display_name, identifier, priority, notification_type, active, version) VALUES ('{id}', 'AWS Pinpoint', 'pinpoint', 50, 'sms', true, 1) """ ) def downgrade(): op.execute("DELETE FROM provider_details WHERE identifier = 'pinpoint'") op.execute("DELETE FROM provider_details_history WHERE identifier = 'pinpoint'")
1bfb37fd8a7fdad73e3394fb67e758cc3068b5b0
20927c6b6dbb360bf0fd13d70115bdb27e7196e7
/0x0F-python-object_relational_mapping/1-filter_states.py
2896d23cb05252078d33fd4184cfa458f4fcb904
[]
no_license
PauloMorillo/holbertonschool-higher_level_programming
27fc1c0a1ae5784bd22d07daaedb602ee618867d
8a42a60aa4ea52b5cc2fb73e57f38aa6c5196c98
refs/heads/master
2021-08-16T17:13:45.568038
2020-07-29T01:20:25
2020-07-29T01:20:25
207,305,140
0
0
null
null
null
null
UTF-8
Python
false
false
593
py
#!/usr/bin/python3 """This Module prints all of a database""" import sys import MySQLdb def main(): """main function""" db = MySQLdb.connect(host='localhost', user=sys.argv[1], passwd=sys.argv[2], db=sys.argv[3], port=3306) cur = db.cursor() cur.execute("SELECT * FROM states WHERE name REGEXP BINARY" "'^N' ORDER BY id") rows = cur.fetchall() for _row in rows: print(_row) cur.close() db.close() if __name__ == '__main__': main()
8e6b2a6221270da9a79fd2ca74b668333a09b391
47ae678aa432deb0eb4f99b6a9787853315ab899
/qikan/spiders/SAGE58.py
ab7d30ebca329e46bdc015cf20b378342d85b27b
[]
no_license
RoggerLuo/python-scrapy-journal
1f3fb2ac41d90d25a0b635932600ff2327bf22d1
38d8e714f346e5951bcb55487fc0056a834f30d8
refs/heads/master
2020-04-05T20:32:42.201876
2018-11-13T06:35:59
2018-11-13T06:35:59
157,185,106
0
0
null
null
null
null
UTF-8
Python
false
false
9,153
py
# -*- coding: utf-8 -*- import scrapy from qikan.items import QikanItem import re import time from .config import Config,postItemWithPdf,postItem,proxyRequest class Sage58Spider(scrapy.Spider): name = 'SAGE58' start_urls = ['http://journals.sagepub.com/toc/apca/5'] base_url = 'http://journals.sagepub.com' def parse(self, response): # 文章url hrefs = response.xpath("//div[@class='art_title linkable']/a[@class='ref nowrap']/@href").extract() volume = response.xpath( "//div[@class='pager issueBookNavPager']/span[@class='journalNavCenterTd']/div[@class='journalNavTitle']/text()").extract()[ 0] for i in range(len(hrefs)): yield proxyRequest(url=self.base_url + hrefs[i], meta={'annualVolume': volume}, callback=self.parse2) def parse2(self, response): item = QikanItem() # 文章题目 item['title'] = '' titles = response.xpath("//div[@class='hlFld-Title']//div[@class='publicationContentTitle']//h1").extract() pat = re.compile('<[^>]+>', re.S) for title in titles: item['title'] = item['title'] + pat.sub('', title).strip() # item['title'] = response.xpath("//div[@class='hlFld-Title']//div[@class='publicationContentTitle']//h1/text()").extract()[0].strip() # # titles = response.xpath("//h2[@class='citation__title']/text()").extract() # pat = re.compile('<[^>]+>', re.S) # 作者 item['author'] = '' # 通讯作者 # 通讯作者单位 aus = [] if response.xpath("//div[@class='header']/a[@class='entryAuthor']").extract(): authors = response.xpath("//div[@class='header']/a[@class='entryAuthor']").extract() for author in authors: item['author'] = item['author'] + pat.sub('', author).strip() + "," else: item['author'] = 'NULL' if response.xpath( "//div[@class='hlFld-ContribAuthor']/span[@class='NLM_contrib-group']/div[@class='artice-info-affiliation']/text()").extract(): item['authorAffiliation'] = response.xpath( "//div[@class='hlFld-ContribAuthor']/span[@class='NLM_contrib-group']/div[@class='artice-info-affiliation']/text()").extract()[ 0] elif response.xpath( "//div[@class='hlFld-ContribAuthor']/div[@class='artice-info-affiliation'][1]/text()").extract(): item['authorAffiliation'] = response.xpath( "//div[@class='hlFld-ContribAuthor']/div[@class='artice-info-affiliation'][1]/text()").extract()[0] elif response.xpath("//div[@class='artice-notes']//corresp//text()").extract(): item['authorAffiliation'] = response.xpath("//div[@class='artice-notes']//corresp//text()").extract()[ 0].replace('Email:', '') else: item['authorAffiliation'] = 'NULL' item['authorAffiliation'] = item['authorAffiliation'].replace('\n', '').replace('\r', '').replace('\t', '').replace( ' ', ' ') # print(item['authorAffiliation']) item['correspongdingauthorEmail'] = '' if response.xpath("//a[@class='email']/span[@class='nobrWithWbr']").extract(): correspongdingauthorEmails = response.xpath("//a[@class='email']/span[@class='nobrWithWbr']").extract() for correspongdingauthorEmail in correspongdingauthorEmails: item['correspongdingauthorEmail'] = item['correspongdingauthorEmail'] + pat.sub('', correspongdingauthorEmail).strip() + '||' else: item['correspongdingauthorEmail'] = 'NULL' # item['correspongdingauthorEmail'] = response.xpath("//a[@class='email']/span[@class='nobrWithWbr']").extract() if response.xpath( "//div[@class='hlFld-ContribAuthor']/span[@class='contribDegrees'][1]/div[@class='authorLayer']/div[@class='header']/a[@class='entryAuthor']/text()").extract(): item['correspongdingauthor'] = response.xpath( "//div[@class='hlFld-ContribAuthor']/span[@class='contribDegrees'][1]/div[@class='authorLayer']/div[@class='header']/a[@class='entryAuthor']/text()").extract()[ 0] + '||' else: item['correspongdingauthor'] = 'NULL' # # DOI号 if item['correspongdingauthor'] == 'NULL': item['correspongdingauthor'] = 'NULL' elif item['correspongdingauthor'] != '': correspongdingau = item['correspongdingauthor'].split("||") correspongdingEm = item['correspongdingauthorEmail'].split("||") item['correspongdingauthor'] = '' for i in range(len(correspongdingau)): if correspongdingau[i] != '': item['correspongdingauthor'] += '(' + correspongdingau[i] + ',' + correspongdingEm[i] + '),' else: item['correspongdingauthor'] = 'NULL' # print(item['correspongdingauthor']) item['DOI'] = response.xpath( "//div[@class='widget-body body body-none body-compact-all']/div[@class='doiWidgetContainer']/a[@class='doiWidgetLink']/text()").extract()[ 0] # # print(item['DOI']) # # 没有关键词 item['keyword'] = '' if response.xpath("//div[@class='hlFld-KeywordText']/kwd-group/a[@class='attributes']/text()").extract(): keywords = response.xpath( "//div[@class='hlFld-KeywordText']/kwd-group/a[@class='attributes']/text()").extract() for keyword in keywords: item['keyword'] = item['keyword'] + keyword + ',' else: item['keyword'] = 'NULL' # # 摘要 item['abstract'] = '' pat = re.compile('<[^>]+>', re.S) if response.xpath("//div[@class='hlFld-Abstract']//div[@class='abstractSection abstractInFull']//p"): coninfos = response.xpath( "//div[@class='hlFld-Abstract']//div[@class='abstractSection abstractInFull']//p").extract() for coninfo in coninfos: item['abstract'] = item['abstract'] + pat.sub('', coninfo).strip() + '<br>' else: item['abstract'] = 'NULL' item['abstract'] = item['abstract'].replace('\n', '') # print(item['abstract']) header = { 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3013.3 Safari/537.36' } if response.xpath( "//div[@class='rightMobileMenuButton articleToolsButton PDFTool pdf-access redButton smallButton']/a/@href").extract(): pdf = response.xpath( "//div[@class='rightMobileMenuButton articleToolsButton PDFTool pdf-access redButton smallButton']/a/@href").extract()[ 0] item['pdf'] = self.base_url + pdf yield proxyRequest(url=self.base_url + pdf, meta={'filename': pdf.split('/')[-1] + '.pdf'}, headers=header, callback=postItemWithPdf(item) ) else: item['pdf'] = 'NULL' postItem(item) # print(item['pdf']) # 卷,期,年 item['annualVolume'] = response.meta['annualVolume'].strip() # item['annualVolume'] = response.xpath("//div[@class='Article information']/div[1]/text()").extract()[0].strip() # item['annualVolume'] = pat.sub('', annualVolume).strip() # print(item['annualVolume']) # 页码 item['pageNumber'] = 'NULL' # print(pageNumber) # ru2 = re.compile(r'pp (.*)') # # 页码 # item['pageNumber'] = ru2.search(pageNumber).group(1) # print(item['pageNumber']) # 期刊名 item['journalTitle'] = pat.sub('', response.xpath( "//div[@id='e3c018c7-8573-4acd-93ae-0ff4b1f3baf3']/div[@class='wrapped ']").extract()[0]).strip() # print(item['journalTitle']) # 有些期刊目录有一张图片 item['imageUrlList'] = 'NULL' # 12 July 2018 item['publishTime'] = response.xpath("//span[@class='publicationContentEpubDate dates']/text()").extract()[ 1].strip() # 改成2018-07-12 temp = time.strptime(item['publishTime'], "%B %d, %Y") item['publishTime'] = time.strftime("%Y-%m-%d", temp) # print(item['publishTime']) yield item # # 下载pdf def downloadpdf(self, response): file_path = Config().pdf_url + response.meta['filename'] with open(file_path, 'wb') as f: f.write(response.body) # #下载图片 def downloadimg(self, response): file_path = Config().img_url + response.meta['filename'] with open(file_path, 'wb') as f: f.write(response.body)
cfc1b386f4a20a5d866800567c6b0b276a19ef98
469772806152cff25b13a1e73ec5133ba3d0f283
/src/reversi_zero/agent/api.py
6ba0bb23675d7c7cd12f8ccfc0178d0c3a3fbb6a
[ "MIT" ]
permissive
awesome-archive/reversi-alpha-zero
880e92cb02a8b4d21e824baed3584a7eec823bfe
90ba711f2233660bbf36d8203873b3fc16f7a1e8
refs/heads/master
2022-03-30T13:22:21.547259
2017-11-22T01:16:59
2017-11-22T01:16:59
111,628,182
0
0
MIT
2020-01-10T11:11:25
2017-11-22T02:47:19
Python
UTF-8
Python
false
false
688
py
from reversi_zero.config import Config class ReversiModelAPI: def __init__(self, config: Config, agent_model): """ :param config: :param reversi_zero.agent.model.ReversiModel agent_model: """ self.config = config self.agent_model = agent_model def predict(self, x): assert x.ndim in (3, 4) assert x.shape == (2, 8, 8) or x.shape[1:] == (2, 8, 8) orig_x = x if x.ndim == 3: x = x.reshape(1, 2, 8, 8) policy, value = self.agent_model.model.predict_on_batch(x) if orig_x.ndim == 3: return policy[0], value[0] else: return policy, value
37e1ff1235046fbc5c983001e7cfb790efd4803e
23ba854b3b6cb457c8c01793e24f15d411650281
/monk/system/summary.py
a87cc621feca3f74387e5c3e0cc0a91ab73cf0a4
[ "Apache-2.0" ]
permissive
shaunstanislauslau/monk_v1
a506a8cb2e45f3d04734bfab01db09eb3d804771
01905b911f1757adef9d7366a704b2a5289e1095
refs/heads/master
2023-05-11T08:16:39.442925
2020-03-03T07:45:06
2020-03-03T07:45:06
244,685,539
0
0
Apache-2.0
2023-05-09T19:02:15
2020-03-03T16:25:46
null
UTF-8
Python
false
false
8,361
py
from system.imports import * from system.common import read_json @accepts(str, post_trace=True) @TraceFunction(trace_args=True, trace_rv=True) def print_summary(fname): system_dict = read_json(fname); ############################################################################################################################# print(""); print(""); print("Experiment Summary"); print(""); print("System"); print(" Project Name: {}".format(system_dict["project_name"])); print(" Project Dir: {}".format(system_dict["project_dir_relative"])); print(" Experiment Name: {}".format(system_dict["experiment_name"])); print(" Experiment Dir: {}".format(system_dict["experiment_dir_relative"])); print(" Library: {}".format(system_dict["library"])); print(" Origin: {}".format(system_dict["origin"])); print(""); ############################################################################################################################# ############################################################################################################################# print("Dataset"); print(" Status: {}".format(system_dict["dataset"]["status"])); if(system_dict["dataset"]["status"]): print(" Dataset Type: {}".format(system_dict["dataset"]["dataset_type"])); print(" Train path: {}".format(system_dict["dataset"]["train_path"])); print(" Val path: {}".format(system_dict["dataset"]["val_path"])); print(" Test path: {}".format(system_dict["dataset"]["test_path"])); print(" CSV Train: {}".format(system_dict["dataset"]["csv_train"])); print(" CSV Val: {}".format(system_dict["dataset"]["csv_val"])); print(" CSV Test: {}".format(system_dict["dataset"]["csv_test"])); print(""); print("Dataset Parameters:"); print(" Input Size: {}".format(system_dict["dataset"]["params"]["input_size"])); print(" Batch Size: {}".format(system_dict["dataset"]["params"]["batch_size"])); print(" Shuffle: {}".format(system_dict["dataset"]["params"]["train_shuffle"])); print(" Processors: {}".format(system_dict["dataset"]["params"]["num_workers"])); print(" Num Classes: {}".format(system_dict["dataset"]["params"]["num_classes"])); print(""); print("Dataset Transforms:"); print(" Train transforms: {}".format(system_dict["dataset"]["transforms"]["train"])); print(" Val transforms: {}".format(system_dict["dataset"]["transforms"]["val"])); print(" Test transforms: {}".format(system_dict["dataset"]["transforms"]["test"])); print(""); ############################################################################################################################# ############################################################################################################################# print("Model"); print(" Status:".format(system_dict["model"]["status"])); if(system_dict["model"]["status"]): print(" Model Name: {}".format(system_dict["model"]["params"]["model_name"])); print(" Use Gpu: {}".format(system_dict["model"]["params"]["use_gpu"])); print(" Use pretrained weights: {}".format(system_dict["model"]["params"]["use_pretrained"])); print(" Base network weights freezed: {}".format(system_dict["model"]["params"]["freeze_base_network"])); print(" Number of trainable parameters: {}".format(system_dict["model"]["params"]["num_params_to_update"])); print("") ############################################################################################################################# ############################################################################################################################# print("Hyper-Parameters"); print(" Status: {}".format(system_dict["hyper-parameters"]["status"])); if(system_dict["hyper-parameters"]["status"]): print(" Optimizer: {}".format(system_dict["hyper-parameters"]["optimizer"])); print(" Learning Rate Scheduler: {}".format(system_dict["hyper-parameters"]["learning_rate_scheduler"])); print(" loss: {}".format(system_dict["hyper-parameters"]["loss"])); print(" Num epochs: {}".format(system_dict["hyper-parameters"]["num_epochs"])); print(""); ############################################################################################################################# ############################################################################################################################# print(""); print("Dataset Settings"); if("display_progress" in system_dict["training"]["settings"].keys()): print(" Status: {}".format(True)); print(" Display progress: {}".format(system_dict["training"]["settings"]["display_progress"])); print(" Display progress realtime: {}".format(system_dict["training"]["settings"]["display_progress_realtime"])); print(" Save intermediate models: {}".format(system_dict["training"]["settings"]["save_intermediate_models"])); print(" Save training logs: {}".format(system_dict["training"]["settings"]["save_training_logs"])); print(" Intermediate model prefix: {}".format(system_dict["training"]["settings"]["intermediate_model_prefix"])); else: print(" Status: {}".format(False)); print(""); ############################################################################################################################# ############################################################################################################################# print(""); print("Training"); print(" Status: {}".format(system_dict["training"]["status"])); if(system_dict["training"]["status"]): print(" Model dir: {}".format(system_dict["model_dir_relative"])); print(" Best validation accuracy: {}".format(system_dict["training"]["outputs"]["best_val_acc"])); print(" Best validation accuracy epoch: {}".format(system_dict["training"]["outputs"]["best_val_acc_epoch_num"])); print(" Training time: {}".format(system_dict["training"]["outputs"]["training_time"])); print(" Epochs completed: {}".format(system_dict["training"]["outputs"]["epochs_completed"])); print(" Max Gpu Usage: {}".format(system_dict["training"]["outputs"]["max_gpu_usage"])); print(""); print("Training Log Files"); print(" Train accuracy: {}".format(system_dict["training"]["outputs"]["log_train_acc_history_relative"])); print(" Train loss: {}".format(system_dict["training"]["outputs"]["log_train_loss_history_relative"])); print(" Val accuracy: {}".format(system_dict["training"]["outputs"]["log_val_acc_history_relative"])); print(" Val loss: {}".format(system_dict["training"]["outputs"]["log_val_loss_history_relative"])); print(""); ############################################################################################################################# ############################################################################################################################# print("External Evaluation"); print(" Status: {}".format(system_dict["testing"]["status"])); if(system_dict["testing"]["status"]): print(" Evaluation Dataset path: {}".format(system_dict["dataset"]["test_path"])); print(" Num Images: {}".format(system_dict["testing"]["num_images"])); print(" Num correct predictions: {}".format(system_dict["testing"]["num_correct_predictions"])); print(" Overall Accuracy: {} %".format(system_dict["testing"]["percentage_accuracy"])); print(""); #############################################################################################################################
7389d460abe517d9e993221e0b2c9acc6154d6ab
916c49b17d730ae36ce3fe8178146baac53fb15d
/common/ecmp/base.py
10d355316e17a8b6561646a9b9de047fdebde323
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
absurya4/tf-test
ec96955ed9ddd662112173d2ff14059cd8d49552
f1faeca6e8a0abbc0efd77455379163d61e3a3d7
refs/heads/master
2022-12-18T08:25:20.375604
2020-09-21T07:31:53
2020-09-24T07:09:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,007
py
from common.base import GenericTestBase import os from tcutils.util import get_random_name, get_random_cidr class ECMPTestBase(GenericTestBase): @classmethod def setUpClass(cls): super(ECMPTestBase, cls).setUpClass() cls.inputs.set_af(cls.get_af()) try: # Mgmt VN cls.mgmt_vn_name = get_random_name('mgmt_%s' % ( cls.inputs.project_name)) cls.mgmt_vn_subnets = [get_random_cidr(af=cls.inputs.get_af())] cls.mgmt_vn_fixture = cls.create_only_vn( cls.mgmt_vn_name, cls.mgmt_vn_subnets) # Left VN cls.left_vn_name = get_random_name('left_%s' % ( cls.inputs.project_name)) cls.left_vn_subnets = [get_random_cidr(af=cls.inputs.get_af())] cls.left_vn_fixture = cls.create_only_vn(cls.left_vn_name, cls.left_vn_subnets) # Right VN cls.right_vn_name = get_random_name('right_%s' % ( cls.inputs.project_name)) cls.right_vn_subnets = [get_random_cidr(af=cls.inputs.get_af())] cls.right_vn_fixture = cls.create_only_vn(cls.right_vn_name, cls.right_vn_subnets) #if cls.inputs.get_af() == 'v6': # cls.left_vn_subnets += [get_random_cidr()] # cls.right_vn_subnets += [get_random_cidr()] if cls.inputs.is_ci_setup() and cls.inputs.get_af() == 'v4': cls.image_name = cls.inputs.get_ci_image() else: cls.image_name = 'cirros-traffic' # End Vms cls.left_vm_name = get_random_name('left_vm_%s' % ( cls.inputs.project_name)) cls.left_vm_fixture = cls.create_only_vm(cls.left_vn_fixture, vm_name=cls.left_vm_name, image_name=cls.image_name) cls.right_vm_name = get_random_name('right_vm_%s' % ( cls.inputs.project_name)) cls.right_vm_fixture = cls.create_only_vm(cls.right_vn_fixture, vm_name=cls.right_vm_name, image_name=cls.image_name) except: cls.tearDownClass() raise cls.common_args = { 'mgmt_vn_name' : cls.mgmt_vn_name, 'mgmt_vn_subnets' : cls.mgmt_vn_subnets, 'mgmt_vn_fixture' : cls.mgmt_vn_fixture, 'left_vn_name' : cls.left_vn_name, 'left_vn_subnets' : cls.left_vn_subnets, 'left_vn_fixture' : cls.left_vn_fixture, 'left_vm_name' : cls.left_vm_name, 'left_vm_fixture' : cls.left_vm_fixture, 'right_vn_name' : cls.right_vn_name, 'right_vn_subnets' : cls.right_vn_subnets, 'right_vn_fixture' : cls.right_vn_fixture, 'right_vm_name' : cls.right_vm_name, 'right_vm_fixture' : cls.right_vm_fixture, 'image_name' : cls.image_name } # end setUpClass @classmethod def cleanUpObjects(cls): cls.safe_cleanup('right_vm_fixture') cls.safe_cleanup('left_vm_fixture') cls.safe_cleanup('left_vn_fixture') cls.safe_cleanup('right_vn_fixture') cls.safe_cleanup('mgmt_vn_fixture') # end cleanUpObjects @classmethod def tearDownClass(cls): cls.cleanUpObjects() super(ECMPTestBase, cls).tearDownClass() # end tearDownClass
7f69dbce010f14ac2debdf2734632872607447c1
7f53f509222f7e4b1ca8137bb31cf2edc5f64e80
/spec.py
