blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
11660dd3974023d138b1c172b13f5b3f2dee9fef
55628a9a08a6b6646b4a8aa74bedbf2e3fd7d850
/.history/master_20200129140643.py
022d13bf3aae4de363246cc09c5e38857bcd3e6c
[]
no_license
StRobertCHSCS/final-project-team
c115dc11b318f7ac782c94860a8801bb558bd107
48907e72813c4dd3b48ff36f794f6fce04533219
refs/heads/master
2020-12-03T22:35:37.833893
2020-01-31T04:05:38
2020-01-31T04:05:38
231,506,873
1
0
null
null
null
null
UTF-8
Python
false
false
14,165
py
''' -**make snake longer when eaten - fix stop watch so it restarts when you restart level - FIGURE OUT HOW TO KNOW WHERE TO ADD THE NEXT BLOCK (MOVE LAST LOCATION TO BACK) DONEEE -fix player_location lists, so that the list only has the location of the current snake location, not infinite list (done) - fix apple so disappers when you go over it (done) - add score (done) -fix speed so that it resets when you go back to main page - add high score page (txt file, saves high scores outside of program) ''' import arcade import random import json import time # Starting screen alive_button = [] start_button_text = ["Noob: 0.5 speed \n (Refresh rate 1/5 seconds)", "Normal speed: 1 \n (Refresh rate 1/10 seconds)", "Hard: 1.5 speed \n (Refresh rate 1/15 seconds)", "Expert: 2.5 speed \n (Refresh rate 1/25 seconds)"] for i in range (2, 10, 2): start_options = [i*100, 200, 150, 50, start_button_text[(i // 2) - 1]] # x, y, width, height alive_button.append(start_options) show_text = False # Set how many rows and columns we will have ROW_COUNT = 29 COLUMN_COUNT = 51 # This sets the WIDTH and HEIGHT of each grid location WIDTH = 20 HEIGHT = 20 # This sets the margin between each cell # and on the edges of the screen. MARGIN = 5 # Do the math to figure out our screen dimensions SCREEN_WIDTH = (WIDTH + MARGIN) * COLUMN_COUNT + MARGIN SCREEN_HEIGHT = (HEIGHT + MARGIN) * ROW_COUNT + MARGIN # Death screen dead_button = [] death_button_text = ["Retry", "Starting screen","Quit", ""] text_num = 0 for x in range (1, 5, 2): for y in range (1, 5, 2): death_options = [x*(SCREEN_WIDTH//4) - 75, y*(SCREEN_HEIGHT//4) - 75 , 150, 150, death_button_text[text_num]] # x, y, width, height dead_button.append(death_options) text_num += 1 # Direction the snake is moving in up = False down = False left = False right = False # Use snakes position shown on grid, not the python coordinates player_x_column = 25 player_y_row = 20 # Length of the snake body body = 1 # Current snake location snake_pos = [] # Determine where the starting apple will be drawn in apple_x = random.randint(0, COLUMN_COUNT) apple_y = random.randint(0, ROW_COUNT) # Boolean to see if apple needs to be moved apple_display = True # Background grid grid_texture = arcade.load_texture("29x51_grid.jpg") score = 0 # Landing page, game, death screen, or high score page = 0 SPEED = 1 high_score = 0 time = 0 second = 0 minute = 0 red = 255 green = 255 blue = 0 def on_update(delta_time): snake_move() def on_draw(): global page arcade.start_render() if page == 0: start_screen() elif page == 1: main_game() elif page == 2: grid_background() death_screen() elif page == 3: high_score_page() print(time) def stop_watch(): global time, second, minute, SPEED global red, green, blue time += 1 if (time % SPEED == 0): second += 1 elif second > 60: second = 0 minute += 1 if (red == 255 and 0 <= green < 255 and blue == 0): green += 5 elif (0 < red <= 255 and green == 255 and blue == 0): red -= 5 elif (red == 0 and green == 255 and 0 <= blue < 255): blue += 5 elif (red == 0 and 0 < green <= 255 and blue == 255): green -= 5 elif (0 <= red < 255 and green == 0 and blue == 255): red += 5 elif (red == 255 and green == 0 and 0 < blue <= 255): blue -= 5 arcade.draw_text(f"Time: {minute:02d}:{second:02d}", 75, SCREEN_HEIGHT - 50, (red, green, blue), 25, font_name='calibri', bold = True, anchor_x="center", anchor_y="center") def high_score_check(): global high_score, score with open("high_score.json", "r") as high_score_file: high_score = json.load(high_score_file) with open("high_score.json", "w") as high_score_file: if score > high_score: json.dump(score, high_score_file) else: json.dump(high_score, high_score_file) def high_score_page(): global high_score high_score_check() arcade.draw_text("The high score is " + str(high_score),dead_button[3][0], dead_button[3][1], arcade.color.WHITE, 50, font_name='calibri', anchor_x="center", anchor_y="center") def main_game(): grid_background() snake() apple() stop_watch() def start_screen(): global alive_button, SPEED arcade.draw_text("Welcome to snake \n choose your level", (SCREEN_WIDTH//2), 3*(SCREEN_HEIGHT//4), arcade.color.WHITE, 25, font_name='calibri', anchor_x="center", anchor_y="center") # arcade.draw_text(str(current_time), (3 * SCREEN_WIDTH // 4), (SCREEN_HEIGHT//4), # arcade.color.BLACK, 25, font_name='calibri', anchor_x="center", anchor_y="center") for i in range (0, 4): arcade.draw_xywh_rectangle_filled(alive_button[i][0], alive_button[i][1], alive_button[i][2], alive_button[i][3], arcade.color.WHITE) arcade.draw_text(alive_button[i][4], alive_button[i][0] + (alive_button[i][2] // 2), alive_button[i][1] + (alive_button[i][3] // 2), arcade.color.BLACK, 10, font_name='calibri', anchor_x="center", anchor_y="center") def death_screen(): global dead_button, death_button_text, red, green, blue high_score_page() if (red == 255 and 0 <= green < 255 and blue == 0): green += 5 elif (0 < red <= 255 and green == 255 and blue == 0): red -= 5 elif (red == 0 and green == 255 and 0 <= blue < 255): blue += 5 elif (red == 0 and 0 < green <= 255 and blue == 255): green -= 5 elif (0 <= red < 255 and green == 0 and blue == 255): red += 5 elif (red == 255 and green == 0 and 0 < blue <= 255): blue -= 5 for i in range (2): arcade.draw_text("You died rip lol", random.randint(50, SCREEN_WIDTH), random.randint(50, SCREEN_HEIGHT), (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)), 50, font_name='calibri', bold = True, anchor_x="center", anchor_y="center") for i in range (0, 3): arcade.draw_xywh_rectangle_filled(dead_button[i][0], dead_button[i][1], dead_button[i][2], dead_button[i][3], (red, blue, green)) arcade.draw_text(dead_button[i][4], dead_button[i][0] + (dead_button[i][2] // 2), dead_button[i][1] + (dead_button[i][3] // 2), arcade.color.BLACK, 15, font_name='calibri', anchor_x="center", anchor_y="center") def grid_background(): arcade.draw_texture_rectangle(SCREEN_WIDTH//2, SCREEN_HEIGHT//2, grid_texture.width, grid_texture.height, grid_texture, 0) def snake_move(): global player_x, player_y, player_x_column, player_y_row global snake_pos global page, score if (0 <= player_x_column < COLUMN_COUNT) and (0 <= player_y_row < ROW_COUNT): if up: player_y_row += 1 elif down: player_y_row -= 1 elif right: player_x_column += 1 elif left: player_x_column -= 1 else: page = 2 suicide_check = [] for position in snake_pos: if position not in suicide_check: suicide_check.append(position) else: page = 2 # Player coordinates player_x = (MARGIN + WIDTH) * player_x_column + MARGIN + WIDTH // 2 player_y = (MARGIN + HEIGHT) * player_y_row + MARGIN + HEIGHT // 2 def restart(): global player_x_column, player_y_row, snake_len, body, snake_pos global up, down, left, right global page, score, time global SPEED player_x_column = 5 player_y_row = 5 snake_len = [] body = 1 snake_pos = [] up = False down = False left = False right = False page = 1 score = 0 time = 0 print ("You died", SPEED) def snake(): global player_x_column, player_y_row, snake_len, body global apple_x, apple_y arcade.draw_rectangle_filled(player_x , player_y, WIDTH, HEIGHT, arcade.color.BLUE) snake_len = [[player_x_column, player_y_row]] snake_pos.append([player_x_column, player_y_row]) if body < len(snake_pos): snake_pos.pop(0) if (body > 1): for num in range (1, body): snake_len.append([snake_pos[num - 1][0], snake_pos[num - 1][1]]) for i in range (body): arcade.draw_rectangle_filled( (MARGIN + WIDTH) * snake_len[i][0] + MARGIN + WIDTH // 2, (MARGIN + HEIGHT) * snake_len[i][1] + MARGIN + HEIGHT // 2 , WIDTH, HEIGHT, arcade.color.BLUE) def apple(): global apple_x, apple_y, apple_x_coordinate, apple_y_coordinate, body, snake_len global score apple_x_coordinate = (MARGIN + WIDTH) * apple_x + MARGIN + WIDTH // 2 apple_y_coordinate = (MARGIN + HEIGHT) * apple_y + MARGIN + HEIGHT // 2 if (player_x_column == apple_x) and (player_y_row == apple_y): apple_display = False body += 1 print ("hit") else: apple_display = True if apple_display is True: arcade.draw_rectangle_filled(apple_x_coordinate, apple_y_coordinate, WIDTH, HEIGHT, arcade.color.RED) elif apple_display is False: apple_x = random.randint(0, COLUMN_COUNT) apple_y = random.randint(0, ROW_COUNT) # Make sure that apple doesn't spawn where the snake is for apple in range (len(snake_pos)): if apple_x == snake_pos[apple][0] or apple_y == snake_pos[apple][1]: apple_x = random.randint(0, COLUMN_COUNT) apple_y = random.randint(0, ROW_COUNT) apple_x_coordinate = (MARGIN + WIDTH) * apple_x + MARGIN + WIDTH // 2 apple_y_coordinate = (MARGIN + HEIGHT) * apple_y + MARGIN + HEIGHT // 2 score += 10 apple_display == True arcade.draw_text("Score is " + str(score), SCREEN_WIDTH - 75, SCREEN_HEIGHT - 50, arcade.color.GREEN, 25, font_name='calibri', bold = True, anchor_x="center", anchor_y="center") def on_key_press(key, modifiers): global up, down, left, right if page == 1: if (key == arcade.key.W) and (down == False): up = True down = False right = False left = False elif (key == arcade.key.S) and (up == False): down = True up = False right = False left = False elif (key == arcade.key.A) and (right == False): left = True up = False down = False right = False elif (key == arcade.key.D) and (left == False): right = True up = False down = False left = False def on_key_release(key, modifiers): pass def on_mouse_press(x, y, button, modifiers): global alive_button, dead_button, page global start_screen, restart global high_score_page global SPEED if page == 0: # For starting screen, check which button has been clicked if (x > alive_button[0][0] and x < alive_button[0][0] + alive_button[0][2] and y > alive_button[0][1] and y < alive_button[0][1] + alive_button[0][3]): page += 1 SPEED = 5 arcade.schedule(on_update, 1/(SPEED)) print("noob") elif (x > alive_button[1][0] and x < alive_button[1][0] + alive_button[1][2] and y > alive_button[1][1] and y < alive_button[1][1] + alive_button[1][3]): page += 1 SPEED = 10 arcade.schedule(on_update, 1/(SPEED)) print("normal") elif (x > alive_button[2][0] and x < alive_button[2][0] + alive_button[2][2] and y > alive_button[2][1] and y < alive_button[2][1] + alive_button[2][3]): page += 1 SPEED = 15 arcade.schedule(on_update, 1/(SPEED)) print("hard") elif (x > alive_button[3][0] and x < alive_button[3][0] + alive_button[3][2] and y > alive_button[3][1] and y < alive_button[3][1] + alive_button[3][3]): page += 1 SPEED = 25 arcade.schedule(on_update, 1/(SPEED)) print("expert") else: SPEED = 1 if page == 2: if (x > dead_button[0][0] and x < dead_button[0][0] + dead_button[0][2] and y > dead_button[0][1] and y < dead_button[0][1] + dead_button[0][3]): restart() print("try again") elif (x > dead_button[1][0] and x < dead_button[1][0] + dead_button[1][2] and y > dead_button[1][1] and y < dead_button[1][1] + dead_button[1][3]): start_screen() print("main") elif (x > dead_button[2][0] and x < dead_button[2][0] + dead_button[2][2] and y > dead_button[2][1] and y < dead_button[2][1] + dead_button[2][3]): print("exit") arcade.close_window() def setup(): global grid, SPEED # SPEED = float(input("What fast do you want? \n Noob: Type 0.5 \n Normal: Type 1 \n Hard: Type 1.5 - 2 \n Expert: Type 2.5 or more \n *Changes the refresh rate* \n")) arcade.open_window(SCREEN_WIDTH, SCREEN_HEIGHT, "snake") arcade.set_background_color(arcade.color.BLACK) arcade.schedule(on_update, 1/SPEED) # Override arcade window methods window = arcade.get_window() window.on_draw = on_draw window.on_key_press = on_key_press window.on_key_release = on_key_release window.on_mouse_press = on_mouse_press arcade.run() if __name__ == '__main__': setup()
5c4983c27b4cef394e0a0bcb7f0283990cd5809d
df7b40e95718ac0f6071a0ba571b42efc81cf6de
/configs/ocrnet/ocrnet_hr18_512x512_40k_voc12aug.py
df79a9cf13963d26384b00ced0cf5efa9f68a420
[ "Apache-2.0" ]
permissive
shinianzhihou/ChangeDetection
87fa2c498248e6124aeefb8f0ee8154bda36deee
354e71234bef38b6e142b6ba02f23db958582844
refs/heads/master
2023-01-23T20:42:31.017006
2023-01-09T11:37:24
2023-01-09T11:37:24
218,001,748
162
29
Apache-2.0
2022-11-03T04:11:00
2019-10-28T08:41:54
Python
UTF-8
Python
false
false
1,118
py
_base_ = [ '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict(decode_head=[ dict( type='FCNHead', in_channels=[18, 36, 72, 144], channels=sum([18, 36, 72, 144]), in_index=(0, 1, 2, 3), input_transform='resize_concat', kernel_size=1, num_convs=1, concat_input=False, dropout_ratio=-1, num_classes=21, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='OCRHead', in_channels=[18, 36, 72, 144], in_index=(0, 1, 2, 3), input_transform='resize_concat', channels=512, ocr_channels=256, dropout_ratio=-1, num_classes=21, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ])
9fa13f789486e633b64a9f1f7c8078dd81fdce4b
5ed389c1f3fc175aa73478fc3dcba4101520b80b
/python/spoonacular/com/spoonacular/client/model/inline_response20028.py
e0a6835c4ba1356a272d7bfb8bdc945bbc398dd5
[ "MIT" ]
permissive
jvenlin/spoonacular-api-clients
fae17091722085017cae5d84215d3b4af09082aa
63f955ceb2c356fefdd48ec634deb3c3e16a6ae7
refs/heads/master
2023-08-04T01:51:19.615572
2021-10-03T13:30:26
2021-10-03T13:30:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,485
py
# coding: utf-8 """ spoonacular API The spoonacular Nutrition, Recipe, and Food API allows you to access over 380,000 recipes, thousands of ingredients, 800,000 food products, and 100,000 menu items. Our food ontology and semantic recipe search engine makes it possible to search for recipes using natural language queries, such as \"gluten free brownies without sugar\" or \"low fat vegan cupcakes.\" You can automatically calculate the nutritional information for any recipe, analyze recipe costs, visualize ingredient lists, find recipes for what's in your fridge, find recipes based on special diets, nutritional requirements, or favorite ingredients, classify recipes into types and cuisines, convert ingredient amounts, or even compute an entire meal plan. With our powerful API, you can create many kinds of food and especially nutrition apps. Special diets/dietary requirements currently available include: vegan, vegetarian, pescetarian, gluten free, grain free, dairy free, high protein, whole 30, low sodium, low carb, Paleo, ketogenic, FODMAP, and Primal. # noqa: E501 The version of the OpenAPI document: 1.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class InlineResponse20028(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'int', 'title': 'str', 'badges': 'list[str]', 'important_badges': 'list[str]', 'breadcrumbs': 'list[str]', 'generated_text': 'str', 'image_type': 'str', 'ingredient_count': 'int', 'ingredient_list': 'str', 'ingredients': 'list[InlineResponse20028Ingredients]', 'likes': 'float', 'nutrition': 'InlineResponse20028Nutrition', 'price': 'float', 'servings': 'InlineResponse20028Servings', 'spoonacular_score': 'float' } attribute_map = { 'id': 'id', 'title': 'title', 'badges': 'badges', 'important_badges': 'importantBadges', 'breadcrumbs': 'breadcrumbs', 'generated_text': 'generatedText', 'image_type': 'imageType', 'ingredient_count': 'ingredientCount', 'ingredient_list': 'ingredientList', 'ingredients': 'ingredients', 'likes': 'likes', 'nutrition': 'nutrition', 'price': 'price', 'servings': 'servings', 'spoonacular_score': 'spoonacularScore' } def __init__(self, id=None, title=None, badges=None, important_badges=None, breadcrumbs=None, generated_text=None, image_type=None, ingredient_count=None, ingredient_list=None, ingredients=None, likes=None, nutrition=None, price=None, servings=None, spoonacular_score=None): # noqa: E501 """InlineResponse20028 - a model defined in OpenAPI""" # noqa: E501 self._id = None self._title = None self._badges = None self._important_badges = None self._breadcrumbs = None self._generated_text = None self._image_type = None self._ingredient_count = None self._ingredient_list = None self._ingredients = None self._likes = None self._nutrition = None self._price = None self._servings = None self._spoonacular_score = None self.discriminator = None self.id = id self.title = title self.badges = badges self.important_badges = important_badges self.breadcrumbs = breadcrumbs self.generated_text = generated_text self.image_type = image_type if ingredient_count is not None: self.ingredient_count = ingredient_count self.ingredient_list = ingredient_list self.ingredients = ingredients self.likes = likes self.nutrition = nutrition self.price = price self.servings = servings self.spoonacular_score = spoonacular_score @property def id(self): """Gets the id of this InlineResponse20028. # noqa: E501 :return: The id of this InlineResponse20028. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this InlineResponse20028. :param id: The id of this InlineResponse20028. # noqa: E501 :type: int """ if id is None: raise ValueError("Invalid value for `id`, must not be `None`") # noqa: E501 self._id = id @property def title(self): """Gets the title of this InlineResponse20028. # noqa: E501 :return: The title of this InlineResponse20028. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this InlineResponse20028. :param title: The title of this InlineResponse20028. # noqa: E501 :type: str """ if title is None: raise ValueError("Invalid value for `title`, must not be `None`") # noqa: E501 if title is not None and len(title) < 1: raise ValueError("Invalid value for `title`, length must be greater than or equal to `1`") # noqa: E501 self._title = title @property def badges(self): """Gets the badges of this InlineResponse20028. # noqa: E501 :return: The badges of this InlineResponse20028. # noqa: E501 :rtype: list[str] """ return self._badges @badges.setter def badges(self, badges): """Sets the badges of this InlineResponse20028. :param badges: The badges of this InlineResponse20028. # noqa: E501 :type: list[str] """ if badges is None: raise ValueError("Invalid value for `badges`, must not be `None`") # noqa: E501 self._badges = badges @property def important_badges(self): """Gets the important_badges of this InlineResponse20028. # noqa: E501 :return: The important_badges of this InlineResponse20028. # noqa: E501 :rtype: list[str] """ return self._important_badges @important_badges.setter def important_badges(self, important_badges): """Sets the important_badges of this InlineResponse20028. :param important_badges: The important_badges of this InlineResponse20028. # noqa: E501 :type: list[str] """ if important_badges is None: raise ValueError("Invalid value for `important_badges`, must not be `None`") # noqa: E501 self._important_badges = important_badges @property def breadcrumbs(self): """Gets the breadcrumbs of this InlineResponse20028. # noqa: E501 :return: The breadcrumbs of this InlineResponse20028. # noqa: E501 :rtype: list[str] """ return self._breadcrumbs @breadcrumbs.setter def breadcrumbs(self, breadcrumbs): """Sets the breadcrumbs of this InlineResponse20028. :param breadcrumbs: The breadcrumbs of this InlineResponse20028. # noqa: E501 :type: list[str] """ if breadcrumbs is None: raise ValueError("Invalid value for `breadcrumbs`, must not be `None`") # noqa: E501 self._breadcrumbs = breadcrumbs @property def generated_text(self): """Gets the generated_text of this InlineResponse20028. # noqa: E501 :return: The generated_text of this InlineResponse20028. # noqa: E501 :rtype: str """ return self._generated_text @generated_text.setter def generated_text(self, generated_text): """Sets the generated_text of this InlineResponse20028. :param generated_text: The generated_text of this InlineResponse20028. # noqa: E501 :type: str """ if generated_text is None: raise ValueError("Invalid value for `generated_text`, must not be `None`") # noqa: E501 if generated_text is not None and len(generated_text) < 1: raise ValueError("Invalid value for `generated_text`, length must be greater than or equal to `1`") # noqa: E501 self._generated_text = generated_text @property def image_type(self): """Gets the image_type of this InlineResponse20028. # noqa: E501 :return: The image_type of this InlineResponse20028. # noqa: E501 :rtype: str """ return self._image_type @image_type.setter def image_type(self, image_type): """Sets the image_type of this InlineResponse20028. :param image_type: The image_type of this InlineResponse20028. # noqa: E501 :type: str """ if image_type is None: raise ValueError("Invalid value for `image_type`, must not be `None`") # noqa: E501 if image_type is not None and len(image_type) < 1: raise ValueError("Invalid value for `image_type`, length must be greater than or equal to `1`") # noqa: E501 self._image_type = image_type @property def ingredient_count(self): """Gets the ingredient_count of this InlineResponse20028. # noqa: E501 :return: The ingredient_count of this InlineResponse20028. # noqa: E501 :rtype: int """ return self._ingredient_count @ingredient_count.setter def ingredient_count(self, ingredient_count): """Sets the ingredient_count of this InlineResponse20028. :param ingredient_count: The ingredient_count of this InlineResponse20028. # noqa: E501 :type: int """ self._ingredient_count = ingredient_count @property def ingredient_list(self): """Gets the ingredient_list of this InlineResponse20028. # noqa: E501 :return: The ingredient_list of this InlineResponse20028. # noqa: E501 :rtype: str """ return self._ingredient_list @ingredient_list.setter def ingredient_list(self, ingredient_list): """Sets the ingredient_list of this InlineResponse20028. :param ingredient_list: The ingredient_list of this InlineResponse20028. # noqa: E501 :type: str """ if ingredient_list is None: raise ValueError("Invalid value for `ingredient_list`, must not be `None`") # noqa: E501 if ingredient_list is not None and len(ingredient_list) < 1: raise ValueError("Invalid value for `ingredient_list`, length must be greater than or equal to `1`") # noqa: E501 self._ingredient_list = ingredient_list @property def ingredients(self): """Gets the ingredients of this InlineResponse20028. # noqa: E501 :return: The ingredients of this InlineResponse20028. # noqa: E501 :rtype: list[InlineResponse20028Ingredients] """ return self._ingredients @ingredients.setter def ingredients(self, ingredients): """Sets the ingredients of this InlineResponse20028. :param ingredients: The ingredients of this InlineResponse20028. # noqa: E501 :type: list[InlineResponse20028Ingredients] """ if ingredients is None: raise ValueError("Invalid value for `ingredients`, must not be `None`") # noqa: E501 self._ingredients = ingredients @property def likes(self): """Gets the likes of this InlineResponse20028. # noqa: E501 :return: The likes of this InlineResponse20028. # noqa: E501 :rtype: float """ return self._likes @likes.setter def likes(self, likes): """Sets the likes of this InlineResponse20028. :param likes: The likes of this InlineResponse20028. # noqa: E501 :type: float """ if likes is None: raise ValueError("Invalid value for `likes`, must not be `None`") # noqa: E501 self._likes = likes @property def nutrition(self): """Gets the nutrition of this InlineResponse20028. # noqa: E501 :return: The nutrition of this InlineResponse20028. # noqa: E501 :rtype: InlineResponse20028Nutrition """ return self._nutrition @nutrition.setter def nutrition(self, nutrition): """Sets the nutrition of this InlineResponse20028. :param nutrition: The nutrition of this InlineResponse20028. # noqa: E501 :type: InlineResponse20028Nutrition """ if nutrition is None: raise ValueError("Invalid value for `nutrition`, must not be `None`") # noqa: E501 self._nutrition = nutrition @property def price(self): """Gets the price of this InlineResponse20028. # noqa: E501 :return: The price of this InlineResponse20028. # noqa: E501 :rtype: float """ return self._price @price.setter def price(self, price): """Sets the price of this InlineResponse20028. :param price: The price of this InlineResponse20028. # noqa: E501 :type: float """ if price is None: raise ValueError("Invalid value for `price`, must not be `None`") # noqa: E501 self._price = price @property def servings(self): """Gets the servings of this InlineResponse20028. # noqa: E501 :return: The servings of this InlineResponse20028. # noqa: E501 :rtype: InlineResponse20028Servings """ return self._servings @servings.setter def servings(self, servings): """Sets the servings of this InlineResponse20028. :param servings: The servings of this InlineResponse20028. # noqa: E501 :type: InlineResponse20028Servings """ if servings is None: raise ValueError("Invalid value for `servings`, must not be `None`") # noqa: E501 self._servings = servings @property def spoonacular_score(self): """Gets the spoonacular_score of this InlineResponse20028. # noqa: E501 :return: The spoonacular_score of this InlineResponse20028. # noqa: E501 :rtype: float """ return self._spoonacular_score @spoonacular_score.setter def spoonacular_score(self, spoonacular_score): """Sets the spoonacular_score of this InlineResponse20028. :param spoonacular_score: The spoonacular_score of this InlineResponse20028. # noqa: E501 :type: float """ if spoonacular_score is None: raise ValueError("Invalid value for `spoonacular_score`, must not be `None`") # noqa: E501 self._spoonacular_score = spoonacular_score def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InlineResponse20028): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
32a4fc72ae9516b70c68b7ae031027d437134130
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/ml/azure-ai-ml/azure/ai/ml/_restclient/v2022_02_01_preview/aio/operations/_component_versions_operations.py
9908e719843784cb21d8c91b3423906874e65d20
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-python-cwi", "PSF-2.0", "LGPL-2.0-or-later", "GPL-3.0-or-later", "GPL-1.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "Python-2.0", "MPL-2.0", "LicenseRef-scancode-other-copyleft", "HPND", "ODbL-1.0", "GPL-3.0-only", "ZPL-2.1", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
15,041
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._component_versions_operations import build_create_or_update_request, build_delete_request, build_get_request, build_list_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ComponentVersionsOperations: """ComponentVersionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.machinelearningservices.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, resource_group_name: str, workspace_name: str, name: str, order_by: Optional[str] = None, top: Optional[int] = None, skip: Optional[str] = None, list_view_type: Optional[Union[str, "_models.ListViewType"]] = None, **kwargs: Any ) -> AsyncIterable["_models.ComponentVersionResourceArmPaginatedResult"]: """List component versions. List component versions. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Component name. :type name: str :param order_by: Ordering of list. :type order_by: str :param top: Maximum number of records to return. :type top: int :param skip: Continuation token for pagination. :type skip: str :param list_view_type: View type for including/excluding (for example) archived entities. :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ComponentVersionResourceArmPaginatedResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.ComponentVersionResourceArmPaginatedResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ComponentVersionResourceArmPaginatedResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, order_by=order_by, top=top, skip=skip, list_view_type=list_view_type, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, order_by=order_by, top=top, skip=skip, list_view_type=list_view_type, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("ComponentVersionResourceArmPaginatedResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions'} # type: ignore @distributed_trace_async async def delete( self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any ) -> None: """Delete version. Delete version. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Container name. :type name: str :param version: Version identifier. :type version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, version=version, template_url=self.delete.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}'} # type: ignore @distributed_trace_async async def get( self, resource_group_name: str, workspace_name: str, name: str, version: str, **kwargs: Any ) -> "_models.ComponentVersionData": """Get version. Get version. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Container name. :type name: str :param version: Version identifier. :type version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentVersionData, or the result of cls(response) :rtype: ~azure.mgmt.machinelearningservices.models.ComponentVersionData :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ComponentVersionData"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, version=version, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ComponentVersionData', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}'} # type: ignore @distributed_trace_async async def create_or_update( self, resource_group_name: str, workspace_name: str, name: str, version: str, body: "_models.ComponentVersionData", **kwargs: Any ) -> "_models.ComponentVersionData": """Create or update version. Create or update version. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Container name. :type name: str :param version: Version identifier. :type version: str :param body: Version entity to create or update. :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersionData :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentVersionData, or the result of cls(response) :rtype: ~azure.mgmt.machinelearningservices.models.ComponentVersionData :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ComponentVersionData"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(body, 'ComponentVersionData') request = build_create_or_update_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, version=version, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ComponentVersionData', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ComponentVersionData', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/components/{name}/versions/{version}'} # type: ignore
d13d6b5acc64af0811538ebda36d881d4dcf63ca
