blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
eca0527dc6e1af8eb14ad2e48ab7b65a7961662a
c1a4742ecd23941140b57cfd61759aa3901e0711
/src/apps/boards/views.py
68afa2b13811821ff0bc49eb05d9c7d3ea14862e
[]
no_license
aodarc/django-trello
31a5b6813f5136b427c483c0d329ec8c231888d0
ee00fc5a71e2a7003118542b6b8caffaa73bc9b8
refs/heads/master
2023-06-29T14:42:05.027572
2021-07-26T15:28:28
2021-07-26T15:28:28
389,680,626
2
0
null
null
null
null
UTF-8
Python
false
false
2,806
py
from django.contrib.auth.decorators import login_required from django.db.models import Count, Prefetch from django.http import HttpResponseRedirect # Create your views here. from django.urls import reverse_lazy from django.utils.decorators import method_decorator from django.views import generic from rest_framework import generics as rest_generic from apps.boards.models import Board, Comment, Task from apps.boards.serializers.comment import CommentSerializer from apps.boards.serializers.tasks import TaskSerializer from common.permissions import IsOwnerOrReadOnly class CreateCommentView(generic.CreateView): model = Comment fields = ["message"] template_name = 'boards/create_comment_form.html' success_url = reverse_lazy('home:home-page') def form_valid(self, form): obj = form.save(commit=False) obj.created_by = self.request.user obj.task = self.request.user.tasks.last() obj.save() return HttpResponseRedirect(self.get_success_url()) class DeleteComment(generic.DeleteView): model = Comment success_url = reverse_lazy('home:home-page') template_name = 'boards/delete_comments.html' def get_queryset(self): return super(DeleteComment, self).get_queryset().filter(created_by=self.request.user) class BoardDetailView(generic.DetailView): model = Board context_object_name = 'board' template_name = 'boards/board-page.html' @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(BoardDetailView, self).dispatch(*args, **kwargs) def get_queryset(self): prefetch_tasks = Prefetch( 'cols__tasks', queryset=Task.objects.select_related('col') \ .prefetch_related('comments') .annotate(comments_count=Count('comments')) \ .exclude(status=Task.STATUS_ARCHIVED) ) return super(BoardDetailView, self).get_queryset() \ .select_related('owner') \ .prefetch_related('users', 'cols', prefetch_tasks) \ .filter(users=self.request.user) class CommentListCreateAPIView(rest_generic.ListCreateAPIView): queryset = Comment.objects.all() serializer_class = CommentSerializer permission_classes = [IsOwnerOrReadOnly] # def get_queryset(self): # return self.queryset.filter(create_by=self.request.user) # def get_serializer_class(self): # if self.request.version == 'v1': # return "CommentSerializerV1" # return CommentSerializer class TaskListCreateAPIView(rest_generic.ListCreateAPIView): queryset = Task.objects.select_related('created_by').prefetch_related('comments').all() serializer_class = TaskSerializer # permission_classes = [IsOwnerOrReadOnly]
96c18d0ab5d9ca7292ba91d87de1eb104dda90bd
69145e4b94bd6225138a57305fc09a1c714ebca7
/home/migrations/0003_resume.py
d1d56477c33b114530c483f060458b5a44616366
[ "MIT" ]
permissive
SimonOkello/portfolio
09504163b34559af6119a89c7d3368e45025bbaa
8b2436399ba1d686769a88c87567ed5e86b797a4
refs/heads/main
2021-12-02T18:58:22.120534
2021-10-10T10:55:05
2021-10-10T10:55:05
412,837,378
0
0
MIT
2021-10-09T09:20:20
2021-10-02T15:35:14
Python
UTF-8
Python
false
false
832
py
# Generated by Django 3.2.7 on 2021-10-03 16:15 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('home', '0002_service'), ] operations = [ migrations.CreateModel( name='Resume', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('c_vitae', models.FileField(upload_to='media')), ('cover_letter', models.FileField(upload_to='media')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
b6ef4a8d17124102cba4c340c0adaa7d224bd5c3
b72b41f8191e44ad4b70355ed2c26ea7feb0e1d0
/main.py
904a1e4e5ca193586ed8b1d462e14c5b8b9e4054
[ "BSD-3-Clause" ]
permissive
dendisuhubdy/neuron-swarms
6b25bace21f6116790904cc999e0a9540985251b
ceb8854a580abb825155c362dc2e8f801f950ed0
refs/heads/master
2021-08-16T10:39:56.229663
2017-11-19T17:05:46
2017-11-19T17:05:46
110,992,001
1
1
null
null
null
null
UTF-8
Python
false
false
501
py
import numpy as np import time from visdom import Visdom from scipy.integrate import odeint from swarmalators import Swarmalarator viz = Visdom(server='http://suhubdy.com', port=51401) def main(): # Load simulation parameters a, dt, T, n, L = 1, 0.5, 500, 100, 1 # surprisingly, dt = 0.5 seems to work OK (for prelimiart) swarms = Swarmalarator(a,dt,T,n,L) x, y, theta = swarms.solve() #Plot at end swarms.scatter_t(x,y,theta,-1) if __name__=="__main__": main()
704b36b47012d436f8ccc0f8667299c1f37979dd
5d9932a1abeae21b8201368e5cf465680f106761
/data_ccxt/btcbox.py
8ade01dad3dba51cdbd5eef1bfcdd3849b2bd56f
[]
no_license
qqzhangjian789/text
5dc6086e55d8a9494b889fa40cc9730da6bf5940
938be0df0a965aacf13cfb942548b8d2a1c7cec0
refs/heads/master
2023-05-04T11:38:47.178345
2021-05-21T17:44:13
2021-05-21T17:44:13
286,178,737
1
6
null
null
null
null
UTF-8
Python
false
false
15,257
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from data_ccxt.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import json from data_ccxt.base.errors import ExchangeError from data_ccxt.base.errors import AuthenticationError from data_ccxt.base.errors import PermissionDenied from data_ccxt.base.errors import InsufficientFunds from data_ccxt.base.errors import InvalidOrder from data_ccxt.base.errors import OrderNotFound from data_ccxt.base.errors import DDoSProtection from data_ccxt.base.errors import InvalidNonce class btcbox(Exchange): def describe(self): return self.deep_extend(super(btcbox, self).describe(), { 'id': 'btcbox', 'name': 'BtcBox', 'countries': ['JP'], 'rateLimit': 1000, 'version': 'v1', 'has': { 'cancelOrder': True, 'CORS': False, 'createOrder': True, 'fetchBalance': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': True, 'fetchTicker': True, 'fetchTickers': False, 'fetchTrades': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/51840849/87327317-98c55400-c53c-11ea-9a11-81f7d951cc74.jpg', 'api': 'https://www.btcbox.co.jp/api', 'www': 'https://www.btcbox.co.jp/', 'doc': 'https://blog.btcbox.jp/en/archives/8762', 'fees': 'https://support.btcbox.co.jp/hc/en-us/articles/360001235694-Fees-introduction', }, 'api': { 'public': { 'get': [ 'depth', 'orders', 'ticker', ], }, 'private': { 'post': [ 'balance', 'trade_add', 'trade_cancel', 'trade_list', 'trade_view', 'wallet', ], }, }, 'markets': { 'BTC/JPY': {'id': 'btc', 'symbol': 'BTC/JPY', 'base': 'BTC', 'quote': 'JPY', 'baseId': 'btc', 'quoteId': 'jpy', 'taker': 0.05 / 100, 'maker': 0.05 / 100}, 'ETH/JPY': {'id': 'eth', 'symbol': 'ETH/JPY', 'base': 'ETH', 'quote': 'JPY', 'baseId': 'eth', 'quoteId': 'jpy', 'taker': 0.10 / 100, 'maker': 0.10 / 100}, 'LTC/JPY': {'id': 'ltc', 'symbol': 'LTC/JPY', 'base': 'LTC', 'quote': 'JPY', 'baseId': 'ltc', 'quoteId': 'jpy', 'taker': 0.10 / 100, 'maker': 0.10 / 100}, 'BCH/JPY': {'id': 'bch', 'symbol': 'BCH/JPY', 'base': 'BCH', 'quote': 'JPY', 'baseId': 'bch', 'quoteId': 'jpy', 'taker': 0.10 / 100, 'maker': 0.10 / 100}, }, 'exceptions': { '104': AuthenticationError, '105': PermissionDenied, '106': InvalidNonce, '107': InvalidOrder, # price should be an integer '200': InsufficientFunds, '201': InvalidOrder, # amount too small '202': InvalidOrder, # price should be [0 : 1000000] '203': OrderNotFound, '401': OrderNotFound, # cancel canceled, closed or non-existent order '402': DDoSProtection, }, }) def fetch_balance(self, params={}): self.load_markets() response = self.privatePostBalance(params) result = {'info': response} codes = list(self.currencies.keys()) for i in range(0, len(codes)): code = codes[i] currency = self.currency(code) currencyId = currency['id'] free = currencyId + '_balance' if free in response: account = self.account() used = currencyId + '_lock' account['free'] = self.safe_number(response, free) account['used'] = self.safe_number(response, used) result[code] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = {} numSymbols = len(self.symbols) if numSymbols > 1: request['coin'] = market['baseId'] response = self.publicGetDepth(self.extend(request, params)) return self.parse_order_book(response) def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() symbol = None if market is not None: symbol = market['symbol'] last = self.safe_number(ticker, 'last') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'high'), 'low': self.safe_number(ticker, 'low'), 'bid': self.safe_number(ticker, 'buy'), 'bidVolume': None, 'ask': self.safe_number(ticker, 'sell'), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_number(ticker, 'vol'), 'quoteVolume': self.safe_number(ticker, 'volume'), 'info': ticker, } def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = {} numSymbols = len(self.symbols) if numSymbols > 1: request['coin'] = market['baseId'] response = self.publicGetTicker(self.extend(request, params)) return self.parse_ticker(response, market) def parse_trade(self, trade, market=None): timestamp = self.safe_timestamp(trade, 'date') symbol = None if market is not None: symbol = market['symbol'] id = self.safe_string(trade, 'tid') price = self.safe_number(trade, 'price') amount = self.safe_number(trade, 'amount') cost = None if amount is not None: if price is not None: cost = price * amount type = None side = self.safe_string(trade, 'type') return { 'info': trade, 'id': id, 'order': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': type, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': None, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = {} numSymbols = len(self.symbols) if numSymbols > 1: request['coin'] = market['baseId'] response = self.publicGetOrders(self.extend(request, params)) return self.parse_trades(response, market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) request = { 'amount': amount, 'price': price, 'type': side, 'coin': market['baseId'], } response = self.privatePostTradeAdd(self.extend(request, params)) # # { # "result":true, # "id":"11" # } # return self.parse_order(response, market) def cancel_order(self, id, symbol=None, params={}): self.load_markets() # a special case for btcbox – default symbol is BTC/JPY if symbol is None: symbol = 'BTC/JPY' market = self.market(symbol) request = { 'id': id, 'coin': market['baseId'], } response = self.privatePostTradeCancel(self.extend(request, params)) # # {"result":true, "id":"11"} # return self.parse_order(response, market) def parse_order_status(self, status): statuses = { # TODO: complete list 'part': 'open', # partially or not at all executed 'all': 'closed', # fully executed 'cancelled': 'canceled', 'closed': 'closed', # never encountered, seems to be bug in the doc 'no': 'closed', # not clarified in the docs... } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # { # "id":11, # "datetime":"2014-10-21 10:47:20", # "type":"sell", # "price":42000, # "amount_original":1.2, # "amount_outstanding":1.2, # "status":"closed", # "trades":[] # } # id = self.safe_string(order, 'id') datetimeString = self.safe_string(order, 'datetime') timestamp = None if datetimeString is not None: timestamp = self.parse8601(order['datetime'] + '+09:00') # Tokyo time amount = self.safe_number(order, 'amount_original') remaining = self.safe_number(order, 'amount_outstanding') filled = None if amount is not None: if remaining is not None: filled = amount - remaining price = self.safe_number(order, 'price') cost = None if price is not None: if filled is not None: cost = filled * price # status is set by fetchOrder method only status = self.parse_order_status(self.safe_string(order, 'status')) # fetchOrders do not return status, use heuristic if status is None: if remaining is not None and remaining == 0: status = 'closed' trades = None # todo: self.parse_trades(order['trades']) symbol = None if market is not None: symbol = market['symbol'] side = self.safe_string(order, 'type') return { 'id': id, 'clientOrderId': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'amount': amount, 'remaining': remaining, 'filled': filled, 'side': side, 'type': None, 'timeInForce': None, 'postOnly': None, 'status': status, 'symbol': symbol, 'price': price, 'stopPrice': None, 'cost': cost, 'trades': trades, 'fee': None, 'info': order, 'average': None, } def fetch_order(self, id, symbol=None, params={}): self.load_markets() # a special case for btcbox – default symbol is BTC/JPY if symbol is None: symbol = 'BTC/JPY' market = self.market(symbol) request = self.extend({ 'id': id, 'coin': market['baseId'], }, params) response = self.privatePostTradeView(self.extend(request, params)) return self.parse_order(response, market) def fetch_orders_by_type(self, type, symbol=None, since=None, limit=None, params={}): self.load_markets() # a special case for btcbox – default symbol is BTC/JPY if symbol is None: symbol = 'BTC/JPY' market = self.market(symbol) request = { 'type': type, # 'open' or 'all' 'coin': market['baseId'], } response = self.privatePostTradeList(self.extend(request, params)) orders = self.parse_orders(response, market, since, limit) # status(open/closed/canceled) is None # btcbox does not return status, but we know it's 'open' as we queried for open orders if type == 'open': for i in range(0, len(orders)): orders[i]['status'] = 'open' return orders def fetch_orders(self, symbol=None, since=None, limit=None, params={}): return self.fetch_orders_by_type('all', symbol, since, limit, params) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): return self.fetch_orders_by_type('open', symbol, since, limit, params) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] + '/' + self.version + '/' + path if api == 'public': if params: url += '?' + self.urlencode(params) else: self.check_required_credentials() nonce = str(self.nonce()) query = self.extend({ 'key': self.apiKey, 'nonce': nonce, }, params) request = self.urlencode(query) secret = self.hash(self.encode(self.secret)) query['signature'] = self.hmac(self.encode(request), self.encode(secret)) body = self.urlencode(query) headers = { 'Content-Type': 'application/x-www-form-urlencoded', } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # resort to defaultErrorHandler # typical error response: {"result":false,"code":"401"} if httpCode >= 400: return # resort to defaultErrorHandler result = self.safe_value(response, 'result') if result is None or result is True: return # either public API(no error codes expected) or success code = self.safe_value(response, 'code') feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions, code, feedback) raise ExchangeError(feedback) # unknown message def request(self, path, api='public', method='GET', params={}, headers=None, body=None): response = self.fetch2(path, api, method, params, headers, body) if isinstance(response, basestring): # sometimes the exchange returns whitespace prepended to json response = self.strip(response) if not self.is_json_encoded_object(response): raise ExchangeError(self.id + ' ' + response) response = json.loads(response) return response
8a56365067845b7b5db72543297923863af7cf25
3d792bcf31843a8329f6c9774a8a58a8c49a8a70
/0x08-python-more_classes/0-rectangle.py
eb68bca78885b8e474dec29c21d2365dde3134f7
[]
no_license
theurikenneth/alx-higher_level_programming
a6accbe016bdc62ee3f0e849c8e2c847247fb4d9
289a08cffa1bcbecab4550b6fed21296cf88fe66
refs/heads/main
2023-08-28T08:53:32.676778
2021-10-21T06:00:47
2021-10-21T06:00:47
361,642,411
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
#!/usr/bin/python3 """Contains the rectangle class""" class Rectangle: pass """A rectangle class"""
5c0544ab8f5d844f75a21896e5c0928fd3feac1c
8dd53a5d1820ae5a3efe799381a90c977afd32c4
/test/functional/wallet_keypool_topup.py
8e3ca127b17210112557981640e1cf17922daad5
[ "MIT" ]
permissive
mulecore/mulecoin
8b654817a1b78c9e98f96bfef5febaca23347f64
e52131742938ae433463f32680837981a5cedc0f
refs/heads/master
2023-03-28T05:37:53.552271
2021-03-27T03:22:13
2021-03-27T03:22:13
351,796,749
0
0
null
null
null
null
UTF-8
Python
false
false
2,799
py
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Copyright (c) 2017-2019 The Raven Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Test HD Wallet keypool restore function. Two nodes. Node1 is under test. Node0 is providing transactions and generating blocks. - Start node1, shutdown and backup wallet. - Generate 110 keys (enough to drain the keypool). Store key 90 (in the initial keypool) and key 110 (beyond the initial keypool). Send funds to key 90 and key 110. - Stop node1, clear the datadir, move wallet file back into the datadir and restart node1. - connect node1 to node0. Verify that they sync and node1 receives its funds.""" import shutil from test_framework.test_framework import MulecoinTestFramework from test_framework.util import assert_equal, connect_nodes_bi, sync_blocks class KeypoolRestoreTest(MulecoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [[], ['-keypool=100', '-keypoolmin=20']] def run_test(self): self.tmpdir = self.options.tmpdir self.nodes[0].generate(101) self.log.info("Make backup of wallet") self.stop_node(1) shutil.copyfile(self.tmpdir + "/node1/regtest/wallet.dat", self.tmpdir + "/wallet.bak") self.start_node(1, self.extra_args[1]) connect_nodes_bi(self.nodes, 0, 1) self.log.info("Generate keys for wallet") addr_oldpool = [] addr_extpool = [] for _ in range(90): addr_oldpool = self.nodes[1].getnewaddress() for _ in range(20): addr_extpool = self.nodes[1].getnewaddress() self.log.info("Send funds to wallet") self.nodes[0].sendtoaddress(addr_oldpool, 10) self.nodes[0].generate(1) self.nodes[0].sendtoaddress(addr_extpool, 5) self.nodes[0].generate(1) sync_blocks(self.nodes) self.log.info("Restart node with wallet backup") self.stop_node(1) shutil.copyfile(self.tmpdir + "/wallet.bak", self.tmpdir + "/node1/regtest/wallet.dat") self.log.info("Verify keypool is restored and balance is correct") self.start_node(1, self.extra_args[1]) connect_nodes_bi(self.nodes, 0, 1) self.sync_all() assert_equal(self.nodes[1].getbalance(), 15) assert_equal(self.nodes[1].listtransactions()[0]['category'], "receive") # Check that we have marked all keys up to the used keypool key as used assert_equal(self.nodes[1].validateaddress(self.nodes[1].getnewaddress())['hdkeypath'], "m/0'/0'/110'") if __name__ == '__main__': KeypoolRestoreTest().main()
5683033c35209cce456734e560d9bd3c07451980
b049a961f100444dde14599bab06a0a4224d869b
/sdk/python/pulumi_azure_native/security/v20190801/__init__.py
6309308fa63d8a40d72ad8c853ec0211cc0f2c9f
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
pulumi/pulumi-azure-native
b390c88beef8381f9a71ab2bed5571e0dd848e65
4c499abe17ec6696ce28477dde1157372896364e
refs/heads/master
2023-08-30T08:19:41.564780
2023-08-28T19:29:04
2023-08-28T19:29:04
172,386,632
107
29
Apache-2.0
2023-09-14T13:17:00
2019-02-24T20:30:21
Python
UTF-8
Python
false
false
459
py
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from ... import _utilities import typing # Export this package's modules as members: from ._enums import * from .device_security_group import * from .get_device_security_group import * from .get_iot_security_solution import * from .iot_security_solution import * from ._inputs import * from . import outputs
8f98c28591c94aca20e7258f94d6fbc06859f0fe
6b99e6ee32d8885fd5d7501a385f66a2e73c2c56
/manage.py
10005c5bca0fe2f20a0568e764a99d680a57eae3
[]
no_license
Sentret/comics_aggregator
8e4dd03ac38599091d5996aa93be35137f9a84f8
7474dec39d5011495556db23336c63a02c692b20
refs/heads/master
2021-05-16T04:14:50.313650
2017-10-08T21:09:01
2017-10-08T21:09:01
105,859,013
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "comics_aggregator.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
879437f3995fc2c8af33708e20e65ea71d787eed
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit_noisy1998.py
8ea67d5a234bcee1b81265ef51492d40802ad06f
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
3,931
py
# qubit number=4 # total number=32 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=16 prog.cz(input_qubit[0],input_qubit[3]) # number=17 prog.h(input_qubit[3]) # number=18 prog.x(input_qubit[3]) # number=14 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[3]) # number=29 prog.cz(input_qubit[2],input_qubit[3]) # number=30 prog.h(input_qubit[3]) # number=31 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=24 prog.cz(input_qubit[3],input_qubit[2]) # number=25 prog.h(input_qubit[2]) # number=26 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.x(input_qubit[2]) # number=23 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.y(input_qubit[2]) # number=11 prog.x(input_qubit[1]) # number=20 prog.x(input_qubit[1]) # number=21 prog.x(input_qubit[3]) # number=27 prog.x(input_qubit[3]) # number=28 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = FakeVigo() sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy1998.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
5a9fb527004b7c85da090fbd398b277106d50371
e0c8662a56d89730043146ddc340e9e0b9f7de72
/plugin/1183fe82-1596.py
02dad21d9a024d399fccb78fe53c31cad6e8bc1d
[]
no_license
izj007/bugscan_poc
f2ef5903b30b15c230b292a1ff2dc6cea6836940
4490f3c36d4033bdef380577333722deed7bc758
refs/heads/master
2020-09-22T17:20:50.408078
2019-01-18T09:42:47
2019-01-18T09:42:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
#coding:utf-8 from lib.curl import * # -*- coding: utf-8 -*- """ POC Name : sgc8000 大型旋转机监控系统报警短信模块泄露 Author : a mail : [email protected] refer : 打雷 http://www.wooyun.org/bugs/wooyun-2015-0135197/ 波及各大能源公司,包括中石油,中石化,中海油,中煤等等等等全国各个化工能源公司 """ import urlparse def assign(service, arg): if service == 'sgc8000': arr = urlparse.urlparse(arg) return True, '%s://%s/' % (arr.scheme, arr.netloc) def audit(arg): p ="sg8k_sms/" url = arg + p code2, head, res, errcode, _ = curl.curl2(url) if (code2 ==200) and ('SG8000' in res) and ('getMachineList' in res) and ('cancelSendMessage' in res): security_warning(url) if __name__ == '__main__': from dummy import * audit(assign('sgc8000', 'http://www.pindodo.com/')[1])
829b93625b164aec03032b7f6b7d6a98b68afbfb
4522fc52bc43654aadd30421a75bae00a09044f0
/isis/itzamara/search_item.py
8508a4237dc9d83db9719b60b26ba7f43ce31d6f
[]
no_license
qesoalpe/anelys
1edb8201aa80fedf0316db973da3a58b67070fca
cfccaa1bf5175827794da451a9408a26cd97599d
refs/heads/master
2020-04-07T22:39:35.344954
2018-11-25T05:23:21
2018-11-25T05:23:21
158,779,332
0
0
null
null
null
null
UTF-8
Python
false
false
1,665
py
from isis.dialog_search_text import Dialog_Search_Text from isis.data_model.table import Table from sarah.acp_bson import Client class Search_Item(Dialog_Search_Text): def __init__(self, parent=None): Dialog_Search_Text.__init__(self, parent) self.agent_itzamara = None self.store = None self.search_by_sku = True self.search_by_code_ref = True self.agent_itzamara = Client(Search_Item.APP_ID, 'itzamara') def searching(self, e): if self.search_by_sku: msg = {'type_message': 'find_one', 'type': 'itzamara/item', 'query': {'sku': e['text']}} answer = self.agent_itzamara(msg) if 'result' in answer and answer['result'] is not None: e['selected'] = answer['result'] return if self.search_by_code_ref: msg = {'type_message': 'request', 'request_type': 'get', 'get': 'itzamara/item_related_to_code_ref', 'code_ref': e.text} answer = self.agent_itzamara(msg) if 'result' in answer and answer.result is not None: e.selected = answer.result return msg = {'type_message': 'find', 'type': 'itzamara/item', 'query': {'description': {'!like': e['text']}}} if self.store is not None: msg['query']['store'] = self.store answer = self.agent_itzamara.send_msg(msg) e['list'] = answer['result'] table = Table() e['table'] = table table.columns.add('sku', str) table.columns.add('description', str) table.datasource = e.list APP_ID = 'isis.itzamara.Search_Item'
63ede9c176a7066d977459f31d78c2ffed292262
9610621437f025aa97f99b67f0a5d8e13bbb715c
/com/vmware/appliance/system_client.py
a257fc441c845dd0d91497dfdb258d5d9af7b588
[ "MIT" ]
permissive
adammillerio/vsphere-automation-sdk-python
2b3b730db7da99f1313c26dc738b82966ecea6ce
c07e1be98615201139b26c28db3aa584c4254b66
refs/heads/master
2022-11-20T03:09:59.895841
2020-07-17T19:32:37
2020-07-17T19:32:37
280,499,136
0
0
null
null
null
null
UTF-8
Python
false
false
20,323
py
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2020 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.appliance.system. #--------------------------------------------------------------------------- """ The ``com.vmware.appliance.system_client`` module provides classes to query the appliance system information. The module is available starting in vSphere 6.5. """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class Storage(VapiInterface): """ ``Storage`` class provides methods Appliance storage configuration """ _VAPI_SERVICE_ID = 'com.vmware.appliance.system.storage' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _StorageStub) self._VAPI_OPERATION_IDS = {} class StorageMapping(VapiStruct): """ The ``Storage.StorageMapping`` class describes the mapping between VCSA partitions and the Hard disk numbers visible in the vSphere Web Client. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, disk=None, partition=None, description=None, ): """ :type disk: :class:`str` :param disk: The disk number in the vSphere Web Client. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``com.vmware.appliance.system.storage``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``com.vmware.appliance.system.storage``. :type partition: :class:`str` :param partition: Storage partition name. :type description: :class:`com.vmware.vapi.std_client.LocalizableMessage` :param description: Description of partition. This attribute was added in vSphere API 6.7. This attribute is optional because it was added in a newer version than its parent node. """ self.disk = disk self.partition = partition self.description = description VapiStruct.__init__(self) StorageMapping._set_binding_type(type.StructType( 'com.vmware.appliance.system.storage.storage_mapping', { 'disk': type.IdType(resource_types='com.vmware.appliance.system.storage'), 'partition': type.StringType(), 'description': type.OptionalType(type.ReferenceType('com.vmware.vapi.std_client', 'LocalizableMessage')), }, StorageMapping, False, None)) class StorageChange(VapiStruct): """ The ``Storage.StorageChange`` class describes the changes in capasity of a storage partition. This class was added in vSphere API 6.7. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, old_size=None, new_size=None, ): """ :type old_size: :class:`long` :param old_size: Original size of the partition in MB. This attribute was added in vSphere API 6.7. :type new_size: :class:`long` :param new_size: Nedw size of the partition in MB. This attribute was added in vSphere API 6.7. """ self.old_size = old_size self.new_size = new_size VapiStruct.__init__(self) StorageChange._set_binding_type(type.StructType( 'com.vmware.appliance.system.storage.storage_change', { 'old_size': type.IntegerType(), 'new_size': type.IntegerType(), }, StorageChange, False, None)) def list(self): """ Get disk to partition mapping. :rtype: :class:`list` of :class:`Storage.StorageMapping` :return: list of mapping items :raise: :class:`com.vmware.vapi.std.errors_client.Error` Generic error """ return self._invoke('list', None) def resize(self): """ Resize all partitions to 100 percent of disk size. :raise: :class:`com.vmware.vapi.std.errors_client.Error` Generic error """ return self._invoke('resize', None) def resize_ex(self): """ Resize all partitions to 100 percent of disk size. This method was added in vSphere API 6.7. :rtype: :class:`dict` of :class:`str` and :class:`Storage.StorageChange` :return: List of the partitions with the size before and after resizing :raise: :class:`com.vmware.vapi.std.errors_client.Error` Generic error """ return self._invoke('resize_ex', None) class Uptime(VapiInterface): """ ``Uptime`` class provides methods Get the system uptime. """ _VAPI_SERVICE_ID = 'com.vmware.appliance.system.uptime' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _UptimeStub) self._VAPI_OPERATION_IDS = {} def get(self): """ Get the system uptime. :rtype: :class:`float` :return: system uptime :raise: :class:`com.vmware.vapi.std.errors_client.Error` Generic error """ return self._invoke('get', None) class Time(VapiInterface): """ ``Time`` class provides methods Gets system time. """ _VAPI_SERVICE_ID = 'com.vmware.appliance.system.time' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _TimeStub) self._VAPI_OPERATION_IDS = {} class SystemTimeStruct(VapiStruct): """ ``Time.SystemTimeStruct`` class Structure representing the system time. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, seconds_since_epoch=None, date=None, time=None, timezone=None, ): """ :type seconds_since_epoch: :class:`float` :param seconds_since_epoch: seconds since the epoch :type date: :class:`str` :param date: date format: Thu 07-31-2014 :type time: :class:`str` :param time: time format: 18:18:32 :type timezone: :class:`str` :param timezone: timezone """ self.seconds_since_epoch = seconds_since_epoch self.date = date self.time = time self.timezone = timezone VapiStruct.__init__(self) SystemTimeStruct._set_binding_type(type.StructType( 'com.vmware.appliance.system.time.system_time_struct', { 'seconds_since_epoch': type.DoubleType(), 'date': type.StringType(), 'time': type.StringType(), 'timezone': type.StringType(), }, SystemTimeStruct, False, None)) def get(self): """ Get system time. :rtype: :class:`Time.SystemTimeStruct` :return: System time :raise: :class:`com.vmware.vapi.std.errors_client.Error` Generic error """ return self._invoke('get', None) class Version(VapiInterface): """ ``Version`` class provides methods Get the appliance version. """ _VAPI_SERVICE_ID = 'com.vmware.appliance.system.version' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _VersionStub) self._VAPI_OPERATION_IDS = {} class VersionStruct(VapiStruct): """ ``Version.VersionStruct`` class Structure representing appliance version information. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, version=None, product=None, build=None, type=None, summary=None, releasedate=None, install_time=None, ): """ :type version: :class:`str` :param version: Appliance version. :type product: :class:`str` :param product: Appliance name. :type build: :class:`str` :param build: Appliance build number. :type type: :class:`str` :param type: Type of product. Same product can have different deployment options, which is represented by type. :type summary: :class:`str` :param summary: Summary of patch (empty string, if the appliance has not been patched) :type releasedate: :class:`str` :param releasedate: Release date of patch (empty string, if the appliance has not been patched) :type install_time: :class:`str` :param install_time: Display the date and time when this system was first installed. Value will not change on subsequent updates. """ self.version = version self.product = product self.build = build self.type = type self.summary = summary self.releasedate = releasedate self.install_time = install_time VapiStruct.__init__(self) VersionStruct._set_binding_type(type.StructType( 'com.vmware.appliance.system.version.version_struct', { 'version': type.StringType(), 'product': type.StringType(), 'build': type.StringType(), 'type': type.StringType(), 'summary': type.StringType(), 'releasedate': type.StringType(), 'install_time': type.StringType(), }, VersionStruct, False, None)) def get(self): """ Get the version. :rtype: :class:`Version.VersionStruct` :return: version information about the appliance :raise: :class:`com.vmware.vapi.std.errors_client.Error` Generic error """ return self._invoke('get', None) class _StorageStub(ApiInterfaceStub): def __init__(self, config): # properties for list operation list_input_type = type.StructType('operation-input', {}) list_error_dict = { 'com.vmware.vapi.std.errors.error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Error'), } list_input_value_validator_list = [ ] list_output_validator_list = [ ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/appliance/system/storage', path_variables={ }, query_parameters={ } ) # properties for resize operation resize_input_type = type.StructType('operation-input', {}) resize_error_dict = { 'com.vmware.vapi.std.errors.error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Error'), } resize_input_value_validator_list = [ ] resize_output_validator_list = [ ] resize_rest_metadata = OperationRestMetadata( http_method='POST', url_template='/appliance/system/storage/resize', path_variables={ }, query_parameters={ } ) # properties for resize_ex operation resize_ex_input_type = type.StructType('operation-input', {}) resize_ex_error_dict = { 'com.vmware.vapi.std.errors.error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Error'), } resize_ex_input_value_validator_list = [ ] resize_ex_output_validator_list = [ ] resize_ex_rest_metadata = OperationRestMetadata( http_method='POST', url_template='/appliance/system/storage?action=resize-ex', path_variables={ }, query_parameters={ } ) operations = { 'list': { 'input_type': list_input_type, 'output_type': type.ListType(type.ReferenceType(__name__, 'Storage.StorageMapping')), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'resize': { 'input_type': resize_input_type, 'output_type': type.VoidType(), 'errors': resize_error_dict, 'input_value_validator_list': resize_input_value_validator_list, 'output_validator_list': resize_output_validator_list, 'task_type': TaskType.NONE, }, 'resize_ex': { 'input_type': resize_ex_input_type, 'output_type': type.MapType(type.StringType(), type.ReferenceType(__name__, 'Storage.StorageChange')), 'errors': resize_ex_error_dict, 'input_value_validator_list': resize_ex_input_value_validator_list, 'output_validator_list': resize_ex_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'list': list_rest_metadata, 'resize': resize_rest_metadata, 'resize_ex': resize_ex_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.appliance.system.storage', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=True) class _UptimeStub(ApiInterfaceStub): def __init__(self, config): # properties for get operation get_input_type = type.StructType('operation-input', {}) get_error_dict = { 'com.vmware.vapi.std.errors.error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Error'), } get_input_value_validator_list = [ ] get_output_validator_list = [ ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/appliance/system/uptime', path_variables={ }, query_parameters={ } ) operations = { 'get': { 'input_type': get_input_type, 'output_type': type.DoubleType(), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'get': get_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.appliance.system.uptime', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=True) class _TimeStub(ApiInterfaceStub): def __init__(self, config): # properties for get operation get_input_type = type.StructType('operation-input', {}) get_error_dict = { 'com.vmware.vapi.std.errors.error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Error'), } get_input_value_validator_list = [ ] get_output_validator_list = [ ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/appliance/system/time', path_variables={ }, query_parameters={ } ) operations = { 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType(__name__, 'Time.SystemTimeStruct'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'get': get_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.appliance.system.time', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=True) class _VersionStub(ApiInterfaceStub): def __init__(self, config): # properties for get operation get_input_type = type.StructType('operation-input', {}) get_error_dict = { 'com.vmware.vapi.std.errors.error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Error'), } get_input_value_validator_list = [ ] get_output_validator_list = [ ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/appliance/system/version', path_variables={ }, query_parameters={ } ) operations = { 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType(__name__, 'Version.VersionStruct'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'get': get_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.appliance.system.version', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=True) class StubFactory(StubFactoryBase): _attrs = { 'Storage': Storage, 'Uptime': Uptime, 'Time': Time, 'Version': Version, 'time': 'com.vmware.appliance.system.time_client.StubFactory', }
272af93c538fed750477de3a44e4113b6286c109
b2d3bd39b2de8bcc3b0f05f4800c2fabf83d3c6a
/examples/pwr_run/checkpointing/throughput/final2_inverse/job38.py
cb01d22cc7b7a1de16176929f6f3423c3617d33e
[ "MIT" ]
permissive
boringlee24/keras_old
3bf7e3ef455dd4262e41248f13c04c071039270e
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
refs/heads/master
2021-11-21T03:03:13.656700
2021-11-11T21:57:54
2021-11-11T21:57:54
198,494,579
0
0
null
null
null
null
UTF-8
Python
false
false
7,325
py