285af57a848c75051fd2652556eb8d7fba9fe315
[]
no_license
wahid999/Pythonforbegainer
f61c7567c37b3d4103b5550a6975f78c960763f8
794fd9471ff95eac52ae42d8548526c09df23bbd
refs/heads/main
2023-07-11T22:31:31.435440
2021-08-16T17:18:35
2021-08-16T17:18:35
399,344,206
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
import os os.system('clear') #************** Strings **************** #------------->CANCATINATINATION--------> name = 'Wahid Hussain' greetings = 'hello, My name is ' + name print (greetings[24])
5e50baac929a6e64e65d334d5456747280a5306c
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flashblade/FB_2_6/models/logs_async_response.py
246f276f1a09d0b9999298ed29d41641fb5f13a5
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
3,125
py
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.6, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_6 import models class LogsAsyncResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'items': 'list[LogsAsync]' } attribute_map = { 'items': 'items' } required_args = { } def __init__( self, items=None, # type: List[models.LogsAsync] ): """ Keyword args: items (list[LogsAsync]) """ if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `LogsAsyncResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(LogsAsyncResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, LogsAsyncResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
96aa8ac46b3d2ef2095ea9e7c4211fe64ae7f673
bb53229d1f296f8b7b3f7eb623673031474a4664
/robot/model/arm/pets.py
8523fe88eb018c1b1287289919557794aa76721a
[]
no_license
hzaskywalker/torch_robotics
03f2de64972d47752e45ae0a0c30334bf6c52c6c
0f3d5a46e81d734d514bffcbf4ed84cdcdbd4c86
refs/heads/master
2023-07-28T17:04:17.915787
2021-09-14T04:30:55
2021-09-14T04:30:55
405,022,434
2
0
null
null
null
null
UTF-8
Python
false
false
9,897
py
# reproduce the pets cem with the new framework import os import torch import tqdm from torch import nn import numpy as np from robot.controller.pets.model import EnBNN from robot import U from . import Frame, trainer class Distribution(Frame): # it always maintain dim-2 as the ensemble dimension.. def __init__(self, state, mean=None, log_var=None): self.state = state self.mean = mean self.log_var = log_var if state is None: assert mean is not None and log_var is not None self.state = self.sample(mean, log_var) def iter(self): return (self.state, self.mean, self.log_var) def sample(self, mean, log_var): # sample the inp = mean if log_var is not None: inp += torch.randn_like(log_var) * torch.exp(log_var * 0.5) # sample return inp def calc_loss(self, label): t = label.state inv_var = torch.exp(-self.log_var) loss = ((self.mean - t.detach()) ** 2) * inv_var + self.log_var loss = loss.mean(dim=(0, 1, 3)) loss = loss.sum() # sum across different models return {'loss': loss} @classmethod def from_observation(cls, observation): # build new frame from the observation return cls(observation[..., None, :], None, None) # notice, there is no mean, std, but only state def as_observation(self): return U.tocpu(self.state) class CheetahFrame(Distribution): input_dims = (5, 18, 6) output_dims = (18, 18) def as_input(self, action): s = self.state assert s.dim() == 3 inp = torch.cat([s[..., 1:2], s[..., 2:3].sin(), s[..., 2:3].cos(), s[..., 3:]], dim=-1) return inp, action def add(self, mean, std): mean = torch.cat([mean[..., :1], self.state[..., 1:] + mean[..., 1:]], dim=-1) return self.__class__(None, mean, std) @classmethod def obs_cost_fn(cls, obs): return -obs[..., 0] @classmethod def ac_cost_fn(cls, acs): return 0.1 * (acs ** 2).sum(dim=-1) def compute_reward(self, s, a, goal): return -(self.obs_cost_fn(s.state) + self.ac_cost_fn(a)) class ArmFrame(Distribution): input_dims = (5, 21, 7) output_dims = (14 + 3, 14) def as_input(self, action): s = self.state q, dq = s[..., :7], s[..., 7:14] inp = torch.cat([q.sin(), q.cos(), dq], dim=-1) return inp, action def add(self, mean, std): # maybe I need to bound the rotations..? mean = torch.cat([mean[...,:14]+self.state[...,:14], mean[...,14:17]], dim=-1) return self.__class__(None, mean, std) def compute_reward(self, s, a, g): while g.dim() < self.state.dim(): g = g[None,:] return -((self.state[...,14:17] - g)**2).sum(dim=-1) ** 0.5 class PlaneFrame(Distribution): input_dims = (5, 2, 2) output_dims = (2, 2) def as_input(self, action): return self.state, action def add(self, mean, std): return self.__class__(None, self.state + mean, std) def compute_reward(self, s, a, g): while g.dim() < self.state.dim(): g = g[None,:] return -(((self.state - g) ** 2).sum(dim=-1)) ** 0.5 class EnsembleModel(EnBNN): def __init__(self, inp_dims, oup_dims, mid_channels = 200, num_layers=5, weight_decay = np.array([0.000025, 0.00005, 0.000075, 0.000075, 0.0001]), var_reg=0.01): self._weight_decay = weight_decay self._var_reg = var_reg ensemble_size, state_dim, action_dim = inp_dims super(EnsembleModel, self).__init__(ensemble_size, state_dim + action_dim, oup_dims[0], mid_channels=mid_channels, num_layers=num_layers) def forward(self, obs, action): obs = obs.transpose(1, 0) if action.dim() == 2: action = action[:, None] # add batch dimension action = action.transpose(1, 0) return [i.transpose(1, 0) for i in super(EnsembleModel, self).forward(obs, action)] def loss(self): return self._var_reg * self.var_reg() + self.decay(self._weight_decay) class Dataset: def __init__(self, max_timestep, size, batch_size, frame_type): from robot.controller.pets.replay_buffer import ReplayBuffer self.timestep = max_timestep self.dataset = ReplayBuffer(self.timestep, size) self.batch_size = batch_size self.frame_type = frame_type def store_episode(self, data): self.dataset.store_episode(data) def gen_data(self, num_train): tmp = self.dataset.get() s, a, t = tmp['obs'][..., :-1, :], tmp['actions'], tmp['obs'][..., 1:, :] s = s.reshape(-1, s.shape[-1]) a = a.reshape(-1, a.shape[-1]) t = t.reshape(-1, t.shape[-1]) idxs = np.arange(len(s)) for _ in tqdm.trange(num_train): idxs = np.random.permutation(idxs) batch_size = self.batch_size num_batch = (len(idxs) + batch_size - 1) // batch_size for j in tqdm.trange(num_batch): idx = idxs[j * batch_size:(j + 1) * batch_size] state = self.frame_type.from_observation(s[idx]) future = self.frame_type.from_observation(t[idx][:, None]) yield state.cuda(), U.togpu(a[idx][:, None]), future.cuda() class PetsRollout: def __init__(self, model, frame_type, npart=20): self.model = model self.cls = frame_type self.ensemble_size = self.model.model.ensemble_size self.npart = npart self.K = self.npart//self.ensemble_size def rollout(self, obs, a, goal): obs = U.togpu(obs) a = U.togpu(a) if goal is not None: goal = U.togpu(goal) s = self.cls.from_observation(obs).state s = s.expand(-1, self.npart, -1).reshape(-1, self.ensemble_size, *s.shape[2:]) s = self.cls(s) a = a[:, :, None, None, :].expand(-1, -1, self.K, self.ensemble_size, a.shape[-1]) # b, time, sene a = a.transpose(2, 1).reshape(-1, a.shape[1], self.ensemble_size, a.shape[-1]) predict, reward = self.model.rollout(s, a, goal) reward = reward.reshape(-1, self.K, self.ensemble_size) reward = reward.mean(dim=(1, 2)) return None, -reward class online_trainer(trainer): def set_env(self): from robot.controller.pets.envs import make self.env, _ = make(self.args.env_name) if self.args.env_name == 'cheetah': self.frame_type = CheetahFrame timestep = 1000 elif self.args.env_name == 'plane': self.frame_type = PlaneFrame timestep = 50 elif self.args.env_name == 'arm': self.frame_type = ArmFrame timestep = 100 else: raise NotImplementedError self.dataset = Dataset(timestep, int(1e6), 32, self.frame_type) def set_model(self): self.model = EnsembleModel(self.frame_type.input_dims, self.frame_type.output_dims) def set_agent(self): from .agents.simple_rollout import RolloutAgent normalizer = nn.ModuleList([U.Normalizer((i,)) for i in self.frame_type.input_dims[1:]]) self.agent = RolloutAgent(self.model, lr=self.args.lr, loss_weights={'model_decay': 1.,'loss': 1.}, normalizers=normalizer).cuda() def set_rollout_model(self): self.rollout_predictor = PetsRollout(self.agent, self.frame_type, npart=20) def set_policy(self): self.set_rollout_model() args = self.args from .train_utils import RolloutCEM env = self.env self.controller = RolloutCEM(self.rollout_predictor, env.action_space, iter_num=5, horizon=30, num_mutation=500, num_elite=50, device=args.device, alpha=0.1, trunc_norm=True, lower_bound=env.action_space.low, upper_bound=env.action_space.high) def epoch(self, num_train=5, num_valid=0, num_eval=0, use_tqdm=False): print(f"########################EPOCH {self.epoch_num}###########################") # update buffer by run once self.agent.eval() if self.epoch_num == 0: policy = lambda x: self.env.action_space.sample() else: policy = self.controller env = self.env avg_reward, trajectories = U.eval_policy(policy, env, eval_episodes=1, save_video=0, progress_episode=True, video_path=os.path.join(self.path, "video{}.avi"), return_trajectories=True, timestep=self.dataset.timestep) for i in trajectories: obs = np.array([i['observation'] for i in i[0]])[None, :] action = np.array(i[1])[None, :] self.dataset.store_episode([obs, action]) obs_inp = obs[:, :-1].reshape(-1, obs.shape[-1]) action_inp = action.reshape(-1, action.shape[-1]) obs_inp, action_inp = self.frame_type.from_observation(U.togpu(obs_inp)).as_input(U.togpu(action_inp)) self.agent.update_normalizer([U.togpu(obs_inp), U.togpu(action_inp)]) # train with the dataset self.agent.train() train_output = [] for data in self.dataset.gen_data(num_train): out = self.agent.update(*data) train_output.append(out) out = U.merge_training_output(train_output) out['reward'] = avg_reward self.vis(out)
c6db899b17994956a0afb5dd82d2d133537fb664
df258f9b95493d146ef8d3e9fef8ee367fe66042
/dffml/db/sql.py
bbbac8bea799aad05894665845c119803c332d57
[ "LicenseRef-scancode-generic-export-compliance", "MIT" ]
permissive
emrul/dffml
dd576582de5a95d2cc3c525131d1b1f66dfa84c1
0829a5830fef85d24baa80220fa9cf7e56fee236
refs/heads/master
2022-04-22T20:37:45.109948
2020-04-24T15:08:23
2020-04-24T15:08:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,272
py
""" Base classes to wrap various SQL based databases in dffml.db abstraction. """ from typing import Dict, Any, List, Tuple, Optional from dffml.db.base import BaseDatabaseContext, Conditions class SQLDatabaseContext(BaseDatabaseContext): # BIND_DECLARATION is the string used to bind a param BIND_DECLARATION: str = "?" @classmethod def make_condition_expression(cls, conditions): """ Returns a dict with keys 'expression','values' if conditions is not empty else returns `None` example:: Input : conditions = [ [["firstName", "=", "John"], ["lastName", "=", "Miles"]], [["age", "<", "38"]], ] Output : { 'expression': '((firstName = ? ) OR (lastName = ? )) AND ((age < ? ))', 'values': ['John', 'Miles', '38'] } """ def _make_condition_expression(conditions): def make_or(lst): val_list = [] exp = [] for cnd in lst: exp.append( f"(`{cnd.column}` {cnd.operation} {cls.BIND_DECLARATION} )" ) val_list.append(cnd.value) result = {"expression": " OR ".join(exp), "values": val_list} return result lst = map(make_or, conditions) result_exps = [] result_vals = [] for result in lst: temp_exp = result["expression"] temp_exp = f"({temp_exp})" result_exps.append(temp_exp) result_vals.extend(result["values"]) result_exps = " AND ".join(result_exps) result = {"expression": result_exps, "values": result_vals} return result condition_dict = None if (not conditions == None) and (len(conditions) != 0): condition_dict = _make_condition_expression(conditions) return condition_dict def create_table_query( self, table_name: str, cols: Dict[str, str], *args, **kwargs ) -> None: """ Creates a create query. Table with name ``table_name`` will be created if it doesn't exist. Parameters ---------- table_name : str Name of the table. `cols` : dict Mapping of column names to type of columns. Returns ------- query : str ``CREATE`` query """ query = ( f"CREATE TABLE IF NOT EXISTS {table_name} (" + ", ".join([f"`{k}` {v}" for k, v in cols.items()]) + ")" ) return query def insert_query( self, table_name: str, data: Dict[str, Any], *args, **kwargs ) -> None: """ Creates insert query. Keys in ``data`` dict correspond to the columns in ``table_name``. Parameters ---------- table_name : str Name of the table. data : dict, optional Columns names are keys, values are data to insert. Returns ------- query : str ``INSERT`` query parameters : tuple Variables to bind """ col_exp = ", ".join([f"`{col}`" for col in data]) query = ( f"INSERT INTO {table_name} " + f"( {col_exp} )" + f" VALUES( {', '.join([self.BIND_DECLARATION] * len(data))} ) " ) return query, list(data.values()) def update_query( self, table_name: str, data: Dict[str, Any], conditions: Optional[Conditions] = None, ) -> None: """ Creates update query setting values of rows (satisfying ``conditions`` if provided) with ``data`` in ``table_name``. Parameters ---------- table_name : str Name of the table. data : dict, optional Columns names to update mapped to value to set to. conditions: Conditions, optional Nested array of conditions to satisfy, becomes ``WHERE``. Returns ------- query : str ``UPDATE`` query parameters : tuple Variables to bind """ query_values = list(data.values()) condition_dict = self.make_condition_expression(conditions) if condition_dict is not None: condition_exp = condition_dict["expression"] query_values.extend(condition_dict["values"]) else: condition_exp = None query = ( f"UPDATE {table_name} SET " + " ,".join([f"`{col}` = {self.BIND_DECLARATION}" for col in data]) + (f" WHERE {condition_exp}" if condition_exp is not None else "") ) return query, query_values def lookup_query( self, table_name: str, cols: Optional[List[str]] = None, conditions: Optional[Conditions] = None, ) -> Tuple[str, Tuple[Any]]: """ Creates a query string and tuple of parameters used as bindings. Parameters ---------- table_name : str Name of the table. cols : list, optional Columns names to return conditions: Conditions, optional Nested array of conditions to satisfy, becomes ``WHERE``. Returns ------- query : str ``SELECT`` query parameters : tuple Variables to bind """ condition_dict = self.make_condition_expression(conditions) query_values = [] if condition_dict is not None: condition_exp = condition_dict["expression"] query_values.extend(condition_dict["values"]) else: condition_exp = None if not cols: col_exp = "*" else: col_exp = ", ".join([f"`{col}`" for col in cols]) query = f"SELECT {col_exp} FROM {table_name} " + ( f" WHERE {condition_exp}" if condition_exp is not None else "" ) return query, query_values def remove_query( self, table_name: str, conditions: Optional[Conditions] = None ): """ Creates a delete query to remove rows from ``table_name`` (satisfying ``conditions`` if provided). Parameters ---------- table_name : str Name of the table. conditions: Conditions, optional Nested array of conditions to satisfy, becomes ``WHERE``. Returns ------- query : str ``DELETE`` query parameters : tuple Variables to bind """ condition_dict = self.make_condition_expression(conditions) query_values = [] if condition_dict is not None: condition_exp = condition_dict["expression"] query_values = condition_dict["values"] else: condition_exp = None query = f"DELETE FROM {table_name} " + ( f" WHERE {condition_exp}" if condition_exp is not None else "" ) return query, query_values
ca42f02af10ca35b68749902215dcc8c12068f13
d832d79e61b86f6a7e1ebe5b9dcf6b28ebf23cb1
/revnum.py
0e2228dc6fa415c46244ad0d3cc696042920d649
[]
no_license
moneshvenkul/guvi_player
5f12657a2efc5db9385543f970ef0238cdfacfaf
84cdd0cd3de3e77e50c871bc7cd7f115f1f40de0
refs/heads/master
2020-05-01T14:27:21.058668
2019-03-25T08:15:33
2019-03-25T08:15:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
n=input() x=n[::-1] print(int(x))
f2cc1601e225667554205561c993b3b430da90dd
1edd52cf197e5ae67b5939a3beb3e70761334e62
/AWS/AWS_boto3_narendra/20_Collections_stop_all_ec2.py
d019a4a10bd4d593f40e1b1694dac8e0692e7743
[]
no_license
sandeepmchary/Devops_wordpress_Notes
bdcd85d526780d03c494ecb93e714e7ffe0a4d58
ffd2092162073e1e7342c6066d023d04e6ca8c1c
refs/heads/master
2022-06-18T21:33:02.471025
2022-06-12T11:14:47
2022-06-12T11:14:47
154,679,658
1
4
null
2022-05-19T16:59:57
2018-10-25T13:51:40
HTML
UTF-8
Python
false
false
378
py
import boto3 ec2_re=boto3.resource('ec2') ec2_cli=boto3.client('ec2') all_ins_id=[] for each in ec2_re.instances.all(): print(each.id,each.state['Name']) all_ins_id.append(each.id) #print(all_ins_id) print("Stopping all instances...") ec2_re.instances.stop() waiter=ec2_cli.get_waiter('instance_stopped') waiter.wait(InstanceIds=all_ins_id) print("All instances are stopped")
88a5b2b4fd0da877b9c61c64b8cbb25dec8a8493
d64289adc0908134bf97cbce2d9c5f305a8042d0
/groupdocs_conversion_cloud/models/otp_load_options.py
5a17f2da8e57ddbe68c5919dc2cdfdf15c5f4a30
[ "MIT" ]
permissive
groupdocs-conversion-cloud/groupdocs-conversion-cloud-python
07cfdabb6584e4f9835c25ff96a6053ef3a54596
496f307bc0b776314fd5f56781fb0e71b0b4985e
refs/heads/master
2023-08-30T22:12:43.070658
2023-08-23T17:08:13
2023-08-23T17:08:13
179,628,452
7
0
null
null
null
null
UTF-8
Python
false
false
3,622
py
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose Pty Ltd" file="OtpLoadOptions.py"> # Copyright (c) 2003-2023 Aspose Pty Ltd # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six from groupdocs_conversion_cloud.models import PresentationLoadOptions class OtpLoadOptions(PresentationLoadOptions): """ Otp load options """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self, **kwargs): # noqa: E501 """Initializes new instance of OtpLoadOptions""" # noqa: E501 base = super(OtpLoadOptions, self) base.__init__(**kwargs) self.swagger_types.update(base.swagger_types) self.attribute_map.update(base.attribute_map) def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OtpLoadOptions): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
9d04ced9a977b0813099e3e048af8c764a92ffc9
1d88ed99e2f01b6b0faa7acf762543f41569380c
/top/table/tests/test_returns.py
7264e71d32ed00d88f79d614faa8c1cfeef75cdb
[]
no_license
loum/top
be0ae6951ed7d5834d14f96403d6cd1dc9d008a4
4d9aae6297793822b6de28b65f7639a4b2e6dcfa
refs/heads/master
2016-09-10T10:38:41.312180
2014-06-05T05:44:48
2014-06-05T05:44:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,891
py
import unittest2 import os import datetime import top class TestReturns(unittest2.TestCase): @classmethod def setUpClass(cls): cls._r = top.Returns() cls._db = top.DbSession() cls._db.connect() db = cls._db fixture_dir = os.path.join('top', 'tests', 'fixtures') fixtures = [{'db': db.returns_reference, 'fixture': 'returns_reference.py'}, {'db': db.returns, 'fixture': 'returns.py'}, {'db': db.agent, 'fixture': 'agents.py'}] for i in fixtures: fixture_file = os.path.join(fixture_dir, i['fixture']) db.load_fixture(i['db'], fixture_file) # Update the returns created_ts. cls._now = str(datetime.datetime.now()).split('.')[0] sql = """UPDATE returns SET created_ts = '%s'""" % cls._now db(sql) db.commit() def test_init(self): """Placeholder test to make sure the Returns table is created. """ msg = 'Object is not an top.Returns' self.assertIsInstance(self._r, top.Returns, msg) def test_extract_id_sql(self): """Verify the extract_id_sql string. """ returns_id = 2 sql = self._db.returns.extract_id_sql(returns_id) self._db(sql) received = list(self._db.rows()) expected = [('[email protected]', '0431602145', '%s' % self._now, 'Bunters We Never Sleep News + Deli', '693 Albany Hwy', 'Victoria Park', '6101', 'WA')] msg = 'extract_id_sql returned values error' self.assertListEqual(received, expected, msg) @classmethod def tearDownClass(cls): cls._db.disconnect() cls._db = None cls._r = None
ba3910d957182f1266449984de846549adfd32bc
bc441bb06b8948288f110af63feda4e798f30225
/database_delivery_sdk/model/inspection/collector_pb2.py
11b6c11be52fbd835afa5a03782fb0095af50566
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
4,328
