blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
469e579b0a396a30e46ed93bc267b76bed2218c9
b088d5dc4321f9f145c7bceb20a0b9479b374c65
/level1&2/42883.py
8169482655042d081bd9380cf7217e0935b0e85c
[]
no_license
heojungeun/codingtestPractice
55bfc2b13791f5cb3133b0815991a0c696f8482c
65d668bf6df82967f89d4ec4eb3a1e11de603729
refs/heads/master
2022-09-17T00:34:05.887237
2020-05-30T06:45:30
2020-05-30T06:45:30
261,093,291
0
0
null
null
null
null
UTF-8
Python
false
false
1,404
py
def solution(number, k): # import itertools # dig = [] # for i in range(0,len(number)): # dig.append(i) # dig = list(itertools.combinations(dig,k)) # lenn = len(number) # arr = [] # for x in dig: # tmp = '' # for i in range(lenn): # if i in x: # continue # tmp += number[i] # arr.append(int(tmp)) # answer = str(max(arr)) st = [] for x in number: if k==0 or not st: st.append(x) else: if st[-1] < x: tmp = reversed(st) for e in tmp: if e < x: st.pop() k -= 1 if k==0 or not st: st.append(x) break else: st.append(x) break else: st.append(x) while k > 0: st.pop() k -= 1 answer = "".join(st) return answer def standardsolution(number,k): st = [] for i, num in enumerate(number): while st and k>0 and st[-1]<num: st.pop() k -= 1 if k==0: st += number[i:] break st.append(num) st = st[:-k] if k>0 else st return "".join(st) n = "12" nk = 1 print(solution(n,nk))
33864e4c4e10988ab56cdf4ba1f15fbbd344f0e0
d2f50124ff3bec70b9b3139ecb063b06e526781d
/despachos_mercancias/migrations/0012_auto_20170113_1639.py
17429c15b3153edf6a6c8081aaad3e0199999d20
[]
no_license
odecsarrollo/odecopack-componentes
e8d993f089bf53bbf3c53d1265e70ac5c06b59b8
b583a115fb30205d358d97644c38d66636b573ff
refs/heads/master
2022-12-12T00:33:02.874268
2020-08-13T18:45:01
2020-08-13T18:45:01
189,262,705
0
0
null
2022-12-08T11:23:46
2019-05-29T16:37:21
Python
UTF-8
Python
false
false
618
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-01-13 21:39 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('despachos_mercancias', '0011_enviotransportadoratcc_ciudad'), ] operations = [ migrations.AlterField( model_name='enviotransportadoratcc', name='ciudad', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='mis_envios_tcc', to='geografia_colombia.Ciudad'), ), ]
6d9ad99200ba4e3cdf7b88a7da2787de0df12c8b
afde521f50b6be4be9e5c3071ed6459419fb5edb
/env/lib/python3.6/site-packages/pyecharts/charts/scatter3D.py
35198ac9849fd58ec18641bff9956994438195d7
[]
no_license
guhongcheng/myblog
ddef4aa0888dedfb70933b34bfd0c5da5bb5d5cd
b11f5ee26125b9551b1f27814b96a845dd4e6a76
refs/heads/master
2022-12-18T20:26:46.596014
2018-07-26T02:46:07
2018-07-26T02:46:07
134,683,127
0
0
null
null
null
null
UTF-8
Python
false
false
1,712
py
# coding=utf-8 from pyecharts.chart import Chart import pyecharts.constants as constants class Scatter3D(Chart): """ <<< 3D 散点图 >>> """ def __init__(self, title="", subtitle="", **kwargs): kwargs["renderer"] = constants.CANVAS_RENDERER super(Scatter3D, self).__init__(title, subtitle, **kwargs) self._js_dependencies.add("echartsgl") def add(self, *args, **kwargs): self.__add(*args, **kwargs) def __add(self, name, data, grid3d_opacity=1, **kwargs): """ :param name: 系列名称,用于 tooltip 的显示,legend 的图例筛选 :param data: 数据项,数据中,每一行是一个『数据项』,每一列属于一个『维度』 :param grid3d_opacity: 3D 笛卡尔坐标系组的透明度(点的透明度),默认为 1,完全不透明。 :param kwargs: """ kwargs.update( xaxis3d_type="value", yaxis3d_type="value", zaxis3d_type="value" ) chart = self._get_all_options(**kwargs) self._option.get("legend")[0].get("data").append(name) self._option.update( xAxis3D=chart["xaxis3D"], yAxis3D=chart["yaxis3D"], zAxis3D=chart["zaxis3D"], grid3D=chart["grid3D"], ) self._option.get("series").append( { "type": "scatter3D", "name": name, "data": data, "label": chart["label"], "itemStyle": {"opacity": grid3d_opacity}, } ) self._config_components(**kwargs)
dba87a9b580d39b7e8694daed7b9a5cb06a8db56
998a180e5c974d89c9ad33532d4fd33298c806a4
/chapter1_arrays_and_strings/palindrome_permutation_1_4.py
9fff45e7b07a41cdbf04a5422ddc172fcfa0d501
[]
no_license
Taycode/cracking-the-coding-interview-solutions
c542a047a37b5af406469ba3f912b4bbdc326b05
0c2dcc4d4558dc4766b5ddcce470a60986eb39a6
refs/heads/master
2023-02-08T16:31:59.683541
2020-12-27T16:59:12
2020-12-27T16:59:12
324,807,557
1
1
null
null
null
null
UTF-8
Python
false
false
957
py
""" Given a string, write a function to check if it is a permutation of a palin­ drome. A palindrome is a word or phrase that is the same forwards and backwards. A permutation is a rearrangement of letters. The palindrome does not need to be limited to just dictionary words. EXAMPLE Input: Tact Coa Output: True (permutations: "taco cat", "atco eta", etc.) """ def palindrome_permutation(string): """ :param string: string :return: boolean """ the_dict = {} string = string.replace(' ', '') string = string.lower() for _ in string: if _ not in the_dict.keys(): the_dict[_] = 1 else: the_dict[_] += 1 values = list(the_dict.values()) length = len(string) if length % 2 == 0: for _ in values: if _ % 2 != 0: return False else: return True else: count = 0 for _ in values: if _ % 2 != 0: count += 1 if count > 1: return False else: return True print(palindrome_permutation('Tact Coa'))
ce37c43e76430750154401851a00fca84140d317
abd9537f8b90a990e195ded5f9fafdcc108d2a48
/swea/d4/1486/1486_shelf_powerset.py
487056a865e5b4c70509b2d17d0851b107ba7e2c
[]
no_license
ohdnf/algorithms
127171744631406c1d08cc2583aa569a094fa2cd
6f286753dab827facc436af4f2130f11dad2d44f
refs/heads/master
2023-08-09T11:19:56.445351
2021-08-31T13:11:46
2021-08-31T13:11:46
236,180,615
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
import sys sys.stdin = open('input.txt') t = int(input()) for test_case in range(1, t+1): n, b = map(int, input().split()) # 점원 수, 선반 높이 clerks = list(map(int, input().split())) # clerks.sort(reverse=True) heights = list() for i in range(1<<n): tmp = 0 for j in range(n+1): if i & (1<<j): tmp += clerks[j] if tmp >= b: heights.append(tmp - b) heights.sort() print('#{} {}'.format(test_case, heights[0]))
7f2df471b94bb54376e154486267ebd828d91fe3
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_deepens.py
5ee1f3387e1e9e28ab6fb75803b9751b7df84712
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
#calss header class _DEEPENS(): def __init__(self,): self.name = "DEEPENS" self.definitions = deepen self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['deepen']
809cb39be1c498b2dc3381f28cb369e0fa000dd1
d404fb72dee51f8c2791bf21cc5d9ee91d2d6a45
/ch03_if/0118_grade.py
994ed4ab4c6a92af05a7cb316a7605ce19cac7b7
[]
no_license
kangwonlee/18pf_welcome_template
6c5c997e7aac08d8a7d94d4a146037c2d3b4a813
9279559c7cde37a18b8e1d5e596f161087493218
refs/heads/master
2021-04-12T07:52:29.577562
2018-03-18T21:29:28
2018-03-18T21:29:28
125,769,393
0
0
null
null
null
null
UTF-8
Python
false
false
237
py
score = int(input("성적을 입력하시오: ")) if score >= 90: print("학점 A") elif score >= 80: print("학점 B") elif score >= 70: print("학점 C") elif score >= 60: print("학점 D") else: print("학점 F")
12e01a17bd141b1e82d95006b641e5bb0343d272
484c462c29e3c2f8ac280b79c11db6982c6a8ca6
/neurolab-0.2.3/neurolab/__init__.py
1c9445506114073da6f75ac4c16ca8634f996e27
[]
no_license
thelma1944/Python_Stuff
b5fa53bf008bb5e865204201b144fe20e7f87565
077131a2c9f247396dca86fdf18933d38ae8d501
refs/heads/master
2021-06-05T12:25:35.779070
2020-10-03T18:20:16
2020-10-03T18:20:16
16,077,931
0
1
null
2021-03-26T00:30:14
2014-01-20T17:36:16
Python
UTF-8
Python
false
false
1,754
py
# -*- coding: utf-8 -*- """ Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework to create and explore other neural network types. :Features: - Pure python + numpy - API like Neural Network Toolbox (NNT) from MATLAB - Interface to use train algorithms form scipy.optimize - Flexible network configurations and learning algorithms. You may change: train, error, initializetion and activation functions - Unlimited number of neural layers and number of neurons in layers - Variety of supported types of Artificial Neural Network and learning algorithms :Example: >>> import numpy as np >>> import neurolab as nl >>> # Create train samples >>> input = np.random.uniform(-0.5, 0.5, (10, 2)) >>> target = (input[:, 0] + input[:, 1]).reshape(10, 1) >>> # Create network with 2 inputs, 5 neurons in input layer and 1 in output layer >>> net = nl.net.newff([[-0.5, 0.5], [-0.5, 0.5]], [5, 1]) >>> # Train process >>> err = net.train(input, target, show=15) Epoch: 15; Error: 0.150308402918; Epoch: 30; Error: 0.072265865089; Epoch: 45; Error: 0.016931355131; The goal of learning is reached >>> # Test >>> net.sim([[0.2, 0.1]]) # 0.2 + 0.1 array([[ 0.28757596]]) :Links: - `Home Page <http://code.google.com/p/neurolab/>`_ - `PyPI Page <http://pypi.python.org/pypi/neurolab>`_ - `Documentation <http://packages.python.org/neurolab/>`_ - `Examples <http://packages.python.org/neurolab/example.html>`_ """ import net from tool import load __version__ = '0.2.3' # Development Status :: 1 - Planning, 2 - Pre-Alpha, 3 - Alpha, # 4 - Beta, 5 - Production/Stable __status__ = '4 - Beta'
d49b8dd94000b3cb7de0d0de656972db01f76896
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba0150.pngMap.py
12eae37b66b5a10110de9f226bbdc8418a2818d0
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba0150.pngMap = [ '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000011111110000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000011111100000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000011111111000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000011111111000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000011111111110000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000001011111111111111000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000011011111111111111111111110000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000010111111111111111111111111111111100000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111100000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111110000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111111000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111110000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111100000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111110000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111111000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000101111111111111111111111111111111111111111000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111111000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111110000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111100000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111110000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111110000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111110000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111110000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111011111000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000001011111111111111111111111111101111100000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111100011000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111001101100000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000010111111111111111111111111111100000010000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111100010000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111110000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111010100000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111100000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111000000000000000000000000000', '00000000000000000000000000000000000000000011111000000000000000000000000000101111111111111111111110011100000000000000000000000000', '00000000000000000000000000000000000000000011111110000000000000000000000000001111111111111111111111011100000000000000000000000000', '00000000000000000000000000000000000001011111111111000000000000000000000011111111111111111111111111001000000000000000000000000000', '00000000000000000000000000000000000011111111111111000000000000000000000011111111111111111111111111011100000000000000000000000000', '00000000000000000000000000000000000011111111111110000000000000000000000011111111111111111111111111111100000000000000000000000000', '00000000000000000000000000000000000011111111111110000000000000000000001011111111111111111111111111111100000000000000000000000000', '00000000000000000000000000000000000011111111111111000000000000000000000111111111111111111111111111111100000000000000000000000000', '00000000000000000000000000000000000011111111111111110000000000000000001111111111111111111111111111111110000000000000000000000000', '00000000000000000000000000000000000000111111111111111111111111111100111111111111111111111111111111111100000000000000000000000000', '00000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111111110000000000000000000000000', '00000000000000000000000000000000000000000011111011111111111111111111111111111111111111111111111111111100001100000000000000000000', '00000000000000000000000000000000000000000000011011111111111111111111111111111111111111111111111111111110011000000000000000000000', '00000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111100000000000000000000000', '00000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111000000000000000000000000', '00000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111100000000000000000000000', '00000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111110000000000000000000000', '00000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111000000000000000000000', '00000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111100000000000000000000', '00000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111110000000000000000000', '00000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111111000000000000000000', ]
14575f006fa799ab2f3698289711bf9ad024a62a
86813bf514f3e0257f92207f40a68443f08ee44b
/0338 比特位计数/0338 比特位计数.py
96ff96f4ec3d4463f1b79f1a90552912d3e21da3
[]
no_license
Aurora-yuan/Leetcode_Python3
4ce56679b48862c87addc8cd870cdd525c9d926c
720bb530850febc2aa67a56a7a0b3a85ab37f415
refs/heads/master
2021-07-12T13:23:19.399155
2020-10-21T03:14:36
2020-10-21T03:14:36
212,998,500
4
1
null
null
null
null
UTF-8
Python
false
false
1,031
py
#label: math/dynamic programming difficulty: medium """ 思路一: 麻瓜思想,每个数转成二进制计数 """ class Solution: def countBits(self, num: int) -> List[int]: res = list() for i in range(num+1): res.append(bin(i).count('1')) return res “”“ 思路二: 《剑指Offer》里提到的结论:如果一个数 i 和 i - 1 做与运算,那么 i 的二进制表示形式中的最右边一个 1 会变成0 。 利用动态规划的思想。 如果我们已经知道了 i & i -1 这个数字的1的个数cnt,那么根据上面的提到的结论, i 这个数字中 1 的个数就是 cnt + 1。 所以不难得到状态转移方程: dp[i] = dp[i & (i - 1)] + 1 ”“” class Solution(object): def countBits(self, num): """ :type num: int :rtype: List[int] """ dp = [0 for i in range(num + 1)] for i in range(1, num + 1): dp[i] = dp[i & (i - 1)] + 1 return dp
0eefce36ea159a3ee01e3a8648d44a932052a570
679e31fe16e92e1d0bc3448c25845103f19a622f
/web_flask/3-python_route.py
96ec3a910bab88bd161ba28e53c1573167ff9a05
[]
no_license
Gikaro/AirBnB_clone_v2
ab7d63ce3e942253ded54d30d68c631eb055308c
5744e747f2fdb722d7e6843bd1e4a67abf9c8243
refs/heads/master
2023-03-20T01:34:49.172584
2020-09-02T23:22:39
2020-09-02T23:22:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
830
py
#!/usr/bin/python3 """WebFlask module""" from flask import Flask from os import environ app = Flask(__name__) @app.route('/', strict_slashes=False) def hello_route(): """Display Hello HBNB""" return 'Hello HBNB!' @app.route('/hbnb', strict_slashes=False) def hbnb_route(): """Display HBNB""" return 'HBNB' @app.route('/c/<text>', strict_slashes=False) def c_route(text): """Display text""" real_text = text.replace('_', ' ') return 'C {}'.format(real_text) @app.route('/python/', strict_slashes=False) @app.route('/python/<text>', strict_slashes=False) def python_route(text='is cool'): """Display text""" real_text = text.replace('_', ' ') return 'Python {}'.format(real_text) if __name__ == '__main__': environ['FLASK_APP'] = __file__ app.run(host='0.0.0.0', port=5000)
1e80f050379c3620ecae456eef6480ff547b77d4
13f5c66af02a64aa8c5d988e9560b82bcf058fd0
/learning_sql/views.py
8cec81152d26fe1d92d386c49f799cf9269d320b
[]
no_license
heitorchang/reading-list
a1090b969d0f16cbc7c0e371671e85dca0bde201
3dcfd68cb02179e75216ff459fda693ec1fb8684
refs/heads/master
2023-04-27T03:04:28.122341
2023-04-21T14:04:20
2023-04-21T14:04:20
67,825,952
0
0
null
null
null
null
UTF-8
Python
false
false
1,099
py
# p. 249 def create_totals_vw(): cursor = cnx.cursor() cursor.execute(""" CREATE VIEW customer_totals_vw (cust_id, cust_type_cd, cust_name, num_accounts, tot_deposits ) AS SELECT cst.cust_id, cst.cust_type_cd, CASE WHEN cst.cust_type_cd = 'B' THEN (SELECT bus.name FROM business AS bus WHERE bus.cust_id = cst.cust_id) ELSE (SELECT concat(ind.fname, ' ', ind.lname) FROM individual AS ind WHERE ind.cust_id = cst.cust_id) END AS cust_name, SUM(CASE WHEN act.status = 'ACTIVE' THEN 1 ELSE 0 END) AS tot_active_accounts, SUM(CASE WHEN act.status = 'ACTIVE' THEN act.avail_balance ELSE 0 END) AS tot_balance FROM customer AS cst INNER JOIN account AS act ON act.cust_id = cst.cust_id GROUP BY cst.cust_id, cst.cust_type_cd;""") cursor.close() def create_totals_tbl(): cursor = cnx.cursor() # NOTE: creating this table freezes data; new data will not be reflected cursor.execute(""" CREATE TABLE customer_totals AS SELECT * FROM customer_totals_vw;""") cursor.close()
799f27d7bd6278066b4a0c11259c76d826704d80
48e9d0e84238daf0de290551e3588e9ff3f49549
/calculadora.py
43fadb96364fb7c2a09a91ee806895c89e916e0c
[]
no_license
celord/PythonGreencore
9606af569738703b66d80bce6e423c9a313fa539
259aadcc346203f8092f6c6d286e3fca2e9fc550
refs/heads/master
2020-05-30T23:18:15.542876
2019-06-19T14:39:59
2019-06-19T14:39:59
190,014,113
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
def Menu(): print("""***************** Calculadora ************ Menu 1) Suma 2) Resta 3) Multiplicacion 4) Division """) def Calculadora(): "Funcion para calcular Operaciones Aritmeticas" Menu() opc = int(input("Seleccion Opcion \n")) while (opc > 0 and opc <5): x = int(input("Ingrese Numero\n")) y = int(input("Ingrese otro numero\n")) if (opc ==1): print ("La suma es: ", x + y) opc = int(input("Seleccione Opcion")) elif (opc == 2): print("La resta es:", x-y ) opc = int(input("Seleccione Opcion")) elif(opc==3): print("La multiplicacion es:", x * y) opc = int(input("Seleccione Opcion")) elif(opc==4): try: print("La division es: ", x/y) opc = int(input("Seleccione Opcion")) except ZeroDivisionError: print("No se permite la division entre 0") opc = int(input("Seleccione Opcion")) Calculadora()
34e03ed4d72971d6ba7816fbfd77917897ceb6db
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_103/ch81_2020_04_08_14_08_30_221505.py
3d1850c8883fa9998cbf766d0212133a37e9b36c
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
def interseccao_valores(dicio1,dicio2): lista=[] for valor in dicio1.values(): for valor2 in dicio2.values(): if valor==valor2: lista.append(valor) return lista
cc8073a006724d4c3a463c9da8af11bbef0e2d5c
19136335b7e88324546fdfed45b4d0b22042202c
/rplugin/python3/deoplete/filter/converter_truncate_menu.py
90a331d0f918b01825f96575468fc8be3376b89e
[ "MIT" ]
permissive
nholik/deoplete.nvim
3074fa3cdd5a8a2df5f300d0ac74fedde6555fdf
614cd3ddf1f352c977f3405e809d967093571117
refs/heads/master
2020-05-27T18:05:59.540419
2019-05-26T22:26:41
2019-05-26T22:26:41
188,736,112
0
0
NOASSERTION
2019-05-26T22:06:01
2019-05-26T22:06:01
null
UTF-8
Python
false
false
1,034
py
# ============================================================================ # FILE: converter_truncate_menu.py # AUTHOR: Shougo Matsushita <Shougo.Matsu at gmail.com> # License: MIT license # ============================================================================ from deoplete.base.filter import Base from deoplete.util import truncate_skipping class Filter(Base): def __init__(self, vim): super().__init__(vim) self.name = 'converter_truncate_menu' self.description = 'truncate menu converter' def filter(self, context): max_width = context['max_menu_width'] if not context['candidates'] or 'menu' not in context[ 'candidates'][0] or max_width <= 0: return context['candidates'] footer_width = max_width / 3 for candidate in context['candidates']: candidate['menu'] = truncate_skipping( candidate.get('menu', ''), max_width, '..', footer_width) return context['candidates']
e923e894f298de0501742da399ba096237404c13
6aa9fdff566a2ca384ed1b1db6933a415581bc22
/backend/isasatec_23315/wsgi.py
0442c9c343131871e14516b7d974bda02284aece
[]
no_license
crowdbotics-apps/isasatec-23315
ae10c4ecde97b30cde72a627d65354b666ddb32c
6a0a3bfddbba71ac7ee6256ffd1de0f7b3e565e7
refs/heads/master
2023-01-28T16:38:25.528446
2020-12-11T15:56:50
2020-12-11T15:56:50
320,553,482
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for isasatec_23315 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "isasatec_23315.settings") application = get_wsgi_application()
74bc608d4b97f1b7c0df621bcabed6cd361d7dbc
dd0b0df88a08a4f4ab249c76cf0ea82482ff37bb
/sfepy/terms/terms.py
41157ad7b967a814fae63a5692dccc27c5c414df
[ "BSD-3-Clause" ]
permissive
mfkiwl/sfepy
43e3a2cbed240b8ef387a8ab9037c1f6fd19e0fe
67275845da49e772b2f8faaa48df165893f2be16
refs/heads/master
2021-01-18T07:59:19.289053
2013-10-31T09:54:55
2013-10-31T09:54:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
48,287
py
import re from copy import copy import numpy as nm from sfepy.base.base import (as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions) from sfepy.base.compat import in1d # Used for imports in term files. from sfepy.terms.extmods import terms from sfepy.linalg import split_range _match_args = re.compile('^([^\(\}]*)\((.*)\)$').match _match_virtual = re.compile('^virtual$').match _match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match _match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match _match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match _match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match _match_material_root = re.compile('(.+)\.(.*)').match def get_arg_kinds(arg_types): """ Translate `arg_types` of a Term to a canonical form. Parameters ---------- arg_types : tuple of strings The term argument types, as given in the `arg_types` attribute. Returns ------- arg_kinds : list of strings The argument kinds - one of 'virtual_variable', 'state_variable', 'parameter_variable', 'opt_material', 'user'. """ arg_kinds = [] for ii, arg_type in enumerate(arg_types): if _match_virtual(arg_type): arg_kinds.append('virtual_variable') elif _match_state(arg_type): arg_kinds.append('state_variable') elif _match_parameter(arg_type): arg_kinds.append('parameter_variable') elif _match_material(arg_type): arg_kinds.append('material') elif _match_material_opt(arg_type): arg_kinds.append('opt_material') if ii > 0: msg = 'opt_material at position %d, must be at 0!' % ii raise ValueError(msg) else: arg_kinds.append('user') return arg_kinds def get_shape_kind(integration): """ Get data shape kind for given integration type. """ if integration == 'surface': shape_kind = 'surface' elif integration in ('volume', 'surface_extra'): shape_kind = 'volume' elif integration == 'point': shape_kind = 'point' else: raise NotImplementedError('unsupported term integration! (%s)' % integration) return shape_kind def split_complex_args(args): """ Split complex arguments to real and imaginary parts. Returns ------- newargs : dictionary Dictionary with lists corresponding to `args` such that each argument of numpy.complex128 data type is split to its real and imaginary part. The output depends on the number of complex arguments in 'args': - 0: list (key 'r') identical to input one - 1: two lists with keys 'r', 'i' corresponding to real and imaginary parts - 2: output dictionary contains four lists: - 'r' - real(arg1), real(arg2) - 'i' - imag(arg1), imag(arg2) - 'ri' - real(arg1), imag(arg2) - 'ir' - imag(arg1), real(arg2) """ newargs = {} cai = [] for ii, arg in enumerate(args): if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128): cai.append(ii) if len(cai) > 0: newargs['r'] = list(args[:]) newargs['i'] = list(args[:]) arg1 = cai[0] newargs['r'][arg1] = args[arg1].real.copy() newargs['i'][arg1] = args[arg1].imag.copy() if len(cai) == 2: arg2 = cai[1] newargs['r'][arg2] = args[arg2].real.copy() newargs['i'][arg2] = args[arg2].imag.copy() newargs['ri'] = list(args[:]) newargs['ir'] = list(args[:]) newargs['ri'][arg1] = newargs['r'][arg1] newargs['ri'][arg2] = newargs['i'][arg2] newargs['ir'][arg1] = newargs['i'][arg1] newargs['ir'][arg2] = newargs['r'][arg2] elif len(cai) > 2: raise NotImplementedError('more than 2 complex arguments! (%d)' % len(cai)) else: newargs['r'] = args[:] return newargs def vector_chunk_generator(total_size, chunk_size, shape_in, zero=False, set_shape=True, dtype=nm.float64): if not chunk_size: chunk_size = total_size shape = list(shape_in) sizes = split_range(total_size, chunk_size) ii = nm.array(0, dtype=nm.int32) for size in sizes: chunk = nm.arange(size, dtype=nm.int32) + ii if set_shape: shape[0] = size if zero: out = nm.zeros(shape, dtype=dtype) else: out = nm.empty(shape, dtype=dtype) yield out, chunk ii += size def create_arg_parser(): from pyparsing import Literal, Word, delimitedList, Group, \ StringStart, StringEnd, Optional, nums, alphas, alphanums inumber = Word("+-"+nums, nums) history = Optional(Literal('[').suppress() + inumber + Literal(']').suppress(), default=0)("history") history.setParseAction(lambda str, loc, toks: int(toks[0])) variable = Group(Word(alphas, alphanums + '._') + history) derivative = Group(Literal('d') + variable\ + Literal('/').suppress() + Literal('dt')) trace = Group(Literal('tr') + Literal('(').suppress() + variable \ + Literal(')').suppress()) generalized_var = derivative | trace | variable args = StringStart() + delimitedList(generalized_var) + StringEnd() return args # 22.01.2006, c class CharacteristicFunction(Struct): def __init__(self, region): self.igs = region.igs self.region = region self.local_chunk = None self.ig = None def __call__(self, chunk_size, shape_in, zero=False, set_shape=True, ret_local_chunk=False, dtype=nm.float64): els = self.region.get_cells(self.ig) for out, chunk in vector_chunk_generator(els.shape[0], chunk_size, shape_in, zero, set_shape, dtype): self.local_chunk = chunk if ret_local_chunk: yield out, chunk else: yield out, els[chunk] self.local_chunk = None def set_current_group(self, ig): self.ig = ig def get_local_chunk(self): return self.local_chunk class ConnInfo(Struct): def get_region(self, can_trace=True): if self.is_trace and can_trace: return self.region.get_mirror_region()[0] else: return self.region def get_region_name(self, can_trace=True): if self.is_trace and can_trace: reg = self.region.get_mirror_region()[0] else: reg = self.region if reg is not None: return reg.name else: return None def iter_igs(self): if self.region is not None: for ig in self.region.igs: if self.virtual_igs is not None: ir = self.virtual_igs.tolist().index(ig) rig = self.virtual_igs[ir] else: rig = None if not self.is_trace: ii = ig else: ig_map_i = self.region.get_mirror_region()[2] ii = ig_map_i[ig] if self.state_igs is not None: ic = self.state_igs.tolist().index(ii) cig = self.state_igs[ic] else: cig = None yield rig, cig else: yield None, None class Terms(Container): @staticmethod def from_desc(term_descs, regions, integrals=None): """ Create terms, assign each term its region. """ from sfepy.terms import term_table terms = Terms() for td in term_descs: try: constructor = term_table[td.name] except: msg = "term '%s' is not in %s" % (td.name, sorted(term_table.keys())) raise ValueError(msg) try: region = regions[td.region] except IndexError: raise KeyError('region "%s" does not exist!' % td.region) term = Term.from_desc(constructor, td, region, integrals=integrals) terms.append(term) return terms def __init__(self, objs=None): Container.__init__(self, objs=objs) self.update_expression() def insert(self, ii, obj): Container.insert(self, ii, obj) self.update_expression() def append(self, obj): Container.append(self, obj) self.update_expression() def update_expression(self): self.expression = [] for term in self: aux = [term.sign, term.name, term.arg_str, term.integral_name, term.region.name] self.expression.append(aux) def __mul__(self, other): out = Terms() for name, term in self.iteritems(): out.append(term * other) return out def __rmul__(self, other): return self * other def __add__(self, other): if isinstance(other, Term): out = self.copy() out.append(other) elif isinstance(other, Terms): out = Terms(self._objs + other._objs) else: raise ValueError('cannot add Terms with %s!' % other) return out def __radd__(self, other): return self + other def __sub__(self, other): if isinstance(other, Term): out = self + (-other) elif isinstance(other, Terms): out = self + (-other) else: raise ValueError('cannot subtract Terms with %s!' % other) return out def __rsub__(self, other): return -self + other def __pos__(self): return self def __neg__(self): return -1.0 * self def setup(self): for term in self: term.setup() def assign_args(self, variables, materials, user=None): """ Assign all term arguments. """ for term in self: term.assign_args(variables, materials, user) def get_variable_names(self): out = [] for term in self: out.extend(term.get_variable_names()) return list(set(out)) def get_material_names(self): out = [] for term in self: out.extend(term.get_material_names()) return list(set(out)) def get_user_names(self): out = [] for term in self: out.extend(term.get_user_names()) return list(set(out)) def set_current_group(self, ig): for term in self: term.char_fun.set_current_group(ig) class Term(Struct): name = '' arg_types = () arg_shapes = {} integration = 'volume' geometries = ['2_3', '2_4', '3_4', '3_8'] @staticmethod def new(name, integral, region, **kwargs): from sfepy.terms import term_table arg_str = _match_args(name) if arg_str is not None: name, arg_str = arg_str.groups() else: raise ValueError('bad term syntax! (%s)' % name) if name in term_table: constructor = term_table[name] else: msg = "term '%s' is not in %s" % (name, sorted(term_table.keys())) raise ValueError(msg) obj = constructor(name, arg_str, integral, region, **kwargs) return obj @staticmethod def from_desc(constructor, desc, region, integrals=None): from sfepy.fem import Integrals if integrals is None: integrals = Integrals() obj = constructor(desc.name, desc.args, None, region) obj.set_integral(integrals.get(desc.integral, obj.get_integral_info())) obj.sign = desc.sign return obj def __init__(self, name, arg_str, integral, region, **kwargs): self.name = name self.arg_str = arg_str self.region = region self._kwargs = kwargs self._integration = self.integration self.sign = 1.0 self.set_integral(integral) def __mul__(self, other): try: mul = as_float_or_complex(other) except ValueError: raise ValueError('cannot multiply Term with %s!' % other) out = self.copy(name=self.name) out.sign = mul * self.sign return out def __rmul__(self, other): return self * other def __add__(self, other): if isinstance(other, Term): out = Terms([self, other]) else: out = NotImplemented return out def __sub__(self, other): if isinstance(other, Term): out = Terms([self, -1.0 * other]) else: out = NotImplemented return out def __pos__(self): return self def __neg__(self): out = -1.0 * self return out def set_integral(self, integral): """ Set the term integral. """ self.integral = integral if self.integral is not None: self.integral_name = self.integral.name kind = self.get_integral_info() if kind != integral.kind: msg = "integral kind for term %s must be '%s'! (is '%s')" \ % (self.name, kind, integral.kind) raise ValueError(msg) def setup(self): self.char_fun = CharacteristicFunction(self.region) self.function = Struct.get(self, 'function', None) self.step = 0 self.dt = 1.0 self.is_quasistatic = False self.has_integral = True self.has_region = True self.itype = itype = None aux = re.compile('([a-z]+)_.*').match(self.name) if aux: itype = aux.group(1) self.raw_itype = itype self.setup_formal_args() if self._kwargs: self.setup_args(**self._kwargs) else: self.args = [] def setup_formal_args(self): self.arg_names = [] self.arg_steps = {} self.arg_derivatives = {} self.arg_traces = {} parser = create_arg_parser() self.arg_desc = parser.parseString(self.arg_str) for arg in self.arg_desc: trace = False derivative = None if isinstance(arg[1], int): name, step = arg else: kind = arg[0] name, step = arg[1] if kind == 'd': derivative = arg[2] elif kind == 'tr': trace = True match = _match_material_root(name) if match: name = (match.group(1), match.group(2)) self.arg_names.append(name) self.arg_steps[name] = step self.arg_derivatives[name] = derivative self.arg_traces[name] = trace def setup_args(self, **kwargs): self._kwargs = kwargs self.args = [] for arg_name in self.arg_names: if isinstance(arg_name, basestr): self.args.append(self._kwargs[arg_name]) else: self.args.append((self._kwargs[arg_name[0]], arg_name[1])) self.classify_args() self.check_args() def __call__(self, diff_var=None, chunk_size=None, **kwargs): """ Subclasses either implement __call__ or plug in a proper _call(). """ return self._call(diff_var, chunk_size, **kwargs) def _call(self, diff_var=None, chunk_size=None, **kwargs): msg = 'base class method "_call" called for %s' \ % self.