88ae8695987ada722184307301e221e1ba3cc2fa
/third_party/catapult/dashboard/dashboard/email_sheriff_test.py
a66f70d0b3480620b2a4fbb9330bd1a14a74e6d8
[ "BSD-3-Clause", "Apache-2.0", "LGPL-2.0-or-later", "MIT", "GPL-1.0-or-later" ]
permissive
iridium-browser/iridium-browser
71d9c5ff76e014e6900b825f67389ab0ccd01329
5ee297f53dc7f8e70183031cff62f37b0f19d25f
refs/heads/master
2023-08-03T16:44:16.844552
2023-07-20T15:17:00
2023-07-23T16:09:30
220,016,632
341
40
BSD-3-Clause
2021-08-13T13:54:45
2019-11-06T14:32:31
null
UTF-8
Python
false
false
6,169
py
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import print_function from __future__ import division from __future__ import absolute_import import sys import unittest import mock from dashboard import email_sheriff from dashboard.common import testing_common from dashboard.common import utils from dashboard.models import anomaly from dashboard.models import bug_label_patterns from dashboard.models.subscription import Subscription _SHERIFF_URL = 'http://chromium-build.appspot.com/p/chromium/sheriff_perf.js' _SHERIFF_EMAIL = '[email protected]' class EmailSheriffTest(testing_common.TestCase): def _AddTestToStubDataStore(self): """Adds a test which will be used in the methods below.""" bug_label_patterns.AddBugLabelPattern('label1', '*/*/dromaeo/dom') bug_label_patterns.AddBugLabelPattern('label2', '*/*/other/test') testing_common.AddTests(['ChromiumPerf'], ['Win7'], {'dromaeo': { 'dom': {} }}) test = utils.TestKey('ChromiumPerf/Win7/dromaeo/dom').get() test.improvement_direction = anomaly.DOWN return test def _GetDefaultMailArgs(self): """Adds an Anomaly and returns arguments for email_sheriff.EmailSheriff.""" test_entity = self._AddTestToStubDataStore() subscription_url = Subscription( name='Chromium Perf Sheriff URL', rotation_url=_SHERIFF_URL, bug_labels=['Performance-Sheriff-URL']) subscription_email = Subscription( name='Chromium Perf Sheriff Mail', notification_email=_SHERIFF_EMAIL, bug_labels=['Performance-Sheriff-Mail']) anomaly_entity = anomaly.Anomaly( median_before_anomaly=5.0, median_after_anomaly=10.0, start_revision=10002, end_revision=10004, subscription_names=[ subscription_url.name, subscription_email.name, ], subscriptions=[subscription_url, subscription_email], test=utils.TestKey('ChromiumPerf/Win7/dromaeo/dom')) return { 'subscriptions': [subscription_url, subscription_email], 'test': test_entity, 'anomaly': anomaly_entity } @mock.patch('google.appengine.api.urlfetch.fetch', mock.MagicMock( return_value=testing_common.FakeResponseObject( 200, 'document.write(\'sullivan\')'))) def testEmailSheriff_ContentAndRecipientAreCorrect(self): email_sheriff.EmailSheriff(**self._GetDefaultMailArgs()) messages = self.mail_stub.get_sent_messages() self.assertEqual(1, len(messages)) self.assertEqual('[email protected]', messages[0].sender) self.assertEqual({'[email protected]', '[email protected]'}, {s.strip() for s in messages[0].to.split(',')}) name = 'dromaeo/dom on Win7' expected_subject = '100.0%% regression in %s at 10002:10004' % name self.assertEqual(expected_subject, messages[0].subject) body = str(messages[0].body) self.assertIn('10002 - 10004', body) self.assertIn('100.0%', body) self.assertIn('ChromiumPerf', body) self.assertIn('Win7', body) self.assertIn('dromaeo/dom', body) html = str(messages[0].html) self.assertIn('<b>10002 - 10004</b>', html) self.assertIn('<b>100.0%</b>', html) self.assertIn('<b>ChromiumPerf</b>', html) self.assertIn('<b>Win7</b>', html) self.assertIn('<b>dromaeo/dom</b>', html) @mock.patch('google.appengine.api.urlfetch.fetch', mock.MagicMock( return_value=testing_common.FakeResponseObject( 200, 'document.write(\'sonnyrao, digit\')'))) def testEmailSheriff_MultipleSheriffs_AllGetEmailed(self): email_sheriff.EmailSheriff(**self._GetDefaultMailArgs()) messages = self.mail_stub.get_sent_messages() self.assertEqual(1, len(messages)) self.assertEqual('[email protected]', messages[0].sender) self.assertEqual( { '[email protected]', '[email protected]', '[email protected]' }, {s.strip() for s in messages[0].to.split(',')}) def testEmail_NoSheriffUrl_EmailSentToSheriffRotationEmailAddress(self): args = self._GetDefaultMailArgs() args['subscriptions'][0].rotation_url = None email_sheriff.EmailSheriff(**args) messages = self.mail_stub.get_sent_messages() self.assertEqual(1, len(messages)) # An email is only sent to the general sheriff rotation email; # There is no other specific sheriff to send it to. self.assertEqual('[email protected]', messages[0].to) @mock.patch( 'google.appengine.api.urlfetch.fetch', mock.MagicMock( return_value=testing_common.FakeResponseObject(200, 'garbage'))) def testEmailSheriff_RotationUrlHasInvalidContent_EmailStillSent(self): """Tests the email to list when the rotation URL returns garbage.""" args = self._GetDefaultMailArgs() email_sheriff.EmailSheriff(**args) messages = self.mail_stub.get_sent_messages() self.assertEqual(1, len(messages)) # An email is only sent to the general sheriff rotation email. self.assertEqual('[email protected]', messages[0].to) def testEmailSheriff_PercentChangeMaxFloat_ContentSaysAlertSize(self): """Tests the email content for "freakin huge" alert.""" args = self._GetDefaultMailArgs() args['subscriptions'][0].rotation_url = None args['anomaly'].median_before_anomaly = 0.0 email_sheriff.EmailSheriff(**args) messages = self.mail_stub.get_sent_messages() self.assertEqual(1, len(messages)) self.assertIn(anomaly.FREAKIN_HUGE, str(messages[0].subject)) self.assertNotIn(str(sys.float_info.max), str(messages[0].body)) self.assertIn(anomaly.FREAKIN_HUGE, str(messages[0].body)) self.assertNotIn(str(sys.float_info.max), str(messages[0].html)) self.assertIn(anomaly.FREAKIN_HUGE, str(messages[0].html)) if __name__ == '__main__': unittest.main()
bd455dab671cde472cc785727e4d195135c38a5d
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_3_1_neat/16_3_1_ipince_senate.py
e11f2916855fa67449999b8443738a3141993f9f
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
1,445
py
#!/usr/bin/python import operator import sys import random ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; # number -> party def solve(senators): evacs = [] tups = senators.items() while True: tups = sorted(tups, key=operator.itemgetter(1), reverse=True) #print tups if tups[0][1] is 0 and tups[1][1] is 0: return evacs m1 = tups[0] m2 = tups[1] if m1[1] is 1 and m2[1] is 1: if len(tups) > 2 and tups[2][1] > 0: # 1 1 1 .... evacs.append('' + m1[0]) tups[0] = (m1[0], m1[1] - 1) else: # 1 1 0 ... evacs.append('' + m1[0] + m2[0]) tups[0] = (m1[0], m1[1] - 1) tups[1] = (m2[0], m2[1] - 1) elif m1[1] - m2[1] is 0: # x x ... evacs.append('' + m1[0] + m2[0]) tups[0] = (m1[0], m1[1] - 1) tups[1] = (m2[0], m2[1] - 1) else: # 4 2 ... evacs.append('' + m1[0]) tups[0] = (m1[0], m1[1] - 1) # check if all 0 if False: print 50 for i in xrange(50): s = random.randint(2, 26) print s nums = [] for j in xrange(s): nums.append(str(random.randint(1, 1000))) print ' '.join(nums) sys.exit() lines = iter(sys.stdin.readlines()) cases = int(lines.next()) for i in xrange(cases): senators = {} s = int(lines.next()) numbers = [int(num) for num in lines.next().split(' ')] for j in xrange(s): senators[ALPHA[j]] = numbers[j] print "Case #%d: %s" % (i + 1, ' '.join(solve(senators)))
75240260a004d52337a86bfbe5cd8738addff1a1
77f0f0156f27810269bd2542383af3cea97907e5
/bafs/views/user.py
77e351840aaa74b869e1b1faadc7afc78482c83f
[]
no_license
schvin/freezingsaddles
2676808da9b5c025cedc5fc877d855efe211db83
5b3e608a05eebf72925d8b8a50b8afa5141f575b
refs/heads/master
2021-09-02T12:36:00.265585
2018-01-02T03:05:50
2018-01-02T03:05:50
111,460,388
0
0
null
2017-11-20T20:38:49
2017-11-20T20:38:49
null
UTF-8
Python
false
false
4,107
py
import json import copy import logging from collections import defaultdict from datetime import datetime, timedelta, date from flask import render_template, redirect, url_for, current_app, request, Blueprint, session, g, jsonify from sqlalchemy import text from stravalib import Client from stravalib import unithelper as uh from bafs import app, db, data from bafs.utils import gviz_api, auth from bafs.model import Team, Athlete, RidePhoto, Ride, RideWeather from bafs.utils.auth import requires_auth from .people import people_list_users, people_show_person, ridedays from .pointless import averagespeed, shortride, billygoat, tortoiseteam, weekendwarrior def bt_jsonify(data): """ Override eto handle raw lists expected by bootrap table. """ return current_app.response_class(json.dumps(data, default=json_seralizer), mimetype='application/json') blueprint = Blueprint('user', __name__) def json_seralizer(obj): if isinstance(obj, datetime): return obj.isoformat() else: return str(obj) @blueprint.route("/rides") @requires_auth def rides(): return render_template('user/rides.html') @blueprint.route("/refetch_ride_photos", methods=['POST']) @requires_auth def ride_refetch_photos(): ride_id = request.form['id'] ride = db.session.query(Ride).filter(Ride.id==ride_id).filter(Ride.athlete_id==session.get('athlete_id')).one() ride.photos_fetched = False logging.info("Marking photos to be refetched for ride {}".format(ride)) db.session.commit() return jsonify(success=True) # I don't really have anything useful to spit back. @blueprint.route("/rides.json") @requires_auth def rides_data(): athlete_id = session.get('athlete_id') rides_q = db.session.query(Ride).filter(Ride.athlete_id==athlete_id).order_by(Ride.start_date.desc()) results = [] for r in rides_q: w = r.weather if w: avg_temp = w.ride_temp_avg else: avg_temp = None results.append(dict(id=r.id, private=r.private, name=r.name, start_date=r.start_date, elapsed_time=r.elapsed_time, moving_time=r.moving_time, distance=r.distance, photos_fetched=r.photos_fetched, avg_temp=avg_temp )) #rides = db.session.query(Ride).all() return bt_jsonify(results) # athlete_id = sa.Column(sa.BigInteger, sa.ForeignKey('athletes.id', ondelete='cascade'), nullable=False, index=True) # elapsed_time = sa.Column(sa.Integer, nullable=False) # Seconds # # in case we want to conver that to a TIME type ... (using time for interval is kinda mysql-specific brokenness, though) # # time.strftime('%H:%M:%S', time.gmtime(12345)) # moving_time = sa.Column(sa.Integer, nullable=False, index=True) # # elevation_gain = sa.Column(sa.Integer, nullable=True) # 269.6 (feet) # average_speed = sa.Column(sa.Float) # mph # maximum_speed = sa.Column(sa.Float) # mph # start_date = sa.Column(sa.DateTime, nullable=False, index=True) # 2010-02-28T08:31:35Z # distance = sa.Column(sa.Float, nullable=False, index=True) # 82369.1 (meters) # location = sa.Column(sa.String(255), nullable=True) # # commute = sa.Column(sa.Boolean, nullable=True) # trainer = sa.Column(sa.Boolean, nullable=True) # # efforts_fetched = sa.Column(sa.Boolean, default=False, nullable=False) # # timezone = sa.Column(sa.String(255), nullable=True) # # geo = orm.relationship("RideGeo", uselist=False, backref="ride", cascade="all, delete, delete-orphan") # weather = orm.relationship("RideWeather", uselist=False, backref="ride", cascade="all, delete, delete-orphan") # photos = orm.relationship("RidePhoto", backref="ride", cascade="all, delete, delete-orphan") # # photos_fetched = sa.Column(sa.Boolean, default=False, nullable=False) # private = sa.Column(sa.Boolean, default=False, nullable=False)
c16057f28176e9844ca0d10ae26e3b78d5f37bc3
b19a1baf69d1f7ba05a02ace7dfcba15c8d47cfb
/liste.py
1d1cf8fda235c256858d262cedca33463379f949
[]
no_license
MarkHofstetter/20191018-wifi-python
20ed5de1cf28996902cecf7cd681d054e0d06739
7427b896783059a77c541e95df851a492ef5ebb9
refs/heads/master
2020-08-15T03:43:42.964992
2019-10-28T14:39:17
2019-10-28T14:39:17
215,275,139
2
2
null
null
null
null
UTF-8
Python
false
false
397
py
# 0 1 2 3 4 5 6 f = [1, 1, 2, 3, 5, 8, 13,] print(f) print(f[3]) print(f[-1]) print(f[0:3]) # exklusive des letzen Elements print(f[3:]) # f[4] = 'Hallo' # print(f) print(len(f)) print(f[3], f[5]) d = [f[3], f[5]] f.append(21) f.insert(0,0) # position, wert(e) print(f) f.remove(1) # entfernt den ersten Wert aus der Liste! print(f) del(f[0]) # entfernt per index print(f)
acb2f22c10e5a983885d5d763b965af07ef47eb9
ea1bb1d4b3227fde47ce1ebf3aadef696f355642
/0x0F-python-object_relational_mapping/14-model_city_fetch_by_state.py
15ca6e3120ece11db4e3d16d806045fdf3867f01
[]
no_license
petehwu/holbertonschool-higher_level_programming
4f0b0ea76699a60f47cf3dcb0b2b29da35ec2ef1
3c1595d1011fcc3c0265f52a1b965e54f4edd94c
refs/heads/master
2021-07-13T18:41:06.413945
2019-02-22T05:33:14
2019-02-22T05:33:14
148,185,006
0
0
null
null
null
null
UTF-8
Python
false
false
746
py
#!/usr/bin/python3 """python script to list all state objects """ import sys from model_state import Base, State from model_city import City from sqlalchemy import (create_engine) from sqlalchemy.orm import sessionmaker if __name__ == "__main__": engine = create_engine('mysql+mysqldb://{}:{}@localhost/{}' .format(sys.argv[1], sys.argv[2], sys.argv[3]), pool_pre_ping=True) Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() cities = session.query(City).all() for c in cities: state = session.query(State).filter(State.id == c.state_id).first() print("{:s}: ({:d}) {:s}".format(state.name, c.id, c.name))
2071d69796f799b401c9dc1bd122c662f52f5d0c
3d61905cb470e4918027d2b6d995246d60aab2b4
/python/brenpysandbox/fbx/fbx_import_settings_test_01.py
d0baf17d94994bfbb82d1b191a19c80242170f51
[]
no_license
brenainnJordan/brenpy-sandbox
6e36cfba617c4c9c8989bb36b78c3780b9d0959c
6dd20d8b7722719742613d2efec2c2992fcfdd9a
refs/heads/master
2020-08-28T17:16:24.041945
2020-06-21T19:58:15
2020-06-21T19:58:15
217,766,574
0
0
null
null
null
null
UTF-8
Python
false
false
2,897
py
import fbx import sys import os try: from Qt import QtCore from Qt import QtWidgets from Qt import QtGui except ImportError: print "[ WARNING ] Cannot find Qt library, using PySide2 instead" from PySide2 import QtCore from PySide2 import QtWidgets from PySide2 import QtGui # QtCore.SIGNAL doesn't seem to exist # TODO investigate why try: from PySide.QtCore import SIGNAL except ImportError: from PySide2.QtCore import SIGNAL from brenfbx.utils import bfFbxUtils from brenfbx.qt.property import bfQtPropertyValueWidgets from brenfbx.qt.property import bfQtPropertyTreeWidgets from brenfbx.qt.property import bfQtPropertyItems from brenfbx.qt.property import bfQtPropertyModels def inspect_child_properties(fbx_property, indent=0): """Recursively debug properties """ child_property = fbx_property.GetChild() while child_property.IsValid(): print "-"*indent, child_property.GetName() inspect_child_properties(child_property, indent=indent+1) child_property = child_property.GetSibling() def test_1(): fbx_manager = fbx.FbxManager.Create() settings = fbx.FbxIOSettings.Create( fbx_manager, fbx.IOSROOT ) print settings root_properties = bfFbxUtils.get_root_properties(settings) for property in root_properties: print property.GetName() inspect_child_properties(property, indent=1) # fbx_property = settings.GetFirstProperty() # # while fbx_property.IsValid(): # print fbx_property.GetName() # # fbx_property = settings.GetNextProperty(fbx_property) class Test2(object): def __init__(self): self.fbx_manager = fbx.FbxManager.Create() self.settings = fbx.FbxIOSettings.Create( self.fbx_manager, fbx.IOSROOT ) item_manager = bfQtPropertyItems.FbxPropertyTreeItemManager(self.fbx_manager) item_manager.set_debug_level(item_manager.LEVELS.mid()) item_manager.set_fbx_object(self.settings) model = bfQtPropertyModels.BfFbxPropertyModel() model.set_item_manager(item_manager) import_property = self.settings.FindProperty("Import") print import_property, import_property.IsValid() model.set_root_fbx_property(import_property) # self._properties_widget = bfQtPropertyWidgets.BfPropertiesWidget(self.fbx_manager) self._properties_widget = bfQtPropertyTreeWidgets.BfPropertyTreeWidget() self._properties_widget.set_property_model(model) # self._properties_widget.set_fbx_object(self.settings) # for child_property in bfUtils.get_child_properties(import_property): # print child_property.GetName() self._properties_widget.show() if __name__ == "__main__": # test_1() app = QtWidgets.QApplication(sys.argv) test = Test2() sys.exit(app.exec_())
a30ea7479628945da6d1b7182c482c49399b5a02
397c9e2743c41cf591692c4fc37f43a9070119bd
/build/env/lib/python2.7/site-packages/windmill-1.6-py2.7.egg/windmill/tools/urlparse_25.py
e8341181f7a47001865f41e67e30002482632d13
[ "Apache-2.0" ]
permissive
bopopescu/myhue
cf41238c782d12b3a1a0ee9ef70196359bb67894
5f566970a5a1fa5af9f01832c9e9808c47634bc7
refs/heads/master
2022-11-18T05:37:24.467150
2019-11-23T16:16:22
2019-11-23T16:16:22
282,390,507
0
0
Apache-2.0
2020-07-25T07:03:40
2020-07-25T07:03:39
null
UTF-8
Python
false
false
12,066
py
# From Python2.5 stdlib """Parse (absolute and relative) URLs. See RFC 1808: "Relative Uniform Resource Locators", by R. Fielding, UC Irvine, June 1995. """ __all__ = ["urlparse", "urlunparse", "urljoin", "urldefrag", "urlsplit", "urlunsplit"] # A classification of schemes ('' means apply by default) uses_relative = ['ftp', 'http', 'gopher', 'nntp', 'imap', 'wais', 'file', 'https', 'shttp', 'mms', 'prospero', 'rtsp', 'rtspu', '', 'sftp'] uses_netloc = ['ftp', 'http', 'gopher', 'nntp', 'telnet', 'imap', 'wais', 'file', 'mms', 'https', 'shttp', 'snews', 'prospero', 'rtsp', 'rtspu', 'rsync', '', 'svn', 'svn+ssh', 'sftp'] non_hierarchical = ['gopher', 'hdl', 'mailto', 'news', 'telnet', 'wais', 'imap', 'snews', 'sip', 'sips'] uses_params = ['ftp', 'hdl', 'prospero', 'http', 'imap', 'https', 'shttp', 'rtsp', 'rtspu', 'sip', 'sips', 'mms', '', 'sftp'] uses_query = ['http', 'wais', 'imap', 'https', 'shttp', 'mms', 'gopher', 'rtsp', 'rtspu', 'sip', 'sips', ''] uses_fragment = ['ftp', 'hdl', 'http', 'gopher', 'news', 'nntp', 'wais', 'https', 'shttp', 'snews', 'file', 'prospero', ''] # Characters valid in scheme names scheme_chars = ('abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' '0123456789' '+-.') MAX_CACHE_SIZE = 20 _parse_cache = {} def clear_cache(): """Clear the parse cache.""" global _parse_cache _parse_cache = {} class BaseResult(tuple): """Base class for the parsed result objects. This provides the attributes shared by the two derived result objects as read-only properties. The derived classes are responsible for checking the right number of arguments were supplied to the constructor. """ __slots__ = () # Attributes that access the basic components of the URL: @property def scheme(self): return self[0] @property def netloc(self): return self[1] @property def path(self): return self[2] @property def query(self): return self[-2] @property def fragment(self): return self[-1] # Additional attributes that provide access to parsed-out portions # of the netloc: @property def username(self): netloc = self.netloc if "@" in netloc: userinfo = netloc.split("@", 1)[0] if ":" in userinfo: userinfo = userinfo.split(":", 1)[0] return userinfo return None @property def password(self): netloc = self.netloc if "@" in netloc: userinfo = netloc.split("@", 1)[0] if ":" in userinfo: return userinfo.split(":", 1)[1] return None @property def hostname(self): netloc = self.netloc if "@" in netloc: netloc = netloc.split("@", 1)[1] if ":" in netloc: netloc = netloc.split(":", 1)[0] return netloc.lower() or None @property def port(self): netloc = self.netloc if "@" in netloc: netloc = netloc.split("@", 1)[1] if ":" in netloc: port = netloc.split(":", 1)[1] return int(port, 10) return None class SplitResult(BaseResult): __slots__ = () def __new__(cls, scheme, netloc, path, query, fragment): return BaseResult.__new__( cls, (scheme, netloc, path, query, fragment)) def geturl(self): return urlunsplit(self) class ParseResult(BaseResult): __slots__ = () def __new__(cls, scheme, netloc, path, params, query, fragment): return BaseResult.__new__( cls, (scheme, netloc, path, params, query, fragment)) @property def params(self): return self[3] def geturl(self): return urlunparse(self) def urlparse(url, scheme='', allow_fragments=True): """Parse a URL into 6 components: <scheme>://<netloc>/<path>;<params>?<query>#<fragment> Return a 6-tuple: (scheme, netloc, path, params, query, fragment). Note that we don't break the components up in smaller bits (e.g. netloc is a single string) and we don't expand % escapes.""" tuple = urlsplit(url, scheme, allow_fragments) scheme, netloc, url, query, fragment = tuple if scheme in uses_params and ';' in url: url, params = _splitparams(url) else: params = '' return ParseResult(scheme, netloc, url, params, query, fragment) def _splitparams(url): if '/' in url: i = url.find(';', url.rfind('/')) if i < 0: return url, '' else: i = url.find(';') return url[:i], url[i+1:] def _splitnetloc(url, start=0): delim = len(url) # position of end of domain part of url, default is end for c in '/?#': # look for delimiters; the order is NOT important wdelim = url.find(c, start) # find first of this delim if wdelim >= 0: # if found delim = min(delim, wdelim) # use earliest delim position return url[start:delim], url[delim:] # return (domain, rest) def urlsplit(url, scheme='', allow_fragments=True): """Parse a URL into 5 components: <scheme>://<netloc>/<path>?<query>#<fragment> Return a 5-tuple: (scheme, netloc, path, query, fragment). Note that we don't break the components up in smaller bits (e.g. netloc is a single string) and we don't expand % escapes.""" allow_fragments = bool(allow_fragments) key = url, scheme, allow_fragments, type(url), type(scheme) cached = _parse_cache.get(key, None) if cached: return cached if len(_parse_cache) >= MAX_CACHE_SIZE: # avoid runaway growth clear_cache() netloc = query = fragment = '' i = url.find(':') if i > 0: if url[:i] == 'http': # optimize the common case scheme = url[:i].lower() url = url[i+1:] if url[:2] == '//': netloc, url = _splitnetloc(url, 2) if allow_fragments and '#' in url: url, fragment = url.split('#', 1) if '?' in url: url, query = url.split('?', 1) v = SplitResult(scheme, netloc, url, query, fragment) _parse_cache[key] = v return v for c in url[:i]: if c not in scheme_chars: break else: scheme, url = url[:i].lower(), url[i+1:] if scheme in uses_netloc and url[:2] == '//': netloc, url = _splitnetloc(url, 2) if allow_fragments and scheme in uses_fragment and '#' in url: url, fragment = url.split('#', 1) if scheme in uses_query and '?' in url: url, query = url.split('?', 1) v = SplitResult(scheme, netloc, url, query, fragment) _parse_cache[key] = v return v def urlunparse((scheme, netloc, url, params, query, fragment)): """Put a parsed URL back together again. This may result in a slightly different, but equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g. a ? with an empty query (the draft states that these are equivalent).""" if params: url = "%s;%s" % (url, params) return urlunsplit((scheme, netloc, url, query, fragment)) def urlunsplit((scheme, netloc, url, query, fragment)): if netloc or (scheme and scheme in uses_netloc and url[:2] != '//'): if url and url[:1] != '/': url = '/' + url url = '//' + (netloc or '') + url if scheme: url = scheme + ':' + url if query: url = url + '?' + query if fragment: url = url + '#' + fragment return url def urljoin(base, url, allow_fragments=True): """Join a base URL and a possibly relative URL to form an absolute interpretation of the latter.""" if not base: return url if not url: return base bscheme, bnetloc, bpath, bparams, bquery, bfragment = \ urlparse(base, '', allow_fragments) scheme, netloc, path, params, query, fragment = \ urlparse(url, bscheme, allow_fragments) if scheme != bscheme or scheme not in uses_relative: return url if scheme in uses_netloc: if netloc: return urlunparse((scheme, netloc, path, params, query, fragment)) netloc = bnetloc if path[:1] == '/': return urlunparse((scheme, netloc, path, params, query, fragment)) if not (path or params or query): return urlunparse((scheme, netloc, bpath, bparams, bquery, fragment)) segments = bpath.split('/')[:-1] + path.split('/') # XXX The stuff below is bogus in various ways... if segments[-1] == '.': segments[-1] = '' while '.' in segments: segments.remove('.') while 1: i = 1 n = len(segments) - 1 while i < n: if (segments[i] == '..' and segments[i-1] not in ('', '..')): del segments[i-1:i+1] break i = i+1 else: break if segments == ['', '..']: segments[-1] = '' elif len(segments) >= 2 and segments[-1] == '..': segments[-2:] = [''] return urlunparse((scheme, netloc, '/'.join(segments), params, query, fragment)) def urldefrag(url): """Removes any existing fragment from URL. Returns a tuple of the defragmented URL and the fragment. If the URL contained no fragments, the second element is the empty string. """ if '#' in url: s, n, p, a, q, frag = urlparse(url) defrag = urlunparse((s, n, p, a, q, '')) return defrag, frag else: return url, '' test_input = """ http://a/b/c/d g:h = <URL:g:h> http:g = <URL:http://a/b/c/g> http: = <URL:http://a/b/c/d> g = <URL:http://a/b/c/g> ./g = <URL:http://a/b/c/g> g/ = <URL:http://a/b/c/g/> /g = <URL:http://a/g> //g = <URL:http://g> ?y = <URL:http://a/b/c/d?y> g?y = <URL:http://a/b/c/g?y> g?y/./x = <URL:http://a/b/c/g?y/./x> . = <URL:http://a/b/c/> ./ = <URL:http://a/b/c/> .. = <URL:http://a/b/> ../ = <URL:http://a/b/> ../g = <URL:http://a/b/g> ../.. = <URL:http://a/> ../../g = <URL:http://a/g> ../../../g = <URL:http://a/../g> ./../g = <URL:http://a/b/g> ./g/. = <URL:http://a/b/c/g/> /./g = <URL:http://a/./g> g/./h = <URL:http://a/b/c/g/h> g/../h = <URL:http://a/b/c/h> http:g = <URL:http://a/b/c/g> http: = <URL:http://a/b/c/d> http:?y = <URL:http://a/b/c/d?y> http:g?y = <URL:http://a/b/c/g?y> http:g?y/./x = <URL:http://a/b/c/g?y/./x> """ def test(): import sys base = '' if sys.argv[1:]: fn = sys.argv[1] if fn == '-': fp = sys.stdin else: fp = open(fn) else: try: from cStringIO import StringIO except ImportError: from StringIO import StringIO fp = StringIO(test_input) while 1: line = fp.readline() if not line: break words = line.split() if not words: continue url = words[0] parts = urlparse(url) print '%-10s : %s' % (url, parts) abs = urljoin(base, url) if not base: base = abs wrapped = '<URL:%s>' % abs print '%-10s = %s' % (url, wrapped) if len(words) == 3 and words[1] == '=': if wrapped != words[2]: print 'EXPECTED', words[2], '!!!!!!!!!!' if __name__ == '__main__': test()
2e94f6588aa5777aec5c16eee7d4ea0ca17dd4ea
7882860350c714e6c08368288dab721288b8d9db
/2407_조합.py
255617b4bcd46fc1eb2cfadaf6a18e1d263ead7a
[]
no_license
park-seonju/Algorithm
682fca984813a54b92a3f2ab174e4f05a95921a8
30e5bcb756e9388693624e8880e57bc92bfda969
refs/heads/master
2023-08-11T18:23:49.644259
2021-09-27T10:07:49
2021-09-27T10:07:49
388,741,922
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
n,m=map(int,input().split()) cnt=0 top=1 while cnt<m: cnt+=1 top*=n n-=1 for i in range(m,1,-1): top//=i print(top)
cb114711c20368e1af3bd2e23487fe45e5301fca
47c01a12f776928a041aee309841d5efc1622e18
/backend/dailigreen_3612/wsgi.py
0497660c86729db74a3c245c4c7812b7635d8e36
[]
no_license
crowdbotics-apps/dailigreen-3612
2aa28e1197db65be35fe30a6838efe28d1f9890c
a38bf4be6eacb40d05cf0eee998bb3f0fdaf451e
refs/heads/master
2020-05-25T10:02:37.845216
2019-05-21T03:04:19
2019-05-21T03:04:19
187,751,877
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
""" WSGI config for dailigreen_3612 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dailigreen_3612.settings") application = get_wsgi_application()
bd4d17989f1ebd69ef859132dbb57ac3f978ebb0
5abb52c3ee859ee5876601025479e9d3214f829f
/meiduo/meiduo/apps/contents/migrations/0001_initial.py
797d2d8fd8153a0ac6f469e3cd7a43e02e2b0e1a
[]
no_license
RapperDream/meiduo-18
05ca46628f5575b31d6a0b2115786dd3f0e57f5a
d7f5aad879f0e420ac16e577d107236bdec816ee
refs/heads/master
2020-04-22T02:39:01.099998
2019-02-23T14:53:39
2019-02-23T14:53:39
170,057,826
0
0
null
null
null
null
UTF-8
Python
false
false
2,487
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2019-02-23 07:23 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Content', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('title', models.CharField(max_length=100, verbose_name='标题')), ('url', models.CharField(max_length=300, verbose_name='内容链接')), ('image', models.ImageField(blank=True, null=True, upload_to='', verbose_name='图片')), ('text', models.TextField(blank=True, null=True, verbose_name='内容')), ('sequence', models.IntegerField(verbose_name='排序')), ('status', models.BooleanField(default=True, verbose_name='是否展示')), ], options={ 'verbose_name_plural': '广告内容', 'db_table': 'tb_content', 'verbose_name': '广告内容', }, ), migrations.CreateModel( name='ContentCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('name', models.CharField(max_length=50, verbose_name='名称')), ('key', models.CharField(max_length=50, verbose_name='类别键名')), ], options={ 'verbose_name_plural': '广告内容类别', 'db_table': 'tb_content_category', 'verbose_name': '广告内容类别', }, ), migrations.AddField( model_name='content', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='contents.ContentCategory', verbose_name='类别'), ), ]
71fd47eacb61850cec0364459140c654afb663c1
d9cc042eacfd65912781aad31a57a2709c1e27e4
/platypush/backend/camera/pi.py
a595c399c9fe28c4578fef15bb5134b787c138c7
[ "MIT" ]
permissive
shineit/platypush
914ddb50371cee63669c74f775baf5ae652c9075
a67b301cd66235b41bff6bfb3de56b903bf9551d
refs/heads/master
2020-03-15T04:08:02.349413
2018-05-03T00:17:31
2018-05-03T00:17:31
131,958,375
1
0
MIT
2018-05-03T07:31:56
2018-05-03T07:31:56
null
UTF-8
Python
false
false
2,443
py
import logging import socket import time import picamera from platypush.backend import Backend class CameraPiBackend(Backend): def __init__(self, listen_port, x_resolution=640, y_resolution=480, framerate=24, hflip=False, vflip=False, sharpness=0, contrast=0, brightness=50, video_stabilization=False, ISO=0, exposure_compensation=0, exposure_mode='auto', meter_mode='average', awb_mode='auto', image_effect='none', color_effects=None, rotation=0, crop=(0.0, 0.0, 1.0, 1.0), **kwargs): """ See https://www.raspberrypi.org/documentation/usage/camera/python/README.md for a detailed reference about the Pi camera options """ super().__init__(**kwargs) self.listen_port = listen_port self.server_socket = socket.socket() self.server_socket.bind(('0.0.0.0', self.listen_port)) self.server_socket.listen(0) self.camera = picamera.PiCamera() self.camera.resolution = (x_resolution, y_resolution) self.camera.framerate = framerate self.camera.hflip = hflip self.camera.vflip = vflip self.camera.sharpness = sharpness self.camera.contrast = contrast self.camera.brightness = brightness self.camera.video_stabilization = video_stabilization self.camera.ISO = ISO self.camera.exposure_compensation = exposure_compensation self.camera.exposure_mode = exposure_mode self.camera.meter_mode = meter_mode self.camera.awb_mode = awb_mode self.camera.image_effect = image_effect self.camera.color_effects = color_effects self.camera.rotation = rotation self.camera.crop = crop logging.info('Initialized Pi camera backend') def send_message(self, msg): pass def run(self): super().run() while True: connection = self.server_socket.accept()[0].makefile('wb') try: self.camera.start_recording(connection, format='h264') while True: self.camera.wait_recording(60) except ConnectionError as e: pass finally: try: self.camera.stop_recording() connection.close() except: pass # vim:sw=4:ts=4:et:
9fbe0840c86114c15a28c5123e2a28710abe4740
2c32cf726e111b8625265c458feeaea436652e83
/pramp-condility-3month/random_O1.py
47221cf8aaec833a485f67d72f55e7c969e9e592
[]
no_license
minhthe/practice-algorithms-and-data-structures
6fa3bf98e8e2fe98f4e32419fb797b1df4400364
488a82dd3a0c797859a6c9e1195d6d579d676073
refs/heads/master
2021-05-16T23:01:20.026475
2020-09-23T04:17:13
2020-09-23T04:17:13
250,505,610
0
0
null
null
null
null
UTF-8
Python
false
false
1,627
py
'''https://leetcode.com/problems/insert-delete-getrandom-o1''' import random class RandomizedSet: def __init__(self): """ Initialize your data structure here. """ self.arr = [] self.mp = {} self.cnt = 0 def insert(self, val: int) -> bool: """ Inserts a value to the set. Returns true if the set did not already contain the specified element. """ if val in self.mp: return False else: self.mp[val] = self.cnt self.arr.append(val) self.cnt +=1 # print(self.arr, self.mp, self.cnt ) return True def remove(self, val: int) -> bool: """ Removes a value from the set. Returns true if the set contained the specified element. """ if val in self.mp: # 1 2 3 4 5 idx = self.mp[val] tmp = self.arr[-1] self.arr[idx] = tmp self.mp[tmp] = idx del self.mp[val] self.arr.pop() self.cnt-=1 return True return False def getRandom(self) -> int: """ Get a random element from the set. """ return self.arr[ random.randint(0, self.cnt-1) ] # Your RandomizedSet object will be instantiated and called as such: # obj = RandomizedSet() # param_1 = obj.insert(val) # param_2 = obj.remove(val) # param_3 = obj.getRandom()
7ec4ecdfa91bbe1ffc8d0703684dbf39db4898ca
535503dc18c38b92f8520289da5b4fa42b0a722a
/code/exp_control/sequencer/sequences/obsolete/general_pulses2.py
dc379fb427becc1d61c5d12714b867915e729148
[]
no_license
jamesbate/phd_code
fbbbf7657c428a0a1f18768edca1dfce56801cc1
7e71d7f041835497fb421dd741c644ab5c8e3805
refs/heads/master
2023-05-07T10:31:22.168217
2021-05-26T15:00:40
2021-05-26T15:00:40
371,073,491
0
0
null
null
null
null
UTF-8
Python
false
false
2,202
py
# 729 pulse experiment # 16.2.06 TK <VARIABLES> # test-tom=self.set_variable("float","test-tom",9000.123456,0.01,2e7) phase1=self.set_variable("float","phase1",0,-10,10) phase2=self.set_variable("float","phase2",0,-10,10) gl_cam_time=self.set_variable("float","gl_cam_time",5000.000000,0,2e7) det_time=self.set_variable("float","det_time",5000.000000,0.01,2e7) doppler_length=self.set_variable("float","doppler_length",3000.000000,1,2e5) pump_length=self.set_variable("float","pump_length",100.000000,1,2e5) pump_length_729=self.set_variable("float","pump_length_729",500.000000,1,2e5) pulse_3=self.set_variable("bool","pulse_3",0) pulse_4=self.set_variable("bool","pulse_4",0) </VARIABLES> # The save form specifies which data will be saved and how, when a scan is performed. # If this is omitted a standard form is used <SAVE FORM> .dat ; %1.6f meanExc; 0; %1.3f parity; 0; %1.3f pn; 1;elements; (0:N); %1.3f StartTime; 0; %1.3f StopTime; 0; %1.3f PMTcounts; 1;elements; (0:N); %1.0f </SAVE FORM> <TRANSITIONS> t_carr={1 : 1.0, 2: 1.0, 3 : 1.0} #Carrier=transition(transition_name="Carrier",t_rabi=t_carr, # frequency=freq,sweeprange=sspan,amplitude=power_dB,slope_type="blackman", # slope_duration=slope_dur,amplitude2=-1,frequency2=0,port=port_nr) #set_transition(Carrier,"729") </TRANSITIONS> # Here the sequence can override program parameters. Syntax follows from "Write Token to Params.vi" <PARAMS OVERRIDE> AcquisitionMode excitation </PARAMS OVERRIDE> <SEQUENCE> incl.DopplerCooling40(doppler_length,repump_length) if opt_pumping : incl.OpticalPumping40(pump_length) if sb_cool : incl.SBCooling40(SBCool_time,SBCool_reps) if opt_pump_729 : incl.OpticalPumping40_729(pump_length_729) else : seq_wait(pump_length_729) seq_wait(700) if pulse_1 : rf_729(1,0.5,0,"carrier1") if pulse_2 : rf_729(1,1,0,"gate") seq_wait(wait_time) if pulse_3 : rf_729(1,1,phase2*math.pi,"gate") if pulse_4 : rf_729(1,0.5,phase1*math.pi,"carrier1") incl.PMTDetection(det_time,gl_cam_time) </SEQUENCE> <AUTHORED BY LABVIEW> 3 </AUTHORED BY LABVIEW>
111e59e47e462a20ed1faf6392b577cdf83b5911
df8466745f40b2966c69744a78dce62e46e69503
/AULA7/exercicios/portas_006.py
b8e84668c02f01686b5f4f59a256b9507ef0ebb1
[]
no_license
sandromelobrazil/YELLOW_aula1
42f0e8ffa673a5f95d6ee6330ef1d2b894339a14
c078fbe235979f365f72c6f160462b394a44765c
refs/heads/master
2023-02-05T00:52:43.719881
2021-08-10T16:00:03
2021-08-10T16:00:03
300,909,573
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
#!/usr/bin/python portlist = set() porteste1 = [ '11-443', 'iE100', 'XYZ','1000', '30', '111', '11', '11', '11', '25', '22', '21', '22', '22', 'Zzz' ] def testaporta(_ports): if _port.isdigit(): portlist.add(int(_port)) elif '-' in _port: portainicial, portafinal = _port.split('-') for _rangeport in range(int(portainicial), int(portafinal)+1): portlist.add(int(_rangeport)) else: pass for _port in porteste1: testaporta(_port) print('=' * 50) print(portlist) print('=' * 50) print('=' * 50) print('=' * 50) portlist2 = [ str(port) for port in portlist ] listport = ','.join(portlist2) print(listport) print('=' * 50) print('=' * 50)
11c7d56d8a24de673cf13849d9d7c1be58c71029
73b158f51285300c1d3456b7af9163939ee206f2
/DevOps/sprint03/t01_clear_words/clear_words.py
edc4ac2b62b175289d0754c33a8097cc31331b4f
[]
no_license
nnocturnnn/DevOps
2e332b3552a5b294b36d2af7de854aa18f2da46f
173c75938e65be8fbbb5c02c3d655d09df9a2931
refs/heads/master
2023-06-11T07:21:14.097930
2021-06-30T13:58:15
2021-06-30T13:58:15
352,070,911
1
0
null
null
null
null
UTF-8
Python
false
false
154
py
import re def re_sub_clean(string): return re.sub(r" |\?|!|\.|:|;|,|-","",string) def clear_words(s): return list(map(re_sub_clean, s.split()))
4d943666d27082a916fe19297f81966b1985dcc9
72dc7d124cdac8f2dcab3f72e95e9a646154a6a0
/byceps/services/shop/order/models/order_item.py
bdf7f5515c1aaaa9557530f6c771a730c2c0e82d
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
m-ober/byceps
e6569802ee76e8d81b892f1f547881010359e416
4d0d43446f3f86a7888ed55395bc2aba58eb52d5
refs/heads/master
2020-11-30T23:31:33.944870
2020-02-12T23:53:55
2020-02-12T23:56:04
40,315,983
0
0
null
2015-08-06T16:41:36
2015-08-06T16:41:36
null
UTF-8
Python
false
false
2,501
py
""" byceps.services.shop.order.models.order_item ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Copyright: 2006-2020 Jochen Kupperschmidt :License: Modified BSD, see LICENSE for details. """ from decimal import Decimal from .....database import db, generate_uuid from ...article.models.article import Article from ...article.transfer.models import ArticleNumber from ..transfer.models import OrderItem as OrderItemTransferObject from .order import Order class OrderItem(db.Model): """An item that belongs to an order.""" __tablename__ = 'shop_order_items' id = db.Column(db.Uuid, default=generate_uuid, primary_key=True) order_number = db.Column(db.UnicodeText, db.ForeignKey('shop_orders.order_number'), index=True, nullable=False) order = db.relationship(Order, backref='items') article_number = db.Column(db.UnicodeText, db.ForeignKey('shop_articles.item_number'), index=True, nullable=False) article = db.relationship(Article, backref='order_items') description = db.Column(db.UnicodeText, nullable=False) unit_price = db.Column(db.Numeric(6, 2), nullable=False) tax_rate = db.Column(db.Numeric(3, 3), nullable=False) quantity = db.Column(db.Integer, db.CheckConstraint('quantity > 0'), nullable=False) line_amount = db.Column(db.Numeric(7, 2), nullable=False) shipping_required = db.Column(db.Boolean, nullable=False) def __init__( self, order: Order, article_number: ArticleNumber, description: str, unit_price: Decimal, tax_rate: Decimal, quantity: int, line_amount: Decimal, shipping_required: bool, ) -> None: # Require order instance rather than order number as argument # because order items are created together with the order – and # until the order is created, there is no order number assigned. self.order = order self.article_number = article_number self.description = description self.unit_price = unit_price self.tax_rate = tax_rate self.quantity = quantity self.line_amount = line_amount self.shipping_required = shipping_required def to_transfer_object(self) -> OrderItemTransferObject: return OrderItemTransferObject( self.order_number, self.article_number, self.description, self.unit_price, self.tax_rate, self.quantity, self.line_amount, )
bcbfda9b43d7eb4d22855efabe65b5b75b4b22a1
1dcea2a511f14a43701994f6a7785afd21a20d74
/Algorithm/389_FindTheDifference.py
429149c653494ecf639efcc4a8d316ffea12735d
[]
no_license
lingtianwan/Leetcode2
66031e256a2928c6197516f83f14748c52e91b8c
80a604cc09d5d2d62dd05157d8b829de675e4404
refs/heads/master
2021-01-13T11:17:18.238465
2017-02-09T01:43:38
2017-02-09T01:43:38
81,395,927
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
# Given two strings s and t which consist of only lowercase letters. # # String t is generated by random shuffling string s and then add one more letter at a random position. # # Find the letter that was added in t. # # Example: # # Input: # s = "abcd" # t = "abcde" # # Output: # e # # Explanation: # 'e' is the letter that was added. class Solution(object): def findTheDifference(self, s, t): """ :type s: str :type t: str :rtype: str """ s_map = collections.Counter(s) t_map = collections.Counter(t) for key, val in t_map.items(): if s_map.get(key, 0) != val: return key
33a4fb3e793637a89656c533d9a60bdc7161a7de
0f1849a97b00fefef26756884d1410df2bd3e484
/app/color.py
ea0f4e4ffb55d6867d91250f186479d3bd4248f2
[ "Apache-2.0" ]
permissive
yumioi/ci_edit
62170f8e429f7183cea4f122112c790e3851b210
5af80d643e7b16e5e3270771bdbc6b322255d460
refs/heads/master
2020-04-09T06:16:07.197122
2018-11-28T18:55:10
2018-11-28T18:55:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,204
py
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import curses import app.prefs colors = 256 cache__ = {} def reset(): global cache__ cache__ = {} def get(colorType, delta=0): global cache__ if type(colorType) == type(0): colorIndex = colorType else: colorIndex = app.prefs.color[colorType] colorIndex = min(colors - 1, colorIndex + delta) color = cache__.get(colorIndex) or curses.color_pair(colorIndex) cache__[colorIndex] = color if colorType in ('error', 'misspelling'): color |= curses.A_BOLD | curses.A_REVERSE return color
6487f8748c0f588a0cf9da0085b7944535d7e7f5
0d298b3aff627883b2eed85516bed7e61f174d74
/bin/delete_downstream.py
1754ee3365c81b8aba8b74ef4d7d8a1bd33065c9
[ "BSD-3-Clause" ]
permissive
ellongley/TXPipe
be05bec21181a0d1e13cb2f3dcc2f55633a62369
785f93e876a00c528379b1bbacbbf5c42585b789
refs/heads/master
2023-08-21T13:53:50.732723
2021-10-04T14:28:06
2021-10-04T14:28:06
416,102,676
1
0
null
null
null
null
UTF-8
Python
false
false
1,971
py
""" This script prints out the commands to delete all files generated by a pipeline, downstream of a specified stage. If one stage was wrong, and you need to re-run everything it affected, this script will print out the commands to delete the relevant files to that re-running the pipeline with resume=True will re-run the correct stages. """ import sys sys.path.append('.') import ceci import txpipe import yaml import collections import os # start from a config file and a stage to delete config = yaml.safe_load(open(sys.argv[1])) stage_to_delete = sys.argv[2] # get the stages we need stage_names = [s['name'] for s in config['stages']] pipeline = ceci.Pipeline(config['stages'], None) stages = [ceci.PipelineStage.get_stage(stage_name) for stage_name in stage_names] # build the mapping tag => stages depending on that tag dependencies = collections.defaultdict(list) for stage in stages: for tag in stage.input_tags(): dependencies[tag].append(stage) # initialize with deletng one stage and the tags it makes tags_to_delete = ceci.PipelineStage.get_stage(stage_to_delete).output_tags() stages_to_delete = {stage} # loop through nstage times (the maximum it could be) for i in range(len(stage_names)): # take all tags we currently know we have to delete for tag in tags_to_delete[:]: # find out which stages to clear because they need # this tag which we are deleting deps = set(dependencies[tag]) for s in stages: if s in deps: # if we need to delete this stage, # add its outputs to the tags to delete tags_to_delete += s.output_tags() # and it to the stages to delete stages_to_delete.add(s) tags_to_delete = list(set(tags_to_delete)) # now at the end we delete all tags output by stage to delete for s in stages_to_delete: for f in pipeline.find_outputs(s, config).values(): print(f"rm -f {f}")
b642949b0d7101af9212e049ba6f11ca4f2ae132
08f087f8d07aac2f93f5adccc48bfa7172e7ae6d
/trash/servers_action.py
a5b17eb341b9844e549ba21b6bf4cbc71a54c880
[]
no_license
bsdpunk/trash
78a49e2255dbffb212e227ea6fe1d5fbbbf60158
2a1f0f1eb4456d9c5ca418a34e94fa61a88f00b6
refs/heads/master
2020-04-12T09:34:35.638883
2017-01-05T02:53:26
2017-01-05T02:53:26
64,771,900
8
2
null
2016-09-02T19:52:41
2016-08-02T16:05:34
Python
UTF-8
Python
false
false
4,432
py
import sys import requests import json import re from pprint import pprint def linode_list(api_key): headers = {'content-type': 'application/json'} endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.list" r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) return(json_data) def linode_list_ip(api_key, arguement=0): headers = {'content-type': 'application/json'} ip_addy = re.compile('(\d+|\d)\.(\d+|\d)\.(\d+|\d)\.(\d+|\d)') lin_name = re.compile('(\d+)') #print(arguement) if(arguement == 0): endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.ip.list" r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) elif re.match(ip_addy, arguement) is not None: json_data = "not implimented yet" elif re.match(lin_name, arguement) is not None: p = re.match(lin_name, arguement) lin_id = p.group(1) #print(lin_id) endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.ip.list&LinodeID="+ lin_id r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) #pprint(json_data) json_data = json_data["DATA"][0]["IPADDRESS"] else: json_data = "Invalid" return(json_data) def linode_create(api_key, dc_id, plan_id, pay_term_id=0): headers = {'content-type': 'application/json'} endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.create&DatacenterID="+ dc_id +"&PlanID=" +plan_id r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) return(json_data) def linode_disk_create(api_key, l_id, size, dst_id=0, root=0, label=0, formatt=0, ro=0): headers = {'content-type': 'application/json'} endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.create&DatacenterID="+ dc_id +"&PlanID=" +plan_id r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) return(json_data) def linode_disk_dist(api_key, l_id, dst_id, label, size, root, ssh_key=0): headers = {'content-type': 'application/json'} if ssh_key == 0: endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.disk.createfromdistribution&LinodeID="+ l_id +"&DistributionID=" +dst_id+"&Label="+label+"&Size="+size+"&rootPass="+root r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) else: json_data = "Invalid" return(json_data) #def linode_config_create(api_key, l_id, k_id, label, size, root, ssh_key=0): # headers = {'content-type': 'application/json'} # if ssh_key == 0: # endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.disk.createfromdistribution&LinodeID="+ l_id +"&DistributionID=" +dst_id+"&Label="+label+"&Size="+size+"&rootPass="+root # r = requests.get(endpoint, headers=headers) # json_data = json.loads(r.text) # else: # json_data = "Invalid" # return(json_data) #def linode_disk_image(api_key, i_id, l_id, label, size, root, ssh_key=0): # headers = {'content-type': 'application/json'} # if ssh_key == 0: # endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.disk.createfromdistribution&i_id="+i_id+"&LinodeID="+ l_id+"&Label="+label+"&Size="+size+"&rootPass="+root # # r = requests.get(endpoint, headers=headers) # json_data = json.loads(r.text) # else: # json_data = "Invalid" # return(json_data) def list_images(api_key): headers = {'content-type': 'application/json'} endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=image.list" r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) return(json_data) def linode_shutdown(api_key, numeric_lin_id): headers = {'content-type': 'application/json'} endpoint = "https://api.linode.com/?api_key=" + api_key["Linode-API-Key"] + "&api_action=linode.shutdown&LinodeID="+ numeric_lin_id r = requests.get(endpoint, headers=headers) json_data = json.loads(r.text) return(json_data)
b696eccd4a16cc676cb7faa3e3ac14ad5a53df25
d2da19b86a134c4213311af568c7166bd10fbc8a
/OGBL_Collab/utils/logger.py
3daed2535eae606a66945ac26b1f14d17234d746
[ "MIT" ]
permissive
x-zho14/Unified-LTH-GNN
bc96f89e6bdff18c45cc050de2cbdee8d425fcbf
edbb2f9aaa7cb363424dcfcb2ce198cfb66f3d55
refs/heads/main
2023-07-19T22:06:57.653044
2021-08-22T03:44:53
2021-08-22T03:44:53
398,705,892
0
0
MIT
2021-08-22T03:33:27
2021-08-22T03:33:27
null
UTF-8
Python
false
false
891
py
import os import shutil import csv def save_best_result(list_of_dict, file_name, dir_path='best_result'): if not os.path.exists(dir_path): os.mkdir(dir_path) print("Directory ", dir_path, " is created.") csv_file_name = '{}/{}.csv'.format(dir_path, file_name) with open(csv_file_name, 'a+') as csv_file: csv_writer = csv.writer(csv_file) for _ in range(len(list_of_dict)): csv_writer.writerow(list_of_dict[_].values()) def create_exp_dir(path, scripts_to_save=None): if not os.path.exists(path): os.makedirs(path) print('Experiment dir : {}'.format(path)) # if scripts_to_save is not None: # os.mkdir(os.path.join(path, 'scripts')) # for script in scripts_to_save: # dst_file = os.path.join(path, 'scripts', os.path.basename(script)) # shutil.copyfile(script, dst_file)
ce27d4f1720ab3ca03e03f54a6859697aa0b7d55
8cd098de61bc569e4247d15ca25bfbd0fb9ef793
/01_Jump_to_Python/Chap04/149.py
a55e73979cb20208806cdd471eb9977af696e106
[]
no_license
gaeunPark/Bigdata
67b8df7a4988f130ed7b45750c5447cf0394c49b
31388b2ac3a28306caae6d299bb5090aef849403
refs/heads/master
2020-03-15T09:27:23.537060
2018-11-22T02:18:45
2018-11-22T02:18:45
132,075,194
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
def sum_and_num(a,b): return a+b, a*b result = sum_and_num(3,4) print(result) sum, mul = sum_and_num(3,4) print("%d %d" %(sum, mul))
5a9bfe853d1596cafde41f489b55969c65a2a18f
28c598bf75f3ab287697c7f0ff1fb13bebb7cf75
/testgame.mmo/genesis/spawn/npc.py
4d99f03468bc84923d3fb54f351f6becf353fe4a
[]
no_license
keaysma/solinia_depreciated
4cb8811df4427261960af375cf749903d0ca6bd1
4c265449a5e9ca91f7acf7ac05cd9ff2949214ac
refs/heads/master
2020-03-25T13:08:33.913231
2014-09-12T08:23:26
2014-09-12T08:23:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,595
py
from genesis.dbdict import * from mud.world.defines import * from mud.world.spawn import SpawnSoundProfile spawn = DBSpawn() spawn.name = "Azala Dogooder" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Human" spawn.sex = "Female" spawn.pclass = "Warrior" spawn.plevel = 10 spawn.isMonster = False spawn.realm = RPG_REALM_NEUTRAL #Avatar Pack Examples #Available from: #http://www.mmoworkshop.com/trac/mom/wiki/Store """ spawn = DBSpawn() spawn.name = "Lithian Treil" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Elf" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 25 spawn.isMonster = False spawn.realm = RPG_REALM_NEUTRAL spawn = DBSpawn() spawn.name = "Thurgin Oakenshielf" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Dwarf" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 35 spawn.isMonster = False spawn.realm = RPG_REALM_NEUTRAL spawn = DBSpawn() spawn.name = "Blingo Longbottom" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Halfling" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 60 spawn.isMonster = False spawn.realm = RPG_REALM_NEUTRAL spawn = DBSpawn() spawn.name = "Azarek Relik" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Gnome" spawn.sex = "Female" spawn.pclass = "Warrior" spawn.plevel = 33 spawn.isMonster = False spawn.realm = RPG_REALM_NEUTRAL spawn = DBSpawn() spawn.name = "Hemok Stonebreaker" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Titan" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 10 spawn.isMonster = False spawn.realm = RPG_REALM_NEUTRAL spawn = DBSpawn() spawn.name = "Glarg Wickedblade" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Orc" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 50 spawn.isMonster = True spawn = DBSpawn() spawn.name = "Oshkosh Betosh" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Ogre" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 15 spawn.isMonster = True spawn = DBSpawn() spawn.name = "Cillik Neidle" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Goblin" spawn.sex = "Female" spawn.pclass = "Warrior" spawn.plevel = 54 spawn.isMonster = True spawn = DBSpawn() spawn.name = "Tor the Brute" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Troll" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 40 spawn.isMonster = True spawn = DBSpawn() spawn.name = "Isis Krarn" spawn.flags = RPG_SPAWN_UNIQUE spawn.race = "Drakken" spawn.sex = "Female" spawn.pclass = "Warrior" spawn.plevel = 20 spawn.isMonster = True """ # VendorNPC for tools spawn = DBSpawn() spawn.name = "Tool Vendor" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.desc = "" spawn.vendor = "Tool Vendor" spawn.addSkill("Dual Wield",1) loot = DBLootProto() loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Broadsword", RPG_FREQ_COMMON) loot.addItem("Magic Shield", RPG_FREQ_COMMON) spawn.loot = loot # VendorNPC for stones spawn = DBSpawn() spawn.name = "Stone Vendor" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.dialog = "Stone Vendor Dialog" spawn.desc = "He really sells and buys stones. So maybe he is a little stoned himself." spawn.vendor = "Vendorman" spawn.addSkill("Dual Wield",1) loot = DBLootProto() loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Broadsword", RPG_FREQ_COMMON) loot.addItem("Magic Shield", RPG_FREQ_COMMON) spawn.loot = loot # VendorNPC for scrolls spawn = DBSpawn() spawn.name = "Scroll Vendor" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.dialog = "Scroll Vendor Dialog" spawn.desc = "He sells and buys scrolls." spawn.vendor = "Spell Dealer" loot = DBLootProto() loot.addItem("Magic Shield", RPG_FREQ_ALWAYS) loot.addItem("Longsword", RPG_FREQ_ALWAYS) spawn.loot = loot # VendorNPC for weapons spawn = DBSpawn() spawn.name = "Weapon Vendor" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.dialog = "Weapon Vendor Dialog" spawn.desc = "He sells and buys Weapons." spawn.vendor = "Weapon Vendor" spawn.addSkill("Dual Wield",1) loot = DBLootProto() loot.addItem("Longsword", RPG_FREQ_ALWAYS) loot.addItem("Longsword", RPG_FREQ_ALWAYS) spawn.loot = loot # TrainerNPC for skills spawn = DBSpawn() spawn.name = "Skill Trainer" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.dialog = "Skill Trainer Dialog" spawn.desc = "He trains skills." loot = DBLootProto() loot.addItem("Broadsword", RPG_FREQ_ALWAYS) spawn.loot = loot # NPCs for factions spawn = DBSpawn() spawn.name = "Follower of the Green" spawn.realm = RPG_REALM_NEUTRAL spawn.sex = "Male" spawn.race = "Human" spawn.pclass = "Warrior" spawn.plevel = 1 spawn.isMonster = False spawn.flags = RPG_SPAWN_NOASSIST spawn.aggroRange = 20 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.desc = "He is for the Green." spawn.addFaction("The Green") spawn.addKillFaction("The Blue") spawn.addKillFaction("The Red") spawn = DBSpawn() spawn.name = "Follower of the Red" spawn.realm = RPG_REALM_NEUTRAL spawn.sex = "Male" spawn.race = "Human" spawn.pclass = "Warrior" spawn.plevel = 1 spawn.isMonster = False spawn.flags = RPG_SPAWN_NOASSIST spawn.aggroRange = 20 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.desc = "He is for the Red." spawn.addFaction("The Red") spawn.addKillFaction("The Blue") spawn.addKillFaction("The Green") spawn = DBSpawn() spawn.name = "Follower of the Blue" spawn.realm = RPG_REALM_NEUTRAL spawn.sex = "Male" spawn.race = "Human" spawn.pclass = "Warrior" spawn.plevel = 1 spawn.isMonster = False spawn.flags = RPG_SPAWN_NOASSIST spawn.aggroRange = 20 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.desc = "He is for the Blue." spawn.addFaction("The Blue") spawn.addKillFaction("The Green") spawn.addKillFaction("The Red") # VendorNPC for Food and Drinks spawn = DBSpawn() spawn.name = "Food Vendor" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Female" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "B" spawn.dialog = "Food Vendor Dialog" spawn.desc = "Here you can get nice snacks." spawn.vendor = "Snacks" spawn.addSkill("Dual Wield",1) loot = DBLootProto() loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Broadsword", RPG_FREQ_COMMON) loot.addItem("Magic Shield", RPG_FREQ_COMMON) spawn.loot = loot # NPC for fighting spawn = DBSpawn() spawn.name = "Fighter" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Warrior" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 10 spawn.isMonster = False spawn.flags = 0 spawn.aggroRange = 20 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.desc = "A fighter." # NPC for Quest spawn = DBSpawn() spawn.name = "Wolfman" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.dialog = "The Wolf Quest" spawn.desc = "He will give you a quest." spawn.addSkill("Dual Wield",1) loot = DBLootProto() loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Longsword", RPG_FREQ_COMMON) loot.addItem("Broadsword", RPG_FREQ_COMMON) loot.addItem("Magic Shield", RPG_FREQ_COMMON) spawn.loot = loot # NPC and mobs for epic battle #--- Taskmaster Duro spawn = DBSpawn() spawn.name = "Taskmaster Duro" spawn.race = "Human" spawn.sex = "Female" spawn.pclass = "Doom Knight" spawn.plevel = 40 spawn.difficultyMod = 2 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.dialog = "HumanWolfSkirmishReward" spawn.desc = "" #--- Ororcali spawn = spawn.clone() spawn.name = "Ororcali" spawn.sex = "Male" spawn.pclass = "Warrior" spawn.plevel = 38 spawn.difficultyMod = 1 spawn.dialog = "" #--- Human Deathbinder spawn = spawn.clone() spawn.name = "Human Deathbinder" spawn.pclass = "Assassin" spawn.flags = 0 #--- Human Punisher spawn = spawn.clone() spawn.name = "Human Punisher" spawn.pclass = "Wizard" spawn.plevel = 36 #--- Human Destroyer spawn = spawn.clone() spawn.name = "Human Destroyer" spawn.pclass = "Barbarian" spawn.plevel = 34 #--- Captain Flamehorn spawn = DBSpawn() spawn.name = "Captain Flamehorn" spawn.race = "Animal" spawn.sex = "Male" spawn.pclass = "Paladin" spawn.plevel = 33 spawn.difficultyMod = 2 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.model = "wolf/wolf.dts" spawn.textureArms = "" spawn.textureLegs = "" spawn.textureBody = "" spawn.textureHands = "" spawn.textureFeet = "" spawn.textureHead = "" spawn.textureSingle = "wolf_grey" sound = SpawnSoundProfile() sound.sndAlert1 = "character/ZombieDog_Growl2.ogg" sound.sndAlert2 = "character/ZombieDog_Growl3.ogg" sound.sndAttack1 = "character/ZombieDog_Attack1.ogg" sound.sndAttack2 = "character/ZombieDog_Attack2.ogg" sound.sndAttack3 = "character/ZombieDog_Attack3.ogg" sound.sndPain1 = "character/ZombieDog_Hurt1.ogg" sound.sndPain2 = "character/ZombieDog_Hurt2.ogg" sound.sndPain3 = "character/ZombieDog_Hurt3.ogg" sound.sndDeath1 = "character/ZombieDog_Death1.ogg" sound.sndDeath2 = "character/ZombieDog_Death2.ogg" spawn.sndProfile = sound spawn.vocalSet = "" #--- Wolf Protector spawn = spawn.clone() spawn.name = "Wolf Protector" spawn.pclass = "Warrior" spawn.plevel = 28 spawn.difficultyMod = 1 spawn.flags = 0 #--- Wolf Crusader spawn = spawn.clone() spawn.name = "Wolf Crusader" spawn.pclass = "Cleric" spawn.plevel = 25 #--- Oak Tree spawn = DBSpawn() spawn.name = "Oak Tree" spawn.pclass = "Harvest" spawn.plevel = 1 spawn.race = "Tree" spawn.requiresWeapon = "Foresting" spawn.isMonster = True spawn.scale = 2 spawn.aggroRange = 0 spawn.move = 0 spawn.model = "harvesting/oak.dts" spawn.flags = RPG_SPAWN_RESOURCE|RPG_SPAWN_NOXP|RPG_SPAWN_PASSIVE|RPG_SPAWN_NORANDOMLOOT spawn.textureBody = "harvesting/oak_bark" spawn.textureHead = "harvesting/oak_branch" #loot = DBLootProto() #loot.addItem("Oak wood",RPG_FREQ_COMMON) #spawn.loot = loot spawn.addResistance(RPG_RESIST_PHYSICAL,1000) spawn.addResistance(RPG_RESIST_MAGICAL,1000) spawn.addResistance(RPG_RESIST_FIRE,1000) spawn.addResistance(RPG_RESIST_COLD,1000) spawn.addResistance(RPG_RESIST_POISON,1000) spawn.addResistance(RPG_RESIST_DISEASE,1000) spawn.addResistance(RPG_RESIST_ACID,1000) spawn.addResistance(RPG_RESIST_ELECTRICAL,1000) spawn.addResistance(RPG_RESIST_MINE,1000) #--- Rock spawn = DBSpawn() spawn.name = "Rock" spawn.pclass = "Harvest" spawn.plevel = 1 spawn.race = "Rock" spawn.requiresWeapon = "Mining" spawn.isMonster = True spawn.scale = 1 spawn.aggroRange = 0 spawn.move = 0 spawn.model = "harvesting/rock.dts" spawn.flags = RPG_SPAWN_RESOURCE|RPG_SPAWN_NOXP|RPG_SPAWN_PASSIVE|RPG_SPAWN_NORANDOMLOOT spawn.textureSingle = "harvesting/rock" #loot = DBLootProto() #loot.addItem("Rock Ore",RPG_FREQ_COMMON) #spawn.loot = loot spawn.addResistance(RPG_RESIST_PHYSICAL,1000) spawn.addResistance(RPG_RESIST_MAGICAL,1000) spawn.addResistance(RPG_RESIST_FIRE,1000) spawn.addResistance(RPG_RESIST_COLD,1000) spawn.addResistance(RPG_RESIST_POISON,1000) spawn.addResistance(RPG_RESIST_DISEASE,1000) spawn.addResistance(RPG_RESIST_ACID,1000) spawn.addResistance(RPG_RESIST_ELECTRICAL,1000) spawn.addResistance(RPG_RESIST_FOREST,1000) # Auctioneer spawn = DBSpawn() spawn.name = "Auctioneer" spawn.realm = RPG_REALM_LIGHT spawn.pclass = "Paladin" spawn.sex = "Male" spawn.race = "Human" spawn.plevel = 30 spawn.isMonster = False spawn.flags = RPG_SPAWN_UNIQUE spawn.aggroRange = 10 spawn.textureArms = "tset_0_arms" spawn.textureLegs = "tset_0_legs" spawn.textureBody = "tset_0_body" spawn.textureHands = "tset_0_hands" spawn.textureFeet = "tset_0_feet" spawn.vocalSet = "A" spawn.auctioneer = RPG_AUCTION_LIGHT spawn.desc = "The auctioneer is here to allow you to trade some goods on the auction."