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.mobilenet_v2 import MobileNetV2 from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 64 args_lr = 0.0015 epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/checkpoint_final2_inverse/' + job_name + '*' total_epochs = 83 starting_epoch = 0 # first step is to update the PID pid = os.getpid() message = job_name + ' pid ' + str(pid) # 'job50 pid 3333' send_signal.send(args.node, 10002, message) if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[4].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') message = job_name + ' b_end' send_signal.send(args.node, 10002, message) model = keras.models.load_model(save_file) message = job_name + ' c_end' send_signal.send(args.node, 10002, message) else: print('train from start') model = models.Sequential() base_model = MobileNetV2(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() current_epoch = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) message = job_name + ' waste ' + str(epoch_waste_time) # 'job50 waste 100' if epoch_waste_time > 0: send_signal.send(args.node, 10002, message) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) model.save('/scratch/li.baol/checkpoint_final2_inverse/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') message = job_name + ' checkpoint' send_signal.send(args.node, 10002, message) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') first_epoch_start = 0 class PrintEpoch(keras.callbacks.Callback): def on_epoch_begin(self, epoch, logs=None): global current_epoch, first_epoch_start #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() if epoch == starting_epoch and args.resume: first_epoch_start = time.time() message = job_name + ' d_end' send_signal.send(args.node, 10002, message) elif epoch == starting_epoch: first_epoch_start = time.time() if epoch == starting_epoch: # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) def on_epoch_end(self, epoch, logs=None): if epoch == starting_epoch: first_epoch_time = int(time.time() - first_epoch_start) message = job_name + ' 1st_epoch ' + str(first_epoch_time) send_signal.send(args.node, 10002, message) progress = round((epoch+1) / round(total_epochs/2), 2) message = job_name + ' completion ' + str(progress) send_signal.send(args.node, 10002, message) my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
6834426075b03b496ae3de4b06d6f72d73bf5839
35a10ea7657fb28b4ae5a95045bc8e715b0b8d1c
/mysite/main/migrations/0005_delete_essaycategory.py
3baecf7fefd629a67d9303b72c037ffca744b4da
[ "MIT" ]
permissive
nsky80/editorial
d7c978be4b8b8ea1cec6b764dd2e9860ebdf0867
e85106e32d5d5ff8b9ac7f140b0c8f67d34b2dc0
refs/heads/master
2020-04-29T08:41:57.601027
2020-03-05T18:37:02
2020-03-05T18:37:02
175,995,388
2
0
MIT
2019-08-19T18:29:58
2019-03-16T16:20:23
HTML
UTF-8
Python
false
false
299
py
# Generated by Django 2.2.1 on 2019-07-21 09:41 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0004_auto_20190316_0140'), ] operations = [ migrations.DeleteModel( name='EssayCategory', ), ]
67c25e2ceff629da5c3493d2c01f251996768911
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_244/ch1_2019_03_14_17_05_12_929051.py
cfc8916fb07baf0253baedef1f8239e1e722ce14
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
def calcula_valor_devido(x,y,z): return VF = x * (1 + z)**y
35b09022fa3e5caa076b0ac3a5627233549ded43
55c552b03a07dcfa2d621b198aa8664d6ba76b9a
/Algorithm/BOJ/4134_다음 소수_s4/4134.py
7845e2c7cdb25cd978361a4bf6a02925ddce3a0b
[]
no_license
LastCow9000/Algorithms
5874f1523202c10864bdd8bb26960953e80bb5c0
738d7e1b37f95c6a1b88c99eaf2bc663b5f1cf71
refs/heads/master
2023-08-31T12:18:45.533380
2021-11-07T13:24:32
2021-11-07T13:24:32
338,107,899
0
1
null
null
null
null
UTF-8
Python
false
false
709
py
# boj 4134 다음 소수 s4 # noj.am/4134 for _ in range(int(input())): n = int(input()) if n <= 1: print(2) continue maxRange = 80000 flag = [False, False] + [True] * (maxRange - 1) for num in range(2, maxRange + 1): if flag[num]: for i in range(num + num, maxRange + 1, num): flag[i] = False num = n while True: for i in range(int(num ** 0.5) + 1): if flag[i]: if num % i == 0: num += 1 break else: print(num) break ''' 특정 수의 양의 제곱근 이하의 소수들로 나누어 떨어지면 소수x '''
5dc7334bd95e7f16687b5903ecfc180f29cb6d4a
f6d7c30a7ed343e5fe4859ceaae1cc1965d904b7
/htdocs/submissions/5dc7334bd95e7f16687b5903ecfc180f29cb6d4a.py
f240b858556dd23d3f4d394931854f0d7c911994
[]
no_license
pycontest/pycontest.github.io
ed365ebafc5be5d610ff9d97001240289de697ad
606015cad16170014c41e335b1f69dc86250fb24
refs/heads/master
2021-01-10T04:47:46.713713
2016-02-01T11:03:46
2016-02-01T11:03:46
50,828,627
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
n=' .' m=' _ .' e='| |.' a='|_|.' r=' |.' l='| .' d=' _|.' s='|_ .' n=m+e+a,n+r+r,m+d+s,m+d+d,n+a+r,m+s+d,m+s+a,m+r+r,m+a+a,m+a+d def seven_seg(x): a=['']*3 for d in x: l=n[int(d)].split('.') for z in range(3):a[z]+=l[z] return '\n'.join(a)+'\n'
536ff942f90b91a7fb29e3a9076d36b582318420
f50f1aa1f8f139d546db3230a1cb1f53043fd9e6
/multimedia/converter/dvdbackup/actions.py
2d25a92cb98af0288858998d4ff57bf65653cc77
[]
no_license
pars-linux/corporate2
7887961d1552d39bc3b0bef4a60fd3413d9b82bb
14d1eacfc824fb8d0bff8173e7ac06b36b88d10d
refs/heads/master
2020-05-26T15:02:12.005654
2017-02-27T03:07:14
2017-02-27T03:07:14
82,476,084
4
0
null
null
null
null
UTF-8
Python
false
false
458
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2007-2009 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt from pisi.actionsapi import autotools from pisi.actionsapi import pisitools WorkDir = "dvdbackup" def build(): autotools.compile("-I/usr/include/dvdread -o dvdbackup src/dvdbackup.c -ldvdread") def install(): pisitools.dobin("dvdbackup")
05d70434fa49d8b43242b5bc319959b97b833cbb
f1cb02057956e12c352a8df4ad935d56cb2426d5
/LeetCode/2402. Meeting Rooms III/Solution.py
e04582cc6433fc14b232d16a3615a444f3a02378
[]
no_license
nhatsmrt/AlgorithmPractice
191a6d816d98342d723e2ab740e9a7ac7beac4ac
f27ba208b97ed2d92b4c059848cc60f6b90ce75e
refs/heads/master
2023-06-10T18:28:45.876046
2023-05-26T07:46:42
2023-05-26T07:47:10
147,932,664
15
2
null
null
null
null
UTF-8
Python
false
false
1,454
py
MEETING_START = 1 MEETING_END = 0 class Solution: def mostBooked(self, n: int, meetings: List[List[int]]) -> int: # Time Complexity: O(M log MN) # Space Complexity: O(N + M) events = [(start, MEETING_START, end - start) for start, end in meetings] pending = [] available_rooms = list(range(n)) heapq.heapify(events) meeting_cnter = Counter() while events: event = heapq.heappop(events) event_type = event[1] cur_time = event[0] if event_type == MEETING_START: duration = event[2] if available_rooms: room = heapq.heappop(available_rooms) heapq.heappush(events, (cur_time + duration, MEETING_END, room)) meeting_cnter[room] += 1 else: heapq.heappush(pending, (cur_time, duration)) elif event_type == MEETING_END: room = event[2] if pending: _, duration = heapq.heappop(pending) heapq.heappush(events, (cur_time + duration, MEETING_END, room)) meeting_cnter[room] += 1 else: heapq.heappush(available_rooms, room) ret = 0 for room in range(n): if meeting_cnter[room] > meeting_cnter[ret]: ret = room return ret
d3b472805b2615dba2cc942d9347ee58fddd00d3
c3c5e21f02dc1ce325e4ba0ea49f04503b2124e5
/Code/bigger_nn/plot_data.py
db6d913bed2c04cdfd9179ac0b7baf3b67594253
[]
no_license
Rootpie-Studios/RL-in-HaliteIV
5fdd76cc5523deec2847059cc6237d638c2a9881
431f35d47b898e68983772f9b908764741347ad5
refs/heads/master
2023-06-05T20:21:07.543805
2021-06-21T11:18:57
2021-06-21T11:18:57
378,900,025
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
import tensorflow as tf import src.plot as plot import bigger_nn.conf as conf user_choice = input('Plot exploit data? y/n \n') if user_choice == 'y': folder = conf.get('EXPLOIT_GAMES_FOLDER') else: folder = conf.get('GAMES_FOLDER') try: model = tf.keras.models.load_model(conf.get('SHIP_MODEL')) except: model = conf.get('build_model')() model.save(conf.get('SHIP_MODEL'), save_format='tf') plot.plot_progress(10, folder, conf.get('NAME'), conf.get('AGENT2')[:-3], model, conf.get('input_data'))
c12b59a23c758ac14e36e2ed849148850d9a5571
bc441bb06b8948288f110af63feda4e798f30225
/capacity_admin_sdk/model/container/pod_status_pb2.py
6de9ae973841286f0c359c4fb191d12570e42f8d
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
4,896
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: pod_status.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from capacity_admin_sdk.model.container import container_status_pb2 as capacity__admin__sdk_dot_model_dot_container_dot_container__status__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='pod_status.proto', package='container', syntax='proto3', serialized_options=_b('ZCgo.easyops.local/contracts/protorepo-models/easyops/model/container'), serialized_pb=_b('\n\x10pod_status.proto\x12\tcontainer\x1a\x39\x63\x61pacity_admin_sdk/model/container/container_status.proto\"\xbc\x01\n\tPodStatus\x12\r\n\x05phase\x18\x01 \x01(\t\x12\x0f\n\x07message\x18\x02 \x01(\t\x12\x39\n\x15initContainerStatuses\x18\x03 \x03(\x0b\x32\x1a.container.ContainerStatus\x12\x35\n\x11\x63ontainerStatuses\x18\x04 \x03(\x0b\x32\x1a.container.ContainerStatus\x12\x0e\n\x06hostIP\x18\x05 \x01(\t\x12\r\n\x05podIP\x18\x06 \x01(\tBEZCgo.easyops.local/contracts/protorepo-models/easyops/model/containerb\x06proto3') , dependencies=[capacity__admin__sdk_dot_model_dot_container_dot_container__status__pb2.DESCRIPTOR,]) _PODSTATUS = _descriptor.Descriptor( name='PodStatus', full_name='container.PodStatus', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phase', full_name='container.PodStatus.phase', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='message', full_name='container.PodStatus.message', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='initContainerStatuses', full_name='container.PodStatus.initContainerStatuses', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='containerStatuses', full_name='container.PodStatus.containerStatuses', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hostIP', full_name='container.PodStatus.hostIP', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='podIP', full_name='container.PodStatus.podIP', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=91, serialized_end=279, ) _PODSTATUS.fields_by_name['initContainerStatuses'].message_type = capacity__admin__sdk_dot_model_dot_container_dot_container__status__pb2._CONTAINERSTATUS _PODSTATUS.fields_by_name['containerStatuses'].message_type = capacity__admin__sdk_dot_model_dot_container_dot_container__status__pb2._CONTAINERSTATUS DESCRIPTOR.message_types_by_name['PodStatus'] = _PODSTATUS _sym_db.RegisterFileDescriptor(DESCRIPTOR) PodStatus = _reflection.GeneratedProtocolMessageType('PodStatus', (_message.Message,), { 'DESCRIPTOR' : _PODSTATUS, '__module__' : 'pod_status_pb2' # @@protoc_insertion_point(class_scope:container.PodStatus) }) _sym_db.RegisterMessage(PodStatus) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
bc054ee3a41b51ba0c02fd50959e5203a9ce1be3
cf3e0cd574248629ebeacb224fe96d3df19ea9ca
/django_todo_in_team/settings.py
d5bfaa75efdd103703ca23205c24708053e97cc2
[]
no_license
ashur-k/Team-work-Hub
34b9d9ec43cca53d11e072fd6a68e831ee6b4795
4da991e3166f8650cb24024ede07c485e9ee9dda
refs/heads/master
2023-03-12T12:19:15.456078
2021-03-01T22:01:11
2021-03-01T22:01:11
340,626,504
0
0
null
2021-02-20T10:42:06
2021-02-20T10:29:03
Shell
UTF-8
Python
false
false
3,416
py
""" Django settings for django_todo_in_team project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '+ivqwhb1)y)^hu@1ud@8*t1y&+q2(9+j(x%2^9_wj^sv^zonld' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'todo_in_team.apps.TodoInTeamConfig', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django_todo_in_team.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), os.path.join(BASE_DIR, 'templates', 'allauth'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django_todo_in_team.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = (os.path.join(BASE_DIR, 'static'),) MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
e2edf2037288c178e8a0f0e1fa79e543746def5c
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Games/Pygame/pygame-vkeyboard/pygame_vkeyboard/examples/numeric.py
06131ee38998682cbdc8eb7bbac5590455f99b08
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:79af64ea269c1a2a6da43c377fc8ff4650b04b20a967d881019b3c32032044c3 size 1411
e270bcdfe76d6e527c850b2cd3d2c445f116010a
50ae1a0b7e0ebe031f3a45193e213fa7384cef23
/uncertainty_baselines/datasets/places_test.py
ff649aa55888cee6af014940ade99f305bd14fcb
[ "Apache-2.0" ]
permissive
MarkoOrescanin/uncertainty-baselines
8634ec2ddbf7d8ca4d342f37b108d3e8787254f8
7256ab3b126e1dcc3fc796370e8ce94c688c1520
refs/heads/main
2023-06-11T17:32:08.594735
2021-07-01T22:15:20
2021-07-01T22:15:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
985
py
# coding=utf-8 # Copyright 2021 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for Places-365.""" import tensorflow as tf import uncertainty_baselines as ub class Places365DatasetTest(ub.datasets.DatasetTest): def testDatasetSize(self): super(Places365DatasetTest, self)._testDatasetSize( ub.datasets.Places365Dataset, (224, 224, 3), validation_percent=0.1) if __name__ == "__main__": tf.test.main()
40a01e3075679851cc169322b9dbbbc9dc892738
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/exclamations/_heeling.py
ffab0ee927e6e8b45a4426cdd4c700dded04cec9
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
from xai.brain.wordbase.exclamations._heel import _HEEL #calss header class _HEELING(_HEEL, ): def __init__(self,): _HEEL.__init__(self) self.name = "HEELING" self.specie = 'exclamations' self.basic = "heel" self.jsondata = {}
2d4172e12adf3d83dd245b7a72488ead42370f77
4d675034878c4b6510e1b45b856cc0a71af7f886
/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py
50689aadf6cab9414aab1a7a9e72ef8231355e4f
[ "Apache-2.0", "BSD-2-Clause-Views", "MIT", "BSD-2-Clause" ]
permissive
shinya7y/UniverseNet
101ebc2ad8f15482ee45ea8d6561aa338a0fa49e
3652b18c7ce68122dae7a32670624727d50e0914
refs/heads/master
2023-07-22T08:25:42.646911
2023-07-08T18:09:34
2023-07-08T18:09:34
263,555,721
407
58
Apache-2.0
2023-01-27T01:13:31
2020-05-13T07:23:43
Python
UTF-8
Python
false
false
390
py
_base_ = '../dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True, True), position='after_conv3') ]))
5f5b8c3d8d2cd2aa32541dee22abcced270af05c
18b9251055f88b6fc28108d2c209d2b71b6b6f5d
/rebnypy/lookups.py
7c5a5411b6df113baed6e7a21d440d6121db1068
[ "MIT" ]
permissive
justinsteffy/rebnypy
03335509513e4ad3f7cb999723db284b5936cd98
e1ca47401d1ffc64d7969a73831de8a63a83751b
refs/heads/master
2020-04-04T05:22:08.026875
2016-08-31T03:17:13
2016-08-31T03:17:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,867
py
LOOKUPS = { "AirConditioning": { "C":"Central", "F":"Free Standing", "M":"Multi-Zone", "N":"None", "T":"Through the Wall", "U":"Unknown Type", "W":"Window Units", }, "Borough": { "BK":"Brooklyn", "BX":"Bronx", "NY":"Manhattan", "QN":"Queens", "SI":"Staten Island", }, "BuildingAccess": { "A":"Attended Elevator", "E":"Elevator", "K":"Keyed Elevator", "N":"None", "W":"Walk-up", }, "BuildingAge": { "O":"Post-war", "R":"Pre-war", }, "BuildingType": { "D":"Development Site", "F":"Loft", "G":"Garage", "H":"High-Rise", "L":"Low-Rise", "M":"Mid-Rise", "O":"Hotel", "P":"Parking Lot", "S":"House", "T":"Townhouse", "V":"Vacant Lot", }, "Heat": { "B":"Baseboard", "C":"Central", "E":"Electric", "G":"Gas", "M":"Multi-Zone", "O":"Oil", "R":"Radiator", "U":"Unknown Type", }, "LeaseTerm": { "1":"One Year", "2":"Two Year", "3":"Short-term", "4":"Month-to-month", "5":"Specific term", "6":"One or Two year", "7":"Short or Long term", }, "LeaseType": { "B":"Stabilized Lease", "C":"Commercial", "N":"Non-Stabilized Lease", "On-Line":"Residential, Inc | IDX API documentation v1.0 | Published 11/01/2014 | Page 27 of 29", "S":"Stabilized Sublease", "U":"Non-Stabilized Sublease", }, # Docs say ListingStatus, but the data is actually Status. So I'm duplicating this lookup here "Status": { "A":"Active", "B":"Board Approved", "C":"Contract Signed", "E":"Leases Signed", "H":"TOM", "I":"POM", "J":"Exclusive Expired", "L":"Leases Out", "O":"Contract Out", "P":"Offer Accepted/Application", "R":"Rented", "S":"Sold", }, "ListingStatus": { "A":"Active", "B":"Board Approved", "C":"Contract Signed", "E":"Leases Signed", "H":"TOM", "I":"POM", "J":"Exclusive Expired", "L":"Leases Out", "O":"Contract Out", "P":"Offer Accepted/Application", "R":"Rented", "S":"Sold", }, "ListingStatusRental": { "A":"Active", "E":"Leases Signed", "H":"TOM", "I":"POM", "J":"Exclusive Expired", "L":"Leases Out", "P":"Application", "R":"Rented", }, "ListingStatusSale": { "A":"Active", "B":"Board Approved", "C":"Contract Signed", "H":"TOM", "I":"POM", "J":"Exclusive Expired", "O":"Contract Out", "P":"Offer Accepted", "S":"Sold", }, "ListingType": { "A":"Ours Alone", "B":"Exclusive", "C":"COF", "L":"Limited", "O":"Open", "Y":"Courtesy", "Z":"Buyer's Broker", }, "MediaType": { "F":"Floor plan", "I":"Interior Photo", "M":"Video", "O":"Other", "V":"Virtual Tour", }, "Ownership": { "C":"Commercial", "D":"Condop", "G":"Garage", "I":"Income Property", "M":"Multi-Family", "N":"Condo", "P":"Co-op", "R":"Rental Property", "S":"Single Family", "T":"Institutional", "V":"Development Site", "X":"Mixed Use", }, "PayPeriod": { "M":"Monthly", "Y":"Yearly", }, "PetPolicy": { "A":"Pets Allowed", "C":"Case By Case", "D":"No Dogs", "N":"No Pets", "T":"No Cats", }, "SalesOrRent": { "R":"Apartment for Rent", "S":"Apartment for Sale", "T":"Building for Sale", }, "ServiceLevel": { "A":"Attended Lobby", "C":"Concierge", "F":"Full Time Doorman", "I":"Voice Intercom", "N":"None", "P":"Part Time Doorman", "S":"Full Service", "U":"Virtual Doorman", "V":"Video Intercom", } } def expand_row(row): output = {} for k, v in row.items(): if k in LOOKUPS: output[k] = LOOKUPS[k].get(v, 'UNKNOWN') elif hasattr(v, 'items'): output[k] = expand_row(v) else: output[k] = v return output
22ca343e3f7395a467d41262e0894c3079afe3eb
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_9542.py
377c17d361a2194f088528cf78b28ae16b57ab04
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
# Python: getting lowest integer in list of tuples &gt;&gt;&gt; nums = [(), (), ('24', '25', '26', '27'), (), (), (), ()] &gt;&gt;&gt; min(int(j) for i in nums for j in i) 24
16b4b2d17bcc535c3735614aee383f6eb07d2f39
c35d2b782a2626e16d72e03902cb37ab8de5548b
/ChikluFood/ChikluFood/settings.py
18ee419de5096165b1beedb3363419508c174314
[]
no_license
Sanketdave12/CHIKLU-FOOD
6139af05138afe5e4322fcb47d167baf22c548a0
a3fa7e781414f55e6629660771ed2b62c107c8e8
refs/heads/master
2023-03-12T03:54:07.015027
2021-02-27T14:38:52
2021-02-27T14:38:52
342,878,187
0
0
null
null
null
null
UTF-8
Python
false
false
3,145
py
""" Django settings for ChikluFood project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_5g5s1*^e+gmrldh*1lg7@eowde)!^3l69xe_j1l*@4mkx@pw)' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'ui.apps.UiConfig', 'api.apps.ApiConfig', 'rest_framework' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ChikluFood.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ChikluFood.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
b0839533fd268a50e8230932fdb9563bcd2b8a32
264ff719d21f2f57451f322e9296b2f55b473eb2
/gvsoc/gvsoc/models/pulp/chips/oprecompkw/apb_soc.py
3b5776e7f50d951a051a5409a2b768e0d1b931f0
[ "Apache-2.0" ]
permissive
knmcguire/gap_sdk
06c9537c16fa45dea6b7f5c6b162b53953262915
7b0a09a353ab6f0550793d40bd46e98051f4a3d7
refs/heads/master
2020-12-20T06:51:19.580497
2020-01-21T14:52:28
2020-01-21T14:52:28
235,992,961
0
0
Apache-2.0
2020-01-24T11:45:59
2020-01-24T11:45:58
null
UTF-8
Python
false
false
786
py
# # Copyright (C) 2018 ETH Zurich and University of Bologna # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: Germain Haugou, ETH ([email protected]) import vp_core as vp class component(vp.component): implementation = 'pulp.chips/oprecompkw/apb_soc_impl'
9f6014f724cb1cccfd86b1c42cd8bece2474f0e8
d039bfad0e8cc3184b8112e23f9a1ef06b4001d3
/map_motif_space.py
4b0987e9c71f09552ac5e8da5b6151b9d3611ae0
[]
no_license
vhsvhs/prob_motif
9afa93f8f3c922103be77052641902c105fe4f16
7bdc2485ead23c7d092cc89d3975b37c52c31135
refs/heads/master
2021-01-01T20:48:55.052391
2012-05-29T22:48:04
2012-05-29T22:48:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,139
py
# # Input: a directory of mlib files # # Output: a graph where node size = # of motifs bounds by a PWM, edge weight = # of motifs jointly bound by two PWMs # from argparser import * import matplotlib.pyplot as plt import networkx as nx import os ap = ArgParser(sys.argv) def build_mlib_hash(genes_files): """genes_files[gene] = path to mlib""" """Returns ret[gene] = list of motifs""" ret = {} for gene in genes_files.keys(): ret[gene] = [] f = genes_files[gene] fin = open(f, "r") lines = fin.readlines() fin.close() for l in lines: if l.__len__() > 2 and False == l.startswith("#"): ret[gene].append( l.strip() ) #print gene, ret[gene] return ret def get_mlib_files(dirpath): """Input: directory path, output = list of mlib files.""" mlib_files = {} for f in os.listdir( dirpath ): if f.__contains__("mlib"): tokens = f.split(".") gene = tokens[1] mlib_files[gene] = dirpath + "/" + f return mlib_files def plot_mlib_distribution(tf_m): mliblens = [] for tf in tf_m.keys(): mliblens.append( tf_m[tf].__len__() ) plt.hist(mliblens, 20) plt.show() def print_mlib_stats( tf_m ): # Build a reverse lookup hash mlen_tf = {} for tf in tf_m.keys(): mlen = tf_m[tf].__len__() if mlen not in mlen_tf: mlen_tf[mlen] = [] mlen_tf[mlen].append( tf ) mlen_sorted = mlen_tf.keys() mlen_sorted.sort() print "\n. Motif Library Details:" print "[N motifs]\t[tfs]" for mlen in mlen_sorted: print mlen, "\t", mlen_tf[mlen] def intersect(a, b): return list(set(a) & set(b)) def plot_motif_space(tf_m): print "\n. Plotting Motif Space..." G = nx.Graph() for tf in tf_m.keys(): G.add_node(tf, size=1.0*tf_m[tf].__len__()) tfs = tf_m.keys() for i in range(0, tfs.__len__()): for j in range(i+1, tfs.__len__()): x = intersect(tf_m[ tfs[i] ], tf_m[ tfs[j] ]).__len__() if x > 0: print tfs[i], tfs[j], x G.add_edge(tfs[i], tfs[j], weight=0.1*x) plt.figure(figsize=(8,8)) pos=nx.spring_layout(G,iterations=20) nodesize=[] for v in G.node: nodesize.append(G.node[v]["size"]) nx.draw_networkx_nodes(G, pos, node_size=nodesize, node_color="blue", alpha=0.5, linewidths=0.1) for e in G.edges(): #print e edgewidth = [ G.get_edge_data(e[0],e[1])["weight"] ] this_edge = [ e ] #print this_edge, edgewidth #print [(pos[e[0]],pos[e[1]]) for e in this_edge] nx.draw_networkx_edges(G, pos, edgelist = this_edge, width = edgewidth) nx.draw_networkx_labels(G, pos, font_size=9, font_family="Helvetica") plt.show() # # # MAIN: # # mlib_dir = ap.getOptionalArg("--mlibdir") if mlib_dir != False: mlib_files = get_mlib_files(mlib_dir) tf_m = build_mlib_hash(mlib_files) plot_mlib_distribution( tf_m ) print_mlib_stats( tf_m ) plot_motif_space( tf_m )
cd27c38ac0da5b55f53fe18973011869bb0c24fd
7a043d45cf0ed0938a10a03121c2b75fdd0cc76a
/081/p081.py
dd354f637d511c2ffdc9af4ac4929a3218868b0c
[]
no_license
tormobr/Project-euler
f8d67292a6426ffba9d589d01c31e2d59249e4ff
b544540b0fee111a6f6cfe332b096fe1ec88935c
refs/heads/master
2020-05-29T17:27:03.767501
2020-02-13T13:06:34
2020-02-13T13:06:34
189,276,911
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
from collections import defaultdict import time def solve(): return dynamic() def create_dict(): d = defaultdict(lambda: []) for i in range(h): for j in range(w): d[(i,j)].append((i+1, j)) d[(i,j)].append((i, j+1)) return d def dynamic(): for i in range(h-1, -1, -1): data[h][i] += data[h][i+1] data[i][w] += data[i+1][w] for i in range(h-1, -1, -1): for j in range(w-1, -1, -1): data[i][j] += min(data[i+1][j], data[i][j+1]) return data[0][0] def read_file(): return [list(map(int, line.split(","))) for line in open("input.txt").read().strip().split("\n")] data = read_file() dist = defaultdict(int) h = len(data) -1 w = len(data[0]) -1 print(solve())
68216f6212a047ad3f07031c8093629b15a45287
c46a3546e58539444e508a97b68cac21e6422baa
/food_order/migrations/0002_auto_20181122_1056.py
8b876e1ffa6057042762c414128bfa639c38c270
[]
no_license
ahsanhabib98/Food-service-system
7b21b9bd3d2f7db381bc01689c6a23d3b16bb933
5bbc50e375d1af8c551b1048f2c6504505ac0cf4
refs/heads/master
2022-12-11T02:35:05.097986
2018-11-28T11:19:23
2018-11-28T11:19:23
159,385,627
0
0
null
2022-12-08T02:27:40
2018-11-27T19:07:25
Python
UTF-8
Python
false
false
1,099
py
# Generated by Django 2.0.5 on 2018-11-22 04:56 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('food_area', '0001_initial'), ('food_order', '0001_initial'), ] operations = [ migrations.CreateModel( name='Client', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('client_name', models.CharField(max_length=100)), ('client_image', models.ImageField(upload_to='images')), ('client_contact_no', models.PositiveIntegerField()), ('area', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='food_area.Area')), ], ), migrations.AddField( model_name='order', name='client_info', field=models.OneToOneField(default=1, on_delete=django.db.models.deletion.CASCADE, to='food_order.Client'), preserve_default=False, ), ]
15a9b3847e9f55cac74d29796b5229c70f430981
626da446e92b58808a179c4fc23c3de5b457e472
/inventory/templatetags/inventory_tags.py
6afb098ccfdf25cede7943eed30a96877ca09a56
[ "BSD-3-Clause" ]
permissive
Eraldo/eraldoenergy
76049cbb06fcc26940b8c004875f8aefbf65a95e
cb07a7722826924df4d416e8930c87f11bec3dd8
refs/heads/master
2020-12-23T17:43:21.683449
2018-05-05T18:12:43
2018-05-05T18:12:43
44,062,390
1
0
null
null
null
null
UTF-8
Python
false
false
659
py
from classytags.helpers import InclusionTag from django import template from django.utils.translation import ugettext_lazy as _ register = template.Library() @register.tag class Item(InclusionTag): name = 'item' template = 'inventory/widgets/item.html' def get_context(self, context, **kwargs): item = context.get('item') if item: return { 'name': item, 'image': item.image_1, 'price': item.price, 'original_price': item.price_original, 'url': item.url, 'id': item.pk, } else: return {}
94730257260c0e6d4e04e0b65fa5129689586ecd
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/OperationTaskDTO.py
989736892e65777dcec20f04f1a0c7083adda82e
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
6,284
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class OperationTaskDTO(object): def __init__(self): self._comment = None self._operation_task_id = None self._operation_task_name = None self._operation_task_type = None self._plan_end_time = None self._plan_start_time = None self._reject_comment = None self._status = None self._status_name = None self._user_id = None self._user_name = None @property def comment(self): return self._comment @comment.setter def comment(self, value): self._comment = value @property def operation_task_id(self): return self._operation_task_id @operation_task_id.setter def operation_task_id(self, value): self._operation_task_id = value @property def operation_task_name(self): return self._operation_task_name @operation_task_name.setter def operation_task_name(self, value): self._operation_task_name = value @property def operation_task_type(self): return self._operation_task_type @operation_task_type.setter def operation_task_type(self, value): self._operation_task_type = value @property def plan_end_time(self): return self._plan_end_time @plan_end_time.setter def plan_end_time(self, value): self._plan_end_time = value @property def plan_start_time(self): return self._plan_start_time @plan_start_time.setter def plan_start_time(self, value): self._plan_start_time = value @property def reject_comment(self): return self._reject_comment @reject_comment.setter def reject_comment(self, value): self._reject_comment = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def status_name(self): return self._status_name @status_name.setter def status_name(self, value): self._status_name = value @property def user_id(self): return self._user_id @user_id.setter def user_id(self, value): self._user_id = value @property def user_name(self): return self._user_name @user_name.setter def user_name(self, value): self._user_name = value def to_alipay_dict(self): params = dict() if self.comment: if hasattr(self.comment, 'to_alipay_dict'): params['comment'] = self.comment.to_alipay_dict() else: params['comment'] = self.comment if self.operation_task_id: if hasattr(self.operation_task_id, 'to_alipay_dict'): params['operation_task_id'] = self.operation_task_id.to_alipay_dict() else: params['operation_task_id'] = self.operation_task_id if self.operation_task_name: if hasattr(self.operation_task_name, 'to_alipay_dict'): params['operation_task_name'] = self.operation_task_name.to_alipay_dict() else: params['operation_task_name'] = self.operation_task_name if self.operation_task_type: if hasattr(self.operation_task_type, 'to_alipay_dict'): params['operation_task_type'] = self.operation_task_type.to_alipay_dict() else: params['operation_task_type'] = self.operation_task_type if self.plan_end_time: if hasattr(self.plan_end_time, 'to_alipay_dict'): params['plan_end_time'] = self.plan_end_time.to_alipay_dict() else: params['plan_end_time'] = self.plan_end_time if self.plan_start_time: if hasattr(self.plan_start_time, 'to_alipay_dict'): params['plan_start_time'] = self.plan_start_time.to_alipay_dict() else: params['plan_start_time'] = self.plan_start_time if self.reject_comment: if hasattr(self.reject_comment, 'to_alipay_dict'): params['reject_comment'] = self.reject_comment.to_alipay_dict() else: params['reject_comment'] = self.reject_comment if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status if self.status_name: if hasattr(self.status_name, 'to_alipay_dict'): params['status_name'] = self.status_name.to_alipay_dict() else: params['status_name'] = self.status_name if self.user_id: if hasattr(self.user_id, 'to_alipay_dict'): params['user_id'] = self.user_id.to_alipay_dict() else: params['user_id'] = self.user_id if self.user_name: if hasattr(self.user_name, 'to_alipay_dict'): params['user_name'] = self.user_name.to_alipay_dict() else: params['user_name'] = self.user_name return params @staticmethod def from_alipay_dict(d): if not d: return None o = OperationTaskDTO() if 'comment' in d: o.comment = d['comment'] if 'operation_task_id' in d: o.operation_task_id = d['operation_task_id'] if 'operation_task_name' in d: o.operation_task_name = d['operation_task_name'] if 'operation_task_type' in d: o.operation_task_type = d['operation_task_type'] if 'plan_end_time' in d: o.plan_end_time = d['plan_end_time'] if 'plan_start_time' in d: o.plan_start_time = d['plan_start_time'] if 'reject_comment' in d: o.reject_comment = d['reject_comment'] if 'status' in d: o.status = d['status'] if 'status_name' in d: o.status_name = d['status_name'] if 'user_id' in d: o.user_id = d['user_id'] if 'user_name' in d: o.user_name = d['user_name'] return o
23dbae54366ea14f75cf9be0f657750d526197d8
67055c66ae4bca82ee61dab1757b73cc21559cfd
/miko.py
ebef8e8f43676019b4164ec58017c98197ecbf5a
[]
no_license
kevinelong/network_python
0482f694c9c050f4226bdfb7cc4fe31df26dd17b
41158808bac5d127c3f3f3cfaea202cb60d7167c
refs/heads/master
2023-07-14T12:20:14.550017
2021-08-26T00:13:45
2021-08-26T00:13:45
359,521,517
1
20
null
2021-04-28T18:08:15
2021-04-19T16:12:03
Python
UTF-8
Python
false
false
2,195
py
from netmiko import ConnectHandler import os os.environ["NET_TEXTFSM"] = "d:/python37/lib/site-packages/ntc_templates/templates" linux = { 'device_type': 'linux', #cisco_ios 'host': '3.81.60.164', 'username': 'kevin', 'password': 'S!mpl312', } c = ConnectHandler(**linux) # use of kwargs optional, could just use regular parameters raw = c.send_command("arp -a") print(raw) r = c.send_command("arp -a", use_textfsm=True) print(r) print(r[0]["ip_address"]) for item in r: print(item) print(item["ip_address"]) """ EXPECTED OUTPUT: [{'rev_dns': '_gateway', 'ip_address': '172.30.1.1', 'mac_address': '0e:18:8d:7f:b8:65', 'hw_type': 'ether', 'interface': 'eth0'}] """ # C:\Users\kevin\ntc-templates # from netmiko import ConnectHandler # import paramiko # private_key_path = "~/.ssh/clvrclvr.pem" # linux = { # 'device_type': 'linux', # 'host': 'clvrclvr.com', # 'username': 'kevin', # 'password': 'S!mpl312', # 'pkey' : paramiko.RSAKey.from_private_key_file(private_key_path) # } # c = ConnectHandler(**linux) # use of kwargs optional, could just use regular parameters # r = c.send_command("arp -a") #SHOW COMMAND OUTPUT #show platform diag """ Chassis type: ASR1004 Slot: R0, ASR1000-RP1 Running state : ok, active Internal state : online Internal operational state : ok Physical insert detect time : 00:00:45 (2w5d ago) Software declared up time : 00:00:45 (2w5d ago) CPLD version : 07062111 Firmware version : 12.2(33r)XNC Slot: F0, ASR1000-ESP10 Running state : ok, active Internal state : online Internal operational state : ok Physical insert detect time : 00:00:45 (2w5d ago) Software declared up time : 00:03:15 (2w5d ago) Hardware ready signal time : 00:00:46 (2w5d ago) Packet ready signal time : 00:04:00 (2w5d ago) CPLD version : 07091401 Firmware version : 12.2(33r)XNC Slot: P0, ASR1004-PWR-AC State : ok Physical insert detect time : 00:03:08 (2w5d ago) Slot: P1, ASR1004-PWR-AC State : ok Physical insert d """
ee39e7c0980af8ab5743db76e6b42c88addd8bd4
dead81f54b0aa5292f69bb5fef69e9910a137fc4
/demo/entrypoint.py
d42cf12bc00a567fb61b3167a8116c7fb936cb17
[ "MIT" ]
permissive
Nekmo/djangocms-bs3-theme
0b7274b73b5072cbb8c737f13a94143363ae864d
1155588414164d6e5d027131e9181856f8a80d5d
refs/heads/master
2023-01-11T19:58:29.922023
2020-03-08T17:10:37
2020-03-08T17:10:37
56,414,025
0
0
MIT
2022-12-26T20:05:06
2016-04-17T01:47:51
CSS
UTF-8
Python
false
false
1,387
py
#!/usr/bin/env python import sys import os import subprocess COMMIT_FILE = '.last_build_commit' os.environ.setdefault('BUILD_DJANGO', '1') os.environ.setdefault('FORCE_BUILD', '1') def execute_command(*args): subprocess.check_call(args) def get_current_commit(): return subprocess.check_output(['git', 'rev-parse', 'HEAD']).decode('utf-8').strip() def read_file(): if not os.path.lexists(COMMIT_FILE): return '' with open(COMMIT_FILE, 'r') as f: return f.read().strip('\n') def write_file(data): if data is None: return with open(COMMIT_FILE, 'w') as f: return f.write(data) def build_now(): execute_command('make', 'collectstatic') # execute_command('./manage.py', 'collectstatic', '--noinput') execute_command('make', 'migrate') def build(force_build=False): current_commit = None if not force_build: current_commit = get_current_commit() if force_build or read_file() != current_commit: try: build_now() except subprocess.CalledProcessError: exit(1) else: write_file(current_commit) def start(*parameters): subprocess.check_call(['gunicorn'] + list(parameters)) if __name__ == '__main__': if os.environ.get('BUILD_DJANGO') == '1': build(os.environ.get('FORCE_BUILD') == '1') start(*sys.argv[1:])
c3acf2f9644f455d0582bdf419bac21f96bab503
eebacbc58a1c99fb6e32f8cd56cac6e18947d3e7
/1.python_foundation/2.String_and_encode.py
266ce0314234e4a8b2c1d08d9bd197a30e5bfb48
[]
no_license
fzingithub/LearnPythonFromLiao
ad7f959d7e667a464f2b9a6b1cedfd0f08baaf8e
fcb0f2e7f905aca253b3986c4a1ceab6b82b7cae
refs/heads/master
2020-03-29T19:37:32.831341
2018-09-27T10:39:11
2018-09-27T10:39:11
150,273,212
0
0
null
null
null
null
UTF-8
Python
false
false
590
py
# -*- coding: utf-8 -*- """ Created on Sat Jan 13 15:25:06 2018 @author: FZ """ #string and unicode #ASCII Unicode 可变长 UTF-8 print ('包含中的string') print (ord('中')) print (chr(20013)) #转码 print ('ABC'.encode('ascii')) print ('中文'.encode('UTF-8')) #字节流编码 print (b'\xe4\xb8\xad\xe6\x96\x87'.decode('UTF-8')) print (len('youareabetterman')) #通配符 excerse s1 = 72 s2 = 85 rate = (85-72)/72*100 print ('%.1f%%'% rate) #小结:python使用的是 unicode编码,直接支持多语言 #string 与 byte转换时需要指定编码最常用的是 UTF-8
2b5c14efee99ffcc5240e049f48d3ac73d1e0b14
762b4373122e5cc791eb81759590008bdfd1f034
/core/models/others/capsnet_em.py
d64ae0859347d99465b89adabc666fd3340a2ac6
[]
no_license
StephenTaylor1998/high-resolution-capsule
50929527e84d57704e1295195c6a1b555367e565
f999b01893bde98eb053d2778e8a1bad526d8293
refs/heads/master
2023-05-11T18:25:50.760820
2021-05-24T09:47:27
2021-05-24T09:47:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,711
py
import torch import torch.nn as nn from core import models from core.layers.others.base import weights_init, resnet20_backbone from core.layers.others.layers_em import EmRouting2d from core.models import resnet18_dwt_tiny_half, resnet18_tiny_half, resnet10_tiny_half class Model(nn.Module): def __init__(self, num_classes, planes=16, num_caps=16, depth=3, backbone=resnet18_dwt_tiny_half, caps_size=16, in_shape=(3, 32, 32)): super(Model, self).__init__() self.num_caps = num_caps self.depth = depth self.layers = backbone(backbone=True, in_channel=in_shape[0]) self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() # ========= ConvCaps Layers for d in range(1, depth): stride = 2 if d == 1 else 1 self.conv_layers.append(EmRouting2d(num_caps, num_caps, caps_size, kernel_size=3, stride=stride, padding=1)) self.norm_layers.append(nn.BatchNorm2d(4 * 4 * num_caps)) final_shape = 4 # EM self.conv_a = nn.Conv2d(num_caps * planes, num_caps, kernel_size=3, stride=1, padding=1, bias=False) self.conv_pose = nn.Conv2d(num_caps * planes, num_caps * caps_size, kernel_size=3, stride=1, padding=1, bias=False) self.bn_a = nn.BatchNorm2d(num_caps) self.bn_pose = nn.BatchNorm2d(num_caps * caps_size) self.fc = EmRouting2d(num_caps, num_classes, caps_size, kernel_size=final_shape, padding=0) self.apply(weights_init) def forward(self, x): out = self.layers(x) # EM a, pose = self.conv_a(out), self.conv_pose(out) a, pose = torch.sigmoid(self.bn_a(a)), self.bn_pose(pose) for m, bn in zip(self.conv_layers, self.norm_layers): a, pose = m(a, pose) pose = bn(pose) a, _ = self.fc(a, pose) out = torch.mean(a, dim=[2, 3], keepdim=False) return out def capsnet_em_depthx1(num_classes=10, args=None, **kwargs): in_shape = (3, 32, 32) if args.in_shape is None else args.in_shape backbone = models.__dict__[args.backbone] return Model(num_classes, depth=1, backbone=backbone, in_shape=in_shape) def capsnet_em_depthx2(num_classes=10, args=None, **kwargs): in_shape = (3, 32, 32) if args.in_shape is None else args.in_shape backbone = models.__dict__[args.backbone] return Model(num_classes, depth=2, backbone=backbone, in_shape=in_shape) def capsnet_em_depthx3(num_classes=10, args=None, **kwargs): in_shape = (3, 32, 32) if args.in_shape is None else args.in_shape backbone = models.__dict__[args.backbone] return Model(num_classes, depth=3, backbone=backbone, in_shape=in_shape)
5b20d25002d847a60df58c8f76a76214777c80ff
7530867a3f3d80600b1f728b65d778f7b4e3deb0
/layers/linear.py
7e903791440ba4262e4e1d8e443136de7d048a95
[ "MIT" ]
permissive
rezer0dai/zer0nets
1fba5895fcb0397ec481b9cdbfa686f7b4cd83e8
982fa69571478dc61c6110f3287fad94af6d4f2c
refs/heads/master
2020-03-24T09:36:23.499160
2018-07-28T00:02:08
2018-07-28T00:02:08
142,632,679
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
import numpy as np from feat_space import * class Linear(FeatureSpace): def name(self): return "linear" def signal(self, x): return x def prime(self, _): return 1.