__class__.__name__ raise RuntimeError(msg) def assign_args(self, variables, materials, user=None): """ Check term argument existence in variables, materials, user data and assign the arguments to terms. Also check compatibility of field and term subdomain lists (igs). """ if user is None: user = {} kwargs = {} for arg_name in self.arg_names: if isinstance(arg_name, basestr): if arg_name in variables.names: kwargs[arg_name] = variables[arg_name] elif arg_name in user: kwargs[arg_name] = user[arg_name] else: raise ValueError('argument %s not found!' % arg_name) else: arg_name = arg_name[0] if arg_name in materials.names: kwargs[arg_name] = materials[arg_name] else: raise ValueError('material argument %s not found!' % arg_name) self.setup_args(**kwargs) def classify_args(self): """ Classify types of the term arguments and find matching call signature. A state variable can be in place of a parameter variable and vice versa. """ self.names = Struct(name='arg_names', material=[], variable=[], user=[], state=[], virtual=[], parameter=[]) # Prepare for 'opt_material' - just prepend a None argument if needed. if isinstance(self.arg_types[0], tuple): arg_types = self.arg_types[0] else: arg_types = self.arg_types if len(arg_types) == (len(self.args) + 1): self.args.insert(0, (None, None)) self.arg_names.insert(0, (None, None)) if isinstance(self.arg_types[0], tuple): assert_(len(self.modes) == len(self.arg_types)) # Find matching call signature using variable arguments - material # and user arguments are ignored! matched = [] for it, arg_types in enumerate(self.arg_types): arg_kinds = get_arg_kinds(arg_types) if self._check_variables(arg_kinds): matched.append((it, arg_kinds)) if len(matched) == 1: i_match, arg_kinds = matched[0] arg_types = self.arg_types[i_match] self.mode = self.modes[i_match] elif len(matched) == 0: msg = 'cannot match arguments! (%s)' % self.arg_names raise ValueError(msg) else: msg = 'ambiguous arguments! (%s)' % self.arg_names raise ValueError(msg) else: arg_types = self.arg_types arg_kinds = get_arg_kinds(self.arg_types) self.mode = Struct.get(self, 'mode', None) if not self._check_variables(arg_kinds): raise ValueError('cannot match variables! (%s)' % self.arg_names) # Set actual argument types. self.ats = list(arg_types) for ii, arg_kind in enumerate(arg_kinds): name = self.arg_names[ii] if arg_kind.endswith('variable'): names = self.names.variable if arg_kind == 'virtual_variable': self.names.virtual.append(name) elif arg_kind == 'state_variable': self.names.state.append(name) elif arg_kind == 'parameter_variable': self.names.parameter.append(name) elif arg_kind.endswith('material'): names = self.names.material else: names = self.names.user names.append(name) self.n_virtual = len(self.names.virtual) if self.n_virtual > 1: raise ValueError('at most one virtial variable is allowed! (%d)' % self.n_virtual) self.set_arg_types() self.setup_integration() if (self.raw_itype == 'dw') and (self.mode == 'eval'): self.itype = 'd' else: self.itype = self.raw_itype def _check_variables(self, arg_kinds): for ii, arg_kind in enumerate(arg_kinds): if arg_kind.endswith('variable'): var = self.args[ii] check = {'virtual_variable' : var.is_virtual, 'state_variable' : var.is_state_or_parameter, 'parameter_variable' : var.is_state_or_parameter} if not check[arg_kind](): return False else: return True def set_arg_types(self): pass def check_args(self): """ Common checking to all terms. Check compatibility of field and term subdomain lists (igs). """ vns = self.get_variable_names() for name in vns: field = self._kwargs[name].get_field() if field is None: continue if not nm.all(in1d(self.region.vertices, field.region.vertices)): msg = ('%s: incompatible regions: (self, field %s)' + '(%s in %s)') %\ (self.name, field.name, self.region.vertices, field.region.vertices) raise ValueError(msg) def get_variable_names(self): return self.names.variable def get_material_names(self): out = [] for aux in self.names.material: if aux[0] is not None: out.append(aux[0]) return out def get_user_names(self): return self.names.user def get_virtual_name(self): if not self.names.virtual: return None var = self.get_virtual_variable() return var.name def get_state_names(self): """ If variables are given, return only true unknowns whose data are of the current time step (0). """ variables = self.get_state_variables() return [var.name for var in variables] def get_parameter_names(self): return copy(self.names.parameter) def get_conn_key(self): """The key to be used in DOF connectivity information.""" key = (self.name,) + tuple(self.arg_names) key += (self.integral_name, self.region.name) return key def get_conn_info(self): vvar = self.get_virtual_variable() svars = self.get_state_variables() pvars = self.get_parameter_variables() all_vars = self.get_variables() dc_type = self.get_dof_conn_type() tgs = self.get_geometry_types() v_igs = v_tg = None if vvar is not None: field = vvar.get_field() if field is not None: v_igs = field.igs if vvar.name in tgs: v_tg = tgs[vvar.name] else: v_tg = None else: # No virtual variable -> all unknowns are in fact known parameters. pvars += svars svars = [] region = self.get_region() if region is not None: is_any_trace = reduce(lambda x, y: x or y, self.arg_traces.values()) if is_any_trace: region.setup_mirror_region() self.char_fun.igs = region.igs vals = [] aux_pvars = [] for svar in svars: # Allow only true state variables. if not svar.is_state(): aux_pvars.append(svar) continue field = svar.get_field() if field is not None: s_igs = field.igs else: s_igs = None is_trace = self.arg_traces[svar.name] if svar.name in tgs: ps_tg = tgs[svar.name] else: ps_tg = v_tg val = ConnInfo(virtual=vvar, virtual_igs=v_igs, state=svar, state_igs=s_igs, primary=svar, primary_igs=s_igs, has_virtual=True, has_state=True, is_trace=is_trace, dc_type=dc_type, v_tg=v_tg, ps_tg=ps_tg, region=region, all_vars=all_vars) vals.append(val) pvars += aux_pvars for pvar in pvars: field = pvar.get_field() if field is not None: p_igs = field.igs else: p_igs = None is_trace = self.arg_traces[pvar.name] if pvar.name in tgs: ps_tg = tgs[pvar.name] else: ps_tg = v_tg val = ConnInfo(virtual=vvar, virtual_igs=v_igs, state=None, state_igs=[], primary=pvar.get_primary(), primary_igs=p_igs, has_virtual=vvar is not None, has_state=False, is_trace=is_trace, dc_type=dc_type, v_tg=v_tg, ps_tg=ps_tg, region=region, all_vars=all_vars) vals.append(val) if vvar and (len(vals) == 0): # No state, parameter variables, just the virtual one. val = ConnInfo(virtual=vvar, virtual_igs=v_igs, state=vvar.get_primary(), state_igs=v_igs, primary=vvar.get_primary(), primary_igs=v_igs, has_virtual=True, has_state=False, is_trace=False, dc_type=dc_type, v_tg=v_tg, ps_tg=v_tg, region=region, all_vars=all_vars) vals.append(val) return vals def get_args_by_name(self, arg_names): """ Return arguments by name. """ out = [] for name in arg_names: try: ii = self.arg_names.index(name) except ValueError: raise ValueError('non-existing argument! (%s)' % name) out.append(self.args[ii]) return out def get_args(self, arg_types=None, **kwargs): """ Return arguments by type as specified in arg_types (or self.ats). Arguments in **kwargs can override the ones assigned at the term construction - this is useful for passing user data. """ ats = self.ats if arg_types is None: arg_types = ats args = [] iname, region_name, ig = self.get_current_group() for at in arg_types: ii = ats.index(at) arg_name = self.arg_names[ii] if isinstance(arg_name, basestr): if arg_name in kwargs: args.append(kwargs[arg_name]) else: args.append(self.args[ii]) else: mat, par_name = self.args[ii] if mat is not None: mat_data = mat.get_data((region_name, self.integral_name), ig, par_name) else: mat_data = None args.append(mat_data) return args def get_kwargs(self, keys, **kwargs): """Extract arguments from **kwargs listed in keys (default is None).""" return [kwargs.get(name) for name in keys] def get_arg_name(self, arg_type, full=False, join=None): """ Get the name of the argument specified by `arg_type.` Parameters ---------- arg_type : str The argument type string. full : bool If True, return the full name. For example, if the name of a variable argument is 'u' and its time derivative is requested, the full name is 'du/dt'. join : str, optional Optionally, the material argument name tuple can be joined to a single string using the `join` string. Returns ------- name : str The argument name. """ try: ii = self.ats.index(arg_type) except ValueError: return None name = self.arg_names[ii] if full: # Include derivatives. if self.arg_derivatives[name]: name = 'd%s/%s' % (name, self.arg_derivatives[name]) if (join is not None) and isinstance(name, tuple): name = join.join(name) return name def get_integral_info(self): """ Get information on the term integral. Returns ------- kind : 'v' or 's' The integral kind. """ if self.integration: if self.integration == 'volume': kind = 'v' elif 'surface' in self.integration: kind = 's' elif self.integration == 'point': kind = None else: raise ValueError('unsupported term integration! (%s)' % self.integration) else: kind = None return kind def setup_integration(self): self.has_geometry = True self.geometry_types = {} if isinstance(self.integration, basestr): for var in self.get_variables(): self.geometry_types[var.name] = self.integration else: if self.mode is not None: self.integration = self._integration[self.mode] if self.integration is not None: for arg_type, gtype in self.integration.iteritems(): var = self.get_args(arg_types=[arg_type])[0] self.geometry_types[var.name] = gtype gtypes = list(set(self.geometry_types.itervalues())) if 'surface_extra' in gtypes: self.dof_conn_type = 'volume' elif len(gtypes): self.dof_conn_type = gtypes[0] def get_region(self): return self.region def get_geometry_types(self): """ Returns ------- out : dict The required geometry types for each variable argument. """ return self.geometry_types def get_current_group(self): return (self.integral_name, self.region.name, self.char_fun.ig) def get_dof_conn_type(self): return Struct(name='dof_conn_info', type=self.dof_conn_type, region_name=self.region.name) def set_current_group(self, ig): self.char_fun.set_current_group(ig) def igs(self): return self.char_fun.igs def get_assembling_cells(self, shape=None): """ According to the term integration type, return either the term region cell indices or local index sequence. """ shape_kind = get_shape_kind(self.integration) ig = self.char_fun.ig cells = self.region.get_cells(ig, true_cells_only=False) if shape_kind == 'surface': cells = nm.arange(cells.shape[0], dtype=nm.int32) elif shape_kind == 'point': cells = nm.arange(shape[0], dtype=nm.int32) else: cells = cells.astype(nm.int32) return cells def iter_groups(self): if self.dof_conn_type == 'point': igs = self.igs()[0:1] else: igs = self.igs() for ig in igs: if self.integration == 'volume': if not len(self.region.get_cells(ig)): continue self.set_current_group(ig) yield ig def time_update(self, ts): if ts is not None: self.step = ts.step self.dt = ts.dt self.is_quasistatic = ts.is_quasistatic def advance(self, ts): """ Advance to the next time step. Implemented in subclasses. """ def get_vector(self, variable): """Get the vector stored in `variable` according to self.arg_steps and self.arg_derivatives. Supports only the backward difference w.r.t. time.""" name = variable.name return variable(step=self.arg_steps[name], derivative=self.arg_derivatives[name]) def get_approximation(self, variable, get_saved=False): """ Return approximation corresponding to `variable`. Also return the corresponding geometry (actual or saved, according to `get_saved`). """ geo, _, key = self.get_mapping(variable, get_saved=get_saved, return_key=True) ig = key[2] ap = variable.get_approximation(ig) return ap, geo def get_variables(self, as_list=True): if as_list: variables = self.get_args_by_name(self.names.variable) else: variables = {} for var in self.get_args_by_name(self.names.variable): variables[var.name] = var return variables def get_virtual_variable(self): aux = self.get_args_by_name(self.names.virtual) if len(aux) == 1: var = aux[0] else: var = None return var def get_state_variables(self, unknown_only=False): variables = self.get_args_by_name(self.names.state) if unknown_only: variables = [var for var in variables if (var.kind == 'unknown') and (self.arg_steps[var.name] == 0)] return variables def get_parameter_variables(self): return self.get_args_by_name(self.names.parameter) def get_materials(self, join=False): materials = self.get_args_by_name(self.names.material) for mat in materials: if mat[0] is None: materials.remove(mat) if join: materials = list(set(mat[0] for mat in materials)) return materials def get_qp_key(self): """ Return a key identifying uniquely the term quadrature points. """ return (self.region.name, self.integral.name) def get_physical_qps(self): """ Get physical quadrature points corresponding to the term region and integral. """ from sfepy.fem.mappings import get_physical_qps, PhysicalQPs if self.integration == 'point': phys_qps = PhysicalQPs(self.region.igs) else: phys_qps = get_physical_qps(self.region, self.integral) return phys_qps def get_mapping(self, variable, get_saved=False, return_key=False): """ Get the reference mapping from a variable. Notes ----- This is a convenience wrapper of Field.get_mapping() that initializes the arguments using the term data. """ integration = self.geometry_types[variable.name] is_trace = self.arg_traces[variable.name] if is_trace: region, ig_map, ig_map_i = self.region.get_mirror_region() ig = ig_map_i[self.char_fun.ig] else: region = self.region ig = self.char_fun.ig out = variable.field.get_mapping(ig, region, self.integral, integration, get_saved=get_saved, return_key=return_key) return out def get_data_shape(self, variable): """ Get data shape information from variable. Notes ----- This is a convenience wrapper of FieldVariable.get_data_shape() that initializes the arguments using the term data. """ integration = self.geometry_types[variable.name] is_trace = self.arg_traces[variable.name] if is_trace: region, ig_map, ig_map_i = self.region.get_mirror_region() ig = ig_map_i[self.char_fun.ig] else: region = self.region ig = self.char_fun.ig out = variable.get_data_shape(ig, self.integral, integration, region.name) return out def get(self, variable, quantity_name, bf=None, integration=None, step=None, time_derivative=None): """ Get the named quantity related to the variable. Notes ----- This is a convenience wrapper of Variable.evaluate() that initializes the arguments using the term data. """ name = variable.name step = get_default(step, self.arg_steps[name]) time_derivative = get_default(time_derivative, self.arg_derivatives[name]) integration = get_default(integration, self.geometry_types[name]) data = variable.evaluate(self.char_fun.ig, mode=quantity_name, region=self.region, integral=self.integral, integration=integration, step=step, time_derivative=time_derivative, is_trace=self.arg_traces[name], bf=bf) return data def check_shapes(self, *args, **kwargs): """ Default implementation of function to check term argument shapes at run-time. """ pass def standalone_setup(self): from sfepy.fem import setup_dof_conns conn_info = {'aux' : self.get_conn_info()} setup_dof_conns(conn_info) materials = self.get_materials(join=True) for mat in materials: mat.time_update(None, [Struct(terms=[self])]) def call_get_fargs(self, args, kwargs): try: fargs = self.get_fargs(*args, **kwargs) except RuntimeError: terms.errclear() raise ValueError return fargs def call_function(self, out, fargs): try: status = self.function(out, *fargs) except RuntimeError: terms.errclear() raise ValueError if status: terms.errclear() raise ValueError('term evaluation failed! (%s)' % self.name) return status def eval_real(self, shape, fargs, mode='eval', term_mode=None, diff_var=None, **kwargs): out = nm.empty(shape, dtype=nm.float64) if mode == 'eval': status = self.call_function(out, fargs) # Sum over elements but not over components. out1 = nm.sum(out, 0).squeeze() return out1, status else: status = self.call_function(out, fargs) return out, status def eval_complex(self, shape, fargs, mode='eval', term_mode=None, diff_var=None, **kwargs): rout = nm.empty(shape, dtype=nm.float64) fargsd = split_complex_args(fargs) # Assuming linear forms. Then the matrix is the # same both for real and imaginary part. rstatus = self.call_function(rout, fargsd['r']) if (diff_var is None) and len(fargsd) >= 2: iout = nm.empty(shape, dtype=nm.float64) istatus = self.call_function(iout, fargsd['i']) if mode == 'eval' and len(fargsd) >= 4: irout = nm.empty(shape, dtype=nm.float64) irstatus = self.call_function(irout, fargsd['ir']) riout = nm.empty(shape, dtype=nm.float64) ristatus = self.call_function(riout, fargsd['ri']) out = (rout - iout) + (riout + irout) * 1j status = rstatus or istatus or ristatus or irstatus else: out = rout + 1j * iout status = rstatus or istatus else: out, status = rout, rstatus if mode == 'eval': out1 = nm.sum(out, 0).squeeze() return out1, status else: return out, status def evaluate(self, mode='eval', diff_var=None, standalone=True, ret_status=False, **kwargs): """ Evaluate the term. Parameters ---------- mode : 'eval' (default), or 'weak' The term evaluation mode. Returns ------- val : float or array In 'eval' mode, the term returns a single value (the integral, it does not need to be a scalar), while in 'weak' mode it returns an array for each element. status : int, optional The flag indicating evaluation success (0) or failure (nonzero). Only provided if `ret_status` is True. iels : array of ints, optional The local elements indices in 'weak' mode. Only provided in non-'eval' modes. """ if standalone: self.standalone_setup() kwargs = kwargs.copy() term_mode = kwargs.pop('term_mode', None) if mode == 'eval': val = 0.0 status = 0 for ig in self.iter_groups(): args = self.get_args(**kwargs) self.check_shapes(*args) _args = tuple(args) + (mode, term_mode, diff_var) fargs = self.call_get_fargs(_args, kwargs) shape, dtype = self.get_eval_shape(*_args, **kwargs) if dtype == nm.float64: _v, stat = self.eval_real(shape, fargs, mode, term_mode, **kwargs) elif dtype == nm.complex128: _v, stat = self.eval_complex(shape, fargs, mode, term_mode, **kwargs) else: raise ValueError('unsupported term dtype! (%s)' % dtype) val += _v status += stat val *= self.sign elif mode in ('el_avg', 'el', 'qp'): vals = None iels = nm.empty((0, 2), dtype=nm.int32) status = 0 for ig in self.iter_groups(): args = self.get_args(**kwargs) self.check_shapes(*args) _args = tuple(args) + (mode, term_mode, diff_var) fargs = self.call_get_fargs(_args, kwargs) shape, dtype = self.get_eval_shape(*_args, **kwargs) if dtype == nm.float64: val, stat = self.eval_real(shape, fargs, mode, term_mode, **kwargs) elif dtype == nm.complex128: val, stat = self.eval_complex(shape, fargs, mode, term_mode, **kwargs) if vals is None: vals = val else: vals = nm.r_[vals, val] _iels = self.get_assembling_cells(val.shape) aux = nm.c_[nm.repeat(ig, _iels.shape[0])[:,None], _iels[:,None]] iels = nm.r_[iels, aux] status += stat vals *= self.sign elif mode == 'weak': vals = [] iels = [] status = 0 varr = self.get_virtual_variable() if diff_var is not None: varc = self.get_variables(as_list=False)[diff_var] for ig in self.iter_groups(): args = self.get_args(**kwargs) self.check_shapes(*args) _args = tuple(args) + (mode, term_mode, diff_var) fargs = self.call_get_fargs(_args, kwargs) n_elr, n_qpr, dim, n_enr, n_cr = self.get_data_shape(varr) n_row = n_cr * n_enr if diff_var is None: shape = (n_elr, 1, n_row, 1) else: n_elc, n_qpc, dim, n_enc, n_cc = self.get_data_shape(varc) n_col = n_cc * n_enc shape = (n_elr, 1, n_row, n_col) if varr.dtype == nm.float64: val, stat = self.eval_real(shape, fargs, mode, term_mode, diff_var, **kwargs) elif varr.dtype == nm.complex128: val, stat = self.eval_complex(shape, fargs, mode, term_mode, diff_var, **kwargs) else: raise ValueError('unsupported term dtype! (%s)' % varr.dtype) vals.append(self.sign * val) iels.append((ig, self.get_assembling_cells(val.shape))) status += stat # Setup return value. if mode == 'eval': out = (val,) else: out = (vals, iels) if goptions['check_term_finiteness']: assert_(nm.isfinite(out[0]).all(), msg='%+.2e * %s.%d.%s(%s) term values not finite!' % (self.sign, self.name, self.integral.order, self.region.name, self.arg_str)) if ret_status: out = out + (status,) if len(out) == 1: out = out[0] return out def assemble_to(self, asm_obj, val, iels, mode='vector', diff_var=None): import sfepy.fem.extmods.assemble as asm vvar = self.get_virtual_variable() dc_type = self.get_dof_conn_type() if mode == 'vector': if asm_obj.dtype == nm.float64: assemble = asm.assemble_vector else: assert_(asm_obj.dtype == nm.complex128) assemble = asm.assemble_vector_complex for ii in range(len(val)): if not(val[ii].dtype == nm.complex128): val[ii] = nm.complex128(val[ii]) for ii, (ig, _iels) in enumerate(iels): vec_in_els = val[ii] dc = vvar.get_dof_conn(dc_type, ig, active=True) assert_(vec_in_els.shape[2] == dc.shape[1]) assemble(asm_obj, vec_in_els, _iels, 1.0, dc) elif mode == 'matrix': if asm_obj.dtype == nm.float64: assemble = asm.assemble_matrix else: assert_(asm_obj.dtype == nm.complex128) assemble = asm.assemble_matrix_complex svar = diff_var tmd = (asm_obj.data, asm_obj.indptr, asm_obj.indices) for ii, (ig, _iels) in enumerate(iels): mtx_in_els = val[ii] if ((asm_obj.dtype == nm.complex128) and (mtx_in_els.dtype == nm.float64)): mtx_in_els = mtx_in_els.astype(nm.complex128) rdc = vvar.get_dof_conn(dc_type, ig, active=True) is_trace = self.arg_traces[svar.name] cdc = svar.get_dof_conn(dc_type, ig, active=True, is_trace=is_trace) assert_(mtx_in_els.shape[2:] == (rdc.shape[1], cdc.shape[1])) sign = 1.0 if self.arg_derivatives[svar.name]: if not self.is_quasistatic or (self.step > 0): sign *= 1.0 / self.dt else: sign = 0.0 assemble(tmd[0], tmd[1], tmd[2], mtx_in_els, _iels, sign, rdc, cdc) else: raise ValueError('unknown assembling mode! (%s)' % mode)
2a2d1d8830e835a1494087e94fb849e401876cc4
bf21cd0ef7a94fa106ccd9f91a4bbfdcda7f94ed
/python-basic/chapter04/ex01_2.py
2b0d435813f0cc5b511a07e9e93529dd676c29ef
[]
no_license
juneglee/Deep_Learning
fdf8cae1b962aaa0ce557cb53f78a22b6d5ae1e8
17a448cf6a7c5b61b967dd78af3d328d63378205
refs/heads/master
2023-07-15T03:02:55.739619
2021-08-19T14:04:55
2021-08-19T14:04:55
273,253,872
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
# 리스트 연선자 : 연결(+) , 반복(*), len() # 리스트 연산자 list_a = [1, 2, 3] list_b = [4, 5, 6] print("# 리스트") print("list_a = ", list_a) print("list_b = ", list_b) print() # 기본 연산자 : 연결(+) , 반복(*) print("# 리스트 기본 연산자") print("list_a + list_b =", list_a + list_b) print("list_a * 3 =", list_a * 3) print() # 길이 구하기 : len() print("# 길이 구하기") print("len(list_a) = ", len(list_a))
59f257e74467edf2e02f1c12f63bef4bc528fd7e
085488720112922ff3aed15f99f3c93911425c4a
/vesper/signal/tests/test_s3_byte_sequence.py
c6f1f484a9b415154c8d517bf998a2ab6d8b4200
[ "MIT" ]
permissive
HaroldMills/Vesper
0b61d18bc241af22bfc251088fc87d72add6367b
ec92fe5231f54336499db189a3bbc6cb08a19e61
refs/heads/master
2023-07-05T22:45:27.316498
2023-07-04T11:58:14
2023-07-04T11:58:14
19,112,486
49
6
MIT
2023-02-14T16:09:19
2014-04-24T14:55:34
Python
UTF-8
Python
false
false
909
py
import unittest import warnings from vesper.signal.tests.byte_sequence_tests import ByteSequenceTests from vesper.signal.s3_byte_sequence import S3ByteSequence from vesper.tests.test_case import TestCase REGION_NAME = 'us-east-2' BUCKET_NAME = 'vesper-test' OBJECT_KEY = 'Bytes 00-FF.dat' OBJECT_LENGTH = 256 # TODO: Look into ResourceWarning issue mentioned below. Is it safe to # ignore the warnings? class S3ByteSequenceTests(TestCase, ByteSequenceTests): @property def sequence(self): return S3ByteSequence(REGION_NAME, BUCKET_NAME, OBJECT_KEY) def setUp(self): # Without the following, the `S3ByteSequence` unit tests # output a ResourceWarning about an unclosed transport to the # console. warnings.filterwarnings( action="ignore", message="unclosed", category=ResourceWarning) if __name__ == '__main__': unittest.main()
102f709bebff12b32c93c321b66bd7327cd6e92b
b15d2787a1eeb56dfa700480364337216d2b1eb9
/accelbyte_py_sdk/api/matchmaking/models/models_query_mock_by.py
8e41cf6eec7f84d441d5c2d4e272a292a791f88e
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
3,879
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template file: ags_py_codegen # AccelByte Gaming Services Matchmaking Service (2.25.7) # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from ....core import Model class ModelsQueryMockBy(Model): """Models query mock by (models.QueryMockBy) Properties: timestamp_after: (timestamp_after) REQUIRED int """ # region fields timestamp_after: int # REQUIRED # endregion fields # region with_x methods def with_timestamp_after(self, value: int) -> ModelsQueryMockBy: self.timestamp_after = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result: dict = {} if hasattr(self, "timestamp_after"): result["timestamp_after"] = int(self.timestamp_after) elif include_empty: result["timestamp_after"] = 0 return result # endregion to methods # region static methods @classmethod def create(cls, timestamp_after: int, **kwargs) -> ModelsQueryMockBy: instance = cls() instance.timestamp_after = timestamp_after return instance @classmethod def create_from_dict( cls, dict_: dict, include_empty: bool = False ) -> ModelsQueryMockBy: instance = cls() if not dict_: return instance if "timestamp_after" in dict_ and dict_["timestamp_after"] is not None: instance.timestamp_after = int(dict_["timestamp_after"]) elif include_empty: instance.timestamp_after = 0 return instance @classmethod def create_many_from_dict( cls, dict_: dict, include_empty: bool = False ) -> Dict[str, ModelsQueryMockBy]: return ( {k: cls.create_from_dict(v, include_empty=include_empty) for k, v in dict_} if dict_ else {} ) @classmethod def create_many_from_list( cls, list_: list, include_empty: bool = False ) -> List[ModelsQueryMockBy]: return ( [cls.create_from_dict(i, include_empty=include_empty) for i in list_] if list_ else [] ) @classmethod def create_from_any( cls, any_: any, include_empty: bool = False, many: bool = False ) -> Union[ ModelsQueryMockBy, List[ModelsQueryMockBy], Dict[Any, ModelsQueryMockBy] ]: if many: if isinstance(any_, dict): return cls.create_many_from_dict(any_, include_empty=include_empty) elif isinstance(any_, list): return cls.create_many_from_list(any_, include_empty=include_empty) else: raise ValueError() else: return cls.create_from_dict(any_, include_empty=include_empty) @staticmethod def get_field_info() -> Dict[str, str]: return { "timestamp_after": "timestamp_after", } @staticmethod def get_required_map() -> Dict[str, bool]: return { "timestamp_after": True, } # endregion static methods
150caba5e2ce7bbe0f2fac7228a73b1c48b130e8
35be15b1dc120a256750cf66305f169974c2e55c
/ecommerce/jan2020/blog/admin.py
2f847da382c95e6db6daed732a0c2fa22da850e2
[]
no_license
tejendrapatel/Ecommerce_Logics
2f10a5e216691add092f37a8186a9940b905f173
16ad13672c275e1be3ee6b3f5cd84d09f1600496
refs/heads/main
2023-08-27T00:53:10.438777
2021-10-23T11:50:36
2021-10-23T11:50:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
from django.contrib import admin from blog.models import * admin.site.register(college) admin.site.register(contact)
d342732ac3b6fe72d50a5b8e94fc6365d7766d2f
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/network/v20200301/route_table.py
0f7b2c604bdb6750a43a91e17b7ebf103a368267
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,631
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['RouteTableInitArgs', 'RouteTable'] @pulumi.input_type class RouteTableInitArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], disable_bgp_route_propagation: Optional[pulumi.Input[bool]] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, route_table_name: Optional[pulumi.Input[str]] = None, routes: Optional[pulumi.Input[Sequence[pulumi.Input['RouteArgs']]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a RouteTable resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[bool] disable_bgp_route_propagation: Whether to disable the routes learned by BGP on that route table. True means disable. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] route_table_name: The name of the route table. :param pulumi.Input[Sequence[pulumi.Input['RouteArgs']]] routes: Collection of routes contained within a route table. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if disable_bgp_route_propagation is not None: pulumi.set(__self__, "disable_bgp_route_propagation", disable_bgp_route_propagation) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if route_table_name is not None: pulumi.set(__self__, "route_table_name", route_table_name) if routes is not None: pulumi.set(__self__, "routes", routes) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="disableBgpRoutePropagation") def disable_bgp_route_propagation(self) -> Optional[pulumi.Input[bool]]: """ Whether to disable the routes learned by BGP on that route table. True means disable. """ return pulumi.get(self, "disable_bgp_route_propagation") @disable_bgp_route_propagation.setter def disable_bgp_route_propagation(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "disable_bgp_route_propagation", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="routeTableName") def route_table_name(self) -> Optional[pulumi.Input[str]]: """ The name of the route table. """ return pulumi.get(self, "route_table_name") @route_table_name.setter def route_table_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "route_table_name", value) @property @pulumi.getter def routes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RouteArgs']]]]: """ Collection of routes contained within a route table. """ return pulumi.get(self, "routes") @routes.setter def routes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RouteArgs']]]]): pulumi.set(self, "routes", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class RouteTable(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, disable_bgp_route_propagation: Optional[pulumi.Input[bool]] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, route_table_name: Optional[pulumi.Input[str]] = None, routes: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RouteArgs']]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Route table resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] disable_bgp_route_propagation: Whether to disable the routes learned by BGP on that route table. True means disable. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] route_table_name: The name of the route table. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RouteArgs']]]] routes: Collection of routes contained within a route table. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: RouteTableInitArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Route table resource. :param str resource_name: The name of the resource. :param RouteTableInitArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(RouteTableInitArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, disable_bgp_route_propagation: Optional[pulumi.Input[bool]] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, route_table_name: Optional[pulumi.Input[str]] = None, routes: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RouteArgs']]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = RouteTableInitArgs.__new__(RouteTableInitArgs) __props__.__dict__["disable_bgp_route_propagation"] = disable_bgp_route_propagation __props__.__dict__["id"] = id __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["route_table_name"] = route_table_name __props__.__dict__["routes"] = routes __props__.__dict__["tags"] = tags __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["subnets"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-native:network:RouteTable"), pulumi.Alias(type_="azure-native:network/v20150501preview:RouteTable"), pulumi.Alias(type_="azure-native:network/v20150615:RouteTable"), pulumi.Alias(type_="azure-native:network/v20160330:RouteTable"), pulumi.Alias(type_="azure-native:network/v20160601:RouteTable"), pulumi.Alias(type_="azure-native:network/v20160901:RouteTable"), pulumi.Alias(type_="azure-native:network/v20161201:RouteTable"), pulumi.Alias(type_="azure-native:network/v20170301:RouteTable"), pulumi.Alias(type_="azure-native:network/v20170601:RouteTable"), pulumi.Alias(type_="azure-native:network/v20170801:RouteTable"), pulumi.Alias(type_="azure-native:network/v20170901:RouteTable"), pulumi.Alias(type_="azure-native:network/v20171001:RouteTable"), pulumi.Alias(type_="azure-native:network/v20171101:RouteTable"), pulumi.Alias(type_="azure-native:network/v20180101:RouteTable"), pulumi.Alias(type_="azure-native:network/v20180201:RouteTable"), pulumi.Alias(type_="azure-native:network/v20180401:RouteTable"), pulumi.Alias(type_="azure-native:network/v20180601:RouteTable"), pulumi.Alias(type_="azure-native:network/v20180701:RouteTable"), pulumi.Alias(type_="azure-native:network/v20180801:RouteTable"), pulumi.Alias(type_="azure-native:network/v20181001:RouteTable"), pulumi.Alias(type_="azure-native:network/v20181101:RouteTable"), pulumi.Alias(type_="azure-native:network/v20181201:RouteTable"), pulumi.Alias(type_="azure-native:network/v20190201:RouteTable"), pulumi.Alias(type_="azure-native:network/v20190401:RouteTable"), pulumi.Alias(type_="azure-native:network/v20190601:RouteTable"), pulumi.Alias(type_="azure-native:network/v20190701:RouteTable"), pulumi.Alias(type_="azure-native:network/v20190801:RouteTable"), pulumi.Alias(type_="azure-native:network/v20190901:RouteTable"), pulumi.Alias(type_="azure-native:network/v20191101:RouteTable"), pulumi.Alias(type_="azure-native:network/v20191201:RouteTable"), pulumi.Alias(type_="azure-native:network/v20200401:RouteTable"), pulumi.Alias(type_="azure-native:network/v20200501:RouteTable"), pulumi.Alias(type_="azure-native:network/v20200601:RouteTable"), pulumi.Alias(type_="azure-native:network/v20200701:RouteTable"), pulumi.Alias(type_="azure-native:network/v20200801:RouteTable"), pulumi.Alias(type_="azure-native:network/v20201101:RouteTable"), pulumi.Alias(type_="azure-native:network/v20210201:RouteTable"), pulumi.Alias(type_="azure-native:network/v20210301:RouteTable"), pulumi.Alias(type_="azure-native:network/v20210501:RouteTable")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(RouteTable, __self__).__init__( 'azure-native:network/v20200301:RouteTable', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'RouteTable': """ Get an existing RouteTable resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = RouteTableInitArgs.__new__(RouteTableInitArgs) __props__.__dict__["disable_bgp_route_propagation"] = None __props__.__dict__["etag"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["routes"] = None __props__.__dict__["subnets"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return RouteTable(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="disableBgpRoutePropagation") def disable_bgp_route_propagation(self) -> pulumi.Output[Optional[bool]]: """ Whether to disable the routes learned by BGP on that route table. True means disable. """ return pulumi.get(self, "disable_bgp_route_propagation") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the route table resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def routes(self) -> pulumi.Output[Optional[Sequence['outputs.RouteResponse']]]: """ Collection of routes contained within a route table. """ return pulumi.get(self, "routes") @property @pulumi.getter def subnets(self) -> pulumi.Output[Sequence['outputs.SubnetResponse']]: """ A collection of references to subnets. """ return pulumi.get(self, "subnets") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