fc0c1d5a27259452f63b323e79cbc3437ec29f5c
c95a30837ff6beaf228a42d05fed25301142f9d5
/src/script/__init__.py
bc8a9fb8e7efce0582b61b660f29dfc9ddd4c266
[]
no_license
fran-jo/engine.DM
a1e57d8c4158b33668afd184bee3dc279b07259c
da6eb7513b21a52566d1cbea15040c8a8e18bcec
refs/heads/master
2020-03-23T21:04:19.781944
2018-07-24T00:09:31
2018-07-24T00:09:31
142,079,710
1
0
null
null
null
null
UTF-8
Python
false
false
62
py
''' package with script examples on how to use this engine '''
c46a1fd73901ca7b1756224e155dcb5e1ee69bf9
1625edfe28b4b0979fd32b4a3c5e55249a993fd5
/baekjoon2953.py
dec2a6a3720be7c3939a31f421f2c940a1e4d1cc
[]
no_license
beOk91/baekjoon2
b8bf504c506c6278899d4107ecfe51974ef13f5e
39569f8effb8e32405a7d74d98bdabcab783ec56
refs/heads/master
2023-05-11T20:11:19.015113
2020-09-14T23:58:49
2020-09-14T23:58:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
arr=[[0]*5 for _ in range(5)] arr2=[] for i in range(5): arr=list(map(int,input().strip().split())) arr2.append(sum(arr)) print(arr2.index(max(arr2))+1,max(arr2))
63244ed5efe5b54db895159ffba1c706ff6d5916
1122ebc8eb5e481f3afee6e033fd71233d0b75cc
/grr/lib/blob_stores/local/__init__.py
2d2226b948011a329065c049779b663a877c92f2
[ "DOC", "Apache-2.0" ]
permissive
ethicalhackeragnidhra/Grr
002f8f899f11676575bb6f74123cbdf37b2f3eea
9ff9178396d9d16575e42dded33627cb09ac3af1
refs/heads/master
2022-12-24T07:20:45.938196
2017-07-28T14:36:30
2017-07-28T14:36:30
98,792,087
1
1
Apache-2.0
2022-12-10T02:09:58
2017-07-30T11:09:01
Python
UTF-8
Python
false
false
73
py
#!/usr/bin/env python """This imports the site specific blob stores."""
f8edeab01ab18d1ec01ca83f1c589413af276fb3
2abefb9b5df4a5fdd782ac43cd1f6e94198fe43a
/Misc/HoWdArEyOu.py
b09e270fc5a17a017c97dade02711916257adef0
[]
no_license
jb1361/Class-files-repo
e63d339fd9c9add23b78571b2258d6c836c329d4
b29b80a93655348067a5146a6c7d2d5186ba184a
refs/heads/master
2023-01-30T09:38:45.786561
2021-06-14T22:42:04
2021-06-14T22:42:04
92,340,613
0
0
null
2023-01-06T11:20:52
2017-05-24T22:05:32
Python
UTF-8
Python
false
false
212
py
word = input() def howdareyou(s): ret = "" i = True # capitalize for char in s: if i: ret += char.upper() else: ret += char.lower() if char != ' ': i = not i return ret print(howdareyou(word))
951292454e8c84b2863f62cb932ec16fb27245f0
6dc80929dc2ef3dfdbde4f95fece88e68d4aa4aa
/catalog/migrations/0004_auto_20190623_2357.py
8bf172be2fb269d620f2dd42f01d270a9062bb65
[]
no_license
shortnd/local_library
87d912cd885919d4f9db73cbef058ed7bccd6d11
5a8753131193183c81c448d36064c7481843da4e
refs/heads/master
2022-02-22T07:15:06.096747
2019-06-24T04:02:27
2019-06-24T04:02:27
190,504,303
0
0
null
2021-06-10T18:11:55
2019-06-06T03:00:23
Python
UTF-8
Python
false
false
423
py
# Generated by Django 2.2.2 on 2019-06-24 03:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('catalog', '0003_bookinstance_borrower'), ] operations = [ migrations.AlterModelOptions( name='bookinstance', options={'ordering': ['due_back'], 'permissions': (('can_mark_returned', 'Set book as returned'),)}, ), ]
e14b578b7338dca6ead87edcb5371d81b75e155b
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/498245_LRU_and_LFU_cache_decorators/recipe-498245.py
9dd9b93cee6c70ce3a39cb4159b952253e391c9e
[ "Python-2.0", "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
5,183
py
import collections import functools from itertools import ifilterfalse from heapq import nsmallest from operator import itemgetter class Counter(dict): 'Mapping where default values are zero' def __missing__(self, key): return 0 def lru_cache(maxsize=100): '''Least-recently-used cache decorator. Arguments to the cached function must be hashable. Cache performance statistics stored in f.hits and f.misses. Clear the cache with f.clear(). http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used ''' maxqueue = maxsize * 10 def decorating_function(user_function, len=len, iter=iter, tuple=tuple, sorted=sorted, KeyError=KeyError): cache = {} # mapping of args to results queue = collections.deque() # order that keys have been used refcount = Counter() # times each key is in the queue sentinel = object() # marker for looping around the queue kwd_mark = object() # separate positional and keyword args # lookup optimizations (ugly but fast) queue_append, queue_popleft = queue.append, queue.popleft queue_appendleft, queue_pop = queue.appendleft, queue.pop @functools.wraps(user_function) def wrapper(*args, **kwds): # cache key records both positional and keyword args key = args if kwds: key += (kwd_mark,) + tuple(sorted(kwds.items())) # record recent use of this key queue_append(key) refcount[key] += 1 # get cache entry or compute if not found try: result = cache[key] wrapper.hits += 1 except KeyError: result = user_function(*args, **kwds) cache[key] = result wrapper.misses += 1 # purge least recently used cache entry if len(cache) > maxsize: key = queue_popleft() refcount[key] -= 1 while refcount[key]: key = queue_popleft() refcount[key] -= 1 del cache[key], refcount[key] # periodically compact the queue by eliminating duplicate keys # while preserving order of most recent access if len(queue) > maxqueue: refcount.clear() queue_appendleft(sentinel) for key in ifilterfalse(refcount.__contains__, iter(queue_pop, sentinel)): queue_appendleft(key) refcount[key] = 1 return result def clear(): cache.clear() queue.clear() refcount.clear() wrapper.hits = wrapper.misses = 0 wrapper.hits = wrapper.misses = 0 wrapper.clear = clear return wrapper return decorating_function def lfu_cache(maxsize=100): '''Least-frequenty-used cache decorator. Arguments to the cached function must be hashable. Cache performance statistics stored in f.hits and f.misses. Clear the cache with f.clear(). http://en.wikipedia.org/wiki/Least_Frequently_Used ''' def decorating_function(user_function): cache = {} # mapping of args to results use_count = Counter() # times each key has been accessed kwd_mark = object() # separate positional and keyword args @functools.wraps(user_function) def wrapper(*args, **kwds): key = args if kwds: key += (kwd_mark,) + tuple(sorted(kwds.items())) use_count[key] += 1 # get cache entry or compute if not found try: result = cache[key] wrapper.hits += 1 except KeyError: result = user_function(*args, **kwds) cache[key] = result wrapper.misses += 1 # purge least frequently used cache entry if len(cache) > maxsize: for key, _ in nsmallest(maxsize // 10, use_count.iteritems(), key=itemgetter(1)): del cache[key], use_count[key] return result def clear(): cache.clear() use_count.clear() wrapper.hits = wrapper.misses = 0 wrapper.hits = wrapper.misses = 0 wrapper.clear = clear return wrapper return decorating_function if __name__ == '__main__': @lru_cache(maxsize=20) def f(x, y): return 3*x+y domain = range(5) from random import choice for i in range(1000): r = f(choice(domain), choice(domain)) print(f.hits, f.misses) @lfu_cache(maxsize=20) def f(x, y): return 3*x+y domain = range(5) from random import choice for i in range(1000): r = f(choice(domain), choice(domain)) print(f.hits, f.misses)
60d9dd78e5b4036bf310616dd0cb6ccda32f0d3c
767b5482f3c5b9c2c85575c711e37561f5b8f198
/engine/plugins/TrojanCheckScript_yd.py
914bad369a45d68fa5f1bc5d0bb50d9fc094b964
[]
no_license
zhupite233/scaner
8e39c903f295d06195be20067043087ec8baac4f
7c29c02bca2247a82bcbb91cc86955cc27998c95
refs/heads/master
2020-05-18T03:23:03.459222
2019-04-15T04:29:10
2019-04-15T04:29:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,165
py
#!/usr/bin/python # -*- coding: utf-8 -*- import MySQLdb import MySQLdb.cursors from engine.engineConfig import * from engine.engine_utils.common import * from engine.logger import scanLogger as logger from urlparse import urlparse from bs4 import BeautifulSoup def find_friend_links(content): friend_link_list = [] soup = BeautifulSoup(content, 'lxml') friends = soup.find(text=re.compile(u'.*?(友情链接|合作伙伴).*?')) if not friends: return [] i = 0 while not friends.find_all('a') and i < 4: try: friends = friends.parent except: pass i += 1 for friend in friends.find_all('a'): friend_link = friend.get('href') if friend_link: net_loc = urlparse(friend_link).netloc if net_loc and not re.match('^(\d{1,3}\.){3}\d{1,3}(:\d{1,6})?$', net_loc): # ip地址不是友情链接 friend_link_list.append(net_loc) return friend_link_list def run_domain(http, ob): ''' 黑链暗链检测插件 ''' result = [] try: scheme = ob.get('scheme') domain = ob.get('domain') path = ob.get('path') res, content = http.request('%s://%s%s' % (scheme, domain, path)) friend_link_list = find_friend_links(content) friend_link_set = set(friend_link_list) task_id = ob.get('taskId') # type = 1 表示域名与当前扫描网站不符 sql = "SELECT spider_url_other.url FROM spider_url_other WHERE task_id=%s AND TYPE=%s" % (task_id, 1) db = MySQLdb.connect(SCANER_DB_HOST, SCANER_DB_USER, SCANER_DB_PASSWORD, SCANER_DB_DATABASE, cursorclass=MySQLdb.cursors.DictCursor) cursor = db.cursor() cursor.execute(sql) other_url_list = cursor.fetchall() if other_url_list: detail = '检测到外站链接,如果不是友情链接或其他已知来源,则可能是暗链黑链等恶意链接' for other_url_dict in other_url_list: other_url = other_url_dict.get('url') other_domain = urlparse(other_url).netloc other_domain = other_domain.split(':')[0] if other_domain.split('.', 1)[1] == domain.split('.', 1)[1]: # 子域名 continue if other_domain not in friend_link_set: # 不在友情链接内 result.append(getRecord(ob, other_url, ob['level'], detail, request=other_url, response='')) except Exception, e: logger.error("File:TrojanCheckScript_yd.py, run_domain function :%s" % (str(e))) return result # result = [] # domain = ob['domain'] # try: # task_id = ob['taskId'] # # other_urls = db.session.query(SpiderUrlOther.url).filter(SpiderUrlOther.task_id == task_id, SpiderUrlOther.type == 1).all() # sql = "SELECT spider_url_other.url FROM spider_url_other WHERE task_id=%s AND TYPE=%s" % (task_id, 1) # db = MySQLdb.connect(SCANER_DB_HOST, SCANER_DB_USER, SCANER_DB_PASSWORD, SCANER_DB_DATABASE, cursorclass=MySQLdb.cursors.DictCursor) # cursor = db.cursor() # cursor.execute(sql) # other_url_list = cursor.fetchmany() # if other_url_list: # for other_url_dict in other_url_list: # other_url = other_url_dict.get('url') # other_domain = urlparse(other_url).netloc # other_domain = other_domain.split(':')[0] # if domain.find(other_domain) == -1 and other_domain.find(domain) == -1 and domain.find(other_domain.split('.', 1)[1]) == -1: # detail = '检测到外站链接,如果不是友情链接或其他已知来源,则可能是暗链黑链木马等恶意链接' # # res, content = http.request(other_url.url,"HEAD") # # request = getRequest(other_url) # result.append(getRecord(ob, other_url, ob['level'], detail, request=other_url, response='')) # except Exception, e: # logger.error("File:TrojanCheckScript_yd.py, run_domain function :%s" % (str(e))) # # return result
f639a2910f5084d10f088248ae867f33930c1c51
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/I_to_M_Gk3_no_pad/wiColorJ/pyr_Tcrop255_p60_j15/Sob_k23_s001/pyr_0s/L3/step10_a.py
89256e72274b6f1679ebbb7044cb26830e0dc4c7
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
5,983
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_0side_L3 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_I_gt_MC use_loss_obj = [G_sobel_k23_loss_info_builder.set_loss_target("UNet_Mask").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_0side, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_0side.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ch032_0side = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_0side, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_0side.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_0side.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
9ab9ef75853c91fce2d10e650eae0aec3515ce68
34792ccd315338b2bd12b4251cc8188967bfaf35
/linkdump/migrations/versions/e510de2bd585_.py
ac2a3c5327709abe4232c408efd0c3f024090750
[]
no_license
puhoy/linkdump
a32dec709e10e8dda68c1dfbb326d9177d64dd96
ba03ef64c4286910ac1bb15fea8d4c431a738c2f
refs/heads/master
2022-12-13T20:35:41.913012
2020-07-26T12:55:22
2020-07-26T12:55:22
245,454,321
0
0
null
2022-12-08T03:45:01
2020-03-06T15:29:05
Python
UTF-8
Python
false
false
2,097
py
"""empty message Revision ID: e510de2bd585 Revises: Create Date: 2020-03-03 23:24:51.952624 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e510de2bd585' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('items', sa.Column('id', sa.Integer(), nullable=False), sa.Column('source', sa.String(), nullable=False), sa.Column('date_added', sa.Date(), nullable=False), sa.Column('title', sa.String(length=80), nullable=True), sa.Column('body', sa.Text(), nullable=True), sa.Column('date_processing_started', sa.DateTime(), nullable=True), sa.Column('date_processing_finished', sa.DateTime(), nullable=True), sa.PrimaryKeyConstraint('id', name=op.f('pk_items')), sa.UniqueConstraint('source', 'date_added', name='_source_at_date') ) op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=80), nullable=False), sa.Column('email', sa.String(length=120), nullable=False), sa.PrimaryKeyConstraint('id', name=op.f('pk_users')), sa.UniqueConstraint('email', name=op.f('uq_users_email')), sa.UniqueConstraint('username', name=op.f('uq_users_username')) ) op.create_table('bookmarks', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('item_id', sa.Integer(), nullable=True), sa.Column('time_added', sa.DateTime(), nullable=False), sa.ForeignKeyConstraint(['item_id'], ['items.id'], name=op.f('fk_bookmarks_item_id_items')), sa.ForeignKeyConstraint(['user_id'], ['users.id'], name=op.f('fk_bookmarks_user_id_users')), sa.PrimaryKeyConstraint('id', name=op.f('pk_bookmarks')) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('bookmarks') op.drop_table('users') op.drop_table('items') # ### end Alembic commands ###
b7ba385ad28955eb47603abdc1dda3b37f3712c6
b5a29700c3516cf12f837e2284e3844546205d09
/plugins/wywwzjj_web_plugin.py
dcec14bf5b7494fcb6a82521181cf0d1fd25b8e7
[]
no_license
p1g3/Collect-Info-Research
f609823486f36460186cfde27f4be7c9c5a058ae
e8e7366677a8642c3bcf4b103e43378762e6673c
refs/heads/master
2020-12-24T03:59:01.190032
2020-01-31T06:47:35
2020-01-31T06:47:35
237,374,792
37
12
null
null
null
null
UTF-8
Python
false
false
1,902
py
import asyncio import feedparser import ssl import pymongo from loguru import logger import datetime from dateutil import parser class wywwzjj_web_plugin: def __init__(self,loop,collection,lock): ssl._create_default_https_context = ssl._create_unverified_context self.headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36'} self.loop = loop self.rss = 'https://wywwzjj.top/atom.xml' self.collection = collection self.type = 'web' self.lock = lock async def return_result(self): logger.info("{} is running.",self.__class__.__name__) future = self.loop.run_in_executor(None,feedparser.parse,self.rss) try: parse_result = await asyncio.wait_for(future, 30, loop=self.loop) except: logger.warning("{} parse time out".format(self.rss)) return if parse_result.has_key('entries'): entries = parse_result['entries'] format_time = datetime.date.today() for entrie in entries: article_time = parser.parse(entrie['updated']) if (article_time.year == format_time.year) and (article_time.month == format_time.month) and (article_time.day == format_time.day): add_dict = {'type':self.type,'title':entrie['title'],'link':entrie['link'],'is_send':0} try: await self.lock if self.collection.count_documents({'link':entrie['link']}) < 1: self.collection.insert_one(add_dict) logger.info('[Web] {} {}'.format(entrie['title'],entrie['link'])) finally: self.lock.release() else: logger.error('[Error Parse] {}',self.rss) if __name__ == '__main__': client = pymongo.MongoClient(host='localhost', port=27017) db = client.info_collect collection = db['infos'] lock = asyncio.Lock() loop = asyncio.get_event_loop() class_name = wywwzjj_web_plugin(loop,collection,lock) loop.run_until_complete(class_name.return_result())
7f3012a25338bf5c6082fc3d3a1a539d859a756c
8c917dc4810e2dddf7d3902146280a67412c65ea
/v_7/GDS/shamil_v3/purchase_report/report/purchase_total.py
cef7ba15b5a6a9cdb3f2d74d780ea138dbd3257e
[]
no_license
musabahmed/baba
d0906e03c1bbd222d3950f521533f3874434b993
0b997095c260d58b026440967fea3a202bef7efb
refs/heads/master
2021-10-09T02:37:32.458269
2018-12-20T06:00:00
2018-12-20T06:00:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,820
py
# -*- coding: utf-8 -*- ############################################################################## # # NCTR, Nile Center for Technology Research # Copyright (C) 2011-2012 NCTR (<http://www.nctr.sd>). # ############################################################################## import time from report import report_sxw # purchases total report class purchase_total_report(report_sxw.rml_parse): def __init__(self, cr, uid, name, context): super(purchase_total_report, self).__init__(cr, uid, name, context) self.localcontext.update({ 'time': time, 'line':self._getdata, }) def _getdata(self,data): product=data['form']['product'] if not product: self.cr.execute(""" select min(l.id) as id, min(u.name) as uom_name, min(l.name) as product_name, sum(l.product_qty) as quantity, count(*) as nbr, (min(l.price_unit)*sum(l.product_qty))::decimal(16,2) as price_total from purchase_order s left join purchase_order_line l on (s.id=l.order_id) left join product_product p on (l.product_id=p.id) left join product_uom u on (u.id=l.product_uom) where s.state='done'and (to_char(s.date_approve,'YYYY-mm-dd')>=%s and to_char(s.date_approve,'YYYY-mm-dd')<=%s) group by l.product_id """,(data['form']['from_date'],data['form']['to_date'])) else: self.cr.execute(""" select min(l.id) as id, min(u.name) as uom_name, min(l.name) as product_name, sum(l.product_qty) as quantity, count(*) as nbr, (min(l.price_unit)*sum(l.product_qty))::decimal(16,2) as price_total from purchase_order s left join purchase_order_line l on (s.id=l.order_id) left join product_product p on (l.product_id=p.id) left join product_uom u on (u.id=l.product_uom) where l.product_id is not null and s.state='done'and (to_char(s.date_approve,'YYYY-mm-dd')>=%s and to_char(s.date_approve,'YYYY-mm-dd')<=%s) and p.id = %s group by l.product_id """,(data['form']['from_date'],data['form']['to_date'],product[0])) res = self.cr.dictfetchall() return res report_sxw.report_sxw('report.purchase_total.report', 'purchase.order', 'addons/purchase_report/report/purchase_total.rml' ,parser=purchase_total_report )
a4767966b69c986e4306309968a867a645504a69
59de7788673ade984b9c9fbc33664a7cbdba67d3
/res_bw/scripts/common/lib/unittest/test/test_setups.py
4c69c7ff9a59911a974c712c942f518c101738a9
[]
no_license
webiumsk/WOT-0.9.15-CT
3fa24ab37a6c91b7073034afb2f355efa5b7fe36
fbd194fbaa6bdece51c7a68fc35bbb5257948341
refs/heads/master
2020-12-24T21:27:23.175774
2016-05-01T13:47:44
2016-05-01T13:47:44
57,600,180
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
16,732
py
# 2016.05.01 15:32:12 Střední Evropa (letní čas) # Embedded file name: scripts/common/Lib/unittest/test/test_setups.py import sys from cStringIO import StringIO import unittest def resultFactory(*_): return unittest.TestResult() class TestSetups(unittest.TestCase): def getRunner(self): return unittest.TextTestRunner(resultclass=resultFactory, stream=StringIO()) def runTests(self, *cases): suite = unittest.TestSuite() for case in cases: tests = unittest.defaultTestLoader.loadTestsFromTestCase(case) suite.addTests(tests) runner = self.getRunner() realSuite = unittest.TestSuite() realSuite.addTest(suite) suite.addTest(unittest.TestSuite()) realSuite.addTest(unittest.TestSuite()) return runner.run(realSuite) def test_setup_class(self): class Test(unittest.TestCase): setUpCalled = 0 @classmethod def setUpClass(cls): Test.setUpCalled += 1 unittest.TestCase.setUpClass() def test_one(self): pass def test_two(self): pass result = self.runTests(Test) self.assertEqual(Test.setUpCalled, 1) self.assertEqual(result.testsRun, 2) self.assertEqual(len(result.errors), 0) def test_teardown_class(self): class Test(unittest.TestCase): tearDownCalled = 0 @classmethod def tearDownClass(cls): Test.tearDownCalled += 1 unittest.TestCase.tearDownClass() def test_one(self): pass def test_two(self): pass result = self.runTests(Test) self.assertEqual(Test.tearDownCalled, 1) self.assertEqual(result.testsRun, 2) self.assertEqual(len(result.errors), 0) def test_teardown_class_two_classes(self): class Test(unittest.TestCase): tearDownCalled = 0 @classmethod def tearDownClass(cls): Test.tearDownCalled += 1 unittest.TestCase.tearDownClass() def test_one(self): pass def test_two(self): pass class Test2(unittest.TestCase): tearDownCalled = 0 @classmethod def tearDownClass(cls): Test2.tearDownCalled += 1 unittest.TestCase.tearDownClass() def test_one(self): pass def test_two(self): pass result = self.runTests(Test, Test2) self.assertEqual(Test.tearDownCalled, 1) self.assertEqual(Test2.tearDownCalled, 1) self.assertEqual(result.testsRun, 4) self.assertEqual(len(result.errors), 0) def test_error_in_setupclass(self): class BrokenTest(unittest.TestCase): @classmethod def setUpClass(cls): raise TypeError('foo') def test_one(self): pass def test_two(self): pass result = self.runTests(BrokenTest) self.assertEqual(result.testsRun, 0) self.assertEqual(len(result.errors), 1) error, _ = result.errors[0] self.assertEqual(str(error), 'setUpClass (%s.BrokenTest)' % __name__) def test_error_in_teardown_class(self): class Test(unittest.TestCase): tornDown = 0 @classmethod def tearDownClass(cls): Test.tornDown += 1 raise TypeError('foo') def test_one(self): pass def test_two(self): pass class Test2(unittest.TestCase): tornDown = 0 @classmethod def tearDownClass(cls): Test2.tornDown += 1 raise TypeError('foo') def test_one(self): pass def test_two(self): pass result = self.runTests(Test, Test2) self.assertEqual(result.testsRun, 4) self.assertEqual(len(result.errors), 2) self.assertEqual(Test.tornDown, 1) self.assertEqual(Test2.tornDown, 1) error, _ = result.errors[0] self.assertEqual(str(error), 'tearDownClass (%s.Test)' % __name__) def test_class_not_torndown_when_setup_fails(self): class Test(unittest.TestCase): tornDown = False @classmethod def setUpClass(cls): raise TypeError @classmethod def tearDownClass(cls): Test.tornDown = True raise TypeError('foo') def test_one(self): pass self.runTests(Test) self.assertFalse(Test.tornDown) def test_class_not_setup_or_torndown_when_skipped(self): class Test(unittest.TestCase): classSetUp = False tornDown = False @classmethod def setUpClass(cls): Test.classSetUp = True @classmethod def tearDownClass(cls): Test.tornDown = True def test_one(self): pass Test = unittest.skip('hop')(Test) self.runTests(Test) self.assertFalse(Test.classSetUp) self.assertFalse(Test.tornDown) def test_setup_teardown_order_with_pathological_suite(self): results = [] class Module1(object): @staticmethod def setUpModule(): results.append('Module1.setUpModule') @staticmethod def tearDownModule(): results.append('Module1.tearDownModule') class Module2(object): @staticmethod def setUpModule(): results.append('Module2.setUpModule') @staticmethod def tearDownModule(): results.append('Module2.tearDownModule') class Test1(unittest.TestCase): @classmethod def setUpClass(cls): results.append('setup 1') @classmethod def tearDownClass(cls): results.append('teardown 1') def testOne(self): results.append('Test1.testOne') def testTwo(self): results.append('Test1.testTwo') class Test2(unittest.TestCase): @classmethod def setUpClass(cls): results.append('setup 2') @classmethod def tearDownClass(cls): results.append('teardown 2') def testOne(self): results.append('Test2.testOne') def testTwo(self): results.append('Test2.testTwo') class Test3(unittest.TestCase): @classmethod def setUpClass(cls): results.append('setup 3') @classmethod def tearDownClass(cls): results.append('teardown 3') def testOne(self): results.append('Test3.testOne') def testTwo(self): results.append('Test3.testTwo') Test1.__module__ = Test2.__module__ = 'Module' Test3.__module__ = 'Module2' sys.modules['Module'] = Module1 sys.modules['Module2'] = Module2 first = unittest.TestSuite((Test1('testOne'),)) second = unittest.TestSuite((Test1('testTwo'),)) third = unittest.TestSuite((Test2('testOne'),)) fourth = unittest.TestSuite((Test2('testTwo'),)) fifth = unittest.TestSuite((Test3('testOne'),)) sixth = unittest.TestSuite((Test3('testTwo'),)) suite = unittest.TestSuite((first, second, third, fourth, fifth, sixth)) runner = self.getRunner() result = runner.run(suite) self.assertEqual(result.testsRun, 6) self.assertEqual(len(result.errors), 0) self.assertEqual(results, ['Module1.setUpModule', 'setup 1', 'Test1.testOne', 'Test1.testTwo', 'teardown 1', 'setup 2', 'Test2.testOne', 'Test2.testTwo', 'teardown 2', 'Module1.tearDownModule', 'Module2.setUpModule', 'setup 3', 'Test3.testOne', 'Test3.testTwo', 'teardown 3', 'Module2.tearDownModule']) def test_setup_module(self): class Module(object): moduleSetup = 0 @staticmethod def setUpModule(): Module.moduleSetup += 1 class Test(unittest.TestCase): def test_one(self): pass def test_two(self): pass Test.__module__ = 'Module' sys.modules['Module'] = Module result = self.runTests(Test) self.assertEqual(Module.moduleSetup, 1) self.assertEqual(result.testsRun, 2) self.assertEqual(len(result.errors), 0) def test_error_in_setup_module(self): class Module(object): moduleSetup = 0 moduleTornDown = 0 @staticmethod def setUpModule(): Module.moduleSetup += 1 raise TypeError('foo') @staticmethod def tearDownModule(): Module.moduleTornDown += 1 class Test(unittest.TestCase): classSetUp = False classTornDown = False @classmethod def setUpClass(cls): Test.classSetUp = True @classmethod def tearDownClass(cls): Test.classTornDown = True def test_one(self): pass def test_two(self): pass class Test2(unittest.TestCase): def test_one(self): pass def test_two(self): pass Test.__module__ = 'Module' Test2.__module__ = 'Module' sys.modules['Module'] = Module result = self.runTests(Test, Test2) self.assertEqual(Module.moduleSetup, 1) self.assertEqual(Module.moduleTornDown, 0) self.assertEqual(result.testsRun, 0) self.assertFalse(Test.classSetUp) self.assertFalse(Test.classTornDown) self.assertEqual(len(result.errors), 1) error, _ = result.errors[0] self.assertEqual(str(error), 'setUpModule (Module)') def test_testcase_with_missing_module(self): class Test(unittest.TestCase): def test_one(self): pass def test_two(self): pass Test.__module__ = 'Module' sys.modules.pop('Module', None) result = self.runTests(Test) self.assertEqual(result.testsRun, 2) return def test_teardown_module(self): class Module(object): moduleTornDown = 0 @staticmethod def tearDownModule(): Module.moduleTornDown += 1 class Test(unittest.TestCase): def test_one(self): pass def test_two(self): pass Test.__module__ = 'Module' sys.modules['Module'] = Module result = self.runTests(Test) self.assertEqual(Module.moduleTornDown, 1) self.assertEqual(result.testsRun, 2) self.assertEqual(len(result.errors), 0) def test_error_in_teardown_module(self): class Module(object): moduleTornDown = 0 @staticmethod def tearDownModule(): Module.moduleTornDown += 1 raise TypeError('foo') class Test(unittest.TestCase): classSetUp = False classTornDown = False @classmethod def setUpClass(cls): Test.classSetUp = True @classmethod def tearDownClass(cls): Test.classTornDown = True def test_one(self): pass def test_two(self): pass class Test2(unittest.TestCase): def test_one(self): pass def test_two(self): pass Test.__module__ = 'Module' Test2.__module__ = 'Module' sys.modules['Module'] = Module result = self.runTests(Test, Test2) self.assertEqual(Module.moduleTornDown, 1) self.assertEqual(result.testsRun, 4) self.assertTrue(Test.classSetUp) self.assertTrue(Test.classTornDown) self.assertEqual(len(result.errors), 1) error, _ = result.errors[0] self.assertEqual(str(error), 'tearDownModule (Module)') def test_skiptest_in_setupclass(self): class Test(unittest.TestCase): @classmethod def setUpClass(cls): raise unittest.SkipTest('foo') def test_one(self): pass def test_two(self): pass result = self.runTests(Test) self.assertEqual(result.testsRun, 0) self.assertEqual(len(result.errors), 0) self.assertEqual(len(result.skipped), 1) skipped = result.skipped[0][0] self.assertEqual(str(skipped), 'setUpClass (%s.Test)' % __name__) def test_skiptest_in_setupmodule(self): class Test(unittest.TestCase): def test_one(self): pass def test_two(self): pass class Module(object): @staticmethod def setUpModule(): raise unittest.SkipTest('foo') Test.__module__ = 'Module' sys.modules['Module'] = Module result = self.runTests(Test) self.assertEqual(result.testsRun, 0) self.assertEqual(len(result.errors), 0) self.assertEqual(len(result.skipped), 1) skipped = result.skipped[0][0] self.assertEqual(str(skipped), 'setUpModule (Module)') def test_suite_debug_executes_setups_and_teardowns(self): ordering = [] class Module(object): @staticmethod def setUpModule(): ordering.append('setUpModule') @staticmethod def tearDownModule(): ordering.append('tearDownModule') class Test(unittest.TestCase): @classmethod def setUpClass(cls): ordering.append('setUpClass') @classmethod def tearDownClass(cls): ordering.append('tearDownClass') def test_something(self): ordering.append('test_something') Test.__module__ = 'Module' sys.modules['Module'] = Module suite = unittest.defaultTestLoader.loadTestsFromTestCase(Test) suite.debug() expectedOrder = ['setUpModule', 'setUpClass', 'test_something', 'tearDownClass', 'tearDownModule'] self.assertEqual(ordering, expectedOrder) def test_suite_debug_propagates_exceptions(self): class Module(object): @staticmethod def setUpModule(): if phase == 0: raise Exception('setUpModule') @staticmethod def tearDownModule(): if phase == 1: raise Exception('tearDownModule') class Test(unittest.TestCase): @classmethod def setUpClass(cls): if phase == 2: raise Exception('setUpClass') @classmethod def tearDownClass(cls): if phase == 3: raise Exception('tearDownClass') def test_something(self): if phase == 4: raise Exception('test_something') Test.__module__ = 'Module' sys.modules['Module'] = Module _suite = unittest.defaultTestLoader.loadTestsFromTestCase(Test) suite = unittest.TestSuite() suite.addTest(_suite) messages = ('setUpModule', 'tearDownModule', 'setUpClass', 'tearDownClass', 'test_something') for phase, msg in enumerate(messages): with self.assertRaisesRegexp(Exception, msg): suite.debug() if __name__ == '__main__': unittest.main() # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\unittest\test\test_setups.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.05.01 15:32:13 Střední Evropa (letní čas)
71ded94d8ec5f45f496da5eed363bb9ae2d74e09