601a58e65541310880e10f036c051e58ddf089e2
efe3c9ad40200e6a4cc54ade2867e455687eb11b
/home/migrations/0004_message.py
bb97cd54ee190824e8f4994f6e57f1580cb8bcbe
[ "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-public-domain" ]
permissive
andrewhstead/stream-three-project
bec3b70b354b812d1a875ee4e305377038fe179b
60e5f946455f12019a266b8231737435702ff95e
refs/heads/master
2023-06-23T17:53:09.379297
2023-06-13T16:09:22
2023-06-13T16:09:22
126,410,294
0
1
null
null
null
null
UTF-8
Python
false
false
879
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-04-23 23:14 from __future__ import unicode_literals from django.db import migrations, models import tinymce.models class Migration(migrations.Migration): initial = True dependencies = [ ('home', '0003_delete_team'), ] operations = [ migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sender', models.CharField(max_length=100)), ('email', models.EmailField(max_length=100)), ('date_sent', models.DateTimeField(auto_now_add=True)), ('subject', models.CharField(max_length=100)), ('message', tinymce.models.HTMLField(blank=True)), ], ), ]
de5bdd8d7521907a0d02b916dded40acdace4814
bf99b1b14e9ca1ad40645a7423f23ef32f4a62e6
/AtCoder/other/日立製作所_社会システム事業部_プログラミングコンテスト2020/c.py
f0dbb2903e9188f925ea9ea87e867040ab1f0e43
[]
no_license
y-oksaku/Competitive-Programming
3f9c1953956d1d1dfbf46d5a87b56550ff3ab3db
a3ff52f538329bed034d3008e051f30442aaadae
refs/heads/master
2021-06-11T16:14:12.635947
2021-05-04T08:18:35
2021-05-04T08:18:35
188,639,647
0
0
null
null
null
null
UTF-8
Python
false
false
1,161
py
from collections import deque import sys input = sys.stdin.buffer.readline N = int(input()) edges = [[] for _ in range(N)] for _ in range(N - 1): fr, to = map(lambda a: int(a) - 1, input().split()) edges[fr].append(to) edges[to].append(fr) dist = [10**10] * N que = deque([(0, 0)]) while que: now, d = que.popleft() if dist[now] <= d: continue dist[now] = d for to in edges[now]: que.append((to, d + 1)) A = [i for i, d in enumerate(dist) if d % 2 == 0] B = [i for i, d in enumerate(dist) if d % 2 == 1] if len(A) > len(B): A, B = B, A ans = [-1] * N nums = set(range(1, N + 1)) if len(A) <= N // 3: mul = 1 for i in A: ans[i] = 3 * mul nums.remove(3 * mul) mul += 1 nums = list(nums) for i, n in zip(B, nums): ans[i] = n else: mul = 1 for c, i in enumerate(A): if c * 3 + 1 > N: ans[i] = mul * 3 mul += 1 else: ans[i] = c * 3 + 1 for c, i in enumerate(B): if c * 3 + 2 > N: ans[i] = mul * 3 mul += 1 else: ans[i] = c * 3 + 2 print(*ans)
c3b42d25f9116f1bf61fa704be8f0a121762c825
4e097df1d8ee1c864699ce917195aa79e6a78c24
/backend/purple_fire_27872/urls.py
6f28f3da85dcdbeecef932b43d280b8980e4bc0d
[]
no_license
crowdbotics-apps/purple-fire-27872
2ddbac1b9e0a640e80171d6dea3301de204e2a13
d630e111e9144b698d3581fc45c0067a1d52c45c
refs/heads/master
2023-05-15T07:36:11.511788
2021-06-09T13:01:26
2021-06-09T13:01:26
375,356,766
0
0
null
null
null
null
UTF-8
Python
false
false
2,229
py
"""purple_fire_27872 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Purple Fire" admin.site.site_title = "Purple Fire Admin Portal" admin.site.index_title = "Purple Fire Admin" # swagger api_info = openapi.Info( title="Purple Fire API", default_version="v1", description="API documentation for Purple Fire App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
786bbf41efc469014729778a19aca2a7ce6dc054
c991da8bae5a74dec3e6400ca780206758b9840a
/old/Session002/DynamicProgramming/Triangle.py
8e8fef6ae6c114c304f3abc1c5d8ea2d824c1bdf
[]
no_license
MaxIakovliev/algorithms
0503baca3d35c8ad89eca8821c5b2928d805064b
54d3d9530b25272d4a2e5dc33e7035c44f506dc5
refs/heads/master
2021-07-23T02:21:18.443979
2021-07-18T08:05:37
2021-07-18T08:05:37
45,613,974
0
0
null
null
null
null
UTF-8
Python
false
false
586
py
class Solution: """ https://leetcode.com/problems/triangle/ solution: https://leetcode.com/problems/triangle/discuss/38724/7-lines-neat-Java-Solution """ def minimumTotal(self, triangle: 'List[List[int]]') -> int: dp=[0 for i in range(len(triangle)+1)] for i in range(len(triangle)-1,-1,-1): for j in range(len(triangle[i])): dp[j]=min(dp[j],dp[j+1])+triangle[i][j] return dp[0] if __name__ == "__main__": c=Solution() print(c.minimumTotal([ [2], [3,4], [6,5,7], [4,1,8,3] ]))#11
f6180d6e48614c2a0d648ee7c5c04d9b51cdd379
bb311256e15179e929b9fba277e16f67b1e674e5
/backend/athlete_auction_28818/urls.py
122f438761b809957bed0a2e6d02e7d31a115685
[]
no_license
crowdbotics-apps/athlete-auction-28818
bd14650fcf008eca4132ea44a8064e6d8ef93310
457aa0b49b2ac9c2d94e09b7cd6b07ba9a1644d5
refs/heads/master
2023-06-16T17:13:45.772189
2021-07-13T23:46:46
2021-07-13T23:46:46
385,762,299
0
0
null
null
null
null
UTF-8
Python
false
false
2,253
py
"""athlete_auction_28818 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Athlete Auction" admin.site.site_title = "Athlete Auction Admin Portal" admin.site.index_title = "Athlete Auction Admin" # swagger api_info = openapi.Info( title="Athlete Auction API", default_version="v1", description="API documentation for Athlete Auction App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
696ec13eb480eb65068ec5403f76bb30b5f0a8de
71f00ed87cd980bb2f92c08b085c5abe40a317fb
/Data/GoogleCloud/google-cloud-sdk/lib/surface/ai_platform/models/list.py
632e720d7f254e7d84e144a1789781bfd9835dff
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
factoryofthesun/Rao-NLP
2bd8269a8eed1cb352c14c8fde88e3111ccca088
87f9723f5ee51bd21310d58c3425a2a7271ec3c5
refs/heads/master
2023-04-18T08:54:08.370155
2020-06-09T23:24:07
2020-06-09T23:24:07
248,070,291
0
1
null
2021-04-30T21:13:04
2020-03-17T20:49:03
Python
UTF-8
Python
false
false
1,782
py
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ai-platform models list command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.ml_engine import models from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.ml_engine import endpoint_util from googlecloudsdk.command_lib.ml_engine import flags from googlecloudsdk.command_lib.ml_engine import models_util from googlecloudsdk.core import resources _COLLECTION = 'ml.models' _DEFAULT_FORMAT = """ table( name.basename(), defaultVersion.name.basename() ) """ def _GetUri(model): ref = resources.REGISTRY.ParseRelativeName( model.name, models_util.MODELS_COLLECTION) return ref.SelfLink() class List(base.ListCommand): """List existing AI Platform models.""" @staticmethod def Args(parser): parser.display_info.AddFormat(_DEFAULT_FORMAT) parser.display_info.AddUriFunc(_GetUri) flags.GetRegionArg('model').AddToParser(parser) def Run(self, args): with endpoint_util.MlEndpointOverrides(region=args.region): return models_util.List(models.ModelsClient())
5e643721bee6dc4b37e5b40540e5cf632e766789
ccf94dcb6b1500fcbbd56964ae8c4832a496b8b3
/python/baiduads-sdk-auto/baiduads/kr/model/get_kr_file_id_by_words_response_wrapper.py
928cdd391cc8303ddb0b07ed7ed6057fb0718aae
[ "Apache-2.0" ]
permissive
baidu/baiduads-sdk
24c36b5cf3da9362ec5c8ecd417ff280421198ff
176363de5e8a4e98aaca039e4300703c3964c1c7
refs/heads/main
2023-06-08T15:40:24.787863
2023-05-20T03:40:51
2023-05-20T03:40:51
446,718,177
16
11
Apache-2.0
2023-06-02T05:19:40
2022-01-11T07:23:17
Python
UTF-8
Python
false
false
11,702
py
""" dev2 api schema 'dev2.baidu.com' api schema # noqa: E501 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from baiduads.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from baiduads.exceptions import ApiAttributeError def lazy_import(): from baiduads.common.model.api_response_header import ApiResponseHeader from baiduads.kr.model.get_kr_file_id_by_words_response_wrapper_body import GetKRFileIdByWordsResponseWrapperBody globals()['ApiResponseHeader'] = ApiResponseHeader globals()['GetKRFileIdByWordsResponseWrapperBody'] = GetKRFileIdByWordsResponseWrapperBody class GetKRFileIdByWordsResponseWrapper(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'header': (ApiResponseHeader,), # noqa: E501 'body': (GetKRFileIdByWordsResponseWrapperBody,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'header': 'header', # noqa: E501 'body': 'body', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """GetKRFileIdByWordsResponseWrapper - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) header (ApiResponseHeader): [optional] # noqa: E501 body (GetKRFileIdByWordsResponseWrapperBody): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """GetKRFileIdByWordsResponseWrapper - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) header (ApiResponseHeader): [optional] # noqa: E501 body (GetKRFileIdByWordsResponseWrapperBody): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
8bdab1439c9d2449522735f1c720d674074d966f
a560269290749e10466b1a29584f06a2b8385a47
/Notebooks/py/trix999/starting-my-journey-here-with-titanic/starting-my-journey-here-with-titanic.py
15f2cd17c64a621c783a8d96f243d5995897877e
[]
no_license
nischalshrestha/automatic_wat_discovery
c71befad1aa358ae876d5494a67b0f4aa1266f23
982e700d8e4698a501afffd6c3a2f35346c34f95
refs/heads/master
2022-04-07T12:40:24.376871
2020-03-15T22:27:39
2020-03-15T22:27:39
208,379,586
2
1
null
null
null
null
UTF-8
Python
false
false
10,927
py
#!/usr/bin/env python # coding: utf-8 # In[ ]: from sklearn.model_selection import cross_val_score accuracies = cross_val_score(estimator = classifier, X = X_test, y = y_test.astype(int), cv = 10, scoring = 'precision') print("Accuracy mean " + str(accuracies.mean())) print("Accuracy std " + str(accuracies.std())) # std seems high # # Before changing algorithm, let's try to work on features # # *Feature selection* using RFE (recursive feature elimination) # # # In[ ]: from sklearn.feature_selection import RFE rfe = RFE(classifier, 6) rfe = rfe.fit(X_test, y_test.astype(int)) # summarize the selection of the attributes print(rfe.support_) print(rfe.ranking_) # Hello everybody, # # this is my first notebook/competition and I hope to have feedbacks about what I'm doing (especially wrong things). # # I haven't seen other submissions, as I want to start from scratch and see what I can find # # I'm very fascinated by ML and I'm eager to learn as much as possible # # Ok, let's start! # # Besides the results, what I'll like to do is to establish a correct general workflow helping to work with all datasets # # The steps: # # # # 1) Inspect the data to have a first guess of features, relations, instances quality and draw some graph helping to visualize them # # 2) Do some preprocessing (get rid of nan, categorical feature encoding, feature scaling - if necessary) # # 3) Further analysis # # 4) Build a baseline classifier (Logistic Regression in this case) just to have a starting point # # 5) Do features selection and engineering to improve results # # 6) Repeat from step 2 with another approach (algorithm, features, etc) until complete satisfaction :) # In[ ]: # Importing some libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt # Importing the train dataset from file dataset = pd.read_csv('../input/train.csv') #Some info about it dataset.info() dataset.isnull().sum() dataset.describe() # Let's see what we have # # PassengerId: meta # # Survived: target # # Pclass: feature (seems important, based on position probably) # # Name: meta # # Sex: feature (not sure how can impact on surviving an iceberg hit :)) # # Age: feature (maybe target related) # # Sibsp, Parch: (seem important, an event happening to all the people in a group) # # Fare: maybe related to class # # Ticket, Cabin, Embarked: not related, just meta # # # Rows number seems ok respect the features # # Age is missing on 20% data, we'll see how to deal it # In[ ]: # Let's explore the data visually against the target survived_pclass = pd.crosstab([dataset.Pclass], dataset.Survived.astype(bool)) survived_pclass.plot(kind='bar', stacked=False, color=['red','blue'], grid=False) survived_sex = pd.crosstab([dataset.Sex], dataset.Survived.astype(bool)) survived_sex.plot(kind='bar', stacked=False, color=['red','blue'], grid=False) survived_sibsp = pd.crosstab([dataset.SibSp], dataset.Survived.astype(bool)) survived_sibsp.plot(kind='bar', stacked=False, color=['red','blue'], grid=False) survived_parch = pd.crosstab([dataset.Parch], dataset.Survived.astype(bool)) survived_parch.plot(kind='bar', stacked=False, color=['red','blue'], grid=False) plt.show() # So male, with 3rd class and alone is the victim type # High SibSp too seems very deadly :( # # Ok, time to preprocess for further analysis # In[ ]: #get all relevant columns workingDataset = dataset.iloc[:, [1,2,4,5,6,7,9]] # get rid of age nan rows (first approach) workingDataset = workingDataset[np.isfinite(workingDataset['Age'])] # feature/target selection workingData = workingDataset.values X = workingData[:, 1:] y = workingData[:, 0] # encoding feature (sex) from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:,1] = labelencoder_X.fit_transform(X[:, 1]) onehotencoder = OneHotEncoder(categorical_features = [1]) X = onehotencoder.fit_transform(X).toarray() # avoid dummy trap X = X[:, 1:] from sklearn.preprocessing import StandardScaler from pandas import DataFrame sc = StandardScaler() preprocessedData = sc.fit_transform(X) # rebuild feature's dataframe with normalized data for graphs purpose preprocessedDataset = DataFrame(data=preprocessedData) preprocessedDataset.columns = ['Sex','Pclass', 'Age', 'SibSp', 'Parch', 'Fare'] preprocessedDataset.describe() # In[ ]: def rand_jitter(arr): stdev = .01*(max(arr)-min(arr)) return arr + np.random.randn(len(arr)) * stdev colors = np.where(dataset.Survived == 1, 'blue', 'red') plt.scatter(x=rand_jitter(dataset.Parch), y=rand_jitter(dataset.SibSp), c = colors) plt.xlabel('Parch') plt.ylabel('SibSp') # In[ ]: plt.scatter(x=rand_jitter(preprocessedDataset.Age), y=rand_jitter(preprocessedDataset.Fare), c = colors) plt.xlabel('Age') plt.ylabel('Fare') # In[ ]: plt.boxplot(preprocessedData) plt.xlabel("Attribute Index") plt.ylabel(("Quartile Ranges - Normalized ")) # In[ ]: #parallel coordinates nRows = len(preprocessedDataset.index) nCols = len(preprocessedDataset.columns) nDataCol = nCols for i in range(nRows): #assign color based on "1" or "0" labels if y[i] == 1: #survived pcolor = "blue" else: pcolor = "red" #plot rows of data as if they were series data dataRow = preprocessedDataset.iloc[i,0:nDataCol] dataRow.plot(color=pcolor, alpha=0.5) plt.xlabel("Attribute Index") plt.ylabel(("Attribute Values")) plt.show() # # Low correlation betwen features # Fare with some outliers, age should be ok...let's have confirmation with probplots # In[ ]: import scipy.stats as stats import pylab col = 5 colData = [] for row in X: colData.append(float(row[col])) stats.probplot(colData, dist="norm", plot=pylab) pylab.show() col = 2 colData = [] for row in X: colData.append(float(row[col])) stats.probplot(colData, dist="norm", plot=pylab) pylab.show() # In[ ]: corMat = DataFrame(preprocessedDataset.corr()) #visualize correlations using heatmap plt.pcolor(corMat) plt.show() # Correlation is low # # Time to build baseline classifier with Logistic Regression and simple split # In[ ]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(preprocessedData, y, test_size = 0.25, random_state = 0) y_test = y_test.astype(int) y_train = y_train.astype(int) from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) import seaborn as sn sn.heatmap(cm, annot=True) # mmm I'm sure can be better... # # Let's check the accuracy doing k-fold cross validation # In[ ]: from sklearn.model_selection import cross_val_score accuracy = cross_val_score(estimator = classifier, X = X_test, y = y_test, cv = 10, scoring = 'accuracy') print("Accuracy: %0.2f (+/- %0.2f)" % (accuracy.mean(), accuracy.std() * 2)) # std seems high # # Before changing algorithm, let's try to work on features # # *Feature selection* using RFE (recursive feature elimination) # # # In[ ]: from sklearn.feature_selection import RFE rfe = RFE(classifier, 6) rfe = rfe.fit(X_test, y_test) # summarize the selection of the attributes print(rfe.support_) print(rfe.ranking_) # Feature engineering using PCA # # (but should not work given the result of RFE) # In[ ]: from sklearn.decomposition import PCA pca = PCA(n_components = 2) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) explained_variance = pca.explained_variance_ratio_ # Fitting Logistic Regression to the Training set from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train_pca, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test_pca) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) sn.heatmap(cm, annot=True) accuracy = cross_val_score(estimator = classifier, X = X_test_pca, y = y_test, cv = 10, scoring = 'accuracy') print("Accuracy: %0.2f (+/- %0.2f)" % (accuracy.mean(), accuracy.std() * 2)) # In[ ]: from matplotlib.colors import ListedColormap X_set, y_set = X_test_pca, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'blue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'blue'))(i), label = j) plt.title('Logistic Regression (Test set)') plt.xlabel('PC1') plt.ylabel('PC2') plt.legend() plt.show() # Let's try LDA # In[ ]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components = 2) X_train_lda = lda.fit_transform(X_train, y_train) X_test_lda = lda.transform(X_test) # Fitting Logistic Regression to the Training set from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train_lda, y_train) # Predicting the Test set results y_pred_lda = classifier.predict(X_test_lda) # Making the Confusion Matrix cm = confusion_matrix(y_test, y_pred_lda) sn.heatmap(cm, annot=True) accuracy = cross_val_score(estimator = classifier, X = X_test_lda, y = y_test, cv = 10, scoring = 'accuracy') print("Accuracy: %0.2f (+/- %0.2f)" % (accuracy.mean(), accuracy.std() * 2)) # ok, let's finish with kernel-pca using not linear approach # In[ ]: from sklearn.decomposition import KernelPCA kpca = KernelPCA(n_components = 5, kernel = 'rbf') X_train_kpca = kpca.fit_transform(X_train) X_test_kpca = kpca.transform(X_test) # Fitting Logistic Regression to the Training set from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train_kpca, y_train) # Predicting the Test set results y_pred_kpca = classifier.predict(X_test_kpca) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred_kpca) sn.heatmap(cm, annot=True) accuracy = cross_val_score(estimator = classifier, X = X_test_kpca, y = y_test, cv = 10, scoring = 'accuracy') print("Accuracy: %0.2f (+/- %0.2f)" % (accuracy.mean(), accuracy.std() * 2))
0ff085f57b4a9657055b933dc0bfe0597fef0fa4
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/QFXMcwaQZ8FTAuEtg_12.py
c3acc86a9fb4cf4cf4d78a239f5630f30554b163
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
""" Create a function that takes a single character as an argument and returns the char code of its lowercased / uppercased counterpart. ### Examples Given that: - "A" char code is: 65 - "a" char code is: 97 counterpartCharCode("A") ➞ 97 counterpartCharCode("a") ➞ 65 ### Notes * The argument will always be a single character. * Not all inputs will have a counterpart (e.g. numbers), in which case return the inputs char code. """ def counterpartCharCode(char): return (ord(char.swapcase()))
4d38fc618d7a2428148d7e7d91a47a693b58017c
7becaa0c899fb97edcf03b90ca019618ba89deca
/test/test_simple.py
85eedbd799f93203d3915ad3fe4f681e1f7208fe
[ "MIT" ]
permissive
tgbugs/idlib
eed7f828aeb66ed8d9514303fbb965684908f955
369481d059d10a5dd8240c0dc4ce09fc1cfb4301
refs/heads/master
2023-08-07T13:45:04.103554
2023-07-28T00:56:55
2023-07-28T00:56:55
218,661,877
3
0
null
null
null
null
UTF-8
Python
false
false
103
py
import unittest class TestSimple(unittest.TestCase): def test_import(self): import idlib
413532b7ca0867d03a3b8a5fab67927dad30a7fc
494c191e87ae52470b9eb5d38d4851db168ed7cc
/leetcode/0179_largest_number.py
82d09525cd00c4f7825de9c78d6378b767fd839d
[]
no_license
Jeetendranani/yaamnotes
db67e5df1e2818cf6761ab56cf2778cf1860f75e
1f859fb1d26ffeccdb847abebb0f77e9842d2ca9
refs/heads/master
2020-03-19T01:12:45.826232
2018-05-30T20:14:11
2018-05-30T20:14:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,063
py
""" 179. Largest Number Given a list of non negative integers, arrange them such that they form the largest number. For example, given [3, 30, 34, 5, 9], the largest formed number is 9534330. Note the result may be every large, so you need to return a string instead of an integer. Approach 1: Sorting via custom comparator Intuition To construct the largest number, we want to ensure that the most significant digits are occupied by the largest digits. Algorithm: First, we convert each integer to a string. Then, we sort the array of strings. While it might be tempting to simply sort the numbers in descending order, this causes leetcode for set of numbers with the same leading digits. For example, sorting the problem example in descending order would produce the number 9534303, while the correct answer can be achieved by transposing the 3 and 30. Therefore, for each pairwise comparison during the sort, we compare the numbers achieved by concatenating the pair in both orders. We can prove that this sorts into the proper order as following: Assume that (without loss of generality), for some pair of integers a and b, our comparator dictates that a should preceding b in sorted order. This means that a_b > b_a (where _ represents concatenation). For the sort to produce an incorrect ordering, there must be some c for which b precendes c and c precedes a, this is a contradiction because a_b > b_a and b_c > c_b implies a_c > c _a. In other words, our custom comparator preserves transitivity, so the sort is correct. Once the array is sorted, the most "signficant" number will at the front. There is a minor edge case comes up when the array comesup when the array consists of only 0, we can simply return 0. Otherwise, we built a string out of the sorted array and return it. """ class LargerNumKey(str): def __lt__(x, y): return x+y > y+x class Solution: def lagest_number(self, nums): largest_num = ''.join(sorted(max(str, nums), key=LargerNumKey)) return '0' if largest_num[0] == '0' else largest_num
29c57beb7192eb32d1352e5ca01ba1687eed5ad9
c8a04384030c3af88a8e16de4cedc4ef8aebfae5
/stubs/pandas/tests/indexes/timedeltas/test_timedelta_range.pyi
2d3cd837b31cc6f1546a327e09061dedc2bb2bb9
[ "MIT" ]
permissive
Accern/accern-xyme
f61fce4b426262b4f67c722e563bb4297cfc4235
6ed6c52671d02745efabe7e6b8bdf0ad21f8762c
refs/heads/master
2023-08-17T04:29:00.904122
2023-05-23T09:18:09
2023-05-23T09:18:09
226,960,272
3
2
MIT
2023-07-19T02:13:18
2019-12-09T20:21:59
Python
UTF-8
Python
false
false
545
pyi
# Stubs for pandas.tests.indexes.timedeltas.test_timedelta_range (Python 3) # # NOTE: This dynamically typed stub was automatically generated by stubgen. # pylint: disable=unused-argument,redefined-outer-name,no-self-use,invalid-name # pylint: disable=relative-beyond-top-level,line-too-long,arguments-differ from typing import Any class TestTimedeltas: def test_timedelta_range(self) -> None: ... def test_linspace_behavior(self, periods: Any, freq: Any) -> None: ... def test_errors(self) -> None: ...
49c6ca0beb4a387dfc9bada06b432530f567f400
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/lib/googlecloudsdk/command_lib/dataproc/jobs/trino.py
303c27738c721cac3724dfc2ee0bd9e9ac9e78be
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
3,677
py
# -*- coding: utf-8 -*- # # Copyright 2022 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for the Trino job.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.py import encoding from googlecloudsdk.calliope import arg_parsers from googlecloudsdk.command_lib.dataproc.jobs import base as job_base from googlecloudsdk.command_lib.dataproc.jobs import util as job_util class TrinoBase(job_base.JobBase): """Submit a Trino job to a cluster.""" @staticmethod def Args(parser): """Parses command line arguments specific to submitting Trino jobs.""" driver = parser.add_mutually_exclusive_group(required=True) driver.add_argument( '--execute', '-e', metavar='QUERY', dest='queries', action='append', default=[], help='A Trino query to execute.') driver.add_argument( '--file', '-f', help='HCFS URI of file containing the Trino script to execute.') parser.add_argument( '--properties', type=arg_parsers.ArgDict(), metavar='PARAM=VALUE', help='A list of key value pairs to set Trino session properties.') parser.add_argument( '--properties-file', help=job_util.PROPERTIES_FILE_HELP_TEXT) parser.add_argument( '--driver-log-levels', type=arg_parsers.ArgDict(), metavar='PACKAGE=LEVEL', help=('A list of package-to-log4j log level pairs to configure driver ' 'logging. For example: root=FATAL,com.example=INFO')) parser.add_argument( '--continue-on-failure', action='store_true', help='Whether to continue if a query fails.') parser.add_argument( '--query-output-format', help=('The query output display format. See the Trino documentation ' 'for supported output formats.')) parser.add_argument( '--client-tags', type=arg_parsers.ArgList(), metavar='CLIENT_TAG', help='A list of Trino client tags to attach to this query.') @staticmethod def GetFilesByType(args): return {'file': args.file} @staticmethod def ConfigureJob(messages, job, files_by_type, logging_config, args): """Populates the trinoJob member of the given job.""" trino_job = messages.TrinoJob( continueOnFailure=args.continue_on_failure, queryFileUri=files_by_type['file'], loggingConfig=logging_config) if args.queries: trino_job.queryList = messages.QueryList(queries=args.queries) if args.query_output_format: trino_job.outputFormat = args.query_output_format if args.client_tags: trino_job.clientTags = args.client_tags job_properties = job_util.BuildJobProperties( args.properties, args.properties_file) if job_properties: # Sort properties to ensure tests comparing messages not fail on ordering. trino_job.properties = encoding.DictToAdditionalPropertyMessage( job_properties, messages.TrinoJob.PropertiesValue, sort_items=True) job.trinoJob = trino_job
1aa77b0cf7ef09c20fc0e64eec1906052fe467e9
cb14afc9864e370a17f21f4486a17c824fb10294
/simple questions on loops and list comprehensions/Use a List Comprehension to create a list of all numbers between 1 and 50 that are divisible by 3.py
ec1abc951f14dacd5746142d8179b8e0ee50030d
[]
no_license
sandeepshiven/python-practice
92130a1d34fe830433c0526b386ee4550a713d55
1bfa6145c5662231128a39fdfadf8db06f4b0958
refs/heads/master
2020-06-16T12:04:52.983978
2020-02-04T18:19:55
2020-02-04T18:19:55
195,565,480
0
1
null
2019-09-15T18:25:54
2019-07-06T17:21:17
Python
UTF-8
Python
false
false
163
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 18 17:43:26 2019 @author: sandeep """ lst = [x for x in range(1,50) if x%3 == 0] print(lst)
826b03c57e962e20dbce7975d779ddf393b8a6c0
6f8267e19ad9bf828432d34780e7dde92fed054b
/src/exp/expChooseView.py
2da4f79ad80ba95a9f34f71807af50e884eeaf23
[]
no_license
ravika/expresso
3129b5227cfc664d2adbec8c768bea9751898e0b
319380d25e2ca4fc6111651d8e1c7cd98ad44a25
refs/heads/master
2016-08-03T19:32:15.823161
2015-05-02T10:16:37
2015-05-02T10:16:37
35,533,945
1
0
null
null
null
null
UTF-8
Python
false
false
7,198
py
# -*- coding: utf-8 -*- ############## # Written by : Jaley Dholakiya # Video Analytics Lab,IISc ############# # Form implementation generated from reading ui file 'expChooseView.ui' # # Created: Sat Mar 14 01:53:22 2015 # by: PyQt4 UI code generator 4.10.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui import os root = os.getenv('EXPRESSO_ROOT') try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Form(QtGui.QWidget): def __init__(self,parent=None): super(Ui_Form,self).__init__(parent) self.setupUi(self) def setupUi(self, Form): Form.setObjectName(_fromUtf8("Form")) Form.resize(611, 591) Form.setStyleSheet(_fromUtf8("background-color:rgb(195,195,135);")) self.widget = QtGui.QWidget(Form) self.widget.setGeometry(QtCore.QRect(50, 20, 171, 241)) self.widget.setStyleSheet(_fromUtf8("background-color:rgb(195,195,135)")) self.widget.setObjectName(_fromUtf8("widget")) self.label = QtGui.QLabel(self.widget) self.label.setGeometry(QtCore.QRect(20, 170, 201, 71)) self.label.setStyleSheet(_fromUtf8("font: 15pt \"Ubuntu Condensed\";color:rgb(45,60,45)")) self.label.setObjectName(_fromUtf8("label")) self.pushButton = QtGui.QPushButton(self.widget) self.pushButton.setGeometry(QtCore.QRect(10, 20, 141, 141)) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.widget_2 = QtGui.QWidget(Form) self.widget_2.setGeometry(QtCore.QRect(230, 20, 171, 241)) self.widget_2.setStyleSheet(_fromUtf8("background-color:rgb(195,195,135)")) self.widget_2.setObjectName(_fromUtf8("widget_2")) self.pushButton_2 = QtGui.QPushButton(self.widget_2) self.pushButton_2.setGeometry(QtCore.QRect(10, 20, 141, 141)) self.pushButton_2.setObjectName(_fromUtf8("pushButton_2")) self.label_2 = QtGui.QLabel(self.widget_2) self.label_2.setGeometry(QtCore.QRect(10, 170, 151, 71)) self.label_2.setStyleSheet(_fromUtf8("font: 15pt \"Ubuntu Condensed\";color:rgb(45,60,45)")) self.label_2.setObjectName(_fromUtf8("label_2")) self.widget_3 = QtGui.QWidget(Form) self.widget_3.setGeometry(QtCore.QRect(410, 20, 171, 241)) self.widget_3.setStyleSheet(_fromUtf8("background-color:rgb(195,195,135)")) self.widget_3.setObjectName(_fromUtf8("widget_3")) self.pushButton_3 = QtGui.QPushButton(self.widget_3) self.pushButton_3.setGeometry(QtCore.QRect(10, 20, 141, 141)) self.pushButton_3.setObjectName(_fromUtf8("pushButton_3")) self.label_3 = QtGui.QLabel(self.widget_3) self.label_3.setGeometry(QtCore.QRect(10, 170, 151, 71)) self.label_3.setStyleSheet(_fromUtf8("font: 15pt \"Ubuntu Condensed\";color:rgb(45,60,45)")) self.label_3.setObjectName(_fromUtf8("label_3")) self.widget_4 = QtGui.QWidget(Form) self.widget_4.setGeometry(QtCore.QRect(230, 270, 171, 241)) self.widget_4.setStyleSheet(_fromUtf8("background-color:rgb(195,195,135)")) self.widget_4.setObjectName(_fromUtf8("widget_3")) self.pushButton_4 = QtGui.QPushButton(self.widget_4) self.pushButton_4.setGeometry(QtCore.QRect(10, 20, 141, 141)) self.pushButton_4.setObjectName(_fromUtf8("pushButton_3")) self.label_4 = QtGui.QLabel(self.widget_4) self.label_4.setGeometry(QtCore.QRect(10, 170, 151, 71)) self.label_4.setStyleSheet(_fromUtf8("font: 15pt \"Ubuntu Condensed\";color:rgb(45,60,45)")) self.label_4.setObjectName(_fromUtf8("label_3")) self.widget_5 = QtGui.QWidget(Form) self.widget_5.setGeometry(QtCore.QRect(50, 270, 171, 241)) self.widget_5.setStyleSheet(_fromUtf8("background-color:rgb(195,195,135)")) self.widget_5.setObjectName(_fromUtf8("widget_3")) self.pushButton_5 = QtGui.QPushButton(self.widget_5) self.pushButton_5.setGeometry(QtCore.QRect(10, 20, 141, 141)) self.pushButton_5.setObjectName(_fromUtf8("pushButton_3")) self.label_5 = QtGui.QLabel(self.widget_5) self.label_5.setGeometry(QtCore.QRect(10, 170, 151, 71)) self.label_5.setStyleSheet(_fromUtf8("font: 15pt \"Ubuntu Condensed\";color:rgb(45,60,45)")) self.label_5.setObjectName(_fromUtf8("label_3")) self.widget_4.hide() #To to decided(to remove or not) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): Form.setWindowTitle(_translate("Form", "Form", None)) self.label.setText(_translate("Form", "Extract Features\n" "via pre-trained net", None)) self.setPushButtonIcons() self.label_2.setText(_translate("Form", "Visuallize deep\n" "network Features", None)) self.label_3.setText(_translate("Form", "Evaluate \n" "pre-trained Net", None)) self.label_4.setText(_translate("Form", "Model Weight \n" "Surgery", None)) self.label_5.setText(_translate("Form", "Evaluate \n" "pre-trained SVM", None)) def setPushButtonIcons(self): icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8(root+"/res/exp/extractFeatures.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton.setIcon(icon) self.pushButton.setIconSize(QtCore.QSize(141,141)) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(_fromUtf8(root+"/res/exp/visuallize.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_2.setIcon(icon1) self.pushButton_2.setIconSize(QtCore.QSize(141,141)) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(_fromUtf8(root+"/res/exp/accuracy.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_3.setIcon(icon2) self.pushButton_3.setIconSize(QtCore.QSize(141,141)) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(_fromUtf8(root+"/res/exp/accuracy.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_4.setIcon(icon3) self.pushButton_4.setIconSize(QtCore.QSize(141,141)) icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(_fromUtf8(root+"/res/exp/accuracy.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_5.setIcon(icon4) self.pushButton_5.setIconSize(QtCore.QSize(141,141)) def clickSlot(self): icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(_fromUtf8(root+"/src/train/images/visuallize.jpg")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton.setIcon(icon1) self.pushButton.setIconSize(QtCore.QSize(141,141)) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Form = QtGui.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
1e657850c5da26a216c9f3c344f970b5484ce00d
56cf9276e7e503cf0121151fbcdfc7d299ddd185
/gbp/scripts/import_srpm.py
5771d30c236b42104cd07cc5f2a0687e817e8249
[]
no_license
maxyz/git-buildpackage
f1aeb1da37b0ddf653886bf03a757d4480880b6c
bf46e26ff985802277fa500a8ecc515acc5da093
refs/heads/master
2021-01-15T13:42:48.804282
2016-08-15T06:45:08
2016-08-15T06:46:06
66,767,668
0
0
null
2016-08-28T12:45:56
2016-08-28T12:45:55
null
UTF-8
Python
false
false
19,145
py
# vim: set fileencoding=utf-8 : # # (C) 2006,2007,2011 Guido Guenther <[email protected]> # (C) 2012 Intel Corporation <[email protected]> # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, please see # <http://www.gnu.org/licenses/> """Import an RPM source package into a Git repository""" import sys import re import os import glob import time import shutil import errno from six.moves.urllib.request import urlopen from six.moves import urllib import gbp.command_wrappers as gbpc from gbp.tmpfile import init_tmpdir, del_tmpdir, tempfile from gbp.rpm import (parse_srpm, guess_spec, SpecFile, NoSpecError, RpmUpstreamSource, compose_version_str) from gbp.rpm.git import (RpmGitRepository, GitRepositoryError) from gbp.git.modifier import GitModifier from gbp.config import (GbpOptionParserRpm, GbpOptionGroup, no_upstream_branch_msg) from gbp.errors import GbpError from gbp.scripts.common import ExitCodes import gbp.log from gbp.pkg import parse_archive_filename no_packaging_branch_msg = """ Repository does not have branch '%s' for packaging/distribution sources. You need to reate it or use --packaging-branch to specify it. """ class SkipImport(Exception): """Nothing imported""" pass def download_file(target_dir, url): """Download a remote file""" gbp.log.info("Downloading '%s'..." % url) try: urlobj = urlopen(url) local_fn = os.path.join(target_dir, os.path.basename(url)) with open(local_fn, "wb") as local_file: local_file.write(urlobj.read()) except urllib.error.HTTPError as err: raise GbpError("Download failed: %s" % err) except urllib.error.URLError as err: raise GbpError("Download failed: %s" % err.reason) return local_fn def download_source(pkg): """Download package from a remote location""" if re.match(r'[a-z]{1,5}://', pkg): mode = 'python urllib' else: mode = 'yumdownloader' tmpdir = tempfile.mkdtemp(prefix='download_') gbp.log.info("Trying to download '%s' using '%s'..." % (pkg, mode)) if mode == 'yumdownloader': gbpc.RunAtCommand('yumdownloader', ['--source', '--destdir=', '.', pkg], shell=False)(dir=tmpdir) else: download_file(tmpdir, pkg) srpm = glob.glob(os.path.join(tmpdir, '*.src.rpm'))[0] return srpm def committer_from_author(author, options): """Get committer info based on options""" committer = GitModifier() if options.author_is_committer: committer.name = author.name committer.email = author.email return committer def move_tag_stamp(repo, tag_format, tag_str_fields): "Move tag out of the way appending the current timestamp" old = repo.version_to_tag(tag_format, tag_str_fields) new = repo.version_to_tag('%s~%d' % (tag_format, int(time.time())), tag_str_fields) repo.move_tag(old, new) def set_bare_repo_options(options): """Modify options for import into a bare repository""" if options.pristine_tar: gbp.log.info("Bare repository: setting %s option '--no-pristine-tar'") options.pristine_tar = False def force_to_branch_head(repo, branch): """Checkout branch and reset --hard""" if repo.get_branch() == branch: # Update HEAD if we modified the checked out branch repo.force_head(branch, hard=True) # Checkout packaging branch repo.set_branch(branch) def build_parser(name): """Construct command line parser""" try: parser = GbpOptionParserRpm(command=os.path.basename(name), prefix='', usage='%prog [options] /path/to/package' '.src.rpm') except GbpError as err: gbp.log.err(err) return None import_group = GbpOptionGroup(parser, "import options", "pristine-tar and filtering") tag_group = GbpOptionGroup(parser, "tag options", "options related to git tag creation") branch_group = GbpOptionGroup(parser, "version and branch naming options", "version number and branch layout options") for group in [import_group, branch_group, tag_group ]: parser.add_option_group(group) parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="verbose command execution") parser.add_config_file_option(option_name="color", dest="color", type='tristate') parser.add_config_file_option(option_name="color-scheme", dest="color_scheme") parser.add_config_file_option(option_name="tmp-dir", dest="tmp_dir") parser.add_config_file_option(option_name="vendor", action="store", dest="vendor") parser.add_option("--download", action="store_true", dest="download", default=False, help="download source package") branch_group.add_config_file_option(option_name="packaging-branch", dest="packaging_branch") branch_group.add_config_file_option(option_name="upstream-branch", dest="upstream_branch") branch_group.add_boolean_config_file_option( option_name="create-missing-branches", dest="create_missing_branches") branch_group.add_option("--orphan-packaging", action="store_true", dest="orphan_packaging", default=False, help="The packaging branch doesn't base on upstream") branch_group.add_option("--native", action="store_true", dest="native", default=False, help="This is a dist native package, no separate " "upstream branch") tag_group.add_boolean_config_file_option(option_name="sign-tags", dest="sign_tags") tag_group.add_config_file_option(option_name="keyid", dest="keyid") tag_group.add_config_file_option(option_name="packaging-tag", dest="packaging_tag") tag_group.add_config_file_option(option_name="upstream-tag", dest="upstream_tag") import_group.add_config_file_option(option_name="filter", dest="filters", action="append") import_group.add_boolean_config_file_option(option_name="pristine-tar", dest="pristine_tar") import_group.add_option("--allow-same-version", action="store_true", dest="allow_same_version", default=False, help="allow to import already imported version") import_group.add_boolean_config_file_option( option_name="author-is-committer", dest="author_is_committer") import_group.add_config_file_option(option_name="packaging-dir", dest="packaging_dir") return parser def parse_args(argv): """Parse commandline arguments""" parser = build_parser(argv[0]) if not parser: return None, None (options, args) = parser.parse_args(argv[1:]) gbp.log.setup(options.color, options.verbose, options.color_scheme) return options, args def main(argv): """Main function of the git-import-srpm script""" dirs = dict(top=os.path.abspath(os.curdir)) ret = 0 skipped = False options, args = parse_args(argv) if not options: return ExitCodes.parse_error if len(args) != 1: gbp.log.err("Need to give exactly one package to import. Try --help.") return 1 try: dirs['tmp_base'] = init_tmpdir(options.tmp_dir, 'import-srpm_') except GbpError as err: gbp.log.err(err) return 1 try: srpm = args[0] if options.download: srpm = download_source(srpm) # Real srpm, we need to unpack, first true_srcrpm = False if not os.path.isdir(srpm) and not srpm.endswith(".spec"): src = parse_srpm(srpm) true_srcrpm = True dirs['pkgextract'] = tempfile.mkdtemp(prefix='pkgextract_') gbp.log.info("Extracting src rpm to '%s'" % dirs['pkgextract']) src.unpack(dirs['pkgextract']) preferred_spec = src.name + '.spec' srpm = dirs['pkgextract'] elif os.path.isdir(srpm): preferred_spec = os.path.basename(srpm.rstrip('/')) + '.spec' else: preferred_spec = None # Find and parse spec file if os.path.isdir(srpm): gbp.log.debug("Trying to import an unpacked srpm from '%s'" % srpm) dirs['src'] = os.path.abspath(srpm) spec = guess_spec(srpm, True, preferred_spec) else: gbp.log.debug("Trying to import an srpm from '%s' with spec "\ "file '%s'" % (os.path.dirname(srpm), srpm)) dirs['src'] = os.path.abspath(os.path.dirname(srpm)) spec = SpecFile(srpm) # Check the repository state try: repo = RpmGitRepository('.') is_empty = repo.is_empty() (clean, out) = repo.is_clean() if not clean and not is_empty: gbp.log.err("Repository has uncommitted changes, commit " "these first: ") raise GbpError(out) except GitRepositoryError: gbp.log.info("No git repository found, creating one.") is_empty = True repo = RpmGitRepository.create(spec.name) os.chdir(repo.path) if repo.bare: set_bare_repo_options(options) # Create more tempdirs dirs['origsrc'] = tempfile.mkdtemp(prefix='origsrc_') dirs['packaging_base'] = tempfile.mkdtemp(prefix='packaging_') dirs['packaging'] = os.path.join(dirs['packaging_base'], options.packaging_dir) try: os.mkdir(dirs['packaging']) except OSError as err: if err.errno != errno.EEXIST: raise if true_srcrpm: # For true src.rpm we just take everything files = os.listdir(dirs['src']) else: # Need to copy files to the packaging directory given by caller files = [os.path.basename(patch.path) \ for patch in spec.patchseries(unapplied=True, ignored=True)] for filename in spec.sources().values(): files.append(os.path.basename(filename)) files.append(os.path.join(spec.specdir, spec.specfile)) # Don't copy orig source archive, though if spec.orig_src and spec.orig_src['filename'] in files: files.remove(spec.orig_src['filename']) for fname in files: fpath = os.path.join(dirs['src'], fname) if os.path.exists(fpath): shutil.copy2(fpath, dirs['packaging']) else: gbp.log.err("File '%s' listed in spec not found" % fname) raise GbpError # Unpack orig source archive if spec.orig_src: orig_tarball = os.path.join(dirs['src'], spec.orig_src['filename']) sources = RpmUpstreamSource(orig_tarball) sources.unpack(dirs['origsrc'], options.filters) else: sources = None src_tag_format = options.packaging_tag if options.native \ else options.upstream_tag tag_str_fields = dict(spec.version, vendor=options.vendor.lower()) src_tag = repo.version_to_tag(src_tag_format, tag_str_fields) ver_str = compose_version_str(spec.version) if repo.find_version(options.packaging_tag, tag_str_fields): gbp.log.warn("Version %s already imported." % ver_str) if options.allow_same_version: gbp.log.info("Moving tag of version '%s' since import forced" % ver_str) move_tag_stamp(repo, options.packaging_tag, tag_str_fields) else: raise SkipImport if is_empty: options.create_missing_branches = True # Determine author and committer info, currently same info is used # for both sources and packaging files author = None if spec.packager: match = re.match(r'(?P<name>.*[^ ])\s*<(?P<email>\S*)>', spec.packager.strip()) if match: author = GitModifier(match.group('name'), match.group('email')) if not author: author = GitModifier() gbp.log.debug("Couldn't determine packager info") committer = committer_from_author(author, options) # Import sources if sources: src_commit = repo.find_version(src_tag_format, tag_str_fields) if not src_commit: gbp.log.info("Tag %s not found, importing sources" % src_tag) branch = [options.upstream_branch, options.packaging_branch][options.native] if not repo.has_branch(branch): if options.create_missing_branches: gbp.log.info("Will create missing branch '%s'" % branch) else: gbp.log.err(no_upstream_branch_msg % branch + "\n" "Also check the --create-missing-branches option.") raise GbpError src_vendor = "Native" if options.native else "Upstream" msg = "%s version %s" % (src_vendor, spec.upstreamversion) src_commit = repo.commit_dir(sources.unpacked, "Import %s" % msg, branch, author=author, committer=committer, create_missing_branch=options.create_missing_branches) repo.create_tag(name=src_tag, msg=msg, commit=src_commit, sign=options.sign_tags, keyid=options.keyid) if not options.native: if options.pristine_tar: archive_fmt = parse_archive_filename(orig_tarball)[1] if archive_fmt == 'tar': repo.pristine_tar.commit(orig_tarball, 'refs/heads/%s' % options.upstream_branch) else: gbp.log.warn('Ignoring pristine-tar, %s archives ' 'not supported' % archive_fmt) else: gbp.log.info("No orig source archive imported") # Import packaging files. For native packages we assume that also # packaging files are found in the source tarball if not options.native or not sources: gbp.log.info("Importing packaging files") branch = options.packaging_branch if not repo.has_branch(branch): if options.create_missing_branches: gbp.log.info("Will create missing branch '%s'" % branch) else: gbp.log.err(no_packaging_branch_msg % branch + "\n" "Also check the --create-missing-branches " "option.") raise GbpError tag = repo.version_to_tag(options.packaging_tag, tag_str_fields) msg = "%s release %s" % (options.vendor, ver_str) if options.orphan_packaging or not sources: commit = repo.commit_dir(dirs['packaging_base'], "Import %s" % msg, branch, author=author, committer=committer, create_missing_branch=options.create_missing_branches) else: # Copy packaging files to the unpacked sources dir try: pkgsubdir = os.path.join(sources.unpacked, options.packaging_dir) os.mkdir(pkgsubdir) except OSError as err: if err.errno != errno.EEXIST: raise for fname in os.listdir(dirs['packaging']): shutil.copy2(os.path.join(dirs['packaging'], fname), pkgsubdir) commit = repo.commit_dir(sources.unpacked, "Import %s" % msg, branch, other_parents=[src_commit], author=author, committer=committer, create_missing_branch=options.create_missing_branches) # Import patches on top of the source tree # (only for non-native packages with non-orphan packaging) force_to_branch_head(repo, options.packaging_branch) # Create packaging tag repo.create_tag(name=tag, msg=msg, commit=commit, sign=options.sign_tags, keyid=options.keyid) force_to_branch_head(repo, options.packaging_branch) except KeyboardInterrupt: ret = 1 gbp.log.err("Interrupted. Aborting.") except gbpc.CommandExecFailed: ret = 1 except GitRepositoryError as err: gbp.log.err("Git command failed: %s" % err) ret = 1 except GbpError as err: if str(err): gbp.log.err(err) ret = 1 except NoSpecError as err: gbp.log.err("Failed determine spec file: %s" % err) ret = 1 except SkipImport: skipped = True finally: os.chdir(dirs['top']) del_tmpdir() if not ret and not skipped: gbp.log.info("Version '%s' imported under '%s'" % (ver_str, spec.name)) return ret if __name__ == '__main__': sys.exit(main(sys.argv)) # vim:et:ts=4:sw=4:et:sts=4:ai:set list listchars=tab\:»·,trail\:·:
a18d2854e9b097c3be8c7134d21f2cde9d04db3a