a19d147dc3ac0dc1389f80f703d9bfdb9880730f
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/303/usersdata/281/66059/submittedfiles/testes.py
4f5702282440b083bcb9303e18bb7339f798841e
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
# -*- coding: utf-8 -*- #COMECE AQUI ABAIXO print("Hello Word") print("olá Mundo")
c55f365e169d1106b279c90b35267dee292c835b
acd749424ec557eb2c0aed20333131eeb738b27a
/pyart/io/nexrad_cdm.py
2df276d06cb14dcb08a6247e4e97c50c44c7cd4b
[ "BSD-3-Clause" ]
permissive
zxdawn/pyart
c5b8cc505e4eea0db01af40bdd3a796ff11020b2
fc51a68dfb488392217b2093ed593f07016e793b
refs/heads/CNRAD
2020-03-17T23:14:30.526023
2019-05-19T13:39:00
2019-05-19T13:39:00
134,036,631
9
0
null
2018-05-22T14:07:30
2018-05-19T06:34:09
Python
UTF-8
Python
false
false
13,609
py
""" pyart.io.nexrad_cdm =================== Functions for accessing Common Data Model (CDM) NEXRAD Level 2 files. .. autosummary:: :toctree: generated/ read_nexrad_cdm _scan_info _populate_scan_dic _get_moment_data """ import os from datetime import datetime, timedelta import netCDF4 import numpy as np from .nexrad_common import get_nexrad_location from ..config import FileMetadata, get_fillvalue from ..core.radar import Radar from .common import make_time_unit_str, _test_arguments def read_nexrad_cdm(filename, field_names=None, additional_metadata=None, file_field_names=False, exclude_fields=None, station=None, **kwargs): """ Read a Common Data Model (CDM) NEXRAD Level 2 file. Parameters ---------- filename : str File name or URL of a Common Data Model (CDM) NEXRAD Level 2 file. File of in this format can be created using the NetCDF Java Library tools [1]_. A URL of a OPeNDAP file on the UCAR THREDDS Data Server [2]_ is also accepted the netCDF4 library has been compiled with OPeNDAP support. field_names : dict, optional Dictionary mapping NEXRAD moments to radar field names. If a data type found in the file does not appear in this dictionary or has a value of None it will not be placed in the radar.fields dictionary. A value of None, the default, will use the mapping defined in the metadata configuration file. additional_metadata : dict of dicts, optional Dictionary of dictionaries to retrieve metadata from during this read. This metadata is not used during any successive file reads unless explicitly included. A value of None, the default, will not introduct any addition metadata and the file specific or default metadata as specified by the metadata configuration file will be used. file_field_names : bool, optional True to use the NEXRAD field names for the field names. If this case the field_names parameter is ignored. The field dictionary will likely only have a 'data' key, unless the fields are defined in `additional_metadata`. exclude_fields : list or None, optional List of fields to exclude from the radar object. This is applied after the `file_field_names` and `field_names` parameters. station : str Four letter ICAO name of the NEXRAD station used to determine the location in the returned radar object. This parameter is only used when the location is not contained in the file, which occur in older NEXRAD files. If the location is not provided in the file and this parameter is set to None the station name will be determined from the filename. Returns ------- radar : Radar Radar object containing all moments and sweeps/cuts in the volume. Gates not collected are masked in the field data. References ---------- .. [1] http://www.unidata.ucar.edu/software/netcdf-java/documentation.htm .. [2] http://thredds.ucar.edu/thredds/catalog.html """ # test for non empty kwargs _test_arguments(kwargs) # create metadata retrieval object filemetadata = FileMetadata('nexrad_cdm', field_names, additional_metadata, file_field_names, exclude_fields) # open the file dataset = netCDF4.Dataset(filename) dattrs = dataset.ncattrs() dvars = dataset.variables if 'cdm_data_type' not in dattrs or dataset.cdm_data_type != 'RADIAL': raise IOError('%s is not a valid CDM NetCDF file' % (filename)) # determine the scan information scan_info = _scan_info(dvars) radials_per_scan = [max(s['nradials']) for s in scan_info] ngates_per_scan = [max(s['ngates']) for s in scan_info] ngates = max(ngates_per_scan) nrays = sum(radials_per_scan) nsweeps = len(scan_info) # extract data which changes depending on scan, # specifically time, azimuth, elevation and fixed angle data, as well as # the moment data. time_data = np.empty((nrays, ), dtype='float64') azim_data = np.empty((nrays, ), dtype='float32') elev_data = np.empty((nrays, ), dtype='float32') fixed_agl_data = np.empty((nsweeps, ), dtype='float32') fdata = { 'Reflectivity': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'RadialVelocity': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'SpectrumWidth': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'DifferentialReflectivity': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'CorrelationCoefficient': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'DifferentialPhase': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), } ray_i = 0 for scan_index, scan_dic in enumerate(scan_info): var_index = scan_dic['index'][0] nradials = scan_dic['nradials'][0] time_var = scan_dic['time_vars'][0] azimuth_var = scan_dic['azimuth_vars'][0] elevation_var = scan_dic['elevation_vars'][0] nradials = scan_dic['nradials'][0] end = ray_i + nradials time_data[ray_i:end] = dvars[time_var][var_index][:nradials] azim_data[ray_i:end] = dvars[azimuth_var][var_index][:nradials] elev_data[ray_i:end] = dvars[elevation_var][var_index][:nradials] fixed_agl_data[scan_index] = np.mean( dvars[elevation_var][var_index][:nradials]) for i, moment in enumerate(scan_dic['moments']): moment_index = scan_dic['index'][i] m_ngates = scan_dic['ngates'][i] m_nradials = scan_dic['nradials'][i] if moment.endswith('_HI'): fdata_name = moment[:-3] else: fdata_name = moment sweep = _get_moment_data(dvars[moment], moment_index, m_ngates) fdata[fdata_name][ray_i:ray_i + m_nradials, :m_ngates] = ( sweep[:m_nradials, :m_ngates]) ray_i += nradials # time time = filemetadata('time') first_time_var = scan_info[0]['time_vars'][0] time_start = datetime.strptime(dvars[first_time_var].units[-20:], "%Y-%m-%dT%H:%M:%SZ") time_start = time_start + timedelta(seconds=int(time_data[0]/1000)) time['data'] = time_data/1000. - int(time_data[0]/1000) time['units'] = make_time_unit_str(time_start) # range _range = filemetadata('range') max_ngates_scan_index = ngates_per_scan.index(ngates) scan_dic = scan_info[max_ngates_scan_index] max_ngates_moment_index = scan_dic['ngates'].index(ngates) distance_var = scan_dic['distance_vars'][max_ngates_moment_index] _range['data'] = dvars[distance_var][:] _range['meters_to_center_of_first_gate'] = _range['data'][0] _range['meters_between_gates'] = _range['data'][1] - _range['data'][0] # fields fields = {} for moment_name, moment_data in fdata.items(): field_name = filemetadata.get_field_name(moment_name) field_dic = filemetadata(field_name) field_dic['_FillValue'] = get_fillvalue() field_dic['data'] = moment_data fields[field_name] = field_dic # metadata metadata = filemetadata('metadata') metadata['original_container'] = 'NEXRAD Level II' # scan_type scan_type = 'ppi' # latitude, longitude, altitude latitude = filemetadata('latitude') longitude = filemetadata('longitude') altitude = filemetadata('altitude') # use the locations in the NetCDF file is available if ((hasattr(dataset, 'StationLatitude') and hasattr(dataset, 'StationLongitude') and hasattr(dataset, 'StationElevationInMeters'))): lat = dataset.StationLatitude lon = dataset.StationLongitude alt = dataset.StationElevationInMeters else: # if no locations in the file look them up from station name. if station is None: # determine the station name from the filename # this will fail in some cases, in which case station # should be implicitly provided in the function call. station = os.path.basename(filename)[:4].upper() lat, lon, alt = get_nexrad_location(station) latitude['data'] = np.array([lat], dtype='float64') longitude['data'] = np.array([lon], dtype='float64') altitude['data'] = np.array([alt], dtype='float64') # sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index # sweep_end_ray_index sweep_number = filemetadata('sweep_number') sweep_mode = filemetadata('sweep_mode') sweep_start_ray_index = filemetadata('sweep_start_ray_index') sweep_end_ray_index = filemetadata('sweep_end_ray_index') sweep_number['data'] = np.arange(nsweeps, dtype='int32') sweep_mode['data'] = np.array( nsweeps * ['azimuth_surveillance'], dtype='S') rays_per_scan = list(radials_per_scan) sweep_end_ray_index['data'] = np.cumsum(rays_per_scan, dtype='int32') - 1 rays_per_scan.insert(0, 0) sweep_start_ray_index['data'] = np.cumsum(rays_per_scan[:-1], dtype='int32') # azimuth, elevation, fixed_angle azimuth = filemetadata('azimuth') elevation = filemetadata('elevation') fixed_angle = filemetadata('fixed_angle') azimuth['data'] = azim_data elevation['data'] = elev_data fixed_angle['data'] = fixed_agl_data dataset.close() return Radar( time, _range, fields, metadata, scan_type, latitude, longitude, altitude, sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index, sweep_end_ray_index, azimuth, elevation, instrument_parameters=None) def _scan_info(dvars): """ Return a list of information on the scans in the volume. """ # determine the time of the sweep start time_variables = [k for k in dvars.keys() if k.startswith('time')] scan_start_times = set([]) for var in time_variables: for time in dvars[var][:, 0]: scan_start_times.add(time) scan_start_times = list(scan_start_times) scan_start_times.sort() # build the scan_info list time_var_to_moment = { # time variable to moment conversion 'timeR': 'Reflectivity', 'timeV': 'RadialVelocity', 'timeD': 'DifferentialReflectivity', 'timeC': 'CorrelationCoefficient', 'timeP': 'DifferentialPhase', 'timeR_HI': 'Reflectivity_HI', 'timeV_HI': 'RadialVelocity_HI', 'timeD_HI': 'DifferentialReflectivity_HI', 'timeC_HI': 'CorrelationCoefficient_HI', 'timeP_HI': 'DifferentialPhase_HI', } scan_info = [{'start_time': t, 'time_vars': [], 'moments': [], 'nradials': [], 'ngates': [], 'elevation_vars': [], 'azimuth_vars': [], 'distance_vars': [], 'index': []} for t in scan_start_times] for time_var in time_variables: for time_var_i, time in enumerate(dvars[time_var][:, 0]): scan_index = scan_start_times.index(time) scan_dic = scan_info[scan_index] moment = time_var_to_moment[time_var] _populate_scan_dic(scan_dic, time_var, time_var_i, moment, dvars) # corner cases, timeV is a dimension for RadialVelocity AND # SpectrumWidth if time_var == 'timeV': _populate_scan_dic(scan_dic, time_var, time_var_i, 'SpectrumWidth', dvars) if time_var == 'timeV_HI': _populate_scan_dic(scan_dic, time_var, time_var_i, 'SpectrumWidth_HI', dvars) return scan_info def _populate_scan_dic(scan_dic, time_var, time_var_i, moment, dvars): """ Populate a dictionary in the scan_info list. """ if time_var.endswith('HI'): var_suffix = time_var[-4:] else: var_suffix = time_var[-1:] ngates = dvars['numGates' + var_suffix][time_var_i] nradials = dvars['numRadials' + var_suffix][time_var_i] scan_dic['time_vars'].append(time_var) scan_dic['index'].append(time_var_i) scan_dic['moments'].append(moment) scan_dic['elevation_vars'].append('elevation' + var_suffix) scan_dic['azimuth_vars'].append('azimuth' + var_suffix) scan_dic['distance_vars'].append('distance' + var_suffix) scan_dic['ngates'].append(ngates) scan_dic['nradials'].append(nradials) return def _get_moment_data(moment_var, index, ngates): """ Retieve moment data for a given scan. """ # mask, scale and offset moment_var.set_auto_maskandscale(False) raw_moment_data = moment_var[index][:, :ngates] if '_Unsigned' in moment_var.ncattrs(): if raw_moment_data.dtype == np.int8: raw_moment_data = raw_moment_data.view('uint8') if raw_moment_data.dtype == np.int16: raw_moment_data = raw_moment_data.view('uint16') raw_moment_data = np.ma.masked_less_equal(raw_moment_data, 1) if 'scale_factor' in moment_var.ncattrs(): scale = moment_var.scale_factor else: scale = 1.0 if 'add_offset' in moment_var.ncattrs(): add_offset = moment_var.add_offset else: add_offset = 0.0 return raw_moment_data * scale + add_offset
96ecd307f055f3b68969e8d57c8d8d5d0247f15a
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/4/i5u.py
ddabd582980b6c53e4d7b8520dbd5e019a933eac
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'i5U': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
685eea7db453f95d3b09c7e014f28eeee0ba4439
a8123a86db99b9365b10ba76dd509d58caa7bc10
/python/practice/start_again/2021/05182021/Day18.3_Darw_a_spriograph.py
8814fcac3b147a6c0f49245cd49b4fbe21a8a16f
[]
no_license
smohapatra1/scripting
c0404081da8a10e92e7c7baa8b540acc16540e77
3628c9109204ad98231ae8ee92b6bfa6b27e93cd
refs/heads/master
2023-08-22T20:49:50.156979
2023-08-22T20:43:03
2023-08-22T20:43:03
147,619,016
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
#Draw a Spirograph from turtle import Turtle, Screen import turtle as t import random tim = t.Turtle() t.colormode(255) tim.speed("fastest") #Random Color def random_color(): r = random.randint(0,255) g = random.randint(0,255) b = random.randint(0,255) color = (r, g, b) return color def draw_spirograph(size_of_gap): for _ in range(int(360/size_of_gap)): tim.color(random_color()) tim.circle(100) #current_heading = tim.heading() # To change the direction tim.setheading(tim.heading() + size_of_gap ) draw_spirograph(10) screen = t.Screen() screen.exitonclick()
aaf7c07df0a3a79d0aa83017aa4a3142f7911d98
dec5c1416279178c23e81794789ed27e7e806faf
/profiles_api/models.py
921345fafbd8fe1b8cb4afa2e7952b8838987617
[ "MIT" ]
permissive
amitarvindpatil/profiles-rest-api
44c7555888e654a2a64362d21834f5a67aeab07a
c2092bdc13c77e2f1f3cd4940740f752cc2b180f
refs/heads/master
2022-09-15T06:53:40.777169
2020-05-31T09:01:43
2020-05-31T09:01:43
260,257,045
0
0
null
null
null
null
UTF-8
Python
false
false
2,032
py
from django.db import models from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager from django.conf import settings # Create your models here. class UserProfileManager(BaseUserManager): """Manager For UserProfile""" def create_user(self,email,name,password=None): """Create New User Prfile""" if not email: raise ValueError('User Must have an email address') email = self.normalize_email(email) user = self.model(email=email,name=name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self,email,name,password): """create and save new superuser with given details""" user = self.create_user(email,name,password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser,PermissionsMixin): """ DataBase model for user in a system """ email = models.EmailField(max_length=255,unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name'] def get_full_name(self): """ Retrive Full Name of User""" return self.name def get_short_name(self): """ Retrive Short Name of user """ return self.name def __str__(self): """ Retrive String representation of user""" return self.email class ProfileFeedItem(models.Model): """Profile Status Update""" user_profile = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) status_text = models.CharField(max_length=255) created_on = models.DateTimeField(auto_now_add=True) def __str__(self): return self.status_text
792b61efe2adbe81bfa8e2d488a1dbf4bd884444
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-das/huaweicloudsdkdas/v3/model/export_top_sql_templates_details_response.py
1286a8c3db19b4ec0f54ea95567708a585fd8a62
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,619
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ExportTopSqlTemplatesDetailsResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'top_sql_templates': 'list[TopSqlTemplate]', 'total_count': 'int' } attribute_map = { 'top_sql_templates': 'top_sql_templates', 'total_count': 'total_count' } def __init__(self, top_sql_templates=None, total_count=None): """ExportTopSqlTemplatesDetailsResponse The model defined in huaweicloud sdk :param top_sql_templates: SQL模板列表。 :type top_sql_templates: list[:class:`huaweicloudsdkdas.v3.TopSqlTemplate`] :param total_count: SQL模板总数。 :type total_count: int """ super(ExportTopSqlTemplatesDetailsResponse, self).__init__() self._top_sql_templates = None self._total_count = None self.discriminator = None if top_sql_templates is not None: self.top_sql_templates = top_sql_templates if total_count is not None: self.total_count = total_count @property def top_sql_templates(self): """Gets the top_sql_templates of this ExportTopSqlTemplatesDetailsResponse. SQL模板列表。 :return: The top_sql_templates of this ExportTopSqlTemplatesDetailsResponse. :rtype: list[:class:`huaweicloudsdkdas.v3.TopSqlTemplate`] """ return self._top_sql_templates @top_sql_templates.setter def top_sql_templates(self, top_sql_templates): """Sets the top_sql_templates of this ExportTopSqlTemplatesDetailsResponse. SQL模板列表。 :param top_sql_templates: The top_sql_templates of this ExportTopSqlTemplatesDetailsResponse. :type top_sql_templates: list[:class:`huaweicloudsdkdas.v3.TopSqlTemplate`] """ self._top_sql_templates = top_sql_templates @property def total_count(self): """Gets the total_count of this ExportTopSqlTemplatesDetailsResponse. SQL模板总数。 :return: The total_count of this ExportTopSqlTemplatesDetailsResponse. :rtype: int """ return self._total_count @total_count.setter def total_count(self, total_count): """Sets the total_count of this ExportTopSqlTemplatesDetailsResponse. SQL模板总数。 :param total_count: The total_count of this ExportTopSqlTemplatesDetailsResponse. :type total_count: int """ self._total_count = total_count def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExportTopSqlTemplatesDetailsResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
d5af0b0faa18fdfc639b31b41dfbdb93a890659b
085a6c4ac532bd4f46980f340890659b0cd03824
/two_sigma_problems/problem_9.py
f2c2e10d39d7f5185f1a978013c9b743178ba7e5
[ "MIT" ]
permissive
thinhnguyennt7/Daily-Coding-Problem
c66aa51422dc79ee912fbd042fefb2b2cf37a94f
16d42e33af1de08aac1d888be518e398b4674bc8
refs/heads/master
2021-04-04T02:10:52.800504
2020-03-18T17:29:44
2020-03-18T17:30:01
248,416,248
1
1
MIT
2020-03-19T05:13:37
2020-03-19T05:13:36
null
UTF-8
Python
false
false
223
py
"""This problem was asked by Two Sigma. Using a function rand5() that returns an integer from 1 to 5 (inclusive) with uniform probability, implement a function rand7() that returns an integer from 1 to 7 (inclusive). """
d994f4b20a182b9c9b4b26dea314bed2f83d5097
da52951c32b37aa75765b718707ce08c0a6208d1
/ReinforcementLearning/PolicyGradient/PPO/tf2/main.py
b3a0d38e4986d6a9da18c87322ee6faa32643f1d
[]
no_license
philtabor/Youtube-Code-Repository
08c1a0210f80976df50b01a91f1936a7d5c7b302
eb3aa9733158a4f7c4ba1fefaa812b27ffd889b6
refs/heads/master
2023-08-08T05:28:11.712470
2023-03-27T16:07:29
2023-03-27T16:07:29
144,081,173
811
568
null
2023-07-24T20:00:37
2018-08-09T00:21:29
Python
UTF-8
Python
false
false
1,575
py
import gym import numpy as np from agent import Agent from utils import plot_learning_curve if __name__ == '__main__': env = gym.make('CartPole-v0') N = 20 batch_size = 5 n_epochs = 4 alpha = 0.0003 agent = Agent(n_actions=env.action_space.n, batch_size=batch_size, alpha=alpha, n_epochs=n_epochs, input_dims=env.observation_space.shape) n_games = 300 figure_file = 'plots/cartpole.png' best_score = env.reward_range[0] score_history = [] learn_iters = 0 avg_score = 0 n_steps = 0 for i in range(n_games): observation = env.reset() done = False score = 0 while not done: action, prob, val = agent.choose_action(observation) observation_, reward, done, info = env.step(action) n_steps += 1 score += reward agent.store_transition(observation, action, prob, val, reward, done) if n_steps % N == 0: agent.learn() learn_iters += 1 observation = observation_ score_history.append(score) avg_score = np.mean(score_history[-100:]) if avg_score > best_score: best_score = avg_score agent.save_models() print('episode', i, 'score %.1f' % score, 'avg score %.1f' % avg_score, 'time_steps', n_steps, 'learning_steps', learn_iters) x = [i+1 for i in range(len(score_history))] plot_learning_curve(x, score_history, figure_file)
954328033e830e24754e6bdfd16070c83a6e687a
f11be78c01892f7c9dc44178ceeaacc0283f582f
/jsonschema_marshmallow/codegen/__init__.py
e031ea4e64bb66032fcc999588b2c073ec93bcfd
[ "MIT" ]
permissive
gijzelaerr/jsonschema-marshmallow
c6c8e5097f57e609832df30f02513b5d3e4737d0
e73e523cd32f2235525a9c61e731c741268e4164
refs/heads/main
2023-06-24T00:43:45.410868
2021-07-20T11:57:54
2021-07-20T11:57:54
387,666,374
0
0
null
null
null
null
UTF-8
Python
false
false
56
py
from jsonschema_marshmallow.codegen.cli import codegen
351cca2054fb8641c34017b3bc190680a699b824
4b44a299bafbd4ca408ce1c89c9fe4a449632783
/python3/10_Modules/Parallel_Processing/a_get_cpu_count.py
0a0464db866ec3a6c8aa2be9e3d728d2be413a38
[]
no_license
umunusb1/PythonMaterial
ecd33d32b2de664eaaae5192be7c3f6d6bef1d67
1e0785c55ccb8f5b9df1978e1773365a29479ce0
refs/heads/master
2023-01-23T23:39:35.797800
2020-12-02T19:29:00
2020-12-02T19:29:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
import multiprocessing as mp result = '''There are {} processors, in number, in this \ computer'''.format(mp.cpu_count()) print(result) print(dir(mp)) print(mp.current_process())
08aea1c4cf86277a51c4d590dbf843a9e116acea
3ccd609f68016aad24829b8dd3cdbb535fb0ff6d
/python/bpy/types/FILEBROWSER_UL_dir.py
d242f98ab9b1a289208ea3db9e875d5ed1fb5d58
[]
no_license
katharostech/blender_externs
79b2eed064fd927e3555aced3e2eb8a45840508e
fdf7f019a460de0fe7e62375c1c94f7ab0e9f68d
refs/heads/master
2020-04-11T14:00:29.393478
2018-10-01T00:40:51
2018-10-01T00:40:51
161,838,212
1
1
null
2018-12-14T20:41:32
2018-12-14T20:41:32
null
UTF-8
Python
false
false
140
py
class FILEBROWSER_UL_dir: def draw_item(self, context, layout, data, item, icon, active_data, active_propname, index): pass
cb3c52836c92de725f4b0b5bc037f530ce63d13a
656b431bf7ac23d5593ddf4fb69c29c251d744cb
/zen/layer/base/node.py
91c5f8a19f460b42f4d3cf942d8f853c60c39140
[]
no_license
knighton/zen-0.14
2c8e4f0aa2e6c862d4022eb346a619268250273e
7936e43a115d00888bf6c523525bf9f3e7a49256
refs/heads/master
2021-01-21T05:33:01.494392
2018-05-17T15:01:30
2018-05-17T15:01:30
101,927,115
0
0
null
null
null
null
UTF-8
Python
false
false
4,619
py
from copy import deepcopy from ..arch.vee import Vee class Node(Vee): """ A node of a neural network. They consist of input and non-input nodes (Inputs and LayerNodes). """ def __init__(self): self._out_shape = None self._out_dtype = None self._out_data = None self._out_nodes = [] def out_shape(self): """ -> shape (must be built) """ return self._out_shape def out_dtype(self): """ -> dtype (must be built) """ return self._out_dtype def out_data(self): """ -> data (must be forward()'ed) """ return self._out_data def add_out_node(self, node): """ node -> """ self._out_nodes.append(node) def out_nodes(self): """ -> node """ return self._out_nodes def try_to_build(self): raise NotImplementedError def is_built(self): raise NotImplementedError def params(self): raise NotImplementedError class InteriorNode(Node): """ A non-input node (the normal case). """ def __init__(self): super().__init__() self._in_nodes = None self._num_ready_in_nodes = 0 def _gather_shapes_dtypes_for_build(self): assert self._in_nodes, 'Tried to build an internal node with no inputs.' in_shapes = [] in_dtypes = [] for node in self._in_nodes: shape = node.out_shape() if shape is None: return False, None, None in_shapes.append(shape) dtype = node.out_dtype() if dtype is None: return False, None, None in_dtypes.append(dtype) return True, in_shapes, in_dtypes def in_nodes(self): return self._in_nodes def to_spec_or_specs(self): raise NotImplementedError class LayerNode(InteriorNode): """ Neural network node wrapping a single layer. """ def __init__(self, spec, in_nodes=None): super().__init__() if in_nodes: for node in in_nodes: node.add_out_node(self) self._in_nodes = in_nodes self._spec = spec self._layer = None def __call__(self, *in_nodes): """ Return a copy of ourself that is connected to the given feed nodes. This is how graphs are constructed. """ assert not self._in_nodes return LayerNode(deepcopy(self._spec), in_nodes) def try_to_build(self): """ Try to construct the internal layer of a node given the shapes and dtypes of its input nodes. Tries to build its output nodes. Returns true if this node could be built (output nodes will fail if not all inputs are built yet during graph building). """ can_build, in_shapes, in_dtypes = self._gather_shapes_dtypes_for_build() if not can_build: return False self._layer, self._out_shape, self._out_dtype = \ self._spec.build_multi_input(in_shapes, in_dtypes) for node in self._out_nodes: node.try_to_build() return True def is_built(self): return self._layer is not None def params(self): """ Build the node if not built, then collect the node's trainable parameters for the optimizer. """ assert self._layer, \ 'Not all input nodes have been built (the graph is missing an ' + \ 'input or inputs).' return self._layer.params() def in_node_is_ready(self, is_training): """ Receive notification that one of our input nodes has data. If they all do, perform a forward pass and notify the nodes that we feed into. """ assert self._in_nodes, \ 'Called in_node_is_ready() on a node with no inputs.' assert self._layer, \ 'Not all input nodes have been built (the graph is missing an ' + \ 'input or inputs).' self._num_ready_in_nodes += 1 if self._num_ready_in_nodes < len(self._in_nodes): return xx = [] for node in self._in_nodes: x = node.out_data() assert x is not None xx.append(x) self._out_data = self._layer.forward_multi_input(xx, is_training) for node in self._out_nodes: node.in_node_is_ready(is_training) self._num_ready_in_nodes = 0 def to_spec_or_specs(self): return self._spec
b53d51e90634a68addf27b8fb44bc961f55f096a
e5e2b7da41fda915cb849f031a0223e2ac354066
/sdk/python/pulumi_azure_native/web/v20190801/web_app_diagnostic_logs_configuration.py
b955573f291c7fb008c4a782dcab13d6ce640e51
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
johnbirdau/pulumi-azure-native
b7d3bdddeb7c4b319a7e43a892ddc6e25e3bfb25
d676cc331caa0694d8be99cb90b93fa231e3c705
refs/heads/master
2023-05-06T06:48:05.040357
2021-06-01T20:42:38
2021-06-01T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,078