fc00b177802c49cf04dc6a8e430093bc14ae9b53
/venv/Lib/site-packages/mypyc/test/test_tuplename.py
7f3fd2000d29058fac183cb8157e9c118dc775c8
[]
permissive
artisakov/vigilant-journey
9c8264d36da5745374a0d08b0b0288a70f978a11
4fed9026071a64489d26422ba7cd1a9b9cb05e16
refs/heads/master
2022-11-16T03:10:06.418221
2020-07-16T07:33:06
2020-07-16T07:33:06
238,490,887
0
1
MIT
2020-03-01T10:12:22
2020-02-05T16:03:07
HTML
UTF-8
Python
false
false
974
py
import unittest from mypyc.ir.rtypes import ( RTuple, object_rprimitive, int_rprimitive, bool_rprimitive, list_rprimitive, RInstance, RUnion, ) from mypyc.ir.class_ir import ClassIR class TestTupleNames(unittest.TestCase): def setUp(self) -> None: self.inst_a = RInstance(ClassIR('A', '__main__')) self.inst_b = RInstance(ClassIR('B', '__main__')) def test_names(self) -> None: assert RTuple([int_rprimitive, int_rprimitive]).unique_id == "T2II" assert RTuple([list_rprimitive, object_rprimitive, self.inst_a]).unique_id == "T3OOO" assert RTuple([list_rprimitive, object_rprimitive, self.inst_b]).unique_id == "T3OOO" assert RTuple([]).unique_id == "T0" assert RTuple([RTuple([]), RTuple([int_rprimitive, int_rprimitive])]).unique_id == "T2T0T2II" assert RTuple([bool_rprimitive, RUnion([bool_rprimitive, int_rprimitive])]).unique_id == "T2CO"
ca252f50d847acea12ba55205c8fe4b0e04c4158
75a009b47851ebe8879a61d716bb64c0b1fc4a0d
/app/config/settings/dev.py
2f02da674fdba7c55f4db0d65627fc5a10b2dc4e
[]
no_license
smallbee3/Airbnb
c55bf97f5ff16105328d44c485f6d2c017c90ea7
e8f79c15055c53e51fa2b3be549f9896680f63a7
refs/heads/master
2020-03-07T13:37:04.668580
2018-04-01T22:51:15
2018-04-01T22:51:15
127,505,735
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
from .base import * DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS += [ 'django_extensions', ] SECRETS_DEV = os.path.join(SECRETS_DIR, 'dev.json') secrets_dev = json.loads(open(SECRETS_DEV, 'rt').read()) # DATABASES = secrets_dev['DATABASES'] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } }
4dfefd806d30ea59c8d44aa2cec59209bc551910
5bb1ae9b9e6592def632b8a95def32b3a2d742d5
/headfirst/ch6_sarah.py
75490cb66f1cb9f23363d8e7c9377d5feff910a7
[]
no_license
fiso0/my_python
af1132637a4ad92036ea0a949fa93df6f904b190
391def01ecdb97b8e3008235910a596bb5a9b52c
refs/heads/master
2021-01-17T15:52:36.745999
2016-10-29T08:37:51
2016-10-29T08:37:51
58,641,769
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
def sanitize(time_string): if '-' in time_string: splitter = '-' elif ':' in time_string: splitter = ':' else: return(time_string) (mins,secs) = time_string.split(splitter) return(mins+'.'+secs) def get_coach_data(file_name): try: with open(file_name) as f: data = f.readline().strip().split(',') mydict = {'name' : data.pop(0), \ 'dob' : data.pop(0), \ 'tops' : str(sorted(set([sanitize(t) for t in data]))[0:3])} return(mydict) except IOError as ioerr: print('File error:' + str(ioerr)) return(None) sarah = get_coach_data('sarah2.txt') print(sarah['name'] + "'s fastest times are: " + sarah['tops'])
2693632938ac97d96d8d251bfd165cd7dca0f66f
428ca6903cc085a0ff51d3d0d85e757bed412330
/accounts/migrations/0011_auto_20190310_1744.py
71f9a82d8c822d70c5f6b8dbda3ed92e671a997e
[]
no_license
privalytics/privalytics.io
a261603f51bcf7ec5c8946de88bb240ef1e76666
6f5121c798656bc6c6993e873ea56e77fa254a1d
refs/heads/master
2021-08-07T02:47:50.708936
2021-06-20T08:55:28
2021-06-20T08:55:28
171,507,151
4
5
null
2021-06-20T08:55:47
2019-02-19T16:17:16
CSS
UTF-8
Python
false
false
547
py
# Generated by Django 2.1.7 on 2019-03-10 17:44 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('accounts', '0010_auto_20190308_0856'), ('subscriptions', '0001_initial') ] operations = [ migrations.AlterField( model_name='subscription', name='subscription_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='subscriptions.SubscriptionType'), ), ]
b55934894d57fb4858d49c01cf2bdeeff5735d0b
2eb6d57b4f97fe2ea2cd6ab78512dd2c7a6e6ecc
/chapter5/exercise_2.py
52c87f388582138ef431ee7857c65c9bb4397dd3
[]
no_license
afcarl/PythonDataStructures
4ba98bca168f535dc9c8ed9392ed313592850101
a620af0a1e0d707556a8883ecb5b79a6f1df56c7
refs/heads/master
2020-03-26T06:26:38.637461
2014-04-26T15:53:46
2014-04-26T15:53:46
144,605,553
1
0
null
2018-08-13T16:26:42
2018-08-13T16:26:42
null
UTF-8
Python
false
false
482
py
import math def hypotenuse(a,b): """ >>> hypotenuse(3,4) 5.0 >>> hypotenuse(12,5) 13.0 >>> hypotenuse(7,24) 25.0 >>> hypotenuse(9,12) 15.0 """ if type(a) == type(int()) or type(a) == type(float()) and type(b) == type(int()) or type(b) == type(float()): return math.sqrt(a**2 + b**2) else: return "distance function undefined for associated types!!" if __name__ == '__main__': import doctest doctest.testmod()
56140d86cc58f32f4304d03463614711db1e4edb
60cf862c8b63394d244fbf20f004ede014c26687
/simple_calculator/Ex2 Simple calculator2.py
c4d92a8ea7016fd58b932f34f3023b9ef1ea5f88
[]
no_license
bartoszmaleta/2nd-Self-instructed-week-exercises-
bda9af5eabf04f8fa07ebba00b5a382140941fb0
22c33b6cc047ad0e293b5b1e04647e741502f9d7
refs/heads/master
2020-08-12T01:33:57.630782
2019-10-14T09:08:34
2019-10-14T09:08:34
214,664,319
0
0
null
null
null
null
UTF-8
Python
false
false
1,103
py
first_number = input('Enter a number (or a letter to exit): ') second_number = input('Enter another number: ') sign = input('Enter an operation: ') if sign == '+': first_number_as_int = int(first_number) second_number_as_int = int(second_number) sum = first_number_as_int + second_number_as_int sum_as_str = str(sum) print('Result: ' + sum_as_str) elif sign == '-': first_number_as_int = int(first_number) second_number_as_int = int(second_number) difference = first_number_as_int - second_number_as_int difference_as_str = str(difference) print('Result: ' + difference_as_str) elif sign == '*': first_number_as_int = int(first_number) second_number_as_int = int(second_number) product = first_number_as_int * second_number_as_int product_as_str = str(product) print('Result: ' + product_as_str) elif sign == '/': first_number_as_int = int(first_number) second_number_as_int = int(second_number) quotient = first_number_as_int / second_number_as_int quotient_as_str = str(quotient) print('Result: ' + quotient_as_str)
ea66a53f1ec41732f03fa530e7cff39b927d7b1b
2da8bcfb9a72e507812a8723e38ad6d030c300f1
/check_if_a_string_contains_all_binary_codes_of_size_k_1461.py
d908c35cb2d2ea1b12616cc16df50e74de78084a
[]
no_license
aditya-doshatti/Leetcode
1a4e0f391a7d6ca2d7f8fdc35e535f4ec10fb634
eed20da07896db471ea6582785335e52d4f04f85
refs/heads/master
2023-04-06T02:18:57.287263
2023-03-17T03:08:42
2023-03-17T03:08:42
218,408,346
0
0
null
null
null
null
UTF-8
Python
false
false
1,173
py
''' 1461. Check If a String Contains All Binary Codes of Size K Medium Given a binary string s and an integer k. Return True if every binary code of length k is a substring of s. Otherwise, return False. Example 1: Input: s = "00110110", k = 2 Output: true Explanation: The binary codes of length 2 are "00", "01", "10" and "11". They can be all found as substrings at indicies 0, 1, 3 and 2 respectively. https://leetcode.com/problems/check-if-a-string-contains-all-binary-codes-of-size-k/ ''' class Solution: def hasAllCodes(self, s: str, k: int) -> bool: required = 2 ** k done = set() for i in range(k, len(s)+1): temp = s[i-k:i] if temp not in done: done.add(temp) required -=1 if required == 0: return True return False # if len(s) < k: # return False # for i in range(2 **k): # binary = str(bin(i)[2:]) # checkVal = '0'*(k-len(binary)) + binary # if checkVal in s: # continue # else: # return False # return True
00b88efee486df786fb91d829273704caaab765d
071017425dbb9a175c3b4c5e090501e35b31d4f9
/docqa/allennlp_custom/modules/similarity_functions/constant_tri.py
0aaee645c881037f642bef330bfe274c181a0823
[ "Apache-2.0" ]
permissive
debjitpaul/discourse-aware-semantic-self-attention
9bf22f3a8dcf61cc85ba56a3cbbc4dd9b371e55d
5851c95bbe761c980177b2c3e769c9e716551d5f
refs/heads/master
2022-04-20T17:05:53.216321
2020-04-24T09:24:15
2020-04-24T09:24:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,087
py
import numpy as np import torch from allennlp.common import Registrable, Params from allennlp.modules import SimilarityFunction from allennlp.nn import Activation from typing import List from torch.nn import Parameter from functools import reduce @SimilarityFunction.register("constant_tri") class ConstantTriParams(SimilarityFunction): """ This function applies linear transformation for each of the input tensors and takes the sum. If output_dim is 0, the dimensions of tensor_1_dim and tensor_2_dim of the two input tensors are expected to be equal and the output_dim is set to be their size. This is used since we might want to automatically infer the size of the output layer from automatically set values for tensor1 without explicitly knowing the semantic of the similarity function. Then the output is `W1x + W2y`` where W1 and W2 are linear transformation matrices. Parameters ---------- tensor_1_dim : ``int`` The dimension of the first tensor, ``x``, described above. This is ``x.size()[-1]`` - the length of the vector that will go into the similarity computation. We need this so we can build weight vectors correctly. tensor_2_dim : ``int`` The dimension of the second tensor, ``y``, described above. This is ``y.size()[-1]`` - the length of the vector that will go into the similarity computation. We need this so we can build weight vectors correctly. tensor_3_dim : ``int`` The dimension of the second tensor, ``y``, described above. This is ``y.size()[-1]`` - the length of the vector that will go into the similarity computation. We need this so we can build weight vectors correctly. output_dim : ``int`` The dimension of the output tensor. activation : ``Activation``, optional (default=linear (i.e. no activation)) An activation function applied after the ``w^T * [x;y] + b`` calculation. Default is no activation. """ def __init__(self, tensor_1_dim: int, tensor_2_dim: int, tensor_3_dim: int, output_constant: List[float], ): super().__init__() output_constant = np.array(output_constant) self._output_constant = torch.tensor(output_constant, requires_grad=False, dtype=torch.float32) self._output_dim = self._output_constant.shape[-1] def forward(self, tensor1:torch.LongTensor, tensor2:torch.LongTensor, tensor3:torch.LongTensor) -> torch.Tensor: # pylint: disable=arguments-differ """ Takes two tensors of the same shape, such as ``(batch_size, length_1, length_2, embedding_dim)``. Transforms both tensor to a target output dimensions and returns a sum tensor with same number of dimensions, such as ``(batch_size, length, out_dim)``. """ tile_size = reduce(lambda x, y: x * y, tensor1.shape[:-1]) res_repr = self._output_constant.unsqueeze(0).repeat(tile_size, 1) return res_repr
0671af8fd937da608bdee27126acbc05573e7a2b
c8cee25ecb60ca3e6ce5e24c37db57f82f9858f6
/Fundamentos Python/ecuacion_gauss_2.py
7e786edf7e6daa2a8e045011a83ff06ba796512f
[]
no_license
mecomontes/Python
a0b4a0b69ae33ad3623e908731710563392d1615
daba4247cca90c43a979e3e3f292cd7b8951b3d0
refs/heads/master
2023-05-30T05:24:41.999196
2020-03-23T02:30:09
2020-03-23T02:30:09
249,317,310
1
0
null
2023-05-22T22:42:36
2020-03-23T02:29:38
Python
UTF-8
Python
false
false
352
py
# !/usr/bin/env python # -*- coding: utf-8 -*- # Sumatoria de los n primeros números # Método propuesto por Gauss: PAra cualquier número Numero = float(input("Ingrese el último Número a incluir en la sumatoria: ")) Sumatoria = ((1 + Numero)/2) * Numero print("Sumatoria de los primeros: ", Numero, " numeros enteros: ", Sumatoria)
2b2530136d5c1176b142bb6e61260cf9c0562804
50604d2b98220ea485c1ada1d6e5b7c230a621db
/src/python/labbox_ephys/extensions/workspaceview/WorkspaceView/sortingExamples/mountainsort4_example.py
c6d31e33e8bec6b8c5f1bbdfe498d57d20bc2d05
[]
no_license
stjordanis/labbox-ephys
e9f4ca783947be9c6ab4caf19267d75577cbba10
563d112346e4a557f1aa04a052d245b07a0e9ce4
refs/heads/main
2023-08-11T21:18:40.122003
2021-07-26T18:35:33
2021-07-26T18:35:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
749
py
import spikeextractors as se import numpy as np import labbox_ephys as le from labbox_ephys import sorters import kachery_client as kc if __name__ == '__main__': # adjust these values workspace_uri = '{workspaceUri}' recording_id = '{recordingId}' # {recordingLabel} workspace = le.load_workspace(workspace_uri) le_recording = workspace.get_recording(recording_id) recording_object = le_recording['recordingObject'] sorting_object = sorters.mountainsort4( recording_object=recording_object, num_workers=1 ) sorting = le.LabboxEphysSortingExtractor(sorting_object) S_id = workspace.add_sorting( sorting=sorting, recording_id=recording_id, label='mountainsort4' )
7a6418956f1e4c4925ad1763e955ed832be64cbc
96bea2075b44646bd84328c7fa012bdf111196dd
/build/rotors_evaluation/catkin_generated/pkg.develspace.context.pc.py
de859b70ad68dd94a7697427e28b80265b3fd7b2
[]
no_license
leithw2/Drone_DDR_ROS
0a139ffc603c4faa3805c64cabcd591546cba6c5
c41da9602177135a6033f36d5c19b684702b7656
refs/heads/master
2023-03-07T15:25:43.982116
2021-02-18T22:21:33
2021-02-18T22:21:33
280,242,879
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "rotors_evaluation" PROJECT_SPACE_DIR = "/home/laptop/catkin_ws/devel/.private/rotors_evaluation" PROJECT_VERSION = "2.0.1"
7739878c949d613861d03ac303411425ddf611ba
4c4b4076f960a1e1d0203cc58621090cc3dc45f3
/architect/manager/urls.py
376aa0b86346aa1fad7b7d25624b89d0e2854bfb
[]
no_license
michaelkuty/architect-api
6c62f8a8ada4dc9a62b12ea7b38ae9a70d94290e
30ebfdafdbdcff4098bf080f00957949e20a71cf
refs/heads/master
2021-05-02T16:17:53.016373
2018-02-08T22:08:24
2018-02-08T22:08:24
120,673,129
0
0
null
2018-02-07T21:20:43
2018-02-07T21:20:43
null
UTF-8
Python
false
false
1,047
py
from django.urls import path from . import views app_name = 'manager' urlpatterns = [ path('v1', views.ManagerListView.as_view(), name='manager_list'), path('v1/manager-check', views.ManagerCheckView.as_view(), name='manager_check'), path('v1/<manager_name>', views.ManagerDetailView.as_view(), name='manager_detail'), path('v1/<manager_name>/sync', views.ManagerSyncView.as_view(), name='manager_sync'), path('v1/<manager_name>/query/<query_name>', views.ManagerQueryJSONView.as_view(), name='manager_query'), path('v1/<manager_name>/action/<resource_kind>/<resource_action>', views.ManagerActionView.as_view(), name='manager_action'), path('v1/<manager_name>/resource/<resource_uid>', views.ResourceDetailView.as_view(), name='resource_detail'), path('v1/<manager_name>/resource/<resource_uid>/<resource_action>', views.ResourceActionView.as_view(), name='resource_action'), ]
eea7f772f28657f31564888e9c1bda1ae6088163
71bc873c20fbc45bb5e13095d2474496818a23f9
/code_video clean/query_url.py
682d51ed8e0b8b6c493923ee3aed28198d7f1e10
[]
no_license
2877992943/lianyun
f31c44ea2e266bae51cae4fa464d1bae368c8d3f
a872d6cd1b2eff402bcccb326d33d086816d87af
refs/heads/master
2021-01-20T16:17:20.226401
2017-05-10T06:49:31
2017-05-10T06:49:31
90,830,548
0
0
null
null
null
null
UTF-8
Python
false
false
4,300
py
#! -*- coding:utf-8 -*- import urllib2,time,os,urllib import pandas as pd import json import MySQLdb import random,cPickle import csv,re from MySQLdb import cursors import numpy as np import sys,time,os read_host='rr-2zeg40364h2thw9m6o.mysql.rds.aliyuncs.com' write_host='rds5943721vp4so4j16ro.mysql.rds.aliyuncs.com' db_product = MySQLdb.connect(host=read_host, user='yunker', passwd="yunker2016EP", db="xddb", use_unicode=True, charset='utf8', cursorclass=cursors.DictCursor) ## 测试库 db = MySQLdb.connect(host='rds0710650me01y6d3ogo.mysql.rds.aliyuncs.com', user='yunker', passwd="yunke2016", db="yunketest", use_unicode=True, charset='utf8', cursorclass=cursors.DictCursor) def get_request_helloWorld(): full_url='http://localhost:9300' data=urllib2.urlopen(full_url) Data=data.read() print Data def get_request_testDB(): try: full_url='http://localhost:9300/?userId=E8B63FF5BB1840EABB9BEB2F9DCCA731' data=urllib2.urlopen(full_url) Data=data.read() return Data except: return None def send_request(cid): try: full_url='http://yunkecn.com/xdapi/esData/updateAlreadyDownload.action?userAccount=%s&clueId=%s'%(companyCode,cid) data=urllib2.urlopen(full_url) Data=data.read() return Data except: return None def requst_crawler(comname): try: full_url='http://101.200.139.60:8088/crawler/QiDuoWeiSpider?companyName=%s'%(comname) print full_url data=urllib2.urlopen(full_url) Data=data.read() return Data except: return None def requst_mp3(url,mp3Name): try: full_url=url data=urllib.urlretrieve(url, mp3Name+".mp3") return data except: return None def query_call_by_att(att, companyCode): sql1 ="""SELECT %s from crm_t_call_action c left join crm_t_portaluser p on c.User_Id=p.User_Id #WHERE c.recordFile LIKE '%s' AND c.record_from = 1 where c.record_from = 1 limit 10000 #where p.User_Company_Id in ('%s') """ sql ="""SELECT %s from crm_t_call_action c left join crm_t_portaluser p on c.User_Id=p.User_Id WHERE c.recordFile LIKE '%s' AND c.record_from = 1 limit 100000 """ cur = db_product.cursor() #cur.execute(sql % (att, "','".join(companyCode))) #print sql % (att, '%http://yunke-pcfile.oss-cn-beijing%') cur.execute(sql % (att, '%http://yunke-pcfile.oss-cn-beijing%')) ret = {} for r in cur.fetchall(): ret[r['Call_Action_Id']] = r #{id:{record},...} return ret def strDuration2second(duration): duration=re.sub('[\s+]','',duration) duration=re.sub('[\'\"]',' ',duration) ll=duration.split(' ') ll=[int(i) for i in ll if len(i)>=1] #print ll minute,second=ll second+=60*minute return second if __name__=='__main__': #### query attList=['c.Call_Action_Id','c.recordFile','c.Call_Duration','c.Tip_Type','c.Tip_Name'] companyCode=['bjnbm3','jjjeva','vnraea','ffz3ai','invjvi','mmbnn3'] companyCode=companyCode[5:] ret=query_call_by_att(','.join(attList),companyCode) print len(ret) pd.to_pickle(ret,'../data/ret') ##### get second >60 url ret=pd.read_pickle('../data/ret') url_second_feedback={} for id,r in ret.items()[:]: recordFile=r['recordFile'] duration=r['Call_Duration'] tiptype=r['Tip_Type'] tipname=r['Tip_Name'] second=strDuration2second(duration) if second<=0:continue url_second_feedback[recordFile]=[second,str(tiptype)+' '+tipname] ######## print len(url_second_feedback) pd.to_pickle(url_second_feedback,'../data/url_second') #### """ record_from 录音来源 1app 2pc 3yunkecc 4电话盒子 现在yunkecc渠道的录音应该是没有提示音的,电话盒子还没上线,没数据。pc的应该是null,app的录音是安卓的,带提示音 """
d011eb0d199ae63be8e855b4671fdd4a997bb6cd
1a5b20adde928721bc42dd17e7460dcc880000a2
/src/transformers/models/pix2struct/modeling_pix2struct.py
dd965fc35e37164595441639ab9e3d30d219ef96
[ "Apache-2.0" ]
permissive
kashif/transformers
de36d78c47dac5ea816c3e0812cd50af95ce6ce6
abbc96a2148da0c91fa078bd021984b2cc10ef85
refs/heads/main
2023-09-01T02:52:49.782252
2023-04-17T11:41:52
2023-04-17T11:41:52
230,251,524
0
0
Apache-2.0
2019-12-26T11:20:47
2019-12-26T11:20:47
null
UTF-8
Python
false
false
82,239
py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pix2Struct modeling file""" import math from typing import Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.utils.checkpoint import checkpoint from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, replace_return_docstrings, ) from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Pix2StructConfig" PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/pix2struct-textcaps-base", "google/pix2struct-textcaps-large", "google/pix2struct-base", "google/pix2struct-large", "google/pix2struct-ai2d-base", "google/pix2struct-ai2d-large", "google/pix2struct-widget-captioning-base", "google/pix2struct-widget-captioning-large", "google/pix2struct-screen2words-base", "google/pix2struct-screen2words-large", "google/pix2struct-docvqa-base", "google/pix2struct-docvqa-large", "google/pix2struct-ocrvqa-base", "google/pix2struct-ocrvqa-large", "google/pix2struct-chartqa-base", "google/pix2struct-inforgraphics-vqa-base", "google/pix2struct-inforgraphics-vqa-large", # See all Pix2StructVision models at https://huggingface.co/models?filter=pix2struct ] # Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct class Pix2StructLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states try: from apex.normalization import FusedRMSNorm Pix2StructLayerNorm = FusedRMSNorm # noqa logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm") except ImportError: # using the normal Pix2StructLayerNorm pass except Exception: logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm") pass ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm) class Pix2StructVisionEmbeddings(nn.Module): r""" Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models. Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch is represented by a vector of `hidden_size` values. """ def __init__(self, config: Pix2StructConfig) -> None: super().__init__() self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size) self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size) self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor: # the row and column indices are stored in the first and second position of the flattened_patches # flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2 row_indices = flattened_patches[:, :, 0].long() col_indices = flattened_patches[:, :, 1].long() flattened_patches = flattened_patches[:, :, 2:] embeddings = self.patch_projection(flattened_patches) row_embeddings = self.row_embedder(row_indices) col_embeddings = self.column_embedder(col_indices) # sum all embeddings together embeddings = embeddings + row_embeddings + col_embeddings embeddings = self.dropout(embeddings) return embeddings class Pix2StructVisionAttention(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.key_value_proj_dim = config.d_kv self.n_heads = config.num_attention_heads self.dropout = config.attention_dropout self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False) self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False) self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False) self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, ): """ Self-attention block """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] def to_projection_shape(states): """projection""" return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) # get query states # (batch_size, n_heads, seq_length, dim_per_head) query_states = to_projection_shape(self.query(hidden_states)) # get key/value states key_states = to_projection_shape(self.key(hidden_states)) value_states = to_projection_shape(self.value(hidden_states)) # compute scores # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 scores = torch.matmul(query_states, key_states.transpose(3, 2)) if position_bias is None: position_bias = torch.zeros( (1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=scores.device, dtype=scores.dtype) if attention_mask.dim() == 2: position_bias = position_bias + attention_mask[:, None, :, None].to(position_bias.device) else: # (batch_size, n_heads, seq_length, key_length) position_bias = position_bias + attention_mask.to(position_bias.device) position_bias = 1 - position_bias position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min) scores += position_bias_masked scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min)) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = torch.matmul(attn_weights, value_states) # (batch_size, seq_length, dim) attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) attn_output = self.output(attn_output) outputs = (attn_output,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate class Pix2StructVisionMlp(nn.Module): def __init__(self, config: Pix2StructVisionConfig): super().__init__() self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. # See https://github.com/huggingface/transformers/issues/20287 # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class Pix2StructVisionLayer(nn.Module): def __init__(self, config: Pix2StructConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Pix2StructVisionAttention(config) self.mlp = Pix2StructVisionMlp(config) self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: residual = hidden_states # in Pix2StructVision, layernorm is applied before self-attention hidden_states = self.pre_attention_layer_norm(hidden_states) self_attention_outputs = self.attention( hidden_states, attention_mask=attention_mask, layer_head_mask=head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + residual # in Pix2StructVision, layernorm is also applied after self-attention layer_output = self.pre_mlp_layer_norm(hidden_states) layer_output = self.mlp(layer_output) + hidden_states # second residual connection outputs = (layer_output,) + outputs return outputs class Pix2StructVisionEncoder(nn.Module): def __init__(self, config: Pix2StructConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Pix2StructPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Pix2StructConfig @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, Pix2StructLayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance(module, Pix2StructTextDenseGatedActDense): hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, Pix2StructTextAttention): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) key_value_proj_dim = ( self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) n_heads = ( self.config.text_config.num_heads if isinstance(self.config, Pix2StructConfig) else self.config.num_heads ) module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5)) module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) elif isinstance(module, nn.Embedding): hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, Pix2StructTextModel): hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) elif isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, Pix2StructLayerNorm): if module.weight is not None: module.weight.data.fill_(1.0) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id." " See Pix2Struct docs for more information" ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids PIX2STRUCT_VISION_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PIX2STRUCT_VISION_INPUTS_DOCSTRING = r""" Args: flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`): Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See [`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Pix2StructVision Model transformer outputting raw hidden-states without any specific head on top.", PIX2STRUCT_VISION_START_DOCSTRING, ) class Pix2StructVisionModel(Pix2StructPreTrainedModel): config_class = Pix2StructVisionConfig main_input_name = "flattened_patches" supports_gradient_checkpointing = True _no_split_modules = ["Pix2StructVisionLayer"] def __init__(self, config: Pix2StructConfig): super().__init__(config) self.config = config self.embeddings = Pix2StructVisionEmbeddings(config) self.encoder = Pix2StructVisionEncoder(config) self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def _set_gradient_checkpointing(self, module: Pix2StructVisionEncoder, value: bool = False) -> None: if isinstance(module, Pix2StructVisionEncoder): module.gradient_checkpointing = value def get_input_embeddings(self): return self.embeddings.patch_projection def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, flattened_patches: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Example: ```python >>> import requests >>> from PIL import Image >>> from transformers import AutoProcessor, Pix2StructVisionModel >>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") >>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base") >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 2048, 768] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if flattened_patches is None: raise ValueError("You have to specify flattened_patches") if attention_mask is None: # check where `flattened_patches` is not 0 attention_mask = (flattened_patches.sum(dim=-1) != 0).float() # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(flattened_patches) encoder_outputs = self.encoder( embedding_output, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size class Pix2StructTextDenseGatedActDense(nn.Module): def __init__(self, config: Pix2StructTextConfig): super().