7aa33a8a8d5360523bf2f6a2ce73f93fd5e63d23
/robotics/Controll.py
e51768b510a2c08a7bac2113c5a90f9ab486318c
[]
no_license
iamMHZ/image-processing-with-opencv
33b6fac0d50649c99fe35f078af8a38d53358447
7412f182ad564905bf24c8fa30f0492b7eb01bd1
refs/heads/master
2021-03-17T16:31:23.640213
2020-05-09T10:22:04
2020-05-09T10:22:04
247,002,943
2
0
null
null
null
null
UTF-8
Python
false
false
172
py
import inputs print(inputs.devices.gamepads) while True: events = inputs.get_gamepad() for event in events: print(event.ev_type, event.code, event.state)
40647bde765a91a69ab9bf788cf3b28a4ec6715a
e811662c890217c77b60aa2e1295dd0f5b2d4591
/src/problem_763.py
33eb4a1f687002f6082644d2dd08682d2f076cda
[]
no_license
rewonderful/MLC
95357f892f8cf76453178875bac99316c7583f84
7012572eb192c29327ede821c271ca082316ff2b
refs/heads/master
2022-05-08T05:24:06.929245
2019-09-24T10:35:22
2019-09-24T10:35:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
968
py
#!/usr/bin/env python # _*_ coding:utf-8 _*_ def partitionLabels(S): """ 算法:贪心,双指针 思路: 记录每个字母的最后出现的位置,再遍历整个字符串,用一个指针start和end记录当前区间的起止位置, 目标区间应该是能使得区间内的所有字母都只出现在区间内的最短的区间, 所以再遍历一次S,设置end = max(end, last[char]),当前位置 == end时,就说明一段区间已经 添加完了,ans append进去,更新start为end + 1 为下一区段的开始处 说是贪心就是因为是处理完一小段再处理一小段,前后还没关系 """ last = {char: position for position, char in enumerate(S)} start = end = 0 ans = [] for position, char in enumerate(S): end = max(end, last[char]) if position == end: ans.append(end - start + 1) start = end + 1 return ans
6aecf7de4273913f02af82ef752225319d622d37
ddf002d1084d5c63842a6f42471f890a449966ee
/basics/Python/PYTHON --------/Loops/for_perfect_number.py
12c1710e98af7953b5053badaf4ec9ed6496e5f7
[]
no_license
RaghavJindal2000/Python
0ab3f198cbc5559bdf46ac259c7136356f7f09aa
8e5c646585cff28ba3ad9bd6c384bcb5537d671a
refs/heads/master
2023-01-01T23:56:02.073029
2020-10-18T19:30:01
2020-10-18T19:30:01
263,262,452
0
0
null
null
null
null
UTF-8
Python
false
false
185
py
num=int(input("Enter the Number : ")) sum=0 for i in range(1,int(num/2)+1): if(num%i==0): sum=sum+i if(sum==num): print("Perfect Number") else: print("Not Perfect Number") input()
a77a33ec7d947da341e4206109d82d8d7f44e697
11aaeaeb55d587a950456fd1480063e1aed1d9e5
/.history/test_20190626133340.py
12865a307e437ef3704eed2ac3124c68bd758365
[]
no_license
Gr4cchus/Learn-Python-3-The-Hard-Way
8ce9e68f6a91ea33ea45fe64bfff82d65422c4a8
f5fa34db16cdd6377faa7fcf45c70f94bb4aec0d
refs/heads/master
2020-05-17T23:18:29.483160
2019-06-26T18:42:52
2019-06-26T18:42:52
184,023,439
0
0
null
null
null
null
UTF-8
Python
false
false
2,413
py
import random # # class Foo: # # answer = 42 # # f1 = Foo() # # f2 = Foo() # # print(f1.answer) # # print(f2.answer) # # # both will print 42 # # f1.answer = 84 # # Foo.answer = 21 # # print(f1.answer) # 84 # # print(f2.answer) # 21 # class Foo: # def __init__(self): # self.answer = 42 # f1 = Foo() # f2 = Foo() # # f2.answer = 4000 # Foo.answer = 21 # # f1.answer = 2000 # print(f1.answer) # print(f2.answer) # # both will print 42 still class Scenes(object): # def __init__(self): # # self.starting_room = starting_room # # self.locations = { # # 'room1': Room1(), # # 'room2': Room2() # # } map_list = [ 'room1', 'room2', 'finish' ] def start(self): print("You are at the start") print("Where would you like to go") self.locations() def room1(self): print("You enter room 1") print("Where would you like to go") self.locations() def room2(self): print("You enter room 2") print("Where would you like to go") self.locations() def finish(self): print("You have finished") exit(0) def locations(self): print("def locations:", self.map_list) for i in self.map_list: print(i) cmd = { 'room1': room1, 'room2': room2, } def guessing_game(self): n = random.randint(1,4) print("Oh no a mini-game.") print("Guess the number between 1-4. To pass") answer = 0 while answer =! n: answer = input("> ") print("wrong guess again!") if answer == n: print("Success") # class Map(Scenes): # a = Scenes() # map_dict = { # 'room1': a.room1(), # 'room2': a.room2(), # } # class Engine(): # def __init__(self, map): # self.map = map # def play(self): # while True: # # a = self.map.dict_locations # print('yes') thescenes = Scenes() # thelocations = Locations() # thedict = thelocations.map() # while True: # print("loop") # thelocations.map.dict_locations.get('room1') thescenes.start() while True: action = input("> ") if action in thescenes.map_list: print("success") thescenes.map_list[action](thescenes)
1f79efdb1f12760d507a1294acfc682189e2cc4f
200abee8ebb5fa255e594c8d901c8c68eb9c1a9c
/venv/01_Stepik/Python_Osnovi_i_primenenie/2.3_2.py
50544368335316c290b184d30ded2008229713e4
[]
no_license
Vestenar/PythonProjects
f083cbc07df57ea7a560c6b18efed2bb0dc42efb
f8fdf9faff013165f8d835b0ccb807f8bef6dac4
refs/heads/master
2021-07-20T14:14:15.739074
2019-03-12T18:05:38
2019-03-12T18:05:38
163,770,129
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
import itertools def primes(): num = 2 while True: if is_prime(num): yield num num += 1 def is_prime(num): if num == 2: return True if num % 2 == 0: return False for _ in range(3, num // 2, 2): if num % _ == 0: return False return True print(list(itertools.takewhile(lambda x : x <= 31, primes())))
e3740376355a7ad6d32d7fb3097ea9e1f04a6db2
4df3712caff818c0554e7fbe4b97dee5fcfd8675
/common/sendMail.py
e8175fd9a7b1c03e70da7d866819a40cdff5ba85
[]
no_license
Qingyaya/interface
456057a740bd77ba6c38eda27dd1aef658e0add9
3ae37816f52ad8c45e192596a854848d8e546b14
refs/heads/master
2020-03-22T07:16:04.171904
2018-12-05T05:20:25
2018-12-05T05:20:25
139,690,021
0
0
null
null
null
null
UTF-8
Python
false
false
1,523
py
from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import smtplib from common.ReadConfig import ReadConfig from common.Log import Log log=Log() rc=ReadConfig() def send_mail(report_file): sender=rc.get_email('sender') psw=rc.get_email('psw') receiver=rc.get_email('receiver') smtpserver=rc.get_email('smtp_server') port=rc.get_email('port') with open(report_file,'rb') as f: mailbody = f.read() # 定义邮件内容 msg = MIMEMultipart() body = MIMEText(mailbody, _subtype='html', _charset='utf-8') msg['Subject'] = u'自动化测试报告' msg['from'] = sender msg['To'] = ', '.join(eval(receiver)) msg.attach(body) # 添加附件 att = MIMEText(open(report_file, 'rb').read(), 'base64', 'utf-8') att['Content-Type'] = 'application/octet-stream' att['Content-Disposition'] = 'attachment; filename = "TestReport.html"' msg.attach(att) try: smtp = smtplib.SMTP_SSL(smtpserver, port) except: smtp = smtplib.SMTP() smtp.connect(smtpserver, port) # 用户名密码 try: smtp.login(sender, psw) smtp.sendmail(sender, eval(receiver), msg.as_string()) log.info('Send mail Success!!! test report email has send out!') except Exception as e: log.error('Send Mail Failed !!! error: %s' %e) smtp.quit() if __name__ == '__main__': report_file='E:\\IDScloud_ui_demo\\report\\20180517\\20180517100220.html' send_mail(report_file)
3035e52b9cc917ae6870cd17760f97e41ca9995c
b5a9d42f7ea5e26cd82b3be2b26c324d5da79ba1
/tensorflow/python/keras/applications/mobilenet.py
97c6b85882e6ea224b0201820317c92823c32ddd
[ "Apache-2.0" ]
permissive
uve/tensorflow
e48cb29f39ed24ee27e81afd1687960682e1fbef
e08079463bf43e5963acc41da1f57e95603f8080
refs/heads/master
2020-11-29T11:30:40.391232
2020-01-11T13:43:10
2020-01-11T13:43:10
230,088,347
0
0
Apache-2.0
2019-12-25T10:49:15
2019-12-25T10:49:14
null
UTF-8
Python
false
false
1,662
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """MobileNet v1 models for Keras. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from keras_applications import mobilenet from tensorflow.python.keras.applications import keras_modules_injection from tensorflow.python.util.tf_export import keras_export @keras_export('keras.applications.mobilenet.MobileNet', 'keras.applications.MobileNet') @keras_modules_injection def MobileNet(*args, **kwargs): return mobilenet.MobileNet(*args, **kwargs) @keras_export('keras.applications.mobilenet.decode_predictions') @keras_modules_injection def decode_predictions(*args, **kwargs): return mobilenet.decode_predictions(*args, **kwargs) @keras_export('keras.applications.mobilenet.preprocess_input') @keras_modules_injection def preprocess_input(*args, **kwargs): return mobilenet.preprocess_input(*args, **kwargs)
b516fc14e72cd98ba60397e18718e0b2b396a2e6
b43cee0973a455a58b74233d4e02d522587f93ae
/skillbox/basic/module22/war_peace.py
1871dfaea75c70bd1b4c14d260a3e1c153729316
[]
no_license
ivadimn/py-input
5861cc92758378f44433bd6b1af7ba78da04d1c0
bbfdd74c4dffe66440490d79082de2c0318e5027
refs/heads/master
2023-08-15T03:34:01.916026
2023-07-24T14:48:08
2023-07-24T14:48:08
202,401,715
0
0
null
null
null
null
UTF-8
Python
false
false
1,134
py
import zipfile import string def frequency(text: str) -> dict: len_text = len(text) symbols = set(text) freq = {ch: text.count(ch) / len_text for ch in sorted(symbols)} return {key : freq[key] for key in sorted(freq, key=freq.get)} exclude = string.punctuation + " 0123456789" + \ "\u3002\u201e\u201c\u201f\u201d\u301e\u301f\u00ab\u00bb\u00b7\u00a8" + \ "\u2116\u00a0\u00b0\u00ac\u0227\u2007\u2026\u2012\u2013\u2014\n\r\t" table = "".maketrans("", "", exclude) zip_file = zipfile.ZipFile("voyna-i-mir.zip") print(zip_file.namelist()) text = "" for fileName in zip_file.namelist(): bytes = zip_file.read(fileName) content = bytes.decode("UTF-8") content = content.translate(table) text = text.join(content) zip_file.close() freq_table = frequency(text) freq_file = open("wp_analysis.txt", "w") print("\nСдержимое файла wp_analysis.txt: \n") for k, v in freq_table.items(): if k.isalpha(): line = "{0} {1}\n".format(k, v) else: line = "{0} {1}\n".format(ord(k), v) print(line, end = "") freq_file.write(line) print() freq_file.close()
d674d9782d314530754af4814fa59a5ad03c66f8
630681b5a80acdad9b5597449559ecf89e917aa0
/env/bin/cftp
e46f526ce10262450281bfedc3754cf60aefe6d6
[]
no_license
stuartses/trivia
ed5cd090fe7143159c8ed669edd5540de5f9f0f4
203b9ff4b3834d4f4a58c23f573187d0f960a64c
refs/heads/master
2022-12-17T15:57:09.735439
2020-09-20T16:32:24
2020-09-20T16:32:24
296,960,114
0
0
null
null
null
null
UTF-8
Python
false
false
411
#!/home/stuartes/repositories/chat/env/bin/python3 # EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==20.3.0','console_scripts','cftp' __requires__ = 'Twisted==20.3.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('Twisted==20.3.0', 'console_scripts', 'cftp')() )
b6357591f310a910f5139ea6c1aafba52ff7d277
d9d0d3a82d5ba4016097491c276409b9b1ea778a
/Kattis/relocation.py
99a38f2674f48771aab4f6fdf4bd413803ff3370
[ "MIT" ]
permissive
ruidazeng/online-judge
311b9f2c3120b47da91da2d404e2ea1d9a2a24dd
6bdf8bbf1af885637dab474d0ccb58aff22a0933
refs/heads/master
2022-02-16T00:35:11.852600
2022-01-26T02:28:53
2022-01-26T02:28:53
191,827,952
0
1
MIT
2019-07-31T10:25:36
2019-06-13T20:21:18
Python
UTF-8
Python
false
false
273
py
_, Q = map(int, input().split()) companies = [int(x) for x in input().split()] for _ in range(Q): indicator, x, y = map(int, input().split()) if indicator == 1: companies[x-1] = y elif indicator == 2: print(abs(companies[x-1] - companies[y-1]))
9909a4bf17bd4ab682eeda9005e2ed143f162e54
c913c952cf4019d67f02bf1971917116da375c81
/Data/OMIMresults/omimResults3600to3620.py
2a5d59462d0283887c78b87aa40ecad57e1a2ac5
[]
no_license
jiangchb/OMIMscraping
57afa5b2f8b7ca975e7459814e0410a872f71990
27d4ac8faea526b1c70937317caec064bed00a0a
refs/heads/master
2022-03-14T21:35:56.102665
2019-11-22T15:48:48
2019-11-22T15:48:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
116,639
py
omim = {'omim': { 'version': '1.0', 'searchResponse': { 'search': '*', 'expandedSearch': '*:*', 'parsedSearch': '+*:* ()', 'searchSuggestion': None, 'searchSpelling': None, 'filter': '', 'expandedFilter': None, 'fields': '', 'searchReport': None, 'totalResults': 7368, 'startIndex': 3600, 'endIndex': 3619, 'sort': '', 'operator': '', 'searchTime': 2.0, 'clinicalSynopsisList': [ {'clinicalSynopsis': { 'mimNumber': 255990, 'preferredTitle': 'NATHALIE SYNDROME', 'oldFormat': { 'HEENT': 'Deafness {SNOMEDCT:343087000} {ICD10CM:H91.9} {UMLS C0018772,C0011053 HP:0000365} {HPO HP:0000365 C0011053,C0018772,C0339789,C1384666}; Cataract {SNOMEDCT:193570009,420123008,247053007,128306009} {ICD10CM:H26.9} {ICD9CM:366,366.9} {UMLS C4555209,C1690964,C0086543,C1962983 HP:0000518} {HPO HP:0000518 C0086543,C1510497};', 'Muscle': 'Muscular atrophy {SNOMEDCT:88092000} {UMLS C0541794,C0026846 HP:0003202} {HPO HP:0003202 C0234958,C0270948,C0541794,C1843479};', 'Growth': 'Growth retardation {SNOMEDCT:59576002,444896005} {UMLS C0151686 HP:0001510} {HPO HP:0001510 C0151686,C0456070,C0878787,C1837385,C3552463};', 'GU': 'Sexual development retarded {SNOMEDCT:400003000,123526007} {ICD10CM:E30.0} {UMLS C0034012 HP:0000823};', 'Cardiac': 'Abnormal EKG {SNOMEDCT:102594003} {UMLS C0522055 HP:0003115} {HPO HP:0003115 C0522055};', 'Inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899};' } , 'oldFormatExists': True, 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': True, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': True, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': False, 'miscellaneousExists': False, 'molecularBasisExists': False, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 255995, 'prefix': '#', 'preferredTitle': 'MYOPATHY, CONGENITAL, BAILEY-BLOCH; MYPBB', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'growthHeight': 'Short stature {SNOMEDCT:422065006,237837007,237836003} {ICD10CM:R62.52,E34.3} {ICD9CM:783.43} {UMLS C0013336,C0349588,C2237041,C2919142 HP:0004322,HP:0003510} {HPO HP:0004322 C0349588}', 'growthOther': 'Poor overall growth {UMLS C3552219}', 'headAndNeckHead': '''Small head circumference {SNOMEDCT:271611007} {UMLS C4551563,C0424688 HP:0000252,HP:0040195} {HPO HP:0000252 C0424688};\nBrachycephaly {SNOMEDCT:13649004} {UMLS C0221356 HP:0000248} {HPO HP:0000248 C0221356,C4072823,C4072824} {EOM ID:babe3e4648eac88a IMG:Brachycephaly-Large-small.jpg}''', 'headAndNeckFace': '''Myopathic facies {SNOMEDCT:26432009} {UMLS C0332615 HP:0002058} {HPO HP:0002058 C0332615};\nMicrognathia {SNOMEDCT:32958008} {UMLS C0025990 HP:0000347} {HPO HP:0000347 C0025990,C0240295,C1857130} {EOM ID:8bbf61b4ad7ca2ef IMG:Micrognathia-small.jpg};\nOral hypotonia {UMLS C3550597};\nMidface hypoplasia {UMLS C1853242 HP:0011800} {HPO HP:0011800 C1853242,C2673410,C4280320,C4280321} {EOM ID:5b7ad34ab35682b5 IMG:Midface_Retrusion-small.jpg}''', 'headAndNeckEars': '''Low-set ears {SNOMEDCT:95515009} {ICD10CM:Q17.4} {UMLS C0239234 HP:0000369} {HPO HP:0000369 C0239234};\nHearing loss, conductive {SNOMEDCT:44057004} {ICD10CM:H90.2} {ICD9CM:389.0,389.00} {UMLS C0018777 HP:0000405} {HPO HP:0000405 C0018777}''', 'headAndNeckEyes': '''Ptosis {SNOMEDCT:11934000,29696001} {ICD10CM:H02.4,H02.40,H02.409} {ICD9CM:374.3,374.30} {UMLS C0005745,C0033377 HP:0000508} {HPO HP:0000508 C0005745} {EOM ID:1bd157b764ec7aea IMG:Ptosis-small.jpg};\nDownslanting palpebral fissures {SNOMEDCT:246800008} {UMLS C0423110 HP:0000494} {HPO HP:0000494 C0423110};\nShort palpebral fissures {SNOMEDCT:246802000} {UMLS C0423112 HP:0012745} {HPO HP:0012745 C0423112};\nTelecanthus {SNOMEDCT:246803005} {UMLS C0423113 HP:0000506} {HPO HP:0000506 C0423113} {EOM ID:55fb0667392bab43 IMG:Telecanthus-small.jpg}''', 'headAndNeckMouth': '''Downturned mouth {UMLS C1866195 HP:0002714} {HPO HP:0002714 C1866195};\nHigh-arched palate {SNOMEDCT:27272007} {ICD10CM:Q38.5} {UMLS C0240635 HP:0000218} {HPO HP:0000218 C0240635};\nCleft palate {SNOMEDCT:87979003,63567004} {ICD10CM:Q35.5,Q35,Q35.9} {ICD9CM:749.0,749.00} {UMLS C2981150,C0008925,C2240378 HP:0000175} {HPO HP:0000175 C0008925,C2981150}''', 'respiratory': 'Restrictive respiratory insufficiency {UMLS C1609528 HP:0002111}', 'abdomenGastrointestinal': 'Poor feeding {SNOMEDCT:78164000,299698007} {ICD10CM:R63.3} {UMLS C0576456,C0232466 HP:0011968} {HPO HP:0011968 C0232466}', 'genitourinaryExternalGenitaliaMale': 'Cryptorchidism {SNOMEDCT:204878001} {ICD10CM:Q53.9} {ICD9CM:752.51} {UMLS C0010417 HP:0000028} {HPO HP:0000028 C0010417}', 'skeletal': 'Joint contractures {SNOMEDCT:7890003} {ICD10CM:M24.5} {ICD9CM:718.40,718.4} {UMLS C0009918 HP:0001371} {HPO HP:0001371 C0009917,C0009918,C0333068,C1850530}', 'skeletalSpine': 'Kyphoscoliosis {SNOMEDCT:405773007,405771009,405772002} {ICD10CM:M41} {UMLS C0575158,C0345392,C0600033 HP:0008453,HP:0002751} {HPO HP:0002751 C0575158}', 'skeletalFeet': 'Talipes deformities {UMLS C2673319}', 'muscleSoftTissue': '''Muscle weakness, congenital {UMLS C2673318};\nMuscle wasting {SNOMEDCT:88092000} {UMLS C0541794,C0026846 HP:0003202} {HPO HP:0003202 C0234958,C0270948,C0541794,C1843479}''', 'neurologicCentralNervousSystem': '''Delayed motor development {UMLS C1854301 HP:0001270} {HPO HP:0001270 C1854301,C4020874};\nMental retardation (rare) {UMLS C1850387} {HPO HP:0001249 C0025362,C0423903,C0917816,C1843367,C3714756,C4020876};\nEnlarged ventricles (in some) {UMLS C3550596} {HPO HP:0002119 C3278923}''', 'neurologicPeripheralNervousSystem': 'Hyporeflexia {SNOMEDCT:22994000,405946002} {UMLS C0151888,C0700078 HP:0001315,HP:0001265} {HPO HP:0001265 C0700078}', 'metabolicFeatures': 'Malignant hyperthermia {SNOMEDCT:405501007,213026003} {ICD10CM:T88.3} {ICD9CM:995.86} {UMLS C0024591 HP:0002047} {HPO HP:0002047 C0024591}', 'laboratoryAbnormalities': '''Serum creatine kinase may be increased {UMLS C1969489};\nIncreased prevalence among the Native American Lumbee Indians {UMLS C3550598}''', 'molecularBasis': 'Caused by mutation in the SH3 and cysteine-rich domains 3 gene (STAC3, {615521.0001})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': True, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': True, 'headAndNeckHeadExists': True, 'headAndNeckFaceExists': True, 'headAndNeckEarsExists': True, 'headAndNeckEyesExists': True, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': True, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': True, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': True, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': True, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': True, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': True, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': True, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': True, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': True, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': True, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': False, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256000, 'prefix': '#', 'preferredTitle': 'LEIGH SYNDROME; LS', 'inheritance': '''Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899};\nMitochondrial {SNOMEDCT:312239001,75056005} {UMLS C0887941,C0026237 HP:0001427} {HPO HP:0001427 C0887941}''', 'growthOther': 'Failure to thrive {SNOMEDCT:54840006,433476000,432788009} {ICD10CM:R62.51} {ICD9CM:783.41} {UMLS C2315100,C0015544,C3887638 HP:0001508} {HPO HP:0001508 C0231246,C2315100}', 'headAndNeckEyes': '''Ophthalmoplegia {SNOMEDCT:16110005} {UMLS C0029089 HP:0000602} {HPO HP:0000602 C0029089};\nOptic atrophy {SNOMEDCT:76976005} {ICD10CM:H47.2,H47.20} {ICD9CM:377.10,377.1} {UMLS C0029124 HP:0000648} {HPO HP:0000648 C0029124};\nNystagmus {SNOMEDCT:563001} {ICD10CM:H55.0,H55.00} {ICD9CM:379.50} {UMLS C1963184,C4554036,C0028738 HP:0000639} {HPO HP:0000639 C0028738};\nStrabismus {SNOMEDCT:22066006,128602000} {ICD10CM:H50.40,H50.9} {ICD9CM:378.30} {UMLS C2020541,C1423541,C0038379 HP:0032012,HP:0000486} {HPO HP:0000486 C0038379};\nPtosis {SNOMEDCT:11934000,29696001} {ICD10CM:H02.4,H02.40,H02.409} {ICD9CM:374.3,374.30} {UMLS C0005745,C0033377 HP:0000508} {HPO HP:0000508 C0005745} {EOM ID:1bd157b764ec7aea IMG:Ptosis-small.jpg};\nPigmentary retinopathy {SNOMEDCT:28835009} {ICD10CM:H35.52} {UMLS C4551715,C0035334 HP:0000580,HP:0000510,HP:0000547} {HPO HP:0000580 C0035334}''', 'respiratory': '''Abnormal respiratory patterns {UMLS C1837388 HP:0002793} {HPO HP:0002793 C1837388};\nRespiratory failure {SNOMEDCT:409622000} {ICD10CM:J96.9} {UMLS C4552651,C1145670 HP:0002878} {HPO HP:0002878 C1145670}''', 'skinNailsHairHair': 'Hypertrichosis {SNOMEDCT:29966009,271607001} {ICD10CM:L68.9,L68.3,L68} {UMLS C0020555,C4553009 HP:0000998} {HPO HP:0000998 C0020555}', 'muscleSoftTissue': 'Hypotonia {SNOMEDCT:398152000,398151007} {UMLS C0026827,C1858120 HP:0001290,HP:0001252} {HPO HP:0001290 C1858120}', 'neurologicCentralNervousSystem': '''Psychomotor retardation {SNOMEDCT:398991009} {UMLS C0424230 HP:0025356} {HPO HP:0025356};\nHypotonia {SNOMEDCT:398152000,398151007} {UMLS C0026827,C1858120 HP:0001290,HP:0001252} {HPO HP:0001290 C1858120};\nAtaxia {SNOMEDCT:39384006,85102008,20262006} {ICD10CM:R27.0} {ICD9CM:438.84} {UMLS C0004134,C1135207,C0007758,C4554639 HP:0010867,HP:0001251} {HPO HP:0001251 C0007758};\nDystonia {SNOMEDCT:15802004} {ICD10CM:G24,G24.9} {UMLS C0393593,C0013421 HP:0001332} {HPO HP:0001332 C0013421,C4020871};\nDysarthria {SNOMEDCT:8011004} {ICD9CM:438.13,784.51} {UMLS C0013362,C4553903 HP:0001260} {HPO HP:0001260 C0013362};\nSpasticity {SNOMEDCT:221360009,397790002} {UMLS C0026838,C4553743 HP:0001257} {HPO HP:0001257 C0026838};\nHyperreflexia {SNOMEDCT:86854008} {UMLS C0151889 HP:0001347} {HPO HP:0001347 C0151889};\nSeizures {SNOMEDCT:91175000} {UMLS C0036572 HP:0001250} {HPO HP:0001250 C0014544,C0036572};\nBrainstem abnormalities {UMLS C1850601 HP:0002363};\nMental retardation {SNOMEDCT:110359009,228156007} {ICD9CM:317-319.99} {UMLS C0025362,C3714756 HP:0001249} {HPO HP:0001249 C0025362,C0423903,C0917816,C1843367,C3714756,C4020876};\nLesions in basal ganglia, brainstem, cerebellum, thalamus, spinal cord characterized by demyelination, necrosis, gliosis, spongiosis, and capillary proliferation {UMLS C2673315}''', 'neurologicBehavioralPsychiatricManifestations': 'Emotional lability {SNOMEDCT:18963009} {ICD10CM:R45.86} {ICD9CM:799.24} {UMLS C0085633 HP:0000720,HP:0000712,HP:0001575} {HPO HP:0000712 C0085633}', 'metabolicFeatures': 'Lactic acidosis {SNOMEDCT:91273001} {ICD10CM:E87.2} {UMLS C0001125 HP:0003128} {HPO HP:0003128 C0001125,C0347959}', 'laboratoryAbnormalities': '''Increased serum lactate {UMLS C1836440 HP:0002151} {HPO HP:0002151 C1836440};\nIncreased CSF lactate {UMLS C1167918 HP:0002490} {HPO HP:0002490 C1167918}''', 'miscellaneous': '''Onset usually in infancy or early childhood {UMLS C1846410};\nProgressive disorder, usually with rapid, relentless course {UMLS C1850619};\nClinical heterogeneity {UMLS C1837514 HP:0003812} {HPO HP:0003812 C1837514,C1839039,C1850667,C1866210};\nGenetic heterogeneity (may be caused by mutation in nuclear-encoded or mitochondrial-encoded genes) {UMLS C1850621} {HPO HP:0001425 C0242960};\nSubset of patients have cytochrome c oxidase deficiency (see {220110});\nSee also X-linked Leigh syndrome ({312170});\nSee also French-Canadian type of Leigh syndrome ({220111})''', 'molecularBasis': '''Caused by mutation in the NADH dehydrogenase, subunit 2 gene (MTND2, {516001.0006});\nCaused by mutation in the NADH dehydrogenase, subunit 3 gene (MTND3, {516002.0003});\nCaused by mutation in the NADH dehydrogenase, subunit 5 gene (MTND5, {516005.0003});\nCaused by mutation in the NADH dehydrogenase, subunit 6 gene (MTND6, {516006.0002});\nCaused by mutation in the ATP synthase 6 gene (MTATP6, {516060.0001});\nCaused by mutation in the cytochrome c oxidase III gene (MTCO3, {516050.0005});\nCaused by mutation in the mitochondrial tRNA (valine) gene (MTTV, {590105.0002});\nCaused by mutation in the mitochondrial tRNA (lysine) gene (MTTK, {590060.0001});\nCaused by mutation in the NADH-ubiquinone oxidoreductase 1 alpha subcomplex, 2 gene (NDUFA2, {602137.0001});\nCaused by mutation in the NADH-ubiquinone oxidoreductase 1 alpha subcomplex, 10 gene (NDUFA10, {603835.0001});\nCaused by mutation in the NADH-ubiquinone oxidoreductase 1 alpha subcomplex, 12 gene (NDUFA12, {614530.0001});\nCaused by mutation in the NADH dehydrogenase (ubiquinone) complex I, assembly factor 5 gene (NDUFAF5, {612360.0002});\nCaused by mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 3 gene (NDUFV3, {603846.0001});\nCaused by mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 1 gene (NDUFS1, {157655.0001});\nCaused by mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 4 gene (NDUFS4, {602694.0004});\nCaused by mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 7 gene (NDUFS7, {601825.0001});\nCaused by mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 8 gene (NDUFS8, {602141.0001});\nCaused by mutation in the NADH-ubiquinone oxidoreductase 1 alpha subcomplex 9 gene (NDUFA9, {603834.0001});\nCaused by mutation in the succinate dehydrogenase complex, subunit A, flavoprotein gene (SDHA, {600857.0001});\nCaused by mutation in the FAD-dependent oxidoreductase domain-containing protein 1 gene (FOXRED1, {613622.0001});\nCaused by mutation in the bcs1, S. cerevisiae, homolog-like gene (BCS1L, {603647.0002});\nCaused by mutation in the surfeit-1 gene (SURF1, {185620.0001});\nCaused by mutation in the cytochrome c oxidase, subunit 15 gene (COX15, {603646.0001});\nCaused by mutation in the C8ORF38 gene (C8ORF38, {612392.0001});\nCaused by mutation in the translational activator of mitochondrially encoded cytochrome c oxidase subunit 1 gene (TACO1, {612958.0001});\nCaused by mutation in the mitochondrial methionyl-tRNA formyltransferase gene (MTFMT, {611766.0001});\nCaused by mutation in the homolog of the S. cerevisiae PET100 gene (PET100, {614770.0001}).''', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': True, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': True, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': False, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': True, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': True, 'muscleSoftTissueExists': True, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': True, 'voiceExists': False, 'metabolicFeaturesExists': True, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256020, 'preferredTitle': 'NAIL-PATELLA-LIKE RENAL DISEASE', 'oldFormat': { 'GU': 'Nephropathy {SNOMEDCT:90708001} {ICD10CM:N08,N28.9} {UMLS C0022658 HP:0000112} {HPO HP:0000112 C0022658,C1408258}; Glomerulodysplasia; Renal failure {SNOMEDCT:723188008,42399005} {ICD10CM:N19} {ICD9CM:586} {UMLS C1963154,C0035078 HP:0000083} {HPO HP:0000083 C0035078,C1565489,C1839604};', 'Lab': 'Proteinuria {SNOMEDCT:29738008,231860006} {ICD10CM:R80,R80.9} {ICD9CM:791.0} {UMLS C4554346,C1279888,C0033687,C1962972 HP:0000093} {HPO HP:0000093 C0033687}; Renal biopsy EM shows glomerular basement membrane changes like nail-patella syndrome;', 'Nails': 'Normal nails {SNOMEDCT:297988008} {UMLS C0574760};', 'Skel': 'No bone disorder;', 'Inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899};' } , 'oldFormatExists': True, 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': False, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': True, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': True, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': False, 'molecularBasisExists': False, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256030, 'prefix': '#', 'preferredTitle': 'NEMALINE MYOPATHY 2; NEM2', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'headAndNeckFace': '''Myopathic facies {SNOMEDCT:26432009} {UMLS C0332615 HP:0002058} {HPO HP:0002058 C0332615};\nFacial muscle weakness {SNOMEDCT:95666008} {ICD10CM:R29.810} {ICD9CM:438.83,781.94} {UMLS C0427055,C4553723 HP:0030319,HP:0007209} {HPO HP:0030319 C4022514};\nLong philtrum (severe form) {UMLS C4692605} {HPO HP:0000343 C1865014} {EOM ID:e1d74175c310388d IMG:Philtrum,Long-small.jpg}''', 'headAndNeckEars': 'Low-set ears (severe form) {UMLS C1850576} {HPO HP:0000369 C0239234}', 'headAndNeckEyes': 'Hypertelorism (severe form) {UMLS C4692606} {HPO HP:0000316 C0020534} {EOM ID:71d9f1be67c7f8b6 IMG:Eyes,Widely_Spaced-small.jpg}', 'headAndNeckMouth': '''High-arched palate {SNOMEDCT:27272007} {ICD10CM:Q38.5} {UMLS C0240635 HP:0000218} {HPO HP:0000218 C0240635};\nCleft palate (severe form) {UMLS C1850578} {HPO HP:0000175 C0008925,C2981150}''', 'headAndNeckNeck': 'Neck flexor muscle weakness {UMLS C1843637 HP:0003722} {HPO HP:0003722 C1843637}', 'respiratory': '''Respiratory insufficiency due to muscle weakness {UMLS C3806467 HP:0002747} {HPO HP:0002747 C3806467};\nAbsence of spontaneous respiration (severe form) {UMLS C3806473} {HPO HP:0002104 C0003578}''', 'chestExternalFeatures': 'Chest deformities {UMLS C0238983}', 'abdomenGastrointestinal': '''Poor feeding {SNOMEDCT:78164000,299698007} {ICD10CM:R63.3} {UMLS C0576456,C0232466 HP:0011968} {HPO HP:0011968 C0232466};\nDysphagia {SNOMEDCT:40739000,288939007} {ICD10CM:R13.1,R13.10} {ICD9CM:787.2,787.20} {UMLS C0011168,C1560331 HP:0002015,HP:0200136} {HPO HP:0002015 C0011168}''', 'skeletal': '''Joint contractures {SNOMEDCT:7890003} {ICD10CM:M24.5} {ICD9CM:718.40,718.4} {UMLS C0009918 HP:0001371} {HPO HP:0001371 C0009917,C0009918,C0333068,C1850530};\nJoint deformities (may develop over time) {UMLS C1850588};\nArthrogryposis (severe form) {UMLS C1850589} {HPO HP:0002804 C0003886}''', 'skeletalSpine': '''Hyperlordosis {SNOMEDCT:249710008,61960001} {ICD10CM:M40.5} {UMLS C0024003 HP:0003307} {HPO HP:0003307 C0024003};\nScoliosis (onset around puberty) {UMLS C1850590} {HPO HP:0002650 C0037932,C0700208};\nRigid spine {UMLS C1858025 HP:0003306} {HPO HP:0003306 C1858025}''', 'skeletalHands': 'Clenched hands (severe form) {UMLS C4692607} {HPO HP:0001188 C0239815}', 'skeletalFeet': 'Talipes (severe form) {UMLS C4692608} {HPO HP:0001883 C1301937,C3552713}', 'muscleSoftTissue': '''Hypotonia, neonatal {SNOMEDCT:205294008} {UMLS C2267233 HP:0001319} {HPO HP:0001319 C2267233};\nMuscle weakness, generalized {ICD10CM:M62.81} {ICD9CM:728.87} {UMLS C0746674 HP:0003324} {HPO HP:0003324 C0746674};\nBulbar muscle weakness {SNOMEDCT:398432008} {UMLS C1301959 HP:0001283} {HPO HP:0001283 C1301959,C4082299};\nFacial muscle weakness {SNOMEDCT:95666008} {ICD10CM:R29.810} {ICD9CM:438.83,781.94} {UMLS C0427055,C4553723 HP:0030319,HP:0007209} {HPO HP:0030319 C4022514};\nNeck muscle weakness {UMLS C0240479 HP:0000467} {HPO HP:0000467 C0240479};\nProximal limb muscle weakness initially {UMLS C1850580};\nDistal limb muscle weakness occurs later {UMLS C1864972};\nDistal limb muscle weakness initially (in some patients) {UMLS C4692603};\n\'Waddling\' gait {SNOMEDCT:271706000} {UMLS C0231712 HP:0002515} {HPO HP:0002515 C0231712};\nInability to run {UMLS C1854490};\nInability to walk on heels {UMLS C3809657};\nFrequent falls {UMLS C0850703 HP:0002359} {HPO HP:0002359 C0850703};\nMyopathic changes early in disease seen on EMG {UMLS C3278556};\nNeurogenic changes later in disease seen on EMG {UMLS C3278557};\nNemaline bodies (rods) on Gomori trichrome staining {UMLS C3278558};\nNemaline bodies are usually subsarcolemmal or sarcoplasmic {UMLS C1850583};\nNemaline bodies are rarely intranuclear {UMLS C1850584};\nNonspecific myopathic changes without dystrophic or inflammatory changes seen on muscle biopsy {UMLS C3805774};\nCores with lack of oxidative activity and mitochondrial depletion may also be found and extend along length of fiber {UMLS C3278559};\nType 1 muscle fiber predominance {UMLS C1854387 HP:0003803} {HPO HP:0003803 C1854387};\nDecreased muscle density on imaging {UMLS C1850585};\nIncreased fatty infiltration {UMLS C1850586};\nAbsence of spontaneous activity at birth (severe form) {UMLS C1850587}''', 'neurologicCentralNervousSystem': '''Delayed motor development {UMLS C1854301 HP:0001270} {HPO HP:0001270 C1854301,C4020874};\nFailure to achieve sitting or walking (severe form) {UMLS C1850570};\nAbsent gag reflex {SNOMEDCT:5258001} {UMLS C0234784};\nHyporeflexia {SNOMEDCT:22994000,405946002} {UMLS C0151888,C0700078 HP:0001315,HP:0001265} {HPO HP:0001265 C0700078};\nAreflexia {SNOMEDCT:37280007} {UMLS C0234146 HP:0001284} {HPO HP:0001284 C0234146,C0241772,C0278124};\nSlow gross motor activity {UMLS C1850571};\nNormal fine motor activity {UMLS C1850572}''', 'prenatalManifestationsMovement': 'Decreased fetal movement (severe form) {UMLS C1850574} {HPO HP:0001558 C0235659}', 'prenatalManifestationsAmnioticFluid': '''Polyhydramnios (severe form) {UMLS C1850575} {HPO HP:0001561 C0020224};\nFetal hydrops (severe form) {UMLS C4692604}''', 'laboratoryAbnormalities': 'Normal or mildly increased serum creatine kinase {UMLS C1864981}', 'miscellaneous': '''Extraocular muscles are not involved {UMLS C1850577};\nOnset in infancy {UMLS C1848924 HP:0003593} {HPO HP:0003593 C1848924};\nHighly variable severity, ranging from \'typical\' to \'severe\' disease {UMLS C4692610};\nSlowly progressive or nonprogressive course {UMLS C1850594};\nMany adults with typical form remain ambulatory {UMLS C1850595};\nDeath at birth or within first 2 years of life (severe form) {UMLS C1850596}''', 'molecularBasis': 'Caused by mutation in the nebulin gene (NEB, {161650.0001})', 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': True, 'headAndNeckEarsExists': True, 'headAndNeckEyesExists': True, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': True, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': True, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': True, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': True, 'chestExternalFeaturesExists': True, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': True, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': True, 'genitourinaryExists': False, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': True, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': True, 'skeletalFeetExists': True, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': True, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': True, 'prenatalManifestationsMovementExists': True, 'prenatalManifestationsAmnioticFluidExists': True, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256040, 'prefix': '#', 'preferredTitle': 'PROTEASOME-ASSOCIATED AUTOINFLAMMATORY SYNDROME 1; PRAAS1', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'growthHeight': 'Short stature (less common) {UMLS C1843420} {HPO HP:0004322 C0349588}', 'growthOther': '''Failure to thrive {SNOMEDCT:54840006,433476000,432788009} {ICD10CM:R62.51} {ICD9CM:783.41} {UMLS C2315100,C0015544,C3887638 HP:0001508} {HPO HP:0001508 C0231246,C2315100};\nPoor growth {UMLS C1837385 HP:0001510} {HPO HP:0001510 C0151686,C0456070,C0878787,C1837385,C3552463}''', 'headAndNeckFace': '''Loss of facial subcutaneous fat {UMLS C3278566};\nPeriorbital swelling due to violaceous plaques on the eyelids {UMLS C3278567}''', 'headAndNeckEyes': '''Conjunctivitis {SNOMEDCT:9826008} {ICD10CM:H10,H10.9} {ICD9CM:372.30} {UMLS C4553305,C0009763 HP:0000509} {HPO HP:0000509 C0009763,C1864156};\nEpiscleritis {SNOMEDCT:815008} {ICD10CM:H15.1} {UMLS C0014583 HP:0100534} {HPO HP:0100534 C0014583}''', 'headAndNeckMouth': '''Macroglossia {SNOMEDCT:270516002,25273001} {ICD10CM:K14.8,Q38.2} {ICD9CM:750.15} {UMLS C0024421,C0009677 HP:0000158} {HPO HP:0000158 C0024421} {EOM ID:9638e4ba815e5908 IMG:Tongue,Large-small.jpg};\nThick lips {UMLS C1836543 HP:0012471} {HPO HP:0012471 C1836543}''', 'cardiovascularHeart': '''Cardiac insufficiency (in some) {UMLS C3278586} {HPO HP:0001635 C0018801,C0018802};\nArrhythmias (in some) {UMLS C3278587} {HPO HP:0011675 C0003811,C0264886,C0522055,C0855329,C1832603,C1842820}''', 'abdomen': 'Prominent abdomen {UMLS C1850290}', 'abdomenLiver': 'Hepatomegaly {SNOMEDCT:80515008} {ICD10CM:R16.0} {ICD9CM:789.1} {UMLS C0019209 HP:0002240} {HPO HP:0002240 C0019209}', 'abdomenSpleen': 'Splenomegaly (variable) {UMLS C3278565} {HPO HP:0001744 C0038002}', 'skeletal': '''Joint contractures {SNOMEDCT:7890003} {ICD10CM:M24.5} {ICD9CM:718.40,718.4} {UMLS C0009918 HP:0001371} {HPO HP:0001371 C0009917,C0009918,C0333068,C1850530};\nNarrowing of the joint spaces {UMLS C1859695};\nPeriarticular osteopenia {UMLS C0877138};\nBone pain {SNOMEDCT:12584003} {UMLS C4554063,C0151825,C1963077 HP:0002653} {HPO HP:0002653 C0151825};\nJoint pain {SNOMEDCT:57676002} {ICD10CM:M25.5} {ICD9CM:719.4,719.40} {UMLS C0003862,C1963066,C4085641 HP:0002829} {HPO HP:0002829 C0003862}''', 'skeletalLimbs': 'Elbow contractures {SNOMEDCT:239734000,202271004} {ICD10CM:M24.52,M21.22} {UMLS C0409338,C1833142 HP:0002987} {HPO HP:0002987 C0409338}', 'skeletalHands': '''Finger contractures, severe {UMLS C3278569};\nHand contractures, severe {UMLS C3278570};\nClubbed fingers {SNOMEDCT:30760008} {ICD10CM:R68.3} {ICD9CM:781.5} {UMLS C0009080 HP:0100759} {HPO HP:0100759 C0009080};\nLong fingers {UMLS C1858091 HP:0100807} {HPO HP:0100807 C1858091} {EOM ID:41535e8ed3dc9076 IMG:Fingers,Long-small.jpg};\nFinger deformities {SNOMEDCT:20948006} {UMLS C0265605};\nFinger swelling {SNOMEDCT:299060006} {UMLS C0239598 HP:0025131} {HPO HP:0025131}''', 'skeletalFeet': '''Toe contractures, severe {UMLS C3278571} {HPO HP:0005830 C1406835};\nFoot contractures, severe {UMLS C3278572}''', 'skinNailsHairSkin': '''Erythematous nodular skin lesions {UMLS C3278577};\nAnnular erythematous edematous plaques {UMLS C3278578};\nLesions become purpuric {UMLS C3278579};\nResidual hyperpigmentation {UMLS C3278580};\nLesions predominantly on face and limbs {UMLS C3278581};\nPanniculitis {SNOMEDCT:22125009} {ICD10CM:M79.3} {ICD9CM:729.3,729.30} {UMLS C0030326 HP:0012490} {HPO HP:0012490 C0030326};\nDry, stiff skin {UMLS C3278582};\nFrostbitten hands {UMLS C3278583}''', 'skinNailsHairSkinHistology': '''Mononuclear cell infiltrates {UMLS C3278584};\nAtypical mononuclear cells with many mitoses {UMLS C3278585}''', 'muscleSoftTissue': '''Lipodystrophy, partial {SNOMEDCT:75659004} {UMLS C0220989};\nLipodystrophy, generalized, panniculitis-induced (in some) {UMLS C3278562};\nMarked loss of subcutaneous fat in the limbs, face, and sometimes chest {UMLS C3278563};\nMuscle atrophy (variable) {UMLS C3278564} {HPO HP:0003202 C0234958,C0270948,C0541794,C1843479};\nMuscle weakness {SNOMEDCT:26544005} {UMLS C0151786,C0030552 HP:0001324} {HPO HP:0001324 C0151786}''', 'neurologicCentralNervousSystem': '''Mental retardation, mild (2 families) {UMLS C3278561} {HPO HP:0001256 