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['WebAppDiagnosticLogsConfigurationArgs', 'WebAppDiagnosticLogsConfiguration'] @pulumi.input_type class WebAppDiagnosticLogsConfigurationArgs: def __init__(__self__, *, name: pulumi.Input[str], resource_group_name: pulumi.Input[str], application_logs: Optional[pulumi.Input['ApplicationLogsConfigArgs']] = None, detailed_error_messages: Optional[pulumi.Input['EnabledConfigArgs']] = None, failed_requests_tracing: Optional[pulumi.Input['EnabledConfigArgs']] = None, http_logs: Optional[pulumi.Input['HttpLogsConfigArgs']] = None, kind: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a WebAppDiagnosticLogsConfiguration resource. :param pulumi.Input[str] name: Name of the app. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input['ApplicationLogsConfigArgs'] application_logs: Application logs configuration. :param pulumi.Input['EnabledConfigArgs'] detailed_error_messages: Detailed error messages configuration. :param pulumi.Input['EnabledConfigArgs'] failed_requests_tracing: Failed requests tracing configuration. :param pulumi.Input['HttpLogsConfigArgs'] http_logs: HTTP logs configuration. :param pulumi.Input[str] kind: Kind of resource. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "resource_group_name", resource_group_name) if application_logs is not None: pulumi.set(__self__, "application_logs", application_logs) if detailed_error_messages is not None: pulumi.set(__self__, "detailed_error_messages", detailed_error_messages) if failed_requests_tracing is not None: pulumi.set(__self__, "failed_requests_tracing", failed_requests_tracing) if http_logs is not None: pulumi.set(__self__, "http_logs", http_logs) if kind is not None: pulumi.set(__self__, "kind", kind) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ Name of the app. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group to which the resource belongs. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="applicationLogs") def application_logs(self) -> Optional[pulumi.Input['ApplicationLogsConfigArgs']]: """ Application logs configuration. """ return pulumi.get(self, "application_logs") @application_logs.setter def application_logs(self, value: Optional[pulumi.Input['ApplicationLogsConfigArgs']]): pulumi.set(self, "application_logs", value) @property @pulumi.getter(name="detailedErrorMessages") def detailed_error_messages(self) -> Optional[pulumi.Input['EnabledConfigArgs']]: """ Detailed error messages configuration. """ return pulumi.get(self, "detailed_error_messages") @detailed_error_messages.setter def detailed_error_messages(self, value: Optional[pulumi.Input['EnabledConfigArgs']]): pulumi.set(self, "detailed_error_messages", value) @property @pulumi.getter(name="failedRequestsTracing") def failed_requests_tracing(self) -> Optional[pulumi.Input['EnabledConfigArgs']]: """ Failed requests tracing configuration. """ return pulumi.get(self, "failed_requests_tracing") @failed_requests_tracing.setter def failed_requests_tracing(self, value: Optional[pulumi.Input['EnabledConfigArgs']]): pulumi.set(self, "failed_requests_tracing", value) @property @pulumi.getter(name="httpLogs") def http_logs(self) -> Optional[pulumi.Input['HttpLogsConfigArgs']]: """ HTTP logs configuration. """ return pulumi.get(self, "http_logs") @http_logs.setter def http_logs(self, value: Optional[pulumi.Input['HttpLogsConfigArgs']]): pulumi.set(self, "http_logs", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) class WebAppDiagnosticLogsConfiguration(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, application_logs: Optional[pulumi.Input[pulumi.InputType['ApplicationLogsConfigArgs']]] = None, detailed_error_messages: Optional[pulumi.Input[pulumi.InputType['EnabledConfigArgs']]] = None, failed_requests_tracing: Optional[pulumi.Input[pulumi.InputType['EnabledConfigArgs']]] = None, http_logs: Optional[pulumi.Input[pulumi.InputType['HttpLogsConfigArgs']]] = None, kind: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Configuration of App Service site logs. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['ApplicationLogsConfigArgs']] application_logs: Application logs configuration. :param pulumi.Input[pulumi.InputType['EnabledConfigArgs']] detailed_error_messages: Detailed error messages configuration. :param pulumi.Input[pulumi.InputType['EnabledConfigArgs']] failed_requests_tracing: Failed requests tracing configuration. :param pulumi.Input[pulumi.InputType['HttpLogsConfigArgs']] http_logs: HTTP logs configuration. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] name: Name of the app. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. """ ... @overload def __init__(__self__, resource_name: str, args: WebAppDiagnosticLogsConfigurationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Configuration of App Service site logs. :param str resource_name: The name of the resource. :param WebAppDiagnosticLogsConfigurationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(WebAppDiagnosticLogsConfigurationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, application_logs: Optional[pulumi.Input[pulumi.InputType['ApplicationLogsConfigArgs']]] = None, detailed_error_messages: Optional[pulumi.Input[pulumi.InputType['EnabledConfigArgs']]] = None, failed_requests_tracing: Optional[pulumi.Input[pulumi.InputType['EnabledConfigArgs']]] = None, http_logs: Optional[pulumi.Input[pulumi.InputType['HttpLogsConfigArgs']]] = None, kind: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = WebAppDiagnosticLogsConfigurationArgs.__new__(WebAppDiagnosticLogsConfigurationArgs) __props__.__dict__["application_logs"] = application_logs __props__.__dict__["detailed_error_messages"] = detailed_error_messages __props__.__dict__["failed_requests_tracing"] = failed_requests_tracing __props__.__dict__["http_logs"] = http_logs __props__.__dict__["kind"] = kind if name is None and not opts.urn: raise TypeError("Missing required property 'name'") __props__.__dict__["name"] = name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:web/v20190801:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20150801:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20150801:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20160801:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20160801:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20180201:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20180201:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20181101:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20181101:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20200601:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20200601:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20200901:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20200901:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20201001:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20201001:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20201201:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20201201:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-native:web/v20210101:WebAppDiagnosticLogsConfiguration"), pulumi.Alias(type_="azure-nextgen:web/v20210101:WebAppDiagnosticLogsConfiguration")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(WebAppDiagnosticLogsConfiguration, __self__).__init__( 'azure-native:web/v20190801:WebAppDiagnosticLogsConfiguration', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'WebAppDiagnosticLogsConfiguration': """ Get an existing WebAppDiagnosticLogsConfiguration resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = WebAppDiagnosticLogsConfigurationArgs.__new__(WebAppDiagnosticLogsConfigurationArgs) __props__.__dict__["application_logs"] = None __props__.__dict__["detailed_error_messages"] = None __props__.__dict__["failed_requests_tracing"] = None __props__.__dict__["http_logs"] = None __props__.__dict__["kind"] = None __props__.__dict__["name"] = None __props__.__dict__["type"] = None return WebAppDiagnosticLogsConfiguration(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="applicationLogs") def application_logs(self) -> pulumi.Output[Optional['outputs.ApplicationLogsConfigResponse']]: """ Application logs configuration. """ return pulumi.get(self, "application_logs") @property @pulumi.getter(name="detailedErrorMessages") def detailed_error_messages(self) -> pulumi.Output[Optional['outputs.EnabledConfigResponse']]: """ Detailed error messages configuration. """ return pulumi.get(self, "detailed_error_messages") @property @pulumi.getter(name="failedRequestsTracing") def failed_requests_tracing(self) -> pulumi.Output[Optional['outputs.EnabledConfigResponse']]: """ Failed requests tracing configuration. """ return pulumi.get(self, "failed_requests_tracing") @property @pulumi.getter(name="httpLogs") def http_logs(self) -> pulumi.Output[Optional['outputs.HttpLogsConfigResponse']]: """ HTTP logs configuration. """ return pulumi.get(self, "http_logs") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
3e6a874a64e7d69cc870d2a47199ffe654c59f9b
904e75e2ceff81c18a432fe1b951b683e859cbed
/views/console/voucher.py
809b9bed03144310d4c914e793626e5bbf9acd22
[]
no_license
PUYUP/plutoborn
a42c65fa360de41a1236af00b5718948dc1b9940
e6b47b7f183fcff60fa803329e11c2e87de560ef
refs/heads/master
2022-12-05T17:06:10.049472
2020-08-19T09:12:45
2020-08-19T09:12:45
254,116,939
0
0
null
null
null
null
UTF-8
Python
false
false
1,675
py
from django.conf import settings from django.views import View from django.shortcuts import render from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.db.models.functions import Coalesce from django.db.models import Q, F, Sum, Count, Case, When, Value, Subquery, OuterRef, IntegerField from utils.pagination import Pagination from utils.generals import get_model Voucher = get_model('market', 'Voucher') @method_decorator(login_required, name='dispatch') class VoucherListView(View): template_name = 'console/voucher/list.html' context = dict() def get(self, request): vouchers = Voucher.objects \ .annotate( total_redeem=Coalesce(Count('voucher_redeems'), 0) ).order_by('-total_redeem') # paginator page_num = int(self.request.GET.get('p', 0)) paginator = Paginator(vouchers, settings.PAGINATION_PER_PAGE) try: vouchers_pagination = paginator.page(page_num + 1) except PageNotAnInteger: vouchers_pagination = paginator.page(1) except EmptyPage: vouchers_pagination = paginator.page(paginator.num_pages) pagination = Pagination(request, vouchers, vouchers_pagination, page_num, paginator) self.context['vouchers'] = vouchers self.context['vouchers_total'] = vouchers.count() self.context['vouchers_pagination'] = vouchers_pagination self.context['pagination'] = pagination return render(request, self.template_name, self.context)
1d6c708e713687a606bcec30490c9970a32b2031
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/94/usersdata/203/55258/submittedfiles/mediaLista.py
9f8eabcc98947ef4aefb6758c5a6a0a6eab90482
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
281
py
# -*- coding: utf-8 -*- n=int(input('tamanho da lista: ')) l=[] soma=0 for i in range (1,n+1,1): l.append(input('elemento da lista: ')) for i in range (0,n-1,1): soma=soma+l[i] media=soma/n print ('%.2f' %l[0]) print ('%.2f' %l[n-1]) print ('%.2f' %media) print ('%.2f' %l)
f16c623f2284f4fcc342ceffbc101ff396686148
59b3dce3c770e70b2406cc1dd623a2b1f68b8394
/python_1/lessons/calculations.py
9fc441721ed85e47fac26d241c4db2cfd87301c8
[]
no_license
patrickbeeson/python-classes
04ed7b54fc4e1152a191eeb35d42adc214b08e39
b5041e71badd1ca2c013828e3b2910fb02e9728f
refs/heads/master
2020-05-20T07:17:36.693960
2015-01-23T14:41:46
2015-01-23T14:41:46
29,736,517
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
print("""--------------- Some Calculations ---------------""") print(314159e-5) print(10**6, 1j**2) print(3 + 2 * 4, 1 / 3) print("-" * 20) print((3.14159 * 16) ** 2) print(3.14159 * 16 ** 2) print(20 * "-") print("------------------\nEnd of Calculations\n--------------")
982f09e06da9b91e11bebb4ecf8d383bc704f702
a5cf1d2fc478d490df05eb198d1a0fb77fcb0bc9
/flask_oauthlib/contrib/client/__init__.py
4b777b4430dcbd3daf2326ea063c4e02dca552ae
[ "BSD-3-Clause" ]
permissive
ageis/flask-oauthlib
516df1a661441cc46c26ab5e9b07fa328066a5f4
9414e002505354e8b5b3aa5f54a0889c836aa732
refs/heads/master
2021-01-05T05:11:59.090723
2020-04-19T07:20:23
2020-04-19T07:20:23
240,891,932
1
0
BSD-3-Clause
2020-04-19T07:20:24
2020-02-16T12:58:27
null
UTF-8
Python
false
false
3,277
py
import copy from flask import current_app from werkzeug.local import LocalProxy from .application import OAuth1Application, OAuth2Application __all__ = ['OAuth', 'OAuth1Application', 'OAuth2Application'] class OAuth(object): """The extension to integrate OAuth 1.0a/2.0 to Flask applications. oauth = OAuth(app) or:: oauth = OAuth() oauth.init_app(app) """ state_key = 'oauthlib.contrib.client' def __init__(self, app=None): self.remote_apps = {} if app is not None: self.init_app(app) def init_app(self, app): app.extensions = getattr(app, 'extensions', {}) app.extensions[self.state_key] = OAuthState() def add_remote_app(self, remote_app, name=None, **kwargs): """Adds remote application and applies custom attributes on it. If the application instance's name is different from the argument provided name, or the keyword arguments is not empty, then the application instance will not be modified but be copied as a prototype. :param remote_app: the remote application instance. :type remote_app: the subclasses of :class:`BaseApplication` :params kwargs: the overriding attributes for the application instance. """ if name is None: name = remote_app.name if name != remote_app.name or kwargs: remote_app = copy.copy(remote_app) remote_app.name = name vars(remote_app).update(kwargs) if not hasattr(remote_app, 'clients'): remote_app.clients = cached_clients self.remote_apps[name] = remote_app return remote_app def remote_app(self, name, version=None, **kwargs): """Creates and adds new remote application. :param name: the remote application's name. :param version: '1' or '2', the version code of OAuth protocol. :param kwargs: the attributes of remote application. """ if version is None: if 'request_token_url' in kwargs: version = '1' else: version = '2' if version == '1': remote_app = OAuth1Application(name, clients=cached_clients) elif version == '2': remote_app = OAuth2Application(name, clients=cached_clients) else: raise ValueError('unkonwn version %r' % version) return self.add_remote_app(remote_app, **kwargs) def __getitem__(self, name): return self.remote_apps[name] def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: app = self.remote_apps.get(key) if app: return app raise AttributeError('No such app: %s' % key) class OAuthState(object): def __init__(self): self.cached_clients = {} def get_cached_clients(): """Gets the cached clients dictionary in current context.""" if OAuth.state_key not in current_app.extensions: raise RuntimeError('%r is not initialized.' % current_app) state = current_app.extensions[OAuth.state_key] return state.cached_clients cached_clients = LocalProxy(get_cached_clients)
8113e61753b63a1adf848618b5af0bff3890f601
eecbf2f570b46e5a890847288144f2df8097d988
/awlsim/core/instructions/insn_zr.py
f279e701766a8124bf9e436cb8dc38b157639018
[]
no_license
ITI/PLCNet
8ebb34dc57862abfc3a635fb3cee197601cade71
7f2c1a9d3a8a0ca8d8ab9a8027c65bc0ff0db64c
refs/heads/master
2020-06-10T00:19:14.916423
2016-10-01T06:53:38
2016-10-01T06:53:38
193,533,866
2
0
null
2019-06-24T15:42:51
2019-06-24T15:42:50
null
UTF-8
Python
false
false
1,490
py
# -*- coding: utf-8 -*- # # AWL simulator - instructions # # Copyright 2012-2014 Michael Buesch <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # from __future__ import division, absolute_import, print_function, unicode_literals from awlsim.common.compat import * from awlsim.core.instructions.main import * #@nocy from awlsim.core.operators import * #from awlsim.core.instructions.main cimport * #@cy class AwlInsn_ZR(AwlInsn): #+cdef __slots__ = () def __init__(self, cpu, rawInsn): AwlInsn.__init__(self, cpu, AwlInsn.TYPE_ZR, rawInsn) self.assertOpCount(1) def staticSanityChecks(self): self.ops[0].assertType(AwlOperator.MEM_Z) def run(self): #@cy cdef S7StatusWord s s = self.cpu.statusWord self.cpu.getCounter(self.ops[0].resolve(True).value.byteOffset).run_ZR(s.VKE) s.OR, s.NER = 0, 0
f45bd2b725edf19a4c9f528650707dc5900d8683
83959c80527cd727042bc3467b6e537fca8bef1a
/kbengine_stone_assets/scripts/common/tornado/platform/windows.py
b1d701de4fcc5ac181dde0a8d77764622db74e77
[]
no_license
shanlihou/ttxiaoyouxi
696697807cbf9d1fe41fb10fe64f8f29d5bd8864
bca20863c4e1b5d6f3f835fee17c700292918a6c
refs/heads/master
2020-04-26T13:12:13.153761
2019-03-03T12:36:04
2019-03-03T12:36:04
173,572,763
1
1
null
null
null
null
UTF-8
Python
false
false
727
py
# NOTE: win32 support is currently experimental, and not recommended # for production use. #from __future__ import absolute_import, division, print_function, with_statement #import ctypes # type: ignore #import ctypes.wintypes # type: ignore # See: http://msdn.microsoft.com/en-us/library/ms724935(VS.85).aspx #SetHandleInformation = ctypes.windll.kernel32.SetHandleInformation #SetHandleInformation.argtypes = (ctypes.wintypes.HANDLE, ctypes.wintypes.DWORD, ctypes.wintypes.DWORD) #SetHandleInformation.restype = ctypes.wintypes.BOOL #HANDLE_FLAG_INHERIT = 0x00000001 def set_close_exec(fd): # success = SetHandleInformation(fd, HANDLE_FLAG_INHERIT, 0) # if not success: # raise ctypes.WinError() pass
d50db3f0895bfcfe6b6a9eb5f62c99302983871e
a29c6e83ae4f9010941d15c8fd4cfc67680bb054
/pandas/pandas_sample.py
11ec8f3f3066928a773948c21c7d305883c6a906
[]
no_license
ym0179/bit_seoul
f1ff5faf4ae20fbc8c0e2ed10a005f8bd4b2c2b8
14d1fb2752312790c39898fc53a45c1cf427a4d1
refs/heads/master
2023-02-27T19:52:23.577540
2021-02-08T00:30:16
2021-02-08T00:30:16
311,265,926
1
0
null
null
null
null
UTF-8
Python
false
false
1,632
py
#Day9 #2020-11-19 import pandas as pd import numpy as np from numpy.random import randn np.random.seed(100) data = randn(5,4) #5행 4열 print(data) df = pd.DataFrame(data, index='A B C D E'.split(), columns='가 나 다 라'.split()) print(df) data2 = [[1,2,3,4,], [5,6,7,8], [9,10,11,12], [13,14,15,16], [17,18,19,20]] #list df2 = pd.DataFrame(data2, index=['A','B','C','D','E'], columns=['가','나','다','라']) print(df2) # 가 나 다 라 # A 1 2 3 4 # B 5 6 7 8 # C 9 10 11 12 # D 13 14 15 16 # E 17 18 19 20 df3 = pd.DataFrame(np.array([[1,2,3],[4,5,6]])) print(df3) print("df2['나'] :\n",df2['나']) #2,6,10,14,18 print("df2['나','라'] :\n",df2[['나','라']]) #2,6,10,14,18 #4,8,12,16,20 # print("df2[0] : ", df2[0]) #에러, 컬럼명으로 해줘야 에러 안남 # print("df2.loc['나'] : \n", df2.loc['나']) #에러, loc 행에서만 사용 가능 (행과 함께 사용) print("df2.iloc[:,2] : \n", df2.iloc[:, 2]) #3,7,11,15,19 # print("df2[:,2] : \n", df2[:, 2]) #에러 #행 print("df2.loc['A'] : \n", df2.loc['A']) #A행 출력 print("df2.loc['A','C'] : \n", df2.loc[['A','C']]) #A, C행 출력 print("df2.iloc[0] : \n", df2.iloc[0]) #A행 출력 print("df2.iloc[0,1] : \n", df2.iloc[[0,2]]) #A, C행 출력 #행렬 print("df2.loc[['A','B'], ['나','다']] : \n",df2.loc[['A','B'], ['나','다']]) #한개의 값만 확인 print("df2.loc['E','다'] : \n",df2.loc['E','다']) #19 print("df2.iloc[4,2] : \n",df2.iloc[4,2]) #19 print("df2.iloc[4][2] : \n",df2.iloc[4][2]) #19
ddc3a481f63796292ef24894d2303cc7aa6bb7c0
de996400d54cc2073671e2bab976534e8263bacb
/molecule-design/moldesign/sample/__init__.py
6a4baed4f892c46a1a9b987c82b38d3e5e6e5344
[]
no_license
tskluzac/colmena
c865e233d0f4cea20f2d3e14ef73425aee5bf78f
042ce37e5acc8a240845b8cce11effe832c1c913
refs/heads/master
2022-11-28T17:52:19.819967
2020-08-06T19:41:49
2020-08-06T19:41:49
285,658,744
0
0
null
2020-08-06T19:52:04
2020-08-06T19:52:03
null
UTF-8
Python
false
false
42
py
"""Functions for sampling new molecules"""
bf56ed2037a8d92ae1cd83b1ca14a15536c85df2
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2385/60677/251112.py
a199b651fd4db5634ac382da13966aee61e6f9bc
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
199
py
times=int(input()) for i in range(times): n=int(input()) k=1 answer=1 while n-2*k+2>0: answer+=n-2*k+2 k+=1 if n==4: answer=8 print((answer)%(10**9+7))
a4c56e977fcf8aa0aa8b1d5700eac711f0e99616
e1ffebca6a0f185663c779462e3ca27866f557b8
/GROUP_project/project/api/migrations/0002_auto_20191204_0429.py
9dcf91bc2afb5abac10e0bf7a31e18ff8156c88e
[]
no_license
asselyer/Backend2019
d8d85d7850261880fe4aeef9092b0a8c7b1b6767
ec5931e2bd22ec62e68592a4199c00184f4dacc3
refs/heads/master
2020-07-24T13:38:21.246351
2019-12-04T03:16:27
2019-12-04T03:16:27
207,944,768
0
0
null
null
null
null
UTF-8
Python
false
false
2,680
py
# Generated by Django 2.2.3 on 2019-12-03 22:29 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('api', '0001_initial'), ] operations = [ migrations.AddField( model_name='postfile', name='creator', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='postcomment', name='creator', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='favoritepost', name='users', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='blog', name='category', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='blogs', to='api.BlogCategory'), ), migrations.AddField( model_name='blog', name='creator', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='created_blogs', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='postfile', name='posts', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='post_documents', to='api.Post'), ), migrations.AddField( model_name='postcomment', name='posts', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='post_comments', to='api.Post'), ), migrations.AddField( model_name='post', name='blog', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='posts', to='api.Blog'), ), migrations.AddField( model_name='post', name='creator', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='created_posts', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='favoritepost', name='posts', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='likes', to='api.Post'), ), ]
af3d099f71d75651e8da95d4362fc5e824ea06bf
1886065d10342822b10063cd908a690fccf03d8b
/appengine/findit/waterfall/analyze_build_failure_pipeline.py
df1014f2a3c07efd6b1e1306d39bff06edb9fa1f
[ "BSD-3-Clause" ]
permissive
TrellixVulnTeam/chromium-infra_A6Y5
26af0dee12f89595ebc6a040210c9f62d8ded763
d27ac0b230bedae4bc968515b02927cf9e17c2b7
refs/heads/master
2023-03-16T15:33:31.015840
2017-01-31T19:55:59
2017-01-31T20:06:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,205
py
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from common import appengine_util from common.pipeline_wrapper import BasePipeline from common.pipeline_wrapper import pipeline from libs import time_util from model import analysis_status from model.wf_analysis import WfAnalysis from waterfall.detect_first_failure_pipeline import DetectFirstFailurePipeline from waterfall.extract_deps_info_pipeline import ExtractDEPSInfoPipeline from waterfall.extract_signal_pipeline import ExtractSignalPipeline from waterfall.flake.trigger_flake_analyses_pipeline import ( TriggerFlakeAnalysesPipeline) from waterfall.identify_culprit_pipeline import IdentifyCulpritPipeline from waterfall.pull_changelog_pipeline import PullChangelogPipeline from waterfall.start_try_job_on_demand_pipeline import ( StartTryJobOnDemandPipeline) from waterfall.trigger_swarming_tasks_pipeline import ( TriggerSwarmingTasksPipeline) class AnalyzeBuildFailurePipeline(BasePipeline): def __init__(self, master_name, builder_name, build_number, build_completed, force_rerun_try_job): super(AnalyzeBuildFailurePipeline, self).__init__( master_name, builder_name, build_number, build_completed, force_rerun_try_job) self.master_name = master_name self.builder_name = builder_name self.build_number = build_number def _LogUnexpectedAborting(self, was_aborted): """Marks the WfAnalysis status as error, indicating that it was aborted. Args: was_aborted (bool): True if the pipeline was aborted, otherwise False. """ if not was_aborted: return analysis = WfAnalysis.Get( self.master_name, self.builder_name, self.build_number) # Heuristic analysis could have already completed, while triggering the # try job kept failing and lead to the abortion. if not analysis.completed: analysis.status = analysis_status.ERROR analysis.result_status = None analysis.put() def finalized(self): self._LogUnexpectedAborting(self.was_aborted) def _ResetAnalysis(self, master_name, builder_name, build_number): analysis = WfAnalysis.Get(master_name, builder_name, build_number) analysis.pipeline_status_path = self.pipeline_status_path() analysis.status = analysis_status.RUNNING analysis.result_status = None analysis.start_time = time_util.GetUTCNow() analysis.version = appengine_util.GetCurrentVersion() analysis.end_time = None analysis.put() # Arguments number differs from overridden method - pylint: disable=W0221 def run(self, master_name, builder_name, build_number, build_completed, force_rerun_try_job): self._ResetAnalysis(master_name, builder_name, build_number) # The yield statements below return PipelineFutures, which allow subsequent # pipelines to refer to previous output values. # https://github.com/GoogleCloudPlatform/appengine-pipelines/wiki/Python # Heuristic Approach. failure_info = yield DetectFirstFailurePipeline( master_name, builder_name, build_number) change_logs = yield PullChangelogPipeline(failure_info) deps_info = yield ExtractDEPSInfoPipeline(failure_info, change_logs) signals = yield ExtractSignalPipeline(failure_info) heuristic_result = yield IdentifyCulpritPipeline( failure_info, change_logs, deps_info, signals, build_completed) # Try job approach. with pipeline.InOrder(): # Swarming rerun. # Triggers swarming tasks when first time test failure happens. # This pipeline will run before build completes. yield TriggerSwarmingTasksPipeline( master_name, builder_name, build_number, failure_info) # Checks if first time failures happen and starts a try job if yes. yield StartTryJobOnDemandPipeline( master_name, builder_name, build_number, failure_info, signals, heuristic_result, build_completed, force_rerun_try_job) # Trigger flake analysis on flaky tests, if any. yield TriggerFlakeAnalysesPipeline( master_name, builder_name, build_number)
350dcd30a907105662e6bda717ac24f31ad8370f
2136701f48ad131084b331039d864f85988cf451
/spider/.svn/pristine/35/350dcd30a907105662e6bda717ac24f31ad8370f.svn-base
c6842a58e1a64674b74afbe2cc40404b328236bd
[]
no_license
cuiyulin77/other
9d374a47d482f1c3f9ef0f3ac4429487643b04b9
c00cafaf7607452966fa523c4d0b04edb7f153e6
refs/heads/master
2020-05-18T04:24:26.095929
2019-04-30T06:37:53
2019-04-30T06:37:53
184,169,488
0
0
null
null
null
null
UTF-8
Python
false
false
1,692
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html from pymysql import * import re class WbUserPipeline(object): def process_item(self, item, spider): return item class DBPipeline(object): def __init__(self): # 连接数据库 self.connect = connect( # host='47.92.77.18', host='192.168.3.15', # host='127.0.0.1', db='spider', user='root', # password='admin8152', # 生产服务器 password='root', port=3306, charset='utf8' ) self.cursor = self.connect.cursor() def process_item(self, item, spider): # 获取情感分类 try: # 插入数据 print("*"*100) user_id = re.match(r'https\:\/\/m\.weibo\.cn\/u\/(\d+)\?uid.*', item['user_url']).group(1) print('user_id',user_id) self.cursor.execute( "INSERT INTO weibo_user(id,summary,user_name,user_id,user_url,fans,followers,get_time) VALUES (%s,%s,%s,%s,%s,%s,%s,%s)", ('0', str(item['summary']),str(item['user_name']), str(user_id), str(item['user_url']), str(item['fans']), str(item['followers']), str(item['get_time'])), ) self.connect.commit() print('mysql一条数据插入成功') except Exception as e: # 出现错误时打印错误日志 print(e) return item
2e67dafe7fac1cbbc5927705e346ad37a6ed6c89
fcde32709c62b8ee86da459bb7c8eee52c848118
/爬虫1903/day09/Baidu/Baidu/settings.py
6b94193878c3f25ccff9e68ecba1f7857d9f4e73
[]
no_license
klaus2015/py_base
6b92d362c3d7dc0e09205a037f4d580381dac94d
ec32c731c1c2f6a0dab87f1d167397e4fa86b8de
refs/heads/master
2022-07-28T15:49:30.383648
2020-05-11T15:31:43
2020-05-11T15:31:43
261,777,278
0
0
null
null
null
null
UTF-8
Python
false
false
3,181
py
# -*- coding: utf-8 -*- # Scrapy settings for Baidu project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'Baidu' SPIDER_MODULES = ['Baidu.spiders'] NEWSPIDER_MODULE = 'Baidu.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'Baidu (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) CONCURRENT_REQUESTS = 20 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'Baidu.middlewares.BaiduSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { 'Baidu.middlewares.BaiduDownloaderMiddleware': 543, 'Baidu.middlewares.RandomUserAgentDownloaderMiddleware':200, 'Baidu.middlewares.RandomProxyDownloaderMiddleware':250, } # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'Baidu.pipelines.BaiduPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
727bfe5706d30425d6dc1953d30b21f36aeb2901
74eafe55252eff97fd9a2e1e6564ecf243f7c058
/oop/squares_gen.py
ab286f9884b1857157fe12a048b69b5aa72e1f91
[]
no_license
srikanthpragada/demo_24_june_2019
c5ddef71eb721367d656924d312e9ca7ac80c34a
fa7aca273d1ffe6ded34795a639910ab91ce66a0
refs/heads/master
2020-06-11T10:19:22.384096
2019-08-01T15:28:26
2019-08-01T15:28:26
193,929,558
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
def squares(num): for i in range(1, num + 1): yield i * i for n in squares(5): print(n)
f7d45287bca0ec55ea32d9ed5da25480ec9a3285
e608c9525e88ba3589cb4a2fd47f6a2e0442bfb2
/pycorrector/seq2seq/corrector_model.py
02bd512d259867d51f01a8b89dbf7780a9222e09
[ "Apache-2.0" ]
permissive
YC-wind/pycorrector
9f5c14d2cc0cf6f53ff253c6035cf816e1f334d8
c68ea194a95949f6d6ffb7cb33dfc6679e1bbc9e
refs/heads/master
2020-03-16T21:56:53.394037
2018-05-02T04:05:17
2018-05-02T04:05:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,328
py
# -*- coding: utf-8 -*- # Author: XuMing <[email protected]> # Brief: import random import numpy as np import tensorflow as tf from tensorflow.python.ops import array_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops import seq2seq from reader import PAD_ID, GO_ID class CorrectorModel(object): """Sequence-to-sequence model used to correct grammatical errors in text. NOTE: mostly copied from TensorFlow's seq2seq_model.py; only modifications are: - the introduction of RMSProp as an optional optimization algorithm - the introduction of a "projection bias" that biases decoding towards selecting tokens that appeared in the input """ def __init__(self, source_vocab_size, target_vocab_size, buckets, size, num_layers, max_gradient_norm, batch_size, learning_rate, learning_rate_decay_factor, use_lstm=False, num_samples=512, forward_only=False, config=None, corrective_tokens_mask=None): """Create the model. Args: source_vocab_size: size of the source vocabulary. target_vocab_size: size of the target vocabulary. buckets: a list of pairs (I, O), where I specifies maximum input length that will be processed in that bucket, and O specifies maximum output length. Training instances that have longer than I or outputs longer than O will be pushed to the next bucket and padded accordingly. We assume that the list is sorted, e.g., [(2, 4), (8, 16)]. size: number of units in each layer of the model. num_layers: number of layers in the model. max_gradient_norm: gradients will be clipped to maximally this norm. batch_size: the size of the batches used during training; the model construction is independent of batch_size, so it can be changed after initialization if this is convenient, e.g., for decoding. learning_rate: learning rate to start with. learning_rate_decay_factor: decay learning rate by this much when needed. use_lstm: if true, we use LSTM cells instead of GRU cells. num_samples: number of samples for sampled softmax. forward_only: if set, we do not construct the backward pass in the model. """ self.source_vocab_size = source_vocab_size self.target_vocab_size = target_vocab_size self.buckets = buckets self.batch_size = batch_size self.learning_rate = tf.Variable(float(learning_rate), trainable=False) self.learning_rate_decay_op = self.learning_rate.assign( self.learning_rate * learning_rate_decay_factor) self.global_step = tf.Variable(0, trainable=False) self.config = config # Feeds for inputs. self.encoder_inputs = [] self.decoder_inputs = [] self.target_weights = [] for i in range(buckets[-1][0]): # Last bucket is the biggest one. self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="encoder{0}".format( i))) for i in range(buckets[-1][1] + 1): self.decoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="decoder{0}".format( i))) self.target_weights.append(tf.placeholder(tf.float32, shape=[None], name="weight{0}".format( i))) # One hot encoding of corrective tokens. corrective_tokens_tensor = tf.constant(corrective_tokens_mask if corrective_tokens_mask else np.zeros(self.target_vocab_size), shape=[self.target_vocab_size], dtype=tf.float32) batched_corrective_tokens = tf.stack( [corrective_tokens_tensor] * self.batch_size) self.batch_corrective_tokens_mask = batch_corrective_tokens_mask = \ tf.placeholder( tf.float32, shape=[None, None], name="corrective_tokens") # Our targets are decoder inputs shifted by one. targets = [self.decoder_inputs[i + 1] for i in range(len(self.decoder_inputs) - 1)] # If we use sampled softmax, we need an output projection. output_projection = None softmax_loss_function = None # Sampled softmax only makes sense if we sample less than vocabulary # size. if num_samples > 0 and num_samples < self.target_vocab_size: w = tf.get_variable("proj_w", [size, self.target_vocab_size]) w_t = tf.transpose(w) b = tf.get_variable("proj_b", [self.target_vocab_size]) output_projection = (w, b) def sampled_loss(labels, logits): labels = tf.reshape(labels, [-1, 1]) return tf.nn.sampled_softmax_loss(w_t, b, labels, logits, num_samples, self.target_vocab_size) softmax_loss_function = sampled_loss # Create the internal multi-layer cell for our RNN. single_cell = tf.nn.rnn_cell.GRUCell(size) if use_lstm: single_cell = tf.nn.rnn_cell.BasicLSTMCell(size) cell = single_cell if num_layers > 1: cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] * num_layers) # The seq2seq function: we use embedding for the input and attention. def seq2seq_f(encoder_inputs, decoder_inputs, do_decode): """ :param encoder_inputs: list of length equal to the input bucket length of 1-D tensors (of length equal to the batch size) whose elements consist of the token index of each sample in the batch at a given index in the input. :param decoder_inputs: :param do_decode: :return: """ if do_decode: # Modify bias here to bias the model towards selecting words # present in the input sentence. input_bias = self.build_input_bias(encoder_inputs, batch_corrective_tokens_mask) # Redefined seq2seq to allow for the injection of a special # decoding function that return seq2seq.embedding_attention_seq2seq( encoder_inputs, decoder_inputs, cell, num_encoder_symbols=source_vocab_size, num_decoder_symbols=target_vocab_size, embedding_size=size, output_projection=output_projection, feed_previous=do_decode, loop_fn_factory= apply_input_bias_and_extract_argmax_fn_factory(input_bias)) else: return seq2seq.embedding_attention_seq2seq( encoder_inputs, decoder_inputs, cell, num_encoder_symbols=source_vocab_size, num_decoder_symbols=target_vocab_size, embedding_size=size, output_projection=output_projection, feed_previous=do_decode) # Training outputs and losses. if forward_only: self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets( self.encoder_inputs, self.decoder_inputs, targets, self.target_weights, buckets, lambda x, y: seq2seq_f(x, y, True), softmax_loss_function=softmax_loss_function) if output_projection is not None: for b in range(len(buckets)): # We need to apply the same input bias used during model # evaluation when decoding. input_bias = self.build_input_bias( self.encoder_inputs[:buckets[b][0]], batch_corrective_tokens_mask) self.outputs[b] = [ project_and_apply_input_bias(output, output_projection, input_bias) for output in self.outputs[b]] else: self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets( self.encoder_inputs, self.decoder_inputs, targets, self.target_weights, buckets, lambda x, y: seq2seq_f(x, y, False), softmax_loss_function=softmax_loss_function) # Gradients and SGD update operation for training the model. params = tf.trainable_variables() if not forward_only: self.gradient_norms = [] self.updates = [] opt = tf.train.RMSPropOptimizer(0.001) if self.config.use_rms_prop \ else tf.train.GradientDescentOptimizer(self.learning_rate) # opt = tf.train.AdamOptimizer() for b in range(len(buckets)): gradients = tf.gradients(self.losses[b], params) clipped_gradients, norm = tf.clip_by_global_norm( gradients, max_gradient_norm) self.gradient_norms.append(norm) self.updates.append(opt.apply_gradients( zip(clipped_gradients, params), global_step=self.global_step)) self.saver = tf.train.Saver(tf.global_variables()) def build_input_bias(self, encoder_inputs, batch_corrective_tokens_mask): packed_one_hot_inputs = tf.one_hot(indices=tf.stack( encoder_inputs, axis=1), depth=self.target_vocab_size) return tf.maximum(batch_corrective_tokens_mask, tf.reduce_max(packed_one_hot_inputs, reduction_indices=1)) def step(self, session, encoder_inputs, decoder_inputs, target_weights, bucket_id, forward_only, corrective_tokens=None): """Run a step of the model feeding the given inputs. Args: session: tensorflow session to use. encoder_inputs: list of numpy int vectors to feed as encoder inputs. decoder_inputs: list of numpy int vectors to feed as decoder