__init__() self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. # See https://github.com/huggingface/transformers/issues/20287 # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class Pix2StructTextLayerFF(nn.Module): def __init__(self, config: Pix2StructTextConfig): super().__init__() self.DenseReluDense = Pix2StructTextDenseGatedActDense(config) self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states class Pix2StructTextAttention(nn.Module): def __init__(self, config: Pix2StructTextConfig, has_relative_attention_bias=False): super().__init__() self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.hidden_size = config.hidden_size self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False @staticmethod # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets # Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias def compute_bias(self, query_length, key_length, device=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=False, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: if len(past_key_value) != 2: raise ValueError( f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" ) real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def to_projection_shape(states): """projection""" return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = to_projection_shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = to_projection_shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = to_projection_shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states # (batch_size, n_heads, seq_length, dim_per_head) query_states = to_projection_shape(self.query(hidden_states)) # get key/value states key_states = project( hidden_states, self.key, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.value, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = torch.matmul(attn_weights, value_states) # (batch_size, seq_length, dim) attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) attn_output = self.output(attn_output) present_key_value_state = (key_states, value_states) if use_cache else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size class Pix2StructTextLayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.attention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size class Pix2StructTextLayerCrossAttention(nn.Module): def __init__(self, config): super().__init__() self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False) self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.attention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class Pix2StructTextBlock(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.self_attention = Pix2StructTextLayerSelfAttention( config, has_relative_attention_bias=has_relative_attention_bias ) self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(config) self.mlp = Pix2StructTextLayerFF(config) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.self_attention( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.encoder_decoder_attention( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.mlp(hidden_states) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs PIX2STRUCT_START_DOCSTRING = r""" The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder transformer pre-trained in a image-to-text setting. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PIX2STRUCT_INPUTS_DOCSTRING = r""" Args: flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`): Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` = `num_channels` * `patch_size` * `patch_size` The process of flattening the pixel patches is done by `Pix2StructProcessor`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss for the decoder. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The standalone text decoder of Pix2Struct", PIX2STRUCT_START_DOCSTRING, ) class Pix2StructTextModel(Pix2StructPreTrainedModel): config_class = Pix2StructTextConfig _no_split_modules = ["Pix2StructTextBlock"] supports_gradient_checkpointing = True def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (Pix2StructTextAttention, Pix2StructTextModel)): module.gradient_checkpointing = value def __init__(self, config): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layer = nn.ModuleList( [Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] ) self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.gradient_checkpointing = False # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) assert reordered_layer_past_states[0].shape == layer_past_states[0].shape assert len(reordered_layer_past_states) == len(layer_past_states) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, labels=None, return_dict=None, **kwargs, ): r""" Returns: Example: ```python >>> from transformers import AutoProcessor, Pix2StructTextModel >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") >>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base") >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss ``` """ use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if inputs_embeds is None: assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) if encoder_attention_mask is None and encoder_hidden_states is not None: encoder_seq_length = encoder_hidden_states.shape[1] encoder_attention_mask = torch.ones( batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long ) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.layer) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.layer, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return tuple(module(*inputs, use_cache, output_attentions)) return custom_forward layer_outputs = checkpoint( create_custom_forward(layer_module), hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) all_cross_attentions = all_cross_attentions + (layer_outputs[3],) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean", label_smoothing=0.1) masked_labels = labels.masked_fill(labels == self.config.pad_token_id, -100) loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), masked_labels.contiguous().view(-1)) if not return_dict: return tuple( v for v in [ loss, logits, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "A conditional generation model with a language modeling head. Can be used for sequence generation tasks.", PIX2STRUCT_START_DOCSTRING, ) class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel): config_class = Pix2StructConfig main_input_name = "flattened_patches" _keys_to_ignore_on_load_missing = [ r"encoder.embed_tokens.weight", r"decoder.embed_tokens.weight", ] _keys_to_ignore_on_load_unexpected = [ r"decoder.layer.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] def __init__(self, config: Pix2StructConfig): super().__init__(config) self.encoder = Pix2StructVisionModel(config.vision_config) self.decoder = Pix2StructTextModel(config.text_config) self.is_vqa = config.is_vqa # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.decoder.set_input_embeddings(new_embeddings) def get_output_embeddings(self) -> nn.Module: return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.decoder.set_output_embeddings(new_embeddings) def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: model_embeds = self.decoder.resize_token_embeddings(new_num_tokens) # update vocab size self.config.text_config.vocab_size = new_num_tokens return model_embeds def get_decoder(self): return self.decoder def get_encoder(self): return self.encoder @add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, flattened_patches: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: Inference: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base") >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> # autoregressive generation >>> generated_ids = model.generate(**inputs, max_new_tokens=50) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) A stop sign is on a street corner. ``` Training: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("google/pix2struct-base") >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base") >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "A stop sign is on the street corner." >>> inputs = processor(images=image, return_tensors="pt") >>> labels = processor(text=text, return_tensors="pt").input_ids >>> # forward pass >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> print(f"{loss.item():.5f}") 5.23973 ```""" use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( flattened_patches=flattened_patches, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) decoder_attention_mask = ( decoder_attention_mask if decoder_attention_mask is not None else decoder_input_ids.ne(self.config.pad_token_id).float() ) # Always attend to the first token decoder_attention_mask[:, 0] = 1 # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, labels=labels, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, flattened_patches: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): if decoder_attention_mask is None: decoder_attention_mask = torch.ones_like(input_ids).to(input_ids.device) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return { "flattened_patches": flattened_patches, "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, }
fa72a26b813d236bccb271ec23fb2cc08087103e
3f3e2677907d650851e4900ac267c93d61635032
/midgard/config/config.py
7b22af8ec02d5f742d7eae2a06391fad98f48aa1
[ "MIT" ]
permissive
skjaeve/midgard
c4aac05550f06d98823a57ee77ed3f5b6b9b4760
afcb1e30236436b63b1232bf54b6531b574676be
refs/heads/master
2020-04-05T03:35:11.811805
2018-11-29T13:46:06
2018-11-29T13:46:06
156,520,195
0
0
MIT
2018-11-07T09:14:22
2018-11-07T09:14:22
null
UTF-8
Python
false
false
37,908
py
"""Midgard library module for handling of configuration settings Description: ------------ A Configuration consists of one or several sections. Each ConfigurationSection consists of one or more entries. Each ConfigurationEntry consists of a key and a value. Examples: --------- For basic use, an entry is looked up by simple attribute access. For instance if `cfg` is a Configuration with the section `midgard` which has an entry `foo = bar`: >>> cfg = Configuration("config_name") >>> cfg.update("midgard", "foo", "bar") >>> cfg.midgard.foo ConfigurationEntry(key='foo', value='bar') ConfigurationEntry has several access methods that convert the entry to a given data type: >>> cfg.update("midgard", "foo_pi", 3.14, source="command line") >>> cfg.midgard.foo_pi ConfigurationEntry(key='foo_pi', value='3.14') >>> cfg.midgard.foo_pi.float 3.14 >>> cfg.midgard.foo_pi.str '3.14' >>> cfg.midgard.foo_pi.tuple ('3.14',) Sources: -------- Each configuration entry records its source. That is, where that entry was defined. Examples include read from file, set as a command line option, or programmatically from a dictionary. The source can be looked up on an individual entry, or for all entries in a configuration. >>> cfg.midgard.foo_pi.source 'command line' >>> cfg.sources # doctest: +SKIP {'/home/midgard/midgard.conf', 'command line'} Profiles: --------- Fallback Configuration: --------------------- Master Section: --------------- Replacement Variables: ---------------------- Help text and Type hints: ------------------------- """ # Standard library imports import builtins from configparser import ConfigParser, BasicInterpolation, ExtendedInterpolation from contextlib import contextmanager import datetime as stdlib_datetime import os.path import pathlib import re import sys from collections import UserDict # Midgard imports from midgard.dev import console from midgard.collections import enums from midgard.dev import exceptions # Typing from typing import Any, Callable, Dict, Generator, List, Optional, Set, Tuple, Union ProfileName = Optional[str] Sections = Dict[str, "ConfigurationSection"] EntryName = str ConfigVars = Dict[str, Any] # Date and datetime formats FMT_date = "%Y-%m-%d" FMT_datetime = "%Y-%m-%d %H:%M:%S" FMT_dt_file = "%Y%m%d-%H%M%S" class CasedConfigParser(ConfigParser): """ConfigParser with case-sensitive keys""" def optionxform(self, optionstr: str) -> str: """Do not turn optionstr (key) into lowercase""" return optionstr class Configuration: """Represents a Configuration""" def __init__(self, name: str) -> None: """Initialize a Configuration The name is used purely for representation and error messages. Args: name: Name of configuration. """ self.name = name self.fallback_config = None self.master_section = None self._profiles: List[ProfileName] = [None] self._profile_sections: Dict[ProfileName, Sections] = dict() self._sections: Sections = dict() self._vars_dict: ConfigVars = dict() self._update_count: int = 0 @classmethod def read_from_file(cls, cfg_name: str, *file_paths: Union[str, pathlib.Path]) -> "Configuration": """Read a configuration from one or more files Args: file_paths: File(s) that will be read. Returns: A Configuration representing the file(s). """ cfg = cls(cfg_name) for file_path in file_paths[::-1]: cfg.update_from_file(file_path) return cfg @classmethod @contextmanager def update_on_file(cls, file_path: Union[str, pathlib.Path], **as_str_args: Any) -> Generator: """Context manager for updating a configuration on file """ # Read config from file cfg = cls.read_from_file("Temporary", file_path) update_count_before = cfg._update_count # Yield config so it can be updated yield cfg # Write config if it has been updated if cfg._update_count > update_count_before: cfg.write_to_file(file_path, **as_str_args) def write_to_file(self, file_path: Union[str, pathlib.Path], **as_str_args: Any) -> None: """Write the configuration to a file In addition to the file path, arguments can be specified and will be passed on to the as_str() function. See `as_str()` for more information. Todo: Use files.open_path """ file_path = pathlib.Path(file_path) file_path.parent.mkdir(parents=True, exist_ok=True) with open(file_path, mode="w") as fid: fid.write(self.as_str(**as_str_args) + "\n") @property def section_names(self) -> List[str]: """Names of sections in Configuration""" return list(self._sections.keys()) @property def sections(self) -> List["ConfigurationSection"]: """Sections in Configuration""" return list(self._sections.values()) @property def sources(self) -> Set[str]: """Sources of entries in Configuration""" return {s[k].source for s in self.sections for k in s.keys() if s[k].source} @property def profiles(self) -> List[ProfileName]: """List of profiles currently being used in Configuration""" return self._profiles @profiles.setter def profiles(self, values: Union[None, List[ProfileName]]) -> None: """Set profiles that will be used in Configuration The list of profiles should be a prioritized list where the first profile listed will be used if available. None is used to indicate default values (no profile), and will be automatically appended at the end of the list of profiles. To not use any profiles, set `cfg.profiles = None`. Args: values: List of profiles to use. """ if values is None: values = [None] elif values[-1] is not None: values.append(None) self._profiles = values self._set_sections_for_profiles() def _set_sections_for_profiles(self) -> None: """Update sections according to profiles""" self._sections.clear() # Add values in reverse order so that the first profile is prioritized for profile in self.profiles[::-1]: for section_name, profile_section in self._profile_sections.get(profile, dict()).items(): self._sections.setdefault(section_name, ConfigurationSection(section_name)) for key, entry in profile_section.items(): self._sections[section_name][key] = entry @property def fallback_config(self) -> "Configuration": """The fallback configuration""" if self._fallback_config is None: raise exceptions.MissingConfigurationError( f"Configuration '{self.name}' has not defined a fallback configuration" ) return self._fallback_config @fallback_config.setter def fallback_config(self, cfg: Optional["Configuration"]) -> None: """Set the fallback configuration""" self._fallback_config = cfg @property def master_section(self) -> "ConfigurationSection": """The master section""" if self._master_section is None: raise exceptions.MissingSectionError(f"Configuration {self.name!r} has not defined a master section") if self._master_section not in self._sections: raise exceptions.MissingSectionError(f"Master section {self._master_section!r} does not exist in" f" configuration {self.name!r}") return self._sections[self._master_section] @master_section.setter def master_section(self, section: Optional[str]) -> None: """Set the master section""" self._master_section = section def get( self, key: str, value: Optional[str] = None, section: Optional[str] = None, default: Optional[str] = None ) -> "ConfigurationEntry": """Get an entry from a configuration with possibility for override and default value A value for an entry is found using the following priorities: 1. An explicit value given in `value`. None is used as a marker for no value. 2. Looked up in the current configuration. 3. Looked up in any fallback confiurations that are defined. 4. The default value is used. If `value` is not None, that value is simply returned as a `ConfigurationEntry`. If `default` is not given (is None), and a value is not found in any other way, a MissingEntryError is raised. Args: key: Name of option (key in the configuration entry). value: Value of entry. Used for overriding the configuration. section: Section in the configuration in which to look up the key. default: Default value that is returned if value is not found any other way. Returns: Entry representing the value. """ if value is not None: return ConfigurationEntry(key, value=value, source="method call", vars_dict=self.vars) try: section_value = self.master_section if section is None else self[section] if isinstance(section_value, ConfigurationEntry): return section_value else: return section_value[key] except (exceptions.MissingSectionError, exceptions.MissingEntryError) as err: try: return self.fallback_config.get(key=key, section=section) except (exceptions.MissingConfigurationError, exceptions.MissingEntryError): if default is None: # Raise original error raise err else: return ConfigurationEntry(key, value=default, source="default value", vars_dict=self.vars) def update( self, section: str, key: str, value: str, *, profile: ProfileName = None, source: str = "unknown", meta: Optional[Dict[str, str]] = None, allow_new: bool = True, _update_sections: bool = True, ) -> None: """Update a configuration section with a configuration entry If `allow_new` is False, the configuration entry must already exist. If it is True the update is allowed to create a new section and a new entry is necessary. The `_update_sections` flag can be used to not update the sections of the configuration, only the profiles. This should typically not be done, but is used by some of the other update methods which update the sections themselves. Args: section: Section to update. key: Key of entry. value: Value of entry. profile: Profile to update. source: Source of the update. meta: Metadata like help text and type hints for the entry. allow_new: Whether to allow the creation of a new section and entry. """ if not allow_new: profile_str = "" if profile is None else f"(profile: '{profile}')" if section not in self._sections: raise exceptions.MissingSectionError( f"Configuration '{self.name}' does not contain section '{section}' {profile_str}" ) if key not in self._sections[section]: raise exceptions.MissingEntryError( f"Section '{section}' of configuration '{self.name}' does not contain entry '{key}' {profile_str}" ) # Add entry to profile source = source if profile is None else f"{source} ({profile})" profile_sections = self._profile_sections.setdefault(profile, dict()) profile_sections.setdefault(section, ConfigurationSection(section)) # Record that configuration has been updated if key not in profile_sections[section] or profile_sections[section][key]._value != value: self._update_count += 1 profile_sections[section][key] = ConfigurationEntry( key, value=value, source=source, meta=meta, vars_dict=self.vars ) # Update sections if _update_sections: self._set_sections_for_profiles() def update_from_file( self, file_path: Union[str, pathlib.Path], allow_new: bool = True, interpolate: bool = False, case_sensitive: bool = False, ) -> None: """Update the configuration from a configuration file The Python ConfigParser is used to read the file. The file format that is supported is described at https://docs.python.org/library/configparser.html Different profiles in a configuration file is denoted by double underscores in the sections names. For instance does the following configuration have a `foo` profile in the `spam` section (in addition to the default profile): [spam] ... [spam__foo] ... If `interpolate` is set to True, ExtendedInterpolation of variables in the configuration file is used. See https://docs.python.org/library/configparser.html#configparser.ExtendedInterpolation for details. Args: file_path: Path to the configuration file. allow_new: Whether to allow the creation of new sections and entries. interpolate: Whether to interpolate variables in the configuration file. case_sensitive: Whether to read keys as case sensitive (or convert to lower case). """ # Use ConfigParser to read from file cfg_parser_cls = CasedConfigParser if case_sensitive else ConfigParser cfg_parser = cfg_parser_cls( allow_no_value=True, delimiters=("=",), interpolation=ExtendedInterpolation() if interpolate else BasicInterpolation(), ) cfg_parser.read(file_path) # Add configuration entries for cfg_section in cfg_parser.sections(): section, has_profile, profile = cfg_section.partition("__") for key, value in cfg_parser[cfg_section].items(): # Handle meta-information if ":" in key: continue meta = {k.partition(":")[-1]: v for k, v in cfg_parser[cfg_section].items() if k.startswith(f"{key}:")} # Create a configuration entry self.update( section, key, value if value is None else value.replace("\n", " "), profile=profile if has_profile else None, source=str(file_path), meta=meta, allow_new=allow_new, _update_sections=False, ) self._set_sections_for_profiles() def update_from_config_section( self, other_section: "ConfigurationSection", section: Optional[str] = None, allow_new: bool = True ) -> None: section = other_section.name if section is None else section for key, entry in other_section.data.items(): self.update( section, key, entry.str, source=entry.source, meta=entry.meta, allow_new=allow_new, _update_sections=False, ) self._set_sections_for_profiles() def update_from_options( self, options: Optional[List[str]] = None, profile: ProfileName = None, source: str = "command line", allow_new: bool = False, ) -> None: if options is None: options = sys.argv[1:] for option in options: if not (option.startswith("--") and "=" in option): continue # Parse config name, section, key and value of the form name:section:key=value opt_key, _, opt_value = option[2:].partition("=") opt_section, _, opt_key = opt_key.rpartition(":") opt_name, _, opt_section = opt_section.rpartition(":") # Update current configuration if opt_name and opt_name != self.name: continue if not opt_section: opt_section = self.master_section.name self.update( opt_section, opt_key, opt_value, profile=profile, source=f"{source} ({option})", allow_new=allow_new, _update_sections=False, ) self._set_sections_for_profiles() def update_from_dict( self, cfg_dict: Dict[str, Any], section: Optional[str] = None, source: str = "dictionary", allow_new: bool = True, ) -> None: section = self.master_section.name if section is None else section for key, value in cfg_dict.items(): self.update(section, key, value, source=source, allow_new=allow_new, _update_sections=False) self._set_sections_for_profiles() def clear(self) -> None: """Clear the configuration""" self._sections.clear() self.clear_vars() @property def vars(self) -> ConfigVars: """The configuration variables""" return self._vars_dict def clear_vars(self) -> None: """Clear the configuration variables""" self._vars_dict.clear() def update_vars(self, new_vars: ConfigVars) -> None: """Update the configuration variables""" self._vars_dict.update(new_vars) def as_str( self, width: Optional[int] = None, key_width: int = 30, only_used: bool = False, metadata: bool = True ) -> str: """The configuration represented as a string This is simililar to what is shown by `str(configuration)` (and implemented by `__str__`), but has more flexibility. Args: width: Width of text for wrapping. Default is width of console. key_width: Width of the key column. Default is 30 characters. only_used: Only include configuration entries that has been used so far. metadata: Include metadata like type and help text. Returns: String representation of the configuration. """ sections = self._sections.values() section_strs = [ s.as_str(width=width, key_width=key_width, only_used=only_used, metadata=metadata) for s in sections ] return "\n\n\n".join(s for s in section_strs if s) def as_dict( self, getters: Optional[Dict[str, Dict[str, str]]] = None, default_getter: str = "str" ) -> Dict[str, Dict[str, Any]]: """The configuration represented as a dictionary Args: getters: How to get the value of each entry in each section. default_getter: How to get the value of entries not specified in getters. Returns: Representation of the configuration as a nested dictionary. """ getters = dict() if getters is None else getters return {k: v.as_dict(getters=getters.get(k), default_getter=default_getter) for k, v in self._sections.items()} def __getitem__(self, key: str) -> Union["ConfigurationSection", "ConfigurationEntry"]: """Get a section or entry from the master section from the configuration""" if key in self.section_names: return self._sections[key] try: return self.master_section[key] except exceptions.MissingSectionError: try: return self.fallback_config[key] except exceptions.MidgardException: raise exceptions.MissingSectionError(f"Configuration {self.name!r} has no section {key!r}") from None def __getattr__(self, key: str) -> Union["ConfigurationSection", "ConfigurationEntry"]: """Get a section or entry from the master section from the configuration""" return self[key] def __delitem__(self, key: str) -> None: """Delete a section from the configuration""" del self._sections[key] def __delattr__(self, key: str) -> None: """Delete a section from the configuration""" del self._sections[key] def __dir__(self) -> List[str]: """List attributes and sections in the configuration""" try: return list(super().__dir__()) + self.section_names + self.master_section.as_list() except exceptions.MissingSectionError: return list(super().__dir__()) + self.section_names def __str__(self) -> str: """The configuration represented as a string This string can be stored in a file and read back with `update_from_file`. """ return "\n\n".join(str(s) for s in self._sections.values()) def __repr__(self) -> str: """A simple string representation of the configuration""" return f"{self.__class__.__name__}(name='{self.name}')" class ConfigurationSection(UserDict): data: Dict[str, "ConfigurationEntry"] def __init__(self, name: str) -> None: super().__init__() self.name: str = name def as_str( self, width: Optional[int] = None, key_width: int = 30, only_used: bool = False, metadata: bool = True ) -> str: """The configuration section represented as a string This is simililar to what is shown by `str(section)` (and implemented by `__str__`), but has more flexibility. Args: width: Width of text for wrapping. Default is width of console. key_width: Width of the key column. Default is 30 characters. only_used: Only include configuration entries that has been used so far. metadata: Include metadata like type and help text. Returns: String representation of the configuration section. """ lines = list() for entry in self.data.values(): if only_used and not entry.is_used: continue lines.append(entry.entry_as_str(width=width, key_width=key_width, metadata=metadata)) if lines: return f"[{self.name}]\n" + "\n".join(lines) else: return "" def as_list(self) -> List[str]: """List of keys of entries in configuration section Returns: List of keys of entries in configuration section. """ return list(self.data.keys()) def as_dict(self, getters: Dict[str, str] = None, default_getter: str = "str") -> Dict[str, Any]: """The configuration section represented as a dictionary Args: getters: How to get the value of each entry in the section. default_getter: How to get the value of entries not specified in getters. Returns: Representation of the configuration section as a dictionary. """ getters = dict() if getters is None else getters getters = {k: getters.get(k, default_getter) for k in self.keys()} return {k: getattr(e, getters[k]) for k, e in self.items()} def __getitem__(self, key: str) -> "ConfigurationEntry": """Get an entry from the configuration section""" try: return self.data[key] except KeyError: raise exceptions.MissingEntryError(f"Configuration section '{self.name}' has no entry '{key}'") from None def __getattr__(self, key: str) -> "ConfigurationEntry": """Get an entry from the configuration section""" try: return self.data[key] except KeyError: raise exceptions.MissingEntryError(f"Configuration section '{self.name}' has no entry '{key}'") from None def __dir__(self) -> List[str]: """List attributes and entries in the configuration section""" return list(super().