C0026106};\nSeizures (uncommon) {UMLS C3278456} {HPO HP:0001250 C0014544,C0036572};\nBasal ganglia calcification {ICD10CM:G23.8} {UMLS C1389280 HP:0002135} {HPO HP:0002135 C1389280}''', 'metabolicFeatures': 'Fever, intermittent, recurrent (in some) {UMLS C3278593}', 'hematology': '''Microcytic anemia {SNOMEDCT:722005000,234349007} {UMLS C0085576 HP:0001935} {HPO HP:0001935 C0085576};\nThrombocytopenia {SNOMEDCT:302215000,415116008} {ICD10CM:D69.6} {ICD9CM:287.5} {UMLS C0040034,C0392386 HP:0001873} {HPO HP:0001873 C0040034,C0392386}''', 'immunology': '''Antinuclear autoantibodies (in some) {UMLS C3278568};\nLymphadenopathy {SNOMEDCT:30746006} {ICD10CM:R59,R59.9,R59.1} {ICD9CM:785.6} {UMLS C0497156,C4282165 HP:0002716} {HPO HP:0002716 C0497156}''', 'laboratoryAbnormalities': '''Increased erythrocyte sedimentation rate {SNOMEDCT:165468009} {ICD10CM:R70.0} {ICD9CM:790.1} {UMLS C0151632 HP:0003565} {HPO HP:0003565 C0151632};\nHypergammaglobulinemia {SNOMEDCT:127388009} {UMLS C0020455 HP:0010702} {HPO HP:0010702 C0020455,C0151669,C0541985,C1306857,C2048011};\nIncreased gamma-interferon {UMLS C3278573};\nIncreased IgG {UMLS C0239988};\nIncreased IgA {UMLS C0239984 HP:0003261};\nIncreased IL-6 {UMLS C3278574};\nIncreased IL-8 {UMLS C3278575};\nIncreased C-reactive protein {SNOMEDCT:119971000119104} {UMLS C0742906 HP:0011227};\nAbnormal liver enzymes, intermittent {UMLS C3278576};\nIncreased serum triglycerides {SNOMEDCT:166848004} {UMLS C0813230 HP:0002155} {HPO HP:0002155 C1522137}''', 'miscellaneous': '''Onset of autoinflammation in infancy or first few years of life {UMLS C3278589};\nOnset of lipodystrophy later in childhood {UMLS C3278590};\nOnset of joint contractures later in life {UMLS C3278591};\nSome features are variable {UMLS C3278592}''', 'molecularBasis': 'Caused by mutation in the proteasome subunit, beta-type, 8 gene (PSMB8, {177046.0001})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': True, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': True, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': True, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': True, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': True, 'cardiovascularHeartExists': True, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': True, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': True, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': True, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': False, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': True, 'skeletalHandsExists': True, 'skeletalFeetExists': True, 'skinNailsHairExists': True, 'skinNailsHairSkinExists': True, 'skinNailsHairSkinHistologyExists': True, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': True, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': True, 'endocrineFeaturesExists': False, 'hematologyExists': True, 'immunologyExists': True, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256050, 'prefix': '#', 'preferredTitle': 'ATELOSTEOGENESIS, TYPE II; AO2', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'headAndNeckFace': '''Midface hypoplasia {UMLS C1853242 HP:0011800} {HPO HP:0011800 C1853242,C2673410,C4280320,C4280321} {EOM ID:5b7ad34ab35682b5 IMG:Midface_Retrusion-small.jpg};\nMicrognathia {SNOMEDCT:32958008} {UMLS C0025990 HP:0000347} {HPO HP:0000347 C0025990,C0240295,C1857130} {EOM ID:8bbf61b4ad7ca2ef IMG:Micrognathia-small.jpg}''', 'headAndNeckNose': 'Flattened nasal bridge {UMLS C1836542 HP:0005280} {HPO HP:0005280 C1836542,C3550546,C4280495}', 'headAndNeckMouth': 'Cleft palate {SNOMEDCT:87979003,63567004} {ICD10CM:Q35.5,Q35,Q35.9} {ICD9CM:749.0,749.00} {UMLS C2981150,C0008925,C2240378 HP:0000175} {HPO HP:0000175 C0008925,C2981150}', 'headAndNeckNeck': 'Short neck {SNOMEDCT:95427009} {UMLS C0521525 HP:0000470} {HPO HP:0000470 C0521525} {EOM ID:c75e63fd749ec7a8 IMG:Neck,Short-small.jpg}', 'respiratoryLung': '''Respiratory insufficiency {SNOMEDCT:91434003,409623005,409622000} {ICD10CM:J96.9} {UMLS C0035229,C0034088,C1145670 HP:0010444,HP:0002093,HP:0002878} {HPO HP:0002093 C0035229,C4020855};\nPulmonary hypoplasia {SNOMEDCT:80825009} {UMLS C0265783 HP:0002089} {HPO HP:0002089 C0265783}''', 'chestRibsSternumClaviclesAndScapulae': 'Small thorax {SNOMEDCT:298709006} {UMLS C0575483,C1837482 HP:0005257} {HPO HP:0005257 C1837482}', 'skeletalSpine': '''Cervical kyphosis {SNOMEDCT:298393001} {UMLS C0575170 HP:0002947} {HPO HP:0002947 C0575170};\nPlatyspondyly {UMLS C1844704 HP:0000926} {HPO HP:0000926 C1844704};\nVertebral body coronal clefts {UMLS C1850557};\nScoliosis {SNOMEDCT:298382003,20944008,111266001} {ICD10CM:Q67.5,M41,M41.9} {UMLS C0559260,C0036439,C4552773,C0700208 HP:0002650} {HPO HP:0002650 C0037932,C0700208};\nLumbar hyperlordosis {UMLS C1184923 HP:0002938} {HPO HP:0002938 C1184923};\nHorizontal sacrum {UMLS C1850558 HP:0003440} {HPO HP:0003440 C1850558}''', 'skeletalPelvis': '''Round-shaped iliac bones {UMLS C3550600};\nFlat acetabulae {UMLS C1865196};\nShortened sacroiliac notches {UMLS C1866689 HP:0003185} {HPO HP:0003185 C1866689}''', 'skeletalLimbs': '''Severe micromelia {UMLS C1832986};\nBifid distal humerus {UMLS C1850560};\nShort, dumbbell femur {UMLS C1850561};\nAbducted thumbs and great toes {UMLS C1850562};\nGap between first and second toe {UMLS C1840069 HP:0001852} {HPO HP:0001852 C1840069};\nHypoplastic, rounded middle phalanges {UMLS C1850564};\nTalipes equinovarus {SNOMEDCT:397932003} {ICD10CM:Q66.89,Q66.0} {ICD9CM:754.51} {UMLS C0009081 HP:0001762} {HPO HP:0001762 C0009081}''', 'prenatalManifestationsDelivery': 'Stillborn or death shortly after birth {UMLS C1850556}', 'laboratoryAbnormalities': 'Lacunar halos around chondrocytes in skeletal cartilage {UMLS C1850565}', 'miscellaneous': 'Allelic to diastrophic dysplasia ({222600}), achondrogenesis, type 1b ({600972}), and multiple epiphyseal dysplasia, type 4 ({226900})', 'molecularBasis': 'Caused by mutation in the solute carrier family 26 (sulfate transporter), member 2 gene (SLC26A2, {606718.0002})', 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': True, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': True, 'headAndNeckMouthExists': True, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': True, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': True, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': True, 'chestExists': True, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': True, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': False, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': True, 'skeletalPelvisExists': True, 'skeletalLimbsExists': True, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': True, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': True, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256100, 'prefix': '#', 'preferredTitle': 'NEPHRONOPHTHISIS 1; NPHP1', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'growthOther': 'Growth retardation {SNOMEDCT:59576002,444896005} {UMLS C0151686 HP:0001510} {HPO HP:0001510 C0151686,C0456070,C0878787,C1837385,C3552463}', 'genitourinaryKidneys': '''Nephronophthisis {SNOMEDCT:204958008} {ICD10CM:Q61.5} {UMLS C0687120 HP:0000090,HP:0008659} {HPO HP:0000090 C0687120};\nEnd stage renal disease {SNOMEDCT:90688005,433146000,46177005} {ICD10CM:N18.9,N18.6,N18.5} {ICD9CM:585.6} {UMLS C0022661,C2316810 HP:0003774} {HPO HP:0003774 C2316810};\nTubular atrophy {UMLS C1858395,C4521759 HP:0000092} {HPO HP:0000092 C1858395};\nTubular basement membrane disintegration {UMLS C1968618 HP:0005583} {HPO HP:0005583 C1968618};\nInterstitial fibrosis {SNOMEDCT:125565008} {UMLS C3887486,C0240035};\nCorticomedullary renal cysts {UMLS C1968619 HP:0000108} {HPO HP:0000108 C1968619}''', 'metabolicFeatures': '''Polyuria {SNOMEDCT:28442001,718402002,56574000} {ICD10CM:R35,R35.8} {ICD9CM:788.42} {UMLS C0032617 HP:0000103} {HPO HP:0000103 C0032617};\nPolydipsia {SNOMEDCT:17173007,267026004} {ICD10CM:R63.1} {ICD9CM:783.5} {UMLS C0085602 HP:0001959} {HPO HP:0001959 C0085602};\nAbsence of hypertension {UMLS C1968624}''', 'hematology': 'Anemia {SNOMEDCT:271737000} {ICD10CM:D64.9} {ICD9CM:285.9} {UMLS C0002871,C4554633,C1000483 HP:0001903} {HPO HP:0001903 C0002871,C0162119}', 'laboratoryAbnormalities': 'Hyposthenuria (inability to concentrate urine normally) {UMLS C1968620} {HPO HP:0003158 C0232831}', 'miscellaneous': '''Medial onset of end stage renal disease 13 years {UMLS C1968622};\nAllelic to Senior-Loken syndrome 1 ({266900}) and Joubert syndrome 4 ({609583})''', 'molecularBasis': 'Caused by mutation in the nephrocystin 1 gene (NPHP1, {607100.0001})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': False, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': True, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': True, 'endocrineFeaturesExists': False, 'hematologyExists': True, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256120, 'preferredTitle': 'NEPHROPATHY, DEAFNESS, AND HYPERPARATHYROIDISM', 'oldFormat': { 'GU': 'Renal failure {SNOMEDCT:723188008,42399005} {ICD10CM:N19} {ICD9CM:586} {UMLS C1963154,C0035078 HP:0000083} {HPO HP:0000083 C0035078,C1565489,C1839604}; No hematuria {UMLS C1858397};', 'Metabolic': 'Hyperparathyroidism {SNOMEDCT:66999008} {ICD10CM:E21.3} {ICD9CM:252.0,252.00} {UMLS C4553963,C0020502 HP:0000843} {HPO HP:0000843 C0020502};', 'HEENT': 'Sensorineural deafness {SNOMEDCT:60700002} {ICD10CM:H90.5} {ICD9CM:389.1,389.10} {UMLS C0018784 HP:0000407} {HPO HP:0000407 C0018784};', 'Lab': 'Parathyroid hyperplasia {SNOMEDCT:9092004} {ICD10CM:E21.0} {UMLS C0271844 HP:0008208} {HPO HP:0008208 C0271844};', 'Inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899};' } , 'oldFormatExists': True, 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': True, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': False, 'molecularBasisExists': False, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256150, 'preferredTitle': 'NEPHROSIALIDOSIS', 'oldFormat': { 'GU': 'Childhood glomerular nephropathy; Nephrosis {SNOMEDCT:90708001,52254009} {ICD10CM:N04} {ICD9CM:581} {UMLS C0027726,C0027720 HP:0000100} {HPO HP:0000100 C0027726}; Renal failure {SNOMEDCT:723188008,42399005} {ICD10CM:N19} {ICD9CM:586} {UMLS C1963154,C0035078 HP:0000083} {HPO HP:0000083 C0035078,C1565489,C1839604};', 'HEENT': 'Dysmorphic facies {SNOMEDCT:248200007} {UMLS C0424503 HP:0001999} {HPO HP:0001999 C0266617,C0424503,C1385263,C4072832,C4072833}; Fundus cherry red spot;', 'GI': 'Visceral storage disease;; Congenital ascites;', 'Neuro': 'Early and severe mental retardation {SNOMEDCT:40700009} {ICD10CM:F72} {ICD9CM:318.1} {UMLS C0036857 HP:0010864} {HPO HP:0010864 C0036857};', 'Skel': 'Skeletal abnormalities {UMLS C4021790 HP:0000924} {HPO HP:0000924 C4021790};', 'Heme': 'Bone marrow foam cells {UMLS C1856560 HP:0004333} {HPO HP:0004333 C1856560};', 'Cardiac': 'Early-onset pericardial effusion;', 'Misc': 'Early death {UMLS C1836407};', 'Lab': 'Leukocyte alpha-(2-6) neuraminidase defect; Renal epithelial cell damage worst in glomeruli and proximal tubules, with high molecular weight sialyloligosaccharide storage;', 'Inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}; ? neuraminidase deficiency (256550);' } , 'oldFormatExists': True, 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': True, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': True, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': False, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256200, 'preferredTitle': 'NEPHROSIS WITH DEAFNESS AND URINARY TRACT AND DIGITAL MALFORMATIONS', 'oldFormat': { 'Limbs': 'Digital malformations; Short bifid distal phalanges of thumbs and big toes;', 'Ears': 'Hearing loss {SNOMEDCT:15188001,343087000,103276001} {ICD10CM:H91.9} {ICD9CM:389,389.9} {UMLS C3887873,C2029884,C1384666,C0018772,C0011053 HP:0000365} {HPO HP:0000365 C0011053,C0018772,C0339789,C1384666};', 'GU': 'Nephrosis {SNOMEDCT:90708001,52254009} {ICD10CM:N04} {ICD9CM:581} {UMLS C0027726,C0027720 HP:0000100} {HPO HP:0000100 C0027726}; Urinary tract anomalies {UMLS C4021821 HP:0000079} {HPO HP:0000079 C4021821};', 'HEENT': 'Bifid uvula {SNOMEDCT:18910001} {UMLS C4551488 HP:0000193} {HPO HP:0000193 C0266122} {EOM ID:89bbddff1c94bf45 IMG:Uvula,Cleft-small.jpg};', 'Inheritance': 'Autosomal recessive vs. X-linked dominant;' } , 'oldFormatExists': True, 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': True, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': False, 'miscellaneousExists': False, 'molecularBasisExists': False, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256300, 'prefix': '#', 'preferredTitle': 'NEPHROTIC SYNDROME, TYPE 1; NPHS1', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'growthOther': 'Growth retardation {SNOMEDCT:59576002,444896005} {UMLS C0151686 HP:0001510} {HPO HP:0001510 C0151686,C0456070,C0878787,C1837385,C3552463}', 'genitourinaryKidneys': '''Nephrotic syndrome {SNOMEDCT:52254009} {ICD10CM:N04} {ICD9CM:581} {UMLS C0027726,C4553910 HP:0000100} {HPO HP:0000100 C0027726};\nProteinuria, severe {UMLS C0240817} {HPO HP:0000093 C0033687};\nBiopsy shows dilated proximal tubules {UMLS C3278594};\nTubular atrophy {UMLS C1858395,C4521759 HP:0000092} {HPO HP:0000092 C1858395};\nInterstitial fibrosis {SNOMEDCT:125565008} {UMLS C3887486,C0240035};\nMesangial cell proliferation {UMLS C3278595};\nDiffuse mesangial sclerosis {SNOMEDCT:111406002} {UMLS C0268747 HP:0001967} {HPO HP:0001967 C0268747};\nGlomerulosclerosis and fibrosis {UMLS C3278596};\nLoss of podocyte foot processes {UMLS C3278597}''', 'muscleSoftTissue': 'Edema {SNOMEDCT:267038008,20741006,79654002} {ICD10CM:R60.9} {ICD9CM:782.3} {UMLS C1717255,C0013604 HP:0000969} {HPO HP:0000969 C0013604}', 'prenatalManifestationsAmnioticFluid': '''Proteinuria {SNOMEDCT:29738008,231860006} {ICD10CM:R80,R80.9} {ICD9CM:791.0} {UMLS C4554346,C1279888,C0033687,C1962972 HP:0000093} {HPO HP:0000093 C0033687};\nIncreased alpha-fetoprotein {UMLS C0235971 HP:0006254}''', 'prenatalManifestationsPlacentaAndUmbilicalCord': 'Enlarged placenta {UMLS C3278598}', 'prenatalManifestationsDelivery': 'Prematurity {SNOMEDCT:282020008,49550006,395507008,771299009} {ICD10CM:P07.3} {ICD9CM:644.2} {UMLS C0021294,C0151526 HP:0001622}', 'laboratoryAbnormalities': '''Hyperlipidemia {SNOMEDCT:166816003,55822004,3744001} {ICD10CM:E78.5} {UMLS C0020476,C0428465,C4555212,C0020473 HP:0010980,HP:0003077} {HPO HP:0003077 C0020473};\nHypoalbuminemia {SNOMEDCT:119247004} {UMLS C3665623,C0239981,C4554345 HP:0003073} {HPO HP:0003073 C0239981}''', 'miscellaneous': '''Onset in utero {UMLS C1836142 HP:0003577} {HPO HP:0003577 C1836142,C2752013};\nRapidly progressive {UMLS C1838681 HP:0003678} {HPO HP:0003678 C1838681,C1850776};\nEnd-stage renal failure in first decade {UMLS C3278600};\nEarly death without kidney transplant {UMLS C3278601};\nNot responsive to steroid treatment {UMLS C3278602};\nSome patients may have a milder phenotype {UMLS C3278603};\nIncidence of 12.2 per 100,000 in Finland {UMLS C3278604}''', 'molecularBasis': 'Caused by mutation in the nephrin gene (NPHS1, {602716.0001})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': False, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': True, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': True, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': True, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': True, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': True, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': True, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256370, 'prefix': '#', 'preferredTitle': 'NEPHROTIC SYNDROME, TYPE 4; NPHS4', 'inheritance': 'Autosomal dominant {SNOMEDCT:263681008} {UMLS C0443147 HP:0000006} {HPO HP:0000006 C0443147}', 'genitourinaryKidneys': '''Nephrotic syndrome {SNOMEDCT:52254009} {ICD10CM:N04} {ICD9CM:581} {UMLS C0027726,C4553910 HP:0000100} {HPO HP:0000100 C0027726};\nRenal failure {SNOMEDCT:723188008,42399005} {ICD10CM:N19} {ICD9CM:586} {UMLS C1963154,C0035078 HP:0000083} {HPO HP:0000083 C0035078,C1565489,C1839604};\nDiffuse mesangial sclerosis {SNOMEDCT:111406002} {UMLS C0268747 HP:0001967} {HPO HP:0001967 C0268747};\nFocal segmental glomerulosclerosis (less common) {UMLS C3151569} {HPO HP:0000097 C0017668}''', 'miscellaneous': '''Onset in early childhood {UMLS C1851422};\nProgressive disorder {UMLS C1864985 HP:0003676} {HPO HP:0003676 C0205329,C1864985}''', 'molecularBasis': 'Caused by mutation in the Wilms tumor 1 gene (WT1, {607102.0021})', 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': False, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': True, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': False, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': False, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256450, 'prefix': '#', 'preferredTitle': 'HYPERINSULINEMIC HYPOGLYCEMIA, FAMILIAL, 1; HHF1', 'inheritance': '''Autosomal dominant {SNOMEDCT:263681008} {UMLS C0443147 HP:0000006} {HPO HP:0000006 C0443147};\nAutosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}''', 'growthOther': 'Large for gestational age {UMLS C1848395 HP:0001520} {HPO HP:0001520 C1848395}', 'abdomenPancreas': '''Islet cell hyperplasia, diffuse {UMLS C1864907};\nFocal adenomatous hyperplasia of beta cells (uncommon) {UMLS C1850548}''', 'neurologicCentralNervousSystem': '''Loss of consciousness due to hypoglycemia {SNOMEDCT:267384006} {ICD10CM:E15} {ICD9CM:251.0} {UMLS C0020617 HP:0001325} {HPO HP:0001325 C0020617};\nSeizures, hypoglycemic {UMLS C0877056 HP:0002173};\nMental retardation due to repeated episodes of hypoglycemia {UMLS C1864949}''', 'endocrineFeatures': '''Hyperinsulinemic hypoglycemia {SNOMEDCT:360339005} {UMLS C1864903,C3888018 HP:0000825} {HPO HP:0000825 C1864903};\nInsulin deficiency (may develop later in life) {UMLS C1850546};\nDiabetes (may develop later in life) {UMLS C1850547}''', 'laboratoryAbnormalities': '''Hypoglycemia {SNOMEDCT:271327008,302866003,237630007} {ICD10CM:E16.2} {ICD9CM:251.2} {UMLS C4553659,C0020615 HP:0001943} {HPO HP:0001943 C0020615};\nHyperinsulinemia {SNOMEDCT:83469008,131103005} {ICD10CM:E16.1} {UMLS C0020459,C0852795 HP:0000842} {HPO HP:0000842 C0020459}''', 'miscellaneous': 'Genetic heterogeneity {UMLS C0242960 HP:0001425} {HPO HP:0001425 C0242960}', 'molecularBasis': 'Caused by mutation in the ATP-binding cassette, subfamily C, member 8 gene (ABCC8, {600509.0001})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': False, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': True, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': True, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': False, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': True, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256500, 'prefix': '#', 'preferredTitle': 'NETHERTON SYNDROME; NETH', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'growthOther': 'Failure to thrive {SNOMEDCT:54840006,433476000,432788009} {ICD10CM:R62.51} {ICD9CM:783.41} {UMLS C2315100,C0015544,C3887638 HP:0001508} {HPO HP:0001508 C0231246,C2315100}', 'headAndNeckEyes': 'Sparse eyebrows {SNOMEDCT:422441003} {UMLS C0578682,C1832446 HP:0045075,HP:0002223} {HPO HP:0045075}', 'respiratoryAirways': 'Asthma {SNOMEDCT:195967001} {ICD10CM:J45,J45.909,J45.90} {ICD9CM:493.9,493} {UMLS C2984299,C0004096 HP:0002099} {HPO HP:0002099 C0004096,C3714497}', 'abdomenGastrointestinal': '''Enteropathy with villous atrophy {UMLS C1850538};\nIntestinal atresia (rare) {HPO HP:0011100 C0021828}''', 'skinNailsHairSkin': '''Generalized erythroderma {SNOMEDCT:200948000,399992009,400005007} {ICD10CM:L53.9,L26} {UMLS C0011606 HP:0001019} {HPO HP:0001019 C0011606};\nIchthyosis linearis circumflexa {SNOMEDCT:312514006,54336006,34638006} {UMLS C0265962};\nCongenital lamellar ichthyosis {SNOMEDCT:268245001,205550003,267372009} {ICD10CM:Q80.2} {UMLS C0079154 HP:0007479} {HPO HP:0007479 C0079154};\nUrticaria {SNOMEDCT:247472004,126485001,64305001} {ICD10CM:L50,L50.9} {ICD9CM:708,708.9} {UMLS C2186740,C1559188,C0042109 HP:0001025} {HPO HP:0001025 C0042109}''', 'skinNailsHairSkinHistology': '''Psoriasiform epidermal hyperplasia;\nParakeratosis {SNOMEDCT:65068000,200766001} {UMLS C0030436 HP:0001036} {HPO HP:0001036 C0030436}''', 'skinNailsHairHair': '''Sparse, brittle scalp hair {UMLS C1850541};\nTrichorrhexis invaginata ("bamboo hair") {UMLS C1850542};\nSparse eyebrows {SNOMEDCT:422441003} {UMLS C0578682,C1832446 HP:0045075,HP:0002223} {HPO HP:0045075}''', 'muscleSoftTissue': 'Angioedema {SNOMEDCT:400075008,41291007} {ICD10CM:T78.3} {UMLS C0002994 HP:0100665} {HPO HP:0100665 C0002994}', 'neurologicCentralNervousSystem': 'Developmental delay {SNOMEDCT:248290002,224958001} {ICD10CM:F88} {ICD9CM:315.9} {UMLS C0424605,C0557874 HP:0001263} {HPO HP:0001263 C0557874,C1864897,C4020875}', 'metabolicFeatures': 'Hypernatremic dehydration {SNOMEDCT:427784006} {UMLS C1850544 HP:0004906} {HPO HP:0004906 C1850544}', 'hematology': 'Hypereosinophilia {UMLS C0745091 HP:0032061} {HPO HP:0032061}', 'immunology': '''Elevated immunoglobulin E (IgE) {UMLS C1850539} {HPO HP:0003212 C0236175};\nHay fever {SNOMEDCT:300910009,444316004,21719001,367498001} {ICD10CM:J30,J30.1} {ICD9CM:477.0} {UMLS C0018621 HP:0003193,HP:0012395} {HPO HP:0003193 C0847614,C2607914};\nAsthma {SNOMEDCT:195967001} {ICD10CM:J45,J45.909,J45.90} {ICD9CM:493.9,493} {UMLS C2984299,C0004096 HP:0002099} {HPO HP:0002099 C0004096,C3714497};\nAngioedema {SNOMEDCT:400075008,41291007} {ICD10CM:T78.3} {UMLS C0002994 HP:0100665} {HPO HP:0100665 C0002994};\nFood allergy {SNOMEDCT:414285001} {UMLS C4554344,C1548335,C0016470 HP:0500093} {HPO HP:0500093};\nRecurrent infections {SNOMEDCT:451991000124106} {UMLS C0239998 HP:0002719} {HPO HP:0002719 C0239998};\nInnate immunodeficiency;\nCognate immunodeficiency;\nDefective responses to vaccination;\nReduced IgG levels {SNOMEDCT:123785006} {UMLS C4520847 HP:0004315} {HPO HP:0004315 C0162539};\nReduced C3 components;\nSkewed Th1 phenotype;\nElevated proinflammatory cytokine levels;\nReduced chemokine CC-motif ligand-5 levels;\nReduced natural killer cell cytotoxicity {UMLS C1849419}''', 'miscellaneous': 'Some severely affected infants die in the neonatal period', 'molecularBasis': 'Caused by mutation in the serine protease inhibitor, Kazal type, 5 gene (SPINK5, {605010.0001})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': True, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': True, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': True, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': True, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': True, 'genitourinaryExists': False, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': True, 'skinNailsHairSkinExists': True, 'skinNailsHairSkinHistologyExists': True, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': True, 'muscleSoftTissueExists': True, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': True, 'endocrineFeaturesExists': False, 'hematologyExists': True, 'immunologyExists': True, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': False, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256520, 'prefix': '#', 'preferredTitle': 'NEU-LAXOVA SYNDROME 1; NLS1', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'growthOther': 'Prenatal onset growth retardation {SNOMEDCT:22033007} {ICD9CM:764.90,764.9} {UMLS C0015934 HP:0001511} {HPO HP:0001511 C0015934,C0021296,C1386048}', 'headAndNeckHead': 'Microcephaly {SNOMEDCT:1829003} {ICD10CM:Q02} {ICD9CM:742.1} {UMLS C4551563,C0025958 HP:0000252} {HPO HP:0000252 C0424688} {EOM ID:8ae2118220c1308f IMG:Microcephaly-small.jpg}', 'headAndNeckFace': '''Sloping forehead {UMLS C1857679 HP:0000340} {HPO HP:0000340 C1857679} {EOM ID:913a7d5a25c24e6a IMG:Forehead,Sloping-small.jpg};\nMicrognathia {SNOMEDCT:32958008} {UMLS C0025990 HP:0000347} {HPO HP:0000347 C0025990,C0240295,C1857130} {EOM ID:8bbf61b4ad7ca2ef IMG:Micrognathia-small.jpg}''', 'headAndNeckEars': 'Large ears {SNOMEDCT:275480001} {UMLS C0554972 HP:0000400} {HPO HP:0000400 C0152421,C0554972,C1835581,C1848570,C1850189,C1855062,C1860838}', 'headAndNeckEyes': '''Hypertelorism {SNOMEDCT:22006008} {ICD10CM:Q75.2} {ICD9CM:376.41} {UMLS C0020534 HP:0000316} {HPO HP:0000316 C0020534} {EOM ID:71d9f1be67c7f8b6 IMG:Eyes,Widely_Spaced-small.jpg};\nProtruding eyes {UMLS C1848490 HP:0000520} {HPO HP:0000520 C0015300,C1837760,C1848490,C1862425};\nAbsent eyelids {SNOMEDCT:13401001,708541009} {ICD10CM:Q10.3} {UMLS C0266574 HP:0011224} {HPO HP:0011224 C0266574,C4020757};\nCataract {SNOMEDCT:193570009,420123008,247053007,128306009} {ICD10CM:H26.9} {ICD9CM:366,366.9} {UMLS C4555209,C1690964,C0086543,C1962983 HP:0000518} {HPO HP:0000518 C0086543,C1510497};\nMicrophthalmia {SNOMEDCT:61142002,204108000} {ICD10CM:Q11.2} {ICD9CM:743.1,743.11,743.10} {UMLS C0026010 HP:0000568} {HPO HP:0000568 C0026010,C4280625,C4280808};\nAbsent eyelashes {UMLS C1843005 HP:0000561} {HPO HP:0000561 C1843005,C4280626,C4280627} {EOM ID:9d425f5e9624c299 IMG:Eyelashes,Absent-small.jpg}''', 'headAndNeckNose': 'Flattened nose {SNOMEDCT:249329004} {UMLS C0426431}', 'headAndNeckMouth': '''Round, gaping mouth {UMLS C1850528};\nThick lips {UMLS C1836543 HP:0012471} {HPO HP:0012471 C1836543};\nCleft lip {SNOMEDCT:80281008} {ICD10CM:Q36.9,Q36} {ICD9CM:749.1,749.10} {UMLS C0008924,C4321245 HP:0000204,HP:0410030} {HPO HP:0410030};\nCleft palate {SNOMEDCT:87979003,63567004} {ICD10CM:Q35.5,Q35,Q35.9} {ICD9CM:749.0,749.00} {UMLS C2981150,C0008925,C2240378 HP:0000175} {HPO HP:0000175 C0008925,C2981150}''', 'headAndNeckNeck': 'Short neck {SNOMEDCT:95427009} {UMLS C0521525 HP:0000470} {HPO HP:0000470 C0521525} {EOM ID:c75e63fd749ec7a8 IMG:Neck,Short-small.jpg}', 'cardiovascularHeart': '''Patent foramen ovale {SNOMEDCT:204315000,204317008} {ICD10CM:Q21.1} {ICD9CM:745.5} {UMLS C0344724,C0016522 HP:0001684,HP:0001655} {HPO HP:0001655 C0016522};\nAtrial septal defect {SNOMEDCT:70142008,253366007,405752007} {ICD10CM:Q21.1} {UMLS C0018817 HP:0001631} {HPO HP:0001631 C0018817};\nVentricular septal defect {SNOMEDCT:30288003,768552007,253549006} {ICD10CM:Q21.0} {ICD9CM:745.4} {UMLS C0018818 HP:0001629} {HPO HP:0001629 C0018818}''', 'cardiovascularVascular': '''Transposition of great vessels {SNOMEDCT:26146002,204296002} {ICD10CM:Q20.3} {ICD9CM:745.1,745.10} {UMLS C0040761,C3536741 HP:0001669} {HPO HP:0001669 C3536741};\nPatent ductus arteriosus {SNOMEDCT:83330001} {ICD10CM:Q25.0} {ICD9CM:747.0} {UMLS C3495549,C0013274 HP:0001643} {HPO HP:0001643 C0013274}''', 'respiratoryLung': 'Pulmonary hypoplasia {SNOMEDCT:80825009} {UMLS C0265783 HP:0002089} {HPO HP:0002089 C0265783}', 'genitourinaryInternalGenitaliaMale': 'Cryptorchidism {SNOMEDCT:204878001} {ICD10CM:Q53.9} {ICD9CM:752.51} {UMLS C0010417 HP:0000028} {HPO HP:0000028 C0010417}', 'genitourinaryInternalGenitaliaFemale': 'Bifid uterus {UMLS C1850327 HP:0000136} {HPO HP:0000136 C1850327}', 'genitourinaryKidneys': 'Renal agenesis {SNOMEDCT:41962002,204942005,204938007} {ICD10CM:Q60,Q60.1,Q60.2} {ICD9CM:753.0} {UMLS C1609433,C0158699,C0542519 HP:0000104,HP:0010958} {HPO HP:0000104 C0542519}', 'skeletal': 'Poorly mineralized bones {UMLS C1850529}', 'skeletalLimbs': '''Short limbs {UMLS C0239399 HP:0009826} {HPO HP:0009826 C0239399};\nFlexion contractures of joints {UMLS C1850530 HP:0001371} {HPO HP:0001371 C0009917,C0009918,C0333068,C1850530};\nPterygia {UMLS C0033999,C4084831 HP:0001059} {HPO HP:0001059 C0033999}''', 'skeletalHands': '''Finger syndactyly {SNOMEDCT:249769001,34048007,268251006} {ICD10CM:Q70.1,Q70.10} {ICD9CM:755.11} {UMLS C0221352 HP:0006101} {HPO HP:0006101 C0221352};\nPuffiness of hands {UMLS C1850531};\nCamptodactyly {SNOMEDCT:29271008} {UMLS C0221369,C0685409 HP:0012385} {HPO HP:0012385 C0685409} {EOM ID:e2dc697e402380a8 IMG:Camptodactyly-large-small.jpg};\nClinodactyly {SNOMEDCT:17268007} {UMLS C4551485,C0265610 HP:0030084,HP:0040019} {HPO HP:0030084 C0265610,C4280304} {EOM ID:483af428f909c76c IMG:Clinodactyly-small.jpg}''', 'skeletalFeet': '''Toe syndactyly {SNOMEDCT:32113001} {ICD10CM:Q70.3} {UMLS C0265660 HP:0001770} {HPO HP:0001770 C0265660};\nPuffiness of feet {UMLS C1850532};\nCalcaneovalgus {UMLS C1860450 HP:0001848} {HPO HP:0001848 C1860450};\nVertical talus {SNOMEDCT:205082007} {UMLS C0240912 HP:0001838}''', 'skinNailsHairSkin': '''Yellow subcutaneous tissue covered by thin, scaly skin {UMLS C1850533 HP:0007525} {HPO HP:0007525 C1850533};\nGeneralized tissue edema {SNOMEDCT:271808008} {ICD10CM:R60.1} {UMLS C1850534 HP:0007430} {HPO HP:0007430 C1850534}''', 'skinNailsHairHair': '''Absent scalp hair {UMLS C1850535 HP:0002293};\nAbsent eyelashes {UMLS C1843005 HP:0000561} {HPO HP:0000561 C1843005,C4280626,C4280627} {EOM ID:9d425f5e9624c299 IMG:Eyelashes,Absent-small.jpg}''', 'neurologicCentralNervousSystem': '''Lissencephaly {SNOMEDCT:204036008} {ICD10CM:Q04.3} {UMLS C0266463 HP:0001339} {HPO HP:0001339 C0266463,C1879312};\nAbsence of corpus callosum {SNOMEDCT:5102002} {ICD10CM:Q04.0} {UMLS C0175754 HP:0001274} {HPO HP:0001274 C0175754};\nCerebellar hypoplasia {SNOMEDCT:16026008} {UMLS C0266470 HP:0001321} {HPO HP:0001321 C0266470};\nAbsence of olfactory bulbs {UMLS C1850527};\nHydranencephaly {SNOMEDCT:30023002} {ICD10CM:Q04.3} {UMLS C0020225 HP:0002324} {HPO HP:0002324 C0020225};\nSpina bifida {SNOMEDCT:67531005} {ICD10CM:Q05.9,Q05} {ICD9CM:741,741.9,741.90} {UMLS C0080178,C0158534 HP:0002414,HP:0010301} {HPO HP:0002414 C0080178};\nDandy-Walker malformation {SNOMEDCT:14447001} {ICD10CM:Q03.1} {UMLS C0010964 HP:0001305} {HPO HP:0001305 C0010964};\nChoroid plexus cyst {SNOMEDCT:230790004} {UMLS C0338597 HP:0002190} {HPO HP:0002190 C0338597}''', 'miscellaneous': '''Decreased fetal activity {SNOMEDCT:276369006} {ICD10CM:O36.8190,O36.81} {UMLS C0235659 HP:0001558} {HPO HP:0001558 C0235659};\nStillborn {SNOMEDCT:237364002} {ICD10CM:P95} {UMLS C0595939 HP:0003826} {HPO HP:0003826 C0015927,C0595939};\nPolyhydramnios {SNOMEDCT:86203003} {ICD10CM:O40} {ICD9CM:657,657.0} {UMLS C0020224 HP:0001561} {HPO HP:0001561 C0020224};\nShort umbilical cord {SNOMEDCT:59795007} {UMLS C0266786 HP:0001196} {HPO HP:0001196 C0266786};\nSmall placenta {SNOMEDCT:289264006} {UMLS C0566694 HP:0006266} {HPO HP:0006266 C0566694};\nMost patients are stillborn or die in immediate neonatal period {UMLS C1850537}''', 'molecularBasis': 'Caused by mutation in the phosphoglycerate dehydrogenase gene (PHGDH, {606879.0007})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': True, 'headAndNeckExists': True, 'headAndNeckHeadExists': True, 'headAndNeckFaceExists': True, 'headAndNeckEarsExists': True, 'headAndNeckEyesExists': True, 'headAndNeckNoseExists': True, 'headAndNeckMouthExists': True, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': True, 'cardiovascularExists': True, 'cardiovascularHeartExists': True, 'cardiovascularVascularExists': True, 'respiratoryExists': True, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': True, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': True, 'genitourinaryInternalGenitaliaFemaleExists': True, 'genitourinaryKidneysExists': True, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': True, 'skeletalHandsExists': True, 'skeletalFeetExists': True, 'skinNailsHairExists': True, 'skinNailsHairSkinExists': True, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': True, 'muscleSoftTissueExists': False, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': False, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256540, 'prefix': '#', 'preferredTitle': 'GALACTOSIALIDOSIS; GSL', 'oldFormat': { 'Growth': 'Dwarfism {SNOMEDCT:422065006,237837007,237836003} {ICD10CM:E34.3} {UMLS C0013336 HP:0003510} {HPO HP:0003510 C0013336};', 'HEENT': 'Coarse facies {UMLS C1845847 HP:0000280} {HPO HP:0000280 C1845847,C4072825}; Conjunctival telangiectases {SNOMEDCT:231870008} {UMLS C0239105 HP:0000524} {HPO HP:0000524 C0239105}; Corneal clouding {SNOMEDCT:413921009,64634000,95735008} {ICD9CM:371.00} {UMLS C0010038,C0521719 HP:0007957} {HPO HP:0007957 C0010038,C0521719}; Macular cherry red spot {UMLS C2216370 HP:0010729} {HPO HP:0010729 C2216370}; Hearing loss {SNOMEDCT:15188001,343087000,103276001} {ICD10CM:H91.9} {ICD9CM:389,389.9} {UMLS C3887873,C2029884,C1384666,C0018772,C0011053 HP:0000365} {HPO HP:0000365 C0011053,C0018772,C0339789,C1384666};', 'Neuro': 'Mental retardation {SNOMEDCT:110359009,228156007} {ICD9CM:317-319.99} {UMLS C0025362,C3714756 HP:0001249} {HPO HP:0001249 C0025362,C0423903,C0917816,C1843367,C3714756,C4020876}; Seizures {SNOMEDCT:91175000} {UMLS C0036572 HP:0001250} {HPO HP:0001250 C0014544,C0036572};', 'Skel': 'Dysostosis multiplex {SNOMEDCT:254069004,65327002} {ICD10CM:E76.01} {UMLS C0086795 HP:0000943} {HPO HP:0000943 C0086795};', 'GI': 'Usually no organomegaly; Occasionally hepatosplenomegaly; Vacuolated Kupffer cells;', 'Skin': 'Widespread hemangiomas;', 'Cardiac': 'Mitral valvular disease {SNOMEDCT:11851006} {ICD9CM:424.0} {UMLS C0026265}; Aortic valvular disease {SNOMEDCT:8722008} {ICD9CM:424.1,395} {UMLS C1260873};', 'Lab': 'EM of skin biopsy and peripheral blood lymphocytes shows membrane-bound fibrillogranular inclusions; Elevated urine sialyloligosaccharides but no free sialic acid; Neuraminidase deficiency {SNOMEDCT:38795005,124461006} {ICD10CM:E77.1} {UMLS C4282398,C0268226}; Beta-galactosidase deficiency {SNOMEDCT:124465002} {UMLS C2718068}; Decreased carboxypeptidase-L/protective protein activity;', 'Inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899};' } , 'oldFormatExists': True, 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': True, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': True, 'skinNailsHairSkinExists': True, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': False, 'molecularBasisExists': False, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256550, 'prefix': '#', 'preferredTitle': 'NEURAMINIDASE DEFICIENCY', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'growthHeight': 'Short stature (type II, infantile and juvenile) {UMLS C2673284} {HPO HP:0004322 C0349588}', 'headAndNeckFace': '''Coarse facies (type II, all types) {UMLS C2673289} {HPO HP:0000280 C1845847,C4072825};\nFacial edema (type II, congenital) {UMLS C2673290} {HPO HP:0000282 C0542571}''', 'headAndNeckEars': 'Hearing loss, sensorineural (type II) {UMLS C2673291} {HPO HP:0000407 C0018784}', 'headAndNeckEyes': '''Vision loss, progressive (type I) {UMLS C3278605} {HPO HP:0000529 C1839364,C3277697};\nNystagmus (type I) {UMLS C2673293} {HPO HP:0000639 C0028738};\nCherry-red spot (type II, infantile and juvenile and type I) {UMLS C2673294};\nLens opacities (type II, infantile and juvenile) {UMLS C2673295} {HPO HP:0000518 C0086543,C1510497}''', 'cardiovascularHeart': '''Cardiomegaly (type II, infantile) {UMLS C2673307} {HPO HP:0001640 C0018800};\nCardiomyopathy (type II, congenital) {UMLS C2673308} {HPO HP:0001638 C0878544}''', 'abdomenExternalFeatures': 'Neonatal ascites (type II, congenital) {UMLS C2673286}', 'abdomenLiver': 'Hepatomegaly (type II, all subtypes) {UMLS C2673287} {HPO HP:0002240 C0019209}', 'abdomenSpleen': 'Splenomegaly (type II, all subtypes) {UMLS C2673288} {HPO HP:0001744 C0038002}', 'genitourinaryExternalGenitaliaMale': 'Inguinal hernia (type II, congenital) {UMLS C2673283} {HPO HP:0000023 C0019294}', 'skeletal': 'Dysostosis multiplex (type II, all types) {UMLS C2673298} {HPO HP:0000943 C0086795}', 'skeletalLimbs': '''Epiphyseal stippling (type II, congenital) {UMLS C2673299} {HPO HP:0010655 C1859126};\nPeriosteal cloaking (type II, congenital) {UMLS C2673300}''', 'muscleSoftTissue': '''Muscle weakness (type I) {UMLS C2673296} {HPO HP:0001324 C0151786};\nMuscle atrophy (type I) {UMLS C2673297} {HPO HP:0003202 C0234958,C0270948,C0541794,C1843479}''', 'neurologicCentralNervousSystem': '''Ataxia (type I and type II, infantile and juvenile) {UMLS C2673276} {HPO HP:0001251 C0007758};\nSeizures (type I and type II, juvenile) {UMLS C2673277} {HPO HP:0001250 C0014544,C0036572};\nMental retardation, moderate to severe (type II, infantile and juvenile) {UMLS C2673278};\nMyoclonus (type I and type II, infantile and juvenile) {UMLS C2673279} {HPO HP:0001336 C0027066,C1854302};\nDysmetria (type I) {UMLS C2673280} {HPO HP:0001310 C0234162};\nHypotonia (type I and type II, infantile) {UMLS C2673281} {HPO HP:0001290 C1858120};\nHyperreflexia (type I) {UMLS C2673282} {HPO HP:0001347 C0151889}''', 'voice': 'Slurred speech (type I) {UMLS C2673309} {HPO HP:0001350 C0234518}', 'hematology': '''Vacuolated lymphocytes (type II) {UMLS C2673305} {HPO HP:0001922 C1836855};\nBone marrow foam cells (type II) {UMLS C2673306} {HPO HP:0004333 C1856560}''', 'prenatalManifestations': 'Hydrops fetalis (type II, congenital) {UMLS C2673285} {HPO HP:0001789 C0020305}', 'prenatalManifestationsDelivery': 'Still birth {SNOMEDCT:237364002} {ICD10CM:P95} {UMLS C0595939 HP:0003826}', 'laboratoryAbnormalities': '''Proteinuria (type II, congenital) {UMLS C2673301} {HPO HP:0000093 C0033687};\nIncreased urinary sialyloligosaccharides {UMLS C2673302 HP:0012061} {HPO HP:0012061 C2673302};\nIncreased urinary sialylglycopeptides {UMLS C2673303};\nNeuraminidase deficiency (white blood cells, fibroblasts, cultured amniotic cells) {UMLS C2673304}''', 'miscellaneous': '''Type I sialidosis (cherry-red spot/myoclonus syndrome ) - mild disease, no dysmorphic features, onset in second decade {UMLS C2673311};\nType II sialidosis - severe disease, dysmorphic features, variable onset (congenital or hydropic (in utero), infantile (1-12 months), juvenile (2-20 years)) {UMLS C2673312}''', 'molecularBasis': 'Caused by mutation in the neuraminidase 1 gene (NEU1, {608272.0001})', 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': True, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': True, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': True, 'headAndNeckEarsExists': True, 'headAndNeckEyesExists': True, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': True, 'cardiovascularHeartExists': True, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': True, 'abdomenExternalFeaturesExists': True, 'abdomenLiverExists': True, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': True, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': True, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': True, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': True, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': True, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': True, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': True, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': True, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256600, 'prefix': '#', 'preferredTitle': 'NEURODEGENERATION WITH BRAIN IRON ACCUMULATION 2A; NBIA2A', 'inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899}', 'neurologicCentralNervousSystem': '''Developmental delay {SNOMEDCT:248290002,224958001} {ICD10CM:F88} {ICD9CM:315.9} {UMLS C0424605,C0557874 HP:0001263} {HPO HP:0001263 C0557874,C1864897,C4020875};\nPsychomotor regression, progressive {UMLS C1850493 HP:0002376} {HPO HP:0002376 C1836550,C1836830,C1850493,C1855009,C1855019,C1855996,C1857121,C1859678};\nHypotonia {SNOMEDCT:398152000,398151007} {UMLS C0026827,C1858120 HP:0001290,HP:0001252} {HPO HP:0001290 C1858120};\nGeneralized weakness {SNOMEDCT:13791008} {ICD10CM:M62.81,R53.1,R53.81} {ICD9CM:728.87,799.3} {UMLS C0746674,C3714552 HP:0003324} {HPO HP:0003324 C0746674};\nGait instability {SNOMEDCT:394616008,22631008} {UMLS C0231686 HP:0002317} {HPO HP:0002317 C0231686};\nAtaxia {SNOMEDCT:39384006,85102008,20262006} {ICD10CM:R27.0} {ICD9CM:438.84} {UMLS C0004134,C1135207,C0007758,C4554639 HP:0010867,HP:0001251} {HPO HP:0001251 C0007758};\nPyramidal tract signs {SNOMEDCT:14648003} {UMLS C0234132 HP:0007256} {HPO HP:0007256 C0234132};\nSpastic tetraplegia {SNOMEDCT:192965001} {UMLS C0426970 HP:0002510} {HPO HP:0002510 C0426970};\nHyperreflexia (70%) {UMLS C2749487} {HPO HP:0001347 C0151889};\nAreflexia (30%) {UMLS C2749490} {HPO HP:0001284 C0234146,C0241772,C0278124};\nMental retardation {SNOMEDCT:110359009,228156007} {ICD9CM:317-319.99} {UMLS C0025362,C3714756 HP:0001249} {HPO HP:0001249 C0025362,C0423903,C0917816,C1843367,C3714756,C4020876};\nSeizures {SNOMEDCT:91175000} {UMLS C0036572 HP:0001250} {HPO HP:0001250 C0014544,C0036572};\nAutonomic involvement may occur {UMLS C1850495};\nCerebral atrophy {SNOMEDCT:278849000} {UMLS C0235946 HP:0002059} {HPO HP:0002059 C0154671,C0235946,C4020860};\nCerebellar atrophy {UMLS C0740279 HP:0001272} {HPO HP:0001272 C0262404,C0740279,C4020873};\nNeuronal loss {UMLS C1850496 HP:0002529} {HPO HP:0002529 C1850496};\nGliosis {SNOMEDCT:81415000,359580009} {UMLS C0017639 HP:0002171} {HPO HP:0002171 C0017639};\nAxonal dystrophy {UMLS C1850497};\nAxonal swelling or thickening {UMLS C1850498};\nAxonal \'spheroid\' inclusions {UMLS C1850499};\nHigh voltage, fast rhythms seen on EEG {UMLS C3806475};\nCerebellar atrophy with signal hyperintensity in the cerebellar cortex seen on T2-weighted MRI {UMLS C3806476};\nIncreased iron deposition in the basal ganglia (40%) {UMLS C2749488};\nThin optic chiasm {UMLS C1850503}''', 'neurologicPeripheralNervousSystem': '''Decreased nerve conduction velocities (NCV) (30%) {UMLS C2749489} {HPO HP:0000762 C1857640};\nChronic denervation seen on EMG {UMLS C3550584};\nAxonal dystrophy {UMLS C1850497};\nAxonal swelling or thickening {UMLS C1850498};\nAxonal \'spheroid\' inclusions {UMLS C1850499}''', 'laboratoryAbnormalities': 'Characteristic spheroids can be found in peripheral tissue, such as skin and conjunctiva {UMLS C1850505}', 'miscellaneous': '''Onset usually in infancy or up to 2 years of age although later onset has been reported (\'late-infantile\') {UMLS C3806477};\nDeath usually by age 10 years {UMLS C1850508};\nAllelic disorder to neurodegeneration with brain iron accumulation 2B (NBIA2B, {610217});\nPhenotypic overlap with PKAN neuroaxonal dystrophy (NBIA1, {234200})''', 'molecularBasis': 'Caused by mutation in the phospholipase A2, group VI gene (PLA2G6, {603604.0001})', 'inheritanceExists': True, 'growthExists': False, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': False, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': False, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': False, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': False, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': True, 'neurologicPeripheralNervousSystemExists': True, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': True, 'molecularBasisExists': True, 'matches': '' } }, {'clinicalSynopsis': { 'mimNumber': 256690, 'preferredTitle': 'NEUROFACIODIGITORENAL SYNDROME', 'oldFormat': { 'Neuro': 'Mental retardation {SNOMEDCT:110359009,228156007} {ICD9CM:317-319.99} {UMLS C0025362,C3714756 HP:0001249} {HPO HP:0001249 C0025362,C0423903,C0917816,C1843367,C3714756,C4020876}; No seizures {UMLS C1856553}; HEENT Vertical groove in tip of nose; Bifid nose {SNOMEDCT:204521002} {UMLS C0221363 HP:0011803} {HPO HP:0011803 C0221363,C4280318,C4280319} {EOM ID:7124d8708f2360b3 IMG:Nose,Bifid-small.jpg}; Prominent forehead {UMLS C1837260 HP:0011220} {HPO HP:0011220 C1837260,C1867446} {EOM ID:510a51e4083c1d6f IMG:Forehead,Prominent-small.jpg}; Abnormal ear shape;', 'Growth': 'Short stature {SNOMEDCT:422065006,237837007,237836003} {ICD10CM:R62.52,E34.3} {ICD9CM:783.43} {UMLS C0013336,C0349588,C2237041,C2919142 HP:0004322,HP:0003510} {HPO HP:0004322 C0349588};', 'Limbs': 'Triphalangeal thumbs {SNOMEDCT:205308004} {ICD10CM:Q74.0} {UMLS C0241397 HP:0001199} {HPO HP:0001199 C0241397};', 'GU': 'Unilateral renal agenesis {ICD10CM:Q60.0} {UMLS C0266294 HP:0000122} {HPO HP:0000122 C0266294};', 'Lab': 'Highly abnormal EEG;', 'Inheritance': 'Autosomal recessive {SNOMEDCT:258211005} {UMLS C0441748 HP:0000007} {HPO HP:0000007 C0441748,C4020899};' } , 'oldFormatExists': True, 'inheritanceExists': True, 'growthExists': True, 'growthHeightExists': False, 'growthWeightExists': False, 'growthOtherExists': False, 'headAndNeckExists': False, 'headAndNeckHeadExists': False, 'headAndNeckFaceExists': False, 'headAndNeckEarsExists': False, 'headAndNeckEyesExists': False, 'headAndNeckNoseExists': False, 'headAndNeckMouthExists': False, 'headAndNeckTeethExists': False, 'headAndNeckNeckExists': False, 'cardiovascularExists': False, 'cardiovascularHeartExists': False, 'cardiovascularVascularExists': False, 'respiratoryExists': False, 'respiratoryNasopharynxExists': False, 'respiratoryLarynxExists': False, 'respiratoryAirwaysExists': False, 'respiratoryLungExists': False, 'chestExists': False, 'chestExternalFeaturesExists': False, 'chestRibsSternumClaviclesAndScapulaeExists': False, 'chestBreastsExists': False, 'chestDiaphragmExists': False, 'abdomenExists': False, 'abdomenExternalFeaturesExists': False, 'abdomenLiverExists': False, 'abdomenPancreasExists': False, 'abdomenBiliaryTractExists': False, 'abdomenSpleenExists': False, 'abdomenGastrointestinalExists': False, 'genitourinaryExists': True, 'genitourinaryExternalGenitaliaMaleExists': False, 'genitourinaryExternalGenitaliaFemaleExists': False, 'genitourinaryInternalGenitaliaMaleExists': False, 'genitourinaryInternalGenitaliaFemaleExists': False, 'genitourinaryKidneysExists': False, 'genitourinaryUretersExists': False, 'genitourinaryBladderExists': False, 'skeletalExists': True, 'skeletalSkullExists': False, 'skeletalSpineExists': False, 'skeletalPelvisExists': False, 'skeletalLimbsExists': True, 'skeletalHandsExists': False, 'skeletalFeetExists': False, 'skinNailsHairExists': False, 'skinNailsHairSkinExists': False, 'skinNailsHairSkinHistologyExists': False, 'skinNailsHairSkinElectronMicroscopyExists': False, 'skinNailsHairNailsExists': False, 'skinNailsHairHairExists': False, 'muscleSoftTissueExists': False, 'neurologicExists': True, 'neurologicCentralNervousSystemExists': False, 'neurologicPeripheralNervousSystemExists': False, 'neurologicBehavioralPsychiatricManifestationsExists': False, 'voiceExists': False, 'metabolicFeaturesExists': False, 'endocrineFeaturesExists': False, 'hematologyExists': False, 'immunologyExists': False, 'neoplasiaExists': False, 'prenatalManifestationsExists': False, 'prenatalManifestationsMovementExists': False, 'prenatalManifestationsAmnioticFluidExists': False, 'prenatalManifestationsPlacentaAndUmbilicalCordExists': False, 'prenatalManifestationsMaternalExists': False, 'prenatalManifestationsDeliveryExists': False, 'laboratoryAbnormalitiesExists': True, 'miscellaneousExists': False, 'molecularBasisExists': False, 'matches': '' } } ] } } }