inputs. target_weights: list of numpy float vectors to feed as target weights. bucket_id: which bucket of the model to use. forward_only: whether to do the backward step or only forward. Returns: A triple consisting of gradient norm (or None if we did not do backward), average perplexity, and the outputs. Raises: ValueError: if length of encoder_inputs, decoder_inputs, or target_weights disagrees with bucket size for the specified bucket_id. """ # Check if the sizes match. encoder_size, decoder_size = self.buckets[bucket_id] if len(encoder_inputs) != encoder_size: raise ValueError("Encoder length must be equal to the one in bucket," " %d != %d." % (len(encoder_inputs), encoder_size)) if len(decoder_inputs) != decoder_size: raise ValueError("Decoder length must be equal to the one in bucket," " %d != %d." % (len(decoder_inputs), decoder_size)) if len(target_weights) != decoder_size: raise ValueError("Weights length must be equal to the one in bucket," " %d != %d." % (len(target_weights), decoder_size)) # Input feed: encoder inputs, decoder inputs, target_weights, # as provided. input_feed = {} for l in range(encoder_size): input_feed[self.encoder_inputs[l].name] = encoder_inputs[l] for l in range(decoder_size): input_feed[self.decoder_inputs[l].name] = decoder_inputs[l] input_feed[self.target_weights[l].name] = target_weights[l] corrective_tokens_vector = (corrective_tokens if corrective_tokens is not None else np.zeros(self.target_vocab_size)) batch_corrective_tokens = np.repeat([corrective_tokens_vector], self.batch_size, axis=0) input_feed[self.batch_corrective_tokens_mask.name] = ( batch_corrective_tokens) # Since our targets are decoder inputs shifted by one, we need one more. last_target = self.decoder_inputs[decoder_size].name input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32) # Output feed: depends on whether we do a backward step or not. if not forward_only: output_feed = [self.updates[bucket_id], # Update Op that does SGD. self.gradient_norms[bucket_id], # Gradient norm. self.losses[bucket_id]] # Loss for this batch. else: output_feed = [self.losses[bucket_id]] # Loss for this batch. for l in range(decoder_size): # Output logits. output_feed.append(self.outputs[bucket_id][l]) outputs = session.run(output_feed, input_feed) if not forward_only: # Gradient norm, loss, no outputs. return outputs[1], outputs[2], None else: # No gradient norm, loss, outputs. return None, outputs[0], outputs[1:] def get_batch(self, data, bucket_id): """Get a random batch of data from the specified bucket, prepare for step. To feed data in step(..) it must be a list of batch-major vectors, while data here contains single length-major cases. So the main logic of this function is to re-index data cases to be in the proper format for feeding. Args: data: a tuple of size len(self.buckets) in which each element contains lists of pairs of input and output data that we use to create a batch. bucket_id: integer, which bucket to get the batch for. Returns: The triple (encoder_inputs, decoder_inputs, target_weights) for the constructed batch that has the proper format to call step(...) later. """ encoder_size, decoder_size = self.buckets[bucket_id] encoder_inputs, decoder_inputs = [], [] # Get a random batch of encoder and decoder inputs from data, # pad them if needed, reverse encoder inputs and add GO to decoder. for _ in range(self.batch_size): encoder_input, decoder_input = random.choice(data[bucket_id]) # Encoder inputs are padded and then reversed. encoder_pad = [PAD_ID] * ( encoder_size - len(encoder_input)) encoder_inputs.append(list(reversed(encoder_input + encoder_pad))) # Decoder inputs get an extra "GO" symbol, and are padded then. decoder_pad_size = decoder_size - len(decoder_input) - 1 decoder_inputs.append([GO_ID] + decoder_input + [PAD_ID] * decoder_pad_size) # Now we create batch-major vectors from the data selected above. batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], [] # Batch encoder inputs are just re-indexed encoder_inputs. for length_idx in range(encoder_size): batch_encoder_inputs.append( np.array([encoder_inputs[batch_idx][length_idx] for batch_idx in range(self.batch_size)], dtype=np.int32)) # Batch decoder inputs are re-indexed decoder_inputs, we create weights. for length_idx in range(decoder_size): batch_decoder_inputs.append( np.array([decoder_inputs[batch_idx][length_idx] for batch_idx in range(self.batch_size)], dtype=np.int32)) # Create target_weights to be 0 for targets that are padding. batch_weight = np.ones(self.batch_size, dtype=np.float32) for batch_idx in range(self.batch_size): # We set weight to 0 if the corresponding target is a PAD # symbol. The corresponding target is decoder_input shifted by 1 # forward. if length_idx < decoder_size - 1: target = decoder_inputs[batch_idx][length_idx + 1] if length_idx == decoder_size - 1 or target == PAD_ID: batch_weight[batch_idx] = 0.0 batch_weights.append(batch_weight) return batch_encoder_inputs, batch_decoder_inputs, batch_weights def project_and_apply_input_bias(logits, output_projection, input_bias): if output_projection is not None: logits = nn_ops.xw_plus_b( logits, output_projection[0], output_projection[1]) # Apply softmax to ensure all tokens have a positive value. probs = tf.nn.softmax(logits) # Apply input bias, which is a mask of shape [batch, vocab len] # where each token from the input in addition to all "corrective" # tokens are set to 1.0. return tf.multiply(probs, input_bias) def apply_input_bias_and_extract_argmax_fn_factory(input_bias): """ :param encoder_inputs: list of length equal to the input bucket length of 1-D tensors (of length equal to the batch size) whose elements consist of the token index of each sample in the batch at a given index in the input. :return: """ def fn_factory(embedding, output_projection=None, update_embedding=True): """Get a loop_function that extracts the previous symbol and embeds it. Args: embedding: embedding tensor for symbols. output_projection: None or a pair (W, B). If provided, each fed previous output will first be multiplied by W and added B. update_embedding: Boolean; if False, the gradients will not propagate through the embeddings. Returns: A loop function. """ def loop_function(prev, _): prev = project_and_apply_input_bias(prev, output_projection, input_bias) prev_symbol = math_ops.argmax(prev, 1) # Note that gradients will not propagate through the second # parameter of embedding_lookup. emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol) if not update_embedding: emb_prev = array_ops.stop_gradient(emb_prev) return emb_prev, prev_symbol return loop_function return fn_factory
93320c27e48d82cb9a176e9aed8825a5e95f31a2
cee3e57aaae9eaeb16f696e3cdad5f32c3af6861
/evennia/server/portal/mssp.py
5ff0a7b319a0e8139ee16b4a057e3b81c4e8bf0c
[ "BSD-3-Clause" ]
permissive
Sa1tC/evennia
8ef7fae9cbeb2d46bd6cdf5c5482331f9e0846ff
1248428d132fde1b975678b53e22c1ca68a73a43
refs/heads/master
2021-01-23T12:32:03.594263
2017-05-22T06:21:25
2017-05-22T06:21:25
93,164,000
0
1
null
2017-06-02T12:36:55
2017-06-02T12:36:55
null
UTF-8
Python
false
false
6,861
py
""" MSSP - Mud Server Status Protocol This implements the MSSP telnet protocol as per http://tintin.sourceforge.net/mssp/. MSSP allows web portals and listings to have their crawlers find the mud and automatically extract relevant information about it, such as genre, how many active players and so on. """ from builtins import object from django.conf import settings from evennia.utils import utils MSSP = chr(70) MSSP_VAR = chr(1) MSSP_VAL = chr(2) # try to get the customized mssp info, if it exists. MSSPTable_CUSTOM = utils.variable_from_module(settings.MSSP_META_MODULE, "MSSPTable", default={}) class Mssp(object): """ Implements the MSSP protocol. Add this to a variable on the telnet protocol to set it up. """ def __init__(self, protocol): """ initialize MSSP by storing protocol on ourselves and calling the client to see if it supports MSSP. Args: protocol (Protocol): The active protocol instance. """ self.protocol = protocol self.protocol.will(MSSP).addCallbacks(self.do_mssp, self.no_mssp) def get_player_count(self): """ Get number of logged-in players. Returns: count (int): The number of players in the MUD. """ return str(self.protocol.sessionhandler.count_loggedin()) def get_uptime(self): """ Get how long the portal has been online (reloads are not counted). Returns: uptime (int): Number of seconds of uptime. """ return str(self.protocol.sessionhandler.uptime) def no_mssp(self, option): """ Called when mssp is not requested. This is the normal operation. Args: option (Option): Not used. """ self.protocol.handshake_done() def do_mssp(self, option): """ Negotiate all the information. Args: option (Option): Not used. """ self.mssp_table = { # Required fields "NAME": "Evennia", "PLAYERS": self.get_player_count, "UPTIME" : self.get_uptime, # Generic "CRAWL DELAY": "-1", "HOSTNAME": "", # current or new hostname "PORT": ["4000"], # most important port should be last in list "CODEBASE": "Evennia", "CONTACT": "", # email for contacting the mud "CREATED": "", # year MUD was created "ICON": "", # url to icon 32x32 or larger; <32kb. "IP": "", # current or new IP address "LANGUAGE": "", # name of language used, e.g. English "LOCATION": "", # full English name of server country "MINIMUM AGE": "0", # set to 0 if not applicable "WEBSITE": "www.evennia.com", # Categorisation "FAMILY": "Custom", # evennia goes under 'Custom' "GENRE": "None", # Adult, Fantasy, Historical, Horror, Modern, None, or Science Fiction "GAMEPLAY": "None", # Adventure, Educational, Hack and Slash, None, # Player versus Player, Player versus Environment, # Roleplaying, Simulation, Social or Strategy "STATUS": "Open Beta", # Alpha, Closed Beta, Open Beta, Live "GAMESYSTEM": "Custom", # D&D, d20 System, World of Darkness, etc. Use Custom if homebrew "SUBGENRE": "None", # LASG, Medieval Fantasy, World War II, Frankenstein, # Cyberpunk, Dragonlance, etc. Or None if not available. # World "AREAS": "0", "HELPFILES": "0", "MOBILES": "0", "OBJECTS": "0", "ROOMS": "0", # use 0 if room-less "CLASSES": "0", # use 0 if class-less "LEVELS": "0", # use 0 if level-less "RACES": "0", # use 0 if race-less "SKILLS": "0", # use 0 if skill-less # Protocols set to 1 or 0) "ANSI": "1", "GMCP": "0", "ATCP": "0", "MCCP": "0", "MCP": "0", "MSDP": "0", "MSP": "0", "MXP": "0", "PUEBLO": "0", "SSL": "1", "UTF-8": "1", "ZMP": "0", "VT100": "0", "XTERM 256 COLORS": "0", # Commercial set to 1 or 0) "PAY TO PLAY": "0", "PAY FOR PERKS": "0", # Hiring set to 1 or 0) "HIRING BUILDERS": "0", "HIRING CODERS": "0", # Extended variables # World "DBSIZE": "0", "EXITS": "0", "EXTRA DESCRIPTIONS": "0", "MUDPROGS": "0", "MUDTRIGS": "0", "RESETS": "0", # Game (set to 1, 0 or one of the given alternatives) "ADULT MATERIAL": "0", "MULTICLASSING": "0", "NEWBIE FRIENDLY": "0", "PLAYER CITIES": "0", "PLAYER CLANS": "0", "PLAYER CRAFTING": "0", "PLAYER GUILDS": "0", "EQUIPMENT SYSTEM": "None", # "None", "Level", "Skill", "Both" "MULTIPLAYING": "None", # "None", "Restricted", "Full" "PLAYERKILLING": "None", # "None", "Restricted", "Full" "QUEST SYSTEM": "None", # "None", "Immortal Run", "Automated", "Integrated" "ROLEPLAYING": "None", # "None", "Accepted", "Encouraged", "Enforced" "TRAINING SYSTEM": "None", # "None", "Level", "Skill", "Both" "WORLD ORIGINALITY": "None", # "All Stock", "Mostly Stock", "Mostly Original", "All Original" } # update the static table with the custom one if MSSPTable_CUSTOM: self.mssp_table.update(MSSPTable_CUSTOM) varlist = '' for variable, value in self.mssp_table.items(): if callable(value): value = value() if utils.is_iter(value): for partval in value: varlist += MSSP_VAR + str(variable) + MSSP_VAL + str(partval) else: varlist += MSSP_VAR + str(variable) + MSSP_VAL + str(value) # send to crawler by subnegotiation self.protocol.requestNegotiation(MSSP, varlist) self.protocol.handshake_done()
aef3c3624058a9104e4a84e3fdb7e33668a84b8c
90d4b790f9a7198760fdbcfad6abd2da851f2f4e
/0x0F-python-object_relational_mapping/3-my_safe_filter_states.py
b2b27fdbdcc3fbb2c02bd4aa205bc8225158b438
[]
no_license
Murega14/holbertonschool-higher_level_programming
2817a532d7d6739ed046e350903e394ed1bae0a3
f29a4c4e74c01798cb51bfe5160432569a1ca833
refs/heads/master
2023-03-15T08:22:06.926537
2018-09-09T20:46:33
2018-09-09T20:46:33
572,548,803
1
0
null
2022-11-30T14:11:06
2022-11-30T14:10:32
null
UTF-8
Python
false
false
643
py
#!/usr/bin/python3 # gets all states via python yee boi with your own state SAFE def main(args): # gets all state stuff SAFELY if len(args) != 5: raise Exception("need 4 arguments!") db = MySQLdb.connect(host='localhost', user=args[1], passwd=args[2], db=args[3]) cur = db.cursor() cur.execute( "SELECT * FROM states WHERE name LIKE %s ORDER BY id ASC", (args[4],)) states = cur.fetchall() for state in states: print(state) if __name__ == "__main__": import sys import MySQLdb main(sys.argv)
c1ee39b1b2a7ca3e916a559da292bc53bfdc5b74
017f62ebc7357dc665723a5b4fa75294f31fda8f
/lib/jnpr/eznc/resrc/srx/nat/nat_proxy_arp.py
10fe27280370f10dad027ec9771f769faed67709
[ "Apache-2.0", "BSD-2-Clause" ]
permissive
cro/py-junos-eznc
c2588d9fde7b65ec523c558d741716f3a19621c7
4c111476cc8eb7599462379ddf55743ae30bbf5c
refs/heads/master
2021-01-20T16:36:20.034788
2013-11-19T19:17:32
2013-11-19T19:17:32
14,535,497
0
0
null
null
null
null
UTF-8
Python
false
false
2,235
py
# 3rd-party modules from lxml.builder import E # module packages from ...resource import Resource from .... import jxml as JXML class NatProxyArp( Resource ): """ [edit security nat proxy-arp interface <if_name> address <ip_prefix>] Resource namevar: tuple(if_name, ip_prefix) Description: This resource allows you to add/remove proxy-arp entries for NAT. At this time, there are no managed properties, so you can simply add or remove entries by the name tuple(if_name, ip_prefix) For example, to select an entry directly: entry = NatProxyArp(jdev, ('reth0.213','198.18.11.5')) Or using the bind mechanism: jdev.bind(parp=NatProxyArp) entry = jdev.parp[('reth0.213', '198.18.11.5')] To create it, you need to use the 'touch' option when invoking write() since there are no properites for proxy-arp entries if not entry.exists: entry.write(touch=True) And to remove the same entry: entry.delete() """ def _xml_at_top(self): return E.security(E.nat( E('proxy-arp', E.interface(E.name( self._name[0] ), E.address(E.name( self._name[1])) ) ) )) ##### ----------------------------------------------------------------------- ##### OVERLOADS ##### ----------------------------------------------------------------------- def rename(self, name): """ UNSUPPORTED """ raise RuntimeError("Unsupported for Resource: %s" % self.__class__.__name__) ##### ----------------------------------------------------------------------- ##### XML read ##### ----------------------------------------------------------------------- def _xml_at_res(self, xml): return xml.find('.//proxy-arp/interface') def _xml_to_py(self, as_xml, to_py ): Resource._r_has_xml_status( as_xml, to_py ) ##### ----------------------------------------------------------------------- ##### Resource List, Catalog ##### -- only executed by 'manager' resources ##### ----------------------------------------------------------------------- def _r_list(self): raise RuntimeError("@@@ NEED TO IMPLEMENT!") def _r_catalog(self): raise RuntimeError("@@@ NEED TO IMPLEMENT!")
8f26c0707c6e96062c78e160ebb53b168b45685b
b18ff1d2a88cdad6d8ca73a8e6c34943f7bee055
/toolcall/models/__init__.py
b223e50a69b3e81be3d40cd155596ad4cbf3849e
[ "MIT" ]
permissive
thebjorn/toolcall
9c812d608a67990dfb04b4e8bc1ebfcd4e7440c3
2c1597c8224958b4751cfb09f7a1b4439ca6df09
refs/heads/master
2021-06-13T21:33:12.495795
2019-08-31T10:50:55
2019-08-31T10:50:55
147,824,176
0
0
MIT
2021-06-10T20:46:47
2018-09-07T13:02:31
HTML
UTF-8
Python
false
false
53
py
# -*- coding: utf-8 -*- from .tool_models import *
9e9bd761750fdacff2550f9144c914ddc1e8529c
7bead245354e233f76fff4608938bf956abb84cf
/test/test_docx_table_cell.py
f1aec4840f9d6c266499020f55fa9f2df8b0c8a9
[ "Apache-2.0" ]
permissive
Cloudmersive/Cloudmersive.APIClient.Python.Convert
5ba499937b9664f37cb2700509a4ba93952e9d6c
dba2fe7257229ebdacd266531b3724552c651009
refs/heads/master
2021-10-28T23:12:42.698951
2021-10-18T03:44:49
2021-10-18T03:44:49
138,449,321
3
2
null
null
null
null
UTF-8
Python
false
false
955
py
# coding: utf-8 """ convertapi Convert API lets you effortlessly convert file formats and types. # noqa: E501 OpenAPI spec version: v1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import cloudmersive_convert_api_client from cloudmersive_convert_api_client.models.docx_table_cell import DocxTableCell # noqa: E501 from cloudmersive_convert_api_client.rest import ApiException class TestDocxTableCell(unittest.TestCase): """DocxTableCell unit test stubs""" def setUp(self): pass def tearDown(self): pass def testDocxTableCell(self): """Test DocxTableCell""" # FIXME: construct object with mandatory attributes with example values # model = cloudmersive_convert_api_client.models.docx_table_cell.DocxTableCell() # noqa: E501 pass if __name__ == '__main__': unittest.main()
689f7241d4dc56a641bc73e4a10d491e1b16ae55
a86864b0ca6bc1d4dbdd22c26257340b8131e859
/forms/contract_award.py
24bb6668c834f1225f8d923038e604378fd92b82
[ "MIT" ]
permissive
pudo-attic/ted-xml
95d00f4f02ce16677da7672d4f40478ef13fac11
627c100ba464f574c2c71f7584f05f3aabf480e8
refs/heads/master
2021-01-01T05:31:32.156917
2013-09-13T13:13:29
2013-09-13T13:13:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,149
py
from pprint import pprint from parseutil import Extractor LOOKUP = { 'appeal_body': { 'std': './/PROCEDURES_FOR_APPEAL/APPEAL_PROCEDURE_BODY_RESPONSIBLE//', 'util': './/APPEAL_PROCEDURES/RESPONSIBLE_FOR_APPEAL_PROCEDURES//', 'mil': './/PROCEDURES_FOR_APPEAL/APPEAL_PROCEDURE_BODY_RESPONSIBLE//' }, 'authority': { 'std': './/CONTRACTING_AUTHORITY_INFORMATION_CONTRACT_AWARD/NAME_ADDRESSES_CONTACT_CONTRACT_AWARD//', 'util': './/NAME_ADDRESSES_CONTACT_CONTRACT_AWARD_UTILITIES/CA_CE_CONCESSIONAIRE_PROFILE//', 'mil': './/CONTRACTING_AUTHORITY_INFORMATION_CONTRACT_AWARD_DEFENCE//CA_CE_CONCESSIONAIRE_PROFILE//', }, 'award_dest': { 'std': './/AWARD_OF_CONTRACT', 'util': './FD_CONTRACT_AWARD_UTILITIES/AWARD_CONTRACT_CONTRACT_AWARD_UTILITIES', 'mil': './/AWARD_OF_CONTRACT_DEFENCE' }, 'total_value': { 'std': './/TOTAL_FINAL_VALUE/COSTS_RANGE_AND_CURRENCY_WITH_VAT_RATE', 'util': './/OBJECT_CONTRACT_AWARD_UTILITIES/COSTS_RANGE_AND_CURRENCY_WITH_VAT_RATE', 'mil': './/TOTAL_FINAL_VALUE/COSTS_RANGE_AND_CURRENCY_WITH_VAT_RATE' }, 'award_description': { 'std': './/DESCRIPTION_AWARD_NOTICE_INFORMATION', 'util': './/OBJECT_CONTRACT_AWARD_UTILITIES/DESCRIPTION_CONTRACT_AWARD_UTILITIES', 'mil': './/DESCRIPTION_AWARD_NOTICE_INFORMATION_DEFENCE' }, 'short_desc': { 'std': './/DESCRIPTION_AWARD_NOTICE_INFORMATION/SHORT_CONTRACT_DESCRIPTION/P', 'util': './/DESCRIPTION_CONTRACT_AWARD_UTILITIES/SHORT_DESCRIPTION/P', 'mil': './/DESCRIPTION_AWARD_NOTICE_INFORMATION_DEFENCE/SHORT_CONTRACT_DESCRIPTION/P' }, 'reference': { 'std': './/ADMINISTRATIVE_INFORMATION_CONTRACT_AWARD/FILE_REFERENCE_NUMBER/P', 'util': './/ADMINISTRATIVE_INFO_CONTRACT_AWARD_UTILITIES/REFERENCE_NUMBER_ATTRIBUTED/P', 'mil': './/ADMINISTRATIVE_INFORMATION_CONTRACT_AWARD_DEFENCE/FILE_REFERENCE_NUMBER/P' }, 'additional_info': { 'std': './/COMPLEMENTARY_INFORMATION_CONTRACT_AWARD/ADDITIONAL_INFORMATION/P', 'util': './/COMPLEMENTARY_INFORMATION_CONTRACT_AWARD_UTILITIES/ADDITIONAL_INFORMATION/P', 'mil': './/COMPLEMENTARY_INFORMATION_CONTRACT_AWARD/ADDITIONAL_INFORMATION/P' }, 'electronic_auction': { 'std': './/F03_IS_ELECTRONIC_AUCTION_USABLE', 'util': './/F06_IS_ELECTRONIC_AUCTION_USABLE', 'mil': './/F18_IS_ELECTRONIC_AUCTION_USABLE' }, 'activity_type': { 'std': './/TYPE_AND_ACTIVITIES_AND_PURCHASING_ON_BEHALF//TYPE_OF_ACTIVITY', 'util': './/NOPATH', 'mil': './/TYPE_AND_ACTIVITIES_OR_CONTRACTING_ENTITY_AND_PURCHASING_ON_BEHALF//TYPE_OF_ACTIVITY' }, 'activity_type_other': { 'std': './/TYPE_AND_ACTIVITIES_AND_PURCHASING_ON_BEHALF//TYPE_OF_ACTIVITY_OTHER', 'util': './/NOPATH', 'mil': './/TYPE_AND_ACTIVITIES_OR_CONTRACTING_ENTITY_AND_PURCHASING_ON_BEHALF//TYPE_OF_ACTIVITY_OTHER' }, 'authority_type': { 'std': './/TYPE_AND_ACTIVITIES_AND_PURCHASING_ON_BEHALF//TYPE_OF_CONTRACTING_AUTHORITY', 'util': './/NOPATH', 'mil': './/TYPE_AND_ACTIVITIES_OR_CONTRACTING_ENTITY_AND_PURCHASING_ON_BEHALF//TYPE_OF_CONTRACTING_AUTHORITY' }, 'authority_type_other': { 'std': './/TYPE_AND_ACTIVITIES_AND_PURCHASING_ON_BEHALF//TYPE_AND_ACTIVITIES/TYPE_OF_CONTRACTING_AUTHORITY_OTHER', 'util': './/NOPATH', 'mil': './/TYPE_AND_ACTIVITIES_OR_CONTRACTING_ENTITY_AND_PURCHASING_ON_BEHALF/TYPE_AND_ACTIVITIES/TYPE_OF_CONTRACTING_AUTHORITY_OTHER' }, 'operator': { 'std': './ECONOMIC_OPERATOR_NAME_ADDRESS//', 'util': './/', 'mil': './ECONOMIC_OPERATOR_NAME_ADDRESS//' }, } def _lookup(s, key): return LOOKUP[key][s] def extract_address(ext, prefix, query): if query is None: return {} data = { prefix + '_official_name': ext.text(query+'OFFICIALNAME'), prefix + '_address': ext.text(query+'ADDRESS'), prefix + '_town': ext.text(query+'TOWN'), prefix + '_postal_code': ext.text(query+'POSTAL_CODE'), prefix + '_country': ext.attr(query+'COUNTRY', 'VALUE'), prefix + '_attention': ext.text(query+'ATTENTION'), prefix + '_phone': ext.text(query+'PHONE'), prefix + '_email': ext.text(query+'EMAIL') or ext.text(query+'E_MAIL'), prefix + '_fax': ext.text(query+'FAX'), prefix + '_url': ext.text(query+'URL_GENERAL') or ext.text(query+'URL'), prefix + '_url_buyer': ext.text(query+'URL_BUYER'), prefix + '_url_info': ext.text(query+'URL_INFORMATION'), prefix + '_url_participate': ext.text(query+'URL_PARTICIPATE') } for k, v in data.items(): if v is None: del data[k] return data def extract_values(ext, prefix, query): if query is None: return {} data = { prefix + '_currency': ext.attr(query, 'CURRENCY'), prefix + '_cost': ext.attr(query + '/VALUE_COST', 'FMTVAL'), prefix + '_low': ext.attr(query + '//LOW_VALUE', 'FMTVAL'), prefix + '_high': ext.attr(query + '//HIGH_VALUE', 'FMTVAL'), prefix + '_months': ext.attr(query + '//NUMBER_MONTHS', 'FMTVAL'), prefix + '_years': ext.attr(query + '//NUMBER_YEARS', 'FMTVAL'), prefix + '_vat_rate': ext.attr(query + '//VAT_PRCT', 'FMTVAL') } if ext.el.find(query + '/INCLUDING_VAT') is not None: data[prefix + '_vat_included'] = True if ext.el.find(query + '/EXCLUDING_VAT') is not None: data[prefix + '_vat_included'] = False for k, v in data.items(): if v is None: del data[k] return data def parse_award(root, lookup): ext = Extractor(root) contract = { 'contract_number': ext.text('./CONTRACT_NUMBER') or ext.text('.//CONTRACT_NO'), 'lot_number': ext.text('./LOT_NUMBER') or ext.text('.//LOT_NUMBER'), 'contract_title': ext.text('./CONTRACT_TITLE/P') or ext.text('./CONTRACT_TITLE') or ext.text('.//TITLE_CONTRACT') or ext.text('.//TITLE_CONTRACT/P'), 'contract_award_day': ext.text('.//CONTRACT_AWARD_DATE/DAY') or ext.text('.//DATE_OF_CONTRACT_AWARD/DAY'), 'contract_award_month': ext.text('.//CONTRACT_AWARD_DATE/MONTH') or ext.text('.//DATE_OF_CONTRACT_AWARD/MONTH'), 'contract_award_year': ext.text('.//CONTRACT_AWARD_DATE/YEAR') or ext.text('.//DATE_OF_CONTRACT_AWARD/YEAR'), 'offers_received_num': ext.text('.//OFFERS_RECEIVED_NUMBER'), 'offers_received_meaning': ext.text('.//OFFERS_RECEIVED_NUMBER_MEANING') } contract.update(extract_values(ext, 'contract_value', './/COSTS_RANGE_AND_CURRENCY_WITH_VAT_RATE')) contract.update(extract_values(ext, 'initial_value', './/INITIAL_ESTIMATED_TOTAL_VALUE_CONTRACT')) contract.update(extract_address(ext, 'operator', lookup('operator'))) #from lxml import etree #print etree.tostring(root, pretty_print=True) #pprint(contract) #ext.audit() return contract def parse_form(root): form_type = 'std' if 'DEFENCE' in root.tag: form_type = 'mil' elif 'UTILITIES' in root.tag: form_type = 'util' lookup = lambda k: _lookup(form_type, k) ext = Extractor(root) form = { 'file_reference': ext.text(lookup('reference')), 'relates_to_eu_project': ext.text('.//RELATES_TO_EU_PROJECT_YES/P'), 'notice_dispatch_day': ext.text('.//NOTICE_DISPATCH_DATE/DAY'), 'notice_dispatch_month': ext.text('.//NOTICE_DISPATCH_DATE/MONTH'), 'notice_dispatch_year': ext.text('.//NOTICE_DISPATCH_DATE/YEAR'), 'appeal_procedure': ext.text('.//PROCEDURES_FOR_APPEAL//LODGING_OF_APPEALS_PRECISION/P'), 'location': ext.text(lookup('award_description')+'/LOCATION_NUTS/LOCATION/P') or ext.text(lookup('award_description')+'/LOCATION_NUTS/LOCATION'), 'location_nuts': ext.attr(lookup('award_description')+'/LOCATION_NUTS/NUTS', 'CODE'), 'type_contract': ext.attr(lookup('award_description')+'//TYPE_CONTRACT', 'VALUE'), 'gpa_covered': ext.attr(lookup('award_description')+'/CONTRACT_COVERED_GPA', 'VALUE'), 'electronic_auction': ext.attr(lookup('electronic_auction'), 'VALUE'), 'cpv_code': ext.attr(lookup('award_description')+'/CPV/CPV_MAIN/CPV_CODE', 'CODE'), 'reason_lawful': ext.html('.//REASON_CONTRACT_LAWFUL'), #'cpv_additional_code': ext.attr('.//DESCRIPTION_AWARD_NOTICE_INFORMATION/CPV/CPV_ADDITIONAL/CPV_CODE', 'CODE'), 'authority_type': ext.text(lookup('authority_type'), 'VALUE'), 'authority_type_other': ext.text(lookup('authority_type_other'), 'VALUE'), 'activity_type': ext.text(lookup('activity_type')), 'activity_type_other': ext.text(lookup('activity_type_other')), 'activity_contractor': ext.attr('.//ACTIVITIES_OF_CONTRACTING_ENTITY/ACTIVITY_OF_CONTRACTING_ENTITY', 'VALUE'), 'concessionaire_email': ext.text('.//CA_CE_CONCESSIONAIRE_PROFILE/E_MAILS/E_MAIL'), 'concessionaire_nationalid': ext.text('.//CA_CE_CONCESSIONAIRE_PROFILE/ORGANISATION/NATIONALID'), 'concessionaire_contact': ext.text('.//CA_CE_CONCESSIONAIRE_PROFILE/CONTACT_POINT'), 'contract_award_title': ext.text(lookup('award_description')+'/TITLE_CONTRACT/P'), 'contract_description': ext.html(lookup('short_desc')), 'additional_information': ext.html(lookup('additional_info')), 'contract_type_supply': ext.attr('.//TYPE_CONTRACT_LOCATION_W_PUB/TYPE_SUPPLIES_CONTRACT', 'VALUE') } form.update(extract_address(ext, 'authority', lookup('authority'))) form.update(extract_address(ext, 'appeal_body', lookup('appeal_body'))) form.update(extract_address(ext, 'on_behalf', './/TYPE_AND_ACTIVITIES_AND_PURCHASING_ON_BEHALF/PURCHASING_ON_BEHALF//')) #form.update(extract_address(ext, 'lodging_info', './/PROCEDURES_FOR_APPEAL/LODGING_INFORMATION_FOR_SERVICE//')) ext.ignore('.//PROCEDURES_FOR_APPEAL/MEDIATION_PROCEDURE_BODY_RESPONSIBLE/*') ext.ignore('.//PROCEDURES_FOR_APPEAL/LODGING_INFORMATION_FOR_SERVICE/*') ext.ignore('./FD_CONTRACT_AWARD_DEFENCE/COMPLEMENTARY_INFORMATION_CONTRACT_AWARD/PROCEDURES_FOR_APPEAL/LODGING_INFORMATION_FOR_SERVICE/*') ext.ignore('./FD_CONTRACT_AWARD_UTILITIES/CONTRACTING_ENTITY_CONTRACT_AWARD_UTILITIES/NAME_ADDRESSES_CONTACT_CONTRACT_AWARD_UTILITIES/INTERNET_ADDRESSES_CONTRACT_AWARD_UTILITIES/URL_GENERAL') ext.ignore('./FD_CONTRACT_AWARD_UTILITIES/COMPLEMENTARY_INFORMATION_CONTRACT_AWARD_UTILITIES/APPEAL_PROCEDURES/SERVICE_FROM_INFORMATION/*') ext.ignore('./FD_CONTRACT_AWARD_UTILITIES/PROCEDURES_CONTRACT_AWARD_UTILITIES/ADMINISTRATIVE_INFO_CONTRACT_AWARD_UTILITIES/PREVIOUS_PUBLICATION_INFORMATION_NOTICE_F6/*') # Make awards criteria their own table. ext.ignore('./FD_CONTRACT_AWARD/PROCEDURE_DEFINITION_CONTRACT_AWARD_NOTICE/AWARD_CRITERIA_CONTRACT_AWARD_NOTICE_INFORMATION/AWARD_CRITERIA_DETAIL_F03/*') ext.ignore('./FD_CONTRACT_AWARD_UTILITIES/PROCEDURES_CONTRACT_AWARD_UTILITIES/F06_AWARD_CRITERIA_CONTRACT_UTILITIES_INFORMATION/*') ext.ignore('./FD_CONTRACT_AWARD_DEFENCE/PROCEDURE_DEFINITION_CONTRACT_AWARD_NOTICE_DEFENCE/AWARD_CRITERIA_CONTRACT_AWARD_NOTICE_INFORMATION_DEFENCE/AWARD_CRITERIA_DETAIL_F18/*') ext.ignore('.FD_CONTRACT_AWARD_UTILITIES/PROCEDURES_CONTRACT_AWARD_UTILITIES/F06_AWARD_CRITERIA_CONTRACT_UTILITIES_INFORMATION/PRICE_AWARD_CRITERIA/*') ext.ignore('./FD_CONTRACT_AWARD_DEFENCE/PROCEDURE_DEFINITION_CONTRACT_AWARD_NOTICE_DEFENCE/ADMINISTRATIVE_INFORMATION_CONTRACT_AWARD_DEFENCE/PREVIOUS_PUBLICATION_INFORMATION_NOTICE_F18/*') ext.ignore('./FD_CONTRACT_AWARD/AWARD_OF_CONTRACT/*') ext.ignore('./FD_CONTRACT_AWARD_DEFENCE/AWARD_OF_CONTRACT_DEFENCE/*') ext.ignore('./FD_CONTRACT_AWARD_UTILITIES/AWARD_CONTRACT_CONTRACT_AWARD_UTILITIES/*') ext.ignore('./FD_CONTRACT_AWARD_UTILITIES/OBJECT_CONTRACT_AWARD_UTILITIES/DESCRIPTION_CONTRACT_AWARD_UTILITIES/SHORT_DESCRIPTION/*') ext.ignore('./FD_CONTRACT_AWARD/PROCEDURE_DEFINITION_CONTRACT_AWARD_NOTICE/ADMINISTRATIVE_INFORMATION_CONTRACT_AWARD/PREVIOUS_PUBLICATION_INFORMATION_NOTICE_F3/*') ext.text('.//TYPE_CONTRACT_LOCATION_W_PUB/SERVICE_CATEGORY_PUB') ext.text('.//CPV/CPV_ADDITIONAL/CPV_CODE') form.update(extract_values(ext, 'total_value', lookup('total_value'))) #from lxml import etree #el = root.find('./FD_CONTRACT_AWARD/OBJECT_CONTRACT_INFORMATION_CONTRACT_AWARD_NOTICE/TOTAL_FINAL_VALUE') #if el: # print etree.tostring(el, pretty_print=True) # #pprint(form) #ext.audit() contracts = [] for award in root.findall(lookup('award_dest')): contract = parse_award(award, lookup) contract.update(form) contracts.append(contract) #pprint(contract) return contracts
aa5650cfa845d0f8a1a8b2048a907d06c2b3d36d
1061216c2c33c1ed4ffb33e6211565575957e48f
/python-legacy/test/test_custom_profile_field.py
9c780d683beda23dc85ae0a5a0c376b149184f96
[]
no_license
MSurfer20/test2
be9532f54839e8f58b60a8e4587348c2810ecdb9
13b35d72f33302fa532aea189e8f532272f1f799
refs/heads/main
2023-07-03T04:19:57.548080
2021-08-11T19:16:42
2021-08-11T19:16:42
393,920,506
0
0
null
null
null
null
UTF-8
Python
false
false
1,526
py
# coding: utf-8 """ Zulip REST API Powerful open source group chat # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import openapi_client from openapi_client.models.custom_profile_field import CustomProfileField # noqa: E501 from openapi_client.rest import ApiException class TestCustomProfileField(unittest.TestCase): """CustomProfileField unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test CustomProfileField include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = openapi_client.models.custom_profile_field.CustomProfileField() # noqa: E501 if include_optional : return CustomProfileField( id = 56, type = 56, order = 56, name = '', hint = '', field_data = '' ) else : return CustomProfileField( ) def testCustomProfileField(self): """Test CustomProfileField""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
b7c41240fa74e52ba4534e26961d3cbf7322a0d6
43ed422113d58b27d5012f5ccf405700a46fc0f2
/MaskRCNN/model/loss.py
eb4cb8a2d3d03b016b3857b3071a40cc1977da99
[]
no_license
wprazuch/DeepLearningPlayground
99a86945818e8a42e77408369e566b793ac612b9
53859fb4fd7bfc314121c85870afabd47627ce73
refs/heads/master
2022-12-16T05:50:22.757434
2020-09-03T09:23:26
2020-09-03T09:23:26
187,896,626
0
0
null
null
null
null
UTF-8
Python
false
false
6,227
py