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: collector.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from database_delivery_sdk.model.inspection import arg_pb2 as database__delivery__sdk_dot_model_dot_inspection_dot_arg__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='collector.proto', package='inspection', syntax='proto3', serialized_options=_b('ZDgo.easyops.local/contracts/protorepo-models/easyops/model/inspection'), serialized_pb=_b('\n\x0f\x63ollector.proto\x12\ninspection\x1a\x30\x64\x61tabase_delivery_sdk/model/inspection/arg.proto\"y\n\x13InspectionCollector\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0f\n\x07\x63ontent\x18\x03 \x01(\t\x12\x0e\n\x06script\x18\x04 \x01(\t\x12\'\n\x04\x61rgs\x18\x05 \x03(\x0b\x32\x19.inspection.InspectionArgBFZDgo.easyops.local/contracts/protorepo-models/easyops/model/inspectionb\x06proto3') , dependencies=[database__delivery__sdk_dot_model_dot_inspection_dot_arg__pb2.DESCRIPTOR,]) _INSPECTIONCOLLECTOR = _descriptor.Descriptor( name='InspectionCollector', full_name='inspection.InspectionCollector', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='inspection.InspectionCollector.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='inspection.InspectionCollector.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='content', full_name='inspection.InspectionCollector.content', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='script', full_name='inspection.InspectionCollector.script', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='args', full_name='inspection.InspectionCollector.args', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=81, serialized_end=202, ) _INSPECTIONCOLLECTOR.fields_by_name['args'].message_type = database__delivery__sdk_dot_model_dot_inspection_dot_arg__pb2._INSPECTIONARG DESCRIPTOR.message_types_by_name['InspectionCollector'] = _INSPECTIONCOLLECTOR _sym_db.RegisterFileDescriptor(DESCRIPTOR) InspectionCollector = _reflection.GeneratedProtocolMessageType('InspectionCollector', (_message.Message,), { 'DESCRIPTOR' : _INSPECTIONCOLLECTOR, '__module__' : 'collector_pb2' # @@protoc_insertion_point(class_scope:inspection.InspectionCollector) }) _sym_db.RegisterMessage(InspectionCollector) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
f72712339cc187c4574fc8ad4a91106b89cb5f39
0f49a5e1daeb09742f87717e8f4849b87b1a9c44
/src/dialogs/DialogUmlNodeEdit.py
5c9ed16d21e86fbde26a233e0482e29a244a94d7
[]
no_license
arita37/pynsource
7ddc717972e3c8f8a1225f4d9ba196e03bfee5df
57ed39ba112d97fc0af09669d6647952f6ae1e7c
refs/heads/master
2021-02-04T09:03:10.796578
2020-02-06T06:31:19
2020-02-06T06:31:19
243,646,965
1
0
null
2020-02-28T00:42:02
2020-02-28T00:42:00
null
UTF-8
Python
false
false
3,837
py
# -*- coding: utf-8 -*- ########################################################################### ## Python code generated with wxFormBuilder (version Oct 26 2018) ## http://www.wxformbuilder.org/ ## ## PLEASE DO *NOT* EDIT THIS FILE! ########################################################################### import wx import wx.xrc ########################################################################### ## Class DialogUmlNodeEdit ########################################################################### class DialogUmlNodeEdit ( wx.Dialog ): def __init__( self, parent ): wx.Dialog.__init__ ( self, parent, id = wx.ID_ANY, title = u"Uml Node Properties", pos = wx.DefaultPosition, size = wx.Size( 342,469 ), style = wx.DEFAULT_DIALOG_STYLE|wx.RESIZE_BORDER ) self.SetSizeHints( wx.DefaultSize, wx.DefaultSize ) bSizer9 = wx.BoxSizer( wx.VERTICAL ) self.m_panel2 = wx.Panel( self, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL ) bSizer11 = wx.BoxSizer( wx.VERTICAL ) bSizer12 = wx.BoxSizer( wx.HORIZONTAL ) self.m_staticText1 = wx.StaticText( self.m_panel2, wx.ID_ANY, u"Class Name", wx.DefaultPosition, wx.DefaultSize, 0 ) self.m_staticText1.Wrap( -1 ) self.m_staticText1.SetMinSize( wx.Size( 55,-1 ) ) bSizer12.Add( self.m_staticText1, 1, wx.ALL, 5 ) self.txtClassName = wx.TextCtrl( self.m_panel2, wx.ID_ANY, wx.EmptyString, wx.DefaultPosition, wx.DefaultSize, wx.TE_PROCESS_ENTER ) self.txtClassName.SetMaxLength( 0 ) bSizer12.Add( self.txtClassName, 3, wx.ALIGN_CENTER_HORIZONTAL|wx.ALL, 5 ) bSizer11.Add( bSizer12, 0, wx.EXPAND, 5 ) bSizer14 = wx.BoxSizer( wx.HORIZONTAL ) self.m_staticText2 = wx.StaticText( self.m_panel2, wx.ID_ANY, u"Attributes", wx.DefaultPosition, wx.DefaultSize, 0 ) self.m_staticText2.Wrap( -1 ) self.m_staticText2.SetMinSize( wx.Size( 55,-1 ) ) bSizer14.Add( self.m_staticText2, 1, wx.ALL, 5 ) self.txtAttrs = wx.TextCtrl( self.m_panel2, wx.ID_ANY, wx.EmptyString, wx.DefaultPosition, wx.DefaultSize, wx.TE_MULTILINE ) # self.txtAttrs.SetMaxLength( 0 ) bSizer14.Add( self.txtAttrs, 3, wx.ALL|wx.EXPAND, 5 ) bSizer11.Add( bSizer14, 2, wx.EXPAND, 5 ) bSizer13 = wx.BoxSizer( wx.HORIZONTAL ) self.m_staticText3 = wx.StaticText( self.m_panel2, wx.ID_ANY, u"Methods", wx.DefaultPosition, wx.DefaultSize, 0 ) self.m_staticText3.Wrap( -1 ) self.m_staticText3.SetMinSize( wx.Size( 55,-1 ) ) bSizer13.Add( self.m_staticText3, 1, wx.ALL, 5 ) self.txtMethods = wx.TextCtrl( self.m_panel2, wx.ID_ANY, wx.EmptyString, wx.DefaultPosition, wx.DefaultSize, wx.TE_MULTILINE ) # self.txtMethods.SetMaxLength( 0 ) bSizer13.Add( self.txtMethods, 3, wx.ALL|wx.EXPAND, 5 ) bSizer11.Add( bSizer13, 2, wx.EXPAND, 5 ) bSizer4 = wx.BoxSizer( wx.HORIZONTAL ) bSizer5 = wx.BoxSizer( wx.VERTICAL ) self.m_button1 = wx.Button( self.m_panel2, wx.ID_CANCEL, u"Cancel", wx.DefaultPosition, wx.DefaultSize, 0 ) bSizer5.Add( self.m_button1, 0, wx.ALL|wx.EXPAND, 5 ) bSizer4.Add( bSizer5, 1, wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer6 = wx.BoxSizer( wx.VERTICAL ) self.m_button2 = wx.Button( self.m_panel2, wx.ID_OK, u"OK", wx.DefaultPosition, wx.DefaultSize, 0 ) bSizer6.Add( self.m_button2, 0, wx.ALL|wx.EXPAND, 5 ) bSizer4.Add( bSizer6, 1, wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer11.Add( bSizer4, 1, wx.ALIGN_CENTER_HORIZONTAL, 5 ) self.m_panel2.SetSizer( bSizer11 ) self.m_panel2.Layout() bSizer11.Fit( self.m_panel2 ) bSizer9.Add( self.m_panel2, 1, wx.EXPAND |wx.ALL, 5 ) self.SetSizer( bSizer9 ) self.Layout() self.Centre( wx.BOTH ) # Connect Events self.txtClassName.Bind( wx.EVT_TEXT_ENTER, self.OnClassNameEnter ) def __del__( self ): pass # Virtual event handlers, overide them in your derived class def OnClassNameEnter( self, event ): event.Skip()
f8e9da36ddbcc3f59610866194a1676bdff287ad
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/90/usersdata/218/60729/submittedfiles/matriz2.py
9c1a3e9aea2e3f724466e0e40fb3cef9566de708
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
# -*- coding: utf-8 -*- import numpy as np def somas (a): lista=[] cont=0 for i in range (0,a.shape[0],1): cont=0 for j in range (0,a.shape[1],1): cont=cont+a[i,j] lista.append(cont) for j in range (0,a.shape[1],1): cont=0 for i in range (0,a.shape[0],1): cont=cont+a[i,j] lista.append(cont) cont=0 for i in range (0,a.shape[0],1): for j in range (0,a.shape[1],1): if i==j: cont=cont+a[i,j] lista.append(cont) i=0 j=a.shape[1]-1 cont=0 while j>=0: cont=cont+a[i,j] i=i+1 j=j-1 lista.append(cont) for i in range (1,len(lista),1): if lista[i]!=lista[i-1]: return False return True n=int(input('digite as dimensões da matriz quadrada:')) a=np.zeros((n,n)) for i in range (0,a.shape[0],1): for j in range (0, a.shape[1],1): a[i,j]=float(input('digite o elemento:')) if somas(a): print('S') else: print('N')_
d69bd9f188b9854c76763631719ecfe14836d385
4b232f6f94097644b8c052a8be5dae83644a3d0c
/tractseg/libs/fiber_utils.py
d60707d50395644098468a2a4285a9eb5d00a203
[ "Apache-2.0" ]
permissive
Nat-Sci/TractSeg
40e0bafc1ed50bdf09c26977e28a202e09f6bccb
506935488436951546a96358958cfb6752145c0d
refs/heads/master
2022-11-20T08:06:34.322247
2020-07-16T16:09:12
2020-07-16T16:09:12
281,930,134
0
0
Apache-2.0
2020-07-23T11:14:10
2020-07-23T11:14:09
null
UTF-8
Python
false
false
15,560
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing from os import getpid import numpy as np import nibabel as nib from dipy.tracking.streamline import compress_streamlines as compress_streamlines_dipy from dipy.segment.metric import ResampleFeature from dipy.tracking.metrics import spline from dipy.tracking import utils as utils_trk from dipy.tracking.streamline import transform_streamlines from dipy.tracking.streamline import set_number_of_points from dipy.tracking.streamline import length as sl_length from tractseg.libs import utils from tractseg.libs import peak_utils # Global variables needed for shared memory of parallel fiber compression global _COMPRESSION_ERROR_THRESHOLD _COMPRESSION_ERROR_THRESHOLD = None global _FIBER_BATCHES _FIBER_BATCHES = None def compress_fibers_worker_shared_mem(idx): """ Worker Functions for multithreaded compression. Function that runs in parallel must be on top level (not in class/function) otherwise it can not be pickled. """ streamlines_chunk = _FIBER_BATCHES[idx] # shared memory; by using indices each worker accesses only his part result = compress_streamlines_dipy(streamlines_chunk, tol_error=_COMPRESSION_ERROR_THRESHOLD) # print('PID {}, DONE'.format(getpid())) return result def compress_streamlines(streamlines, error_threshold=0.1, nr_cpus=-1): import psutil if nr_cpus == -1: nr_processes = psutil.cpu_count() else: nr_processes = nr_cpus number_streamlines = len(streamlines) if nr_processes >= number_streamlines: nr_processes = number_streamlines - 1 if nr_processes < 1: nr_processes = 1 chunk_size = int(number_streamlines / nr_processes) if chunk_size < 1: return streamlines fiber_batches = list(utils.chunks(streamlines, chunk_size)) global _COMPRESSION_ERROR_THRESHOLD global _FIBER_BATCHES _COMPRESSION_ERROR_THRESHOLD = error_threshold _FIBER_BATCHES = fiber_batches # print("Main program using: {} GB".format(round(Utils.mem_usage(print_usage=False), 3))) pool = multiprocessing.Pool(processes=nr_processes) #Do not pass in data (doubles amount of memory needed), but only idx of shared memory # (needs only as much memory as single thread version (only main thread needs memory, others almost 0). # Shared memory version also faster (around 20-30%?). result = pool.map(compress_fibers_worker_shared_mem, range(0, len(fiber_batches))) pool.close() pool.join() streamlines_c = utils.flatten(result) return streamlines_c def save_streamlines_as_trk_legacy(out_file, streamlines, affine, shape): """ This function saves tracts in Trackvis '.trk' format. Uses the old nib.trackvis API (streamlines are saved in coordinate space. Affine is not applied.) Args: out_file: string with filepath of the output file streamlines: sequence of streamlines in RASmm coordinate (list of 2D numpy arrays) affine: 4d array with voxel to RASmm transformation shape: 1d array with dimensions of the brain volume, default [145, 174, 145] Returns: void """ affine = np.abs(affine) #offset not needed (already part of streamline coordinates?) affine[0, 3] = 0 affine[1, 3] = 0 affine[2, 3] = 0 # Make a trackvis header so we can save streamlines trackvis_header = nib.trackvis.empty_header() trackvis_header['voxel_order'] = 'RAS' trackvis_header['dim'] = shape nib.trackvis.aff_to_hdr(affine, trackvis_header, pos_vox=False, set_order=False) streamlines_trk_format = [(sl, None, None) for sl in streamlines] nib.trackvis.write(out_file, streamlines_trk_format, trackvis_header, points_space="rasmm") def save_streamlines(out_file, streamlines, affine=None, shape=None, vox_sizes=None, vox_order='RAS'): """ Saves streamlines either in .trk format or in .tck format. Depending on the ending of out_file. If using .trk: This function saves tracts in Trackvis '.trk' format. The default values for the parameters are the values for the HCP data. The HCP default affine is: array([[ -1.25, 0. , 0. , 90. ], [ 0. , 1.25, 0. , -126. ], [ 0. , 0. , 1.25, -72. ], [ 0. , 0. , 0. , 1. ]], dtype=float32) Uses the new nib.streamlines API (streamlines are saved in voxel space and affine is applied to transform them to coordinate space). todo: use dipy.io.streamline.save_tractogram to save streamlines Args: out_file: string with filepath of the output file streamlines: sequence of streamlines in RASmm coordinate affine: 4d array with voxel to RASmm transformation shape: 1d array with dimensions of the brain volume, default [145, 174, 145] vox_sizes: 1d array with the voxels sizes, if None takes the absolute values of the diagonal of the affine vox_order: orientation convention, default to 'LAS' Returns: void """ if affine is None: affine = np.array([[-1.25, 0., 0., 90.], [0., 1.25, 0., -126.], [0., 0., 1.25, -72.], [0., 0., 0., 1.]], dtype=np.float32) if shape is None: shape = np.array([145, 174, 145], dtype=np.int16) if vox_sizes is None: vox_sizes = np.array([abs(affine[0,0]), abs(affine[1,1]), abs(affine[2,2])], dtype=np.float32) # Create a new header with the correct affine and nr of streamlines hdr = {} hdr['voxel_sizes'] = vox_sizes hdr['voxel_order'] = vox_order hdr['dimensions'] = shape hdr['voxel_to_rasmm'] = affine hdr['nb_streamlines'] = len(streamlines) nib.streamlines.save(nib.streamlines.Tractogram(streamlines, affine_to_rasmm=np.eye(4)), out_file, header=hdr) def convert_tck_to_trk(filename_in, filename_out, reference_affine, reference_shape, compress_err_thr=0.1, smooth=None, nr_cpus=-1, tracking_format="trk_legacy"): streamlines = nib.streamlines.load(filename_in).streamlines # Load Fibers (Tck) if smooth is not None: streamlines_smooth = [] for sl in streamlines: streamlines_smooth.append(spline(sl, s=smooth)) streamlines = streamlines_smooth #Compressing also good to remove checkerboard artefacts from tracking on peaks if compress_err_thr is not None: streamlines = compress_streamlines(streamlines, compress_err_thr, nr_cpus=nr_cpus) if tracking_format == "trk_legacy": save_streamlines_as_trk_legacy(filename_out, streamlines, reference_affine, reference_shape) else: save_streamlines(filename_out, streamlines, reference_affine, reference_shape) def create_empty_tractogram(filename_out, reference_file, tracking_format="trk_legacy"): ref_img = nib.load(reference_file) reference_affine = ref_img.affine reference_shape = ref_img.get_data().shape[:3] streamlines = [] if tracking_format == "trk_legacy": save_streamlines_as_trk_legacy(filename_out, streamlines, reference_affine, reference_shape) else: save_streamlines(filename_out, streamlines, reference_affine, reference_shape) def resample_fibers(streamlines, nb_points=12): streamlines_new = [] for sl in streamlines: feature = ResampleFeature(nb_points=nb_points) streamlines_new.append(feature.extract(sl)) return streamlines_new def smooth_streamlines(streamlines, smoothing_factor=10): """ Smooth streamlines Args: streamlines: list of streamlines smoothing_factor: 10: slight smoothing, 100: very smooth from beginning to end Returns: smoothed streamlines """ streamlines_smooth = [] for sl in streamlines: streamlines_smooth.append(spline(sl, s=smoothing_factor)) return streamlines_smooth def get_streamline_statistics(streamlines, subsample=False, raw=False): """ Get streamlines statistics in mm Args: streamlines: list of streamlines subsample: Do not evaluate all points to increase runtime raw: if True returns list of fibers length and spaces Returns: (mean streamline length, mean space between two following points, max space between two following points) """ if subsample: # subsample for faster processing STEP_SIZE = 20 else: STEP_SIZE = 1 lengths = [] spaces = [] # spaces between 2 points for j in range(0, len(streamlines), STEP_SIZE): sl = streamlines[j] length = 0 for i in range(len(sl)): if i < (len(sl)-1): space = np.linalg.norm(sl[i+1] - sl[i]) spaces.append(space) length += space lengths.append(length) if raw: return lengths, spaces else: return np.array(lengths).mean(), np.array(spaces).mean(), np.array(spaces).max() def filter_streamlines_leaving_mask(streamlines, mask): """ Remove all streamlines that exit the mask """ max_seq_len = 0.1 streamlines = list(utils_trk.subsegment(streamlines, max_seq_len)) new_str_idxs = [] for i, streamline in enumerate(streamlines): new_str_idxs.append(i) for point in streamline: if mask[int(point[0]), int(point[1]), int(point[2])] == 0: new_str_idxs.pop() break return [streamlines[idx] for idx in new_str_idxs] def get_best_original_peaks(peaks_pred, peaks_orig, peak_len_thr=0.1): """ Find the peak from preaks_orig which is closest to the peak in peaks_pred. Args: peaks_pred: file containing 1 peak [x,y,z,3] peaks_orig: file containing 4 peaks [x,y,z,9] peak_len_thr: all peaks shorter than this threshold will be removed Returns: Image containing 1 peak [x,y,z,3] """ def _get_most_aligned_peak(pred, orig): orig = np.array(orig) angle1 = abs(peak_utils.angle_last_dim(pred, orig[0])) angle2 = abs(peak_utils.angle_last_dim(pred, orig[1])) angle3 = abs(peak_utils.angle_last_dim(pred, orig[2])) argmax = np.argmax(np.stack([angle1, angle2, angle3], axis=-1), axis=-1) x, y, z = (orig.shape[1], orig.shape[2], orig.shape[3]) return orig[tuple([argmax] + np.ogrid[:x, :y, :z])] # Other ways that would also work # return orig[argmax, np.arange(x)[:, None, None], np.arange(y)[:, None], np.arange(z)] # return np.take_along_axis(orig, argmax[None, ..., None], axis=0)[0] # only supported in newest numpy version peaks_pred = np.nan_to_num(peaks_pred) peaks_orig = np.nan_to_num(peaks_orig) #Remove all peaks where predicted peaks are too short peaks_orig[np.linalg.norm(peaks_pred, axis=-1) < peak_len_thr] = 0 best_orig = _get_most_aligned_peak(peaks_pred, [peaks_orig[:, :, :, 0:3], peaks_orig[:, :, :, 3:6], peaks_orig[:, :, :, 6:9]]) return best_orig def get_weighted_mean_of_peaks(best_orig, tom, weight=0.5): """ Calculate weighted mean between best_orig peaks and TOM peaks. Args: best_orig: original peaks tom: prior weight: how much to apply prior (0: only original signal, 1: only prior) Returns: weighted mean """ angles = peak_utils.angle_last_dim(best_orig, tom) # make sure to take mean along smaller angle (<90 degree), not along the bigger one (>90 degree) tom[angles < 0] *= -1 # flip peak stacked = np.stack([best_orig, tom]) return np.average(stacked, axis=0, weights=[1 - weight, weight]) def add_to_each_streamline(streamlines, scalar): """ Add scalar value to each coordinate of each streamline """ sl_new = [] for sl in streamlines: sl_new.append(np.array(sl) + scalar) return sl_new def add_to_each_streamline_axis(streamlines, scalar, axis="x"): sl_new = [] for sl in streamlines: s = np.array(sl) if axis == "x": s[:, 0] += scalar elif axis == "y": s[:, 1] += scalar elif axis == "z": s[:, 2] += scalar sl_new.append(s) return sl_new def flip(streamlines, axis="x"): new_sl = [] for sl in streamlines: tmp = np.copy(sl) if axis == "x": tmp[:, 0] = tmp[:, 0] * -1 elif axis == "y": tmp[:, 1] = tmp[:, 1] * -1 elif axis == "z": tmp[:, 2] = tmp[:, 2] * -1 else: raise ValueError("Unsupported axis") new_sl.append(tmp) return new_sl def transform_point(p, affine): """ Apply affine to point p Args: p: [x, y, z] affine: [4x4] matrix Returns: [x, y, z] """ M = affine[:3, :3] offset = affine[:3, 3] return M.dot(p) + offset def invert_streamlines(streamlines, reference_img, affine, axis="x"): """ Invert streamlines. If inverting image voxel order (img[::-1]) we can do this inversion to the streamlines and the result properly fits to the inverted image. Args: streamlines: reference_img: 3d array affine: 4x4 matrix axis: x | y | z Returns: streamlines """ img_shape = np.array(reference_img.shape) img_center_voxel_space = (img_shape - 1) / 2. img_center_mm_space = transform_point(img_center_voxel_space, affine) # affine_invert = np.eye(4) affine_invert = np.copy(affine) affine_invert[0, 3] = 0 affine_invert[1, 3] = 0 affine_invert[2, 3] = 0 affine_invert[0, 0] = 1 affine_invert[1, 1] = 1 affine_invert[2, 2] = 1 if axis == "x": affine_invert[0, 0] = -1 affine_invert[0, 3] = img_center_mm_space[1] * 2 elif axis == "y": affine_invert[1, 1] = -1 affine_invert[1, 3] = img_center_mm_space[1] * 2 elif axis == "z": affine_invert[2, 2] = -1 affine_invert[2, 3] = img_center_mm_space[1] * 2 else: raise ValueError("invalid axis") print(affine_invert) return list(transform_streamlines(streamlines, affine_invert)) def resample_to_same_distance(streamlines, max_nr_points=10, ANTI_INTERPOL_MULT=1): dist = sl_length(streamlines).max() / max_nr_points new_streamlines = [] for sl in streamlines: l = sl_length(sl) nr_segments = int(l / dist) sl_new = set_number_of_points(sl, nb_points=nr_segments * ANTI_INTERPOL_MULT) new_streamlines.append(sl_new) return new_streamlines def pad_sl_with_zeros(streamlines, target_len, pad_point): new_streamlines = [] for sl in streamlines: new_sl = list(sl) + [pad_point] * (target_len - len(sl)) new_streamlines.append(new_sl) return new_streamlines def get_idxs_of_closest_points(streamlines, target_point): idxs = [] for sl in streamlines: dists = [] for idx, p in enumerate(sl): dist = abs(np.linalg.norm(p - target_point)) dists.append(dist) idxs.append(np.array(dists).argmin()) return idxs
bf1a7529e2315658f50cc0c20cf59fc4d0d940fd
ababed0e1a54f4888440edd20cbfdf6beb3cd20d
/backend/menu/api/v1/viewsets.py
67ee4177ad30850e6ca22a7f0ce52813b2fbd299
[]
no_license