417abc4b221a811744744bb40cacbdebce913473
77ce93cca6427101f18a06baba5f2ff04f0f77fb
/isce_geocode_tools.py
df5bb16edf0972fb91141d3d3e2808c01271ebd9
[]
no_license
cherishing99/S1_batches
6cd4c511d4bc63d8c25a9beb1f773a23b2c15deb
e4238203cd0898a6ef960607bff2e44166db300a
refs/heads/master
2023-01-02T03:38:44.407786
2020-10-27T14:08:15
2020-10-27T14:08:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,489
py
# June 2020 # A series of functions to geocode isce images and los.rdr.geo in various formats # Including the UAVSAR stacks # And the UAVSAR ground range igram format from the JPL website import numpy as np import matplotlib.pyplot as plt import sys, glob from subprocess import call import isce_read_write import jpl_uav_read_write import mask_and_interpolate import netcdf_read_write as rwr import haversine from isce_read_write import get_xmin_xmax_xinc_from_xml from lkv_trig_math import bearing_to_cartesian, complement_angle, cartesian_to_ccw_from_north, rotate_vector_by_angle, \ normalize_look_vector, calc_rdr_azimuth_incidence_from_lkv_plane_down # ------------ UTILITY FUNCTIONS -------------- # def cut_resampled_grid(outdir, filename, variable, config_params): # This is for metadata like lon, lat, and lookvector # Given an isce file and a set of bounds to cut the file, # Produce the isce data and gmtsar netcdf that match each pixel. temp = isce_read_write.read_scalar_data(outdir + "/" + filename); print("Shape of the " + variable + " file: ", np.shape(temp)); xbounds = [float(config_params.xbounds.split(',')[0]), float(config_params.xbounds.split(',')[1])]; ybounds = [float(config_params.ybounds.split(',')[0]), float(config_params.ybounds.split(',')[1])]; cut_grid = mask_and_interpolate.cut_grid(temp, xbounds, ybounds, fractional=True, buffer_rows=3); print("Shape of the cut lon file: ", np.shape(cut_grid)); nx = np.shape(cut_grid)[1]; ny = np.shape(cut_grid)[0]; isce_read_write.write_isce_data(cut_grid, nx, ny, "FLOAT", outdir + '/cut_' + variable + '.gdal'); rwr.produce_output_netcdf(np.array(range(0, nx)), np.array(range(0, ny)), cut_grid, "degrees", outdir + '/cut_' + variable + '.nc'); return; # ------------ GEOCODING FUNCTIONS FOR UAVSAR STACKS -------------- # # Based on stacks of 3D netcdf's from the time series processing def gmtsar_nc_stack_2_isce_stack(ts_file, output_dir, bands=2): # Decompose a 3D time series object into a series of slices # Write the slices into isce unwrapped format. call(["mkdir", "-p", output_dir], shell=False); tdata, xdata, ydata, zdata = rwr.read_3D_netcdf(ts_file); for i in range(np.shape(zdata)[0]): call(["mkdir", "-p", output_dir + "/scene_" + str(i)]); temp = zdata[i, :, :]; # Write data out in isce format ny, nx = np.shape(temp); name = "ts_slice_" + str(i); filename = output_dir + "/scene_" + str(i) + "/" + name + ".unw"; temp = np.float32(temp); isce_read_write.write_isce_unw(temp, temp, nx, ny, "FLOAT", filename); isce_read_write.plot_scalar_data(filename, band=bands, colormap='rainbow', datamin=-50, datamax=200, aspect=1 / 5, outname=output_dir + "/scene_" + str(i) + "/isce_unw_band.png"); return; def geocode_UAVSAR_stack(config_params, geocoded_folder): # The goals here for UAVSAR: # Load lon/lat grids and look vector grids # Resample and cut the grids appropriately # Write pixel-wise metadata out in the output folder # All these grids have only single band. call(["mkdir", "-p", geocoded_folder], shell=False); llh_array = np.fromfile(config_params.llh_file, dtype=np.float32); # this is a vector. lkv_array = np.fromfile(config_params.lkv_file, dtype=np.float32); lon = []; lat = []; hgt = []; lkv_e = []; lkv_n = []; lkv_u = []; lat = llh_array[np.arange(0, len(llh_array), 3)]; # ordered array opened from the provided UAVSAR files lon = llh_array[np.arange(1, len(llh_array), 3)]; hgt = llh_array[np.arange(2, len(llh_array), 3)]; lkv_e = lkv_array[np.arange(0, len(lkv_array), 3)] lkv_n = lkv_array[np.arange(1, len(lkv_array), 3)] lkv_u = lkv_array[np.arange(2, len(lkv_array), 3)] example_igram = glob.glob("../Igrams/????????_????????/*.int")[0]; phase_array = isce_read_write.read_phase_data(example_igram); print("Shape of the interferogram: ", np.shape(phase_array)); # Determine the shape of the llh array # assuming there's a giant gap somewhere in the lat array # that can tell us how many elements are in the gridded array typical_gap = abs(lat[1] - lat[0]); for i in range(1, len(lat)): if abs(lat[i] - lat[i - 1]) > 100 * typical_gap: print(lat[i] - lat[i - 1]); print("There are %d columns in the lon/lat arrays" % i); llh_pixels_range = i; break; llh_pixels_azimuth = int(len(lon) / llh_pixels_range); print("llh_pixels_azimuth: ", llh_pixels_azimuth); print("llh_pixels_range: ", llh_pixels_range); # We turn the llh data into 2D arrays. # The look vector is in meters from the aircraft to the ground. lat_array = np.reshape(lat, (llh_pixels_azimuth, llh_pixels_range)); lon_array = np.reshape(lon, (llh_pixels_azimuth, llh_pixels_range)); lkve_array = np.reshape(lkv_e, (llh_pixels_azimuth, llh_pixels_range)); lkvn_array = np.reshape(lkv_n, (llh_pixels_azimuth, llh_pixels_range)); lkvu_array = np.reshape(lkv_u, (llh_pixels_azimuth, llh_pixels_range)); lkve_array, lkvn_array, lkvu_array = normalize_look_vector(lkve_array, lkvn_array, lkvu_array); azimuth, incidence = calc_rdr_azimuth_incidence_from_lkv_plane_down(lkve_array, lkvn_array, lkvu_array); # # write the data into a GDAL format. isce_read_write.write_isce_data(lon_array, llh_pixels_range, llh_pixels_azimuth, "FLOAT", geocoded_folder + "/lon_total.gdal"); isce_read_write.write_isce_data(lat_array, llh_pixels_range, llh_pixels_azimuth, "FLOAT", geocoded_folder + "/lat_total.gdal"); isce_read_write.write_isce_data(azimuth, llh_pixels_range, llh_pixels_azimuth, "FLOAT", geocoded_folder + "/azimuth_total.gdal"); isce_read_write.write_isce_data(incidence, llh_pixels_range, llh_pixels_azimuth, "FLOAT", geocoded_folder + "/incidence_total.gdal"); # Resampling in GDAL to match the interferogram sampling call(['gdalwarp', '-ts', str(np.shape(phase_array)[1]), str(np.shape(phase_array)[0]), '-r', 'bilinear', '-to', 'SRC_METHOD=NO_GEOTRANSFORM', '-to', 'DST_METHOD=NO_GEOTRANSFORM', geocoded_folder + '/lon_total.gdal', geocoded_folder + '/lon_igram_res.tif'], shell=False); call(['gdalwarp', '-ts', str(np.shape(phase_array)[1]), str(np.shape(phase_array)[0]), '-r', 'bilinear', '-to', 'SRC_METHOD=NO_GEOTRANSFORM', '-to', 'DST_METHOD=NO_GEOTRANSFORM', geocoded_folder + '/lat_total.gdal', geocoded_folder + '/lat_igram_res.tif'], shell=False); call(['gdalwarp', '-ts', str(np.shape(phase_array)[1]), str(np.shape(phase_array)[0]), '-r', 'bilinear', '-to', 'SRC_METHOD=NO_GEOTRANSFORM', '-to', 'DST_METHOD=NO_GEOTRANSFORM', geocoded_folder + '/incidence_total.gdal', geocoded_folder + '/incidence_igram_res.tif'], shell=False); call(['gdalwarp', '-ts', str(np.shape(phase_array)[1]), str(np.shape(phase_array)[0]), '-r', 'bilinear', '-to', 'SRC_METHOD=NO_GEOTRANSFORM', '-to', 'DST_METHOD=NO_GEOTRANSFORM', geocoded_folder + '/azimuth_total.gdal', geocoded_folder + '/azimuth_igram_res.tif'], shell=False); # Cut the data, and quality check. # Writing the cut lon/lat into new files. cut_resampled_grid(geocoded_folder, "lon_igram_res.tif", "lon", config_params); cut_resampled_grid(geocoded_folder, "lat_igram_res.tif", "lat", config_params); cut_resampled_grid(geocoded_folder, "incidence_igram_res.tif", "incidence", config_params); cut_resampled_grid(geocoded_folder, "azimuth_igram_res.tif", "azimuth", config_params); isce_read_write.plot_scalar_data(geocoded_folder + '/cut_lat.gdal', colormap='rainbow', aspect=1 / 4, outname=geocoded_folder + '/cut_lat_geocoded.png'); cut_lon = isce_read_write.read_scalar_data(geocoded_folder + '/cut_lon.gdal'); cut_lat = isce_read_write.read_scalar_data(geocoded_folder + '/cut_lat.gdal'); W, E = np.min(cut_lon), np.max(cut_lon); S, N = np.min(cut_lat), np.max(cut_lat); # This last thing may not work when finding the reference pixel, only when geocoding at the very last. # Double checking the shape of the interferogram data (should match!) signalspread = isce_read_write.read_scalar_data(config_params.ts_output_dir + '/signalspread_cut.nc'); print("For comparison, shape of cut data is: ", np.shape(signalspread)); return W, E, S, N; def create_isce_stack_unw_geo(geocoded_dir, W, E, S, N): # With pixel-wise lat and lon and lookvector information, # Can we make isce geocoded unwrapped .unw.geo / .unw.geo.xml # geocodeGdal.py -l cut_lat.gdal -L cut_lon.gdal -f cut_something.gdal -b "S N W E" # After that, the BIL arrangement can be switched to BSQ, # So I need to make an adjustment folders = glob.glob(geocoded_dir + "/scene*"); i = 0; for folder_i in folders: # Run the geocode command. # This places the geocoded .unw.geo into each sub-directory. datafile = glob.glob(folder_i + "/*.unw"); datafile = datafile[0] command = "geocodeGdal.py -l " + geocoded_dir + "/cut_lat.gdal -L " + geocoded_dir + "/cut_lon.gdal " + "-f " + datafile + " -b \"" + str( S) + " " + str(N) + " " + str(W) + " " + str(E) + "\" -x 0.00025 -y 0.00025" print(command); print("\n"); call(command, shell=True); # Unfortunately, after geocodeGdal, the files end up BSQ instead of BIL. This is necessary to reshape them. # For making this more streamlined, I should definitely use a regular isce_write function in the future. filename = datafile + ".geo" isce_read_write.plot_scalar_data(filename, colormap='rainbow', datamin=-50, datamax=200, outname='test_after_geocode.png', band=2); print("DANGER! PLEASE FIGURE OUT A SIMPLE WRITE FUNCTION FOR THIS"); i = i + 1; sys.exit(0); return; def create_isce_stack_rdr_geo(geocoded_dir, W, E, S, N): # Create a geocoded azimuth and geocoded incidence file # Then concatenate them into a two-band-file (los.rdr.geo) # Then update the xml metadata. print("Creating los.rdr.geo") datafile = geocoded_dir + "/cut_azimuth.gdal" command = "geocodeGdal.py -l " + geocoded_dir + "/cut_lat.gdal -L " + geocoded_dir + "/cut_lon.gdal " + "-f " + datafile + " -b \"" + str( S) + " " + str(N) + " " + str(W) + " " + str(E) + "\" -x 0.00025 -y 0.00025" print(command + "\n"); call(command, shell=True); datafile = geocoded_dir + "/cut_incidence.gdal" command = "geocodeGdal.py -l " + geocoded_dir + "/cut_lat.gdal -L " + geocoded_dir + "/cut_lon.gdal " + "-f " + datafile + " -b \"" + str( S) + " " + str(N) + " " + str(W) + " " + str(E) + "\" -x 0.00025 -y 0.00025" call(command, shell=True); grid_inc = isce_read_write.read_scalar_data(geocoded_dir + "/cut_incidence.gdal.geo", flush_zeros=False); grid_az = isce_read_write.read_scalar_data(geocoded_dir + "/cut_azimuth.gdal.geo", flush_zeros=False); ny, nx = np.shape(grid_inc); filename = geocoded_dir + "/los.rdr.geo" isce_read_write.write_isce_unw(grid_inc, grid_az, nx, ny, "FLOAT", filename); return; def inspect_isce(geocoded_dir): # What progress was made? Plot things. folders = glob.glob(geocoded_dir + "/scene*"); for folder_i in folders: datafile = glob.glob(folder_i + "/*.unw.geo"); datafile = datafile[0]; grid = isce_read_write.read_scalar_data(datafile, flush_zeros=False); print("Statistics:") print("shape: ", np.shape(grid)) print("max: ", np.nanmax(grid)) print("min: ", np.nanmin(grid)) isce_read_write.plot_scalar_data(datafile, colormap="rainbow", datamin=-50, datamax=200, outname=folder_i + "/geocoded_data.png"); return; def fix_hacky_BSQ_BIL_problem(geocoded_directory, mynum): # August 2020 # This script is meant to un-do something that happened before on NoMachine # The .unw.geo files ended up BSQ instead of BIL # So we need to fix it. # At the end, the new .unw.geo and xml should be properly formatted # If we fix the end of the isce_geocode script for nomachine, than this should never be necessary. # Find the files unw_file = geocoded_directory + 'ts_slice_' + mynum + '.unw.geo'; unw_xml = unw_file + '.xml'; unw_file_final = geocoded_directory + 'BIL_correct/ts_slice_' + mynum + '.unw.geo'; # Read the problematic bands and get ready to package them into a real geocoded file. data_top = isce_read_write.read_scalar_data(unw_file, band=1); # I'm not even sure how I'm allowed to read band 2 (xml says 1 band). data_bottom = isce_read_write.read_scalar_data(unw_file, band=2); # xml is clearly wrong. data = np.vstack((data_top, data_bottom)); # each of these has a duplicate row by accident. data_surviving = np.zeros(np.shape(data_top)); for i in range(np.shape(data)[0]): counter = int(np.floor(i / 2.0)); data_surviving[counter, :] = data[i, :]; (ny, nx) = np.shape(data_surviving); firstLon, firstLat, dE, dN, xmin, xmax = get_xmin_xmax_xinc_from_xml(unw_xml); isce_read_write.write_isce_unw(data_surviving, data_surviving, nx, ny, "FLOAT", unw_file_final, firstLat=firstLat, firstLon=firstLon, deltaLon=dE, deltaLat=dN, Xmin=xmin, Xmax=xmax); return; # ------------ JPL UAVSAR IGRAM FORMATS -------------- # # A set of tools designed for handling of ground-range igrams # from the JPL website for UAVSAR individual igram products def cross_track_pos(target_lon, target_lat, nearrange_lon, nearrange_lat, heading_cartesian): # Given the heading of a plane and the coordinates of one near-range point # Get the cross-track position of point in a coordinate system centered at (nearrange_lon, nearrange_lat) with given heading distance = haversine.distance((target_lat, target_lon), (nearrange_lat, nearrange_lon)); compass_bearing = haversine.calculate_initial_compass_bearing((nearrange_lat, nearrange_lon), ( target_lat, target_lon)); # this comes as CW from north theta = bearing_to_cartesian(compass_bearing); # the angle of the position vector in cartesian coords # heading_cartesian is the angle between the east unit vector and the flight direction x0 = distance * np.cos(np.deg2rad(theta)); y0 = distance * np.sin(np.deg2rad(theta)); # in the east-north coordinate systeem x_prime, y_prime = rotate_vector_by_angle(x0, y0, heading_cartesian); return y_prime; def incidence_angle_trig(xtp, cross_track_max, near_inc_angle, far_inc_angle): # Using the incidence angles (to the vertical) at the upper and lower corners of the track, # what's the incidence angle at some location in between (xtp=cross-track-position)? # near_angle is the incidence angle between the viewing geometry and the vertical at the near-range. # nearcomp is the complement of that angle. # This function is kind of like linear interpolation, but a little bit curved # It solves an equation I derived on paper from the two near-range and far-range triangles in July 2020 nearcomp = np.deg2rad(complement_angle(near_inc_angle)); farcomp = np.deg2rad(complement_angle(far_inc_angle)); # angles measured from the ground to the satellite h = (np.tan(nearcomp) * np.tan(farcomp) * cross_track_max) / (np.tan(nearcomp) - np.tan(farcomp)); angle_to_horizontal = np.rad2deg(np.arctan(h / (xtp + (h / np.tan(nearcomp))))); return complement_angle(angle_to_horizontal); def get_geocoded_axes_from_ann(ann_file, cut_rowcol, looks_x, looks_y): # Given .ann file and cutting/multilooking scheme, give us the ground-range points of the final pixels in two east-and-north axes # cut_rowcol is an array specifying our cut range. Example: [2500, 5100, 7800, 13000] where 0-1 are rows and 2-3 are cols # looks_x and looks_y were used in filtering. num_rows, num_cols = jpl_uav_read_write.get_rows_cols(ann_file, 'ground'); start_lon, start_lat, lon_inc, lat_inc = jpl_uav_read_write.get_ground_range_corner_increment(ann_file); x_orig = [start_lon + i * lon_inc for i in range(0, num_cols)]; y_orig = [start_lat + i * lat_inc for i in range(0, num_rows)]; x_cut = x_orig[cut_rowcol[2]: cut_rowcol[3]]; y_cut = y_orig[cut_rowcol[0]: cut_rowcol[1]]; # implement the grid cut # next, implement the multilooking x_filt = []; y_filt = []; counter = np.arange(0, len(x_cut), looks_x) for i in range(len(counter)): region = np.mean(x_cut[counter[i]:counter[i] + looks_x]) x_filt.append(region); counter = np.arange(0, len(y_cut), looks_y); for i in range(len(counter)): region = np.mean(y_cut[counter[i]:counter[i] + looks_y]) y_filt.append(region); return x_filt, y_filt; def write_unwrapped_ground_range_displacements(ground_range_phase_file, output_file, x_axis, y_axis, wavelength): # Given a file with ground range pixels in unwrapped phase, # Multiply by wavelength # Write the response into a unw.geo file with special xml lon_inc = x_axis[1] - x_axis[0]; lat_inc = y_axis[1] - y_axis[0]; [_,_,unw] = rwr.read_netcdf4_xyz(ground_range_phase_file); plt.figure(figsize=(11, 7), dpi=300) X, Y = np.meshgrid(x_axis, y_axis); plt.pcolormesh(X, Y, unw, cmap='jet', vmin=0, vmax=20); plt.colorbar(); plt.savefig('unwrapped_geocoded_phase.png'); # CONVERT TO MM using the wavelength of UAVSAR unw = np.multiply(unw, wavelength / (4 * np.pi)); (ny, nx) = np.shape(unw); # ISCE UNW.GEO (IN MM) isce_read_write.write_isce_unw(unw, unw, nx, ny, "FLOAT", output_file, firstLat=max(y_axis), firstLon=min(x_axis), deltaLon=lon_inc, deltaLat=lat_inc, Xmin=min(x_axis), Xmax=max(x_axis)); # 2 bands, floats return; def create_los_rdr_geo_from_ground_ann_file(ann_file, x_axis, y_axis): # Make los.rdr.geo given .ann file from JPL website's UAVSAR interferograms and the ground-range sample points. # x-axis and y-axis are the x and y arrays where los vectors will be extracted on a corresponding grid. near_angle, far_angle, heading = jpl_uav_read_write.get_nearrange_farrange_heading_angles(ann_file); heading_cartesian = bearing_to_cartesian(heading); # CCW from east print("Heading is %f degrees CW from north" % heading); print("Cartesian Heading is %f" % heading_cartesian) # Get the upper and lower left corners, so we can compute the length of the across-track extent in km ul_lon, ul_lat, ll_lon, ll_lat = jpl_uav_read_write.get_ground_range_left_corners(ann_file); cross_track_max = haversine.distance((ll_lat, ll_lon), (ul_lat, ul_lon)); # in km # Get the azimuth angle for the pixels looking up to the airplane # My own documentation says CCW from north, even though that's really strange. azimuth = heading_cartesian - 90; # 90 degrees to the right of the airplane heading (for the look vector from ground to plane) azimuth = cartesian_to_ccw_from_north(azimuth); # degrees CCW from North print("azimuth from ground to plane is:", azimuth) [X, Y] = np.meshgrid(x_axis, y_axis); (ny, nx) = np.shape(X); grid_az = azimuth * np.ones(np.shape(X)); grid_inc = np.zeros(np.shape(X)); print("Computing incidence angles for all pixels") for i in range(ny): for j in range(nx): xtp = cross_track_pos(X[i, j], Y[i, j], ll_lon, ll_lat, heading_cartesian); # THIS WILL HAVE TO CHANGE FOR ASCENDING AND DESCENDING inc = incidence_angle_trig(xtp, cross_track_max, near_angle, far_angle); grid_inc[i, j] = inc; # Finally, write the 2 bands for los.rdr.geo isce_read_write.write_isce_unw(grid_inc, grid_az, nx, ny, "FLOAT", 'los.rdr.geo'); return;
94a882b3ad4cf2c8ce3f7d515284b7b95e0bbeda
06ba98f4e71e2e6e04e9e381987333a743511818
/history/migrations/0002_auto_20180803_0007.py
80603c86d738101b7f32f908e7b49fa21ff1e7da
[]
no_license
AnEvilHerbivore/Django-Music
e99c6f7936088a3baa42abeaea4b46361fb415cb
8f0b45d22053ca674f4dc8f963cb0da949469213
refs/heads/master
2022-12-10T10:08:35.831550
2018-08-03T19:12:42
2018-08-03T19:12:42
141,728,372
0
0
null
2021-06-10T20:43:27
2018-07-20T15:24:59
Python
UTF-8
Python
false
false
1,053
py
# Generated by Django 2.0.1 on 2018-08-03 00:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('history', '0001_initial'), ] operations = [ migrations.AlterField( model_name='artist', name='biggest_hit', field=models.CharField(default='', max_length=100), ), migrations.AlterField( model_name='artist', name='birth_date', field=models.CharField(default='', max_length=100), ), migrations.AlterField( model_name='artist', name='name', field=models.CharField(default='', max_length=100), ), migrations.AlterField( model_name='song', name='album', field=models.CharField(default='', max_length=100), ), migrations.AlterField( model_name='song', name='title', field=models.CharField(default='', max_length=100), ), ]
098396a34b3be24ef43d0b1428dcb079fb5c911a
c31ee8136a57a96649196081e1cfde0676c2a481
/larcv/app/tests/test_matrixmult.py
63a26af9a4138e0c87251de2c5104d965db970cd
[ "MIT" ]
permissive
DeepLearnPhysics/larcv2
b12b46168e5c6795c70461c9495e29b427cd88b5
31863c9b094a09db2a0286cfbb63ccd2f161e14d
refs/heads/develop
2023-06-11T03:15:51.679864
2023-05-30T17:51:19
2023-05-30T17:51:19
107,551,725
16
19
MIT
2023-04-10T10:15:13
2017-10-19T13:42:39
C++
UTF-8
Python
false
false
1,073
py
import os,sys import ROOT import numpy as np from larcv import larcv print larcv.Image2D # TESTS MATRIX MULTIPLICATION FEATURE a = np.random.rand(6,5) b = np.random.rand(5,8) aI = larcv.Image2D( a.shape[0], a.shape[1] ) bI = larcv.Image2D( b.shape[0], b.shape[1] ) arows = a.shape[0] acols = a.shape[1] brows = b.shape[0] bcols = b.shape[1] for r in range(0,arows): for c in range(0,acols): aI.set_pixel( r, c, a[r,c] ) for r in range(0,brows): for c in range(0,bcols): bI.set_pixel( r, c, b[r,c] ) C = np.dot(a,b) CI = aI*bI crows = CI.meta().rows() ccols = CI.meta().cols() print "A diff" Adiff = np.zeros( a.shape ) for r in range(0,arows): for c in range(0,acols): Adiff[r,c] = aI.pixel(r,c)-a[r,c] print Adiff print "B diff" Bdiff = np.zeros( b.shape ) for r in range(0,brows): for c in range(0,bcols): Bdiff[r,c] = bI.pixel(r,c)-b[r,c] print Bdiff print "CDiff" Cdiff = np.zeros( C.shape ) for r in range(0,crows): for c in range(0,ccols): Cdiff[r,c] = CI.pixel(r,c)-C[r,c] print Cdiff
078153fca42249d9d1fb37d3cd7526a82fef59bc
fa2ab3d980aeff387edc556121b124fd68078789
/ConditionalPrograms/ShippingAccount.py
af9ed57cdbf6a844dd86373f191d63a1bd4db288
[ "MIT" ]
permissive
MiguelCF06/PythonProjects
6e0a3323d3a44a893ec0afafcba7ec3882e62aa3
dfa49203c3ed1081728c7f4e565f847629662d75
refs/heads/master
2022-10-17T23:22:04.357296
2020-06-10T18:03:38
2020-06-10T18:03:38
265,905,262
1
0
null
null
null
null
UTF-8
Python
false
false
1,571
py
print("Welcome to the Shipping Accounts Program\n") username = ["mikeL", "Omar293", "JJlk", "JoelW"] user = input("Hello, what is your username: ") if user not in username: print("Sorry, you do not have an account with us. Goodbye.") else: print("Hello {}. Welcome back to your account.".format(user)) print("Current shipping prices are as follows:\n") print("Shipping orders 0 to 100:\t\t$5.10 each") print("Shipping orders 100 to 500:\t\t$5.00 each") print("Shipping orders 500 to 1000:\t$4.95 each") print("Shipping orders over 1000:\t\t$4.80 each\n") amount = int(input("How many items would you like to ship: ")) if amount <= 0: print("Nothing to do.") if amount > 0 and amount <= 100: items = 5.10 price = items * amount print("To ship {} items it will cost you ${} at $5.10 per item.".format(amount, price)) elif amount > 100 and amount <= 500: items = 5.00 price = items * amount print("To ship {} items it will cost you ${} at $5.00 per item.".format(amount, price)) elif amount > 500 and amount <= 1000: items = 4.95 price = items * amount print("To ship {} items it will cost you ${} at $4.95 per item.".format(amount, price)) else: items = 4.80 price = items * amount print("To ship {} items it will cost you ${} at $4.80 per item.".format(amount, price)) print() answer = input("Would you like to place this order (y/n): ") if answer == "n" or answer == "N": print("Okay, no order is being placed at this time.") elif answer == "y" or answer == "Y": print("Okay. Shipping your {} items.".format(amount))
247f1bfd7c171ceabc5b83ac3633a773b93d0adf
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2895/60825/236016.py
944fe88513a26187ad8223f032dfba9d3196d51e
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
127
py
a=input() a=a[1:len(a)-1] l=a.split(",") l= list(map(int, l)) i=l[0]+1 res=l[0] while i<=l[1]: res&=i i+=1 print(res)
a3739687fd238c1cd2484eca5cf46e5c9c27e987
de15d27440ceb922a8d12f8db5881ae1982592ec
/sampledb/models/migrations/publications_add_object_name.py
3b07967f3ffd3718788e6af1f4c7eb96f5ccb804
[ "MIT" ]
permissive
maltedeckers/sampledb
24f39f1adbe9bcc341309a4b6620768a8dc3857c
30ad29f8df01290d4ff84a9b347f15a10856ac22
refs/heads/master
2023-08-22T04:25:47.826698
2021-05-07T09:07:02
2021-05-07T09:07:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
615
py
# coding: utf-8 """ Add object_name column to object_publications table. """ import os MIGRATION_INDEX = 27 MIGRATION_NAME, _ = os.path.splitext(os.path.basename(__file__)) def run(db): # Skip migration by condition column_names = db.session.execute(""" SELECT column_name FROM information_schema.columns WHERE table_name = 'object_publications' """).fetchall() if ('object_name',) in column_names: return False # Perform migration db.session.execute(""" ALTER TABLE object_publications ADD object_name TEXT NULL """) return True
b34775b5a3efbd0dda72ca1c924c1daa49d5995a
ac23f0e5bb60c3201ea16d92369f8defa50f574a
/0x0B-python-input_output/4-append_write.py
6d1d834297f4e5478a9ff2f4ab4921ad9f4a8ea5
[]
no_license
Nukemenonai/holbertonschool-higher_level_programming
85ba3e61517ee48a2e73980c915e7033e8090f06
3c467bb8ab3fa38454709ed7eb9819e0eb445310
refs/heads/master
2020-09-29T00:21:47.583303
2020-08-30T22:40:59
2020-08-30T22:40:59
226,901,103
1
0
null
null
null
null
UTF-8
Python
false
false
326
py
#!/usr/bin/python3 def append_write(filename="", text=""): """ writes a string UTF8 to a text file returns the number of characters written filename: name of the file. text: the text to insert appends """ with open(filename, 'a') as f: n = f.write(text) f.close() return n
24c072a5dea3b8bd6c343321376a8de0b7705640
a6ffe7990cb5690a20566f64e343441e79d4d11a
/leetcode/10. 正则表达式匹配.py
213fb81272bf7ae50cc592b1ef1bb296b8415fac
[]
no_license
ywcmaike/OJ_Implement_Python
26b907da4aece49d3833382f80665a6263cbf0ec
48e99509e675a6708a95a40912f0f0f022a08d73
refs/heads/master
2022-11-26T17:35:22.066443
2020-08-02T16:19:25
2020-08-02T16:19:25
72,869,628
1
0
null
null
null
null
UTF-8
Python
false
false
503
py
#!/usr/bin/env python #-*- coding:utf-8 -*- # author:maike # datetime:2020/7/22 下午6:44 import sys if __name__ == "__main__": # 读取第一行的n n = int(sys.stdin.readline().strip()) ans = 0 for i in range(n): # 读取每一行 line = sys.stdin.readline().strip() # 把每一行的数字分隔后转化成int列表 values = list(map(int, line.split())) for v in values: ans += v print(ans) if __name__ == '__main__':
441d888c4903420479c5f874867acad5a6233fe8
5cf3f04bdee5a17d7e4b7e14294047ce3d1dc40a
/guess_dice/middleware/ipAddress.py
b57a807ddfe48e91f76edc72a7e66852d8f71596
[]
no_license
gzgdouru/guess_dice_site
bc2e4b284d5c0399232247ecc7634341199b5ad7
03bfadef8412a8d1d7506c1bfb5e58aee68ba343
refs/heads/master
2020-04-06T12:45:09.757664
2018-12-29T14:15:41
2018-12-29T14:15:41
157,469,262
0
0
null
null
null
null
UTF-8
Python
false
false
466
py
from django.utils.deprecation import MiddlewareMixin from analysis.models import ClientIp class MarkVisitIpMiddleware(MiddlewareMixin): def process_request(self, request): try: realIp = request.META["HTTP_X_FORWARDED_FOR"] realIp = realIp.split(",")[0] except: realIp = request.META["REMOTE_ADDR"] url = request.path if realIp != "127.0.0.1": ClientIp(ip=realIp, url=url).save()
dce507a9fac3425ea1b7d89d66f0e791ede9a0c5
5706c57ca2ba3faf94c286ec0dc969636c030b2e
/statistics.py
ab2463ab07632e16af0351ee91a2e721488d3b6b
[]
no_license
youfeng243/crawler_statistics
5e92a8ef3e21a3d1762822bc051ab7b0a9154636
f33c1e574ad9af328745d1c8851f641dfa93fd94
refs/heads/master
2021-01-21T12:32:15.553018
2017-09-18T08:36:15
2017-09-18T08:36:15
102,083,440
0
1
null
2017-09-02T03:22:35
2017-09-01T06:58:41
Python
UTF-8
Python
false
false
11,057
py
# coding=utf-8 """ 统计各个站点的入库数量 """ import datetime import json import time import MySQLdb import click import pandas import pymongo from config import MONGO_CONFIG, CHECK_DATES, CHECK_TOPIC, MYSQL_CONFIG, TABLE_NAME_LIST, TOPIC_NAME_LIST, \ FILTER_TABLE_LIST from logger import Logger log = Logger("statistics.log").get_logger() # mongodb 初始化 client = pymongo.MongoClient(MONGO_CONFIG['host'], MONGO_CONFIG['port']) mongo_db = client[MONGO_CONFIG['db']] mongo_db.authenticate(MONGO_CONFIG['username'], MONGO_CONFIG['password']) # mysql 初始化 mysql_db = MySQLdb.connect(MYSQL_CONFIG['host'], MYSQL_CONFIG['username'], MYSQL_CONFIG['password'], MYSQL_CONFIG['db'], charset="utf8") """ 获取当天的delta天之前的日期 """ def get_delta_date(delta): date_obj = datetime.datetime(int(time.strftime("%Y")), int(time.strftime("%m")), int(time.strftime("%d"))).date() diff = datetime.timedelta(days=delta) before_date = date_obj - diff return before_date.strftime("%Y-%m-%d") # 根据topic获取topic_id def get_topic_id(topic): topic_id = 0 cursor = mysql_db.cursor() sql = "SELECT * FROM topic WHERE table_name = '%s' " % (topic) try: cursor.execute(sql) one_topic = cursor.fetchone() topic_id = one_topic[0] except Exception as e: log.error("Error: unable to fecth data") log.exception(e) cursor.close() return topic_id # 根据topic_id获取主题的所有站点 def get_sites_by_topic_id(topic_id): res = [] cursor = mysql_db.cursor() sql = "SELECT * FROM site" try: cursor.execute(sql) rows = cursor.fetchall() # 遍历sites for row in rows: label = row[10] site = row[7] topic_ids = label.split(",") if label else [] if str(topic_id) in topic_ids: res.append(site) except Exception as e: log.error("Error: unable to fecth data") log.exception(e) cursor.close() return res # 获得配置文件中所有站点信息 def get_all_site_info(table_name_list): all_site_dict = {} total_site = 0 for table_name in table_name_list: count_dict = {} while True: all_site_dict[table_name] = set() if table_name not in CHECK_TOPIC: log.info("表信息没有在配置文件中: {} 从数据库中进行加载...".format(table_name)) sites_str_list = get_sites_by_topic_id(get_topic_id(table_name)) for ss in sites_str_list: all_site_dict[table_name].add(ss) log.info("数据库中加载数目为: {} {} {}".format( table_name, len(sites_str_list), sites_str_list)) break table_dict = CHECK_TOPIC.get(table_name) site_list = table_dict.get('sites') assert site_list is not None for site_dict in site_list: site = site_dict.get('site') assert site is not None all_site_dict[table_name].add(site) if site in count_dict: count_dict[site] += 1 else: count_dict[site] = 1 break total_site += len(all_site_dict[table_name]) for key, value in count_dict.iteritems(): if value >= 2: log.info("当前主题站点有重复: {} {} {}".format(table_name, key, value)) log.info("招行关注站点总数目: {}".format(total_site)) log.info(all_site_dict) return all_site_dict # 获得重点列表 def get_import_set(): data_set = set() with open("import_site_list.txt") as p_file: for line in p_file: site = line.strip() data_set.add(site) log.info("重要列表站点数目: {}".format(len(data_set))) return data_set # 获取所有站点官方数据统计 def get_all_site_statistics(): site_list = [] data_list = [] with open("site_list.txt") as p_file: for line in p_file: site = line.strip() site_list.append(site) with open("site_all_crawl.txt") as p_file: for line in p_file: num = int(line.strip()) data_list.append(num) if len(data_list) != len(site_list): raise Exception("官方数据总量加载失败!") return dict(zip(site_list, data_list)) # 统计 def statis(is_all, cur_time, days=CHECK_DATES): sheet_one_col_list = [u"主题", u"站点"] sheet_two_col_list = [u"主题"] # 合并 table_name_list = TABLE_NAME_LIST topic_name_list = TOPIC_NAME_LIST sheet_one_list = [] import_sheet_list = [] sheet_two_list = [] start_date = get_delta_date(days) end_date = time.strftime("%Y-%m-%d") start_time = start_date + " 00:00:00" end_time = end_date + " 23:59:59" if is_all is False: sheet_one_col_list.append(start_date + u"至" + start_date) sheet_one_col_list.append(u"官方数量") sheet_one_col_list.append(u"抓取占比") sheet_one_col_list.append(u'招行站点') sheet_two_col_list.append(start_date + u"至" + start_date) import_site_name = "[{}]_{}_{}_import_sites.xls".format( cur_time, start_date, end_date) excel_name = "[{}]_{}_{}_utime_sites.xls".format( cur_time, start_date, end_date) log.info("当前统计的时间段为: {} - {}".format(start_time, end_time)) else: sheet_one_col_list.append(u"全量统计") sheet_one_col_list.append(u"官方数量") sheet_one_col_list.append(u"抓取占比") sheet_one_col_list.append(u'招行站点') sheet_two_col_list.append(u"全量统计") import_site_name = "[{}]_all_import_sites.xls".format(cur_time) excel_name = "[{}]_all_utime_sites.xls".format(cur_time) log.info("当前为全量统计...") # 获得所有站点信息 all_site_dict = get_all_site_info(table_name_list) # 获取站点官方数量 site_statistics_dict = get_all_site_statistics() # 获得重要列表信息 import_site_set = get_import_set() for index, table_name in enumerate(table_name_list): if table_name in FILTER_TABLE_LIST: log.info("当前topic不进行统计: {}".format(table_name)) continue count = 0 log.info("当前统计的topic为: {}".format(table_name)) collection = mongo_db[table_name] if is_all is False: cursor = collection.find({'_utime': {'$gte': start_time, '$lte': end_time}}, ['_src'], no_cursor_timeout=True).batch_size(1000) else: cursor = collection.find({}, ['_src'], no_cursor_timeout=True).batch_size(1000) # 站点与统计量的映射 site_count_map = {} for item in cursor: count += 1 if '_src' in item and \ isinstance(item['_src'], list) and \ len(item["_src"]) > 0: src_set = set() _src_list = item['_src'] for src_item in _src_list: if 'site' not in src_item: continue src_set.add(src_item['site'].strip()) # 需统计全部站点抓取 for key in src_set: site_count_map[key] = site_count_map[key] + 1 if key in site_count_map else 1 else: _id = item.pop('_id') log.warn("当前数据_src不符合条件: {} {} {}".format( topic_name_list[index] + table_name, _id, json.dumps(item, ensure_ascii=False))) if count % 1000 == 0: log.info("当前进度: {} {}".format(table_name, count)) log.info("总数据量: {} {}".format(table_name, count)) cursor.close() # 添加招行站点 zhaohang_site_set = all_site_dict.get(table_name) assert zhaohang_site_set is not None for key in zhaohang_site_set: if key in site_count_map: continue site_count_map[key] = 0 total_count = 0 sort_count_list = sorted(site_count_map.items(), key=lambda it: it[0]) for _site, site_count in sort_count_list: total_count += site_count item = {u"主题": topic_name_list[index] + table_name, u"站点": _site, sheet_one_col_list[2]: site_count} # 3 官方数量 # 4 数据占比 # 如果站点有官方统计数目则进行占比计算 row_key = table_name + _site if row_key in site_statistics_dict: item[sheet_one_col_list[3]] = site_statistics_dict[row_key] if site_statistics_dict[row_key] > 0: item[sheet_one_col_list[4]] = site_count / (site_statistics_dict[row_key] * 1.0) else: item[sheet_one_col_list[4]] = 1.0 else: item[sheet_one_col_list[3]] = 0 item[sheet_one_col_list[4]] = 1.0 if _site in zhaohang_site_set: item[sheet_one_col_list[-1]] = u'是' else: item[sheet_one_col_list[-1]] = u'------' log.info(json.dumps(item, ensure_ascii=False)) sheet_one_list.append(item) if row_key in import_site_set: import_sheet_list.append(item) # 计算总量 total_item = {u"主题": topic_name_list[index] + table_name, sheet_two_col_list[-1]: total_count} sheet_two_list.append(total_item) log.info(json.dumps(total_item, ensure_ascii=False)) df = pandas.DataFrame(sheet_one_list, columns=sheet_one_col_list) df2 = pandas.DataFrame(sheet_two_list, columns=sheet_two_col_list) with pandas.ExcelWriter(excel_name) as writer: df.to_excel(writer, index=False) df2.to_excel(writer, sheet_name="sheet2", index=False) df3 = pandas.DataFrame(import_sheet_list, columns=sheet_one_col_list) with pandas.ExcelWriter(import_site_name) as writer: df3.to_excel(writer, index=False) log.info('统计结束...') @click.command() @click.option("-w", "--whole", default="", help=u"全量统计") def main(whole): log.info("开始启动统计..") cur_time = datetime.datetime.now().strftime('%Y-%m-%d_%H_%M_%S') statis(False, cur_time, 1) statis(False, cur_time, 3) statis(False, cur_time, 7) if whole == 'all': statis(True, cur_time) if __name__ == "__main__": try: main() except Exception as ex: log.error("程序异常退出:") log.exception(ex)
7fe0b97d863104f488ad653d559526403da60608
f090c3e0faa70cf0ef7c4be99cb894630bce2842
/scripts/dataAnalysis/EnergyTransport/2013Aug04/individual_fits/function of heating time/fitter_script_dsplaced_2212_50_ion2.py
76cd7f8d1e7e158da7d9e4d47a24dc31d87797e8
[]
no_license
HaeffnerLab/resonator
157d1dc455209da9b7de077157bda53b4883c8b7
7c2e377fdc45f6c1ad205f8bbc2e6607eb3fdc71
refs/heads/master
2021-01-09T20:48:03.587634
2016-09-22T18:40:17
2016-09-22T18:40:17
6,715,345
2
1
null
null
null
null
UTF-8
Python
false
false
3,175
py
import lmfit import labrad from labrad import types as T from lamb_dicke import lamb_dicke from rabi_flop_fitter import rabi_flop_time_evolution import numpy as np from matplotlib import pyplot ''' script parameters ''' info = ('Carrier Flops', ('2013Sep04','2212_50')) ion_selection = 2 trap_frequency = T.Value(3.0, 'MHz') projection_angle = 45 #degrees offset_time = 0.0 sideband_order = -1 fitting_region = (0, 40) #microseconds ''' compute lamb dicke parameter ''' eta = lamb_dicke.lamb_dicke(trap_frequency, projection_angle) print 'Lamb Dicke parameter: {0:.2f}'.format(eta) ''' initialize the fitter ''' flop = rabi_flop_time_evolution(sideband_order, eta) ''' create fitting parameters ''' params = lmfit.Parameters() params.add('excitation_scaling', value = 1.0, vary = False) params.add('detuning', value = 0, vary = 0) #units of rabi frequency params.add('time_2pi', value = 1.532954, vary = 0) #microseconds params.add('nbar', value = 3.699035, min = 0.0, max = 200.0, vary= 0) params.add('alpha', value = 1.0, min = 0.0, max = 200.0, vary = 1) ''' load the dataset ''' dv = labrad.connect().data_vault title,dataset = info date,datasetName = dataset dv.cd( ['','Experiments','Blue Heat RabiFlopping',date,datasetName] ) dv.open(1) times,prob = dv.get().asarray.transpose()[[0, 1 + ion_selection],:] print 'heat duration', dict(dv.get_parameters())['Heating.blue_heating_duration'] tmin,tmax = times.min(), times.max() detailed_times = np.linspace(tmin, tmax, 1000) ''' compute time evolution of the guessed parameters ''' guess_evolution = flop.compute_evolution_coherent(params['nbar'].value , params['alpha'].value, params['detuning'].value, params['time_2pi'].value, detailed_times - offset_time, excitation_scaling = params['excitation_scaling'].value) ''' define how to compare data to the function ''' def rabi_flop_fit_thermal(params , t, data): model = flop.compute_evolution_coherent(params['nbar'].value , params['alpha'].value, params['detuning'].value, params['time_2pi'].value, t - offset_time, excitation_scaling = params['excitation_scaling'].value) return model - data ''' perform the fit ''' region = (fitting_region[0] <= times) * (times <= fitting_region[1]) result = lmfit.minimize(rabi_flop_fit_thermal, params, args = (times[region], prob[region])) fit_values = flop.compute_evolution_coherent(params['nbar'].value , params['alpha'].value, params['detuning'].value, params['time_2pi'].value, detailed_times - offset_time, excitation_scaling = params['excitation_scaling'].value) lmfit.report_errors(params) ''' make the plot ''' pyplot.figure() pyplot.plot(detailed_times, guess_evolution, '--k', alpha = 0.5, label = 'initial guess') pyplot.plot(times, prob, 'ob', label = 'data') pyplot.plot(detailed_times, fit_values, 'r', label = 'fitted') pyplot.legend() pyplot.title(title) pyplot.xlabel('time (us)') pyplot.ylabel('D state occupation probability') pyplot.text(max(times)*0.70,0.68, 'detuning = {0}'.format(params['detuning'].value)) pyplot.text(max(times)*0.70,0.73, 'nbar = {:.0f}'.format(params['nbar'].value)) pyplot.text(max(times)*0.70,0.78, '2 Pi Time = {:.1f} us'.format(params['time_2pi'].value)) pyplot.show()