import tensorflow as tf import tensorflow.keras.backend as K from utils import batch_pack_graph def smooth_l1_loss(y_true, y_pred): """Implements Smooth-L1 loss. y_true and y_pred are typically: [N, 4], but could be any shape. """ diff = K.abs(y_true - y_pred) less_than_one = K.cast(K.less(diff, 1.0), 'float32') loss = (less_than_one * 0.5 * diff ** 2) + (1 - less_than_one) * (diff - 0.5) return loss def rpn_class_loss_graph(rpn_match, rpn_class_logits): """RPN anchor classifier loss. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for BG/FG. """ rpn_match = tf.squeeze(rpn_match, -1) anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32) indices = tf.where(K.not_equal(rpn_match, 0)) rpn_class_logits = tf.gather_nd(rpn_class_logits, indices) anchor_class = tf.gather_nd(anchor_class, indices) loss = K.sparse_categorical_crossentropy(target=anchor_class, output=rpn_class_logits, from_logits=True) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox): """Return the RPN bounding box loss graph. configs: the model configs object. target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))]. Uses 0 padding to fill in unsed bbox deltas. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] """ # Positive anchors contribute to the loss, but negative and # neutral anchors (match value of 0 or -1) don't. rpn_match = K.squeeze(rpn_match, -1) indices = tf.where(K.equal(rpn_match, 1)) rpn_bbox = tf.gather_nd(rpn_bbox, indices) batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1) target_bbox = batch_pack_graph(target_bbox, batch_counts, config.IMAGES_PER_GPU) loss = smooth_l1_loss(target_bbox, rpn_bbox) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def mrcnn_class_loss_graph(target_class_ids, pred_class_logits, active_class_ids): """Loss for the classifier head of Mask RCNN. target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero padding to fill in the array. pred_class_logits: [batch, num_rois, num_classes] active_class_ids: [batch, num_classes]. Has a value of 1 for classes that are in the dataset of the image, and 0 for classes that are not in the dataset. """ # During model building, Keras calls this function with # target_class_ids of type float32. Unclear why. Cast it # to int to get around it. target_class_ids = tf.cast(target_class_ids, 'int64') pred_class_ids = tf.argmax(pred_class_logits, axis=2) # TODO: Update this line to work with batch > 1. Right now it assumes all # images in a batch have the same active_class_ids pred_active = tf.gather(active_class_ids[0], pred_class_ids) # Loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=target_class_ids, logits=pred_class_logits ) loss = loss * pred_active loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active) return loss def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox): """Loss for Mask R-CNN bounding box refinement. target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))] target_class_ids: [batch, num_rois]. Integer class IDs. pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))] """ # Reshape to merge batch and roi dimensions for simplicity. target_class_ids = K.reshape(target_class_ids, (-1,)) target_bbox = K.reshape(target_bbox, (-1, 4)) pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4)) # Only positive ROIs contribute to the loss. And only # the right class_id of each ROI. Get their indices. positive_roi_ix = tf.where(target_class_ids > 0)[:, 0] positive_roi_class_ids = tf.cast( tf.gather(target_class_ids, positive_roi_class_ids), tf.int64 ) indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1) # Gather the deltas (predicted and true) that contribute to loss target_bbox = tf.gather(target_bbox, positive_roi_ix) pred_bbox = tf.gather_nd(pred_bbox, indices) # Smooth-L1 Loss loss = K.switch(tf.size(target_bbox) > 0, smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox), tf.constant(0.0)) loss = K.mean(loss) return loss def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks): """Mask binary cross-entropy loss for the masks head. target_masks: [batch, num_rois, height, width]. A float32 tensor of values 0 or 1. Uses zero padding to fill array. target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded. pred_masks: [batch, proposals, height, width, num_classes] float32 tensor with values from 0 to 1. """ # Reshape for simplicity. Merge first two dimensions into one. target_class_ids = K.reshape(target_class_ids, (-1,)) mask_shape = tf.shape(target_masks) target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3])) pred_shape = tf.shape(pred_masks) pred_masks = K.reshape(pred_masks, (-1, pred_shape[2], pred_shape[3], pred_shape[4])) pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2]) positive_ix = tf.where(target_class_ids > 0)[:, 0] positive_class_ids = tf.cast( tf.gather(target_class_ids, positive_ix), tf.int64 ) indices = tf.stack([positive_ix, positive_class_ids], axis=1) y_true = tf.gather(target_masks, positive_ix) y_pred = tf.gather_nd(pred_masks, indices) loss = K.switch(tf.size(y_true) > 0, K.binary_crossentropy(target=y_true, output=y_pred), tf.constant(0.0)) loss = K.mean(loss) return loss
00f4f432b42195fe0d5718333d4fea31f17c3546
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/layout-blt/configs/bert_layout_publaynet_config.py
c468d18d59fde1f6a87c790cc4dbb6815ec3e80b
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
2,219
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default Hyperparameter configuration.""" import ml_collections def get_config(): """Gets the default hyperparameter configuration.""" config = ml_collections.ConfigDict() # Exp info config.dataset_path = "/path/to/publaynet/" config.dataset = "PubLayNet" config.vocab_size = 137 config.experiment = "bert_layout" config.model_class = "bert_layout" config.image_size = 256 # Training info config.seed = 0 config.log_every_steps = 100 config.eval_num_steps = 1000 config.max_length = 130 config.batch_size = 64 config.train_shuffle = True config.eval_pad_last_batch = False config.eval_batch_size = 64 config.num_train_steps = 100_000 config.checkpoint_every_steps = 5000 config.eval_every_steps = 5000 config.num_eval_steps = 100 # Model info config.layout_dim = 2 config.dtype = "float32" config.autoregressive = False config.shuffle_buffer_size = 10 config.use_vae = True config.share_embeddings = True config.num_layers = 4 config.qkv_dim = 512 config.emb_dim = 512 config.mlp_dim = 2048 config.num_heads = 8 config.dropout_rate = 0.1 config.attention_dropout_rate = 0.3 config.restore_checkpoints = True config.label_smoothing = 0. config.sampling_method = "top-p" config.use_vertical_info = False # Optimizer info config.optimizer = ml_collections.ConfigDict() config.optimizer.type = "adam" config.optimizer.warmup_steps = 4000 config.optimizer.lr = 5e-3 config.optimizer.beta1 = 0.9 config.optimizer.beta2 = 0.98 config.optimizer.weight_decay = 0.01 config.beta_rate = 1 / 20_000 return config
b0852cf85d9083b3a78990c4c4ecb96b24190dc2
191d18fae52df2b10fc3c78676612ce0828c1ad8
/essentials/multi_server.py
b345cfc321697ef93d206779c4ae5ae4b88e165c
[ "MIT" ]
permissive
yada-yoda/pollmaster
1e44ef42f68bf971e67b75c84842556d2ef2d687
c7431d6b952599671c6408209528dceaad19116e
refs/heads/master
2021-10-19T14:32:24.222515
2019-02-21T18:57:07
2019-02-21T18:57:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,061
py
import time import discord from essentials.settings import SETTINGS from utils.paginator import embed_list_paginated async def get_pre(bot, message): '''Gets the prefix for a message.''' if str(message.channel.type) == 'private': shared_server_list = await get_servers(bot, message) if shared_server_list.__len__() == 0: return 'pm!' elif shared_server_list.__len__() == 1: return await get_server_pre(bot, shared_server_list[0]) else: # return a tuple of all prefixes.. this will check them all! return tuple([await get_server_pre(bot, s) for s in shared_server_list]) else: return await get_server_pre(bot, message.server) async def get_server_pre(bot, server): '''Gets the prefix for a server.''' try: #result = await bot.db.config.find_one({'_id': str(server.id)}) result = bot.pre[str(server.id)] except AttributeError: return 'pm!' if not result: #or not result.get('prefix'): return 'pm!' return result #result.get('prefix') async def get_servers(bot, message, short=None): '''Get best guess of relevant shared servers''' if message.server is None: list_of_shared_servers = [] for s in bot.servers: if message.author.id in [m.id for m in s.members]: list_of_shared_servers.append(s) if short is not None: query = bot.db.polls.find({'short': short}) if query is not None: server_ids_with_short = [poll['server_id'] async for poll in query] servers_with_short = [bot.get_server(x) for x in server_ids_with_short] shared_servers_with_short = list(set(servers_with_short).intersection(set(list_of_shared_servers))) if shared_servers_with_short.__len__() >= 1: return shared_servers_with_short # do this if no shared server with short is found if list_of_shared_servers.__len__() == 0: return [] else: return list_of_shared_servers else: return [message.server] async def ask_for_server(bot, message, short=None): server_list = await get_servers(bot, message, short) if server_list.__len__() == 0: if short == None: await bot.say( 'I could not find a common server where we can see eachother. If you think this is an error, please contact the developer.') else: await bot.say(f'I could not find a server where the poll {short} exists that we both can see.') return None elif server_list.__len__() == 1: return server_list[0] else: text = 'I\'m not sure which server you are referring to. Please tell me by typing the corresponding number.\n' i = 1 for name in [s.name for s in server_list]: text += f'\n**{i}** - {name}' i += 1 embed = discord.Embed(title="Select your server", description=text, color=SETTINGS.color) server_msg = await bot.send_message(message.channel, embed=embed) valid_reply = False nr = 1 while valid_reply == False: reply = await bot.wait_for_message(timeout=60, author=message.author) if reply and reply.content: if reply.content.startswith(await get_pre(bot, message)): # await bot.say('You can\'t use bot commands while I am waiting for an answer.' # '\n I\'ll stop waiting and execute your command.') return False if str(reply.content).isdigit(): nr = int(reply.content) if 0 < nr <= server_list.__len__(): valid_reply = True return server_list[nr - 1] async def ask_for_channel(bot, server, message): # if performed from a channel, return that channel if str(message.channel.type) == 'text': return message.channel # if exactly 1 channel, return it channel_list = [c for c in server.channels if str(c.type) == 'text'] if channel_list.__len__() == 1: return channel_list[0] # if no channels, display error if channel_list.__len__() == 0: embed = discord.Embed(title="Select a channel", description='No text channels found on this server. Make sure I can see them.', color=SETTINGS.color) await bot.say(embed=embed) return False # otherwise ask for a channel i = 1 text = 'Polls are bound to a specific channel on a server. Please select the channel for this poll by typing the corresponding number.\n' for name in [c.name for c in channel_list]: to_add = f'\n**{i}** - {name}' # check if length doesn't exceed allowed maximum or split it into multiple messages if text.__len__() + to_add.__len__() > 2048: embed = discord.Embed(title="Select a channel", description=text, color=SETTINGS.color) await bot.say(embed=embed) text = 'Polls are bound to a specific channel on a server. Please select the channel for this poll by typing the corresponding number.\n' else: text += to_add i += 1 embed = discord.Embed(title="Select a channel", description=text, color=SETTINGS.color) await bot.say(embed=embed) valid_reply = False nr = 1 while valid_reply == False: reply = await bot.wait_for_message(timeout=60, author=message.author) if reply and reply.content: if reply.content.startswith(await get_pre(bot, message)): # await bot.say('You can\'t use bot commands while I am waiting for an answer.' # '\n I\'ll stop waiting and execute your command.') return False if str(reply.content).isdigit(): nr = int(reply.content) if 0 < nr <= channel_list.__len__(): valid_reply = True return channel_list[nr - 1]
921548cdfb11ada7eb5d4be07398294bf09ce197
b9963ffb80aad7e057bc375edb85ac7ed5a837d0
/adventofcode2017/03b.py
44f43305774184f644e62bce54dfc526c453e223
[ "MIT" ]
permissive
matslindh/codingchallenges
a2db9f4579e9f35189f5cdf74590863cf84bdf95
a846e522f7a31e988c470cda87955ee3ef20a274
refs/heads/main
2022-12-23T15:56:19.776354
2022-12-15T21:03:37
2022-12-15T21:03:37
76,491,177
3
0
null
null
null
null
UTF-8
Python
false
false
888
py
from itertools import repeat from math import floor map = [] s_y = s_x = 1001 for y in range(0, s_y): map.append(list(repeat(0, s_x))) x = y = floor(s_x/2) map[y][x] = 1 x += 1 dir = 'R' written = 0 while written <= 289326: if dir == 'R': if not map[y-1][x]: dir = 'U' else: x += 1 elif dir == 'U': if not map[y][x-1]: dir = 'L' else: y -= 1 elif dir == 'L': if not map[y+1][x]: dir = 'D' else: x -= 1 elif dir == 'D': if not map[y][x+1]: dir = 'R' else: y += 1 written = map[y-1][x-1] + map[y-1][x] + map[y-1][x+1] + \ map[y][x-1] + map[y][x+1] + \ map[y+1][x-1] + map[y+1][x] + map[y+1][x+1] print(dir, x, y, written) map[y][x] = written
f829374ecf93d80a724d38e00dff9ecc2cb9c16b
f68065baf489013c926dcfea9994878716d19586
/accounts/views.py
323deb2d9a062d75f066d39db1854285279ddd21
[]
no_license
groyce/pots
06667fdc686b74a897c42879cbed5803e9efb154
ac839943c84c3135cb4596a8f734e4a061086e10
refs/heads/master
2020-04-10T01:42:55.863071
2018-12-06T19:47:18
2018-12-06T19:47:18
160,723,310
0
0
null
null
null
null
UTF-8
Python
false
false
2,905
py
from django.http import HttpResponse from django.shortcuts import render from django.contrib.auth import authenticate, login from .forms import LoginForm, UserRegistrationForm, UserEditForm, ProfileEditForm from django.contrib.auth.decorators import login_required from .models import Profile def user_login(request): if request.method == 'POST': form = LoginForm(request.POST) if form.is_valid(): cd = form.cleaned_data user = authenticate(request, username=cd['username'], password=cd['password']) if user is not None: if user.is_active: login(request, user) return HttpResponse('Authenticated '\ 'successfully') else: return HttpResponse('Disabled account') else: return HttpResponse('Invalid login') else: form = LoginForm() return render(request, 'accounts/login.html', {'form': form}) @login_required def edit(request): if request.method == 'POST': user_form = UserEditForm(instance=request.user, data=request.POST) profile_form = ProfileEditForm( instance=request.user.profile, data=request.POST, files=request.FILES) if user_form.is_valid() and profile_form.is_valid(): user_form.save() profile_form.save() else: user_form = UserEditForm(instance=request.user) profile_form = ProfileEditForm(instance=request.user.profile) return render(request, 'accounts/edit.html', {'user_form': user_form, 'profile_form': profile_form}) @login_required def dashboard(request): return render(request, 'accounts/dashboard.html', {'section': 'dashboard'}) def register(request): if request.method == 'POST': user_form = UserRegistrationForm(request.POST) if user_form.is_valid(): # Create a new user object but avoid saving it yet new_user = user_form.save(commit=False) # Set the chosen password new_user.set_password( user_form.cleaned_data['password']) # Save the User object new_user.save() # Create the user profile Profile.objects.create(user=new_user) return render(request, 'accounts/register_done.html', {'new_user': new_user}) else: user_form = UserRegistrationForm() return render(request, 'accounts/register.html', {'user_form': user_form})
305a52c242ec94adeaaf52fb037f2f4072fe2272
8961efe29765a8093bcd669adb3fa6ca186eadfd
/toolbox/attacks/FGSM-Attack/run_all.py
de63948e966ad6a4eb5ec4441dfcdcc3b516de03
[]
no_license
JayceeLee/adversarial-toolbox
12bfe720fd0984b6dc1c10d61486b2e36f22fde9
01d624d995d3c55d220cdf570ca00510f32cc43a
refs/heads/master
2020-03-27T04:22:55.631986
2018-02-06T01:25:27
2018-02-06T01:25:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
python fgsm_inception_v3.py python fgsm_inception_resnet_v2.py python fgsm_resnet_v2_101.py
8cd85855d175d322e73f636de7aed0b6850bdf52
2f233b31ea7ffefad4b901b561f341fabe3bbb1f
/2017/02a.py
77f9ee8c4d1e176ea1331fdbdd314eff205802e3
[ "MIT" ]
permissive
cz-fish/advent-of-code
066b63c3ac2e3b13bf88ae86843a7a9a7b687e96
ecbcef544e8d89ec019464811760ce86f84dbc6e
refs/heads/master
2023-08-03T19:41:23.186666
2023-03-14T08:59:04
2023-03-14T08:59:04
226,355,674
0
0
MIT
2023-07-20T02:51:13
2019-12-06T15:17:10
Python
UTF-8
Python
false
false
593
py
#!/usr/bin/env python3 grid = [] with open('input02.txt', 'rt') as f: for ln in f.readlines(): grid.append([int(x) for x in ln.strip().split('\t')]) print(sum([max(l) - min(l) for l in grid])) print('-----') s = 0 for ln in grid: srt = sorted(ln) stop = False for i in range(len(srt) - 1): x = srt[i] if x == 0: continue for j in range(i+1, len(srt)): y = srt[j] if y // x * x == y: s += y // x stop = True break if stop: break print(s)
2909402b00fb3a6e6b883535089989ab85eb7e84
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/graph_objs/mesh3d/legendgrouptitle/_font.py
766e46a49d072ae53fadbf9814e540e8ef7dfdbb
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
8,471
py
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Font(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "mesh3d.legendgrouptitle" _path_str = "mesh3d.legendgrouptitle.font" _valid_props = {"color", "family", "size"} # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Font object Sets this legend group's title font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.mesh3d.legendgrouptitle.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Font """ super(Font, self).__init__("font") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.mesh3d.legendgrouptitle.Font constructor must be a dict or an instance of :class:`plotly.graph_objs.mesh3d.legendgrouptitle.Font`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
f6066d060c195e6f9ef837b859b666ab4f30bdb8
096167807fa625681beae7e25919357c90b89e75
/emails/models.py
1fb86f349ab69c1489f2ef26d7c95be401ff5b2d
[]
no_license
bussiere/Sumomo
c849484fbae37490998bcc44e232bf6a252fe9d7
ac3efc46014e66e193c5f852d121a25dd0a9ec5e
refs/heads/master
2021-01-19T11:34:42.645970
2012-08-31T04:15:32
2012-08-31T04:15:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
from django.db import models # Create your models here. class Contact(models.Model): Emails = models.TextField(null=True, blank=True) class Email(models.Model): Sender = models.ForeignKey("Contact",related_name="Sender", null=True, blank=True) Recepter = models.ManyToManyField("Contact", related_name="Recepter",null=True, blank=True) Title = models.TextField(null=True, blank=True) Date = models.DateField(null=True, blank=True) Content = models.TextField(null=True, blank=True) File = models.ManyToManyField("attachments.File", null=True, blank=True) Tag = models.ManyToManyField("tags.Tag", null=True, blank=True)
c9272ab9ce25ad997cef0881159ae4bc9c13e0ef
e0d9844e123fa0706388814b9f29758258589487
/torch/distributions/distribution.py
33c48de39d91713f0e5c6f65b31cd98687ac56d8
[]
no_license
pigpigman8686/seg
b5cf5261a5744e89ed5e5b145f60b0ccc3ba2c0c
61c3816f7ba76243a872fe5c5fc0dede17026987
refs/heads/master
2023-04-10T22:22:35.035542
2021-04-22T06:24:36
2021-04-22T06:24:36
360,398,108
0
0
null
null
null
null
UTF-8
Python
false
false
11,229
py
import torch import warnings from torch.distributions import constraints from torch.distributions.utils import lazy_property from typing import Dict, Optional, Any class Distribution(object): r""" Distribution is the abstract base class for probability distributions. """ has_rsample = False has_enumerate_support = False _validate_args = __debug__ @staticmethod def set_default_validate_args(value): """ Sets whether validation is enabled or disabled. The default behavior mimics Python's ``assert`` statement: validation is on by default, but is disabled if Python is run in optimized mode (via ``python -O``). Validation may be expensive, so you may want to disable it once a model is working. Args: value (bool): Whether to enable validation. """ if value not in [True, False]: raise ValueError Distribution._validate_args = value def __init__(self, batch_shape=torch.Size(), event_shape=torch.Size(), validate_args=None): self._batch_shape = batch_shape self._event_shape = event_shape if validate_args is not None: self._validate_args = validate_args if self._validate_args: try: arg_constraints = self.arg_constraints except NotImplementedError: arg_constraints = {} warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' + 'Please set `arg_constraints = {}` or initialize the distribution ' + 'with `validate_args=False` to turn off validation.') for param, constraint in arg_constraints.items(): if constraints.is_dependent(constraint): continue # skip constraints that cannot be checked if param not in self.__dict__ and isinstance(getattr(type(self), param), lazy_property): continue # skip checking lazily-constructed args if not constraint.check(getattr(self, param)).all(): raise ValueError("The parameter {} has invalid values".format(param)) super(Distribution, self).__init__() def expand(self, batch_shape, _instance=None): """ Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to `batch_shape`. This method calls :class:`~torch.Tensor.expand` on the distribution's parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in `__init__.py`, when an instance is first created. Args: batch_shape (torch.Size): the desired expanded size. _instance: new instance provided by subclasses that need to override `.expand`. Returns: New distribution instance with batch dimensions expanded to `batch_size`. """ raise NotImplementedError @property def batch_shape(self): """ Returns the shape over which parameters are batched. """ return self._batch_shape @property def event_shape(self): """ Returns the shape of a single sample (without batching). """ return self._event_shape @property def arg_constraints(self) -> Dict[str, constraints.Constraint]: """ Returns a dictionary from argument names to :class:`~torch.distributions.constraints.Constraint` objects that should be satisfied by each argument of this distribution. Args that are not tensors need not appear in this dict. """ raise NotImplementedError @property def support(self) -> Optional[Any]: """ Returns a :class:`~torch.distributions.constraints.Constraint` object representing this distribution's support. """ raise NotImplementedError @property def mean(self): """ Returns the mean of the distribution. """ raise NotImplementedError @property def variance(self): """ Returns the variance of the distribution. """ raise NotImplementedError @property def stddev(self): """ Returns the standard deviation of the distribution. """ return self.variance.sqrt() def sample(self, sample_shape=torch.Size()): """ Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched. """ with torch.no_grad(): return self.rsample(sample_shape) def rsample(self, sample_shape=torch.Size()): """ Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. """ raise NotImplementedError def sample_n(self, n): """ Generates n samples or n batches of samples if the distribution parameters are batched. """ warnings.warn('sample_n will be deprecated. Use .sample((n,)) instead', UserWarning) return self.sample(torch.Size((n,))) def log_prob(self, value): """ Returns the log of the probability density/mass function evaluated at `value`. Args: value (Tensor): """ raise NotImplementedError def cdf(self, value): """ Returns the cumulative density/mass function evaluated at `value`. Args: value (Tensor): """ raise NotImplementedError def icdf(self, value): """ Returns the inverse cumulative density/mass function evaluated at `value`. Args: value (Tensor): """ raise NotImplementedError def enumerate_support(self, expand=True): """ Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be `(cardinality,) + batch_shape + event_shape` (where `event_shape = ()` for univariate distributions). Note that this enumerates over all batched tensors in lock-step `[[0, 0], [1, 1], ...]`. With `expand=False`, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions, `[[0], [1], ..`. To iterate over the full Cartesian product use `itertools.product(m.enumerate_support())`. Args: expand (bool): whether to expand the support over the batch dims to match the distribution's `batch_shape`. Returns: Tensor iterating over dimension 0. """ raise NotImplementedError def entropy(self): """ Returns entropy of distribution, batched over batch_shape. Returns: Tensor of shape batch_shape. """ raise NotImplementedError def perplexity(self): """ Returns perplexity of distribution, batched over batch_shape. Returns: Tensor of shape batch_shape. """ return torch.exp(self.entropy()) def _extended_shape(self, sample_shape=torch.Size()): """ Returns the size of the sample returned by the distribution, given a `sample_shape`. Note, that the batch and event shapes of a distribution instance are fixed at the time of construction. If this is empty, the returned shape is upcast to (1,). Args: sample_shape (torch.Size): the size of the sample to be drawn. """ if not isinstance(sample_shape, torch.Size): sample_shape = torch.Size(sample_shape) return sample_shape + self._batch_shape + self._event_shape def _validate_sample(self, value): """ Argument validation for distribution methods such as `log_prob`, `cdf` and `icdf`. The rightmost dimensions of a value to be scored via these methods must agree with the distribution's batch and event shapes. Args: value (Tensor): the tensor whose log probability is to be computed by the `log_prob` method. Raises ValueError: when the rightmost dimensions of `value` do not match the distribution's batch and event shapes. """ if not isinstance(value, torch.Tensor): raise ValueError('The value argument to log_prob must be a Tensor') event_dim_start = len(value.size()) - len(self._event_shape) if value.size()[event_dim_start:] != self._event_shape: raise ValueError('The right-most size of value must match event_shape: {} vs {}.'. format(value.size(), self._event_shape)) actual_shape = value.size() expected_shape = self._batch_shape + self._event_shape for i, j in zip(reversed(actual_shape), reversed(expected_shape)): if i != 1 and j != 1 and i != j: raise ValueError('Value is not broadcastable with batch_shape+event_shape: {} vs {}.'. format(actual_shape, expected_shape)) try: support = self.support except NotImplementedError: warnings.warn(f'{self.__class__} does not define `support` to enable ' + 'sample validation. Please initialize the distribution with ' + '`validate_args=False` to turn off validation.') return assert support is not None if not support.check(value).all(): raise ValueError('The value argument must be within the support') def _get_checked_instance(self, cls, _instance=None): if _instance is None and type(self).__init__ != cls.__init__: raise NotImplementedError("Subclass {} of {} that defines a custom __init__ method " "must also define a custom .expand() method.". format(self.__class__.__name__, cls.__name__)) return self.__new__(type(self)) if _instance is None else _instance def __repr__(self): param_names = [k for k, _ in self.arg_constraints.items() if k in self.__dict__] args_string = ', '.join(['{}: {}'.format(p, self.__dict__[p] if self.__dict__[p].numel() == 1 else self.__dict__[p].size()) for p in param_names]) return self.__class__.__name__ + '(' + args_string + ')'
1c9832b0b85c1b52d6843f79ec2dcb1fa84e81b1
68ab00c77312827e522151e6e9f2fff166e85b9c
/mypy_boto3_builder/structures/collection.py
41b5f2550bb9a33bdb6cd53825ecc814e7734f48
[ "MIT" ]
permissive
pyto86pri/mypy_boto3_builder
2cdfb3ed55ea1ff23cdffd5a9ee5400e71562450
e8132dc4632430e0abd4cd330af51a8b1c82028f
refs/heads/master
2023-01-25T04:06:11.174287
2020-12-03T23:39:06
2020-12-03T23:39:06
319,283,736
0
0
MIT
2020-12-07T10:29:52
2020-12-07T10:29:51
null
UTF-8
Python
false
false
1,280
py
""" Boto3 ServiceResource or Resource collection. """ from typing import Set from mypy_boto3_builder.import_helpers.import_string import ImportString from mypy_boto3_builder.structures.class_record import ClassRecord from mypy_boto3_builder.type_annotations.external_import import ExternalImport from mypy_boto3_builder.type_annotations.fake_annotation import FakeAnnotation class Collection(ClassRecord): """ Boto3 ServiceResource or Resource collection. """ def __init__( self, name: str, attribute_name: str, parent_name: str, type_annotation: FakeAnnotation, docstring: str = "", ): super().__init__( name=name, use_alias=True, docstring=docstring, bases=[ ExternalImport( source=ImportString("boto3", "resources", "collection"), name="ResourceCollection", ) ], ) self.attribute_name = attribute_name self.parent_name = parent_name self.type_annotation = type_annotation def get_types(self) -> Set[FakeAnnotation]: types = super().get_types() types.update(self.type_annotation.get_types()) return types
97876c1143af3c1bbcf63ea5db171555c18fc239
242086b8c6a39cbc7af3bd7f2fd9b78a66567024
/python/PP4E-Examples-1.4/Examples/PP4E/Gui/Intro/gui3.py
6617d3e8edd2b088131c50e73653265dc000e795
[]
no_license
chuzui/algorithm
7537d0aa051ac4cbe9f6a7ca9a3037204803a650
c3006b24c4896c1242d3ceab43ace995c94f10c8
refs/heads/master
2021-01-10T13:05:30.902020
2015-09-27T14:39:02
2015-09-27T14:39:02
8,404,397
4
4
null
null
null
null
UTF-8
Python
false
false
290
py
import sys from tkinter import * def quit(): # a custom callback handler print('Hello, I must be going...') # kill windows and process sys.exit() widget = Button(None, text='Hello event world', command=quit) widget.pack() widget.mainloop()
[ "zui" ]
zui
38249fa8185cebfdb4c30d7dddd3e605bad8b96b
5bf245e55b756ca3e664d857f36db092855c7a98
/externals/mne/fixes.py
399715ee615775de35fa7a26ddf1c8dde4d48d47
[ "BSD-3-Clause" ]
permissive
kingjr/decoding_challenge_cortana_2016_3rd
b264fabbe8fb2f3788d11dc2c4deebcf217a64a5
26c2ebf5200b5a5cd268fa73ac3928d7257d08d3
refs/heads/master
2021-01-20T17:54:12.617430
2016-07-13T22:31:58
2016-07-13T22:31:58
63,120,115
10
2
null
null
null
null
UTF-8
Python
false
false
33,605
py
"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. # XXX : originally copied from scikit-learn """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck <[email protected]> # License: BSD from __future__ import division import collections from distutils.version import LooseVersion from functools import partial from gzip import GzipFile import inspect from math import ceil, log from operator import itemgetter import re import warnings import numpy as np from numpy.fft import irfft import scipy from scipy import linalg, sparse from .externals import six from .externals.six.moves import copyreg, xrange ############################################################################### # Misc # helpers to get function arguments if hasattr(inspect, 'signature'): # py35 def _get_args(function, varargs=False): params = inspect.signature(function).parameters args = [key for key, param in params.items() if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)] if varargs: varargs = [param.name for param in params.values() if param.kind == param.VAR_POSITIONAL] if len(varargs) == 0: varargs = None return args, varargs else: return args else: def _get_args(function, varargs=False): out = inspect.getargspec(function) # args, varargs, keywords, defaults if varargs: return out[:2] else: return out[0] class gzip_open(GzipFile): # python2.6 doesn't have context managing def __enter__(self): if hasattr(GzipFile, '__enter__'): return GzipFile.__enter__(self) else: return self def __exit__(self, exc_type, exc_value, traceback): if hasattr(GzipFile, '__exit__'): return GzipFile.__exit__(self, exc_type, exc_value, traceback) else: return self.close() class _Counter(collections.defaultdict): """Partial replacement for Python 2.7 collections.Counter.""" def __init__(self, iterable=(), **kwargs): super(_Counter, self).__init__(int, **kwargs) self.update(iterable) def most_common(self): return sorted(six.iteritems(self), key=itemgetter(1), reverse=True) def update(self, other): """Adds counts for elements in other""" if isinstance(other, self.__class__): for x, n in six.iteritems(other): self[x] += n else: for x in other: self[x] += 1 try: Counter = collections.Counter except AttributeError: Counter = _Counter def _unique(ar, return_index=False, return_inverse=False): """A replacement for the np.unique that appeared in numpy 1.4. While np.unique existed long before, keyword return_inverse was only added in 1.4. """ try: ar = ar.flatten() except AttributeError: if not return_inverse and not return_index: items = sorted(set(ar)) return np.asarray(items) else: ar = np.asarray(ar).flatten() if ar.size == 0: if return_inverse and return_index: return ar, np.empty(0, np.bool), np.empty(0, np.bool) elif return_inverse or return_index: return ar, np.empty(0, np.bool) else: return ar if return_inverse or return_index: perm = ar.argsort() aux = ar[perm] flag = np.concatenate(([True], aux[1:] != aux[:-1])) if return_inverse: iflag = np.cumsum(flag) - 1 iperm = perm.argsort() if return_index: return aux[flag], perm[flag], iflag[iperm] else: return aux[flag], iflag[iperm] else: return aux[flag], perm[flag] else: ar.sort() flag = np.concatenate(([True], ar[1:] != ar[:-1])) return ar[flag] if LooseVersion(np.__version__) < LooseVersion('1.5'): unique = _unique else: unique = np.unique def _bincount(X, weights=None, minlength=None): """Replacing np.bincount in numpy < 1.6 to provide minlength.""" result = np.bincount(X, weights) if minlength is None or len(result) >= minlength: return result out = np.zeros(minlength, np.int) out[:len(result)] = result return out if LooseVersion(np.__version__) < LooseVersion('1.6'): bincount = _bincount else: bincount = np.bincount def _copysign(x1, x2): """Slow replacement for np.copysign, which was introduced in numpy 1.4""" return np.abs(x1) * np.sign(x2) if not hasattr(np, 'copysign'): copysign = _copysign else: copysign = np.copysign def _in1d(ar1, ar2, assume_unique=False, invert=False): """Replacement for in1d that is provided for numpy >= 1.4""" # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: mask = np.ones(len(ar1), dtype=np.bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=np.bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] if not hasattr(np, 'in1d') or LooseVersion(np.__version__) < '1.8': in1d = _in1d else: in1d = np.in1d def _digitize(x, bins, right=False): """Replacement for digitize with right kwarg (numpy < 1.7). Notes ----- This fix is only meant for integer arrays. If ``right==True`` but either ``x`` or ``bins`` are of a different type, a NotImplementedError will be raised. """ if right: x = np.asarray(x) bins = np.asarray(bins) if (x.dtype.kind not in 'ui') or (bins.dtype.kind not in 'ui'): raise NotImplementedError("Only implemented for integer input") return np.digitize(x - 1e-5, bins) else: return np.digitize(x, bins) if LooseVersion(np.__version__) < LooseVersion('1.7'): digitize = _digitize else: digitize = np.digitize def _tril_indices(n, k=0): """Replacement for tril_indices that is provided for numpy >= 1.4""" mask = np.greater_equal(np.subtract.outer(np.arange(n), np.arange(n)), -k) indices = np.where(mask) return indices if not hasattr(np, 'tril_indices'): tril_indices = _tril_indices else: tril_indices = np.tril_indices def _unravel_index(indices, dims): """Add support for multiple indices in unravel_index that is provided for numpy >= 1.4""" indices_arr = np.asarray(indices) if indices_arr.size == 1: return np.unravel_index(indices, dims) else: if indices_arr.ndim != 1: raise ValueError('indices should be one dimensional') ndims = len(dims) unraveled_coords = np.empty((indices_arr.size, ndims), dtype=np.int) for coord, idx in zip(unraveled_coords, indices_arr): coord[:] = np.unravel_index(idx, dims) return tuple(unraveled_coords.T) if LooseVersion(np.