crowdbotics-apps/asd-18920
1766fa6c4334d1c1f8a97f6aa4da8961742bcc2c
5022fcd5f0b0522ce53438270e2ae65d1b652dab
refs/heads/master
2022-11-17T15:02:25.688634
2020-07-15T16:09:00
2020-07-15T16:09:00
279,915,037
0
1
null
null
null
null
UTF-8
Python
false
false
1,555
py
from rest_framework import authentication from menu.models import ItemVariant, Country, Item, Category, Review from .serializers import ( ItemVariantSerializer, CountrySerializer, ItemSerializer, CategorySerializer, ReviewSerializer, ) from rest_framework import viewsets class CategoryViewSet(viewsets.ModelViewSet): serializer_class = CategorySerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = Category.objects.all() class ItemViewSet(viewsets.ModelViewSet): serializer_class = ItemSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = Item.objects.all() class ItemVariantViewSet(viewsets.ModelViewSet): serializer_class = ItemVariantSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = ItemVariant.objects.all() class ReviewViewSet(viewsets.ModelViewSet): serializer_class = ReviewSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = Review.objects.all() class CountryViewSet(viewsets.ModelViewSet): serializer_class = CountrySerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = Country.objects.all()
efcd1f6da93da3bf75a7685d2f07a65c5f588702
52ab2da7b131643a344ee5344d8f35aebd6e2eed
/WebProject1/myvenv/lib/python3.6/site-packages/sqlalchemy/event/legacy.py
049df81aafa7b163be69d6561ad9e9e6ff7ef534
[ "MIT" ]
permissive
ucsb-cs48-w19/5pm-findtheroommate
cd6db6c4cf3ee6f159b04456ba13b1ef684c7546
d9d01b95c478e7493b5b32c8b56ceed00578b188
refs/heads/master
2020-04-16T01:00:16.617610
2019-03-19T20:42:38
2019-03-19T20:42:38
165,158,037
2
1
MIT
2019-03-05T00:46:12
2019-01-11T01:28:11
Python
UTF-8
Python
false
false
5,900
py
# event/legacy.py # Copyright (C) 2005-2019 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Routines to handle adaption of legacy call signatures, generation of deprecation notes and docstrings. """ from .. import util def _legacy_signature(since, argnames, converter=None): def leg(fn): if not hasattr(fn, "_legacy_signatures"): fn._legacy_signatures = [] fn._legacy_signatures.append((since, argnames, converter)) return fn return leg def _wrap_fn_for_legacy(dispatch_collection, fn, argspec): for since, argnames, conv in dispatch_collection.legacy_signatures: if argnames[-1] == "**kw": has_kw = True argnames = argnames[0:-1] else: has_kw = False if len(argnames) == len(argspec.args) and has_kw is bool( argspec.keywords ): if conv: assert not has_kw def wrap_leg(*args): return fn(*conv(*args)) else: def wrap_leg(*args, **kw): argdict = dict(zip(dispatch_collection.arg_names, args)) args = [argdict[name] for name in argnames] if has_kw: return fn(*args, **kw) else: return fn(*args) return wrap_leg else: return fn def _indent(text, indent): return "\n".join(indent + line for line in text.split("\n")) def _standard_listen_example(dispatch_collection, sample_target, fn): example_kw_arg = _indent( "\n".join( "%(arg)s = kw['%(arg)s']" % {"arg": arg} for arg in dispatch_collection.arg_names[0:2] ), " ", ) if dispatch_collection.legacy_signatures: current_since = max( since for since, args, conv in dispatch_collection.legacy_signatures ) else: current_since = None text = ( "from sqlalchemy import event\n\n" "# standard decorator style%(current_since)s\n" "@event.listens_for(%(sample_target)s, '%(event_name)s')\n" "def receive_%(event_name)s(" "%(named_event_arguments)s%(has_kw_arguments)s):\n" " \"listen for the '%(event_name)s' event\"\n" "\n # ... (event handling logic) ...\n" ) if len(dispatch_collection.arg_names) > 3: text += ( "\n# named argument style (new in 0.9)\n" "@event.listens_for(" "%(sample_target)s, '%(event_name)s', named=True)\n" "def receive_%(event_name)s(**kw):\n" " \"listen for the '%(event_name)s' event\"\n" "%(example_kw_arg)s\n" "\n # ... (event handling logic) ...\n" ) text %= { "current_since": " (arguments as of %s)" % current_since if current_since else "", "event_name": fn.__name__, "has_kw_arguments": ", **kw" if dispatch_collection.has_kw else "", "named_event_arguments": ", ".join(dispatch_collection.arg_names), "example_kw_arg": example_kw_arg, "sample_target": sample_target, } return text def _legacy_listen_examples(dispatch_collection, sample_target, fn): text = "" for since, args, conv in dispatch_collection.legacy_signatures: text += ( "\n# DEPRECATED calling style (pre-%(since)s, " "will be removed in a future release)\n" "@event.listens_for(%(sample_target)s, '%(event_name)s')\n" "def receive_%(event_name)s(" "%(named_event_arguments)s%(has_kw_arguments)s):\n" " \"listen for the '%(event_name)s' event\"\n" "\n # ... (event handling logic) ...\n" % { "since": since, "event_name": fn.__name__, "has_kw_arguments": " **kw" if dispatch_collection.has_kw else "", "named_event_arguments": ", ".join(args), "sample_target": sample_target, } ) return text def _version_signature_changes(parent_dispatch_cls, dispatch_collection): since, args, conv = dispatch_collection.legacy_signatures[0] return ( "\n.. deprecated:: %(since)s\n" " The :class:`.%(clsname)s.%(event_name)s` event now accepts the \n" " arguments ``%(named_event_arguments)s%(has_kw_arguments)s``.\n" " Support for listener functions which accept the previous \n" " argument signature(s) listed above as \"deprecated\" will be \n" " removed in a future release." % { "since": since, "clsname": parent_dispatch_cls.__name__, "event_name": dispatch_collection.name, "named_event_arguments": ", ".join(dispatch_collection.arg_names), "has_kw_arguments": ", **kw" if dispatch_collection.has_kw else "", } ) def _augment_fn_docs(dispatch_collection, parent_dispatch_cls, fn): header = ( ".. container:: event_signatures\n\n" " Example argument forms::\n" "\n" ) sample_target = getattr(parent_dispatch_cls, "_target_class_doc", "obj") text = header + _indent( _standard_listen_example(dispatch_collection, sample_target, fn), " " * 8, ) if dispatch_collection.legacy_signatures: text += _indent( _legacy_listen_examples(dispatch_collection, sample_target, fn), " " * 8, ) text += _version_signature_changes( parent_dispatch_cls, dispatch_collection) return util.inject_docstring_text(fn.__doc__, text, 1)
399b9de55761113ccab69d01a9bd68a988a88fe6
bed40794a78225e070c49a72209d447757ec8343
/python_crawl/section3-1.py
3a3113bc3a6b4a52b626ac8857b76dd0fe10852d
[]
no_license
moorekwon/crawling-practice
458ffe31b3a7a91fad6547ef76f9a428376d542f
c5bc989ced353daed34d53410c261ce4d4561d4c
refs/heads/master
2022-09-13T06:46:31.034858
2020-05-31T06:43:28
2020-05-31T06:43:28
266,505,397
0
0
null
null
null
null
UTF-8
Python
false
false
1,094
py
import urllib.request from urllib.parse import urlparse import sys import io sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8') url = 'http://www.encar.com' mem = urllib.request.urlopen(url) # print('type(mem) >> ', type(mem)) # print('mem.geturl() >> ', mem.geturl()) # print('mem.status >> ', mem.status) # print('mem.getheaders() >> ', mem.getheaders()) # print('mem.getcode() >> ', mem.getcode()) # print("mem.read(200).decode('euc-kr') >> ", mem.read(200).decode('euc-kr')) # print("urlparse('http://www.encar.com?id=moorekwon&pw=1111').query >> ", urlparse('http://www.encar.com?id=moorekwon&pw=1111').query) API = 'https://api.ipify.org' before_params = { 'format': 'json' } print('before_params >> ', before_params) after_params = urllib.parse.urlencode(before_params) print('after_params >> ', after_params) URL = API + '?' + after_params print('URL >> ', URL) data = urllib.request.urlopen(URL).read() print('data >> ', data) text = data.decode('utf-8') print('text >> ', text)
a868176f862739f842c05c4e3447d5f92ff293ac
b95fa99bb1ba2210b73251614d2613363c37f932
/deploy/dot-product/scripts/dot-67.py
e5a37f1559951e11ad8cf6b305503d2eb3c83ad0
[]
no_license
lingxiao/learn-adj-relation
d1a8894fefc776ec0bd414b5f038361ed4b79d16
dc4285af19e53d7e2d015eb6394f6c601c707da0
refs/heads/master
2020-12-30T16:27:51.531268
2017-06-07T18:59:48
2017-06-07T18:59:48
87,714,049
0
0
null
null
null
null
UTF-8
Python
false
false
1,144
py
############################################################ # Module : A series of measures on the graph for experiments # Date : April 2nd, 2017 # Author : Xiao Ling ############################################################ import os import numpy as np from utils import * from scripts import * from app.config import * ############################################################ ''' paths ''' batch = 67 # dirs = working_dirs('dot-product',['pairs', 'scripts','shells']) out_dirs = data_dirs('dot-product', ['outputs']) word_dirs = working_dirs( 'words' , [p + '-' + s for p in ['train', 'valid', 'all'] \ for s in ['pairs', 'words'] ]) word_2_vec = get_path('word2vec') word_2_vec_sm = get_path('word2vec-sm') current_job = 'all-pairs' word_pair_path = os.path.join(word_dirs[current_job] , 'batch-' + str(batch) + '.txt') out_path = os.path.join(out_dirs['outputs'] , current_job + '-' + str(batch) + '.txt') print('\n>> running dot-' + str(batch) + '.py at ' + current_job) dot(word_2_vec, word_pair_path, out_path, refresh = True)
1e319b6c7309a5b83ebfe44b591850b2b6962be3
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/2/e6v.py
75b5df2cc32148930528e7e89a9f832fba9b69b1
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'e6V': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
b00578cb33932e544783d41cc72fa666201bb10e
4fd0a43fb3fdbc5ce355b050d0a6506b97bb5d79
/src/basic/mqtt_client.py
f5bb543c0f8e7a81272e10ad1741abd0064590ae
[]
no_license
Shoumik-Gandre/wn_miniproject
a175e871b0931e6bcb324fbcf81b3dbbd09186e6
9a61a27c7eee15486cf688a3d66ceae23f8d5b47
refs/heads/main
2023-04-16T13:48:53.383291
2021-04-29T13:55:45
2021-04-29T13:55:45
362,832,371
0
0
null
null
null
null
UTF-8
Python
false
false
1,001
py
import paho.mqtt.client as mqtt # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): print("Connected with result code " + str(rc)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("WN/test") client.subscribe("WN/topic") # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): print(msg.topic + " " + str(msg.payload)) def main(): client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("test.mosquitto.org", 1883, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. client.loop_forever() if __name__ == "__main__": main()
c2a44a685f68ef321abc531cdd8f556292da5f9c
b797609bb7ddf7b677909b0c5dd0bed618659e9f
/polarcordinates.py
c6ebb77e4553e36b74ec62a7f6a9effc1b7f79e3
[]
no_license
krishna-rawat-hp/HackerRank-solution-python
fc969a7de3e54be5c90f5877699121714df14821
a813e76a307046409217eb1773a6b3e0337c142d
refs/heads/master
2022-12-23T19:59:12.667718
2020-09-26T12:35:24
2020-09-26T12:35:24
288,746,928
0
0
null
null
null
null
UTF-8
Python
false
false
78
py
import cmath v = input() print(abs(complex(v))) print(cmath.phase(complex(v)))
4a5429e17840c12de155763259947c16be4142b8
7f9dfa2cccf77764940ffcbbf92939e37c138c43
/crawl_file/file_path/pylab_examples/anscombe.py
753e4342916a1d85af7b3ce7af20c14c7110e3c9
[]
no_license
zhangmman/scrapy_spider
f80bd8d213edde0dea083babe610ca7b1bc449a3
2bda4aa29f2550c649c939045ce4fcdea2736187
refs/heads/master
2020-09-11T13:58:49.930929
2019-12-21T08:40:56
2019-12-21T08:43:43
222,080,585
0
0
null
null
null
null
UTF-8
Python
false
false
1,934
py
from __future__ import print_function """ Edward Tufte uses this example from Anscombe to show 4 datasets of x and y that have the same mean, standard deviation, and regression line, but which are qualitatively different. matplotlib fun for a rainy day """ import matplotlib.pyplot as plt import numpy as np x = np.array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]) y1 = np.array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]) y2 = np.array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]) y3 = np.array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]) x4 = np.array([8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]) y4 = np.array([6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]) def fit(x): return 3 + 0.5*x xfit = np.array([np.amin(x), np.amax(x)]) plt.subplot(221) plt.plot(x, y1, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), xticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.text(3, 12, 'I', fontsize=20) plt.subplot(222) plt.plot(x, y2, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), xticklabels=[], yticks=(4, 8, 12), yticklabels=[], xticks=(0, 10, 20)) plt.text(3, 12, 'II', fontsize=20) plt.subplot(223) plt.plot(x, y3, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.text(3, 12, 'III', fontsize=20) plt.setp(plt.gca(), yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.subplot(224) xfit = np.array([np.amin(x4), np.amax(x4)]) plt.plot(x4, y4, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), yticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.text(3, 12, 'IV', fontsize=20) # verify the stats pairs = (x, y1), (x, y2), (x, y3), (x4, y4) for x, y in pairs: print('mean=%1.2f, std=%1.2f, r=%1.2f' % (np.mean(y), np.std(y), np.corrcoef(x, y)[0][1])) plt.show()
1504d39ef20e08c04e1cdc4746b68ebbb0bcc192
d2f91b93ad42aaefa5fc315a9b3a5d45d07fa705
/slbman/venv/Lib/site-packages/aliyun/api/rest/rds/RdsDescribeDBInstanceClassesRequest.py
33ce5a2e88dcb9457c34ba33df1ea05109b25fc6
[]
no_license
junlongzhou5566/managePlatform
66cb5bc5b176147ff0038819924f7efa8df1d556
3201ba1a11b05c86db5f42aa9ca8eaf1cc20e216
refs/heads/master
2021-03-29T00:58:23.337808
2020-03-17T09:50:21
2020-03-17T09:50:21
247,910,365
2
0
null
null
null
null
UTF-8
Python
false
false
312
py
''' Created by auto_sdk on 2015.06.23 ''' from aliyun.api.base import RestApi class RdsDescribeDBInstanceClassesRequest(RestApi): def __init__(self,domain='rds.aliyuncs.com',port=80): RestApi.__init__(self,domain, port) def getapiname(self): return 'rds.aliyuncs.com.DescribeDBInstanceClasses.2013-05-28'
[ "[email protected]@qq.com" ]
cf5232006921ce80f92f29008e1e66683214afa9
4f935960c688bb306a9808b9a0f47480a1a3d33a
/fastai2/callback/cutmix.py
1f182c8d3701ad765019fd43909d6f91fe436c03
[ "Apache-2.0" ]
permissive
AccidentalGuru/fastai2
c3297919f2c2455f8c8a5ee81a5590afe87df34a
e816625945d87c2d9ac6521150f235942912bf74
refs/heads/master
2021-05-26T22:59:55.066904
2020-04-08T13:18:11
2020-04-08T13:18:11
254,182,464
1
0
Apache-2.0
2020-04-08T19:33:43
2020-04-08T19:33:42
null
UTF-8
Python
false
false
2,296
py
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/74_callback.cutmix.ipynb (unless otherwise specified). __all__ = ['CutMix'] # Cell from torch.distributions.beta import Beta from ..vision.all import * # Cell class CutMix(Callback): "Implementation of `https://arxiv.org/abs/1905.04899`" run_after,run_valid = [Normalize],False def __init__(self, alpha=1.): self.distrib = Beta(tensor(alpha), tensor(alpha)) def begin_fit(self): self.stack_y = getattr(self.learn.loss_func, 'y_int', False) if self.stack_y: self.old_lf,self.learn.loss_func = self.learn.loss_func,self.lf def after_fit(self): if self.stack_y: self.learn.loss_func = self.old_lf def begin_batch(self): W, H = self.xb[0].size(3), self.xb[0].size(2) lam = self.distrib.sample((1,)).squeeze().to(self.x.device) lam = torch.stack([lam, 1-lam]) self.lam = lam.max() shuffle = torch.randperm(self.y.size(0)).to(self.x.device) xb1,self.yb1 = tuple(L(self.xb).itemgot(shuffle)),tuple(L(self.yb).itemgot(shuffle)) nx_dims = len(self.x.size()) x1, y1, x2, y2 = self.rand_bbox(W, H, self.lam) self.learn.xb[0][:, :, x1:x2, y1:y2] = xb1[0][:, :, x1:x2, y1:y2] self.lam = (1 - ((x2-x1)*(y2-y1))/(W*H)).type(torch.float) if not self.stack_y: ny_dims = len(self.y.size()) self.learn.yb = tuple(L(self.yb1,self.yb).map_zip(torch.lerp,weight=unsqueeze(self.lam, n=ny_dims-1))) def lf(self, pred, *yb): if not self.training: return self.old_lf(pred, *yb) with NoneReduce(self.old_lf) as lf: loss = torch.lerp(lf(pred,*self.yb1), lf(pred,*yb), self.lam) return reduce_loss(loss, getattr(self.old_lf, 'reduction', 'mean')) def rand_bbox(self, W, H, lam): cut_rat = torch.sqrt(1. - lam) cut_w = (W * cut_rat).type(torch.long) cut_h = (H * cut_rat).type(torch.long) # uniform cx = torch.randint(0, W, (1,)).to(self.x.device) cy = torch.randint(0, H, (1,)).to(self.x.device) x1 = torch.clamp(cx - cut_w // 2, 0, W) y1 = torch.clamp(cy - cut_h // 2, 0, H) x2 = torch.clamp(cx + cut_w // 2, 0, W) y2 = torch.clamp(cy + cut_h // 2, 0, H) return x1, y1, x2, y2
f398d3b06ab094a54439b2f4315ad474a76e55f2
6f30245f27a9568155f69648faf148c278136029
/hhapps/cmd/stock_api.py
dd7da5d6c78ea0bde4abd7f69423a01f7dd4884b
[]
no_license
r202-coe-psu/hh-apps
82495ffec7fb09155afa4e8f571051aad824acb4
a15453b7f502a2a71ccb89ba4c4ebe95ef3ca86f
refs/heads/master
2021-05-03T05:48:40.766349
2017-08-06T22:45:30
2017-08-06T22:45:30
120,584,239
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
from hhapps.stock import api def main(): options = api.get_program_options() app = api.create_app() app.run( debug=options.debug, host=options.host, port=int(options.port) )
90d4c660d0cd1e00e4e063eff79f31aaaf635e41
95ed5173865ea5930ac1f4280e3bce78411ea956
/examples/plot_wage_education_gender.py
47305c351dc39a8a18ed0feba01340058cc5e141
[ "CC-BY-3.0", "CC-BY-4.0" ]
permissive
FedericoV/stats_in_python_tutorial
c0e99039f8f76e453bf511b99ad906fdf3111509
0e7607e36896790eeb3753ecb3b8ee82db206a97
refs/heads/master
2021-01-18T00:23:38.240447
2015-08-26T13:20:45
2015-08-26T13:20:45
41,425,683
1
0
null
2015-08-26T12:58:37
2015-08-26T12:58:36
null
UTF-8
Python
false
false
2,679
py
""" Test for an education/gender interaction in wages ================================================== Wages depend mostly on education. Here we investigate how this dependence is related to gender: not only does gender create an offset in wages, it also seems that wages increase more with education for males than females. Does our data support this last hypothesis? We will test this using statsmodels' formulas (http://statsmodels.sourceforge.net/stable/example_formulas.html). """ ############################################################################## # Load and massage the data import pandas import urllib import os if not os.path.exists('wages.txt'): # Download the file if it is not present urllib.urlretrieve('http://lib.stat.cmu.edu/datasets/CPS_85_Wages', 'wages.txt') # EDUCATION: Number of years of education # SEX: 1=Female, 0=Male # WAGE: Wage (dollars per hour) data = pandas.read_csv('wages.txt', skiprows=27, skipfooter=6, sep=None, header=None, names=['education', 'gender', 'wage'], usecols=[0, 2, 5], ) # Convert genders to strings (this is particulary useful so that the # statsmodels formulas detects that gender is a categorical variable) import numpy as np data['gender'] = np.choose(data.gender, ['male', 'female']) # Log-transform the wages, because they typically are increased with # multiplicative factors data['wage'] = np.log10(data['wage']) ############################################################################## # simple plotting import seaborn # Plot 2 linear fits for male and female. seaborn.lmplot(y='wage', x='education', hue='gender', data=data) ############################################################################## # statistical analysis import statsmodels.formula.api as sm # Note that this model is not the plot displayed above: it is one # joined model for male and female, not separate models for male and # female. The reason is that a single model enables statistical testing result = sm.ols(formula='wage ~ 1 + education + gender', data=data).fit() print(result.summary()) # The plots above highlight that there is not only a different offset in # wage but also a different slope # We need to model this using an interaction result = sm.ols(formula='wage ~ 1 + education + gender + education * gender', data=data).fit() print(result.summary()) # Looking at the p-value of the interaction of gender and education, the # data does not support the hypothesis that education benefits males # more than female (p-value > 0.05). import matplotlib.pyplot as plt plt.show()
ab4ddaa525f0af038fd27984ccf21aea86d3a3e9
00c1a2bf4f0b9af287f336b8c6f6e52390ce2d6f
/loyihaapp/models.py
469b15e2afded2764c98c114693a9488e5d9a12f
[]
no_license
bekzod886/Django_loyiha
c038598539e3dd0efe122eceb49d77b3b2145edb
5c1e0459db3a891ba6bd2a33f51fd575173e8fd8
refs/heads/main
2023-07-02T16:39:17.591120
2021-08-05T08:16:27
2021-08-05T08:16:27
391,806,136
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
from django.db import models # Create your models here. class Meva(models.Model): title = models.CharField(max_length=255) img_url = models.CharField(max_length=255) desc = models.CharField(max_length=255) price = models.FloatField()