__dir__()) + self.as_list() def __str__(self) -> str: """The configuration section represented as a string""" return f"[{self.name}]\n" + "\n".join(str(v) for v in self.data.values()) def __repr__(self) -> str: """A simple string representation of the configuration section""" return f"{self.__class__.__name__}(name='{self.name}')" class ConfigurationEntry: _BOOLEAN_STATES = { "0": False, "1": True, "false": False, "true": True, "no": False, "yes": True, "off": False, "on": True, } def __init__( self, key: str, value: Any, *, source: builtins.str = "", meta: Optional[Dict[str, str]] = None, vars_dict: Optional[ConfigVars] = None, _used_as: Optional[Set[builtins.str]] = None, ) -> None: self.source = source self.meta = dict() if meta is None else meta self._key = key self._value = str(value) self._vars_dict = dict() if vars_dict is None else vars_dict self._used_as = set() if _used_as is None else _used_as @property def type(self) -> Optional[builtins.str]: """Type hint for the ConfigurationEntry""" return self.meta.get("type", None) @property def help(self) -> builtins.str: """Help text for the ConfigurationEntry""" return self.meta.get("help", "") @property def str(self) -> builtins.str: """Value of ConfigurationEntry as string""" self._using("str") return self._value def as_str(self) -> builtins.str: """Value of ConfigurationEntry as string""" return self.str @property def int(self) -> builtins.int: """Value of ConfigurationEntry converted to an integer""" self._using("int") try: return int(self._value) except ValueError: raise ValueError( f"Value '{self._value}' of '{self._key}' in {self.source} cannot be converted to an integer" ) from None def as_int(self) -> builtins.int: """Value of ConfigurationEntry converted to an integer""" return self.int @property def float(self) -> builtins.float: """Value of ConfigurationEntry converted to a float""" self._using("float") try: return float(self._value) except ValueError: raise ValueError( f"Value '{self._value}' of '{self._key}' in {self.source} cannot be converted to a float" ) from None def as_float(self) -> builtins.float: """Value of ConfigurationEntry converted to a float""" return self.float @property def bool(self) -> builtins.bool: """Value of ConfigurationEntry converted to a boolean The conversion is done by looking up the string value of the entry in _BOOLEAN_STATES. """ self._using("bool") try: return self._BOOLEAN_STATES[self._value.lower()] except KeyError: raise ValueError( f"Value '{self._value}' of '{self._key}' in {self.source} cannot be converted to a boolean" ) from None def as_bool(self) -> builtins.bool: """Value of ConfigurationEntry converted to a boolean The conversion is done by looking up the string value of the entry in _BOOLEAN_STATES. """ return self.bool @property def date(self) -> stdlib_datetime.date: """Value of ConfigurationEntry converted to a date object assuming format `FMT_date`""" return self.as_date(format=FMT_date) def as_date(self, format: builtins.str = FMT_date) -> stdlib_datetime.date: """Value of ConfigurationEntry converted to a date object Args: format (String): Format string, see strftime for information about the string. Returns: Date: Value of entry. """ self._using("date") try: return stdlib_datetime.datetime.strptime(self._value, format).date() except ValueError: raise ValueError( f"Value '{self._value}' of '{self._key}' in {self.source} does not match the date format '{format}'" ) from None @property def datetime(self) -> stdlib_datetime.datetime: """Value of ConfigurationEntry converted to a datetime object assuming format `FMT_datetime`""" return self.as_datetime(format=FMT_datetime) def as_datetime(self, format: builtins.str = FMT_datetime) -> stdlib_datetime.datetime: """Value of ConfigurationEntry converted to a datetime object Args: format (String): Format string, see strftime for information about the string. Returns: Datetime: Value of entry. """ self._using("datetime") try: return stdlib_datetime.datetime.strptime(self._value, format) except ValueError: raise ValueError( f"Value '{self._value}' of '{self._key}' in {self.source} does not match the date format '{format}'" ) from None @property def path(self) -> pathlib.Path: """Value of ConfigurationEntry interpreted as a path string""" self._using("path") path = self._value if "~" in path: path = os.path.expanduser(path) return pathlib.Path(path) def as_path(self) -> pathlib.Path: """Value of ConfigurationEntry interpreted as a path string""" return self.path @property def list(self) -> List[builtins.str]: """Value of ConfigurationEntry converted to a list by splitting at commas and whitespace""" self._using("list") return self._value.replace(",", " ").split() def as_list( self, split_re: builtins.str = r"[\s,]", convert: Callable = builtins.str, maxsplit: builtins.int = 0 ) -> List[Any]: """Value of ConfigurationEntry converted to a list The entry is converted to a list by using the `split_re`-regular expression. By default the entry will be split at commas and whitespace. Args: split_re: Regular expression used to split entry into list. convert: Function used to convert each element of the list. maxsplit: If nonzero, at most maxsplit splits occur. Returns: Value of entry as list. """ self._using("list") return [convert(s) for s in re.split(split_re, self._value, maxsplit=maxsplit) if s] @property def list_of_lists(self) -> List[List[builtins.str]]: self._using("list_of_lists") raise NotImplementedError def as_list_of_lists( self, split_res: Tuple[builtins.str, ...] = (r"[\s,]", r"[^_\w]"), num_elements: Optional[builtins.int] = None, convert: Callable = builtins.str, ) -> List[List[Any]]: self._using("list_of_lists") raise NotImplementedError @property def tuple(self) -> Tuple[builtins.str, ...]: """Value of ConfigurationEntry converted to tuple by splitting at commas and whitespace""" self._using("tuple") return tuple(self._value.replace(",", " ").split()) def as_tuple( self, split_re: builtins.str = r"[\s,]", convert: Callable = builtins.str, maxsplit: builtins.int = 0 ) -> Tuple[Any, ...]: """Value of ConfigurationEntry converted to a tuple The entry is converted to a tuple by using the `split_re`-regular expression. By default the entry will be split at commas and whitespace. Args: split_re: Regular expression used to split entry into tuple. convert: Function used to convert each element of the tuple. maxsplit: If nonzero, at most maxsplit splits occur. Returns: Value of entry as tuple. """ self._using("tuple") return tuple([convert(s) for s in re.split(split_re, self._value, maxsplit=maxsplit) if s]) @property def dict(self) -> Dict[builtins.str, builtins.str]: """Value of ConfigurationEntry converted to a dict""" self._using("dict") return dict(i.partition(":")[::2] for i in self.list) def as_dict( self, item_split_re: builtins.str = r"[\s,]", key_value_split_re: builtins.str = r"[:]", convert: Callable = builtins.str, maxsplit: builtins.int = 0, ) -> Dict[builtins.str, Any]: """Value of ConfigurationEntry converted to a dictionary By default the dictionary is created by splitting items at commas and whitespace, and key from value at colons. Args: item_split_re: Regular expression used to split entry into items. key_value_split_re: Regular expression used to split items into keys and values. convert: Function used to convert each value in the dictionary. maxsplit: If nonzero, at most maxsplit splits occur when splitting entry into items. Returns: Value of entry as dict. """ self._using("dict") items = [s for s in re.split(item_split_re, self._value, maxsplit=maxsplit) if s] key_values = [re.split(key_value_split_re, i, maxsplit=1) for i in items] return {k: convert(v) for k, v in key_values} def as_enum(self, enum: builtins.str) -> enums.enum.Enum: """Value of ConfigurationEntry converted to an enumeration Args: enum (String): Name of Enum. Returns: Enum: Value of entry as Enum. """ self._using("enum") return enums.get_value(enum, self._value) @property def replaced(self) -> "ConfigurationEntry": """Value of ConfigurationEntry with {$}-variables replaced""" return self.replace() def replace(self, default: Optional[builtins.str] = None, **replace_vars: builtins.str) -> "ConfigurationEntry": replacement_vars = dict(self._vars_dict, **replace_vars) replacement_value = self._value replacements = list() matches = re.findall(r"\{\$\w+\}", replacement_value) for match in matches: var = match.strip("${}") replacement = str(replacement_vars.get(var, match if default is None else default)) replacements.append(f"{var}={replacement}") replacement_value = replacement_value.replace(match, replacement) return self.__class__( key=self._key, value=replacement_value, source=self.source + " ({','.join(replacements)})", _used_as=self._used_as, ) @property def is_used(self) -> builtins.bool: return bool(self._used_as) def entry_as_str( self, width: Optional[builtins.int] = None, key_width: builtins.int = 30, metadata: builtins.bool = True ) -> builtins.str: """The configuration entry represented as a string This is simililar to what is shown by `str(entry)` (and implemented by `__str__`), but has more flexibility. Args: width: Width of text for wrapping. Default is width of console. key_width: Width of the key column. Default is 30 characters. metadata: Include metadata like type and help text. Returns: String representation of the configuration entry. """ lines = list() width = console.columns() if width is None else width fill_args = dict(width=width, hanging=key_width + 3, break_long_words=False, break_on_hyphens=False) # The entry itself lines.append(console.fill(f"{self._key:<{key_width}} = {self._value}", **fill_args)) # Metadata, including help text and type hints if metadata and self.meta: for meta_key, meta_value in self.meta.items(): if meta_value is None: lines.append(console.fill(f"{self._key}:{meta_key}", **fill_args)) else: lines.append(console.fill(f"{f'{self._key}:{meta_key}':<{key_width}} = {meta_value}", **fill_args)) lines.append("") return "\n".join(lines) def _using(self, as_type: builtins.str) -> None: """Register that entry is used as a type Args: as_type: Name of type entry is used as. """ self._used_as.add(as_type) def __add__(self, other: "ConfigurationEntry") -> "ConfigurationEntry": if isinstance(other, self.__class__): if self.source == other.source: source = f"{self.source} (+)" else: source = f"{self.source} + {other.source}" return self.__class__( key=f"{self._key} + {other._key}", value=self.str + other.str, source=source, vars_dict=self._vars_dict ) else: return NotImplemented def __bool__(self) -> builtins.bool: """A ConfigurationEntry is truthy if the value is not empty""" return bool(self._value) def __str__(self) -> builtins.str: """The configuration entry represented as a string""" return self.entry_as_str() def __repr__(self) -> builtins.str: """A simple string representation of the configuration entry""" return f"{self.__class__.__name__}(key='{self._key}', value='{self._value}')"
eaddb2f9ccb5d75e4fedfba55196b323ca4778ac
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/beer-song/58a6d9e0b5c9402b8236f1b6d329c093.py
6c7d5a0ab15761501e144b12e4ed2ee1df7d5554
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
714
py
def verse(number): it = lambda n: "it" if n == 1 else "one" suffix = lambda n: "no more bottles" if n < 1 else \ "1 bottle" if n < 2 else str(n) + " bottles" if number == 0: return "No more bottles of beer on the wall, no more bottles of beer.\n" \ "Go to the store and buy some more, 99 bottles of beer on the wall.\n" verse = "{0} of beer on the wall, {0} of beer.\n" \ "Take {2} down and pass it around, {1} of beer on the wall.\n" return verse.format(suffix(number), suffix(number-1), it(number)) def song(start, end=0): return "\n".join([verse(number) for number in range(start, end - 1, -1)]) + "\n"
9ded9a3c3c4a360078096f349f3240a33087ae0c
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/Vulkan/ImageCreateFlags.py
abb32be5019fc6f30604e199e47ef6e098a03eb5
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
4,209
py
# encoding: utf-8 # module gi.repository.Vulkan # from /usr/lib64/girepository-1.0/Vulkan-1.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi class ImageCreateFlags(__gi.Struct): # no doc def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(ImageCreateFlags), '__module__': 'gi.repository.Vulkan', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'ImageCreateFlags' objects>, '__weakref__': <attribute '__weakref__' of 'ImageCreateFlags' objects>, '__doc__': None})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(ImageCreateFlags)
3c0685a1924a7506375a295827526e4a6a28518b
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba0370.pngMap.py
f0078bf8408f0c2539214b78db3e6bea6445619a
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba0370.pngMap = [ '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111100011111111111111111111111111111111111111111111111111111111001111110', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011111111001111111', '11111111011111110011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111001111111111111111', '11111111111111111111111111111111111111111001111111111111111111111111111111111111111111111111111111111111011111111111111111111111', '11111111111111111111111111111111111111111001000011111111111111111111110011111111111101111111111111111110101111111111111111111111', '11111111111111111111111111111111111111111111101100111111111011111111111111110111111111001111111111111111101111111011111111111111', '11111111111111111111111111111111111110111111111110111111110110111111111111111111111111111111111111111111111111111101111111111111', '11111111111111111111111111111111111010001111111111111111111000000010000000111111111111111111111111111111111111111000001111111111', '11111111101111111111111111111111111111111111111111111111100100000000000001111111111111111111111111111111111111111100101111111111', '11100111101111111111111111111111111111111111111111111111100000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111100111111111111111111111111111111111110000000000000000001111111111111111111111111111111111111111111111111110', '11111111111111110111111111111111111101111111111111110100111001000000000000011111111111111111111100111111111111111111111111111111', '11111111100001111100111111111111111111111111111111110011111111000000000000000111111111111111111111111111111111111111111110111111', '11111111100011111111111111111111111101111110011111111111111100000000000000000000111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111011111111111111100000000000000000000111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111100000000000000001111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111000000000000100011111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111010000000000000001111111111111111011111111111111111111111111111111', '01111111111111111111111111111111111111111111111111111111111111110000000000000000011111111111111011111111111111111111111111111111', '10011111111111111111111111111111111111111111111111111111110111010001000000000000000000111111111111111111111111111111111111111111', '11111111111011111111111111111111111111111111111111111111101111000010000000000000000010110000000101111111111110011111111111111111', '11111111111111111111111111111101111100000000000001000001110000001000000000000000000000000000000010001111111110111111111111111111', '11111111111111111111111111111111111111000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111', '11111111111111111111111111111111111111101110000000000000000000000000000000000000000000000000000000000011111111111111111111111111', '11111111111111111111111111111111111111111011000000000000000000000000000000000000000000000000000000000111111111111111111111110011', '11111111111111111111111111111111111111111111111111111100111111110000111000000011000000000000000000000111111111111111111111111111', '11111111111111111111111110001111111111111111111111110011111111111111110000000011000010000000000000000111111111111111111111111111', '11111111111111111111111111111111111111110111111111111111111111111111111100001111111111111100000001111111111111111111111111111110', '11111111111011111111111111111111111111110111111110111111111111111111111100001111111111111100011011111111111111111111111111111111', '11111111111100111111111111111111111111111111111110001111111111111111111111111111111111110111110111111111111111111111111111111111', '11111111111110111111111111111111001111111111111111100111111111111111111111111111111111110111111111111111111111001111111111111110', '11111111111110011111111111111111011111110011111111110111111111111111111111110001111111111111111111111111111111001111111111111111', '11111111111111111111111111111111111111111111111111111111111111110011111111110111111111111111111111111111111111001111111111111111', '11111111111111111111111111111111111111111111111111111111111111111001111110111111111111111111111111111111111111111111111111111111', '00111111111111111111111111111111111111111111111111111111111111111111111001111111111111110011111111111111111111111111111101111111', '00011111111111111111111111111111111111111111111111111111111111111111111110111111111111110011111111111111111111111111111000011110', '11111111111111111111111111111111111011111111111111111111011111111111111011111111111111111111111111111111111111111111111111111111', '11111111111111111011111111111111111101011111111111111110011111111110110111111100111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111000111110111111111111111111111111111111111111111111111111111', '11111111111111001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110', '11111101111111111110111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110', '11111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110', '11111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111110', '11111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111110', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111101111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', ]
a55b52f2531f32ec37a7670048412895cfa27205
dca653bb975528bd1b8ab2547f6ef4f48e15b7b7
/tags/wxPy-2.8.7.1/wxPython/demo/Main.py
fea307faed9cebc60ab5a6e85e0b46aec0ffebfe
[]
no_license
czxxjtu/wxPython-1
51ca2f62ff6c01722e50742d1813f4be378c0517
6a7473c258ea4105f44e31d140ea5c0ae6bc46d8
refs/heads/master
2021-01-15T12:09:59.328778
2015-01-05T20:55:10
2015-01-05T20:55:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
78,803
py
#!/bin/env python #---------------------------------------------------------------------------- # Name: Main.py # Purpose: Testing lots of stuff, controls, window types, etc. # # Author: Robin Dunn # # Created: A long time ago, in a galaxy far, far away... # RCS-ID: $Id$ # Copyright: (c) 1999 by Total Control Software # Licence: wxWindows license #---------------------------------------------------------------------------- # FIXME List: # * Problems with flickering related to ERASE_BACKGROUND # and the splitters. Might be a problem with this 2.5 beta...? # UPDATE: can't see on 2.5.2 GTK - maybe just a faster machine :) # * Demo Code menu? # * Annoying switching between tabs and resulting flicker # how to replace a page in the notebook without deleting/adding? # Where is SetPage!? tried freeze...tried reparent of dummy panel.... # AG: It looks like this issue is fixed by Freeze()ing and Thaw()ing the # main frame and not the notebook # TODO List: # * UI design more professional (is the new version more professional?) # * save file positions (new field in demoModules) (@ LoadDemoSource) # * Update main overview # * Why don't we move _treeList into a separate module import sys, os, time, traceback, types import wx # This module uses the new wx namespace import wx.aui import wx.html import images # For debugging ##wx.Trap(); ##print "wx.VERSION_STRING = %s (%s)" % (wx.VERSION_STRING, wx.USE_UNICODE and 'unicode' or 'ansi') ##print "pid:", os.getpid() ##raw_input("Press Enter...") #--------------------------------------------------------------------------- USE_CUSTOMTREECTRL = False ALLOW_AUI_FLOATING = False DEFAULT_PERSPECTIVE = "Default Perspective" #--------------------------------------------------------------------------- _demoPngs = ["overview", "recent", "frame", "dialog", "moredialog", "core", "book", "customcontrol", "morecontrols", "layout", "process", "clipboard", "images", "miscellaneous"] _treeList = [ # new stuff ('Recent Additions/Updates', [ 'RichTextCtrl', 'Treebook', 'Toolbook', 'BitmapFromBuffer', 'RawBitmapAccess', 'DragScroller', 'DelayedResult', 'ExpandoTextCtrl', 'ButtonPanel', 'FlatNotebook', 'CustomTreeCtrl', 'AboutBox', 'AlphaDrawing', 'GraphicsContext', 'CollapsiblePane', 'ComboCtrl', 'OwnerDrawnComboBox', 'BitmapComboBox', 'I18N', 'Img2PyArtProvider', 'SearchCtrl', 'SizedControls', 'AUI_MDI', 'TreeMixin', 'AdjustChannels', 'RendererNative', ]), # managed windows == things with a (optional) caption you can close ('Frames and Dialogs', [ 'AUI_DockingWindowMgr', 'AUI_MDI', 'Dialog', 'Frame', 'MDIWindows', 'MiniFrame', 'Wizard', ]), # the common dialogs ('Common Dialogs', [ 'AboutBox', 'ColourDialog', 'DirDialog', 'FileDialog', 'FindReplaceDialog', 'FontDialog', 'MessageDialog', 'MultiChoiceDialog', 'PageSetupDialog', 'PrintDialog', 'ProgressDialog', 'SingleChoiceDialog', 'TextEntryDialog', ]), # dialogs from libraries ('More Dialogs', [ 'ImageBrowser', 'ScrolledMessageDialog', ]), # core controls ('Core Windows/Controls', [ 'BitmapButton', 'Button', 'CheckBox', 'CheckListBox', 'Choice', 'ComboBox', 'Gauge', 'Grid', 'Grid_MegaExample', 'ListBox', 'ListCtrl', 'ListCtrl_virtual', 'ListCtrl_edit', 'Menu', 'PopupMenu', 'PopupWindow', 'RadioBox', 'RadioButton', 'SashWindow', 'ScrolledWindow', 'SearchCtrl', 'Slider', 'SpinButton', 'SpinCtrl', 'SplitterWindow', 'StaticBitmap', 'StaticBox', 'StaticText', 'StatusBar', 'StockButtons', 'TextCtrl', 'ToggleButton', 'ToolBar', 'TreeCtrl', 'Validator', ]), ('"Book" Controls', [ 'AUI_Notebook', 'Choicebook', 'Listbook', 'Notebook', 'Toolbook', 'Treebook', ]), ('Custom Controls', [ 'AnalogClock', 'ButtonPanel', 'ColourSelect', 'ComboTreeBox', 'CustomTreeCtrl', 'Editor', 'FlatNotebook', 'GenericButtons', 'GenericDirCtrl', 'LEDNumberCtrl', 'MultiSash', 'PopupControl', 'PyColourChooser', 'TreeListCtrl', ]), # controls coming from other libraries ('More Windows/Controls', [ 'ActiveX_FlashWindow', 'ActiveX_IEHtmlWindow', 'ActiveX_PDFWindow', 'BitmapComboBox', 'Calendar', 'CalendarCtrl', 'CheckListCtrlMixin', 'CollapsiblePane', 'ComboCtrl', 'ContextHelp', 'DatePickerCtrl', 'DynamicSashWindow', 'EditableListBox', 'ExpandoTextCtrl', 'FancyText', 'FileBrowseButton', 'FloatBar', 'FloatCanvas', 'FoldPanelBar', 'HtmlWindow', 'HyperLinkCtrl', 'IntCtrl', 'MVCTree', 'MaskedEditControls', 'MaskedNumCtrl', 'MediaCtrl', 'MultiSplitterWindow', 'OwnerDrawnComboBox', 'Pickers', 'PyCrust', 'PyPlot', 'PyShell', 'RichTextCtrl', 'ScrolledPanel', 'SplitTree', 'StyledTextCtrl_1', 'StyledTextCtrl_2', 'TablePrint', 'Throbber', 'Ticker', 'TimeCtrl', 'TreeMixin', 'VListBox', ]), # How to lay out the controls in a frame/dialog ('Window Layout', [ 'GridBagSizer', 'LayoutAnchors', 'LayoutConstraints', 'Layoutf', 'RowColSizer', 'ScrolledPanel', 'SizedControls', 'Sizers', 'XmlResource', 'XmlResourceHandler', 'XmlResourceSubclass', ]), # ditto ('Process and Events', [ 'DelayedResult', 'EventManager', 'KeyEvents', 'Process', 'PythonEvents', 'Threads', 'Timer', ##'infoframe', # needs better explanation and some fixing ]), # Clipboard and DnD ('Clipboard and DnD', [ 'CustomDragAndDrop', 'DragAndDrop', 'URLDragAndDrop', ]), # Images ('Using Images', [ 'AdjustChannels', 'AlphaDrawing', 'AnimateCtrl', 'ArtProvider', 'BitmapFromBuffer', 'Cursor', 'DragImage', 'Image', 'ImageAlpha', 'ImageFromStream', 'Img2PyArtProvider', 'Mask', 'RawBitmapAccess', 'Throbber', ]), # Other stuff ('Miscellaneous', [ 'AlphaDrawing', 'ColourDB', ##'DialogUnits', # needs more explanations 'DragScroller', 'DrawXXXList', 'FileHistory', 'FontEnumerator', 'GraphicsContext', 'GLCanvas', 'I18N', 'Joystick', 'MimeTypesManager', 'MouseGestures', 'OGL', 'PrintFramework', 'PseudoDC', 'RendererNative', 'ShapedWindow', 'Sound', 'StandardPaths', 'Unicode', ]), ('Check out the samples dir too', [ ]), ] #--------------------------------------------------------------------------- # Show how to derive a custom wxLog class class MyLog(wx.PyLog): def __init__(self, textCtrl, logTime=0): wx.PyLog.__init__(self) self.tc = textCtrl self.logTime = logTime def DoLogString(self, message, timeStamp): #print message, timeStamp #if self.logTime: # message = time.strftime("%X", time.localtime(timeStamp)) + \ # ": " + message if self.tc: self.tc.AppendText(message + '\n') class MyTP(wx.PyTipProvider): def GetTip(self): return "This is my tip" #--------------------------------------------------------------------------- # A class to be used to simply display a message in the demo pane # rather than running the sample itself. class MessagePanel(wx.Panel): def __init__(self, parent, message, caption='', flags=0): wx.Panel.__init__(self, parent) # Make widgets if flags: artid = None if flags & wx.ICON_EXCLAMATION: artid = wx.ART_WARNING elif flags & wx.ICON_ERROR: artid = wx.ART_ERROR elif flags & wx.ICON_QUESTION: artid = wx.ART_QUESTION elif flags & wx.ICON_INFORMATION: artid = wx.ART_INFORMATION if artid is not None: bmp = wx.ArtProvider.GetBitmap(artid, wx.ART_MESSAGE_BOX, (32,32)) icon = wx.StaticBitmap(self, -1, bmp) else: icon = (32,32) # make a spacer instead if caption: caption = wx.StaticText(self, -1, caption) caption.SetFont(wx.Font(28, wx.SWISS, wx.NORMAL, wx.BOLD)) message = wx.StaticText(self, -1, message) # add to sizers for layout tbox = wx.BoxSizer(wx.VERTICAL) if caption: tbox.Add(caption) tbox.Add((10,10)) tbox.Add(message) hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((10,10), 1) hbox.Add(icon) hbox.Add((10,10)) hbox.Add(tbox) hbox.Add((10,10), 1) box = wx.BoxSizer(wx.VERTICAL) box.Add((10,10), 1) box.Add(hbox, 0, wx.EXPAND) box.Add((10,10), 2) self.SetSizer(box) self.Fit() #--------------------------------------------------------------------------- # A class to be used to display source code in the demo. Try using the # wxSTC in the StyledTextCtrl_2 sample first, fall back to wxTextCtrl # if there is an error, such as the stc module not being present. # try: ##raise ImportError # for testing the alternate implementation from wx import stc from StyledTextCtrl_2 import PythonSTC class DemoCodeEditor(PythonSTC): def __init__(self, parent): PythonSTC.