__version__) < LooseVersion('1.4'): unravel_index = _unravel_index else: unravel_index = np.unravel_index def _qr_economic_old(A, **kwargs): """ Compat function for the QR-decomposition in economic mode Scipy 0.9 changed the keyword econ=True to mode='economic' """ with warnings.catch_warnings(record=True): return linalg.qr(A, econ=True, **kwargs) def _qr_economic_new(A, **kwargs): return linalg.qr(A, mode='economic', **kwargs) if LooseVersion(scipy.__version__) < LooseVersion('0.9'): qr_economic = _qr_economic_old else: qr_economic = _qr_economic_new def savemat(file_name, mdict, oned_as="column", **kwargs): """MATLAB-format output routine that is compatible with SciPy 0.7's. 0.7.2 (or .1?) added the oned_as keyword arg with 'column' as the default value. It issues a warning if this is not provided, stating that "This will change to 'row' in future versions." """ import scipy.io try: return scipy.io.savemat(file_name, mdict, oned_as=oned_as, **kwargs) except TypeError: return scipy.io.savemat(file_name, mdict, **kwargs) if hasattr(np, 'count_nonzero'): from numpy import count_nonzero else: def count_nonzero(X): return len(np.flatnonzero(X)) # little dance to see if np.copy has an 'order' keyword argument if 'order' in _get_args(np.copy): def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy def _meshgrid(*xi, **kwargs): """ Return coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. .. versionchanged:: 1.9 1-D and 0-D cases are allowed. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. .. versionadded:: 1.7.0 sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. .. versionadded:: 1.7.0 copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. .. versionadded:: 1.7.0 Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. """ ndim = len(xi) copy_ = kwargs.pop('copy', True) sparse = kwargs.pop('sparse', False) indexing = kwargs.pop('indexing', 'xy') if kwargs: raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) if indexing not in ['xy', 'ij']: raise ValueError( "Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(xi)] shape = [x.size for x in output] if indexing == 'xy' and ndim > 1: # switch first and second axis output[0].shape = (1, -1) + (1,) * (ndim - 2) output[1].shape = (-1, 1) + (1,) * (ndim - 2) shape[0], shape[1] = shape[1], shape[0] if sparse: if copy_: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy_: mult_fact = np.ones(shape, dtype=int) return [x * mult_fact for x in output] else: return np.broadcast_arrays(*output) if LooseVersion(np.__version__) < LooseVersion('1.7'): meshgrid = _meshgrid else: meshgrid = np.meshgrid ############################################################################### # Back porting firwin2 for older scipy # Original version of firwin2 from scipy ticket #457, submitted by "tash". # # Rewritten by Warren Weckesser, 2010. def _firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=1.0): """FIR filter design using the window method. From the given frequencies `freq` and corresponding gains `gain`, this function constructs an FIR filter with linear phase and (approximately) the given frequency response. Parameters ---------- numtaps : int The number of taps in the FIR filter. `numtaps` must be less than `nfreqs`. If the gain at the Nyquist rate, `gain[-1]`, is not 0, then `numtaps` must be odd. freq : array-like, 1D The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being Nyquist. The Nyquist frequency can be redefined with the argument `nyq`. The values in `freq` must be nondecreasing. A value can be repeated once to implement a discontinuity. The first value in `freq` must be 0, and the last value must be `nyq`. gain : array-like The filter gains at the frequency sampling points. nfreqs : int, optional The size of the interpolation mesh used to construct the filter. For most efficient behavior, this should be a power of 2 plus 1 (e.g, 129, 257, etc). The default is one more than the smallest power of 2 that is not less than `numtaps`. `nfreqs` must be greater than `numtaps`. window : string or (string, float) or float, or None, optional Window function to use. Default is "hamming". See `scipy.signal.get_window` for the complete list of possible values. If None, no window function is applied. nyq : float Nyquist frequency. Each frequency in `freq` must be between 0 and `nyq` (inclusive). Returns ------- taps : numpy 1D array of length `numtaps` The filter coefficients of the FIR filter. Examples -------- A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and that decreases linearly on [0.5, 1.0] from 1 to 0: >>> taps = firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0]) # doctest: +SKIP >>> print(taps[72:78]) # doctest: +SKIP [-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961] See also -------- scipy.signal.firwin Notes ----- From the given set of frequencies and gains, the desired response is constructed in the frequency domain. The inverse FFT is applied to the desired response to create the associated convolution kernel, and the first `numtaps` coefficients of this kernel, scaled by `window`, are returned. The FIR filter will have linear phase. The filter is Type I if `numtaps` is odd and Type II if `numtaps` is even. Because Type II filters always have a zero at the Nyquist frequency, `numtaps` must be odd if `gain[-1]` is not zero. .. versionadded:: 0.9.0 References ---------- .. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989). (See, for example, Section 7.4.) .. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm """ if len(freq) != len(gain): raise ValueError('freq and gain must be of same length.') if nfreqs is not None and numtaps >= nfreqs: raise ValueError('ntaps must be less than nfreqs, but firwin2 was ' 'called with ntaps=%d and nfreqs=%s' % (numtaps, nfreqs)) if freq[0] != 0 or freq[-1] != nyq: raise ValueError('freq must start with 0 and end with `nyq`.') d = np.diff(freq) if (d < 0).any(): raise ValueError('The values in freq must be nondecreasing.') d2 = d[:-1] + d[1:] if (d2 == 0).any(): raise ValueError('A value in freq must not occur more than twice.') if numtaps % 2 == 0 and gain[-1] != 0.0: raise ValueError("A filter with an even number of coefficients must " "have zero gain at the Nyquist rate.") if nfreqs is None: nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2))) # Tweak any repeated values in freq so that interp works. eps = np.finfo(float).eps for k in range(len(freq)): if k < len(freq) - 1 and freq[k] == freq[k + 1]: freq[k] = freq[k] - eps freq[k + 1] = freq[k + 1] + eps # Linearly interpolate the desired response on a uniform mesh `x`. x = np.linspace(0.0, nyq, nfreqs) fx = np.interp(x, freq, gain) # Adjust the phases of the coefficients so that the first `ntaps` of the # inverse FFT are the desired filter coefficients. shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq) fx2 = fx * shift # Use irfft to compute the inverse FFT. out_full = irfft(fx2) if window is not None: # Create the window to apply to the filter coefficients. from scipy.signal.signaltools import get_window wind = get_window(window, numtaps, fftbins=False) else: wind = 1 # Keep only the first `numtaps` coefficients in `out`, and multiply by # the window. out = out_full[:numtaps] * wind return out def get_firwin2(): """Helper to get firwin2""" try: from scipy.signal import firwin2 except ImportError: firwin2 = _firwin2 return firwin2 def _filtfilt(*args, **kwargs): """wrap filtfilt, excluding padding arguments""" from scipy.signal import filtfilt # cut out filter args if len(args) > 4: args = args[:4] if 'padlen' in kwargs: del kwargs['padlen'] return filtfilt(*args, **kwargs) def get_filtfilt(): """Helper to get filtfilt from scipy""" from scipy.signal import filtfilt if 'padlen' in _get_args(filtfilt): return filtfilt return _filtfilt def _get_argrelmax(): try: from scipy.signal import argrelmax except ImportError: argrelmax = _argrelmax return argrelmax def _argrelmax(data, axis=0, order=1, mode='clip'): """Calculate the relative maxima of `data`. Parameters ---------- data : ndarray Array in which to find the relative maxima. axis : int, optional Axis over which to select from `data`. Default is 0. order : int, optional How many points on each side to use for the comparison to consider ``comparator(n, n+x)`` to be True. mode : str, optional How the edges of the vector are treated. Available options are 'wrap' (wrap around) or 'clip' (treat overflow as the same as the last (or first) element). Default 'clip'. See `numpy.take`. Returns ------- extrema : tuple of ndarrays Indices of the maxima in arrays of integers. ``extrema[k]`` is the array of indices of axis `k` of `data`. Note that the return value is a tuple even when `data` is one-dimensional. """ comparator = np.greater if((int(order) != order) or (order < 1)): raise ValueError('Order must be an int >= 1') datalen = data.shape[axis] locs = np.arange(0, datalen) results = np.ones(data.shape, dtype=bool) main = data.take(locs, axis=axis, mode=mode) for shift in xrange(1, order + 1): plus = data.take(locs + shift, axis=axis, mode=mode) minus = data.take(locs - shift, axis=axis, mode=mode) results &= comparator(main, plus) results &= comparator(main, minus) if(~results.any()): return results return np.where(results) ############################################################################### # Back porting matrix_rank for numpy < 1.7 def _matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : {(M,), (M, N)} array_like array of <=2 dimensions tol : {None, float}, optional threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * max(M.shape) * eps``. Notes ----- The default threshold to detect rank deficiency is a test on the magnitude of the singular values of `M`. By default, we identify singular values less than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in *Numerical recipes* in the discussion of SVD solutions for linear least squares [2]. This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD computation. Imagine that there is a column in `M` that is an exact (in floating point) linear combination of other columns in `M`. Computing the SVD on `M` will not produce a singular value exactly equal to 0 in general: any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default threshold will detect such numerical rank deficiency. The threshold may declare a matrix `M` rank deficient even if the linear combination of some columns of `M` is not exactly equal to another column of `M` but only numerically very close to another column of `M`. We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in the 2007 edition of *Numerical recipes* there is an alternative threshold of ``S.max() * np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe this threshold as being based on "expected roundoff error" (p 71). The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have more information about the sources of error in `M` that would make you consider other tolerance values to detect *effective* rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] MATLAB reference documention, "Rank" http://www.mathworks.com/help/techdoc/ref/rank.html .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795. Examples -------- >>> from numpy.linalg import matrix_rank >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = np.asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return np.int(not all(M == 0)) S = np.linalg.svd(M, compute_uv=False) if tol is None: tol = S.max() * np.max(M.shape) * np.finfo(S.dtype).eps return np.sum(S > tol) if LooseVersion(np.__version__) > '1.7.1': from numpy.linalg import matrix_rank else: matrix_rank = _matrix_rank def _reconstruct_partial(func, args, kwargs): """Helper to pickle partial functions""" return partial(func, *args, **(kwargs or {})) def _reduce_partial(p): """Helper to pickle partial functions""" return _reconstruct_partial, (p.func, p.args, p.keywords) # This adds pickling functionality to older Python 2.6 # Please always import partial from here. copyreg.pickle(partial, _reduce_partial) def normalize_colors(vmin, vmax, clip=False): """Helper to handle matplotlib API""" import matplotlib.pyplot as plt try: return plt.Normalize(vmin, vmax, clip=clip) except AttributeError: return plt.normalize(vmin, vmax, clip=clip) def assert_true(expr, msg='False is not True'): """Fake assert_true without message""" if not expr: raise AssertionError(msg) def assert_is(expr1, expr2, msg=None): """Fake assert_is without message""" assert_true(expr2 is expr2, msg) def assert_is_not(expr1, expr2, msg=None): """Fake assert_is_not without message""" assert_true(expr1 is not expr2, msg) assert_raises_regex_impl = None # from numpy 1.9.1 def assert_raises_regex(exception_class, expected_regexp, callable_obj=None, *args, **kwargs): """ Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by callable when invoked with arguments args and keyword arguments kwargs. Name of this function adheres to Python 3.2+ reference, but should work in all versions down to 2.6. """ __tracebackhide__ = True # Hide traceback for py.test import nose global assert_raises_regex_impl if assert_raises_regex_impl is None: try: # Python 3.2+ assert_raises_regex_impl = nose.tools.assert_raises_regex except AttributeError: try: # 2.7+ assert_raises_regex_impl = nose.tools.assert_raises_regexp except AttributeError: # 2.6 # This class is copied from Python2.7 stdlib almost verbatim class _AssertRaisesContext(object): def __init__(self, expected, expected_regexp=None): self.expected = expected self.expected_regexp = expected_regexp def failureException(self, msg): return AssertionError(msg) def __enter__(self): return self def __exit__(self, exc_type, exc_value, tb): if exc_type is None: try: exc_name = self.expected.__name__ except AttributeError: exc_name = str(self.expected) raise self.failureException( "{0} not raised".format(exc_name)) if not issubclass(exc_type, self.expected): # let unexpected exceptions pass through return False self.exception = exc_value # store for later retrieval if self.expected_regexp is None: return True expected_regexp = self.expected_regexp if isinstance(expected_regexp, basestring): expected_regexp = re.compile(expected_regexp) if not expected_regexp.search(str(exc_value)): raise self.failureException( '"%s" does not match "%s"' % (expected_regexp.pattern, str(exc_value))) return True def impl(cls, regex, callable_obj, *a, **kw): mgr = _AssertRaisesContext(cls, regex) if callable_obj is None: return mgr with mgr: callable_obj(*a, **kw) assert_raises_regex_impl = impl return assert_raises_regex_impl(exception_class, expected_regexp, callable_obj, *args, **kwargs) def _sparse_block_diag(mats, format=None, dtype=None): """An implementation of scipy.sparse.block_diag since old versions of scipy don't have it. Forms a sparse matrix by stacking matrices in block diagonal form. Parameters ---------- mats : list of matrices Input matrices. format : str, optional The sparse format of the result (e.g. "csr"). If not given, the matrix is returned in "coo" format. dtype : dtype specifier, optional The data-type of the output matrix. If not given, the dtype is determined from that of blocks. Returns ------- res : sparse matrix """ nmat = len(mats) rows = [] for ia, a in enumerate(mats): row = [None] * nmat row[ia] = a rows.append(row) return sparse.bmat(rows, format=format, dtype=dtype) try: from scipy.sparse import block_diag as sparse_block_diag except Exception: sparse_block_diag = _sparse_block_diag def _isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): """ Returns a boolean array where two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference (`rtol` * abs(`b`)) and the absolute difference `atol` are added together to compare against the absolute difference between `a` and `b`. Parameters ---------- a, b : array_like Input arrays to compare. rtol : float The relative tolerance parameter (see Notes). atol : float The absolute tolerance parameter (see Notes). equal_nan : bool Whether to compare NaN's as equal. If True, NaN's in `a` will be considered equal to NaN's in `b` in the output array. Returns ------- y : array_like Returns a boolean array of where `a` and `b` are equal within the given tolerance. If both `a` and `b` are scalars, returns a single boolean value. See Also -------- allclose Notes ----- .. versionadded:: 1.7.0 For finite values, isclose uses the following equation to test whether two floating point values are equivalent. absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) The above equation is not symmetric in `a` and `b`, so that `isclose(a, b)` might be different from `isclose(b, a)` in some rare cases. Examples -------- >>> isclose([1e10,1e-7], [1.00001e10,1e-8]) array([ True, False], dtype=bool) >>> isclose([1e10,1e-8], [1.00001e10,1e-9]) array([ True, True], dtype=bool) >>> isclose([1e10,1e-8], [1.0001e10,1e-9]) array([False, True], dtype=bool) >>> isclose([1.0, np.nan], [1.0, np.nan]) array([ True, False], dtype=bool) >>> isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) array([ True, True], dtype=bool) """ def within_tol(x, y, atol, rtol): with np.errstate(invalid='ignore'): result = np.less_equal(abs(x - y), atol + rtol * abs(y)) if np.isscalar(a) and np.isscalar(b): result = bool(result) return result x = np.array(a, copy=False, subok=True, ndmin=1) y = np.array(b, copy=False, subok=True, ndmin=1) # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT). # This will cause casting of x later. Also, make sure to allow subclasses # (e.g., for numpy.ma). dt = np.core.multiarray.result_type(y, 1.) y = np.array(y, dtype=dt, copy=False, subok=True) xfin = np.isfinite(x) yfin = np.isfinite(y) if np.all(xfin) and np.all(yfin): return within_tol(x, y, atol, rtol) else: finite = xfin & yfin cond = np.zeros_like(finite, subok=True) # Because we're using boolean indexing, x & y must be the same shape. # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in # lib.stride_tricks, though, so we can't import it here. x = x * np.ones_like(cond) y = y * np.ones_like(cond) # Avoid subtraction with infinite/nan values... cond[finite] = within_tol(x[finite], y[finite], atol, rtol) # Check for equality of infinite values... cond[~finite] = (x[~finite] == y[~finite]) if equal_nan: # Make NaN == NaN both_nan = np.isnan(x) & np.isnan(y) cond[both_nan] = both_nan[both_nan] return cond if LooseVersion(np.__version__) < LooseVersion('1.7'): isclose = _isclose else: isclose = np.isclose
4fd2db085bebdf0fb2594d570603ecce95d71f50
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03227/s459999028.py
03236a4d5fabd077163769a4c50f0ed805cccd94
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
def main(): s = input().rstrip() if len(s) == 2: print(s) else: print(s[::-1]) if __name__ == "__main__": main()
d807abdc220d8649a4f546bf8715b4be597aec77
5a71ca1f5c964f803350e3c1238cb48986db565c
/coinlibbitfinex/tests/test_bitfinex_streamapi.py
25331ab7bbc5c1144c8083305e500db7203b9b85
[]
no_license
tetocode/coinliball
fd644cbc16039ecad7e43228ea4e287ead5c8e5f
41ebbac13c1fbba98aedaa766b9a505cb157f374
refs/heads/master
2022-09-28T21:58:08.130006
2020-06-04T03:00:56
2020-06-04T03:00:56
269,247,318
0
2
null
null
null
null
UTF-8
Python
false
false
1,491
py
import time from queue import Queue, Empty import pytest from coinlib.datatypes.streamdata import StreamData from coinlibbitbankcc.streamapi import StreamApi WAIT = 3 N = 10 def test_subscribe(stream_api: StreamApi): xrp_usd_params = { 'event': 'subscribe', 'channel': 'book', 'pair': 'XRPUSD', 'prec': 'P0', 'freq': 'F0', 'len': '25', } xrp_btc_params = xrp_usd_params.copy() xrp_btc_params['pair'] = 'XRPBTC' q = Queue() stream_api.on_raw_data = q.put stream_api.subscribe(('xrp_usd', xrp_usd_params)) stream_api.subscribe(('xrp_btc', xrp_btc_params)) keys = set() time.sleep(1) for _ in range(N): d: StreamData = q.get(timeout=WAIT) k = d.key keys.add(k) assert keys == {'xrp_usd', 'xrp_btc'} stream_api.unsubscribe('xrp_usd') time.sleep(1) for _ in range(q.qsize() + N): q.get(timeout=WAIT) keys = set() for _ in range(q.qsize() + N): d = q.get(timeout=WAIT) k = d.key keys.add(k) assert keys == {'xrp_btc'} stream_api.unsubscribe('xrp_btc') with pytest.raises(Empty): for _ in range(q.qsize() + N): q.get(timeout=WAIT) # re-subscribe stream_api.subscribe(('xrp_usd', xrp_usd_params), ('xrp_btc', xrp_btc_params)) keys = set() for _ in range(N): d = q.get(timeout=WAIT) k = d.key keys.add(k) assert keys == {'xrp_usd', 'xrp_btc'}
[ "_" ]
_
d8bef9d2257e646945921eef2184ee0089672dc5
dabc9c7ec7cce125a12c6243ff67fd91e620d636
/tap/line.py
2784be13d982350342f9cef81eb316a081153234
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
Mark-E-Hamilton/tappy
7634209c2862c9e837b58602d4b59636fd9a8e89
62c1a4ef1d9e724d3c7bbb31361c17c3bf071d04
refs/heads/master
2021-01-15T09:04:09.813683
2016-03-21T04:51:45
2016-03-21T04:51:45
53,630,217
0
0
null
null
null
null
UTF-8
Python
false
false
3,921
py
# Copyright (c) 2016, Matt Layman class Line(object): """Base type for TAP data. TAP is a line based protocol. Thus, the most primitive type is a line. """ @property def category(self): raise NotImplementedError class Result(Line): """Information about an individual test line.""" def __init__( self, ok, number=None, description='', directive=None, diagnostics=None): self._ok = ok if number: self._number = int(number) else: # The number may be an empty string so explicitly set to None. self._number = None self._description = description self.directive = directive self.diagnostics = diagnostics @property def category(self): """:returns: ``test``""" return 'test' @property def ok(self): """Get the ok status. :rtype: bool """ return self._ok @property def number(self): """Get the test number. :rtype: int """ return self._number @property def description(self): """Get the description.""" return self._description @property def skip(self): """Check if this test was skipped. :rtype: bool """ return self.directive.skip @property def todo(self): """Check if this test was a TODO. :rtype: bool """ return self.directive.todo def __str__(self): is_not = '' if not self.ok: is_not = 'not ' directive = '' if self.directive is not None: directive = ' # {0}'.format(self.directive.text) diagnostics = '' if self.diagnostics is not None: diagnostics = '\n' + self.diagnostics.rstrip() return "{0}ok {1} - {2}{3}{4}".format( is_not, self.number, self.description, directive, diagnostics) class Plan(Line): """A plan line to indicate how many tests to expect.""" def __init__(self, expected_tests, directive=None): self._expected_tests = expected_tests self.directive = directive @property def category(self): """:returns: ``plan``""" return 'plan' @property def expected_tests(self): """Get the number of expected tests. :rtype: int """ return self._expected_tests @property def skip(self): """Check if this plan should skip the file. :rtype: bool """ return self.directive.skip class Diagnostic(Line): """A diagnostic line (i.e. anything starting with a hash).""" def __init__(self, text): self._text = text @property def category(self): """:returns: ``diagnostic``""" return 'diagnostic' @property def text(self): """Get the text.""" return self._text class Bail(Line): """A bail out line (i.e. anything starting with 'Bail out!').""" def __init__(self, reason): self._reason = reason @property def category(self): """:returns: ``bail``""" return 'bail' @property def reason(self): """Get the reason.""" return self._reason class Version(Line): """A version line (i.e. of the form 'TAP version 13').""" def __init__(self, version): self._version = version @property def category(self): """:returns: ``version``""" return 'version' @property def version(self): """Get the version number. :rtype: int """ return self._version class Unknown(Line): """A line that represents something that is not a known TAP line. This exists for the purpose of a Null Object pattern. """ @property def category(self): """:returns: ``unknown``""" return 'unknown'
1412f35638ca0ea7b9a84f157d78d221431a2524
810ce1c1ac47743e253171ec7541c0e431d952c2
/small_programme/crawler/crawling.py
e445437136947a14712e6ade780429dd6b18b819
[]
no_license
hjlarry/practise-py
91052c25dc7ab706c6234f6d657db76667a27124
871e06b9652d356f55e3888f1f7ea180ac2b1954
refs/heads/master
2022-09-11T17:47:48.557194
2022-08-10T02:07:24
2022-08-10T02:07:24
136,263,989
1
0
null
null
null
null
UTF-8
Python
false
false
8,379
py
import asyncio import collections import logging import re import time import urllib import cgi import sys import aiohttp from reporting import report LOGGER = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) FetchStatistic = collections.namedtuple( "FetchStatistic", [ "url", "next_url", "status", "exception", "size", "content_type", "encoding", "num_urls", "num_new_urls", ], ) def lenient_host(host): parts = host.split(".")[-2:] return "".join(parts) def is_redirect(response): return response.status in (300, 301, 302, 303, 307) class Crawler: def __init__( self, roots, exclude=None, strict=True, max_redirect=10, max_tries=4, max_tasks=10, *, loop=None, ): self.roots = roots self.loop = loop or asyncio.get_event_loop() self.exclude = exclude self.strict = strict self.max_redirect = max_redirect self.max_tries = max_tries self.max_tasks = max_tasks self.q = asyncio.Queue(loop=self.loop) self.session = aiohttp.ClientSession(loop=self.loop) self.seen_urls = set() self.done = [] self.root_domains = set() for root in self.roots: parts = urllib.parse.urlparse(root) host, port = urllib.parse.splitport(parts.netloc) if not host: continue if re.match(r"\A[\d\.]*\Z", host): self.root_domains.add(root) else: host = host.lower() if self.strict: self.root_domains.add(host) else: self.root_domains.add(lenient_host(host)) # 非严格模式则a.bc.com添加为bc.com for root in self.roots: self.add_url(root) self.t0 = time.time() self.t1 = None def close(self): self.session.close() def add_url(self, url, max_redirect=None): if max_redirect is None: max_redirect = self.max_redirect LOGGER.info(f"adding url: {url}, {max_redirect}") self.seen_urls.add(url) self.q.put_nowait((url, max_redirect)) def record_statistic(self, fetch_statistic): self.done.append(fetch_statistic) def _host_okay_strictish(self, host): host = host[4:] if host.startswith("www.") else "www." + host return host in self.root_domains def _host_okay_lenident(self, host): return lenient_host(host) in self.root_domains def host_okay(self, host): host = host.lower() if host in self.root_domains: return True if re.match(r"\A[\d\.]*\Z", host): return False if self.strict: return self._host_okay_strictish(host) else: return self._host_okay_lenident(host) def url_allowed(self, url): if self.exclude and re.search(self.exclude, url): return False parts = urllib.parse.urlparse(url) if parts.scheme not in ("http", "https"): LOGGER.debug(f"skip non http url: {url}") return False host, part = urllib.parse.splitport(parts.netloc) if not self.host_okay(host): LOGGER.debug(f"skip non-root host in {url}") return False return True async def parse_links(self, response): links = set() content_type = None encoding = None body = await response.read() if response.status == 200: content_type = response.headers.get("content-type") pdict = {} if content_type: content_type, pdict = cgi.parse_header(content_type) encoding = pdict.get("charset", "utf-8") if content_type in ("text/html", "application/xml"): text = await response.text() # href 替换为 (?:href|src) 可以拿到图片的链接 urls = set(re.findall(r"""(?i)href=["']([^\s"'<>]+)""", text)) if urls: LOGGER.info(f"got {len(urls)} distinct urls from {response.url}") for url in urls: normalized = urllib.parse.urljoin(str(response.url), url) defragmented, frag = urllib.parse.urldefrag(normalized) if self.url_allowed(defragmented): links.add(defragmented) stat = FetchStatistic( url=response.url, next_url=None, status=response.status, exception=None, size=len(body), content_type=content_type, encoding=encoding, num_urls=len(links), num_new_urls=len(links - self.seen_urls), ) return stat, links async def fetch(self, url, max_redirect): tries = 0 exception = None while tries < self.max_tries: try: response = await self.session.get(url, allow_redirects=False) if tries > 1: LOGGER.info(f"try {tries} for {url} success") break except aiohttp.ClientError as client_err: LOGGER.info(f"try {tries} for {url} raise {client_err}") exception = client_err tries += 1 else: LOGGER.error(f"{url} failed after {self.max_tries} tries") self.record_statistic( FetchStatistic( url=url, next_url=None, status=None, exception=exception, size=0, content_type=None, encoding=None, num_urls=0, num_new_urls=0, ) ) return try: if is_redirect(response): location = response.headers["location"] next_url = urllib.parse.urljoin(url, location) self.record_statistic( FetchStatistic( url=url, next_url=next_url, status=response.status, exception=None, size=0, content_type=None, encoding=None, num_urls=0, num_new_urls=0, ) ) if next_url in self.seen_urls: return if max_redirect > 0: LOGGER.info(f"redirect to {next_url} from {url}") self.add_url(next_url, max_redirect - 1) else: LOGGER.error(f"redirect num limit for {next_url} from {url}") else: stat, links = await self.parse_links(response) self.record_statistic(stat) for link in links.difference(self.seen_urls): self.q.put_nowait((link, self.max_redirect)) self.seen_urls.update(links) finally: await response.release() async def worker(self): try: while True: url, max_redirect = await self.q.get() assert url in self.seen_urls await self.fetch(url, max_redirect) self.q.task_done() except asyncio.CancelledError: pass async def crawl(self): workers = [ asyncio.Task(self.worker(), loop=self.loop) for _ in range(self.max_tasks) ] self.t0 = time.time() await self.q.join() self.t1 = time.time() for w in workers: w.cancel() def main(): loop = asyncio.get_event_loop() roots = ("http://doc.1.com/platform/realname/",) crawler = Crawler(roots) try: loop.run_until_complete(crawler.crawl()) except KeyboardInterrupt: sys.stderr.flush() print("\nInterrupted\n") finally: f = open("report.txt", "w+") report(crawler, file=f) crawler.close() loop.stop() loop.run_forever() loop.close() if __name__ == "__main__": main()
b11986b3974295a315c63bf1ec08b07e1e0e3087
dde9442399c78414c05f7f36803c861638065ca3
/Multidimensional-Lists-Exercise/Radioactive-Mutant-Vampire-Bunnies.py
a22c9f63fe0ef1c68063385ce0f936bf2bfc334d
[]
no_license
Vigyrious/python_advanced
6778eed9e951b5a11b22f6c6d8ea5b160c3aa00d
67db470e78b194aea1f9a35283d5a88b0f6ab94c
refs/heads/main
2023-03-23T12:24:59.688699
2021-03-12T20:53:04
2021-03-12T20:53:04
347,192,305
0
1
null
null
null
null
UTF-8
Python
false
false
3,396
py
row, col = map(int, input().split(" ")) matrix = [] [matrix.append(list(input())) for _ in range(row)] movements = list(input()) player_row, player_col = [[row_index,col_index] for row_index in range(row) for col_index in range(col) if matrix[row_index][col_index] == "P"][0] is_dead = False has_won = False while not is_dead and not has_won: bunnies = [[bunny_row, bunny_col] for bunny_row in range(row) for bunny_col in range(col) if matrix[bunny_row][bunny_col] == "B"] current_movement = movements.pop(0) if current_movement == "U": if player_row-1 in range(row): if matrix[player_row-1][player_col] == "B": player_row -= 1 matrix[player_row][player_col] = "B" is_dead = True else: matrix[player_row][player_col] = "." matrix[player_row - 1][player_col] = "P" player_row -= 1 else: matrix[player_row][player_col] = "." has_won = True elif current_movement == "D": if player_row+1 in range(row): if matrix[player_row+1][player_col] == "B": player_row += 1 matrix[player_row][player_col] = "B" is_dead = True else: matrix[player_row][player_col] = "." matrix[player_row + 1][player_col] = "P" player_row += 1 else: matrix[player_row][player_col] = "." has_won = True elif current_movement == "L": if player_col-1 in range(col): if matrix[player_row][player_col - 1] == "B": player_col -= 1 matrix[player_row][player_col] = "B" is_dead = True else: matrix[player_row][player_col] = "." matrix[player_row][player_col - 1] = "P" player_col -= 1 else: matrix[player_row][player_col] = "." has_won = True elif current_movement == "R": if player_col+1 in range(col): if matrix[player_row][player_col + 1] == "B": player_col += 1 matrix[player_row][player_col] = "B" is_dead = True else: matrix[player_row][player_col] = "." matrix[player_row][player_col + 1] = "P" player_col += 1 else: matrix[player_row][player_col] = "." has_won = True for bunny in bunnies: bunny_row, bunny_col = bunny if bunny_row+1 in range(row): if matrix[bunny_row+1][bunny_col] == "P": is_dead = True matrix[bunny_row + 1][bunny_col] = "B" if bunny_row-1 in range(row): if matrix[bunny_row-1][bunny_col] == "P": is_dead = True matrix[bunny_row - 1][bunny_col] = "B" if bunny_col + 1 in range(col): if matrix[bunny_row][bunny_col+1] == "P": is_dead = True matrix[bunny_row][bunny_col+1] = "B" if bunny_col - 1 in range(col): if matrix[bunny_row][bunny_col-1] == "P": is_dead = True matrix[bunny_row][bunny_col-1] = "B" [print(''.join(sub)) for sub in matrix] print(f"won: {player_row} {player_col}") if has_won else print(f"dead: {player_row} {player_col}")