c4b8dc8085997384c991bd821a50cf250b9e32a6
f82ca354391c19a753d319b38f8a69369e60f960
/src/lib/device_detector/parser/client/mobileapp.py
6ee635612ab5c9fdfe29e806a5fa3a79fa541683
[ "MIT" ]
permissive
martbhell/wasthereannhlgamelastnight
8398920ab1b6cf998d8f91ef5598a8e28de57a8d
c40f9f12ed4c066d4f42095e96e9a87a8581d99d
refs/heads/master
2023-08-10T05:10:46.960500
2023-07-18T03:56:22
2023-07-18T04:02:33
37,021,751
5
0
MIT
2023-08-29T19:16:07
2015-06-07T15:38:26
Python
UTF-8
Python
false
false
288
py
from . import BaseClientParser class MobileApp(BaseClientParser): fixture_files = [ 'local/client/mobile_apps.yml', 'upstream/client/mobile_apps.yml', ] def dtype(self): return self.calculated_dtype or 'mobile app' __all__ = [ 'MobileApp', ]
7347fbf197616979bef0fd4e3c6863d7e6916654
dd6c21308e1cba24658c8ca7a49e2499cd167da6
/venv/Lib/site-packages/guardian/utils.py
5ca593620ebeb53f3e24e8634be26a4a05d93173
[ "MIT" ]
permissive
ansonsry/Freshshop
3a53db4d6d0bf1d6705498869a13a3aa7db6ab8c
79ab8beb1aa993f6365182c8d3bb478ee4e028f8
refs/heads/master
2021-06-20T18:54:08.009409
2019-07-26T02:56:55
2019-07-26T03:02:27
198,931,513
0
0
MIT
2021-03-19T22:33:14
2019-07-26T02:23:49
Python
UTF-8
Python
false
false
7,153
py
""" django-guardian helper functions. Functions defined within this module should be considered as django-guardian's internal functionality. They are **not** guaranteed to be stable - which means they actual input parameters/output type may change in future releases. """ from __future__ import unicode_literals from django.conf import settings from django.contrib.auth import REDIRECT_FIELD_NAME from django.contrib.auth.models import AnonymousUser, Group from django.core.exceptions import ObjectDoesNotExist, PermissionDenied from django.db.models import Model from django.http import HttpResponseForbidden, HttpResponseNotFound from django.shortcuts import render_to_response from django.template import RequestContext from guardian.compat import get_user_model, remote_model from guardian.conf import settings as guardian_settings from guardian.ctypes import get_content_type from guardian.exceptions import NotUserNorGroup from itertools import chain import django import logging import os logger = logging.getLogger(__name__) abspath = lambda *p: os.path.abspath(os.path.join(*p)) def get_anonymous_user(): """ Returns ``User`` instance (not ``AnonymousUser``) depending on ``ANONYMOUS_USER_NAME`` configuration. """ User = get_user_model() lookup = {User.USERNAME_FIELD: guardian_settings.ANONYMOUS_USER_NAME} return User.objects.get(**lookup) def get_identity(identity): """ Returns (user_obj, None) or (None, group_obj) tuple depending on what is given. Also accepts AnonymousUser instance but would return ``User`` instead - it is convenient and needed for authorization backend to support anonymous users. :param identity: either ``User`` or ``Group`` instance :raises ``NotUserNorGroup``: if cannot return proper identity instance **Examples**:: >>> from django.contrib.auth.models import User >>> user = User.objects.create(username='joe') >>> get_identity(user) (<User: joe>, None) >>> group = Group.objects.create(name='users') >>> get_identity(group) (None, <Group: users>) >>> anon = AnonymousUser() >>> get_identity(anon) (<User: AnonymousUser>, None) >>> get_identity("not instance") ... NotUserNorGroup: User/AnonymousUser or Group instance is required (got ) """ if isinstance(identity, AnonymousUser): identity = get_anonymous_user() if isinstance(identity, get_user_model()): return identity, None elif isinstance(identity, Group): return None, identity raise NotUserNorGroup("User/AnonymousUser or Group instance is required " "(got %s)" % identity) def get_40x_or_None(request, perms, obj=None, login_url=None, redirect_field_name=None, return_403=False, return_404=False, accept_global_perms=False): login_url = login_url or settings.LOGIN_URL redirect_field_name = redirect_field_name or REDIRECT_FIELD_NAME # Handles both original and with object provided permission check # as ``obj`` defaults to None has_permissions = False # global perms check first (if accept_global_perms) if accept_global_perms: has_permissions = all(request.user.has_perm(perm) for perm in perms) # if still no permission granted, try obj perms if not has_permissions: has_permissions = all(request.user.has_perm(perm, obj) for perm in perms) if not has_permissions: if return_403: if guardian_settings.RENDER_403: response = render_to_response( guardian_settings.TEMPLATE_403, {}, RequestContext(request)) response.status_code = 403 return response elif guardian_settings.RAISE_403: raise PermissionDenied return HttpResponseForbidden() if return_404: if guardian_settings.RENDER_404: response = render_to_response( guardian_settings.TEMPLATE_404, {}, RequestContext(request)) response.status_code = 404 return response elif guardian_settings.RAISE_404: raise ObjectDoesNotExist return HttpResponseNotFound() else: from django.contrib.auth.views import redirect_to_login return redirect_to_login(request.get_full_path(), login_url, redirect_field_name) def clean_orphan_obj_perms(): """ Seeks and removes all object permissions entries pointing at non-existing targets. Returns number of removed objects. """ from guardian.models import UserObjectPermission from guardian.models import GroupObjectPermission deleted = 0 # TODO: optimise for perm in chain(UserObjectPermission.objects.all().iterator(), GroupObjectPermission.objects.all().iterator()): if perm.content_object is None: logger.debug("Removing %s (pk=%d)" % (perm, perm.pk)) perm.delete() deleted += 1 logger.info("Total removed orphan object permissions instances: %d" % deleted) return deleted # TODO: should raise error when multiple UserObjectPermission direct relations # are defined def get_obj_perms_model(obj, base_cls, generic_cls): if isinstance(obj, Model): obj = obj.__class__ ctype = get_content_type(obj) if django.VERSION >= (1, 8): fields = (f for f in obj._meta.get_fields() if (f.one_to_many or f.one_to_one) and f.auto_created) else: fields = obj._meta.get_all_related_objects() for attr in fields: if django.VERSION < (1, 8): model = getattr(attr, 'model', None) else: model = getattr(attr, 'related_model', None) if (model and issubclass(model, base_cls) and model is not generic_cls): # if model is generic one it would be returned anyway if not model.objects.is_generic(): # make sure that content_object's content_type is same as # the one of given obj fk = model._meta.get_field('content_object') if ctype == get_content_type(remote_model(fk)): return model return generic_cls def get_user_obj_perms_model(obj): """ Returns model class that connects given ``obj`` and User class. """ from guardian.models import UserObjectPermissionBase from guardian.models import UserObjectPermission return get_obj_perms_model(obj, UserObjectPermissionBase, UserObjectPermission) def get_group_obj_perms_model(obj): """ Returns model class that connects given ``obj`` and Group class. """ from guardian.models import GroupObjectPermissionBase from guardian.models import GroupObjectPermission return get_obj_perms_model(obj, GroupObjectPermissionBase, GroupObjectPermission)
f2e6015b515e915c24bf44cb57a88c4e12c0939f
e8ae11e5017507da59e2e92d423b6a1994490de4
/env/lib/python2.7/site-packages/azure/mgmt/scheduler/models/service_bus_brokered_message_properties.py
336add898c6253ae0f23c0ab299ae3681b024271
[]
no_license
teopeurt/ansible-ubuntu-server
613d00cea28bc6531acf4a39aeeb9cd0baa2a391
b5b6127d2ee9723c5088443efe2ffb8ae30cfea7
refs/heads/master
2021-06-28T12:49:50.935753
2017-07-31T17:34:33
2017-07-31T17:34:33
98,912,808
0
1
null
2020-07-24T00:05:31
2017-07-31T17:32:56
Makefile
UTF-8
Python
false
false
3,997
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ServiceBusBrokeredMessageProperties(Model): """ServiceBusBrokeredMessageProperties. :param content_type: Gets or sets the content type. :type content_type: str :param correlation_id: Gets or sets the correlation id. :type correlation_id: str :param force_persistence: Gets or sets the force persistence. :type force_persistence: bool :param label: Gets or sets the label. :type label: str :param message_id: Gets or sets the message id. :type message_id: str :param partition_key: Gets or sets the partition key. :type partition_key: str :param reply_to: Gets or sets the reply to. :type reply_to: str :param reply_to_session_id: Gets or sets the reply to session id. :type reply_to_session_id: str :param scheduled_enqueue_time_utc: Gets or sets the scheduled enqueue time UTC. :type scheduled_enqueue_time_utc: datetime :param session_id: Gets or sets the session id. :type session_id: str :param time_to_live: Gets or sets the time to live. :type time_to_live: datetime :param to: Gets or sets the to. :type to: str :param via_partition_key: Gets or sets the via partition key. :type via_partition_key: str """ _attribute_map = { 'content_type': {'key': 'contentType', 'type': 'str'}, 'correlation_id': {'key': 'correlationId', 'type': 'str'}, 'force_persistence': {'key': 'forcePersistence', 'type': 'bool'}, 'label': {'key': 'label', 'type': 'str'}, 'message_id': {'key': 'messageId', 'type': 'str'}, 'partition_key': {'key': 'partitionKey', 'type': 'str'}, 'reply_to': {'key': 'replyTo', 'type': 'str'}, 'reply_to_session_id': {'key': 'replyToSessionId', 'type': 'str'}, 'scheduled_enqueue_time_utc': {'key': 'scheduledEnqueueTimeUtc', 'type': 'iso-8601'}, 'session_id': {'key': 'sessionId', 'type': 'str'}, 'time_to_live': {'key': 'timeToLive', 'type': 'iso-8601'}, 'to': {'key': 'to', 'type': 'str'}, 'via_partition_key': {'key': 'viaPartitionKey', 'type': 'str'}, } def __init__(self, content_type=None, correlation_id=None, force_persistence=None, label=None, message_id=None, partition_key=None, reply_to=None, reply_to_session_id=None, scheduled_enqueue_time_utc=None, session_id=None, time_to_live=None, to=None, via_partition_key=None): self.content_type = content_type self.correlation_id = correlation_id self.force_persistence = force_persistence self.label = label self.message_id = message_id self.partition_key = partition_key self.reply_to = reply_to self.reply_to_session_id = reply_to_session_id self.scheduled_enqueue_time_utc = scheduled_enqueue_time_utc self.session_id = session_id self.time_to_live = time_to_live self.to = to self.via_partition_key = via_partition_key
3c5eb2c6bf9c023422831c5ca31f64b01a36fb0a
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/86/usersdata/164/57228/submittedfiles/pico.py
97909e0698fdec2d38710817dcbb466f593e1da4
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
# -*- coding: utf-8 -*- def pico(b): cres=0 decres=0 for i in range (0, len(b), 1): c=len(b)/2 if (c>=0): while (b[i]<b[i]+1): cres=cres+1 if (c<=len(b)): while (b[i]>b[i]+1): decres=decres+1 cont=decres+cres if (len(b)==cont): print('S') else: print('N') return(pico) n=int(input('Digite a quantidade de elementos da lista: ')) a=[] for z in range (1, n+1, 1): valor=float(input('Digite os elementos da lista: ')) a.append(valor) print(pico(a))
e643e7e82c014086d290c39d39a507f120ea7360
c9d02cc6ac33723f8dbd7013ae3210c28691d125
/instances2dict_with_polygons.py
8a0f2948b2862672119535a3eaf35bfc13c2eae1
[]
no_license
nhtlongcs/cityscape_to_polylines
05c040a998d0bfdf9ff1958f540229a8b69e1c48
55f91fc33c50fc5563164fb215c7af7c3f11a278
refs/heads/master
2022-04-28T09:52:01.628969
2020-05-02T07:17:51
2020-05-02T07:17:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,557
py
#!/usr/bin/python # # Convert instances from png files to a dictionary # This files is created according to https://github.com/facebookresearch/Detectron/issues/111 from __future__ import print_function, absolute_import, division import os, sys sys.path.append( os.path.normpath( os.path.join( os.path.dirname( __file__ ) , '..' , 'helpers' ) ) ) # Cityscapes imports from external.cityscapesscripts.evaluation.instance import * from external.cityscapesscripts.helpers.csHelpers import * # from csHelpers import * import cv2 import cv2_util # from PIL import Image # import numpy as np def instances2dict_with_polygons(imageFileList, verbose=False): imgCount = 0 instanceDict = {} if not isinstance(imageFileList, list): imageFileList = [imageFileList] if verbose: print("Processing {} images...".format(len(imageFileList))) for imageFileName in imageFileList: # Load image img = Image.open(imageFileName) # print(imageFileName) # Image as numpy array imgNp = np.array(img) # Initialize label categories instances = {} for label in labels: instances[label.name] = [] # Loop through all instance ids in instance image for instanceId in np.unique(imgNp): # if instanceId < 1000: # continue instanceObj = Instance(imgNp, instanceId) instanceObj_dict = instanceObj.toDict() #instances[id2label[instanceObj.labelID].name].append(instanceObj.toDict()) if id2label[instanceObj.labelID].hasInstances: mask = (imgNp == instanceId).astype(np.uint8) contour, hier = cv2_util.findContours( mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) polygons = [c.reshape(-1).tolist() for c in contour] instanceObj_dict['contours'] = polygons instances[id2label[instanceObj.labelID].name].append(instanceObj_dict) imgKey = os.path.abspath(imageFileName) instanceDict[imgKey] = instances imgCount += 1 if verbose: print("\rImages Processed: {}".format(imgCount), end=' ') sys.stdout.flush() if verbose: print("") return instanceDict def main(argv): fileList = [] if (len(argv) > 2): for arg in argv: if ("png" in arg): fileList.append(arg) instances2dict_with_polygons(fileList, True) if __name__ == "__main__": main(sys.argv[1:])
2691d4e2fcd1060926b734171d61fc077aac74a1
2d73ac2c921bb84756478e042ba33ba09c6f8be0
/sxm_player/workers/status.py
874b3668f44ed5921ce5b6e4d90da1fffd866df8
[ "MIT" ]
permissive
fdigeron/sxm-player
7aa6aba111b1c6bedf6ed8e6c89f7d66feb26c8d
2ca91fe216d1ad823b1ad7f9cfe43db4a016bd96
refs/heads/master
2023-06-23T18:34:47.892363
2021-07-30T13:27:04
2021-07-30T13:27:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,347
py
import httpx from ..queue import EventMessage, EventTypes from .base import SXMLoopedWorker __all__ = ["StatusWorker"] CHECK_INTERVAL = 30 class StatusWorker(SXMLoopedWorker): NAME = "status_check" _ip: str _port: int _delay: float = 30.0 _failures: int = 0 def __init__(self, port: int, ip: str, *args, **kwargs): super().__init__(*args, **kwargs) if ip == "0.0.0.0": # nosec ip = "127.0.0.1" self._ip = ip self._port = port def loop(self): self.check_sxm() def check_sxm(self): if self._state.sxm_running: self._log.debug("Checking SXM Client") r = httpx.get(f"http://{self._ip}:{self._port}/channels/") if r.is_error: # adjust delay to check more often self._delay = 5.0 self._failures += 1 if self._failures > 3: self.push_event( EventMessage( self.name, EventTypes.RESET_SXM, "bad status check" ) ) else: self._delay = 30.0 self._failures = 0 self.push_event( EventMessage(self.name, EventTypes.UPDATE_CHANNELS, r.json()) )
eea64d13a9b9e501d67e09b3316d74dc54007207
edd1adb88112045d16d3e6417117d45ceed4a634
/classical/woodworking-sat11-strips/api.py
54d9042dbc3b4d84a2cf98e4827effa7980c343b
[]
no_license
AI-Planning/classical-domains
26de25bf23622f95c877960c1d52f444922d8737
4bd0b42d89ea02bd38af6f93cf20a0ab0cbda9d9
refs/heads/main
2023-04-27T07:55:55.832869
2023-03-29T01:46:11
2023-03-29T01:46:11
253,298,999
24
12
null
2023-04-18T01:45:39
2020-04-05T18:02:53
PDDL
UTF-8
Python
false
false
2,598
py
domains = [ {'description': 'Simulates the works in a woodworking workshop where there is some quantity of wood that has to be polished, coloured, etc. using different tools with different costs. Parameters of each problem are the parts to be done and the quantity (in % of necessary) of available wood (boards). The higher the number of parts and the boards the more difficult the problem is.', 'ipc': '2011', 'name': 'woodworking', 'problems': [('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p01.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p02.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p03.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p04.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p05.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p06.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p07.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p08.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p09.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p10.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p11.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p12.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p13.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p14.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p15.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p16.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p17.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p18.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p19.pddl'), ('woodworking-sat11-strips/domain.pddl', 'woodworking-sat11-strips/p20.pddl')]} ]
cfdc5c14013630e610a586b320bf708cda421dd0
871107e8ac9e7631057c9c9b02d3fd733e00fe2c
/Client/screens/introscreen.py
602202fdfd03760e173b0f4593127a50fce4d43b
[]
no_license
jamesfowkes/Snackspace
40993cfc26b23463939ebaa8fa37f666086be3c9
d93633aaf25039b9a548b073e69d8f23c94b71e3
refs/heads/master
2018-12-30T10:56:48.786485
2013-10-24T20:49:04
2013-10-24T20:49:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,157
py
""" introscreen.py The first screen to be displayed when snackspace starts. """ from .displayconstants import Colours, Screens from .screen import Screen from .introscreen_gui import IntroScreenGUI class IntroScreen(Screen, IntroScreenGUI): """ Implementation of introduction screen """ def __init__(self, width, height, manager, owner): Screen.__init__(self, manager, owner, Screens.INTROSCREEN) IntroScreenGUI.__init__(self, width, height, self) def _update_on_active(self): pass def on_rfid(self): """ Handle RFID swipe: just request a switch to main screen """ if self.active: self.screen_manager.req(Screens.MAINSCREEN) def on_bad_rfid(self): """ Do nothing on touchscreen press """ pass def on_gui_event(self, pos): """ Do nothing on touchscreen press """ pass def on_key_event(self, key): """ Do nothing on keyboard press """ pass def on_scan(self, __product): """ Handle barcode scan: just request a switch to main screen """ if self.active: self.screen_manager.req(Screens.MAINSCREEN) def on_bad_scan(self, __barcode): """ Handle invalid barcode scan: show a banner """ if self.active: self.set_banner_with_timeout("Unknown barcode: '%s'" % __barcode, 4, Colours.ERR, self._banner_timeout) self._request_redraw() def set_db_state(self, db_connected): """ Handle change of database state: update GUI to reflect """ if not db_connected: self.set_intro_text("ERROR: Cannot access Snackspace remote database", Colours.ERR) else: self.set_intro_text("Scan an item or swipe your card to start", Colours.FG) self._request_redraw() def _banner_timeout(self): """ Callback from GUI indicating banner has timed out """ self.hide_banner() self._request_redraw() def _request_redraw(self): """ Push a request for this screen to be drawn again """ self.screen_manager.req(self.screen_id)
3dd8660eed53064c4439f1f5d6692774495f1ed8
4e139c024f09eb547304c2cb2d1399a334f66c92
/wikigen/settings.py
615f81170857207c997a2aa14e95fc6fc85ecc86
[]
no_license
epochx/PEER
04dd77fd638858fe285c9fcee3ad6a4ccd283e9a
de52c45d121b63dee28f72b68de2625c8ec2bb66
refs/heads/master
2023-02-27T15:29:09.086756
2021-02-01T07:54:29
2021-02-01T07:54:29
264,897,876
3
0
null
null
null
null
UTF-8
Python
false
false
716
py
#!/usr/bin/env python # -*-coding: utf8 -*- import os CODE_ROOT = os.path.dirname(os.path.realpath(__file__)) HOME = os.environ["HOME"] DATA_PATH = os.path.join(HOME, "data", "PEER") SPLITS_PATH = os.path.join(DATA_PATH, "splits") EDITS_PATH = os.path.join(DATA_PATH, "edits") RESULTS_PATH = os.path.join(HOME, "results", "PEER") _DB_NAME = "runs.db" PARAM_IGNORE_LIST = [ "results_path", "overwrite", "force_dataset_reload", "verbose", "write_mode", ] DATABASE_CONNECTION_STRING = "sqlite:///" + os.path.join(RESULTS_PATH, _DB_NAME) try: DATASET_NAMES = [ name.replace(".jsonl", "") for name in os.listdir(EDITS_PATH) ] except FileNotFoundError: DATASET_NAMES = []
d6b5386e2ea175f5f51171bffa0c9efee0e4d949
c9094a4ed256260bc026514a00f93f0b09a5d60c
/homeassistant/helpers/debounce.py
23727c2a00fe774c1bdc55970457e11e4ddccf7a
[ "Apache-2.0" ]
permissive
turbokongen/home-assistant