0c5dad8fd3938d30a3086f85c582ec0892a2191f
3f46af2da32d9f02d1ebbdef6784ece1d64aace3
/Production/python/PrivateSamples/EMJ_2016_mMed-1600_mDark-20_ctau-225_unflavored-down_cff.py
108dad647638d680e89dd21aef1f1b6a9bff01af
[]
no_license
cms-svj/TreeMaker
53bf4b1e35d2e2a4fa99c13c2c8b60a207676b6d
0ded877bcac801a2a394ad90ed987a20caa72a4c
refs/heads/Run2_2017
2023-07-19T07:14:39.175712
2020-10-06T21:10:26
2020-10-06T21:10:26
305,753,513
0
0
null
2021-01-26T18:58:54
2020-10-20T15:32:19
null
UTF-8
Python
false
false
1,892
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-1.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-2.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-3.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-4.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-5.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-6.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-7.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-8.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-9.root', 'gsiftp://hepcms-gridftp.umd.edu//mnt/hadoop/cms/store/group/EMJRunII/2016/step4_MINIAOD_mMed-1600_mDark-20_ctau-225_unflavored-down_n-500_part-10.root', ] )
32d00cbdf934957158d5c286facfeab2e5d2170f
af632a0d727cd350a3c95360bb1bb8a411051da7
/mysite/reading/migrations/0005_auto__add_field_text_synopsis.py
92b689114d31eff115b9e7fc5a753e368632936b
[]
no_license
rybesh/mysite
f760fec83f1b552abd62010cff4ada4c6fda66b0
c091284d802ef719d7535d9c8790f4c6e458f905
refs/heads/master
2016-09-05T18:01:31.200290
2014-07-23T15:36:09
2014-07-23T15:36:09
1,242,540
0
0
null
null
null
null
UTF-8
Python
false
false
2,481
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Text.synopsis' db.add_column('reading_text', 'synopsis', self.gf('django.db.models.fields.TextField')(default=''), keep_default=False) def backwards(self, orm): # Deleting field 'Text.synopsis' db.delete_column('reading_text', 'synopsis') models = { 'reading.note': { 'Meta': {'object_name': 'Note'}, 'created': ('django.db.models.fields.DateTimeField', [], {'unique': 'True', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'markdown': ('django.db.models.fields.TextField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '16'}), 'text': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'notes'", 'to': "orm['reading.Text']"}) }, 'reading.text': { 'Meta': {'object_name': 'Text'}, 'bibtex': ('django.db.models.fields.TextField', [], {}), 'citation_key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32', 'db_index': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'markdown': ('django.db.models.fields.TextField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {}), 'related_texts': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'related_texts_rel_+'", 'to': "orm['reading.Text']"}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '80', 'db_index': 'True'}), 'small_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '16'}), 'synopsis': ('django.db.models.fields.TextField', [], {}) } } complete_apps = ['reading']
fd5cb1e3cc6d7bf3bc992db71056e2364fb1b3ab
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_6845.py
25671db34c9e0643e32318d55e46d052ec86f703
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
# Efficient way to format string "select %(tableName)s.somefield, count(*) from %(tableName)s WHERE %(tableName)s.TimeStamp &gt; %(fromDate)s and %(tableName)s.EndTimeStamp &lt; %(to_data)s group by %(tableName)s.ProviderUsername;" %{'tableName':tableName, 'fromDate':fromDate, 'to_data':to_data}
76cb32021bcffbb90f7204eb7683d786698f1d8a
cbedb18df0aaac810aeea87a2273edb15c1cf899
/from Stephen/google list/752. Open the Lock (pass, bfs).py
03123b3ab45fbe0c24776bf3c08be55ad02d55cd
[]
no_license
kanglicheng/CodeBreakersCode
71b833bb9f4c96d520c26f0044365dc62137a940
31f7f730227a0e10951e7468bad1b995cf2eafcb
refs/heads/master
2023-08-07T20:32:05.267695
2020-09-14T14:36:25
2020-09-14T14:36:25
265,978,034
0
0
null
2020-05-22T00:05:29
2020-05-22T00:05:29
null
UTF-8
Python
false
false
2,272
py
class Solution: def openLock(self, deadends: List[str], target: str) -> int: ''' shortest path -> BFS ''' def toString(cur): _str = "" for v in cur: _str += str(v) return _str def checkDeadEnds(deadendsSet, _str): if _str in deadendsSet: return False return True def findNextStep(deadendsSet, curLock, visited): directions = [[1,0,0,0], [-1,0,0,0], [0,1,0,0], [0,-1,0,0], [0,0,1,0], [0,0,-1,0], [0,0,0,1], [0,0,0,-1]] nextSteps = [] for d in directions: cur = [curLock[0] + d[0], curLock[1] + d[1], curLock[2] + d[2], curLock[3] + d[3]] for i in range(0, 4): if cur[i] == -1: cur[i] = 9 elif cur[i] == 10: cur[i] = 0 _str = toString(cur) if checkDeadEnds(deadendsSet, _str) and _str not in visited: nextSteps.append(cur) visited.add(_str) return nextSteps deadendsSet = set() for d in deadends: deadendsSet.add(d) lock = [0,0,0,0] if toString(lock) in deadendsSet: return -1 q = collections.deque() q.append(lock) moves = 0 visited = set() while len(q) > 0: curSize = len(q) for i in range(0, curSize): cur = q.pop() if toString(cur) == target: return moves nextSteps = findNextStep(deadendsSet, cur, visited) q.extendleft(nextSteps) moves += 1 return -1
07aa0556223da2feccd58233234db58c8f18e439
35fff80627ad675bec1e429943cb2bbbaf141ca2
/notebooks/Papers/paper2/packages/lc/base.py
83a7f05be6d1e91398e9dfda3a61890825c177d8
[]
no_license
ishrat2003/IS-Goldsmiths
bac3473b7ffde7cebfb952cd78aba510c8d72c6f
afae9525ceb62cd09eb14149ee2b88798c5ceb90
refs/heads/master
2020-04-27T09:24:10.399620
2019-10-16T21:23:13
2019-10-16T21:23:13
174,212,961
0
0
null
null
null
null
UTF-8
Python
false
false
5,442
py
import re, sys, numpy from nltk import word_tokenize, pos_tag from nltk.stem.porter import PorterStemmer import utility from sklearn.cluster import KMeans import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.pylab import rcParams class Base(): def __init__(self, text, filterRate = 0): self.rawText = text self.text = self.__clean(text) self.stopWords = utility.Utility.getStopWords() self.stemmer = PorterStemmer() self.wordInfo = {} self.featuredWordInfo = {} self.allowedPOSTypes = ['NN', 'NNP', 'NNS', 'NNPS'] self.minWordSize = 2 self.sentences = [] self.punctuationTypes = ['.', '?', '!'] self.maxCount = 1 self.maxScore = 0 self.filterRate = filterRate self.topScorePercentage = filterRate self.filteredWords = {} self.contributors = [] return ''' allOptions = ['NN', 'NNP', 'NNS', 'NNPS', 'JJ', 'JJR', 'JJS' 'RB', 'RBR', 'RBS', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'] ''' def setAllowedPosTypes(self, allowedPOSTypes): self.allowedPOSTypes = allowedPOSTypes return def setFilterWords(self, filterRate = 0.2): self.filterRate = filterRate self.loadFilteredWords() return def setTopScorePercentage(self, topScorePercentage): self.topScorePercentage = topScorePercentage return def getRawText(self): return self.rawText def getCleanText(self): return self.text def getContrinutors(self): return self.contributors def getWordInfo(self): return self.wordInfo def getSentences(self): return self.sentences def loadFilteredWords(self): minAllowedScore = self.maxCount * self.filterRate self.filteredWords = {} for word in self.wordInfo: if self.wordInfo[word]['count'] <= minAllowedScore: continue index = len(self.filteredWords) self.filteredWords[word] = self.wordInfo[word] self.filteredWords[word]['index'] = index print('----------------------') print("Total local vocab: ", len(self.wordInfo)) print("Filtered local vocab: ", len(self.filteredWords)) return self.filteredWords def loadSentences(self, text): words = self.__getWords(text, True) self.wordInfo = {} self.sentences = [] currentSentence = [] for word in words: (word, type) = word word = self.__cleanWord(word) if type in self.punctuationTypes: if len(currentSentence) > 1: # If more than one word than add as sentence self.sentences.append(currentSentence) currentSentence = [] if len(word) < self.minWordSize: continue wordKey = self._addWordInfo(word, type) if wordKey and (wordKey not in currentSentence): currentSentence.append(wordKey) # Processing last sentence if len(currentSentence) > 1: # If more than one word than add as sentence self.sentences.append(currentSentence) self.filteredWords = self.wordInfo return self.sentences def displayPlot(self, fileName): #rcParams['figure.figsize']=15,10 mpl.rcParams.update({'font.size': 15}) points = self.getPoints() if not points: print('No points to display') return plt.figure(figsize=(20, 20)) # in inches(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, *, data=None, **kwargs)[source] for point in points: plt.scatter(point['x'], point['y'], c = point['color']) plt.annotate(point['label'], xy=(point['x'], point['y']), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(fileName) print('After saving') plt.show() return def getPoints(self): if not len(self.wordInfo): return None topWordScores = self.maxScore * self.topScorePercentage points = [] for word in self.filteredWords: point = {} point['x'] = self._getX(word) point['y'] = self._getY(word) point['color'] = 'green' point['label'] = self.filteredWords[word]['pure_word'] point['type'] = self.filteredWords[word]['type'] if self.isTopic(word, topWordScores): point['color'] = 'red' self.contributors.append(word) points.append(point) return points def isTopic(self, word, topWordScores): return (self.filteredWords[word]['score'] >= topWordScores) def _getX(self, word): return 0 def _getY(self, word): return 0 def _addWordInfo(self, word, type): if not word or (type not in self.allowedPOSTypes): return None localWordInfo = {} localWordInfo['pure_word'] = word wordKey = self.stemmer.stem(word.lower()) localWordInfo['stemmed_word'] = wordKey localWordInfo['type'] = type if localWordInfo['stemmed_word'] in self.wordInfo.keys(): self.wordInfo[wordKey]['count'] += 1 if self.maxCount < self.wordInfo[wordKey]['count']: self.maxCount = self.wordInfo[wordKey]['count'] return wordKey localWordInfo['count'] = 1 localWordInfo['index'] = len(self.wordInfo) self.wordInfo[wordKey] = localWordInfo return wordKey def __getWords(self, text, tagPartsOfSpeach = False): words = word_tokenize(text) if tagPartsOfSpeach: return pos_tag(words) return words def __cleanWord(self, word): return re.sub('[^a-zA-Z0-9]+', '', word) def __clean(self, text): text = re.sub('<.+?>', '. ', text) text = re.sub('&.+?;', '', text) text = re.sub('[\']{1}', '', text) text = re.sub('[^a-zA-Z0-9\s_\-\?:;\.,!\(\)\"]+', ' ', text) text = re.sub('\s+', ' ', text) text = re.sub('(\.\s*)+', '. ', text) return text
fb21402d6d4ce50e9817e6581d7ccee2fb038894
01d982d22d214265eeb7a00b2b8bdd8c869d9064
/tests/test_wave_energy.py
50c95237a276a5ff48fd56e293cfe45c07a90c64
[ "BSD-3-Clause", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
hkotaro1215/invest
ad6874ea1a9ac73813292fb88c138d13279988b5
1ba08bd746977bfa8a4600ad8c821fc43598c421
refs/heads/master
2022-11-12T06:06:22.826122
2018-03-26T21:08:18
2018-03-26T21:08:18
142,378,565
0
1
NOASSERTION
2022-10-15T06:47:29
2018-07-26T02:36:20
Python
UTF-8
Python
false
false
26,222
py
"""Module for Testing the InVEST Wave Energy module.""" import unittest import tempfile import shutil import os import csv import natcap.invest.pygeoprocessing_0_3_3.testing from natcap.invest.pygeoprocessing_0_3_3.testing import scm from natcap.invest.pygeoprocessing_0_3_3.testing import sampledata import numpy import numpy.testing from shapely.geometry import Polygon from shapely.geometry import Point from osgeo import gdal from osgeo import osr SAMPLE_DATA = os.path.join( os.path.dirname(__file__), '..', 'data', 'invest-data') REGRESSION_DATA = os.path.join( os.path.dirname(__file__), '..', 'data', 'invest-test-data', 'wave_energy') class WaveEnergyUnitTests(unittest.TestCase): """Unit tests for the Wave Energy module.""" def setUp(self): """Overriding setUp function to create temp workspace directory.""" # this lets us delete the workspace after its done no matter the # the rest result self.workspace_dir = tempfile.mkdtemp() def tearDown(self): """Overriding tearDown function to remove temporary directory.""" shutil.rmtree(self.workspace_dir) def test_pixel_size_transform(self): """WaveEnergy: testing pixel size transform helper function. Function name is : 'pixel_size_based_on_coordinate_transform'. """ from natcap.invest.wave_energy import wave_energy temp_dir = self.workspace_dir srs = sampledata.SRS_WILLAMETTE srs_wkt = srs.projection spat_ref = osr.SpatialReference() spat_ref.ImportFromWkt(srs_wkt) # Define a Lat/Long WGS84 projection epsg_id = 4326 reference = osr.SpatialReference() proj_result = reference.ImportFromEPSG(epsg_id) # Get projection as WKT latlong_proj = reference.ExportToWkt() # Set origin to use for setting up geometries / geotransforms latlong_origin = (-70.5, 42.5) # Pixel size helper for defining lat/long pixel size pixel_size = lambda x: (x, -1. * x) # Get a point from the clipped data object to use later in helping # determine proper pixel size matrix = numpy.array([[1, 1, 1, 1], [1, 1, 1, 1]]) input_path = os.path.join(temp_dir, 'input_raster.tif') # Create raster to use as testing input raster_uri = natcap.invest.pygeoprocessing_0_3_3.testing.create_raster_on_disk( [matrix], latlong_origin, latlong_proj, -1.0, pixel_size(0.033333), filename=input_path) raster_gt = natcap.invest.pygeoprocessing_0_3_3.geoprocessing.get_geotransform_uri( raster_uri) point = (raster_gt[0], raster_gt[3]) raster_wkt = latlong_proj # Create a Spatial Reference from the rasters WKT raster_sr = osr.SpatialReference() raster_sr.ImportFromWkt(raster_wkt) # A coordinate transformation to help get the proper pixel size of # the reprojected raster coord_trans = osr.CoordinateTransformation(raster_sr, spat_ref) # Call the function to test result = wave_energy.pixel_size_based_on_coordinate_transform( raster_uri, coord_trans, point) expected_res = (5553.933, 1187.371) # Compare for res, exp in zip(result, expected_res): natcap.invest.pygeoprocessing_0_3_3.testing.assert_close(res, exp) def test_count_pixels_groups(self): """WaveEnergy: testing 'count_pixels_groups' function.""" from natcap.invest.wave_energy import wave_energy temp_dir = self.workspace_dir raster_uri = os.path.join(temp_dir, 'pixel_groups.tif') srs = sampledata.SRS_WILLAMETTE group_values = [1, 3, 5, 7] matrix = numpy.array([[1, 3, 5, 9], [3, 7, 1, 5], [2, 4, 5, 7]]) # Create raster to use for testing input raster_uri = natcap.invest.pygeoprocessing_0_3_3.testing.create_raster_on_disk( [matrix], srs.origin, srs.projection, -1, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=raster_uri) results = wave_energy.count_pixels_groups(raster_uri, group_values) expected_results = [2, 2, 3, 2] for res, exp_res in zip(results, expected_results): natcap.invest.pygeoprocessing_0_3_3.testing.assert_close(res, exp_res, 1e-9) def test_calculate_percentiles_from_raster(self): """WaveEnergy: testing 'calculate_percentiles_from_raster' function.""" from natcap.invest.wave_energy import wave_energy temp_dir = self.workspace_dir raster_uri = os.path.join(temp_dir, 'percentile.tif') srs = sampledata.SRS_WILLAMETTE matrix = numpy.arange(1, 101) matrix = matrix.reshape(10, 10) raster_uri = natcap.invest.pygeoprocessing_0_3_3.testing.create_raster_on_disk( [matrix], srs.origin, srs.projection, -1, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=raster_uri) percentiles = [0, 25, 50, 75] results = wave_energy.calculate_percentiles_from_raster( raster_uri, percentiles) expected_results = [1, 26, 51, 76] for res, exp_res in zip(results, expected_results): self.assertEqual(res, exp_res) def test_create_percentile_ranges(self): """WaveEnergy: testing 'create_percentile_ranges' function.""" from natcap.invest.wave_energy import wave_energy percentiles = [20, 40, 60, 80] units_short = " m/s" units_long = " speed of a bullet in m/s" start_value = "5" result = wave_energy.create_percentile_ranges( percentiles, units_short, units_long, start_value) exp_result = ["5 - 20 speed of a bullet in m/s", "20 - 40 m/s", "40 - 60 m/s", "60 - 80 m/s", "Greater than 80 m/s"] for res, exp_res in zip(result, exp_result): self.assertEqual(res, exp_res) def test_calculate_distance(self): """WaveEnergy: testing 'calculate_distance' function.""" from natcap.invest.wave_energy import wave_energy srs = sampledata.SRS_WILLAMETTE pos_x = srs.origin[0] pos_y = srs.origin[1] set_one = numpy.array([ [pos_x, pos_y], [pos_x, pos_y - 100], [pos_x, pos_y - 200]]) set_two = numpy.array([ [pos_x + 100, pos_y], [pos_x + 100, pos_y - 100], [pos_x + 100, pos_y - 200]]) result_dist, result_id = wave_energy.calculate_distance( set_one, set_two) expected_result_dist = [100, 100, 100] expected_result_id = [0, 1, 2] for res, exp_res in zip(result_dist, expected_result_dist): self.assertEqual(res, exp_res) for res, exp_res in zip(result_id, expected_result_id): self.assertEqual(res, exp_res) @scm.skip_if_data_missing(SAMPLE_DATA) @scm.skip_if_data_missing(REGRESSION_DATA) def test_clip_datasource_layer_polygons(self): """WaveEnergy: testing clipping polygons from polygons.""" from natcap.invest.wave_energy import wave_energy temp_dir = self.workspace_dir srs = sampledata.SRS_WILLAMETTE aoi_path = os.path.join(REGRESSION_DATA, 'aoi_proj_to_extract.shp') extract_path = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'WaveData', 'Global_extract.shp') result_path = os.path.join(temp_dir, 'aoi_proj_clipped.shp') wave_energy.clip_datasource_layer(aoi_path, extract_path, result_path) expected_path = os.path.join(REGRESSION_DATA, 'aoi_proj_clipped.shp') natcap.invest.pygeoprocessing_0_3_3.testing.assert_vectors_equal( result_path, expected_path) def test_clip_datasource_layer_points(self): """WaveEnergy: testing clipping points from polygons.""" from natcap.invest.wave_energy import wave_energy temp_dir = self.workspace_dir srs = sampledata.SRS_WILLAMETTE pos_x = srs.origin[0] pos_y = srs.origin[1] fields_pt = {'id': 'int', 'myattr': 'string'} attrs_one = [ {'id': 1, 'myattr': 'hello'}, {'id': 2, 'myattr': 'bye'}, {'id': 3, 'myattr': 'highbye'}] fields_poly = {'id': 'int'} attrs_poly = [{'id': 1}] # Create geometry for the points, which will get clipped geom_one = [ Point(pos_x + 20, pos_y - 20), Point(pos_x + 40, pos_y - 20), Point(pos_x + 100, pos_y - 20)] # Create geometry for the polygons, which will be used to clip geom_two = [Polygon( [(pos_x, pos_y), (pos_x + 60, pos_y), (pos_x + 60, pos_y - 60), (pos_x, pos_y - 60), (pos_x, pos_y)])] shape_to_clip_uri = os.path.join(temp_dir, 'shape_to_clip.shp') # Create the point shapefile shape_to_clip_uri = natcap.invest.pygeoprocessing_0_3_3.testing.create_vector_on_disk( geom_one, srs.projection, fields_pt, attrs_one, vector_format='ESRI Shapefile', filename=shape_to_clip_uri) binding_shape_uri = os.path.join(temp_dir, 'binding_shape.shp') # Create the polygon shapefile binding_shape_uri = natcap.invest.pygeoprocessing_0_3_3.testing.create_vector_on_disk( geom_two, srs.projection, fields_poly, attrs_poly, vector_format='ESRI Shapefile', filename=binding_shape_uri) output_path = os.path.join(temp_dir, 'vector.shp') # Call the function to test wave_energy.clip_datasource_layer( shape_to_clip_uri, binding_shape_uri, output_path) # Create the expected point shapefile fields_pt = {'id': 'int', 'myattr': 'string'} attrs_one = [{'id': 1, 'myattr': 'hello'}, {'id': 2, 'myattr': 'bye'}] geom_three = [Point(pos_x + 20, pos_y - 20), Point(pos_x + 40, pos_y - 20)] # Need to save the expected shapefile in a sub folder since it must # have the same layer name / filename as what it will be compared # against. if not os.path.isdir(os.path.join(temp_dir, 'exp_vector')): os.mkdir(os.path.join(temp_dir, 'exp_vector')) expected_uri = os.path.join(temp_dir, 'exp_vector', 'vector.shp') expected_shape = natcap.invest.pygeoprocessing_0_3_3.testing.create_vector_on_disk( geom_three, srs.projection, fields_pt, attrs_one, vector_format='ESRI Shapefile', filename=expected_uri) natcap.invest.pygeoprocessing_0_3_3.testing.assert_vectors_equal( output_path, expected_shape) def test_clip_datasouce_layer_no_intersection(self): """WaveEnergy: testing 'clip_datasource_layer' w/ no intersection.""" from natcap.invest.wave_energy import wave_energy temp_dir = self.workspace_dir srs = sampledata.SRS_WILLAMETTE pos_x = srs.origin[0] pos_y = srs.origin[1] fields_pt = {'id': 'int', 'myattr': 'string'} attrs_one = [{'id': 1, 'myattr': 'hello'}] fields_poly = {'id': 'int'} attrs_poly = [{'id': 1}] # Create geometry for the points, which will get clipped geom_one = [ Point(pos_x + 220, pos_y - 220)] # Create geometry for the polygons, which will be used to clip geom_two = [Polygon( [(pos_x, pos_y), (pos_x + 60, pos_y), (pos_x + 60, pos_y - 60), (pos_x, pos_y - 60), (pos_x, pos_y)])] shape_to_clip_uri = os.path.join(temp_dir, 'shape_to_clip.shp') # Create the point shapefile shape_to_clip_uri = natcap.invest.pygeoprocessing_0_3_3.testing.create_vector_on_disk( geom_one, srs.projection, fields_pt, attrs_one, vector_format='ESRI Shapefile', filename=shape_to_clip_uri) binding_shape_uri = os.path.join(temp_dir, 'binding_shape.shp') # Create the polygon shapefile binding_shape_uri = natcap.invest.pygeoprocessing_0_3_3.testing.create_vector_on_disk( geom_two, srs.projection, fields_poly, attrs_poly, vector_format='ESRI Shapefile', filename=binding_shape_uri) output_path = os.path.join(temp_dir, 'vector.shp') # Call the function to test self.assertRaises( wave_energy.IntersectionError, wave_energy.clip_datasource_layer, shape_to_clip_uri, binding_shape_uri, output_path) def test_create_attribute_csv_table(self): """WaveEnergy: testing 'create_attribute_csv_table' function.""" from natcap.invest.wave_energy import wave_energy temp_dir = self.workspace_dir table_uri = os.path.join(temp_dir, 'att_csv_file.csv') fields = ['id', 'height', 'length'] data = {1: {'id': 1, 'height': 10, 'length': 15}, 0: {'id': 0, 'height': 10, 'length': 15}, 2: {'id': 2, 'height': 10, 'length': 15}} wave_energy.create_attribute_csv_table(table_uri, fields, data) exp_rows = [{'id': '0', 'height': '10', 'length': '15'}, {'id': '1', 'height': '10', 'length': '15'}, {'id': '2', 'height': '10', 'length': '15'}] result_file = open(table_uri, 'rU') csv_reader = csv.DictReader(result_file) for row, exp_row in zip(csv_reader, exp_rows): self.assertDictEqual(row, exp_row) result_file.close() @scm.skip_if_data_missing(REGRESSION_DATA) def test_load_binary_wave_data(self): """WaveEnergy: testing 'load_binary_wave_data' function.""" from natcap.invest.wave_energy import wave_energy wave_file_uri = os.path.join(REGRESSION_DATA, 'example_ww3_binary.bin') result = wave_energy.load_binary_wave_data(wave_file_uri) exp_res = {'periods': numpy.array( [.375, 1, 1.5, 2.0], dtype=numpy.float32), 'heights': numpy.array([.375, 1], dtype=numpy.float32), 'bin_matrix': { (102, 370): numpy.array( [[0, 0, 0, 0], [0, 9, 3, 30]], dtype=numpy.float32), (102, 371): numpy.array( [[0, 0, 0, 0], [0, 0, 3, 27]], dtype=numpy.float32)} } for key in ['periods', 'heights']: numpy.testing.assert_array_equal(result[key], exp_res[key]) for key in [(102, 370), (102, 371)]: numpy.testing.assert_array_equal( result['bin_matrix'][key], exp_res['bin_matrix'][key]) class WaveEnergyRegressionTests(unittest.TestCase): """Regression tests for the Wave Energy module.""" def setUp(self): """Overriding setUp function to create temp workspace directory.""" # this lets us delete the workspace after its done no matter the # the rest result self.workspace_dir = tempfile.mkdtemp() def tearDown(self): """Overriding tearDown function to remove temporary directory.""" shutil.rmtree(self.workspace_dir) @staticmethod def generate_base_args(workspace_dir): """Generate an args list that is consistent across regression tests.""" args = { 'workspace_dir': workspace_dir, 'wave_base_data_uri': os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'WaveData'), 'analysis_area_uri': 'West Coast of North America and Hawaii', 'machine_perf_uri': os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'Machine_Pelamis_Performance.csv'), 'machine_param_uri': os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'Machine_Pelamis_Parameter.csv'), 'dem_uri': os.path.join( SAMPLE_DATA, 'Base_Data', 'Marine', 'DEMs', 'global_dem') } return args @scm.skip_if_data_missing(SAMPLE_DATA) @scm.skip_if_data_missing(REGRESSION_DATA) def test_valuation(self): """WaveEnergy: testing valuation component.""" from natcap.invest.wave_energy import wave_energy args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir) args['aoi_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'AOI_WCVI.shp') args['valuation_container'] = True args['land_gridPts_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'LandGridPts_WCVI.csv') args['machine_econ_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'Machine_Pelamis_Economic.csv') args['number_of_machines'] = 28 wave_energy.execute(args) raster_results = [ 'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif', 'npv_rc.tif', 'npv_usd.tif'] for raster_path in raster_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_rasters_equal( os.path.join(args['workspace_dir'], 'output', raster_path), os.path.join(REGRESSION_DATA, 'valuation', raster_path), 1e-9) vector_results = ['GridPts_prj.shp', 'LandPts_prj.shp'] for vector_path in vector_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_vectors_equal( os.path.join(args['workspace_dir'], 'output', vector_path), os.path.join(REGRESSION_DATA, 'valuation', vector_path)) table_results = ['capwe_rc.csv', 'wp_rc.csv', 'npv_rc.csv'] for table_path in table_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_csv_equal( os.path.join(args['workspace_dir'], 'output', table_path), os.path.join(REGRESSION_DATA, 'valuation', table_path)) @scm.skip_if_data_missing(SAMPLE_DATA) @scm.skip_if_data_missing(REGRESSION_DATA) def test_biophysical_aoi(self): """WaveEnergy: testing Biophysical component with an AOI.""" from natcap.invest.wave_energy import wave_energy args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir) args['aoi_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'AOI_WCVI.shp') wave_energy.execute(args) raster_results = [ 'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif'] for raster_path in raster_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_rasters_equal( os.path.join(args['workspace_dir'], 'output', raster_path), os.path.join(REGRESSION_DATA, 'aoi', raster_path), 1e-9) table_results = ['capwe_rc.csv', 'wp_rc.csv'] for table_path in table_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_csv_equal( os.path.join(args['workspace_dir'], 'output', table_path), os.path.join(REGRESSION_DATA, 'aoi', table_path), 1e-9) @scm.skip_if_data_missing(SAMPLE_DATA) @scm.skip_if_data_missing(REGRESSION_DATA) def test_biophysical_no_aoi(self): """WaveEnergy: testing Biophysical component with no AOI.""" from natcap.invest.wave_energy import wave_energy args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir) wave_energy.execute(args) raster_results = [ 'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif'] for raster_path in raster_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_rasters_equal( os.path.join(args['workspace_dir'], 'output', raster_path), os.path.join(REGRESSION_DATA, 'noaoi', raster_path), 1e-9) table_results = ['capwe_rc.csv', 'wp_rc.csv'] for table_path in table_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_csv_equal( os.path.join(args['workspace_dir'], 'output', table_path), os.path.join(REGRESSION_DATA, 'noaoi', table_path), 1e-9) @scm.skip_if_data_missing(SAMPLE_DATA) @scm.skip_if_data_missing(REGRESSION_DATA) def test_valuation_suffix(self): """WaveEnergy: testing suffix through Valuation.""" from natcap.invest.wave_energy import wave_energy args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir) args['aoi_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'AOI_WCVI.shp') args['valuation_container'] = True args['land_gridPts_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'LandGridPts_WCVI.csv') args['machine_econ_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'Machine_Pelamis_Economic.csv') args['number_of_machines'] = 28 args['suffix'] = 'val' wave_energy.execute(args) raster_results = [ 'wp_rc_val.tif', 'wp_kw_val.tif', 'capwe_rc_val.tif', 'capwe_mwh_val.tif', 'npv_rc_val.tif', 'npv_usd_val.tif'] for raster_path in raster_results: self.assertTrue(os.path.exists( os.path.join(args['workspace_dir'], 'output', raster_path))) vector_results = ['GridPts_prj_val.shp', 'LandPts_prj_val.shp'] for vector_path in vector_results: self.assertTrue(os.path.exists( os.path.join(args['workspace_dir'], 'output', vector_path))) table_results = ['capwe_rc_val.csv', 'wp_rc_val.csv', 'npv_rc_val.csv'] for table_path in table_results: self.assertTrue(os.path.exists( os.path.join(args['workspace_dir'], 'output', table_path))) @scm.skip_if_data_missing(SAMPLE_DATA) @scm.skip_if_data_missing(REGRESSION_DATA) def test_valuation_suffix_underscore(self): """WaveEnergy: testing suffix with an underscore through Valuation.""" from natcap.invest.wave_energy import wave_energy args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir) args['aoi_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'AOI_WCVI.shp') args['valuation_container'] = True args['land_gridPts_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'LandGridPts_WCVI.csv') args['machine_econ_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'Machine_Pelamis_Economic.csv') args['number_of_machines'] = 28 args['suffix'] = '_val' wave_energy.execute(args) raster_results = [ 'wp_rc_val.tif', 'wp_kw_val.tif', 'capwe_rc_val.tif', 'capwe_mwh_val.tif', 'npv_rc_val.tif', 'npv_usd_val.tif'] for raster_path in raster_results: self.assertTrue(os.path.exists( os.path.join(args['workspace_dir'], 'output', raster_path))) vector_results = ['GridPts_prj_val.shp', 'LandPts_prj_val.shp'] for vector_path in vector_results: self.assertTrue(os.path.exists( os.path.join(args['workspace_dir'], 'output', vector_path))) table_results = ['capwe_rc_val.csv', 'wp_rc_val.csv', 'npv_rc_val.csv'] for table_path in table_results: self.assertTrue(os.path.exists( os.path.join(args['workspace_dir'], 'output', table_path))) @scm.skip_if_data_missing(SAMPLE_DATA) @scm.skip_if_data_missing(REGRESSION_DATA) def test_removing_filenames(self): """WaveEnergy: testing file paths which already exist are removed.""" from natcap.invest.wave_energy import wave_energy workspace_dir = 'test_removing_filenames' args = WaveEnergyRegressionTests.generate_base_args(workspace_dir)#self.workspace_dir) args['aoi_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'AOI_WCVI.shp') args['valuation_container'] = True args['land_gridPts_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'LandGridPts_WCVI.csv') args['machine_econ_uri'] = os.path.join( SAMPLE_DATA, 'WaveEnergy', 'input', 'Machine_Pelamis_Economic.csv') args['number_of_machines'] = 28 wave_energy.execute(args) # Run through the model again, which should mean deleting # shapefiles that have already been made, but which need # to be created again. wave_energy.execute(args) raster_results = [ 'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif', 'npv_rc.tif', 'npv_usd.tif'] for raster_path in raster_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_rasters_equal( os.path.join(args['workspace_dir'], 'output', raster_path), os.path.join(REGRESSION_DATA, 'valuation', raster_path), 1e-9) vector_results = ['GridPts_prj.shp', 'LandPts_prj.shp'] for vector_path in vector_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_vectors_equal( os.path.join(args['workspace_dir'], 'output', vector_path), os.path.join(REGRESSION_DATA, 'valuation', vector_path)) table_results = ['capwe_rc.csv', 'wp_rc.csv', 'npv_rc.csv'] for table_path in table_results: natcap.invest.pygeoprocessing_0_3_3.testing.assert_csv_equal( os.path.join(args['workspace_dir'], 'output', table_path), os.path.join(REGRESSION_DATA, 'valuation', table_path))
9f7e0a4bea9a8a75e861d8d24be4d82b99bb4997
3052941bbde225a1ececbeb628c05c47bcd7c494
/ProgressiveNN_atari_2.py
4c4812de0830e998441a1ed816cfe2719899c5c4
[]
no_license
LKH-1/A3C-tensorflow
32cffb66f07b1903dd774e49aee43bd966b6abd8
807e545194534f12a3a1d5838343df5a248bd833
refs/heads/master
2021-06-03T03:12:10.595718
2016-10-11T02:00:01
2016-10-11T02:00:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,299
py
#!/usr/bin/python # -*- coding: utf-8 -*- # author: [email protected] import cv2 import re import gym import signal import threading import scipy.signal from tensorflow.python.ops.rnn_cell import BasicLSTMCell from common import * tf.app.flags.DEFINE_string("game", "Breakout-v0", "gym environment name") tf.app.flags.DEFINE_string("old_train_dir", "./models/experiment_pnn/column_1", "gym environment name") tf.app.flags.DEFINE_string("train_dir", "./models/experiment_pnn/column_2", "gym environment name") tf.app.flags.DEFINE_integer("gpu", 0, "gpu id") tf.app.flags.DEFINE_bool("use_lstm", False, "use LSTM layer") tf.app.flags.DEFINE_integer("t_max", 8, "episode max time step") tf.app.flags.DEFINE_integer("t_train", 1e7, "train max time step") tf.app.flags.DEFINE_integer("jobs", 8, "parallel running thread number") tf.app.flags.DEFINE_integer("frame_skip", 4, "number of frame skip") tf.app.flags.DEFINE_integer("frame_seq", 4, "number of frame sequence") tf.app.flags.DEFINE_string("opt", "rms", "choice in [rms, adam, sgd]") tf.app.flags.DEFINE_float("learn_rate", 5e-4, "param of smooth") tf.app.flags.DEFINE_float("eps", 1e-8, "param of smooth") tf.app.flags.DEFINE_float("scalar", 1.0, "param of scaler for lateral connect") tf.app.flags.DEFINE_float("entropy_beta", 1e-2, "param of policy entropy weight") tf.app.flags.DEFINE_float("gamma", 0.95, "discounted ratio") tf.app.flags.DEFINE_float("train_step", 0, "train step. unchanged") flags = tf.app.flags.FLAGS class AtariEnv(object): def __init__(self, env, screen_size=(84, 84)): self.env = env # constants self.screen_size = screen_size self.frame_skip = flags.frame_skip self.frame_seq = flags.frame_seq # local variables self.state = np.zeros(self.state_shape, dtype=np.float32) @property def state_shape(self): return [self.screen_size[0], self.screen_size[1], self.frame_seq] @property def action_dim(self): return self.env.action_space.n def precess_image(self, image): image = cv2.cvtColor(cv2.resize(image, self.screen_size), cv2.COLOR_BGR2GRAY) image = np.divide(image, 256.0) return image def reset_env(self): obs = self.env.reset() self.state[:, :, :-1] = 0 self.state[:, :, -1] = self.precess_image(obs) return self.state def forward_action(self, action): obs, reward, done = None, None, None for _ in xrange(self.frame_skip): obs, reward, done, _ = self.env.step(action) if done: break obs = self.precess_image(obs) obs = np.reshape(obs, newshape=list(self.screen_size) + [1]) / 256.0 self.state = np.append(self.state[:, :, 1:], obs, axis=2) return self.state, reward, done class A3CNet(object): def __init__(self, state_shape, action_dim, scope, column_id=2): self.state_shape = state_shape self.action_dim = action_dim self.column_id = column_id with tf.device("/gpu:%d" % flags.gpu): # placeholder self.state = tf.placeholder(tf.float32, shape=[None] + list(state_shape), name="state") # (None, 84, 84, 4) self.action = tf.placeholder(tf.float32, shape=[None, action_dim], name="action") # (None, actions) self.target_q = tf.placeholder(tf.float32, shape=[None]) with tf.variable_scope(scope) as scope: # column layers col_1_layers, col_1_vars = self.layers(column_id=1) col_2_layers, col_2_vars = self.layers(column_id=2) # lateral connect col_1, col_2 = col_1_layers, col_2_layers col_2[3], lateral_vars = self.lateral_connect("lateral_l1", range(2), [col_1[2], col_2[2]], col_2[3]) self.shared_vars = col_1_vars + col_2_vars + lateral_vars shared_out = col_2[3] # policy parts with tf.variable_scope("col_%d_policy" % column_id): pi_fc_1, self.pi_w1, self.pi_b1 = full_connect(shared_out, (256, 256), "pi_fc1", with_param=True) pi_fc_2, self.pi_w2, self.pi_b2 = full_connect(pi_fc_1, (256, action_dim), "pi_fc2", activate=None, with_param=True) self.policy_out = tf.nn.softmax(pi_fc_2, name="pi_out") # value parts with tf.variable_scope("col_%d_value" % column_id): v_fc_1, self.v_w1, self.v_b1 = full_connect(shared_out, (256, 256), "v_fc1", with_param=True) v_fc_2, self.v_w2, self.v_b2 = full_connect(v_fc_1, (256, 1), "v_fc2", activate=None, with_param=True) self.value_out = tf.reshape(v_fc_2, [-1], name="v_out") # loss values with tf.op_scope([self.policy_out, self.value_out], "col_%d_loss" % column_id): self.entropy = - tf.reduce_sum(self.policy_out * tf.log(self.policy_out + flags.eps)) time_diff = self.target_q - self.value_out policy_prob = tf.log(tf.reduce_sum(tf.mul(self.policy_out, self.action), reduction_indices=1)) self.policy_loss = - tf.reduce_sum(policy_prob * time_diff) self.value_loss = tf.reduce_sum(tf.square(time_diff)) self.total_loss = self.policy_loss + self.value_loss * 0.5 + self.entropy * flags.entropy_beta def layers(self, column_id): # shared parts with tf.variable_scope("col_%d_shared" % column_id): conv1, w1, b1 = conv2d(self.state, (8, 8, self.state_shape[-1], 16), "conv_1", stride=4, padding="VALID", with_param=True) # (None, 20, 20, 16) conv1 = NetTools.batch_normalized(conv1) conv2, w2, b2 = conv2d(conv1, (4, 4, 16, 32), "conv_2", stride=2, padding="VALID", with_param=True) # (None, 9, 9, 32) conv2 = NetTools.batch_normalized(conv2) flat1 = tf.reshape(conv2, (-1, 9 * 9 * 32), name="flat1") fc_1, w3, b3 = full_connect(flat1, (9 * 9 * 32, 256), "fc1", activate=None, with_param=True) return [conv1, conv2, flat1, fc_1], [w1, b1, w2, b2, w3, b3] def lateral_connect(self, scope, col_ids, h_col_lowers, h_col_upper): with tf.variable_scope(scope): h_col_upper_dim = h_col_upper.get_shape().as_list()[1] lateral_units = [h_col_upper] lateral_vars = [] for col, h_col in zip(col_ids[:-1], h_col_lowers[:-1]): scalar = tf.get_variable("scalar_%d_%d" % (col, col_ids[-1]), shape=[], initializer=tf.constant_initializer(flags.scalar), trainable=True) h_col_dim_1 = h_col.get_shape().as_list()[1] h_col_dim_2 = h_col_lowers[-1].get_shape().as_list()[1] lateral_fc_v, v_w = full_connect(tf.mul(h_col, scalar), (h_col_dim_1, h_col_dim_2), "fc_u_%d_%d" % (col, col_ids[-1]), with_param=True, with_bias=False) lateral_fc_u, u_w = full_connect(lateral_fc_v, (h_col_dim_2, h_col_upper_dim), "fc_v_%d_%d" % (col, col_ids[-1]), with_param=True, with_bias=False, activate=False) lateral_units.append(lateral_fc_u) lateral_vars += [scalar, v_w, u_w] h_col_upper = tf.nn.relu(tf.add_n(lateral_units), name="lateral_combine_%d" % col_ids[-1]) return h_col_upper, lateral_vars def get_policy(self, sess, state): return sess.run(self.policy_out, feed_dict={self.state: [state]})[0] def get_value(self, sess, state): return sess.run(self.value_out, feed_dict={self.state: [state]})[0] def get_vars(self): return self.shared_vars + [self.pi_w1, self.pi_b1, self.pi_w2, self.pi_b2, self.v_w1, self.v_b1, self.v_w2, self.v_b2] class A3CLSTMNet(object): def __init__(self, state_shape, action_dim, scope): class InnerLSTMCell(BasicLSTMCell): def __init__(self, num_units, forget_bias=1.0, input_size=None): BasicLSTMCell.__init__(self, num_units, forget_bias=forget_bias, input_size=input_size) self.matrix, self.bias = None, None def __call__(self, inputs, state, scope=None): """ Long short-term memory cell (LSTM). implement from BasicLSTMCell.__call__ """ with tf.variable_scope(scope or type(self).