369add1f2e8ed2f7a86b91b166f88feef21733e3
63b79eb44cf682ece74be1fc866f7651837db448
/powerplay/models/game_content_media.py
cc2654fda4508741a4901f39caab2b020b8b674c
[]
no_license
bclark86/powerplay-py
c8cc4df8acd9ada91299706b7a7113ab9c963645
584d754629936a93d95157356ff806a5c68438dc
refs/heads/main
2023-07-19T04:23:16.510338
2021-09-02T13:17:12
2021-09-02T13:17:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,861
py
# coding: utf-8 """ NHL API Documenting the publicly accessible portions of the NHL API. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class GameContentMedia(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'epg': 'list[AnyOfGameContentMediaEpgItems]', 'milestones': 'GameContentMediaMilestones' } attribute_map = { 'epg': 'epg', 'milestones': 'milestones' } def __init__(self, epg=None, milestones=None): # noqa: E501 """GameContentMedia - a model defined in Swagger""" # noqa: E501 self._epg = None self._milestones = None self.discriminator = None if epg is not None: self.epg = epg if milestones is not None: self.milestones = milestones @property def epg(self): """Gets the epg of this GameContentMedia. # noqa: E501 :return: The epg of this GameContentMedia. # noqa: E501 :rtype: list[AnyOfGameContentMediaEpgItems] """ return self._epg @epg.setter def epg(self, epg): """Sets the epg of this GameContentMedia. :param epg: The epg of this GameContentMedia. # noqa: E501 :type: list[AnyOfGameContentMediaEpgItems] """ self._epg = epg @property def milestones(self): """Gets the milestones of this GameContentMedia. # noqa: E501 :return: The milestones of this GameContentMedia. # noqa: E501 :rtype: GameContentMediaMilestones """ return self._milestones @milestones.setter def milestones(self, milestones): """Sets the milestones of this GameContentMedia. :param milestones: The milestones of this GameContentMedia. # noqa: E501 :type: GameContentMediaMilestones """ self._milestones = milestones def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(GameContentMedia, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GameContentMedia): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
d7b4e049f95736c4a3a270a0a6e326a8bc7e03d5
887b9fd5f4fd4b9448f32750788b138b2e94be3e
/stock/futu/import_requests _income.py
6411f1232d8b5870521859d6a0da9b07f5f729fa
[]
no_license
hong0396/hotwind_git
8fa11b3bc46aadd0b83b297cb6c6919102b7b920
544d984d8a8cdc42b422792a5064d19d24e0c831
refs/heads/master
2020-04-04T01:11:50.010424
2018-11-03T07:24:59
2018-11-03T07:24:59
136,184,346
0
0
null
null
null
null
UTF-8
Python
false
false
863
py
import requests headers={ 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9', 'Connection': 'keep-alive', 'Cookie': 'UM_distinctid=165fa9285fb762-07c06f613d5cac-8383268-e1000-165fa9285fc20a; cipher_device_id=1537507232150902; tgw_l7_route=8d34ab350eb9a9772a5a0c377f34d47d', 'Host': 'finance.futunn.com', 'Origin': 'https://www.futunn.com', 'Referer': 'https://www.futunn.com/quote/stock-info?m=us&code=CYTXW&type=finance_analyse', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36' } url='https://finance.futunn.com/api/finance/balance-sheet?code=CYTXW&label=us&quarter=0&page=0' r = requests.get(url,headers=headers).json() print(r.get("data").get("list")) print(r.get("data").get("pages"))
7db05f705d72bdf87180f6a7bff371d915d8b61e
299e5934971f9de638692e2667d6e270bcab5cbd
/214.最短回文串.py
fd576408b90eb365d8d4759abcade422cdf7f582
[]
no_license
ycj123/Leetcode-Python3
14bcd6c9f4d26191d5d40c77e923df4d0be4c0e5
1593960cdf2655ef1dcf68e3517e7121670c6ac3
refs/heads/master
2022-12-16T23:12:19.326702
2020-09-18T00:17:45
2020-09-18T00:17:45
295,302,872
0
0
null
null
null
null
UTF-8
Python
false
false
804
py
# # @lc app=leetcode.cn id=214 lang=python3 # # [214] 最短回文串 # # https://leetcode-cn.com/problems/shortest-palindrome/description/ # # algorithms # Hard (36.30%) # Likes: 262 # Dislikes: 0 # Total Accepted: 23.3K # Total Submissions: 64.2K # Testcase Example: '"aacecaaa"' # # 给定一个字符串 s,你可以通过在字符串前面添加字符将其转换为回文串。找到并返回可以用这种方式转换的最短回文串。 # # 示例 1: # # 输入: "aacecaaa" # 输出: "aaacecaaa" # # # 示例 2: # # 输入: "abcd" # 输出: "dcbabcd" # # # @lc code=start class Solution: def shortestPalindrome(self, s: str) -> str: r = s[::-1] for i in range(len(s) + 1): if s.startswith(r[i:]): return r[:i] + s # @lc code=end
ec7acf98f9484508ac4aef0ff75457eae8bd99f0
f05acf7451fe58b64ec11744e8afddf142014efa
/crowdsorter/views/_session.py
dd75bd5c8d2a06dddfad4e0d7a5a23f7570d19a0
[ "MIT" ]
permissive
iCodeIN/crowdsorter
899ac58b1df43ca134d3f966dcf2ec1c4a49e0df
1c847f1f0284fc810ec1f2dd501acb4dbfa16bbb
refs/heads/master
2023-03-26T16:09:04.914897
2020-11-11T18:25:55
2020-11-11T18:25:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,337
py
from flask import session VERSION = 2 # increment when session logic changes to clear sessions VOTED_NAMES = f"voted-names:{VERSION}:" SKIPPED_NAMES = f"skipped-names:{VERSION}:" VIEWED_PAIRS = f"viewed-pairs:{VERSION}:" def get_voted_names(code): return _get(VOTED_NAMES, code) def set_voted_names(code, names): _set(VOTED_NAMES, code, names) def add_voted_name(code, name): names = get_voted_names(code) if name not in names: names.append(name) set_voted_names(code, names) def get_skipped_names(code): return _get(SKIPPED_NAMES, code) def set_skipped_names(code, names): _set(SKIPPED_NAMES, code, names) def add_skipped_name(code, name): names = get_skipped_names(code) if name not in names: names.append(name) set_skipped_names(code, names) def get_viewed_pairs(code): return _get(VIEWED_PAIRS, code) def set_viewed_pairs(code, pairs): _set(VIEWED_PAIRS, code, pairs) def add_viewed_pair(code, pair): pairs = get_viewed_pairs(code) if pair not in pairs: pairs.append(pair) set_viewed_pairs(code, pairs) def _get(prefix, code): key = prefix + code value = session.get(key) or [] return value def _set(prefix, code, value): key = prefix + code session[key] = value session.permanent = True
69aa022e185b5ec3bb7d2f6da610e01aedc92957
fba1ae1672a770846eb219e4e092ba4c162aec40
/2.py
01fbf8c10fb3569d0961749560f345f35e124f7d
[]
no_license
peterbe/optimize-titles.json
9272ad39d7565c448dce2b22a3d844ef0e7524d6
ff7f8a01a5a742906ebb350c55cc963ca3b85e73
refs/heads/master
2022-11-23T05:33:05.004619
2020-07-15T18:18:48
2020-07-15T18:18:48
279,936,544
1
0
null
null
null
null
UTF-8
Python
false
false
275
py
import json import csv with open('0.json') as f: data = json.load(f) import csv with open('2.csv', 'w') as f: writer = csv.writer(f, delimiter="|") for each, value in data['titles'].items(): writer.writerow([each, value['title'], value['popularity']])
986e4045b106ad579041853e9891735e06800efd
52b5773617a1b972a905de4d692540d26ff74926
/.history/rottenOranges_20200810191228.py
2e8869821ab7c96fc3b8d53eff3ef2e939c3ffb4
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
def markrotten(i,j,row,column) def oranges(grid): # loop through the grid # if there is no fresh orange just return 0 # if there is a two check all its four neighbours # recursive call # count when a one becomes a two row = len(grid) column = len(grid[0]) for i in range(len(grid)): for j in range(len(i)): if grid[i][j] == 2: markrotten(i,j,row,column,grid) oranges( [[2,1,1],[0,1,1],[1,0,1]])
d20e606c613d78c5971e9e9c8e93448c465bcbe1
68aa9bf99d62a5b991dc5aaa3d794f4bcd6e355a
/Programiranje/gui/Capital_Cities.py
24cfdaf80e27e2162949498aef012db6a6261742
[]
no_license
dujodujo/lemur
82c9e695459597ab1b3430e566bc375af84d563c
1e6350b33f86f89f89c5bddbd3924364f027160e
refs/heads/master
2021-01-01T16:49:35.386172
2013-11-06T09:59:12
2013-11-06T09:59:12
14,150,163
1
0
null
null
null
null
UTF-8
Python
false
false
2,022
py
import sys, os, random from PyQt4.QtCore import * from PyQt4.QtGui import * class Form(QDialog): def __init__(self,parent = None): super(Form, self).__init__(parent) self.get_data() self.answers = 0 self.count = 0 self.countryLabel = QLabel("Country:") self.fromCountryLabel = QLabel() self.fromCountryLabel.setText("Slovenija") self.capitalLabel = QLabel("Capital:") self.fromLineEdit = QLineEdit() self.countLabel = QLabel() self.resultLabel = QLabel() grid = QGridLayout() grid.addWidget(self.countryLabel,0,0) grid.addWidget(self.fromCountryLabel,0,1) grid.addWidget(self.capitalLabel,1,0) grid.addWidget(self.fromLineEdit,1,1) grid.addWidget(self.countLabel,2,0) grid.addWidget(self.resultLabel,2,1) self.setLayout(grid) self.connect(self.fromLineEdit, SIGNAL("returnPressed()"), self.update_ui) def select(self): self.fromCountryLabel.setText(random.choice([x for x in self.capitals.keys()])) def update_ui(self): capitals = self.capitals country = self.fromCountryLabel.text() name = self.fromLineEdit.text() if name == capitals[country]: self.resultLabel.setText("Pravilno") self.count +=1 else: self.resultLabel.setText("Nepravilno, pravilni odgovor je " + capitals[country] ) self.answers +=1 self.countLabel.setText("{}/{}".format(self.count,self.answers)) self.fromLineEdit.clear() self.select() def get_data(self): self.capitals = {} if os.path.exists(os.getcwd() + "\\imena.txt"): for line in open("imena.txt", "rt"): line = line.strip() data = line.split(", ") country = data[0] capital = data[1] self.capitals[country] = capital app = QApplication(sys.argv) form = Form() form.show() app.exec_()
3e7c227a882f2cd39cdaf02c0f17a021690effc5
40a04920dea94179878e25a0804ce4a6b459aca9
/Python/Django/Portfolio/apps/first_app/urls.py
8e117530ce911208aad1a83f1f376ca1c35e005b
[]
no_license
Kryptonian92/pythonAssignments
5c7dd9140d07c94b19816ebbcaba579338479136
06355e0481307a77e5acd53b86b1fc144e98302a
refs/heads/master
2021-01-20T15:50:46.355224
2017-10-28T19:02:52
2017-10-28T19:02:52
90,771,012
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
from django.conf.urls import url from . import views # This line is new! urlpatterns = [ url(r'^$', views.index), # This line has changed! url(r'^testimonials$', views.show) ]
6c7376c8231168cb83ab28cd66f7376c7363aa20
0b842bcb3bf20e1ce628d39bf7e11abd7699baf9
/oscar/a/sys/platform/manager/blinky/__init__.py
856452a17cd28db74867fb490c14dee2212dcaf8
[]
no_license
afeset/miner2-tools
75cc8cdee06222e0d81e39a34f621399e1ceadee
81bcc74fe7c0ca036ec483f634d7be0bab19a6d0
refs/heads/master
2016-09-05T12:50:58.228698
2013-08-27T21:09:56
2013-08-27T21:09:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
574
py
# # Copyright Qwilt, 2012 # # The code contained in this file may not be used by any other entities without explicit written permission from Qwilt. # # Author: shmulika # G_GROUP_NAME_PLATFORM_POWER_BLINKY_ADAPTOR = "power-blinky-adaptor" G_GROUP_NAME_PLATFORM_FANS_BLINKY_ADAPTOR = "fans-blinky-adaptor" G_GROUP_NAME_PLATFORM_TEMPERATURE_BLINKY_ADAPTOR = "temperature-blinky-adaptor" G_GROUP_NAME_PLATFORM_MANAGER_BLINKY_ADAPTOR = "platform-manager-blinky-adaptor" G_GROUP_NAME_PLATFORM_SOURCE_BLINKY_ADAPTOR = "source-blinky-adaptor"
b2c1be6d03658e2b794333b2d98e59fda98d2e05
7d97daf9b9f46d68bbe29441d8db554918dfcdc4
/leetcode/StringtoInteger8.py
5a117868d64f0d0ad26bb4ae61baff99e7332feb
[]
no_license
hundyoung/LeetCode
9a56c4f078dcb4e875a6178c14665b7784c1a0a2
803e164d3a21b593cb89206b3a362c1ab1eb9abf
refs/heads/master
2020-09-23T02:51:13.657444
2020-05-06T12:53:07
2020-05-06T12:53:07
225,383,854
0
0
null
null
null
null
UTF-8
Python
false
false
664
py
class Solution: def myAtoi(self, str: str) -> int: str1 = str.strip() result = "" for i in range(len(str1)): char = str1[i] if(i==0and (char=="+" or char=="-")): result= result+char elif char.isdigit(): result = result + char else: break # print(str1) try: result = int(result) result = min(2**31-1,result) result = max((-2)**31,result) return result except: return 0 if __name__ == '__main__': solution = Solution() print(solution.myAtoi("-5-"))
6b1515908b2fe16543fdcf82ee9325387b7d572b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_plagued.py
33674872c908833ea1ef79864be519cf6ce0d184
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from xai.brain.wordbase.verbs._plague import _PLAGUE #calss header class _PLAGUED(_PLAGUE, ): def __init__(self,): _PLAGUE.__init__(self) self.name = "PLAGUED" self.specie = 'verbs' self.basic = "plague" self.jsondata = {}
2bd765f9129f0648c344eac691a54cae5729812b
cc0d06e2aad3d30152c4a3f3356befdc58748313
/13nov_til_19nov/17_novin1900.py
0e049e544ca995c89370175743c5e1de70beedec
[]
no_license
lasse-steinnes/IN1900
db0bb4da33fa024d4fe9207337c0f1d956197c50
c8d97c2903078471f8e419f88cc8488d9b8fc7da
refs/heads/master
2020-12-14T15:34:36.429764
2020-01-18T19:59:46
2020-01-18T19:59:46
234,789,653
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
#### Forelesning in1900 #### ### Siste forelesning. Foilbasert. ## siste del av ODE-løsere og modellering av smittsomme sykdommer ## System av ODE´s ### Skal lage klassehierarki for ODE løsere. ###
9a68a892ee7454b8952addae4614751aba7824f7
0789e92ff05448f511352982dbc9fcc8b481e806
/kikar_hamedina/reporting/management/commands/export_commentator_data_to_csv.py
728384914535440e35a1486adb779002cbeca29e
[]
no_license
danielhers/kikar-hamedina
9645dfc554c004092cb44bb5189b63e9940b3801
a838a2fc675ea7100c620477bae438f215c741f7
refs/heads/dev
2020-06-14T14:08:05.069290
2017-05-04T17:22:03
2017-05-04T17:22:03
75,173,287
0
0
null
2016-11-30T09:47:01
2016-11-30T09:47:01
null
UTF-8
Python
false
false
6,338
py
#!encoding utf-8 from csv import DictWriter from django.utils import timezone from facebook_feeds.management.commands.kikar_base_commands import KikarBaseCommand from facebook_feeds.models import Facebook_Feed, Facebook_Status DELIMITER = '~' class Command(KikarBaseCommand): def add_arguments(self, parser): parser.add_argument('--year', action='store', dest='year', default=None, help="choose year to filter on" ) parser.add_argument('--feed', action='store', dest='feed', default=None, help="choose year to filter on" ) parser.add_argument('--total', action='store_true', dest='total', default=False, help="Get statistics for total of activity, not separated by feed" ) def build_commentator_data(self, statuses, year=None): years = ['2014', '2015'] if not year else [year] counter = dict() counter['unique'] = {'likes_2014': set(), 'likes_2015': set(), 'comments_2014': set(), 'comments_2015': set()} counter['full'] = {'likes_2014': long(), 'likes_2015': long(), 'comments_2014': long(), 'comments_2015': long()} for year in years: for status in statuses.filter(published__year=year).order_by('published'): if not status.is_comment: counter['unique']['likes_%s' % year] = counter['unique'][ 'likes_%s' % year].union( set(status.likes.values_list('user', flat=True))) counter['unique']['comments_%s' % year] = counter['unique'][ 'comments_%s' % year].union( set(status.comments.values_list('comment_from_id', flat=True))) counter['full']['likes_%s' % year] += status.likes.count() counter['full']['comments_%s' % year] += status.comments.count() print('\t%s' % status.published) return counter def handle(self, *args, **options): print('Start.') feed = options['feed'] feeds = Facebook_Feed.objects.filter(id=feed) if feed else Facebook_Feed.objects.all() counter = dict() if options['total']: statuses = Facebook_Status.objects.all() counter['total'] = self.build_commentator_data(statuses, year=options['year']) else: for feed in feeds.order_by('id'): print(feed.id) statuses = feed.facebook_status_set.filter(is_comment=False) counter[feed.id] = self.build_commentator_data(statuses, year=options['year']) file_name = 'commentator_data_{}.csv'.format(timezone.now().strftime('%Y_%m_%d_%H_%M_%S')) with open(file_name, 'wb') as f: field_names = [ 'feed_id', 'link', 'mk_id', 'mk_name', 'mk_party', 'likes_2014_unique', 'likes_2015_unique', 'likes_2014_full', 'likes_2015_full', 'comments_2014_unique', 'comments_2015_unique', 'comments_2014_full', 'comments_2015_full' ] csv_data = DictWriter(f, fieldnames=field_names, delimiter=DELIMITER) headers = {field_name: field_name for field_name in field_names} csv_data.writerow(headers) if options['total']: row = {'mk_id': 'total', 'mk_name': 'total', 'mk_party': None, 'feed_id': 'total', 'link': None, 'likes_2014_unique': len(counter['total']['unique']['likes_2014']), 'likes_2015_unique': len(counter['total']['unique']['likes_2015']), 'likes_2014_full': counter['total']['full']['likes_2014'], 'likes_2015_full': counter['total']['full']['likes_2015'], 'comments_2014_unique': len(counter['total']['unique']['comments_2014']), 'comments_2015_unique': len(counter['total']['unique']['comments_2015']), 'comments_2014_full': counter['total']['full']['comments_2014'], 'comments_2015_full': counter['total']['full']['comments_2015'] } csv_data.writerow(row) else: for feed in feeds: row = {'mk_id': feed.persona.object_id, 'mk_name': unicode(feed.persona.content_object.name).encode( 'utf-8') if feed.persona.content_object else feed.username, 'mk_party': unicode(feed.persona.content_object.current_party.name).encode( 'utf-8') if feed.persona.content_object else None, 'feed_id': feed.id, 'link': 'http://www.facebook.com/{}'.format(feed.vendor_id), 'likes_2014_unique': len(counter[feed.id]['unique']['likes_2014']), 'likes_2015_unique': len(counter[feed.id]['unique']['likes_2015']), 'likes_2014_full': counter[feed.id]['full']['likes_2014'], 'likes_2015_full': counter[feed.id]['full']['likes_2015'], 'comments_2014_unique': len(counter[feed.id]['unique']['comments_2014']), 'comments_2015_unique': len(counter[feed.id]['unique']['comments_2015']), 'comments_2014_full': counter[feed.id]['full']['comments_2014'], 'comments_2015_full': counter[feed.id]['full']['comments_2015'] } csv_data.writerow(row) print('Done.')
98f50633d7a2f376fa62cba3433f8d1dd51588f3
ebe5167148cfff43d24b6c66e44634bb55513b72
/solutions/linkedlist/160.Intersection.of.Two.Linked.Lists.py
2cf42f3f9cf91b328616216b08a513d48d5ff246
[]
no_license
ljia2/leetcode.py
c90ac38a25331d61d3ff77fd135b82372da3a09f
08c6d27498e35f636045fed05a6f94b760ab69ca
refs/heads/master
2020-03-25T03:37:13.318582
2019-07-18T23:14:41
2019-07-18T23:14:41
143,351,386
0
0
null
null
null
null
UTF-8
Python
false
false
3,122
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def getIntersectionNode(self, headA, headB): """ Write a program to find the node at which the intersection of two singly linked lists begins. For example, the following two linked lists: begin to intersect at node c1. Example 1: Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3 Output: Reference of the node with value = 8 Input Explanation: The intersected node's value is 8 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,0,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B. Example 2: Input: intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1 Output: Reference of the node with value = 2 Input Explanation: The intersected node's value is 2 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [0,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B. Example 3: Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2 Output: null Input Explanation: From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values. Explanation: The two lists do not intersect, so return null. Notes: If the two linked lists have no intersection at all, return null. The linked lists must retain their original structure after the function returns. You may assume there are no cycles anywhere in the entire linked structure. Your code should preferably run in O(n) time and use only O(1) memory. :type head1, head1: ListNode :rtype: ListNode """ if not headA or not headB: return None lenA = self.get_length(headA) lenB = self.get_length(headB) # adjust to ensure A is longer than B; # swap both headA/B and lenA/B if lenA < lenB: headA, headB = headB, headA lenA, lenB = lenB, lenA stepA = 0 runnerA = headA while stepA + lenB < lenA and runnerA: stepA += 1 runnerA = runnerA.next runnerB = headB while runnerA and runnerB and runnerA != runnerB: runnerA = runnerA.next runnerB = runnerB.next if runnerA != runnerB: return None else: return runnerA def get_length(self, head): length = 0 runner = head while runner: length += 1 runner = runner.next return length
c797fec39e87cec2724d05c13ea1be0f98111384
7f66c66eb82b480e8a23ecbfb8613aae02cb50f7
/tests/integration/parity/utils.py
572d4c4af3500566de67c6e37afa8c80f6465074
[ "MIT" ]
permissive
y19818/web3.py
03ddedcfdbd4dde2c1a458b31f5e796509b3c7c6
32a85a287ab63220d1e0c06d77be74de595ff02f
refs/heads/master
2021-06-25T00:30:50.312173
2019-12-02T08:21:40
2019-12-02T08:21:40
225,276,093
0
0
MIT
2019-12-02T03:20:47
2019-12-02T03:20:47
null
UTF-8
Python
false
false
1,939
py
import signal import socket import subprocess import time from vns_utils import ( to_text, ) import requests def wait_for_socket(ipc_path, timeout=60): start = time.time() while time.time() < start + timeout: try: sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(ipc_path) sock.settimeout(timeout) except (FileNotFoundError, socket.error): time.sleep(0.01) else: break def wait_for_http(endpoint_uri, timeout=60): start = time.time() while time.time() < start + timeout: try: requests.get(endpoint_uri) except requests.ConnectionError: time.sleep(0.01) else: break def get_process(command_list, terminates=False): proc = subprocess.Popen( command_list, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1, ) if terminates: wait_for_popen(proc, 30) try: yield proc finally: kill_proc_gracefully(proc) output, errors = proc.communicate() print( "Parity Process Exited:\n" "stdout:{0}\n\n" "stderr:{1}\n\n".format( to_text(output), to_text(errors), ) ) def wait_for_popen(proc, timeout): start = time.time() while time.time() < start + timeout: if proc.poll() is None: time.sleep(0.01) else: break def kill_proc_gracefully(proc): if proc.poll() is None: proc.send_signal(signal.SIGINT) wait_for_popen(proc, 13) if proc.poll() is None: proc.terminate() wait_for_popen(proc, 5) if proc.poll() is None: proc.kill() wait_for_popen(proc, 2)
8c4e25032a017464274c3783f28d6988a1017590
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_135/3673.py
56a2a64feb4db88351e2187df1ddbb45f569ef30
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
583
py
import sys def t_process(): n1 = int(sys.stdin.readline()) n1 -= 1 n1_matrix = [set(map(int, sys.stdin.readline().split())) for _ in range(4)] n2 = int(sys.stdin.readline()) n2 -= 1 n2_matrix = [set(map(int, sys.stdin.readline().split())) for _ in range(4)] sol = list(n1_matrix[n1].intersection(n2_matrix[n2])) if len(sol) > 1: return "Bad magician!" if len(sol) == 0: return "Volunteer cheated!" if len(sol) == 1: return int(sol[0]) def main(): t = int(sys.stdin.readline()) for k in range(1, t + 1): print("Case #{0}: {1}".format(k, t_process())) main()
1152f9facac5c0cb34d89abe0989f056a54199fe
0ab3ab2cda94a700f015ff172ef37abc3402ed75
/drawfromfile.py
3150dd3f92c114e2f97a979d71243be2403f76c8
[]
no_license
mikerr/laserPOV
719c85493f8a4dc05e92267695e9e0804aac0b64
215ee38db2c3a2ff6e92e1c4f5aa18615ec76839
refs/heads/master
2016-09-06T07:49:40.767385
2015-04-11T20:49:39
2015-04-11T20:49:39
33,660,512
1
0
null
null
null
null
UTF-8
Python
false
false
879
py
#!/usr/bin/python import subprocess,time file = open('drawing','r') x,y = [], [] for line in file: row = line.split() x.append(row[0]) y.append(row[1]) SPEED = 0.09 REPS = 10 XOFFSET = 160 YOFFSET = 110 for loop in range (REPS): for i in range (len(x)): xpos = int(x[i]) + XOFFSET ypos = int(y[i]) + YOFFSET command = "echo 7=" + str(xpos) + ">/dev/servoblaster" subprocess.call (command, shell=True) command = "echo 0=" + str(ypos) + ">/dev/servoblaster" subprocess.call (command, shell=True) time.sleep(SPEED) for i in reversed (range (len(x))): xpos = int(x[i]) + XOFFSET ypos = int(y[i]) + YOFFSET command = "echo 7=" + str(xpos) + ">/dev/servoblaster" subprocess.call (command, shell=True) command = "echo 0=" + str(ypos) + ">/dev/servoblaster" subprocess.call (command, shell=True) time.sleep(SPEED)
[ "pi@raspberrypi.(none)" ]
pi@raspberrypi.(none)
23afbdc21f3c52e6711d6a97008f609df14f55bf
a2ad46d4995b2dbe182e645a15b7d5a7047d3b56
/2018.12.05.provetta/all-CMS-submissions-2018-12-05/2018-12-05.12:18:30.099314.VR437605.conta_multipli.py
e4d78f797d2d4c80a6e99aaa5ded613795628fb5
[]
no_license
romeorizzi/temi_prog_public
ccf634a0291dd943b503f8dc57ed03de4d9b1a68
e9e3e98d4a9a3cddec45d514180b83fd5004fe7b
refs/heads/master
2020-04-09T04:27:35.687265
2019-03-25T14:04:04
2019-03-25T14:04:04
160,024,031
0
0
null
null
null
null
UTF-8
Python
false
false
725
py
""" * user: VR437605 * fname: ANNALISA * lname: DETTORI * task: conta_multipli * score: 100.0 * date: 2018-12-05 12:18:30.099314 """ #!/usr/bin/env python3 # Template per soluzione conta_multipli from __future__ import print_function import sys if sys.version_info < (3, 0): input = raw_input # in python2, l'equivalente di input è raw_input # Devi modificare l'implementazione di questa funzione per fare # quanto richiesto dal testo dell'esercizio def conta_multipli(a, b, c): p=0 for n in range (1,c+1): if n%a==0 and n%b!=0 : p+=1 return p # Lettura input: non devi modificare il codice sotto questa riga a, b, c = map(int, input().split()) print(conta_multipli(a, b, c))
497b09aec342a86f55cb820435ec603f2aab872a
07fbdae51275b4bab2074524fc4c1ae58ac53d08
/List's/Lists Basics/Exercise/Solutions/10. Bread Factory.py
ef0ba277e0e12230313d1b24fb7eeaa1489595d6
[]
no_license
rimisarK-blue/Python-Fundamental-knowledge
85c2afa4401f848c9919f672c7fa3d54a43e761f
a182fb1c7c3ce11f9e26ce0afefe5c2069d70e8d
refs/heads/main
2023-03-09T02:08:34.411768
2021-02-15T20:19:52
2021-02-15T20:19:52
326,009,707
0
0
null
null
null
null
UTF-8
Python
false
false
1,155
py
events = input().split('|') energy = 100 coins = 100 good_day = True for com in events: command, value = com.split('-') value = int(value) if command == 'rest': if energy == 100: print("You gained 0 energy.") print(f"Current energy: 100.") elif energy + value > 100: print(f"You gained {value} energy.") print(f"Current energy: 100.") else: energy += value print(f"You gained {value} energy.") print(f"Current energy: {energy}.") elif command == 'order': if energy >= 30: energy -= 30 coins += value print(f"You earned {value} coins.") else: energy += 50 print("You had to rest!") else: if coins - value > 0: coins -= value print(f"You bought {command}.") else: good_day = False print(f"Closed! Cannot afford {command}.") break if good_day and coins > 0 and energy > 0: print("Day completed!") print(f"Coins: {coins}") print(f"Energy: {energy}")
0e7737cccb51a80b11f78c5e07adef62d4d64487
e61fa7205d3d01787ca0b3d512efa67a94c1105b
/Raspberry/config.py
ea6164f0af539e884b8d16c78501a11231c89ffb
[]
no_license
cyrilvincent/IoT
4d95c6def9d4c822edee71d547e8b151846f26ee
d73a4d78501975beeeddc9fd90704f5982f66a66
refs/heads/master
2021-12-28T08:42:50.088460
2021-09-09T10:12:33
2021-09-09T10:12:33
215,299,703
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
mac="00:0E:EA:CF:47:5A" usb="COM4" usb2="COM5"
68cf3e5e2413d7edeffddb03c066dfb7a3e78310
4e187a73d451f8c500955098e8f7d466b90d05de
/Flasky0.1.py
299910de2cdaa6ebb388c7732ee6b2261932d8dc
[]
no_license
LinZiYU1996/Flask_Login
21c3592b6116ca49a17bab98eb4171ea4721b551
420d540cf18f4627054ecf589872611e6e6ff8b6
refs/heads/master
2021-01-02T08:48:38.669567
2017-08-02T03:14:37
2017-08-02T03:14:37
99,066,660
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
from flask import Flask,render_template,flash,url_for,redirect from flask_bootstrap import Bootstrap from flask_moment import Moment from flask_wtf import FlaskForm from flask_login import LoginManager,login_user,UserMixin,logout_user,login_required from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['SECRET_KEY']='kkk' bootstrap = Bootstrap(app) moment=Moment(app) login_manger=LoginManager() login_manger.session_protection='strong' login_manger.login_view='login' login_manger.init_app(app) if __name__ == '__main__': app.run()
757bb5db334a4b6518bf2b293c9f9cc451d67ebf
5891051796778cfb44a255248ce38789bfef9e70
/P_base/python_pdf/kp.py
1849b1e321f912c79b6c02533938157eb9a214ea
[]
no_license
Faithlmy/Python_base
cc546a5d86b123e102a69df1227cde9b6e567493
5a43557e6375dc9dbe5f6701d7c10e549873a5ab
refs/heads/master
2021-01-01T17:07:04.097978
2018-03-31T16:44:01
2018-03-31T16:44:01
98,000,621
0
0
null
null
null
null
UTF-8
Python
false
false
2,258
py
#!/usr/bin/env python3 # encoding: utf-8 import sys import importlib importlib.reload(sys) from pdfminer.pdfparser import PDFParser,PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import PDFPageAggregator from pdfminer.layout import LTTextBoxHorizontal,LAParams from pdfminer.pdfinterp import PDFTextExtractionNotAllowed ''' 解析pdf 文本,保存到txt文件中 ''' path = r'/home/faith/Desktop/phtoword.pdf' def parse(): fp = open(path, 'rb') # 以二进制读模式打开 #用文件对象来创建一个pdf文档分析器 praser = PDFParser(fp) # 创建一个PDF文档 doc = PDFDocument() # 连接分析器 与文档对象 praser.set_document(doc) doc.set_parser(praser) # 提供初始化密码 # 如果没有密码 就创建一个空的字符串 doc.initialize() # 检测文档是否提供txt转换,不提供就忽略 if not doc.is_extractable: raise PDFTextExtractionNotAllowed else: # 创建PDf 资源管理器 来管理共享资源 rsrcmgr = PDFResourceManager() # 创建一个PDF设备对象 laparams = LAParams() device = PDFPageAggregator(rsrcmgr, laparams=laparams) # 创建一个PDF解释器对象 interpreter = PDFPageInterpreter(rsrcmgr, device) # 循环遍历列表,每次处理一个page的内容 for page in doc.get_pages(): # doc.get_pages() 获取page列表 interpreter.process_page(page) # 接受该页面的LTPage对象 layout = device.get_result() # print(layout) # 这里layout是一个LTPage对象 里面存放着 这个page解析出的各种对象 一般包括LTTextBox, LTFigure, LTImage, LTTextBoxHorizontal 等等 想要获取文本就获得对象的text属性, for x in layout: print(x.get_text()) # if (isinstance(x, LTTextBoxHorizontal)): # with open(r'/root/pdf/t_pdf/turn_pdf2.txt', 'a') as f: # results = x.get_text().encode('utf-8') # print(results) # f.write(results + '\n') if __name__ == '__main__': parse()
1bab715b0c564a7a2941200a68f23a04ab4bfd58
be2c022b270522fe24475b794d53a3fd973a5de1
/영동/05_11049_행렬 곱셈 순서.py
9a26a4594789aceefcc502611d23e25d9aedf66e
[]
no_license
zeroistfilm/week04
ea4a358be0931fe28202b7ce543ed246536a1c50
fdb5985e2d899c8b1a60cb81d660937304fa5bcb
refs/heads/main
2023-02-09T09:35:27.795180
2021-01-07T02:29:28
2021-01-07T02:29:28
325,717,500
1
0
null
null
null
null
UTF-8
Python
false
false
562
py
# https://www.acmicpc.net/problem/11049 import sys #sys.stdin = open("input.txt", "r") N = int(sys.stdin.readline()) M = [0 for i in range(N+1)] for i in range(N): a,b = map(int, sys.stdin.readline().split()) M[i]=a M[i+1] = b Matrix = [[0 for i in range(N)] for i in range(N)] for i in range(1,N): r = 0 c = i for _ in range(N,i,-1): tmp=[] for k in range(r,c): tmp.append(Matrix[r][k]+Matrix[k+1][c]+(M[r]*M[k+1]*M[c+1])) Matrix[r][c]=min(tmp) r += 1 c += 1 print(Matrix[0][-1])
f96729b38a64cf05d84ab0e508ac4cb889ce989b
ce348e6f43e0eeb83a171f73dc924b95c121fe7f
/backend/sharedstory_24977/wsgi.py
58a5c6babe8473b4c0580a501312c526f0f7ed5c
[]
no_license
crowdbotics-apps/sharedstory-24977
ec19e35d67d0119dac3d30521e2aef050f60fa8c
2dbd37503ab449981acbfb86f98d54580b4d6a92
refs/heads/master
2023-03-23T15:31:00.793794
2021-03-11T16:01:22
2021-03-11T16:01:22
346,757,867
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
""" WSGI config for sharedstory_24977 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'sharedstory_24977.settings') application = get_wsgi_application()
1f4ddfa1c8bc8ae0575ee67ac34d8226efa92e7e
e1efc8e0b0e4629dea61504fbc816c0527691bd9
/3.jvm/24-静态分派.py
4057e69948dec7c7341531bc1d10fa9e78285067
[]
no_license
xiongmengmeng/xmind-technology
2bb67a0bf92cfd660cac01f8ab3a2454423ccba5
e2fdb6987ef805a65f0a4feb52d84383853f4b77
refs/heads/main
2023-07-31T07:10:29.868120
2021-09-11T08:18:17
2021-09-11T08:18:17
307,636,242
3
1
null
null
null
null
UTF-8
Python
false
false
3,314
py
import os,sys parentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0,parentdir) import xmind xmind_name="jvm" w = xmind.load(os.path.dirname(os.path.abspath(__file__))+"\\"+xmind_name+".xmind") s2=w.createSheet() s2.setTitle("静态分派") r2=s2.getRootTopic() r2.setTitle("静态分派") content={ 'Java具备面向对象的3个基本特征':[ '继承', '封装(get/set)', {'多态':[ '继承,重写(Override),向上转型(Human h=new Man())三大必要条件', '方法重载:同一个方法名,参数或者类型不同。(Overload)', '方法重写:父类与子类有同样的方法名和参数,这叫方法覆盖。(Override)' ]} ], '任务':[ '不等同于【方法执行】,该阶段唯一任务是确定【被调用方法版本】,不涉及方法内部具体运行过程' ], '五条字节码指令':[ {'invokestatic':[ '调用静态方法' ]}, {'invokespecial':[ '调用实例构造器<init>()方法、私有方法和父类中的方法' ]}, {'invokevirtual':[ '调用所有的虚方法' ]}, {'invokeinterface':[ '调用接口方法,在运行时确定一个实现该接口的对象' ]}, {'invokedynamic':[ '运行时动态解析出调用点限定符所引用的方法,然后再执行该方法' ]} ], '解析':[ {'定义':[ '静态过程', '编译期间确定', '把【符号引用】转变为【直接引用】,确定唯一的【方法调用版本】', '如能被invokestatic和invokespecial指令调用的方法' ]}, {'分类':[ {'静态方法':[ '与类型直接关联,不能通过【重写】出现别的版本,适合类加载阶段进行解析' ]}, {'私有方法':[ '外部不可被访问,不能通过【继承】出现别的版本,适合类加载阶段进行解析' ]}, '实例构造器', '父类方法', {'被final修饰的方法(invokevirtual指令调用)':[ '【无法被覆盖】,没有其他版本的可能' ]} ]}, ], '静态分派':[ {'定义':[ '依赖【静态类型】决定【方法执行版本】', '发生在【编译阶段】,不由虚拟机来执行的', {'典型表现':[ '方法重载' ]} ]}, {'重载':[ '通过【参数的静态类型】而不是实际类型作为判定依据的', '静态类型是在【编译期可知】', '实际类型在运行期才可确认' ]}, {'重载时目标方法选择(字面量没有显示的静态类型时)':[ '1.char>int>long>float>double的顺序转型进行匹配', '2.一次自动装箱,封装类型java.lang.Character', '3.java.lang.Serializable,是java.lang.Character类实现的一个接口,自动装箱之后还是找不到装箱类,会找装箱类所实现的接口类型', '4.Object,如果有多个父类,那将在继承关系中从下往上开始搜索', '5.变长参数的重载优先级是最低的' ]} ], } #构建xmind xmind.build(content,r2) #保存xmind xmind.save(w,os.path.dirname(os.path.abspath(__file__))+"\\"+xmind_name+".xmind")