824bc4704906ec0057f3ebd6d92788e096431f56
4ab0151fb1cbefb31def23ba850e197da0a5027f
refs/heads/dev
2023-03-12T05:49:44.508713
2021-02-17T14:06:16
2021-02-17T14:06:16
50,231,140
4
1
Apache-2.0
2023-02-22T06:14:30
2016-01-23T08:55:09
Python
UTF-8
Python
false
false
3,861
py
"""Debounce helper.""" import asyncio from logging import Logger from typing import Any, Awaitable, Callable, Optional from homeassistant.core import HassJob, HomeAssistant, callback class Debouncer: """Class to rate limit calls to a specific command.""" def __init__( self, hass: HomeAssistant, logger: Logger, *, cooldown: float, immediate: bool, function: Optional[Callable[..., Awaitable[Any]]] = None, ): """Initialize debounce. immediate: indicate if the function needs to be called right away and wait <cooldown> until executing next invocation. function: optional and can be instantiated later. """ self.hass = hass self.logger = logger self._function = function self.cooldown = cooldown self.immediate = immediate self._timer_task: Optional[asyncio.TimerHandle] = None self._execute_at_end_of_timer: bool = False self._execute_lock = asyncio.Lock() self._job: Optional[HassJob] = None if function is None else HassJob(function) @property def function(self) -> Optional[Callable[..., Awaitable[Any]]]: """Return the function being wrapped by the Debouncer.""" return self._function @function.setter def function(self, function: Callable[..., Awaitable[Any]]) -> None: """Update the function being wrapped by the Debouncer.""" self._function = function if self._job is None or function != self._job.target: self._job = HassJob(function) async def async_call(self) -> None: """Call the function.""" assert self._job is not None if self._timer_task: if not self._execute_at_end_of_timer: self._execute_at_end_of_timer = True return # Locked means a call is in progress. Any call is good, so abort. if self._execute_lock.locked(): return if not self.immediate: self._execute_at_end_of_timer = True self._schedule_timer() return async with self._execute_lock: # Abort if timer got set while we're waiting for the lock. if self._timer_task: return task = self.hass.async_run_hass_job(self._job) if task: await task self._schedule_timer() async def _handle_timer_finish(self) -> None: """Handle a finished timer.""" assert self._job is not None self._timer_task = None if not self._execute_at_end_of_timer: return self._execute_at_end_of_timer = False # Locked means a call is in progress. Any call is good, so abort. if self._execute_lock.locked(): return async with self._execute_lock: # Abort if timer got set while we're waiting for the lock. if self._timer_task: return # type: ignore try: task = self.hass.async_run_hass_job(self._job) if task: await task except Exception: # pylint: disable=broad-except self.logger.exception("Unexpected exception from %s", self.function) self._schedule_timer() @callback def async_cancel(self) -> None: """Cancel any scheduled call.""" if self._timer_task: self._timer_task.cancel() self._timer_task = None self._execute_at_end_of_timer = False @callback def _schedule_timer(self) -> None: """Schedule a timer.""" self._timer_task = self.hass.loop.call_later( self.cooldown, lambda: self.hass.async_create_task(self._handle_timer_finish()), )
e45e706f80a74d2a8924775331da036844f19fd9
ef821468b081ef2a0b81bf08596a2c81e1c1ef1a
/Python OOP/Iterators_and_Generators-LAB/Squares.py
219b82c3944acc802bf2321227dea9b7f7341b33
[]
no_license
Ivaylo-Atanasov93/The-Learning-Process
71db22cd79f6d961b9852f140f4285ef7820dd80
354844e2c686335345f6a54b3af86b78541ed3f3
refs/heads/master
2023-03-30T20:59:34.304207
2021-03-29T15:23:05
2021-03-29T15:23:05
294,181,544
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
def squares(n): for i in range(1, n + 1): yield i ** 2 print(list(squares(5)))
81608d1980eaa0bcd10242f77e99c0a5aad22b73
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-apm/huaweicloudsdkapm/v1/model/delete_app_request.py
7b641893dbfb446555ef0b94333f7954ceaf7ae2
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,007
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class DeleteAppRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'application_id': 'int', 'x_business_id': 'int' } attribute_map = { 'application_id': 'application_id', 'x_business_id': 'x-business-id' } def __init__(self, application_id=None, x_business_id=None): """DeleteAppRequest The model defined in huaweicloud sdk :param application_id: 组件id。 :type application_id: int :param x_business_id: 应用id,用于鉴权。 :type x_business_id: int """ self._application_id = None self._x_business_id = None self.discriminator = None self.application_id = application_id self.x_business_id = x_business_id @property def application_id(self): """Gets the application_id of this DeleteAppRequest. 组件id。 :return: The application_id of this DeleteAppRequest. :rtype: int """ return self._application_id @application_id.setter def application_id(self, application_id): """Sets the application_id of this DeleteAppRequest. 组件id。 :param application_id: The application_id of this DeleteAppRequest. :type application_id: int """ self._application_id = application_id @property def x_business_id(self): """Gets the x_business_id of this DeleteAppRequest. 应用id,用于鉴权。 :return: The x_business_id of this DeleteAppRequest. :rtype: int """ return self._x_business_id @x_business_id.setter def x_business_id(self, x_business_id): """Sets the x_business_id of this DeleteAppRequest. 应用id,用于鉴权。 :param x_business_id: The x_business_id of this DeleteAppRequest. :type x_business_id: int """ self._x_business_id = x_business_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteAppRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
9ed0fdfefdf7006316db3f03a97b40008588cfa4
2966b05a4b8239a3ab95acf26423e706582e4b42
/kvirt/kvm/__init__.py
6daebf1c19ebe570816a6f49688f4d84bfdb1e97
[]
no_license
goffinet/kcli
80ea47c3b928ee1c7d85a7c4519f82c6c8144cee
69b225137bf543fabcebd7478802fb9d725a82ab
refs/heads/master
2021-01-19T19:18:42.803401
2017-03-02T01:29:39
2017-03-02T01:29:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
61,596
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ interact with a local/remote libvirt daemon """ from kvirt import defaults from iptools import IpRange # from jinja2 import Environment from kvirt import common from netaddr import IPAddress, IPNetwork from libvirt import open as libvirtopen import os import string import time import xml.etree.ElementTree as ET KB = 1024 * 1024 MB = 1024 * KB guestrhel532 = "rhel_5" guestrhel564 = "rhel_5x64" guestrhel632 = "rhel_6" guestrhel664 = "rhel_6x64" guestrhel764 = "rhel_7x64" guestother = "other" guestotherlinux = "other_linux" guestwindowsxp = "windows_xp" guestwindows7 = "windows_7" guestwindows764 = "windows_7x64" guestwindows2003 = "windows_2003" guestwindows200364 = "windows_2003x64" guestwindows2008 = "windows_2008" guestwindows200864 = "windows_2008x64" class Kvirt: def __init__(self, host='127.0.0.1', port=None, user='root', protocol='ssh', url=None): if url is None: if host == '127.0.0.1' or host == 'localhost': url = "qemu:///system" elif port: url = "qemu+%s://%s@%s:%s/system?socket=/var/run/libvirt/libvirt-sock" % (protocol, user, host, port) elif protocol == 'ssh': url = "qemu+%s://%s@%s/system?socket=/var/run/libvirt/libvirt-sock" % (protocol, user, host) else: url = "qemu:///system" try: self.conn = libvirtopen(url) except Exception: self.conn = None self.host = host self.user = user self.port = port self.protocol = protocol if self.protocol == 'ssh' and port is None: self.port = '22' def close(self): conn = self.conn conn.close() self.conn = None def exists(self, name): conn = self.conn for vm in conn.listAllDomains(): if vm.name() == name: return True return False def net_exists(self, name): conn = self.conn try: conn.networkLookupByName(name) return True except: return False def disk_exists(self, pool, name): conn = self.conn try: storage = conn.storagePoolLookupByName(pool) storage.refresh() for stor in sorted(storage.listVolumes()): if stor == name: return True except: return False def create(self, name, virttype='kvm', title='', description='kvirt', numcpus=2, memory=512, guestid='guestrhel764', pool='default', template=None, disks=[{'size': 10}], disksize=10, diskthin=True, diskinterface='virtio', nets=['default'], iso=None, vnc=False, cloudinit=True, reserveip=False, reservedns=False, start=True, keys=None, cmds=None, ips=None, netmasks=None, gateway=None, nested=True, dns=None, domain=None, tunnel=False, files=[]): default_diskinterface = diskinterface default_diskthin = diskthin default_disksize = disksize default_pool = pool conn = self.conn try: default_storagepool = conn.storagePoolLookupByName(default_pool) except: return {'result': 'failure', 'reason': "Pool %s not found" % default_pool} default_poolxml = default_storagepool.XMLDesc(0) root = ET.fromstring(default_poolxml) default_pooltype = root.getiterator('pool')[0].get('type') default_poolpath = None for element in root.getiterator('path'): default_poolpath = element.text break if vnc: display = 'vnc' else: display = 'spice' volumes = {} volumespaths = {} for p in conn.listStoragePools(): poo = conn.storagePoolLookupByName(p) poo.refresh(0) for vol in poo.listAllVolumes(): volumes[vol.name()] = {'pool': poo, 'object': vol} volumespaths[vol.path()] = {'pool': poo, 'object': vol} networks = [] bridges = [] for net in conn.listNetworks(): networks.append(net) for net in conn.listInterfaces(): if net != 'lo': bridges.append(net) machine = 'pc' sysinfo = "<smbios mode='sysinfo'/>" disksxml = '' volsxml = {} for index, disk in enumerate(disks): if disk is None: disksize = default_disksize diskthin = default_diskthin diskinterface = default_diskinterface diskpool = default_pool diskpooltype = default_pooltype diskpoolpath = default_poolpath elif isinstance(disk, int): disksize = disk diskthin = default_diskthin diskinterface = default_diskinterface diskpool = default_pool diskpooltype = default_pooltype diskpoolpath = default_poolpath elif isinstance(disk, dict): disksize = disk.get('size', default_disksize) diskthin = disk.get('thin', default_diskthin) diskinterface = disk.get('interface', default_diskinterface) diskpool = disk.get('pool', default_pool) diskwwn = disk.get('wwn') try: storagediskpool = conn.storagePoolLookupByName(diskpool) except: return {'result': 'failure', 'reason': "Pool %s not found" % diskpool} diskpoolxml = storagediskpool.XMLDesc(0) root = ET.fromstring(diskpoolxml) diskpooltype = root.getiterator('pool')[0].get('type') diskpoolpath = None for element in root.getiterator('path'): diskpoolpath = element.text break else: return {'result': 'failure', 'reason': "Invalid disk entry"} letter = chr(index + ord('a')) diskdev, diskbus = 'vd%s' % letter, 'virtio' if diskinterface != 'virtio': diskdev, diskbus = 'hd%s' % letter, 'ide' diskformat = 'qcow2' if not diskthin: diskformat = 'raw' storagename = "%s_%d.img" % (name, index + 1) diskpath = "%s/%s" % (diskpoolpath, storagename) if template is not None and index == 0: try: default_storagepool.refresh(0) if '/' in template: backingvolume = volumespaths[template]['object'] else: backingvolume = volumes[template]['object'] backingxml = backingvolume.XMLDesc(0) root = ET.fromstring(backingxml) except: return {'result': 'failure', 'reason': "Invalid template %s" % template} backing = backingvolume.path() if '/dev' in backing and diskpooltype == 'dir': return {'result': 'failure', 'reason': "lvm template can not be used with a dir pool.Leaving..."} if '/dev' not in backing and diskpooltype == 'logical': return {'result': 'failure', 'reason': "file template can not be used with a lvm pool.Leaving..."} backingxml = """<backingStore type='file' index='1'> <format type='qcow2'/> <source file='%s'/> <backingStore/> </backingStore>""" % backing else: backing = None backingxml = '<backingStore/>' volxml = self._xmlvolume(path=diskpath, size=disksize, pooltype=diskpooltype, backing=backing, diskformat=diskformat) if diskpool in volsxml: volsxml[diskpool].append(volxml) else: volsxml[diskpool] = [volxml] if diskpooltype == 'logical': diskformat = 'raw' if diskwwn is not None and diskbus == 'ide': diskwwn = '0x%016x' % diskwwn diskwwn = "<wwn>%s</wwn>" % diskwwn else: diskwwn = '' disksxml = """%s<disk type='file' device='disk'> <driver name='qemu' type='%s'/> <source file='%s'/> %s <target dev='%s' bus='%s'/> %s </disk>""" % (disksxml, diskformat, diskpath, backingxml, diskdev, diskbus, diskwwn) netxml = '' version = '' for index, net in enumerate(nets): macxml = '' if isinstance(net, str): netname = net elif isinstance(net, dict) and 'name' in net: netname = net['name'] ip = None if ips and len(ips) > index and ips[index] is not None: ip = ips[index] nets[index]['ip'] = ip elif 'ip' in nets[index]: ip = nets[index]['ip'] if 'mac' in nets[index]: mac = nets[index]['mac'] macxml = "<mac address='%s'/>" % mac if index == 0 and ip is not None: version = "<entry name='version'>%s</entry>" % ip if netname in bridges: sourcenet = 'bridge' elif netname in networks: sourcenet = 'network' else: return {'result': 'failure', 'reason': "Invalid network %s" % netname} netxml = """%s <interface type='%s'> %s <source %s='%s'/> <model type='virtio'/> </interface>""" % (netxml, sourcenet, macxml, sourcenet, netname) version = """<sysinfo type='smbios'> <system> %s <entry name='product'>%s</entry> </system> </sysinfo>""" % (version, title) if iso is None: if cloudinit: iso = "%s/%s.iso" % (default_poolpath, name) else: iso = '' else: try: if os.path.isabs(iso): shortiso = os.path.basename(iso) else: shortiso = iso isovolume = volumes[shortiso]['object'] iso = isovolume.path() # iso = "%s/%s" % (default_poolpath, iso) # iso = "%s/%s" % (isopath, iso) except: return {'result': 'failure', 'reason': "Invalid iso %s" % iso} isoxml = """<disk type='file' device='cdrom'> <driver name='qemu' type='raw'/> <source file='%s'/> <target dev='hdc' bus='ide'/> <readonly/> </disk>""" % (iso) if tunnel: listen = '127.0.0.1' else: listen = '0.0.0.0' displayxml = """<input type='tablet' bus='usb'/> <input type='mouse' bus='ps2'/> <graphics type='%s' port='-1' autoport='yes' listen='%s'> <listen type='address' address='%s'/> </graphics> <memballoon model='virtio'/>""" % (display, listen, listen) if nested and virttype == 'kvm': nestedxml = """<cpu match='exact'> <model>Westmere</model> <feature policy='require' name='vmx'/> </cpu>""" else: nestedxml = "" if self.host in ['localhost', '127.0.0.1']: serialxml = """<serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console>""" else: serialxml = """ <serial type="tcp"> <source mode="bind" host="127.0.0.1" service="%s"/> <protocol type="telnet"/> <target port="0"/> </serial>""" % common.get_free_port() vmxml = """<domain type='%s'> <name>%s</name> <description>%s</description> %s <memory unit='MiB'>%d</memory> <vcpu>%d</vcpu> <os> <type arch='x86_64' machine='%s'>hvm</type> <boot dev='hd'/> <boot dev='cdrom'/> <bootmenu enable='yes'/> %s </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> %s %s %s %s %s </devices> %s </domain>""" % (virttype, name, description, version, memory, numcpus, machine, sysinfo, disksxml, netxml, isoxml, displayxml, serialxml, nestedxml) for pool in volsxml: storagepool = conn.storagePoolLookupByName(pool) storagepool.refresh(0) for volxml in volsxml[pool]: storagepool.createXML(volxml, 0) conn.defineXML(vmxml) vm = conn.lookupByName(name) vm.setAutostart(1) if cloudinit: common.cloudinit(name=name, keys=keys, cmds=cmds, nets=nets, gateway=gateway, dns=dns, domain=domain, reserveip=reserveip, files=files) self._uploadimage(name, pool=default_storagepool) if reserveip: xml = vm.XMLDesc(0) vmxml = ET.fromstring(xml) macs = [] for element in vmxml.getiterator('interface'): mac = element.find('mac').get('address') macs.append(mac) self._reserve_ip(name, nets, macs) if start: vm.create() if reservedns: self._reserve_dns(name, nets, domain) return {'result': 'success'} def start(self, name): conn = self.conn status = {0: 'down', 1: 'up'} try: vm = conn.lookupByName(name) vm = conn.lookupByName(name) if status[vm.isActive()] == "up": return {'result': 'success'} else: vm.create() return {'result': 'success'} except: return {'result': 'failure', 'reason': "VM %s not found" % name} def stop(self, name): conn = self.conn status = {0: 'down', 1: 'up'} try: vm = conn.lookupByName(name) if status[vm.isActive()] == "down": return {'result': 'success'} else: vm.destroy() return {'result': 'success'} except: return {'result': 'failure', 'reason': "VM %s not found" % name} def restart(self, name): conn = self.conn status = {0: 'down', 1: 'up'} vm = conn.lookupByName(name) if status[vm.isActive()] == "down": return {'result': 'success'} else: vm.restart() return {'result': 'success'} def report(self): conn = self.conn hostname = conn.getHostname() cpus = conn.getCPUMap()[0] memory = conn.getInfo()[1] print("Host:%s Cpu:%s Memory:%sMB\n" % (hostname, cpus, memory)) for pool in conn.listStoragePools(): poolname = pool pool = conn.storagePoolLookupByName(pool) poolxml = pool.XMLDesc(0) root = ET.fromstring(poolxml) pooltype = root.getiterator('pool')[0].get('type') if pooltype == 'dir': poolpath = root.getiterator('path')[0].text else: poolpath = root.getiterator('device')[0].get('path') s = pool.info() used = "%.2f" % (float(s[2]) / 1024 / 1024 / 1024) available = "%.2f" % (float(s[3]) / 1024 / 1024 / 1024) # Type,Status, Total space in Gb, Available space in Gb used = float(used) available = float(available) print("Storage:%s Type:%s Path:%s Used space:%sGB Available space:%sGB" % (poolname, pooltype, poolpath, used, available)) print for interface in conn.listAllInterfaces(): interfacename = interface.name() if interfacename == 'lo': continue print("Network:%s Type:bridged" % (interfacename)) for network in conn.listAllNetworks(): networkname = network.name() netxml = network.XMLDesc(0) cidr = 'N/A' root = ET.fromstring(netxml) ip = root.getiterator('ip') if ip: attributes = ip[0].attrib firstip = attributes.get('address') netmask = attributes.get('netmask') if netmask is None: netmask = attributes.get('prefix') try: ip = IPNetwork('%s/%s' % (firstip, netmask)) cidr = ip.cidr except: cidr = "N/A" dhcp = root.getiterator('dhcp') if dhcp: dhcp = True else: dhcp = False print("Network:%s Type:routed Cidr:%s Dhcp:%s" % (networkname, cidr, dhcp)) def status(self, name): conn = self.conn status = {0: 'down', 1: 'up'} try: vm = conn.lookupByName(name) except: return None return status[vm.isActive()] def list(self): vms = [] leases = {} conn = self.conn for network in conn.listAllNetworks(): for lease in network.DHCPLeases(): ip = lease['ipaddr'] mac = lease['mac'] leases[mac] = ip status = {0: 'down', 1: 'up'} for vm in conn.listAllDomains(0): xml = vm.XMLDesc(0) root = ET.fromstring(xml) description = root.getiterator('description') if description: description = description[0].text else: description = '' name = vm.name() state = status[vm.isActive()] ips = [] title = '' for element in root.getiterator('interface'): mac = element.find('mac').get('address') if vm.isActive(): if mac in leases: ips.append(leases[mac]) if ips: ip = ips[-1] else: ip = '' for entry in root.getiterator('entry'): attributes = entry.attrib if attributes['name'] == 'version': ip = entry.text if attributes['name'] == 'product': title = entry.text source = '' for element in root.getiterator('backingStore'): s = element.find('source') if s is not None: source = os.path.basename(s.get('file')) break vms.append([name, state, ip, source, description, title]) return vms def console(self, name, tunnel=False): conn = self.conn vm = conn.lookupByName(name) if not vm.isActive(): print("VM down") return else: xml = vm.XMLDesc(0) root = ET.fromstring(xml) for element in root.getiterator('graphics'): attributes = element.attrib if attributes['listen'] == '127.0.0.1' or tunnel: host = '127.0.0.1' else: host = self.host protocol = attributes['type'] port = attributes['port'] if tunnel: consolecommand = "ssh -f -p %s -L %s:127.0.0.1:%s %s@%s sleep 10" % (self.port, port, port, self.user, self.host) os.popen(consolecommand) url = "%s://%s:%s" % (protocol, host, port) os.popen("remote-viewer %s &" % url) def serialconsole(self, name): conn = self.conn vm = conn.lookupByName(name) if not vm.isActive(): print("VM down") return else: xml = vm.XMLDesc(0) root = ET.fromstring(xml) serial = root.getiterator('serial') if not serial: print("No serial Console found. Leaving...") return elif self.host in ['localhost', '127.0.0.1']: os.system('virsh console %s' % name) else: for element