__name__): # "BasicLSTMCell" # Parameters of gates are concatenated into one multiply for efficiency. c, h = tf.split(1, 2, state) concat = self.linear([inputs, h], 4 * self._num_units, True) # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = tf.split(1, 4, concat) new_c = c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(i) * tf.tanh(j) new_h = tf.tanh(new_c) * tf.sigmoid(o) return new_h, tf.concat(1, [new_c, new_h]) def linear(self, args, output_size, bias, bias_start=0.0, scope=None): """ Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. implement from function of tensorflow.python.ops.rnn_cell.linear() """ if args is None or (isinstance(args, (list, tuple)) and not args): raise ValueError("`args` must be specified") if not isinstance(args, (list, tuple)): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 2: raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes)) if not shape[1]: raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes)) else: total_arg_size += shape[1] # Now the computation. with tf.variable_scope(scope or "Linear"): matrix = tf.get_variable("Matrix", [total_arg_size, output_size]) if len(args) == 1: res = tf.matmul(args[0], matrix) else: res = tf.matmul(tf.concat(1, args), matrix) if not bias: return res bias_term = tf.get_variable( "Bias", [output_size], initializer=tf.constant_initializer(bias_start)) self.matrix = matrix self.bias = bias_term return res + bias_term with tf.device("/gpu:%d" % flags.gpu): # placeholder self.state = tf.placeholder(tf.float32, shape=[None] + list(state_shape), name="state") # (None, 84, 84, 4) self.action = tf.placeholder(tf.float32, shape=[None, action_dim], name="action") # (None, actions) self.target_q = tf.placeholder(tf.float32, shape=[None]) # shared parts with tf.variable_scope("%s_shared" % scope): conv1, self.w1, self.b1 = conv2d(self.state, (8, 8, state_shape[-1], 16), "conv_1", stride=4, padding="VALID", with_param=True) # (None, 20, 20, 16) conv2, self.w2, self.b2 = conv2d(conv1, (4, 4, 16, 32), "conv_2", stride=2, padding="VALID", with_param=True) # (None, 9, 9, 32) flat1 = tf.reshape(conv2, (9 * 9 * 32, 256), name="flat1") fc_1, self.w3, self.b3 = full_connect(flat1, (9 * 9 * 32, 256), "fc1", with_param=True) # rnn parts with tf.variable_scope("%s_rnn" % scope) as scope: h_flat1 = tf.reshape(fc_1, (1, -1, 256)) self.lstm = InnerLSTMCell(256) self.initial_lstm_state = tf.placeholder(tf.float32, shape=[1, self.lstm.state_size]) self.sequence_length = tf.placeholder(tf.float32, [1]) lstm_outputs, self.lstm_state = tf.nn.dynamic_rnn(self.lstm, h_flat1, initial_state=self.initial_lstm_state, sequence_length=self.sequence_length, time_major=False, scope=scope) lstm_outputs = tf.reshape(lstm_outputs, [-1, 256]) # policy parts with tf.variable_scope("%s_policy" % scope): pi_fc_1, self.pi_w1, self.pi_b1 = full_connect(lstm_outputs, (256, 256), "pi_fc1", with_param=True) pi_fc_2, self.pi_w2, self.pi_b2 = full_connect(pi_fc_1, (256, action_dim), "pi_fc2", activate=None, with_param=True) self.policy_out = tf.nn.softmax(pi_fc_2, name="pi_out") # value parts with tf.variable_scope("%s_value" % scope): v_fc_1, self.v_w1, self.v_b1 = full_connect(lstm_outputs, (256, 256), "v_fc1", with_param=True) v_fc_2, self.v_w2, self.v_b2 = full_connect(v_fc_1, (256, 1), "v_fc2", activate=None, with_param=True) self.value_out = tf.reshape(v_fc_2, [-1], name="v_out") # loss values with tf.op_scope([self.policy_out, self.value_out], "%s_loss" % scope): self.entropy = - tf.reduce_mean(self.policy_out * tf.log(self.policy_out + flags.eps)) time_diff = self.target_q - self.value_out policy_prob = tf.log(tf.reduce_sum(tf.mul(self.policy_out, self.action), reduction_indices=1)) self.policy_loss = - tf.reduce_sum(policy_prob * time_diff, reduction_indices=1) self.value_loss = tf.square(time_diff) self.total_loss = self.policy_loss + self.value_loss * 0.5 + self.entropy * flags.entropy_beta # lstm state self.lstm_state_out = np.zeros((1, self.lstm.state_size), dtype=np.float32) def reset_lstm_state(self): self.lstm_state_out = np.zeros((1, self.lstm.state_size), dtype=np.float32) def get_policy(self, sess, state): policy_out, self.lstm_state_out = sess.run([self.policy_out, self.lstm_state], feed_dict={self.state: [state], self.initial_lstm_state: self.lstm_state, self.sequence_length: [1]}) return policy_out[0] def get_value(self, sess, state): value_out, _ = sess.run([self.value_out, self.lstm_state], feed_dict={self.state: [state], self.initial_lstm_state: self.lstm_state, self.sequence_length: [1]})[0] return value_out[0] def get_vars(self): return [self.w1, self.b1, self.w2, self.b2, self.w3, self.b3, self.lstm.matrix, self.lstm.bias, self.pi_w1, self.pi_b1, self.pi_w2, self.pi_b2, self.v_w1, self.v_b1, self.v_w2, self.v_b2] class A3CSingleThread(threading.Thread): def __init__(self, thread_id, master): self.thread_id = thread_id threading.Thread.__init__(self, name="thread_%d" % thread_id) self.env = AtariEnv(gym.make(flags.game)) self.master = master # local network if flags.use_lstm: self.local_net = A3CLSTMNet(self.env.state_shape, self.env.action_dim, scope="local_net_%d" % thread_id) else: self.local_net = A3CNet(self.env.state_shape, self.env.action_dim, scope="local_net_%d" % thread_id) # sync network self.sync = self.sync_network(master.shared_net) # accumulate gradients self.accum_grads = self.create_accumulate_gradients() self.do_accum_grads_ops = self.do_accumulate_gradients() self.reset_accum_grads_ops = self.reset_accumulate_gradients() # collect summaries for debugging summaries = list() summaries.append(tf.scalar_summary("entropy/%d" % self.thread_id, self.local_net.entropy)) summaries.append(tf.scalar_summary("policy_loss/%d" % self.thread_id, self.local_net.policy_loss)) summaries.append(tf.scalar_summary("value_loss/%d" % self.thread_id, self.local_net.value_loss)) summaries.append(tf.scalar_summary("total_loss/%d" % self.thread_id, self.local_net.total_loss)) # apply accumulated gradients with tf.device("/gpu:%d" % flags.gpu): self.apply_gradients = master.shared_opt.apply_gradients( zip(self.accum_grads, master.shared_net.get_vars()), global_step=master.global_step) self.summary_op = tf.merge_summary(summaries) def sync_network(self, source_net): sync_ops = [] with tf.device("/gpu:%d" % flags.gpu): with tf.op_scope([], name="sync_ops_%d" % self.thread_id): for (target_var, source_var) in zip(self.local_net.get_vars(), source_net.get_vars()): ops = tf.assign(target_var, source_var) sync_ops.append(ops) return tf.group(*sync_ops, name="sync_group_%d" % self.thread_id) def create_accumulate_gradients(self): accum_grads = [] with tf.device("/gpu:%d" % flags.gpu): with tf.op_scope([self.local_net], name="create_accum_%d" % self.thread_id): for var in self.local_net.get_vars(): zero = tf.zeros(var.get_shape().as_list(), dtype=var.dtype) name = var.name.replace(":", "_") + "_accum_grad" accum_grad = tf.Variable(zero, name=name, trainable=False) accum_grads.append(accum_grad.ref()) return accum_grads def do_accumulate_gradients(self): net = self.local_net accum_grad_ops = [] with tf.device("/gpu:%d" % flags.gpu): with tf.op_scope([net], name="grad_ops_%d" % self.thread_id): var_refs = [v.ref() for v in net.get_vars()] grads = tf.gradients(net.total_loss, var_refs, gate_gradients=False, aggregation_method=None, colocate_gradients_with_ops=False) with tf.op_scope([], name="accum_ops_%d" % self.thread_id): for (grad, var, accum_grad) in zip(grads, net.get_vars(), self.accum_grads): name = var.name.replace(":", "_") + "_accum_grad_ops" accum_ops = tf.assign_add(accum_grad, grad, name=name) accum_grad_ops.append(accum_ops) return tf.group(*accum_grad_ops, name="accum_group_%d" % self.thread_id) def reset_accumulate_gradients(self): net = self.local_net reset_grad_ops = [] with tf.device("/gpu:%d" % flags.gpu): with tf.op_scope([net], name="reset_grad_ops_%d" % self.thread_id): for (var, accum_grad) in zip(net.get_vars(), self.accum_grads): zero = tf.zeros(var.get_shape().as_list(), dtype=var.dtype) name = var.name.replace(":", "_") + "_reset_grad_ops" reset_ops = tf.assign(accum_grad, zero, name=name) reset_grad_ops.append(reset_ops) return tf.group(*reset_grad_ops, name="reset_accum_group_%d" % self.thread_id) def weighted_choose_action(self, pi_probs): r = random.uniform(0, sum(pi_probs)) upto = 0 for idx, prob in enumerate(pi_probs): if upto + prob >= r: return idx upto += prob return len(pi_probs) - 1 def forward_explore(self, train_step): terminal = False t_start = train_step rollout_path = {"state": [], "action": [], "rewards": [], "done": []} while not terminal and (train_step - t_start <= flags.t_max): pi_probs = self.local_net.get_policy(self.master.sess, self.env.state) action = self.weighted_choose_action(pi_probs) _, reward, terminal = self.env.forward_action(action) train_step += 1 rollout_path["state"].append(self.env.state) one_hot_action = np.zeros(self.env.action_dim) one_hot_action[action] = 1 rollout_path["action"].append(one_hot_action) rollout_path["rewards"].append(reward) rollout_path["done"].append(terminal) return train_step, rollout_path def discount(self, x): return scipy.signal.lfilter([1], [1, -flags.gamma], x[::-1], axis=0)[::-1] def run(self): sess = self.master.sess self.env.reset_env() loop = 0 while flags.train_step <= flags.t_train: train_step = 0 loop += 1 # reset gradients sess.run(self.reset_accum_grads_ops) # sync variables sess.run(self.sync) # forward explore train_step, rollout_path = self.forward_explore(train_step) # rollout for discounted R values if rollout_path["done"][-1]: rollout_path["rewards"][-1] = 0 self.env.reset_env() if flags.use_lstm: self.local_net.reset_lstm_state() else: rollout_path["rewards"][-1] = self.local_net.get_value(sess, rollout_path["state"][-1]) rollout_path["returns"] = self.discount(rollout_path["rewards"]) # accumulate gradients lc_net = self.local_net fetches = [self.do_accum_grads_ops, self.master.global_step] if loop % 10 == 0: fetches.append(self.summary_op) res = sess.run(fetches, feed_dict={lc_net.state: rollout_path["state"], lc_net.action: rollout_path["action"], lc_net.target_q: rollout_path["returns"]}) if loop % 10 == 0: global_step, summary_str = res[1], res[2] self.master.summary_writer.add_summary(summary_str, global_step=global_step) self.master.global_step_val = int(global_step) # async update grads to global network sess.run(self.apply_gradients) flags.train_step += train_step # evaluate if loop % 10 == 0 and self.thread_id == 1: self.test_phase() if loop % 1000 and self.thread_id == 1: save_model(self.master.sess, flags.train_dir, self.master.saver, "a3c_model", global_step=self.master.global_step_val) def test_phase(self, episode=10, max_step=1e3): rewards = [] start_time = time.time() while episode > 0: terminal = False self.env.reset_env() episode_reward = 0 test_step = 0 while not terminal and test_step < max_step: pi_probs = self.local_net.get_policy(self.master.sess, self.env.state) action = self.weighted_choose_action(pi_probs) _, reward, terminal = self.env.forward_action(action) test_step += 1 episode_reward += reward rewards.append(episode_reward) episode -= 1 elapsed_time = int(time.time() - start_time) avg_reward = float(np.mean(rewards)) mid_reward = float(np.median(rewards)) std_reward = float(np.std(rewards)) logger.info("game=%s, train_step=%d, episode=%d, reward(avg:%.2f, mid:%.2f, std:%.2f), time=%d(s)" % ( flags.game, flags.train_step, len(rewards), avg_reward, mid_reward, std_reward, elapsed_time)) class A3CAtari(object): def __init__(self): self.env = AtariEnv(gym.make(flags.game)) self.graph = tf.get_default_graph() # shared network if flags.use_lstm: self.shared_net = A3CLSTMNet(self.env.state_shape, self.env.action_dim, scope="columns") else: self.shared_net = A3CNet(self.env.state_shape, self.env.action_dim, scope="columns") # shared optimizer self.shared_opt, self.global_step, self.summary_writer = self.shared_optimizer() self.global_step_val = 0 # local training threads self.jobs = [] for thread_id in xrange(flags.jobs): job = A3CSingleThread(thread_id, self) self.jobs.append(job) # session self.sess = tf.Session(config=tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)) self.sess.run(tf.initialize_all_variables()) # saver self.saver = tf.train.Saver(var_list=self.shared_net.get_vars(), max_to_keep=3) restore_model(self.sess, flags.train_dir, self.saver) def shared_optimizer(self): with tf.device("/gpu:%d" % flags.gpu): # optimizer if flags.opt == "rms": optimizer = tf.train.RMSPropOptimizer(flags.learn_rate, name="global_optimizer") elif flags.opt == "adam": optimizer = tf.train.AdamOptimizer(flags.learn_rate, name="global_optimizer") else: logger.error("invalid optimizer", to_exit=True) global_step = tf.get_variable("global_step", [], initializer=tf.constant_initializer(0), trainable=False) summary_writer = tf.train.SummaryWriter(flags.train_dir, graph_def=self.graph) return optimizer, global_step, summary_writer def train(self): flags.train_step = 0 signal.signal(signal.SIGINT, signal_handler) for job in self.jobs: job.start() for job in self.jobs: job.join() def signal_handler(): sys.exit(0) def main(_): # mkdir if not os.path.isdir(flags.train_dir): os.makedirs(flags.train_dir) # remove old tfevents files for f in os.listdir(flags.train_dir): if re.search(".*tfevents.*", f): os.remove(os.path.join(flags.train_dir, f)) # model model = A3CAtari() model.train() if __name__ == "__main__": tf.app.run()
39f48dfeed3f3313c308862c8550119fc3bc1641
fc43470de13ff8f03105efc2a3660a1ed6a1a553
/BAEKJOON/2504_괄호의값.py
4cb3ea2ff67361cd93e8308808eef08938034270
[]
no_license
youseop/Problem_solutions
5a05597f188b4ef8f7d8483b46bf05fbf2158d01
1fba638d9520bca4354bca01f194f80b159e26aa
refs/heads/master
2023-06-24T05:12:45.060086
2021-07-24T14:22:33
2021-07-24T14:22:33
298,317,735
1
0
null
null
null
null
UTF-8
Python
false
false
964
py
import sys read=sys.stdin.readline bracket = read().strip() stack = [] for i in bracket: if i =='(' or i =='[': stack.append(i) elif i == ']': sum = 0 while stack: tmp = stack.pop() if type(tmp) == type(1): sum+=tmp elif tmp == '[': if sum==0: stack.append(3) else: stack.append(sum*3) break else: print(0) exit() else: sum = 0 while stack: tmp = stack.pop() if type(tmp) == type(1): sum+=tmp elif tmp == '(': if sum==0: stack.append(2) else: stack.append(sum*2) break else: print(0) exit() br=['(',')','[',']'] if any(i in stack for i in br): print(0) else: sum=0 for i in stack: sum+=i print(sum)
b11c66101b1e09ca12e76d8ce55d6ede96feff43
75f28905cc9d87d82be68a37a18beee8d6f21869
/user_messages/urls.py
732cdef2d4079ff7476434539d352d3c7f549367
[]
no_license
Pavlenkovv/Cafe-heroku
f189bbd817a8736b43531bc5d73895fa436a8040
e0e9b67247a3375e6f599b2dfcd77b1ccce9e5fb
refs/heads/main
2023-02-27T14:48:24.549261
2021-01-29T12:55:19
2021-01-29T12:55:19
329,387,838
2
0
null
null
null
null
UTF-8
Python
false
false
173
py
from django.urls import path from .views import * urlpatterns = [ path ('', home, name='messages_info'), path('update/<int:pk>/', update_messages, name='update') ]
6689f6b14bb0bd93a13ac8db5478c886fab76e6a
2372281d6e08dfc517c60d5a0cce678f15f904db
/experiments/output_perturbation/scikit-learn/examples/preprocessing/plot_discretization_strategies.py
9ef211a83ccf307e6861b3c49fdf16fd08a4849d
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
amzn/differential-privacy-bayesian-optimization
b647b8281be0c2ea335104c9c92e717ce07ce63f
07fec631d00bf3381ca24f7d73757aef6dfda9d3
refs/heads/master
2023-03-13T04:10:22.753152
2022-10-03T19:26:44
2022-10-03T19:26:44
252,813,133
27
19
Apache-2.0
2022-10-03T19:26:45
2020-04-03T18:45:17
Python
UTF-8
Python
false
false
3,052
py
# -*- coding: utf-8 -*- """ ========================================================== Demonstrating the different strategies of KBinsDiscretizer ========================================================== This example presents the different strategies implemented in KBinsDiscretizer: - 'uniform': The discretization is uniform in each feature, which means that the bin widths are constant in each dimension. - quantile': The discretization is done on the quantiled values, which means that each bin has approximately the same number of samples. - 'kmeans': The discretization is based on the centroids of a KMeans clustering procedure. The plot shows the regions where the discretized encoding is constant. """ # Author: Tom Dupré la Tour # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import KBinsDiscretizer from sklearn.datasets import make_blobs print(__doc__) strategies = ['uniform', 'quantile', 'kmeans'] n_samples = 200 centers_0 = np.array([[0, 0], [0, 5], [2, 4], [8, 8]]) centers_1 = np.array([[0, 0], [3, 1]]) # construct the datasets random_state = 42 X_list = [ np.random.RandomState(random_state).uniform(-3, 3, size=(n_samples, 2)), make_blobs(n_samples=[n_samples // 10, n_samples * 4 // 10, n_samples // 10, n_samples * 4 // 10], cluster_std=0.5, centers=centers_0, random_state=random_state)[0], make_blobs(n_samples=[n_samples // 5, n_samples * 4 // 5], cluster_std=0.5, centers=centers_1, random_state=random_state)[0], ] figure = plt.figure(figsize=(14, 9)) i = 1 for ds_cnt, X in enumerate(X_list): ax = plt.subplot(len(X_list), len(strategies) + 1, i) ax.scatter(X[:, 0], X[:, 1], edgecolors='k') if ds_cnt == 0: ax.set_title("Input data", size=14) xx, yy = np.meshgrid( np.linspace(X[:, 0].min(), X[:, 0].max(), 300), np.linspace(X[:, 1].min(), X[:, 1].max(), 300)) grid = np.c_[xx.ravel(), yy.ravel()] ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # transform the dataset with KBinsDiscretizer for strategy in strategies: enc = KBinsDiscretizer(n_bins=4, encode='ordinal', strategy=strategy) enc.fit(X) grid_encoded = enc.transform(grid) ax = plt.subplot(len(X_list), len(strategies) + 1, i) # horizontal stripes horizontal = grid_encoded[:, 0].reshape(xx.shape) ax.contourf(xx, yy, horizontal, alpha=.5) # vertical stripes vertical = grid_encoded[:, 1].reshape(xx.shape) ax.contourf(xx, yy, vertical, alpha=.5) ax.scatter(X[:, 0], X[:, 1], edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) if ds_cnt == 0: ax.set_title("strategy='%s'" % (strategy, ), size=14) i += 1 plt.tight_layout() plt.show()
980895b0e1bce4169f2bdcb8aa270a1ae9dd834c
24b2f3f5f49ed19cf7fd3dcd433d6b72806e08cf
/python/array/0054_Spiral_Matrix.py
72264e152eccf0198675fc6229fbbc7746b9e527
[]
no_license
lizzzcai/leetcode
97089e4ca8c3c53b5a4a50de899591be415bac37
551cd3b4616c16a6562eb7c577ce671b419f0616
refs/heads/master
2021-06-23T05:59:56.928042
2020-12-07T03:07:58
2020-12-07T03:07:58
162,840,861
1
0
null
null
null
null
UTF-8
Python
false
false
2,282
py
""" 18/09/2019 54. Spiral Matrix - Medium Tag: Array Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order. Example 1: Input: [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] Output: [1,2,3,6,9,8,7,4,5] Example 2: Input: [ [1, 2, 3, 4], [5, 6, 7, 8], [9,10,11,12] ] Output: [1,2,3,4,8,12,11,10,9,5,6,7] """ from typing import List class Solution: def spiralOrder(self, matrix: List[List[int]]) -> List[int]: """ Time: O(n*m) Space: O(n*m) """ if not matrix: return [] d = [(1,0), (0,1), (-1,0), (0,-1)] m, n = len(matrix[0]), len(matrix) record = [[False for _ in range(m)] for _ in range(n)] print(f"m: {m}, n: {n}") idx = 0 x, y = 0, 0 res = [] #record[0][0] = True for _ in range(m*n): print(f"x: {x}, y: {y}") record[y][x] = True res.append(matrix[y][x]) print(f"value: {matrix[y][x]}") next_x, next_y = x + d[idx%4][0], y + d[idx%4][1] print(f"next_x: {next_x}, next_y: {next_y}") if (next_x < 0 or next_x > m-1) or (next_y < 0 or next_y > n-1) or record[next_y][next_x]: idx += 1 print(f"idx: {idx}") #if (0<= next_x <= m-1) and (0 <= next_y <= n-1) and not record[next_y][next_x]: x, y = x + d[idx%4][0], y + d[idx%4][1] return res # Unit Test import unittest class spiralOrderCase(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_spiralOrder(self): func = Solution().spiralOrder self.assertEqual(func([ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]), [1,2,3,6,9,8,7,4,5]) self.assertEqual(func([ [1, 2, 3, 4], [5, 6, 7, 8], [9,10,11,12] ]), [1,2,3,4,8,12,11,10,9,5,6,7]) self.assertEqual(func([ ]), []) if __name__ == '__main__': unittest.main()
e291db95fbe82bddb3fcaf8c6ce1776e9741bdfa
6bbcf512837bdcdfec3091b3337d54a8c455c7b9
/practice/Operators.py
af03cb45e6fa25e1e62edaac81ae702144e24ec8
[]
no_license
sachinlokesh05/Python-Core-Programs
a342ebdc7be070b66254e505df044fdaf03f147f
8eec5595b51203d559e1d6f0e40646e63ad3645a
refs/heads/master
2022-04-28T02:32:07.101993
2020-04-09T12:03:01
2020-04-09T12:03:01
249,491,090
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
class Operators: a=None b=None c=None def __init__(self, a,b,c): self.__aa=a self.__bb=b self.__cc=c def operation(self): choice=int(input("enter choice of your: ")) if choice == 1: return (self.__aa + self.__bb * self.__cc) elif choice == 2: return (self.__cc + self.__aa / self.__cc) elif choice == 3: return (self.__aa % self.__bb + self.__cc) elif choice == 4 : return (self.__aa * self.__bb + self.__cc) else: print("Wrong choice") return self.operation() ap=Operators(1,2,5) print(''' 1. a + b * c 3. c + a / b 2. a % b + c 4. a * b + c ''') print(ap.operation())
2332e49aafbb6a86f7089ed417df63d5469e95b3
c16ea32a4cddb6b63ad3bacce3c6db0259d2bacd
/google/ads/googleads/v5/googleads-py/google/ads/googleads/v5/services/services/invoice_service/transports/base.py
0fb63b0af23dd6693ac5a32d3f79a22b0b3379ff
[ "Apache-2.0" ]
permissive
dizcology/googleapis-gen
74a72b655fba2565233e5a289cfaea6dc7b91e1a
478f36572d7bcf1dc66038d0e76b9b3fa2abae63
refs/heads/master
2023-06-04T15:51:18.380826
2021-06-16T20:42:38
2021-06-16T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,628
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources import google.auth # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.ads.googleads.v5.services.types import invoice_service try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( 'google-ads-googleads', ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class InvoiceServiceTransport(metaclass=abc.ABCMeta): """Abstract transport class for InvoiceService.""" AUTH_SCOPES = ( 'https://www.googleapis.com/auth/adwords', ) def __init__( self, *, host: str = 'googleads.googleapis.com', credentials: ga_credentials.Credentials = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ':' not in host: host += ':443' self._host = host # If no credentials are provided, then determine the appropriate # defaults. if credentials is None: credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES) # Save the credentials. self._credentials = credentials # Lifted into its own function so it can be stubbed out during tests. self._prep_wrapped_messages(client_info) def _prep_wrapped_messages(self, client_info): # Precomputed wrapped methods self._wrapped_methods = { self.list_invoices: gapic_v1.method.wrap_method( self.list_invoices, default_timeout=None, client_info=client_info, ), } @property def list_invoices(self) -> typing.Callable[ [invoice_service.ListInvoicesRequest], invoice_service.ListInvoicesResponse]: raise NotImplementedError __all__ = ( 'InvoiceServiceTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
55096585b424ea3637fe9d43bddf009256acc018
8890925319a25dc3df29f53d0d8125d347680f68
/looker_client_31/looker_sdk/oidc_user_attribute_write.py
919915817144e74ca57abbc588f370b45226b734
[ "MIT" ]
permissive
ContrastingSounds/looker_sdk_31
f5d300ae54aee1cc5a2621b36b49541db24ed248
f973434049fff1b605b10086ab8b84f2f62e3489
refs/heads/master
2020-03-19T20:31:24.785373
2018-06-11T09:41:36
2018-06-11T09:41:36
136,802,021
0
0
null
null
null
null
UTF-8
Python
false
false
6,870
py
# coding: utf-8 """ Experimental Looker API 3.1 Preview This API 3.1 is in active development. Breaking changes are likely to occur to some API functions in future Looker releases until API 3.1 is officially launched and upgraded to beta status. If you have time and interest to experiment with new or modified services exposed in this embryonic API 3.1, we welcome your participation and feedback! For large development efforts or critical line-of-business projects, we strongly recommend you stick with the API 3.0 while API 3.1 is under construction. # noqa: E501 OpenAPI spec version: 3.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class OIDCUserAttributeWrite(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'required': 'bool', 'user_attribute_ids': 'list[int]', 'url': 'str', 'can': 'dict(str, bool)' } attribute_map = { 'name': 'name', 'required': 'required', 'user_attribute_ids': 'user_attribute_ids', 'url': 'url', 'can': 'can' } def __init__(self, name=None, required=None, user_attribute_ids=None, url=None, can=None): # noqa: E501 """OIDCUserAttributeWrite - a model defined in Swagger""" # noqa: E501 self._name = None self._required = None self._user_attribute_ids = None self._url = None self._can = None self.discriminator = None if name is not None: self.name = name if required is not None: self.required = required if user_attribute_ids is not None: self.user_attribute_ids = user_attribute_ids if url is not None: self.url = url if can is not None: self.can = can @property def name(self): """Gets the name of this OIDCUserAttributeWrite. # noqa: E501 Name of User Attribute in OIDC # noqa: E501 :return: The name of this OIDCUserAttributeWrite. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this OIDCUserAttributeWrite. Name of User Attribute in OIDC # noqa: E501 :param name: The name of this OIDCUserAttributeWrite. # noqa: E501 :type: str """ self._name = name @property def required(self): """Gets the required of this OIDCUserAttributeWrite. # noqa: E501 Required to be in OIDC assertion for login to be allowed to succeed # noqa: E501 :return: The required of this OIDCUserAttributeWrite. # noqa: E501 :rtype: bool """ return self._required @required.setter def required(self, required): """Sets the required of this OIDCUserAttributeWrite. Required to be in OIDC assertion for login to be allowed to succeed # noqa: E501 :param required: The required of this OIDCUserAttributeWrite. # noqa: E501 :type: bool """ self._required = required @property def user_attribute_ids(self): """Gets the user_attribute_ids of this OIDCUserAttributeWrite. # noqa: E501 Looker User Attribute Ids # noqa: E501 :return: The user_attribute_ids of this OIDCUserAttributeWrite. # noqa: E501 :rtype: list[int] """ return self._user_attribute_ids @user_attribute_ids.setter def user_attribute_ids(self, user_attribute_ids): """Sets the user_attribute_ids of this OIDCUserAttributeWrite. Looker User Attribute Ids # noqa: E501 :param user_attribute_ids: The user_attribute_ids of this OIDCUserAttributeWrite. # noqa: E501 :type: list[int] """ self._user_attribute_ids = user_attribute_ids @property def url(self): """Gets the url of this OIDCUserAttributeWrite. # noqa: E501 Link to oidc config # noqa: E501 :return: The url of this OIDCUserAttributeWrite. # noqa: E501 :rtype: str """ return self._url @url.setter def url(self, url): """Sets the url of this OIDCUserAttributeWrite. Link to oidc config # noqa: E501 :param url: The url of this OIDCUserAttributeWrite. # noqa: E501 :type: str """ self._url = url @property def can(self): """Gets the can of this OIDCUserAttributeWrite. # noqa: E501 Operations the current user is able to perform on this object # noqa: E501 :return: The can of this OIDCUserAttributeWrite. # noqa: E501 :rtype: dict(str, bool) """ return self._can @can.setter def can(self, can): """Sets the can of this OIDCUserAttributeWrite. Operations the current user is able to perform on this object # noqa: E501 :param can: The can of this OIDCUserAttributeWrite. # noqa: E501 :type: dict(str, bool) """ self._can = can def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OIDCUserAttributeWrite): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
939acab1fd12f3f792ee8ed5327b4a92cbb34516
49c2e3ebf7f5d2f79af6e26c44b4d07ec14a20d5
/Hello World/venv/Lib/site-packages/pip/_vendor/progress/__init__.py
ffcb82afcfdd11034008e84488dfde21c6399cc7
[]
no_license
TaylorHoll/Python_Projects
a0d86642463bdc5b3ea67dae0146c115185c1db2
a8285b058ed0b4e0a366753d61526056dab23cd3
refs/heads/master
2020-06-13T09:04:29.666639
2020-01-07T03:40:25
2020-01-07T03:40:25
194,608,692
0
0
null
null
null
null
UTF-8
Python
false
false
4,859
py
# Copyright (c) 2012 Giorgos Verigakis <[email protected]> # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. from __future__ import division, print_function from datetime import timedelta from math import ceil from sys import stderr from collections import deque try: from time import monotonic except ImportError: from time import time as monotonic __version__ = '1.5' HIDE_CURSOR = '\x1b[?25l' SHOW_CURSOR = '\x1b[?25h' class Infinite(object): file = stderr sma_window = 10 # Simple Moving Average window check_tty = True hide_cursor = True def __init__(self, message='', **kwargs): self.index = 0 self.start_ts = monotonic() self.avg = 0 self._avg_update_ts = self.start_ts self._ts = self.start_ts self._xput = deque(maxlen=self.sma_window) for key, val in kwargs.items(): setattr(self, key, val) self._width = 0 self.message = message if self.file and self.is_tty(): if self.hide_cursor: print(HIDE_CURSOR, end='', file=self.file) print(self.message, end='', file=self.file) self.file.flush() def __getitem__(self, key): if key.startswith('_'): return None return getattr(self, key, None) @property def elapsed(self): return int(monotonic() - self.start_ts) @property def elapsed_td(self): return timedelta(seconds=self.elapsed) def update_avg(self, n, dt): if n > 0: xput_len = len(self._xput) self._xput.append(dt / n) now = monotonic() # update when we're still filling _xput, then after every second if (xput_len < self.sma_window or now - self._avg_update_ts > 1): self.avg = sum(self._xput) / len(self._xput) self._avg_update_ts = now def update(self): pass def start(self): pass def clearln(self): if self.file and self.is_tty(): print('\r\x1b[K', end='', file=self.file) def write(self, s): if self.file and self.is_tty(): line = self.message + s.ljust(self._width) print('\r' + line, end='', file=self.file) self._width = max(self._width, len(s)) self.file.flush() def writeln(self, line): if self.file and self.is_tty(): self.clearln() print(line, end='', file=self.file) self.file.flush() def finish(self): if self.file and self.is_tty(): print(file=self.file) if self.hide_cursor: print(SHOW_CURSOR, end='', file=self.file) def is_tty(self): return self.file.isatty() if self.check_tty else True def next(self, n=1): now = monotonic() dt = now - self._ts self.update_avg(n, dt) self._ts = now self.index = self.index + n self.update() def iter(self, it): with self: for x in it: yield x self.next() def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_val, exc_tb): self.finish() class Progress(Infinite): def __init__(self, *args, **kwargs): super(Progress, self).__init__(*args, **kwargs) self.max = kwargs.get('max', 100) @property def eta(self): return int(ceil(self.avg * self.remaining)) @property def eta_td(self): return timedelta(seconds=self.eta) @property def percent(self): return self.progress * 100 @property def progress(self): return min(1, self.index / self.max) @property def remaining(self): return max(self.max - self.index, 0) def start(self): self.update() def goto(self, index): incr = index - self.index self.next(incr) def iter(self, it): try: self.max = len(it) except TypeError: pass with self: for x in it: yield x self.next()
af4646c0c8d791591845ff4194705e2db2ffaf58
08dfaf714830a6310742dcd50848790d595e838e
/中级班/chapter03/code_06_rotateMatrix.py
77d7da7638bb7ab3952d12a1d9398029625a3035
[]
no_license
Tokyo113/leetcode_python
d9e0fb96a76efaadcec7aad08f5ef542d898d434
e86b3fb26aef1cf63727e3e5c9fd4ddc9bedb7f1
refs/heads/master
2020-08-10T15:36:10.364714
2020-04-13T08:28:53
2020-04-13T08:28:53
214,369,187
0
0
null
null
null
null
UTF-8
Python
false
false
1,144
py
#coding:utf-8 ''' @Time: 2020/2/13 16:58 @author: Tokyo @file: code_06_rotateMatrix.py @desc: 给定一个正方形矩阵,只用有限几个变量,实现矩阵中每个位置的数顺时针转动 90度,比如如下的矩阵 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 矩阵应该被调整为: 12 8 4 0 13 9 5 1 14 10 6 2 15 11 7 3 ''' def rotateMatrix(arr): n = len(arr) m = len(arr[0]) lr,lc = 0, 0 rr, rc = n-1, m-1 while lr < rr: rotateEdge(arr, lr,lc,rr,rc) lr += 1 lc += 1 rr -= 1 rc -= 1 def rotateEdge(arr, lr,lc, rr,rc): for i in range(rc-lc): pp = arr[lr][lc+i] arr[lr][lc+i] = arr[rr-i][lc] arr[rr-i][lc] = arr[rr][rc-i] arr[rr][rc-i] = arr[lr+i][rc] arr[lr+i][rc] = pp return def printMatrix(arr): for i in range(len(arr)): for j in range(len(arr[0])): print(arr[i][j], end="\t") print("") if __name__ == '__main__': a = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13,14,15,16]] printMatrix(a) print("=================") rotateMatrix(a) printMatrix(a)
c0005faed0405a4c138d03792873eedbc657de80
062e43d41c6daa6943bfad8f4510d19e43840f96
/src/yaml/xml.py
b2e06652a02cedabe4dfa5a2964201b3e9a8934b
[]
no_license
allefant/land
b61d60106d8224e01a34d7504e1310b5fb0bd373
f78f0da9c57884be8819f022c6e6442f90d4434c
refs/heads/main
2023-06-22T06:15:09.938629
2023-06-20T20:08:13
2023-06-20T20:08:13
47,664,545
0
0
null
null
null
null
UTF-8
Python
false
false
6,850
py
import land.land import land.yaml import global ctype static enum XmlState: Outside ElementName Attributes AttributeName AttributeStart AttributeValue static class XmlParser: XmlState state bool closing LandBuffer *value LandYaml *yaml static def scalar(XmlParser *x): land_buffer_add_char(x.value, 0) land_yaml_add_scalar(x.yaml, land_strdup(x.value.buffer)) land_buffer_clear(x.value) static def opt_scalar(XmlParser *x): if x.value.n: scalar(x) static def discard_scalar(XmlParser *x): land_buffer_clear(x.value) # # <a x="2">b<c>d</c>e<f y="3"/></a> # # [{"<":"a", "x":"2", ">":["b", {"<":"c", ">":["d"]}, "e", {"<":f", "y":"3"}]}] # # def land_yaml_load_xml(str filename) -> LandYaml *: LandFile *f = land_file_new(filename, "rb") if not f: land_log_message("Failed opening %s\n", filename) return None land_log_message("Parsing yaml %s\n", filename) XmlParser x_ XmlParser *x = &x_ x.yaml = land_yaml_new(filename) x.value = land_buffer_new() x.state = Outside x.closing = False land_yaml_add_sequence(x.yaml) # root list of elements while True: int c = land_file_getc(f) if c < 0: break if x.state == Outside: if c == '<': opt_scalar(x) x.state = ElementName continue elif x.state == ElementName: if c == '/': x.closing = True continue elif c == '>': if x.closing: discard_scalar(x) close_tag(x) land_yaml_done(x.yaml) # content else: create_tag(x) open_tag(x) # no attributes continue elif isspace(c): create_tag(x) x.state = Attributes continue elif x.state == Attributes: if isspace(c): continue elif c == '/': x.closing = True continue elif c == '?': # to deal with the XML header x.closing = True continue elif c == '>': if x.closing: close_tag(x) else: open_tag(x) continue elif c == '=': scalar(x) x.state = AttributeStart continue elif x.state == AttributeStart: if c == '"': x.state = AttributeValue continue elif x.state == AttributeValue: if c == '"': x.state = Attributes scalar(x) continue add_char(x, c) land_yaml_done(x.yaml) # root list of elements land_file_destroy(f) land_buffer_destroy(x.value) return x.yaml static def add_char(XmlParser *x, char c): land_buffer_add_char(x.value, c) static def create_tag(XmlParser *x): land_yaml_add_mapping(x.yaml) # tag mapping land_yaml_add_scalar(x.yaml, land_strdup("<")) scalar(x) static def open_tag(XmlParser *x): x.state = Outside land_yaml_add_scalar(x.yaml, land_strdup(">")) land_yaml_add_sequence(x.yaml) # content static def close_tag(XmlParser *x): land_yaml_done(x.yaml) # tag mapping x.state = Outside x.closing = False # saving XML static def xml_write(YamlParser *p, char const *s, bool can_break_before): int n = strlen(s) if can_break_before and p.line_length + n > 80: land_file_write(p.file, "\n", 1) p.line_length = 0 land_file_write(p.file, s, n) int i = land_find(s, "\n") if i >= 0: p.line_length = n - 1 - i else: p.line_length += n static def xml_save_mapping(LandYamlEntry *e, YamlParser *p) -> bool: str name = land_yaml_get_entry_scalar(e, "<") if not name: return False xml_write(p, "<", False) xml_write(p, name, False) for char const *key in LandArray *e.sequence: if land_equals(key, "<") or land_equals(key, ">"): continue xml_write(p, " ", False) xml_write(p, key, True) xml_write(p, "=\"", False) str value = land_yaml_get_entry_scalar(e, key) xml_write(p, value, False) xml_write(p, "\"", False) LandYamlEntry *contents = land_yaml_get_entry(e, ">") if contents: xml_write(p, ">", True) xml_save_sequence(contents, p) xml_write(p, "</", False) xml_write(p, name, False) xml_write(p, ">", True) else: xml_write(p, " />", True) return True static def xml_save_sequence(LandYamlEntry *e, YamlParser *p) -> bool: for LandYamlEntry *e2 in LandArray *e.sequence: xml_save_entry(e2, p) return True static def xml_save_scalar(LandYamlEntry *e, YamlParser *p) -> bool: xml_write(p, e.scalar, False) return True static def xml_save_entry(LandYamlEntry *e, YamlParser *p) -> bool: if e.type == YamlMapping: return xml_save_mapping(e, p) elif e.type == YamlSequence: return xml_save_sequence(e, p) elif e.type == YamlScalar: return xml_save_scalar(e, p) return false def land_yaml_save_xml(LandYaml *yaml): LandFile *f = land_file_new(yaml.filename, "wb") if not f: goto error YamlParser p memset(&p, 0, sizeof p) p.file = f if not xml_save_entry(yaml.root, &p): goto error label error if f: land_file_destroy(f) def _xml(LandYaml *yaml): if not yaml.root or not yaml.parent: land_yaml_add_sequence(yaml) elif yaml.parent->type == YamlMapping: land_yaml_add_scalar(yaml, ">") land_yaml_add_sequence(yaml) def land_yaml_xml_tag(LandYaml *yaml, str name): _xml(yaml) land_yaml_add_mapping(yaml) land_yaml_add_scalar(yaml, "<") land_yaml_add_scalar(yaml, name) def land_yaml_xml_tag_with_content(LandYaml *yaml, str name, str content): land_yaml_xml_tag(yaml, name) land_yaml_xml_content(yaml, content) land_yaml_xml_end(yaml) def land_yaml_xml_content(LandYaml *yaml, str content): _xml(yaml) land_yaml_add_scalar(yaml, content) def land_yaml_xml_attribute(LandYaml *yaml, str key, value): land_yaml_add_scalar(yaml, key) land_yaml_add_scalar(yaml, value) def land_yaml_xml_end(LandYaml *yaml): land_yaml_done(yaml) # If we close a tag, we close the mapping, so additional children # can be added. When we close the parent, we just closed the # sequence, but we also need to close the mapping. Basically we # always need to be in a sequence after this function returns. if yaml.parent and yaml.parent->type == YamlMapping: land_yaml_done(yaml)
f0d1317a953a4569a174b0fc00a48f7a62f38d1b
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-cbs/huaweicloudsdkcbs/v1/model/collect_key_words_request.py
f6637441f094ae9a0789038a9ec0137977bbd716
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
5,869
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class CollectKeyWordsRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'qabot_id': 'str', 'start_time': 'str', 'end_time': 'str', 'top': 'int' } attribute_map = { 'qabot_id': 'qabot_id', 'start_time': 'start_time', 'end_time': 'end_time', 'top': 'top' } def __init__(self, qabot_id=None, start_time=None, end_time=None, top=None): """CollectKeyWordsRequest The model defined in huaweicloud sdk :param qabot_id: qabot编号,UUID格式。 :type qabot_id: str :param start_time: 查询的起始时间,long,UTC时间,默认值为0。 :type start_time: str :param end_time: 查询的结束时间,long,UTC时间,默认值为当前时间的毫秒数。 :type end_time: str :param top: 关键词最多显示的个数,默认值为10,取值范围0-50。 :type top: int """ self._qabot_id = None self._start_time = None self._end_time = None self._top = None self.discriminator = None self.qabot_id = qabot_id if start_time is not None: self.start_time = start_time if end_time is not None: self.end_time = end_time if top is not None: self.top = top @property def qabot_id(self): """Gets the qabot_id of this CollectKeyWordsRequest. qabot编号,UUID格式。 :return: The qabot_id of this CollectKeyWordsRequest. :rtype: str """ return self._qabot_id @qabot_id.setter def qabot_id(self, qabot_id): """Sets the qabot_id of this CollectKeyWordsRequest. qabot编号,UUID格式。 :param qabot_id: The qabot_id of this CollectKeyWordsRequest. :type qabot_id: str """ self._qabot_id = qabot_id @property def start_time(self): """Gets the start_time of this CollectKeyWordsRequest. 查询的起始时间,long,UTC时间,默认值为0。 :return: The start_time of this CollectKeyWordsRequest. :rtype: str """ return self._start_time @start_time.setter def start_time(self, start_time): """Sets the start_time of this CollectKeyWordsRequest. 查询的起始时间,long,UTC时间,默认值为0。 :param start_time: The start_time of this CollectKeyWordsRequest. :type start_time: str """ self._start_time = start_time @property def end_time(self): """Gets the end_time of this CollectKeyWordsRequest. 查询的结束时间,long,UTC时间,默认值为当前时间的毫秒数。 :return: The end_time of this CollectKeyWordsRequest. :rtype: str """ return self._end_time @end_time.setter def end_time(self, end_time): """Sets the end_time of this CollectKeyWordsRequest. 查询的结束时间,long,UTC时间,默认值为当前时间的毫秒数。 :param end_time: The end_time of this CollectKeyWordsRequest. :type end_time: str """ self._end_time = end_time @property def top(self): """Gets the top of this CollectKeyWordsRequest. 关键词最多显示的个数,默认值为10,取值范围0-50。 :return: The top of this CollectKeyWordsRequest. :rtype: int """ return self._top @top.setter def top(self, top): """Sets the top of this CollectKeyWordsRequest. 关键词最多显示的个数,默认值为10,取值范围0-50。 :param top: The top of this CollectKeyWordsRequest. :type top: int """ self._top = top def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CollectKeyWordsRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
648b0989580d47d21becb42dd15835780632c9e9
7af9841dfdeb7192cee9f5bc5ae24ebabeeebdcc
/article/admin.py
a36223f706dc91c9321ddeaf13c4ce75ccbd793c
[]
no_license
dimansion/bepy
513d1d6b8c6f679ce97f46741b50b73dabf20484
dd92999b9fb0d65e9479372718409785a8d26d26
refs/heads/master
2020-06-28T11:27:02.204255
2016-11-14T11:26:32
2016-11-14T11:26:32
67,694,755
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
from django.contrib import admin # Register your models here. from .models import Article class ArticleModelAdmin(admin.ModelAdmin): list_display = ["title", "updated", "timestamp"] list_display_links = ["updated"] list_editable = ["title"] list_filter = ["updated", "timestamp"] search_fields = ["title", "content"] class Meta: model = Article admin.site.register(Article, ArticleModelAdmin)
bc07ca5cbd963e7bdc3369aae466a3c181a9c7bb
50de54517ef5e157b43598e412c477fd66890a3e
/Assignment 04/Problem 12.py
324d03a9fc0e2eb71aefe5e681cb03cda366f9f8
[]
no_license
Shihabsarker93/BRACU-CSE111
f530be247bebaaee9cc5e85948dc070adae0c6ae
17c95c76f84abffe9d9bdcb5861fbacbc510b5a6
refs/heads/main
2023-08-13T15:33:57.331850
2021-10-07T10:56:09
2021-10-07T10:56:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,226
py
class ParcelKoro: def __init__(self, name=None, product_weight=None) -> None: self.name = name self.product_weight = product_weight if self.product_weight == None: self.product_weight = 0 def calculateFee(self, location=None): self.location = location if location == None: location_charge = 50 else: location_charge = 100 if self.product_weight == 0: self.total_fee = 0 else: self.total_fee = (self.product_weight * 20) + location_charge def printDetails(self): if self.name == None: self.name = "No name set" print(f"Customer Name: {self.name}") print(f"Product Weight: {self.product_weight}") print(f"Total fee: {self.total_fee}") print("**********************") p1 = ParcelKoro() p1.calculateFee() p1.printDetails() print("**********************") p2 = ParcelKoro("Bob The Builder") p2.calculateFee() p2.printDetails() print("----------------------------") p2.product_weight = 15 p2.calculateFee() p2.printDetails() print("**********************") p3 = ParcelKoro("Dora The Explorer", 10) p3.calculateFee("Dhanmondi") p3.printDetails()
bdb495a4aaf1752cb932eda410fe95cca71f3510
b0d5e423f09181a322a0166b06bf7fe45a3befc0
/MetioTube/profiles/forms.py
b17499317bd2ae783e5fe56a9baa71d145f4935f
[ "MIT" ]
permissive
Sheko1/MetioTube
f5da4184bb1590565ba34cef2fff02b379ab3e56
c1c36d00ea46fc37cc7f3c0c9c0cae6e89b2113c
refs/heads/main
2023-07-04T12:54:57.500778
2021-08-14T19:41:56
2021-08-14T19:41:56
383,907,948
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
from django import forms from MetioTube.profiles.models import Profile class ProfileForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['profile_picture'].widget.attrs['accept'] = 'image/jpg, image/png, image/jpeg' class Meta: model = Profile exclude = ('user', 'subscribers')
61087362a9a48013cc2326b5551e5baebf27170f
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_27043.py
3aaaa48d0d67afac68945c2289c5a5b2445efbf4
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
# How to replace () and , from the fatched data of mysql database path,=cursor.fetchone() print path