in serial: serialport = element.find('source').get('service') if serialport: if self.protocol != 'ssh': print("Remote serial Console requires using ssh . Leaving...") return else: serialcommand = "ssh -p %s %s@%s nc 127.0.0.1 %s" % (self.port, self.user, self.host, serialport) os.system(serialcommand) def info(self, name): # ips = [] leases = {} starts = {0: 'no', 1: 'yes'} conn = self.conn for network in conn.listAllNetworks(): for lease in network.DHCPLeases(): ip = lease['ipaddr'] mac = lease['mac'] leases[mac] = ip try: vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) except: print("VM %s not found" % name) return state = 'down' autostart = starts[vm.autostart()] memory = root.getiterator('memory')[0] unit = memory.attrib['unit'] memory = memory.text if unit == 'KiB': memory = float(memory) / 1024 memory = int(memory) numcpus = root.getiterator('vcpu')[0] numcpus = numcpus.text if vm.isActive(): state = 'up' print("name: %s" % name) print("status: %s" % state) print("autostart: %s" % autostart) description = root.getiterator('description') if description: description = description[0].text else: description = '' title = None for entry in root.getiterator('entry'): attributes = entry.attrib if attributes['name'] == 'product': title = entry.text print("description: %s" % description) if title is not None: print("profile: %s" % title) print("cpus: %s" % numcpus) print("memory: %sMB" % memory) nicnumber = 0 for element in root.getiterator('interface'): networktype = element.get('type') device = "eth%s" % nicnumber mac = element.find('mac').get('address') if networktype == 'bridge': bridge = element.find('source').get('bridge') print("net interfaces: %s mac: %s net: %s type: bridge" % (device, mac, bridge)) else: network = element.find('source').get('network') print("net interfaces:%s mac: %s net: %s type: routed" % (device, mac, network)) network = conn.networkLookupByName(network) if vm.isActive(): if mac in leases: # ips.append(leases[mac]) print("ip: %s" % leases[mac]) nicnumber = nicnumber + 1 for entry in root.getiterator('entry'): attributes = entry.attrib if attributes['name'] == 'version': ip = entry.text print("ip: %s" % ip) break for element in root.getiterator('disk'): disktype = element.get('device') if disktype == 'cdrom': continue device = element.find('target').get('dev') diskformat = 'file' drivertype = element.find('driver').get('type') path = element.find('source').get('file') volume = conn.storageVolLookupByPath(path) disksize = int(float(volume.info()[1]) / 1024 / 1024 / 1024) print("diskname: %s disksize: %sGB diskformat: %s type: %s path: %s" % (device, disksize, diskformat, drivertype, path)) def ip(self, name): leases = {} conn = self.conn for network in conn.listAllNetworks(): for lease in network.DHCPLeases(): ip = lease['ipaddr'] mac = lease['mac'] leases[mac] = ip try: vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) except: return None nic = root.getiterator('interface')[0] mac = nic.find('mac').get('address') if vm.isActive() and mac in leases: return leases[mac] else: return None def volumes(self, iso=False): isos = [] templates = [] default_templates = [os.path.basename(t) for t in defaults.TEMPLATES.values()] conn = self.conn for storage in conn.listStoragePools(): storage = conn.storagePoolLookupByName(storage) storage.refresh(0) storagexml = storage.XMLDesc(0) root = ET.fromstring(storagexml) for element in root.getiterator('path'): storagepath = element.text break for volume in storage.listVolumes(): if volume.endswith('iso'): isos.append("%s/%s" % (storagepath, volume)) elif volume.endswith('qcow2') or volume in default_templates: templates.append("%s/%s" % (storagepath, volume)) if iso: return isos else: return templates def delete(self, name): conn = self.conn try: vm = conn.lookupByName(name) except: return ip = self.ip(name) status = {0: 'down', 1: 'up'} vmxml = vm.XMLDesc(0) root = ET.fromstring(vmxml) disks = [] for element in root.getiterator('disk'): source = element.find('source') if source is not None: imagefile = element.find('source').get('file') if imagefile.endswith("%s.iso" % name) or "%s_" % name in imagefile: disks.append(imagefile) else: continue if status[vm.isActive()] != "down": vm.destroy() vm.undefine() for storage in conn.listStoragePools(): deleted = False storage = conn.storagePoolLookupByName(storage) storage.refresh(0) for stor in storage.listVolumes(): for disk in disks: if stor in disk: try: volume = storage.storageVolLookupByName(stor) except: continue volume.delete(0) deleted = True if deleted: storage.refresh(0) for element in root.getiterator('interface'): mac = element.find('mac').get('address') networktype = element.get('type') if networktype != 'bridge': network = element.find('source').get('network') network = conn.networkLookupByName(network) netxml = network.XMLDesc(0) root = ET.fromstring(netxml) for host in root.getiterator('host'): hostmac = host.get('mac') ip = host.get('ip') hostname = host.get('name') if hostmac == mac: hostentry = "<host mac='%s' name='%s' ip='%s'/>" % (mac, hostname, ip) network.update(2, 4, 0, hostentry, 1) for host in root.getiterator('host'): ip = host.get('ip') hostname = host.find('hostname') if hostname is not None and hostname.text == name: hostentry = '<host ip="%s"><hostname>%s</hostname></host>' % (ip, name) network.update(2, 10, 0, hostentry, 1) if ip is not None: os.system("ssh-keygen -q -R %s >/dev/null 2>&1" % ip) def _xmldisk(self, diskpath, diskdev, diskbus='virtio', diskformat='qcow2', shareable=False): if shareable: sharexml = '<shareable/>' else: sharexml = '' diskxml = """<disk type='file' device='disk'> <driver name='qemu' type='%s' cache='none'/> <source file='%s'/> <target bus='%s' dev='%s'/> %s </disk>""" % (diskformat, diskpath, diskbus, diskdev, sharexml) return diskxml def _xmlvolume(self, path, size, pooltype='file', backing=None, diskformat='qcow2'): size = int(size) * MB if int(size) == 0: size = 500 * 1024 name = os.path.basename(path) if pooltype == 'block': volume = """<volume type='block'> <name>%s</name> <capacity unit="bytes">%d</capacity> <target> <path>%s</path> <compat>1.1</compat> </target> </volume>""" % (name, size, path) return volume if backing is not None: backingstore = """ <backingStore> <path>%s</path> <format type='%s'/> </backingStore>""" % (backing, diskformat) else: backingstore = "<backingStore/>" volume = """ <volume type='file'> <name>%s</name> <capacity unit="bytes">%d</capacity> <target> <path>%s</path> <format type='%s'/> <permissions> <mode>0644</mode> </permissions> <compat>1.1</compat> </target> %s </volume>""" % (name, size, path, diskformat, backingstore) return volume def clone(self, old, new, full=False, start=False): conn = self.conn oldvm = conn.lookupByName(old) oldxml = oldvm.XMLDesc(0) tree = ET.fromstring(oldxml) uuid = tree.getiterator('uuid')[0] tree.remove(uuid) for vmname in tree.getiterator('name'): vmname.text = new firstdisk = True for disk in tree.getiterator('disk'): if firstdisk or full: source = disk.find('source') oldpath = source.get('file') backingstore = disk.find('backingStore') backing = None for b in backingstore.getiterator(): backingstoresource = b.find('source') if backingstoresource is not None: backing = backingstoresource.get('file') newpath = oldpath.replace(old, new) source.set('file', newpath) oldvolume = conn.storageVolLookupByPath(oldpath) oldinfo = oldvolume.info() oldvolumesize = (float(oldinfo[1]) / 1024 / 1024 / 1024) newvolumexml = self._xmlvolume(newpath, oldvolumesize, backing) pool = oldvolume.storagePoolLookupByVolume() pool.createXMLFrom(newvolumexml, oldvolume, 0) firstdisk = False else: devices = tree.getiterator('devices')[0] devices.remove(disk) for interface in tree.getiterator('interface'): mac = interface.find('mac') interface.remove(mac) if self.host not in ['127.0.0.1', 'localhost']: for serial in tree.getiterator('serial'): source = serial.find('source') source.set('service', str(common.get_free_port())) newxml = ET.tostring(tree) conn.defineXML(newxml) vm = conn.lookupByName(new) if start: vm.setAutostart(1) vm.create() def _reserve_ip(self, name, nets, macs): conn = self.conn for index, net in enumerate(nets): if not isinstance(net, dict): continue ip = net.get('ip') network = net.get('name') mac = macs[index] if ip is None or network is None: continue network = conn.networkLookupByName(network) oldnetxml = network.XMLDesc() root = ET.fromstring(oldnetxml) ipentry = root.getiterator('ip') if ipentry: attributes = ipentry[0].attrib firstip = attributes.get('address') netmask = attributes.get('netmask') netip = IPNetwork('%s/%s' % (firstip, netmask)) dhcp = root.getiterator('dhcp') if not dhcp: continue if not IPAddress(ip) in netip: continue network.update(4, 4, 0, '<host mac="%s" name="%s" ip="%s" />' % (mac, name, ip), 1) def _reserve_dns(self, name, nets, domain): conn = self.conn net = nets[0] ip = None if isinstance(net, dict): ip = net.get('ip') network = net.get('name') else: network = net if ip is None: counter = 0 while counter != 80: ip = self.ip(name) if ip is None: time.sleep(5) print("Waiting 5 seconds to grab ip and create DNS record...") counter += 10 else: break if ip is None: print("Couldn't assign DNS") return network = conn.networkLookupByName(network) oldnetxml = network.XMLDesc() root = ET.fromstring(oldnetxml) dns = root.getiterator('dns') if not dns: base = root.getiterator('network')[0] dns = ET.Element("dns") base.append(dns) newxml = ET.tostring(root) conn.networkDefineXML(newxml) if domain is not None: # If there is a domain, add it to the dns too :) network.update(4, 10, 0, '<host ip="%s"><hostname>%s</hostname><hostname>%s.%s</hostname></host>' % (ip, name, name, domain), 1) else: network.update(4, 10, 0, '<host ip="%s"><hostname>%s</hostname></host>' % (ip, name), 1) def handler(self, stream, data, file_): return file_.read(data) def _uploadimage(self, name, pool='default', origin='/tmp', suffix='.iso'): name = "%s%s" % (name, suffix) conn = self.conn poolxml = pool.XMLDesc(0) root = ET.fromstring(poolxml) for element in root.getiterator('path'): poolpath = element.text break imagepath = "%s/%s" % (poolpath, name) imagexml = self._xmlvolume(path=imagepath, size=0, diskformat='raw') pool.createXML(imagexml, 0) imagevolume = conn.storageVolLookupByPath(imagepath) stream = conn.newStream(0) imagevolume.upload(stream, 0, 0) with open("%s/%s" % (origin, name)) as ori: stream.sendAll(self.handler, ori) stream.finish() def update_ip(self, name, ip): conn = self.conn vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) if not vm: print("VM %s not found" % name) if vm.isActive() == 1: print("Machine up. Change will only appear upon next reboot") osentry = root.getiterator('os')[0] smbios = osentry.find('smbios') if smbios is None: newsmbios = ET.Element("smbios", mode="sysinfo") osentry.append(newsmbios) sysinfo = root.getiterator('sysinfo') system = root.getiterator('system') if not sysinfo: sysinfo = ET.Element("sysinfo", type="smbios") root.append(sysinfo) sysinfo = root.getiterator('sysinfo')[0] if not system: system = ET.Element("system") sysinfo.append(system) system = root.getiterator('system')[0] versionfound = False for entry in root.getiterator('entry'): attributes = entry.attrib if attributes['name'] == 'version': entry.text = ip versionfound = True if not versionfound: version = ET.Element("entry", name="version") version.text = ip system.append(version) newxml = ET.tostring(root) conn.defineXML(newxml) def update_memory(self, name, memory): conn = self.conn memory = str(int(memory) * 1024) try: vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) except: print("VM %s not found" % name) return memorynode = root.getiterator('memory')[0] memorynode.text = memory currentmemory = root.getiterator('currentMemory')[0] currentmemory.text = memory newxml = ET.tostring(root) conn.defineXML(newxml) def update_cpu(self, name, numcpus): conn = self.conn try: vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) except: print("VM %s not found" % name) return cpunode = root.getiterator('vcpu')[0] cpunode.text = numcpus newxml = ET.tostring(root) conn.defineXML(newxml) def update_start(self, name, start=True): conn = self.conn try: vm = conn.lookupByName(name) except: print("VM %s not found" % name) return {'result': 'failure', 'reason': "VM %s not found" % name} if start: vm.setAutostart(1) else: vm.setAutostart(0) return {'result': 'success'} def create_disk(self, name, size, pool=None, thin=True, template=None): conn = self.conn diskformat = 'qcow2' if size < 1: print("Incorrect size.Leaving...") return if not thin: diskformat = 'raw' if pool is not None: pool = conn.storagePoolLookupByName(pool) poolxml = pool.XMLDesc(0) poolroot = ET.fromstring(poolxml) pooltype = poolroot.getiterator('pool')[0].get('type') for element in poolroot.getiterator('path'): poolpath = element.text break else: print("Pool not found. Leaving....") return if template is not None: volumes = {} for p in conn.listStoragePools(): poo = conn.storagePoolLookupByName(p) for vol in poo.listAllVolumes(): volumes[vol.name()] = vol.path() if template not in volumes and template not in volumes.values(): print("Invalid template %s.Leaving..." % template) if template in volumes: template = volumes[template] pool.refresh(0) diskpath = "%s/%s" % (poolpath, name) if pooltype == 'logical': diskformat = 'raw' volxml = self._xmlvolume(path=diskpath, size=size, pooltype=pooltype, diskformat=diskformat, backing=template) pool.createXML(volxml, 0) return diskpath # def add_disk(self, name, size, pool=None, thin=True, template=None, shareable=False): # conn = self.conn # diskformat = 'qcow2' # diskbus = 'virtio' # if size < 1: # print("Incorrect size.Leaving...") # return # if not thin: # diskformat = 'raw' # try: # vm = conn.lookupByName(name) # xml = vm.XMLDesc(0) # root = ET.fromstring(xml) # except: # print("VM %s not found" % name) # return # currentdisk = 0 # for element in root.getiterator('disk'): # disktype = element.get('device') # if disktype == 'cdrom': # continue # currentdisk = currentdisk + 1 # diskindex = currentdisk + 1 # diskdev = "vd%s" % string.ascii_lowercase[currentdisk] # if pool is not None: # pool = conn.storagePoolLookupByName(pool) # poolxml = pool.XMLDesc(0) # poolroot = ET.fromstring(poolxml) # pooltype = poolroot.getiterator('pool')[0].get('type') # for element in poolroot.getiterator('path'): # poolpath = element.text # break # else: # print("Pool not found. Leaving....") # return # if template is not None: # volumes = {} # for p in conn.listStoragePools(): # poo = conn.storagePoolLookupByName(p) # for vol in poo.listAllVolumes(): # volumes[vol.name()] = vol.path() # if template not in volumes and template not in volumes.values(): # print("Invalid template %s.Leaving..." % template) # if template in volumes: # template = volumes[template] # pool.refresh(0) # storagename = "%s_%d.img" % (name, diskindex) # diskpath = "%s/%s" % (poolpath, storagename) # volxml = self._xmlvolume(path=diskpath, size=size, pooltype=pooltype, # diskformat=diskformat, backing=template) # if pooltype == 'logical': # diskformat = 'raw' # diskxml = self._xmldisk(diskpath=diskpath, diskdev=diskdev, diskbus=diskbus, diskformat=diskformat, shareable=shareable) # pool.createXML(volxml, 0) # vm.attachDevice(diskxml) # vm = conn.lookupByName(name) # vmxml = vm.XMLDesc(0) # conn.defineXML(vmxml) def add_disk(self, name, size, pool=None, thin=True, template=None, shareable=False, existing=None): conn = self.conn diskformat = 'qcow2' diskbus = 'virtio' if size < 1: print("Incorrect size.Leaving...") return if not thin: diskformat = 'raw' try: vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) except: print("VM %s not found" % name) return currentdisk = 0 for element in root.getiterator('disk'): disktype = element.get('device') if disktype == 'cdrom': continue currentdisk = currentdisk + 1 diskindex = currentdisk + 1 diskdev = "vd%s" % string.ascii_lowercase[currentdisk] if existing is None: storagename = "%s_%d.img" % (name, diskindex) diskpath = self.create_disk(name=storagename, size=size, pool=pool, thin=thin, template=template) else: diskpath = existing diskxml = self._xmldisk(diskpath=diskpath, diskdev=diskdev, diskbus=diskbus, diskformat=diskformat, shareable=shareable) vm.attachDevice(diskxml) vm = conn.lookupByName(name) vmxml = vm.XMLDesc(0) conn.defineXML(vmxml) def delete_disk(self, name, diskname): conn = self.conn try: vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) except: print("VM %s not found" % name) return for element in root.getiterator('disk'): disktype = element.get('device') diskdev = element.find('target').get('dev') diskbus = element.find('target').get('bus') diskformat = element.find('driver').get('type') if disktype == 'cdrom': continue diskpath = element.find('source').get('file') volume = self.conn.storageVolLookupByPath(diskpath) if volume.name() == diskname or volume.path() == diskname: diskxml = self._xmldisk(diskpath=diskpath, diskdev=diskdev, diskbus=diskbus, diskformat=diskformat) vm.detachDevice(diskxml) volume.delete(0) vm = conn.lookupByName(name) vmxml = vm.XMLDesc(0) conn.defineXML(vmxml) return print("Disk %s not found in %s" % (diskname, name)) def list_disks(self): volumes = {} for p in self.conn.listStoragePools(): poo = self.conn.storagePoolLookupByName(p) for volume in poo.listAllVolumes(): volumes[volume.name()] = {'pool': poo.name(), 'path': volume.path()} return volumes def add_nic(self, name, network): conn = self.conn networks = {} for interface in conn.listAllInterfaces(): networks[interface.name()] = 'bridge' for net in conn.listAllNetworks(): networks[net.name()] = 'network' try: vm = conn.lookupByName(name) except: print("VM %s not found" % name) return if network not in networks: print("Network %s not found" % network) return else: networktype = networks[network] source = "<source %s='%s'/>" % (networktype, network) nicxml = """<interface type='%s'> %s <model type='virtio'/> </interface>""" % (networktype, source) vm.attachDevice(nicxml) vm = conn.lookupByName(name) vmxml = vm.XMLDesc(0) conn.defineXML(vmxml) def delete_nic(self, name, interface): conn = self.conn networks = {} nicnumber = 0 for n in conn.listAllInterfaces(): networks[n.name()] = 'bridge' for n in conn.listAllNetworks(): networks[n.name()] = 'network' try: vm = conn.lookupByName(name) xml = vm.XMLDesc(0) root = ET.fromstring(xml) except: print("VM %s not found" % name) return for element in root.getiterator('interface'): device = "eth%s" % nicnumber if device == interface: mac = element.find('mac').get('address') networktype = element.get('type') if networktype == 'bridge': network = element.find('source').get('bridge') source = "<source %s='%s'/>" % (networktype, network) else: network = element.find('source').get('network') source = "<source %s='%s'/>" % (networktype, network) break else: nicnumber += 1 nicxml = """<interface type='%s'> <mac address='%s'/> %s <model type='virtio'/> </interface>""" % (networktype, mac, source) print nicxml vm.detachDevice(nicxml) vm = conn.lookupByName(name) vmxml = vm.XMLDesc(0) conn.defineXML(vmxml) def _ssh_credentials(self, name): ubuntus = ['utopic', 'vivid', 'wily', 'xenial', 'yakkety'] user = 'root' conn = self.conn try: vm = conn.lookupByName(name) except: print("VM %s not found" % name) return '', '' if vm.isActive() != 1: print("Machine down. Cannot ssh...") return '', '' vm = [v for v in self.list() if v[0] == name][0] template = vm[3] if template != '': if 'centos' in template.lower(): user = 'centos' elif 'cirros' in template.lower(): user = 'cirros' elif [x for x in ubuntus if x in template.lower()]: user = 'ubuntu' elif 'fedora' in template.lower(): user = 'fedora' elif 'rhel' in template.lower(): user = 'cloud-user' elif 'debian' in template.lower(): user = 'debian' elif 'arch' in template.lower(): user = 'arch' ip = vm[2] if ip == '': print("No ip found. Cannot ssh...") return user, ip def ssh(self, name, local=None, remote=None, tunnel=False): user, ip = self._ssh_credentials(name) if ip == '': return else: sshcommand = "%s@%s" % (user, ip) if self.host not in ['localhost', '127.0.0.1'] and tunnel: sshcommand = "-o ProxyCommand='ssh -p %s -W %%h:%%p %s@%s' %s" % (self.port, self.user, self.host, sshcommand) if local is not None: sshcommand = "-L %s %s" % (local, sshcommand) if remote is not None: sshcommand = "-R %s %s" % (remote, sshcommand) sshcommand = "ssh %s" % sshcommand os.system(sshcommand) def scp(self, name, source=None, destination=None, tunnel=False, download=False, recursive=False): user, ip = self._ssh_credentials(name) if ip == '': print("No ip found. Cannot scp...") else: if self.host not in ['localhost', '127.0.0.1'] and tunnel: arguments = "-o ProxyCommand='ssh -p %s -W %%h:%%p %s@%s'" % (self.port, self.user, self.host) else: arguments = '' scpcommand = 'scp' if recursive: scpcommand = "%s -r" % scpcommand if download: scpcommand = "%s %s %s@%s:%s %s" % (scpcommand, arguments, user, ip, source, destination) else: scpcommand = "%s %s %s %s@%s:%s" % (scpcommand, arguments, source, user, ip, destination) os.system(scpcommand) def create_pool(self, name, poolpath, pooltype='dir', user='qemu'): conn = self.conn for pool in conn.listStoragePools(): if pool == name: print("Pool %s already there.Leaving..." % name) return if pooltype == 'dir': if self.host == 'localhost' or self.host == '127.0.0.1': if not os.path.exists(poolpath): os.makedirs(poolpath) elif self.protocol == 'ssh': cmd1 = 'ssh -p %s %s@%s "test -d %s || mkdir %s"' % (self.port, self.user, self.host, poolpath, poolpath) cmd2 = 'ssh %s@%s "chown %s %s"' % (self.user, self.host, user, poolpath) os.system(cmd1) os.system(cmd2) else: print("Make sur %s directory exists on hypervisor" % name) poolxml = """<pool type='dir'> <name>%s</name> <source> </source> <target> <path>%s</path> </target> </pool>""" % (name, poolpath) elif pooltype == 'logical': poolxml = """<pool type='logical'> <name>%s</name> <source> <device path='%s'/> <name>%s</name> <format type='lvm2'/> </source> <target> <path>/dev/%s</path> </target> </pool>""" % (name, poolpath, name, name) else: print("Invalid pool type %s.Leaving..." % pooltype) return pool = conn.storagePoolDefineXML(poolxml, 0) pool.setAutostart(True) if pooltype == 'logical': pool.build() pool.create() def add_image(self, image, pool): poolname = pool shortimage = os.path.basename(image) conn = self.conn volumes = [] try: pool = conn.storagePoolLookupByName(pool) for vol in pool.listAllVolumes(): volumes.append(vol.name()) except: return {'result': 'failure', 'reason': "Pool %s not found" % poolname} poolxml = pool.XMLDesc(0) root = ET.fromstring(poolxml) pooltype = root.getiterator('pool')[0].get('type') if pooltype == 'dir': poolpath = root.getiterator('path')[0].text else: poolpath = root.getiterator('device')[0].get('path') return {'result': 'failure', 'reason': "Upload to a lvm pool not implemented not found"} if shortimage in volumes: return {'result': 'failure', 'reason': "Template %s already exists in pool %s" % (shortimage, poolname)} if self.host == 'localhost' or self.host == '127.0.0.1': cmd = 'wget -P %s %s' % (poolpath, image) elif self.protocol == 'ssh': cmd = 'ssh -p %s %s@%s "wget -P %s %s"' % (self.port, self.user, self.host, poolpath, image) os.system(cmd) pool.refresh() # self._uploadimage(shortimage, pool=pool, suffix='') return {'result': 'success'} def create_network(self, name, cidr, dhcp=True, nat=True): conn = self.conn networks = self.list_networks() cidrs = [network['cidr'] for network in networks.values()] if name in networks: return {'result': 'failure', 'reason': "Network %s already exists" % name} try: range = IpRange(cidr) except TypeError: return {'result': 'failure', 'reason': "Invalid Cidr %s" % cidr} if IPNetwork(cidr) in cidrs: return {'result': 'failure', 'reason': "Cidr %s already exists" % cidr} netmask = IPNetwork(cidr).netmask gateway = range[1] if dhcp: start = range[2] end = range[-2] dhcpxml = """<dhcp> <range start='%s' end='%s'/> </dhcp>""" % (start, end) else: dhcpxml = '' if nat: natxml = "<forward mode='nat'><nat><port start='1024' end='65535'/></nat></forward>" else: natxml = '' networkxml = """<network><name>%s</name> %s <domain name='%s'/> <ip address='%s' netmask='%s'> %s </ip> </network>""" % (name, natxml, name, gateway, netmask, dhcpxml) new_net = conn.networkDefineXML(networkxml) new_net.setAutostart(True) new_net.create() return {'result': 'success'} def delete_network(self, name=None): conn = self.conn try: network = conn.networkLookupByName(name) except: return {'result': 'failure', 'reason': "Network %s not found" % name} machines = self.network_ports(name) if machines: machines = ','.join(machines) return {'result': 'failure', 'reason': "Network %s is being used by %s" % (name, machines)} if network.isActive(): network.destroy() network.undefine() return {'result': 'success'} def list_pools(self): pools = [] conn = self.conn for pool in conn.listStoragePools(): pools.append(pool) return pools def list_networks(self): networks = {} conn = self.conn for network in conn.listAllNetworks(): networkname = network.name() netxml = network.XMLDesc(0) cidr = 'N/A' root = ET.fromstring(netxml) ip = root.getiterator('ip') if ip: attributes = ip[0].attrib firstip = attributes.get('address') netmask = attributes.get('netmask') ip = IPNetwork('%s/%s' % (firstip, netmask)) cidr = ip.cidr dhcp = root.getiterator('dhcp') if dhcp: dhcp = True else: dhcp = False forward = root.getiterator('forward') if forward: attributes = forward[0].attrib mode = attributes.get('mode') else: mode = 'isolated' networks[networkname] = {'cidr': cidr, 'dhcp': dhcp, 'type': 'routed', 'mode': mode} for interface in conn.listAllInterfaces(): interfacename = interface.name() if interfacename == 'lo': continue netxml = interface.XMLDesc(0) root = ET.fromstring(netxml) ip = root.getiterator('ip') if ip: attributes = ip[0].attrib ip = attributes.get('address') prefix = attributes.get('prefix') ip = IPNetwork('%s/%s' % (ip, prefix)) cidr = ip.cidr else: cidr = 'N/A' networks[interfacename] = {'cidr': cidr, 'dhcp': 'N/A', 'type': 'bridged', 'mode': 'N/A'} return networks def delete_pool(self, name, full=False): conn = self.conn try: pool = conn.storagePoolLookupByName(name) except: print("Pool %s not found. Leaving..." % name) return if full: for vol in pool.listAllVolumes(): vol.delete(0) if pool.isActive(): pool.destroy() pool.undefine() def bootstrap(self, pool=None, poolpath=None, pooltype='dir', nets={}, image=None): conn = self.conn volumes = {} try: poolname = pool pool = conn.storagePoolLookupByName(pool) for vol in pool.listAllVolumes(): volumes[vol.name()] = {'object': vol} except: if poolpath is not None: print("Pool %s not found...Creating it" % pool) self.create_pool(name=pool, poolpath=poolpath, pooltype=pooltype) if image is not None and os.path.basename(image) not in volumes: self.add_image(image, poolname) networks = [] for net in conn.listNetworks(): networks.append(net) for net in nets: if net not in networks: print("Network %s not found...Creating it" % net) cidr = nets[net].get('cidr') dhcp = bool(nets[net].get('dchp', True)) self.create_network(name=net, cidr=cidr, dhcp=dhcp) def network_ports(self, name): conn = self.conn machines = [] for vm in conn.listAllDomains(0): xml = vm.XMLDesc(0) root = ET.fromstring(xml) for element in root.getiterator('interface'): networktype = element.get('type') if networktype == 'bridge': network = element.find('source').get('bridge') else: network = element.find('source').get('network') if network == name: machines.append(vm.name()) return machines def vm_ports(self, name): conn = self.conn networks = [] try: vm = conn.lookupByName(name) except: print("VM %s not found" % name) return xml = vm.XMLDesc(0) root = ET.fromstring(xml) for element in root.getiterator('interface'): networktype = element.get('type') if networktype == 'bridge': network = element.find('source').get('bridge') else: network = element.find('source').get('network') networks.append(network) return networks def _get_bridge(self, name): conn = self.conn bridges = [interface.name() for interface in conn.listAllInterfaces()] if name in bridges: return name try: net = self.conn.networkLookupByName(name) except: return None netxml = net.XMLDesc(0) root = ET.fromstring(netxml) bridge = root.getiterator('bridge') if bridge: attributes = bridge[0].attrib bridge = attributes.get('name') return bridge
3fed61110663973cd1928a59a2125cf764eff374
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03437/s906498746.py
3c6648d03f39f52d51a4df527cdc8f918756b654
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
m, n = map(int, input().split()) if m >= n and m % n == 0: print(-1) else: print(m)
cbd694d67c5985c58ecb43d81a9b857bc29e0727
1afa1b1929d1cd463cd9970174dd58ce2ca6eb1e
/configs/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes.py
a5507b4beaae675a1e5075a8fbd154ca5b5265c5
[ "Apache-2.0" ]
permissive
CAU-HE/CMCDNet
2328594bf4b883384c691099c72e119b65909121
31e660f81f3b625916a4c4d60cd606dcc8717f81
refs/heads/main
2023-08-08T17:21:57.199728
2023-07-28T07:34:40
2023-07-28T07:34:40
589,927,845
12
1
null
null
null
null
UTF-8
Python
false
false
738
py
_base_ = './lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes.py' norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='MobileNetV3', arch='small', out_indices=(0, 1, 12), norm_cfg=norm_cfg), decode_head=dict( type='LRASPPHead', in_channels=(16, 16, 576), in_index=(0, 1, 2), channels=128, input_transform='multiple_select', dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
df348e14d755b39f5502493836abc26b73a94792
8bbeb7b5721a9dbf40caa47a96e6961ceabb0128
/python3/324.Wiggle Sort II(摆动排序 II).py
d276668f063a9cc860cd18310872f77ccd38876f
[ "MIT" ]
permissive
lishulongVI/leetcode
bb5b75642f69dfaec0c2ee3e06369c715125b1ba
6731e128be0fd3c0bdfe885c1a409ac54b929597
refs/heads/master
2020-03-23T22:17:40.335970
2018-07-23T14:46:06
2018-07-23T14:46:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,414
py
""" <p>Given an unsorted array <code>nums</code>, reorder it such that <code>nums[0] &lt; nums[1] &gt; nums[2] &lt; nums[3]...</code>.</p> <p><b>Example 1:</b></p> <pre> <strong>Input: </strong><code>nums = [1, 5, 1, 1, 6, 4]</code> <strong>Output: </strong>One possible answer is <code>[1, 4, 1, 5, 1, 6]</code>.</pre> <p><b>Example 2:</b></p> <pre> <strong>Input: </strong><code>nums = [1, 3, 2, 2, 3, 1]</code> <strong>Output:</strong> One possible answer is <code>[2, 3, 1, 3, 1, 2]</code>.</pre> <p><b>Note:</b><br /> You may assume all input has valid answer.</p> <p><b>Follow Up:</b><br /> Can you do it in O(n) time and/or in-place with O(1) extra space?</p> <p>给定一个无序的数组&nbsp;<code>nums</code>,将它重新排列成&nbsp;<code>nums[0] &lt; nums[1] &gt; nums[2] &lt; nums[3]...</code>&nbsp;的顺序。</p> <p><strong>示例&nbsp;1:</strong></p> <pre><strong>输入: </strong><code>nums = [1, 5, 1, 1, 6, 4]</code> <strong>输出: </strong>一个可能的答案是 <code>[1, 4, 1, 5, 1, 6]</code></pre> <p><strong>示例 2:</strong></p> <pre><strong>输入: </strong><code>nums = [1, 3, 2, 2, 3, 1]</code> <strong>输出:</strong> 一个可能的答案是 <code>[2, 3, 1, 3, 1, 2]</code></pre> <p><strong>说明:</strong><br> 你可以假设所有输入都会得到有效的结果。</p> <p><strong>进阶:</strong><br> 你能用&nbsp;O(n) 时间复杂度和 / 或原地 O(1) 额外空间来实现吗?</p> <p>给定一个无序的数组&nbsp;<code>nums</code>,将它重新排列成&nbsp;<code>nums[0] &lt; nums[1] &gt; nums[2] &lt; nums[3]...</code>&nbsp;的顺序。</p> <p><strong>示例&nbsp;1:</strong></p> <pre><strong>输入: </strong><code>nums = [1, 5, 1, 1, 6, 4]</code> <strong>输出: </strong>一个可能的答案是 <code>[1, 4, 1, 5, 1, 6]</code></pre> <p><strong>示例 2:</strong></p> <pre><strong>输入: </strong><code>nums = [1, 3, 2, 2, 3, 1]</code> <strong>输出:</strong> 一个可能的答案是 <code>[2, 3, 1, 3, 1, 2]</code></pre> <p><strong>说明:</strong><br> 你可以假设所有输入都会得到有效的结果。</p> <p><strong>进阶:</strong><br> 你能用&nbsp;O(n) 时间复杂度和 / 或原地 O(1) 额外空间来实现吗?</p> """ class Solution: def wiggleSort(self, nums): """ :type nums: List[int] :rtype: void Do not return anything, modify nums in-place instead. """
74780552abdcb29cbb2ff55c2bfafc323a3c67a6
0e478f3d8b6c323c093455428c9094c45de13bac
/src/OTLMOW/PostenMapping/Model/Post060371615.py
f8c41c27b0114312043dc81cf23f0e87d9548eb3
[ "MIT" ]
permissive
davidvlaminck/OTLMOW
c6eae90b2cab8a741271002cde454427ca8b75ba
48f8c357c475da1d2a1bc7820556843d4b37838d
refs/heads/main
2023-01-12T05:08:40.442734
2023-01-10T15:26:39
2023-01-10T15:26:39
432,681,113
3
1
MIT
2022-06-20T20:36:00
2021-11-28T10:28:24
Python
UTF-8
Python
false
false
4,410
py
# coding=utf-8 from OTLMOW.PostenMapping.StandaardPost import StandaardPost from OTLMOW.PostenMapping.StandaardPostMapping import StandaardPostMapping # Generated with PostenCreator. To modify: extend, do not edit class Post060371615(StandaardPost): def __init__(self): super().__init__( nummer='0603.71615', beschrijving='Gezaagde natuursteentegels, gebruiksklasse 6 volgens 6-3.8, 150 x 150, 50 mm', meetstaateenheid='M2', mappings=[StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel.afwerking', dotnotation='afwerking', defaultWaarde='gezaagd', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.71615') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel.afmetingVanBestratingselementLxB', dotnotation='afmetingVanBestratingselementLxB', defaultWaarde='150-x-150', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.71615') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#Laag.laagRol', dotnotation='laagRol', defaultWaarde='straatlaag', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.71615') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel.gebruiksklasse', dotnotation='gebruiksklasse', defaultWaarde='6', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.71615') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#LaagDikte.dikte', dotnotation='dikte', defaultWaarde='5', range='', usagenote='cm^^cdt:ucumunit', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.71615') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanNatuursteentegel', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#Laag.oppervlakte', dotnotation='oppervlakte', defaultWaarde='', range='', usagenote='m2^^cdt:ucumunit', isMeetstaatAttr=1, isAltijdInTeVullen=1, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.71615')])
cfb9b132d864866cf06c629af73bf710465ed333
96fed5ba4bb561750b8c990581e7aa928b1b2124
/backend/django_app/apps/endpoints/migrations/0001_initial.py
1538207dcd6c5358dbfe93597c905858663a9034
[]
no_license
Inoxevious/fin_paradise_app
99458bb18ea6a62482521c5adef5c44e61e96e38
22eb0c9bb92e03f7302588200ad3520ad7554694
refs/heads/main
2023-03-12T21:00:41.858629
2021-03-02T07:52:28
2021-03-02T07:52:28
338,951,278
0
0
null
null
null
null
UTF-8
Python
false
false
10,018
py
# Generated by Django 3.0.8 on 2021-02-13 13:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('users', '0006_auto_20210213_1301'), ] operations = [ migrations.CreateModel( name='Endpoint', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ('owner', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='MLAlgorithm', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ('description', models.CharField(max_length=1000)), ('code', models.CharField(max_length=50000)), ('version', models.CharField(max_length=128)), ('owner', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('parent_endpoint', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='endpoints.Endpoint')), ], ), migrations.CreateModel( name='RetentionScores', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('income_probability', models.FloatField(blank=True, null=True)), ('income_color', models.CharField(blank=True, max_length=70, null=True)), ('income_text', models.CharField(blank=True, max_length=255, null=True)), ('retention_probability', models.FloatField(blank=True, null=True)), ('retention_color', models.CharField(blank=True, max_length=70, null=True)), ('retention_classification', models.CharField(blank=True, max_length=255, null=True)), ('retention_recommendation_process', models.CharField(blank=True, max_length=255, null=True)), ('retention_num', models.CharField(blank=True, max_length=255, null=True)), ('retention_closure_date', models.CharField(blank=True, max_length=255, null=True)), ('retention_client_clv', models.CharField(blank=True, max_length=255, null=True)), ('credit_amount', models.FloatField(blank=True, null=True)), ('created_by', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('last_update_at', models.DateTimeField(auto_now_add=True)), ('client', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='rs_client', to='users.Clients', verbose_name='client')), ('company', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='rs_company', to='users.Organization', verbose_name='company')), ('loan_id', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='rs_loan', to='users.Loan', verbose_name='Loan')), ('officer', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='rs_officer', to='users.LoanOfficer', verbose_name='officer')), ], ), migrations.CreateModel( name='MLRequest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('input_data', models.CharField(max_length=10000)), ('full_response', models.CharField(max_length=10000)), ('response', models.CharField(max_length=10000)), ('feedback', models.CharField(blank=True, max_length=10000, null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('parent_mlalgorithm', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='endpoints.MLAlgorithm')), ], ), migrations.CreateModel( name='MLAlgorithmStatus', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(max_length=128)), ('active', models.BooleanField()), ('created_by', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('parent_mlalgorithm', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='status', to='endpoints.MLAlgorithm')), ], ), migrations.CreateModel( name='BehaviouralScores', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('income_probability', models.FloatField(blank=True, null=True)), ('income_color', models.CharField(blank=True, max_length=70, null=True)), ('income_text', models.CharField(blank=True, max_length=255, null=True)), ('behavioral_probability', models.FloatField(blank=True, null=True)), ('behavioral_color', models.CharField(blank=True, max_length=70, null=True)), ('behavioral_text', models.CharField(blank=True, max_length=255, null=True)), ('behavioral_time_to_default', models.CharField(blank=True, max_length=255, null=True)), ('behavioral_contact_channel', models.CharField(blank=True, max_length=255, null=True)), ('behavioral_contact_schedule', models.CharField(blank=True, max_length=255, null=True)), ('behavioral_message', models.CharField(blank=True, max_length=255, null=True)), ('credit_amount', models.FloatField(blank=True, null=True)), ('created_by', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('last_update_at', models.DateTimeField(auto_now_add=True)), ('client', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='bs_client', to='users.Clients', verbose_name='client')), ('company', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='bs_company', to='users.Organization', verbose_name='company')), ('loan_id', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='bs_loan', to='users.Loan', verbose_name='Loan')), ('officer', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='bs_officer', to='users.LoanOfficer', verbose_name='officer')), ], ), migrations.CreateModel( name='ApplicationScores', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('income_probability', models.FloatField(blank=True, null=True)), ('income_color', models.CharField(blank=True, max_length=70, null=True)), ('income_text', models.CharField(blank=True, max_length=255, null=True)), ('application_probability', models.FloatField(blank=True, null=True)), ('application_color', models.CharField(blank=True, max_length=70, null=True)), ('application_text', models.CharField(blank=True, max_length=255, null=True)), ('credit_amount', models.FloatField(blank=True, null=True)), ('created_by', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('last_update_at', models.DateTimeField(auto_now_add=True)), ('client', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='as_client', to='users.Clients', verbose_name='client')), ('company', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='as_company', to='users.Organization', verbose_name='company')), ('loan_id', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='as_loan', to='users.Loan', verbose_name='Loan')), ('officer', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='as_officer', to='users.LoanOfficer', verbose_name='officer')), ], ), migrations.CreateModel( name='ABTest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=10000)), ('created_by', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('ended_at', models.DateTimeField(blank=True, null=True)), ('summary', models.CharField(blank=True, max_length=10000, null=True)), ('parent_mlalgorithm_1', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='parent_mlalgorithm_1', to='endpoints.MLAlgorithm')), ('parent_mlalgorithm_2', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='parent_mlalgorithm_2', to='endpoints.MLAlgorithm')), ], ), ]