__init__(self, parent, -1, style=wx.BORDER_NONE) self.SetUpEditor() # Some methods to make it compatible with how the wxTextCtrl is used def SetValue(self, value): if wx.USE_UNICODE: value = value.decode('iso8859_1') self.SetText(value) self.EmptyUndoBuffer() self.SetSavePoint() def IsModified(self): return self.GetModify() def Clear(self): self.ClearAll() def SetInsertionPoint(self, pos): self.SetCurrentPos(pos) self.SetAnchor(pos) def ShowPosition(self, pos): line = self.LineFromPosition(pos) #self.EnsureVisible(line) self.GotoLine(line) def GetLastPosition(self): return self.GetLength() def GetPositionFromLine(self, line): return self.PositionFromLine(line) def GetRange(self, start, end): return self.GetTextRange(start, end) def GetSelection(self): return self.GetAnchor(), self.GetCurrentPos() def SetSelection(self, start, end): self.SetSelectionStart(start) self.SetSelectionEnd(end) def SelectLine(self, line): start = self.PositionFromLine(line) end = self.GetLineEndPosition(line) self.SetSelection(start, end) def SetUpEditor(self): """ This method carries out the work of setting up the demo editor. It's seperate so as not to clutter up the init code. """ import keyword self.SetLexer(stc.STC_LEX_PYTHON) self.SetKeyWords(0, " ".join(keyword.kwlist)) # Enable folding self.SetProperty("fold", "1" ) # Highlight tab/space mixing (shouldn't be any) self.SetProperty("tab.timmy.whinge.level", "1") # Set left and right margins self.SetMargins(2,2) # Set up the numbers in the margin for margin #1 self.SetMarginType(1, wx.stc.STC_MARGIN_NUMBER) # Reasonable value for, say, 4-5 digits using a mono font (40 pix) self.SetMarginWidth(1, 40) # Indentation and tab stuff self.SetIndent(4) # Proscribed indent size for wx self.SetIndentationGuides(True) # Show indent guides self.SetBackSpaceUnIndents(True)# Backspace unindents rather than delete 1 space self.SetTabIndents(True) # Tab key indents self.SetTabWidth(4) # Proscribed tab size for wx self.SetUseTabs(False) # Use spaces rather than tabs, or # TabTimmy will complain! # White space self.SetViewWhiteSpace(False) # Don't view white space # EOL: Since we are loading/saving ourselves, and the # strings will always have \n's in them, set the STC to # edit them that way. self.SetEOLMode(wx.stc.STC_EOL_LF) self.SetViewEOL(False) # No right-edge mode indicator self.SetEdgeMode(stc.STC_EDGE_NONE) # Setup a margin to hold fold markers self.SetMarginType(2, stc.STC_MARGIN_SYMBOL) self.SetMarginMask(2, stc.STC_MASK_FOLDERS) self.SetMarginSensitive(2, True) self.SetMarginWidth(2, 12) # and now set up the fold markers self.MarkerDefine(stc.STC_MARKNUM_FOLDEREND, stc.STC_MARK_BOXPLUSCONNECTED, "white", "black") self.MarkerDefine(stc.STC_MARKNUM_FOLDEROPENMID, stc.STC_MARK_BOXMINUSCONNECTED, "white", "black") self.MarkerDefine(stc.STC_MARKNUM_FOLDERMIDTAIL, stc.STC_MARK_TCORNER, "white", "black") self.MarkerDefine(stc.STC_MARKNUM_FOLDERTAIL, stc.STC_MARK_LCORNER, "white", "black") self.MarkerDefine(stc.STC_MARKNUM_FOLDERSUB, stc.STC_MARK_VLINE, "white", "black") self.MarkerDefine(stc.STC_MARKNUM_FOLDER, stc.STC_MARK_BOXPLUS, "white", "black") self.MarkerDefine(stc.STC_MARKNUM_FOLDEROPEN, stc.STC_MARK_BOXMINUS, "white", "black") # Global default style if wx.Platform == '__WXMSW__': self.StyleSetSpec(stc.STC_STYLE_DEFAULT, 'fore:#000000,back:#FFFFFF,face:Courier New,size:9') elif wx.Platform == '__WXMAC__': # TODO: if this looks fine on Linux too, remove the Mac-specific case # and use this whenever OS != MSW. self.StyleSetSpec(stc.STC_STYLE_DEFAULT, 'fore:#000000,back:#FFFFFF,face:Monaco') else: self.StyleSetSpec(stc.STC_STYLE_DEFAULT, 'fore:#000000,back:#FFFFFF,face:Courier,size:9') # Clear styles and revert to default. self.StyleClearAll() # Following style specs only indicate differences from default. # The rest remains unchanged. # Line numbers in margin self.StyleSetSpec(wx.stc.STC_STYLE_LINENUMBER,'fore:#000000,back:#99A9C2') # Highlighted brace self.StyleSetSpec(wx.stc.STC_STYLE_BRACELIGHT,'fore:#00009D,back:#FFFF00') # Unmatched brace self.StyleSetSpec(wx.stc.STC_STYLE_BRACEBAD,'fore:#00009D,back:#FF0000') # Indentation guide self.StyleSetSpec(wx.stc.STC_STYLE_INDENTGUIDE, "fore:#CDCDCD") # Python styles self.StyleSetSpec(wx.stc.STC_P_DEFAULT, 'fore:#000000') # Comments self.StyleSetSpec(wx.stc.STC_P_COMMENTLINE, 'fore:#008000,back:#F0FFF0') self.StyleSetSpec(wx.stc.STC_P_COMMENTBLOCK, 'fore:#008000,back:#F0FFF0') # Numbers self.StyleSetSpec(wx.stc.STC_P_NUMBER, 'fore:#008080') # Strings and characters self.StyleSetSpec(wx.stc.STC_P_STRING, 'fore:#800080') self.StyleSetSpec(wx.stc.STC_P_CHARACTER, 'fore:#800080') # Keywords self.StyleSetSpec(wx.stc.STC_P_WORD, 'fore:#000080,bold') # Triple quotes self.StyleSetSpec(wx.stc.STC_P_TRIPLE, 'fore:#800080,back:#FFFFEA') self.StyleSetSpec(wx.stc.STC_P_TRIPLEDOUBLE, 'fore:#800080,back:#FFFFEA') # Class names self.StyleSetSpec(wx.stc.STC_P_CLASSNAME, 'fore:#0000FF,bold') # Function names self.StyleSetSpec(wx.stc.STC_P_DEFNAME, 'fore:#008080,bold') # Operators self.StyleSetSpec(wx.stc.STC_P_OPERATOR, 'fore:#800000,bold') # Identifiers. I leave this as not bold because everything seems # to be an identifier if it doesn't match the above criterae self.StyleSetSpec(wx.stc.STC_P_IDENTIFIER, 'fore:#000000') # Caret color self.SetCaretForeground("BLUE") # Selection background self.SetSelBackground(1, '#66CCFF') self.SetSelBackground(True, wx.SystemSettings_GetColour(wx.SYS_COLOUR_HIGHLIGHT)) self.SetSelForeground(True, wx.SystemSettings_GetColour(wx.SYS_COLOUR_HIGHLIGHTTEXT)) def RegisterModifiedEvent(self, eventHandler): self.Bind(wx.stc.EVT_STC_CHANGE, eventHandler) except ImportError: class DemoCodeEditor(wx.TextCtrl): def __init__(self, parent): wx.TextCtrl.__init__(self, parent, -1, style = wx.TE_MULTILINE | wx.HSCROLL | wx.TE_RICH2 | wx.TE_NOHIDESEL) def RegisterModifiedEvent(self, eventHandler): self.Bind(wx.EVT_TEXT, eventHandler) def SetReadOnly(self, flag): self.SetEditable(not flag) # NOTE: STC already has this method def GetText(self): return self.GetValue() def GetPositionFromLine(self, line): return self.XYToPosition(0,line) def GotoLine(self, line): pos = self.GetPositionFromLine(line) self.SetInsertionPoint(pos) self.ShowPosition(pos) def SelectLine(self, line): start = self.GetPositionFromLine(line) end = start + self.GetLineLength(line) self.SetSelection(start, end) #--------------------------------------------------------------------------- # Constants for module versions modOriginal = 0 modModified = 1 modDefault = modOriginal #--------------------------------------------------------------------------- class DemoCodePanel(wx.Panel): """Panel for the 'Demo Code' tab""" def __init__(self, parent, mainFrame): wx.Panel.__init__(self, parent, size=(1,1)) if 'wxMSW' in wx.PlatformInfo: self.Hide() self.mainFrame = mainFrame self.editor = DemoCodeEditor(self) self.editor.RegisterModifiedEvent(self.OnCodeModified) self.btnSave = wx.Button(self, -1, "Save Changes") self.btnRestore = wx.Button(self, -1, "Delete Modified") self.btnSave.Enable(False) self.btnSave.Bind(wx.EVT_BUTTON, self.OnSave) self.btnRestore.Bind(wx.EVT_BUTTON, self.OnRestore) self.radioButtons = { modOriginal: wx.RadioButton(self, -1, "Original", style = wx.RB_GROUP), modModified: wx.RadioButton(self, -1, "Modified") } self.controlBox = wx.BoxSizer(wx.HORIZONTAL) self.controlBox.Add(wx.StaticText(self, -1, "Active Version:"), 0, wx.RIGHT | wx.LEFT | wx.ALIGN_CENTER_VERTICAL, 5) for modID, radioButton in self.radioButtons.items(): self.controlBox.Add(radioButton, 0, wx.EXPAND | wx.RIGHT, 5) radioButton.modID = modID # makes it easier for the event handler radioButton.Bind(wx.EVT_RADIOBUTTON, self.OnRadioButton) self.controlBox.Add(self.btnSave, 0, wx.RIGHT, 5) self.controlBox.Add(self.btnRestore, 0) self.box = wx.BoxSizer(wx.VERTICAL) self.box.Add(self.controlBox, 0, wx.EXPAND) self.box.Add(wx.StaticLine(self), 0, wx.EXPAND) self.box.Add(self.editor, 1, wx.EXPAND) self.box.Fit(self) self.SetSizer(self.box) # Loads a demo from a DemoModules object def LoadDemo(self, demoModules): self.demoModules = demoModules if (modDefault == modModified) and demoModules.Exists(modModified): demoModules.SetActive(modModified) else: demoModules.SetActive(modOriginal) self.radioButtons[demoModules.GetActiveID()].Enable(True) self.ActiveModuleChanged() def ActiveModuleChanged(self): self.LoadDemoSource(self.demoModules.GetSource()) self.UpdateControlState() self.mainFrame.pnl.Freeze() self.ReloadDemo() self.mainFrame.pnl.Thaw() def LoadDemoSource(self, source): self.editor.Clear() self.editor.SetValue(source) self.JumpToLine(0) self.btnSave.Enable(False) def JumpToLine(self, line, highlight=False): self.editor.GotoLine(line) self.editor.SetFocus() if highlight: self.editor.SelectLine(line) def UpdateControlState(self): active = self.demoModules.GetActiveID() # Update the radio/restore buttons for moduleID in self.radioButtons: btn = self.radioButtons[moduleID] if moduleID == active: btn.SetValue(True) else: btn.SetValue(False) if self.demoModules.Exists(moduleID): btn.Enable(True) if moduleID == modModified: self.btnRestore.Enable(True) else: btn.Enable(False) if moduleID == modModified: self.btnRestore.Enable(False) def OnRadioButton(self, event): radioSelected = event.GetEventObject() modSelected = radioSelected.modID if modSelected != self.demoModules.GetActiveID(): busy = wx.BusyInfo("Reloading demo module...") self.demoModules.SetActive(modSelected) self.ActiveModuleChanged() def ReloadDemo(self): if self.demoModules.name != __name__: self.mainFrame.RunModule() def OnCodeModified(self, event): self.btnSave.Enable(self.editor.IsModified()) def OnSave(self, event): if self.demoModules.Exists(modModified): if self.demoModules.GetActiveID() == modOriginal: overwriteMsg = "You are about to overwrite an already existing modified copy\n" + \ "Do you want to continue?" dlg = wx.MessageDialog(self, overwriteMsg, "wxPython Demo", wx.YES_NO | wx.NO_DEFAULT| wx.ICON_EXCLAMATION) result = dlg.ShowModal() if result == wx.ID_NO: return dlg.Destroy() self.demoModules.SetActive(modModified) modifiedFilename = GetModifiedFilename(self.demoModules.name) # Create the demo directory if one doesn't already exist if not os.path.exists(GetModifiedDirectory()): try: os.makedirs(GetModifiedDirectory()) if not os.path.exists(GetModifiedDirectory()): wx.LogMessage("BUG: Created demo directory but it still doesn't exist") raise AssertionError except: wx.LogMessage("Error creating demo directory: %s" % GetModifiedDirectory()) return else: wx.LogMessage("Created directory for modified demos: %s" % GetModifiedDirectory()) # Save f = open(modifiedFilename, "wt") source = self.editor.GetText() try: f.write(source) finally: f.close() busy = wx.BusyInfo("Reloading demo module...") self.demoModules.LoadFromFile(modModified, modifiedFilename) self.ActiveModuleChanged() self.mainFrame.SetTreeModified(True) def OnRestore(self, event): # Handles the "Delete Modified" button modifiedFilename = GetModifiedFilename(self.demoModules.name) self.demoModules.Delete(modModified) os.unlink(modifiedFilename) # Delete the modified copy busy = wx.BusyInfo("Reloading demo module...") self.ActiveModuleChanged() self.mainFrame.SetTreeModified(False) #--------------------------------------------------------------------------- def opj(path): """Convert paths to the platform-specific separator""" st = apply(os.path.join, tuple(path.split('/'))) # HACK: on Linux, a leading / gets lost... if path.startswith('/'): st = '/' + st return st def GetDataDir(): """ Return the standard location on this platform for application data """ sp = wx.StandardPaths.Get() return sp.GetUserDataDir() def GetModifiedDirectory(): """ Returns the directory where modified versions of the demo files are stored """ return os.path.join(GetDataDir(), "modified") def GetModifiedFilename(name): """ Returns the filename of the modified version of the specified demo """ if not name.endswith(".py"): name = name + ".py" return os.path.join(GetModifiedDirectory(), name) def GetOriginalFilename(name): """ Returns the filename of the original version of the specified demo """ if not name.endswith(".py"): name = name + ".py" return name def DoesModifiedExist(name): """Returns whether the specified demo has a modified copy""" if os.path.exists(GetModifiedFilename(name)): return True else: return False def GetConfig(): if not os.path.exists(GetDataDir()): os.makedirs(GetDataDir()) config = wx.FileConfig( localFilename=os.path.join(GetDataDir(), "options")) return config def SearchDemo(name, keyword): """ Returns whether a demo contains the search keyword or not. """ fid = open(GetOriginalFilename(name), "rt") fullText = fid.read() fid.close() if type(keyword) is unicode: fullText = fullText.decode('iso8859-1') if fullText.find(keyword) >= 0: return True return False #--------------------------------------------------------------------------- class ModuleDictWrapper: """Emulates a module with a dynamically compiled __dict__""" def __init__(self, dict): self.dict = dict def __getattr__(self, name): if name in self.dict: return self.dict[name] else: raise AttributeError class DemoModules: """ Dynamically manages the original/modified versions of a demo module """ def __init__(self, name): self.modActive = -1 self.name = name # (dict , source , filename , description , error information ) # ( 0 , 1 , 2 , 3 , 4 ) self.modules = [[None, "" , "" , "<original>" , None], [None, "" , "" , "<modified>" , None]] # load original module self.LoadFromFile(modOriginal, GetOriginalFilename(name)) self.SetActive(modOriginal) # load modified module (if one exists) if DoesModifiedExist(name): self.LoadFromFile(modModified, GetModifiedFilename(name)) def LoadFromFile(self, modID, filename): self.modules[modID][2] = filename file = open(filename, "rt") self.LoadFromSource(modID, file.read()) file.close() def LoadFromSource(self, modID, source): self.modules[modID][1] = source self.LoadDict(modID) def LoadDict(self, modID): if self.name != __name__: source = self.modules[modID][1] description = self.modules[modID][2] description = description.encode(sys.getfilesystemencoding()) try: self.modules[modID][0] = {} code = compile(source, description, "exec") exec code in self.modules[modID][0] except: self.modules[modID][4] = DemoError(sys.exc_info()) self.modules[modID][0] = None else: self.modules[modID][4] = None def SetActive(self, modID): if modID != modOriginal and modID != modModified: raise LookupError else: self.modActive = modID def GetActive(self): dict = self.modules[self.modActive][0] if dict is None: return None else: return ModuleDictWrapper(dict) def GetActiveID(self): return self.modActive def GetSource(self, modID = None): if modID is None: modID = self.modActive return self.modules[modID][1] def GetFilename(self, modID = None): if modID is None: modID = self.modActive return self.modules[self.modActive][2] def GetErrorInfo(self, modID = None): if modID is None: modID = self.modActive return self.modules[self.modActive][4] def Exists(self, modID): return self.modules[modID][1] != "" def UpdateFile(self, modID = None): """Updates the file from which a module was loaded with (possibly updated) source""" if modID is None: modID = self.modActive source = self.modules[modID][1] filename = self.modules[modID][2] try: file = open(filename, "wt") file.write(source) finally: file.close() def Delete(self, modID): if self.modActive == modID: self.SetActive(0) self.modules[modID][0] = None self.modules[modID][1] = "" self.modules[modID][2] = "" #--------------------------------------------------------------------------- class DemoError: """Wraps and stores information about the current exception""" def __init__(self, exc_info): import copy excType, excValue = exc_info[:2] # traceback list entries: (filename, line number, function name, text) self.traceback = traceback.extract_tb(exc_info[2]) # --Based on traceback.py::format_exception_only()-- if type(excType) == types.ClassType: self.exception_type = excType.__name__ else: self.exception_type = excType # If it's a syntax error, extra information needs # to be added to the traceback if excType is SyntaxError: try: msg, (filename, lineno, self.offset, line) = excValue except: pass else: if not filename: filename = "<string>" line = line.strip() self.traceback.append( (filename, lineno, "", line) ) excValue = msg try: self.exception_details = str(excValue) except: self.exception_details = "<unprintable %s object>" & type(excValue).__name__ del exc_info def __str__(self): ret = "Type %s \n \ Traceback: %s \n \ Details : %s" % ( str(self.exception_type), str(self.traceback), self.exception_details ) return ret #--------------------------------------------------------------------------- class DemoErrorPanel(wx.Panel): """Panel put into the demo tab when the demo fails to run due to errors""" def __init__(self, parent, codePanel, demoError, log): wx.Panel.__init__(self, parent, -1)#, style=wx.NO_FULL_REPAINT_ON_RESIZE) self.codePanel = codePanel self.nb = parent self.log = log self.box = wx.BoxSizer(wx.VERTICAL) # Main Label self.box.Add(wx.StaticText(self, -1, "An error has occurred while trying to run the demo") , 0, wx.ALIGN_CENTER | wx.TOP, 10) # Exception Information boxInfo = wx.StaticBox(self, -1, "Exception Info" ) boxInfoSizer = wx.StaticBoxSizer(boxInfo, wx.VERTICAL ) # Used to center the grid within the box boxInfoGrid = wx.FlexGridSizer(0, 2, 0, 0) textFlags = wx.ALIGN_RIGHT | wx.LEFT | wx.RIGHT | wx.TOP boxInfoGrid.Add(wx.StaticText(self, -1, "Type: "), 0, textFlags, 5 ) boxInfoGrid.Add(wx.StaticText(self, -1, str(demoError.exception_type)) , 0, textFlags, 5 ) boxInfoGrid.Add(wx.StaticText(self, -1, "Details: ") , 0, textFlags, 5 ) boxInfoGrid.Add(wx.StaticText(self, -1, demoError.exception_details) , 0, textFlags, 5 ) boxInfoSizer.Add(boxInfoGrid, 0, wx.ALIGN_CENTRE | wx.ALL, 5 ) self.box.Add(boxInfoSizer, 0, wx.ALIGN_CENTER | wx.ALL, 5) # Set up the traceback list # This one automatically resizes last column to take up remaining space from ListCtrl import TestListCtrl self.list = TestListCtrl(self, -1, style=wx.LC_REPORT | wx.SUNKEN_BORDER) self.list.Bind(wx.EVT_LEFT_DCLICK, self.OnDoubleClick) self.list.Bind(wx.EVT_LIST_ITEM_SELECTED, self.OnItemSelected) self.list.InsertColumn(0, "Filename") self.list.InsertColumn(1, "Line", wx.LIST_FORMAT_RIGHT) self.list.InsertColumn(2, "Function") self.list.InsertColumn(3, "Code") self.InsertTraceback(self.list, demoError.traceback) self.list.SetColumnWidth(0, wx.LIST_AUTOSIZE) self.list.SetColumnWidth(2, wx.LIST_AUTOSIZE) self.box.Add(wx.StaticText(self, -1, "Traceback:") , 0, wx.ALIGN_CENTER | wx.TOP, 5) self.box.Add(self.list, 1, wx.GROW | wx.ALIGN_CENTER | wx.ALL, 5) self.box.Add(wx.StaticText(self, -1, "Entries from the demo module are shown in blue\n" + "Double-click on them to go to the offending line") , 0, wx.ALIGN_CENTER | wx.BOTTOM, 5) self.box.Fit(self) self.SetSizer(self.box) def InsertTraceback(self, list, traceback): #Add the traceback data for x in range(len(traceback)): data = traceback[x] list.InsertStringItem(x, os.path.basename(data[0])) # Filename list.SetStringItem(x, 1, str(data[1])) # Line list.SetStringItem(x, 2, str(data[2])) # Function list.SetStringItem(x, 3, str(data[3])) # Code # Check whether this entry is from the demo module if data[0] == "<original>" or data[0] == "<modified>": # FIXME: make more generalised self.list.SetItemData(x, int(data[1])) # Store line number for easy access # Give it a blue colour item = self.list.GetItem(x) item.SetTextColour(wx.BLUE) self.list.SetItem(item) else: self.list.SetItemData(x, -1) # Editor can't jump into this one's code def OnItemSelected(self, event): # This occurs before OnDoubleClick and can be used to set the # currentItem. OnDoubleClick doesn't get a wxListEvent.... self.currentItem = event.m_itemIndex event.Skip() def OnDoubleClick(self, event): # If double-clicking on a demo's entry, jump to the line number line = self.list.GetItemData(self.currentItem) if line != -1: self.nb.SetSelection(1) # Switch to the code viewer tab wx.CallAfter(self.codePanel.JumpToLine, line-1, True) event.Skip() #--------------------------------------------------------------------------- class DemoTaskBarIcon(wx.TaskBarIcon): TBMENU_RESTORE = wx.NewId() TBMENU_CLOSE = wx.NewId() TBMENU_CHANGE = wx.NewId() TBMENU_REMOVE = wx.NewId() def __init__(self, frame): wx.TaskBarIcon.__init__(self) self.frame = frame # Set the image icon = self.MakeIcon(images.getWXPdemoImage()) self.SetIcon(icon, "wxPython Demo") self.imgidx = 1 # bind some events self.Bind(wx.EVT_TASKBAR_LEFT_DCLICK, self.OnTaskBarActivate) self.Bind(wx.EVT_MENU, self.OnTaskBarActivate, id=self.TBMENU_RESTORE) self.Bind(wx.EVT_MENU, self.OnTaskBarClose, id=self.TBMENU_CLOSE) self.Bind(wx.EVT_MENU, self.OnTaskBarChange, id=self.TBMENU_CHANGE) self.Bind(wx.EVT_MENU, self.OnTaskBarRemove, id=self.TBMENU_REMOVE) def CreatePopupMenu(self): """ This method is called by the base class when it needs to popup the menu for the default EVT_RIGHT_DOWN event. Just create the menu how you want it and return it from this function, the base class takes care of the rest. """ menu = wx.Menu() menu.Append(self.TBMENU_RESTORE, "Restore wxPython Demo") menu.Append(self.TBMENU_CLOSE, "Close wxPython Demo") menu.AppendSeparator() menu.Append(self.TBMENU_CHANGE, "Change the TB Icon") menu.Append(self.TBMENU_REMOVE, "Remove the TB Icon") return menu def MakeIcon(self, img): """ The various platforms have different requirements for the icon size... """ if "wxMSW" in wx.PlatformInfo: img = img.Scale(16, 16) elif "wxGTK" in wx.PlatformInfo: img = img.Scale(22, 22) # wxMac can be any size upto 128x128, so leave the source img alone.... icon = wx.IconFromBitmap(img.ConvertToBitmap() ) return icon def OnTaskBarActivate(self, evt): if self.frame.IsIconized(): self.frame.Iconize(False) if not self.frame.IsShown(): self.frame.Show(True) self.frame.Raise() def OnTaskBarClose(self, evt): wx.CallAfter(self.frame.Close) def OnTaskBarChange(self, evt): names = [ "WXPdemo", "Mondrian", "Pencil", "Carrot" ] name = names[self.imgidx] getFunc = getattr(images, "get%sImage" % name) self.imgidx += 1 if self.imgidx >= len(names): self.imgidx = 0 icon = self.MakeIcon(getFunc()) self.SetIcon(icon, "This is a new icon: " + name) def OnTaskBarRemove(self, evt): self.RemoveIcon() #--------------------------------------------------------------------------- class wxPythonDemo(wx.Frame): overviewText = "wxPython Overview" def __init__(self, parent, title): wx.Frame.__init__(self, parent, -1, title, size = (970, 720), style=wx.DEFAULT_FRAME_STYLE | wx.NO_FULL_REPAINT_ON_RESIZE) self.SetMinSize((640,480)) # Use a panel under the AUI panes in order to work around a # bug on PPC Macs pnl = wx.Panel(self) self.pnl = pnl self.mgr = wx.aui.AuiManager() self.mgr.SetManagedWindow(pnl) self.loaded = False self.cwd = os.getcwd() self.curOverview = "" self.demoPage = None self.codePage = None self.shell = None self.firstTime = True self.finddlg = None icon = images.getWXPdemoIcon() self.SetIcon(icon) try: self.tbicon = DemoTaskBarIcon(self) except: self.tbicon = None self.otherWin = None self.Bind(wx.EVT_IDLE, self.OnIdle) self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) self.Bind(wx.EVT_ICONIZE, self.OnIconfiy) self.Bind(wx.EVT_MAXIMIZE, self.OnMaximize) self.Centre(wx.BOTH) self.CreateStatusBar(1, wx.ST_SIZEGRIP) self.dying = False self.skipLoad = False def EmptyHandler(evt): pass self.ReadConfigurationFile() # Create a Notebook self.nb = wx.Notebook(pnl, -1, style=wx.CLIP_CHILDREN) imgList = wx.ImageList(16, 16) for png in ["overview", "code", "demo"]: bmp = images.catalog[png].getBitmap() imgList.Add(bmp) self.nb.AssignImageList(imgList) self.BuildMenuBar() self.finddata = wx.FindReplaceData() self.finddata.SetFlags(wx.FR_DOWN) # Create a TreeCtrl leftPanel = wx.Panel(pnl, style=wx.TAB_TRAVERSAL|wx.CLIP_CHILDREN) self.treeMap = {} self.searchItems = {} self.tree = wxPythonDemoTree(leftPanel) self.filter = wx.SearchCtrl(leftPanel, style=wx.TE_PROCESS_ENTER) self.filter.ShowCancelButton(True) self.filter.Bind(wx.EVT_TEXT, self.RecreateTree) self.filter.Bind(wx.EVT_SEARCHCTRL_CANCEL_BTN, self.OnSearchCancelBtn) self.filter.Bind(wx.EVT_TEXT_ENTER, self.OnSearch) searchMenu = wx.Menu() item = searchMenu.AppendRadioItem(-1, "Sample Name") self.Bind(wx.EVT_MENU, self.OnSearchMenu, item) item = searchMenu.AppendRadioItem(-1, "Sample Content") self.Bind(wx.EVT_MENU, self.OnSearchMenu, item) self.filter.SetMenu(searchMenu) self.RecreateTree() self.tree.SetExpansionState(self.expansionState) self.tree.Bind(wx.EVT_TREE_ITEM_EXPANDED, self.OnItemExpanded) self.tree.Bind(wx.EVT_TREE_ITEM_COLLAPSED, self.OnItemCollapsed) self.tree.Bind(wx.EVT_TREE_SEL_CHANGED, self.OnSelChanged) self.tree.Bind(wx.EVT_LEFT_DOWN, self.OnTreeLeftDown) # Set up a wx.html.HtmlWindow on the Overview Notebook page # we put it in a panel first because there seems to be a # refresh bug of some sort (wxGTK) when it is directly in # the notebook... if 0: # the old way self.ovr = wx.html.HtmlWindow(self.nb, -1, size=(400, 400)) self.nb.AddPage(self.ovr, self.overviewText, imageId=0) else: # hopefully I can remove this hacky code soon, see SF bug #216861 panel = wx.Panel(self.nb, -1, style=wx.CLIP_CHILDREN) self.ovr = wx.html.HtmlWindow(panel, -1, size=(400, 400)) self.nb.AddPage(panel, self.overviewText, imageId=0) def OnOvrSize(evt, ovr=self.ovr): ovr.SetSize(evt.GetSize()) panel.Bind(wx.EVT_SIZE, OnOvrSize) panel.Bind(wx.EVT_ERASE_BACKGROUND, EmptyHandler) if "gtk2" in wx.PlatformInfo: self.ovr.SetStandardFonts() self.SetOverview(self.overviewText, mainOverview) # Set up a log window self.log = wx.TextCtrl(pnl, -1, style = wx.TE_MULTILINE|wx.TE_READONLY|wx.HSCROLL) if wx.Platform == "__WXMAC__": self.log.MacCheckSpelling(False) # Set the wxWindows log target to be this textctrl #wx.Log_SetActiveTarget(wx.LogTextCtrl(self.log)) # But instead of the above we want to show how to use our own wx.Log class wx.Log_SetActiveTarget(MyLog(self.log)) # for serious debugging #wx.Log_SetActiveTarget(wx.LogStderr()) #wx.Log_SetTraceMask(wx.TraceMessages) self.Bind(wx.EVT_ACTIVATE, self.OnActivate) wx.GetApp().Bind(wx.EVT_ACTIVATE_APP, self.OnAppActivate) # add the windows to the splitter and split it. leftBox = wx.BoxSizer(wx.VERTICAL) leftBox.Add(self.tree, 1, wx.EXPAND) leftBox.Add(wx.StaticText(leftPanel, label = "Filter Demos:"), 0, wx.TOP|wx.LEFT, 5) leftBox.Add(self.filter, 0, wx.EXPAND|wx.ALL, 5) leftPanel.SetSizer(leftBox) # select initial items self.nb.SetSelection(0) self.tree.SelectItem(self.root) # Load 'Main' module self.LoadDemo(self.overviewText) self.loaded = True # select some other initial module? if len(sys.argv) > 1: arg = sys.argv[1] if arg.endswith('.py'): arg = arg[:-3] selectedDemo = self.treeMap.get(arg, None) if selectedDemo: self.tree.SelectItem(selectedDemo) self.tree.EnsureVisible(selectedDemo) # Use the aui manager to set up everything self.mgr.AddPane(self.nb, wx.aui.AuiPaneInfo().CenterPane().Name("Notebook")) self.mgr.AddPane(leftPanel, wx.aui.AuiPaneInfo(). Left().Layer(2).BestSize((240, -1)). MinSize((160, -1)). Floatable(ALLOW_AUI_FLOATING).FloatingSize((240, 700)). Caption("wxPython Demos"). CloseButton(False). Name("DemoTree")) self.mgr.AddPane(self.log, wx.aui.AuiPaneInfo(). Bottom().BestSize((-1, 150)). MinSize((-1, 60)). Floatable(ALLOW_AUI_FLOATING).FloatingSize((500, 160)). Caption("Demo Log Messages"). CloseButton(False). Name("LogWindow")) self.auiConfigurations[DEFAULT_PERSPECTIVE] = self.mgr.SavePerspective() self.mgr.Update() self.mgr.SetFlags(self.mgr.GetFlags() ^ wx.aui.AUI_MGR_TRANSPARENT_DRAG) def ReadConfigurationFile(self): self.auiConfigurations = {} self.expansionState = [0, 1] config = GetConfig() val = config.Read('ExpansionState') if val: self.expansionState = eval(val) val = config.Read('AUIPerspectives') if val: self.auiConfigurations = eval(val) def BuildMenuBar(self): # Make a File menu self.mainmenu = wx.MenuBar() menu = wx.Menu() item = menu.Append(-1, '&Redirect Output', 'Redirect print statements to a window', wx.ITEM_CHECK) self.Bind(wx.EVT_MENU, self.OnToggleRedirect, item) exitItem = wx.MenuItem(menu, -1, 'E&xit\tCtrl-Q', 'Get the heck outta here!') exitItem.SetBitmap(images.catalog['exit'].getBitmap()) menu.AppendItem(exitItem) self.Bind(wx.EVT_MENU, self.OnFileExit, exitItem) wx.App.SetMacExitMenuItemId(exitItem.GetId()) self.mainmenu.Append(menu, '&File') # Make a Demo menu menu = wx.Menu() for indx, item in enumerate(_treeList[:-1]): menuItem = wx.MenuItem(menu, -1, item[0]) submenu = wx.Menu() for childItem in item[1]: mi = submenu.Append(-1, childItem) self.Bind(wx.EVT_MENU, self.OnDemoMenu, mi) menuItem.SetBitmap(images.catalog[_demoPngs[indx+1]].getBitmap()) menuItem.SetSubMenu(submenu) menu.AppendItem(menuItem) self.mainmenu.Append(menu, '&Demo') # Make an Option menu # If we've turned off floatable panels then this menu is not needed if ALLOW_AUI_FLOATING: menu = wx.Menu() auiPerspectives = self.auiConfigurations.keys() auiPerspectives.sort() perspectivesMenu = wx.Menu() item = wx.MenuItem(perspectivesMenu, -1, DEFAULT_PERSPECTIVE, "Load startup default perspective", wx.ITEM_RADIO) self.Bind(wx.EVT_MENU, self.OnAUIPerspectives, item) perspectivesMenu.AppendItem(item) for indx, key in enumerate(auiPerspectives): if key == DEFAULT_PERSPECTIVE: continue item = wx.MenuItem(perspectivesMenu, -1, key, "Load user perspective %d"%indx, wx.ITEM_RADIO) perspectivesMenu.AppendItem(item) self.Bind(wx.EVT_MENU, self.OnAUIPerspectives, item) menu.AppendMenu(wx.ID_ANY, "&AUI Perspectives", perspectivesMenu) self.perspectives_menu = perspectivesMenu item = wx.MenuItem(menu, -1, 'Save Perspective', 'Save AUI perspective') item.SetBitmap(images.catalog['saveperspective'].getBitmap()) menu.AppendItem(item) self.Bind(wx.EVT_MENU, self.OnSavePerspective, item) item = wx.MenuItem(menu, -1, 'Delete Perspective', 'Delete AUI perspective') item.SetBitmap(images.catalog['deleteperspective'].getBitmap()) menu.AppendItem(item) self.Bind(wx.EVT_MENU, self.OnDeletePerspective, item) menu.AppendSeparator() item = wx.MenuItem(menu, -1, 'Restore Tree Expansion', 'Restore the initial tree expansion state') item.SetBitmap(images.catalog['expansion'].getBitmap()) menu.AppendItem(item) self.Bind(wx.EVT_MENU, self.OnTreeExpansion, item) self.mainmenu.Append(menu, '&Options') # Make a Help menu menu = wx.Menu() findItem = wx.MenuItem(menu, -1, '&Find\tCtrl-F', 'Find in the Demo Code') findItem.SetBitmap(images.catalog['find'].getBitmap()) if 'wxMac' not in wx.PlatformInfo: findNextItem = wx.MenuItem(menu, -1, 'Find &Next\tF3', 'Find Next') else: findNextItem = wx.MenuItem(menu, -1, 'Find &Next\tCtrl-G', 'Find Next') findNextItem.SetBitmap(images.catalog['findnext'].getBitmap()) menu.AppendItem(findItem) menu.AppendItem(findNextItem) menu.AppendSeparator() shellItem = wx.MenuItem(menu, -1, 'Open Py&Shell Window\tF5', 'An interactive interpreter window with the demo app and frame objects in the namesapce') shellItem.SetBitmap(images.catalog['pyshell'].getBitmap()) menu.AppendItem(shellItem) inspToolItem = wx.MenuItem(menu, -1, 'Open &Widget Inspector\tF6', 'A tool that lets you browse the live widgets and sizers in an application') inspToolItem.SetBitmap(images.catalog['inspect'].getBitmap()) menu.AppendItem(inspToolItem) if 'wxMac' not in wx.PlatformInfo: menu.AppendSeparator() helpItem = menu.Append(-1, '&About wxPython Demo', 'wxPython RULES!!!') wx.App.SetMacAboutMenuItemId(helpItem.GetId()) self.Bind(wx.EVT_MENU, self.OnOpenShellWindow, shellItem) self.Bind(wx.EVT_MENU, self.OnOpenWidgetInspector, inspToolItem) self.Bind(wx.EVT_MENU, self.OnHelpAbout, helpItem) self.Bind(wx.EVT_MENU, self.OnHelpFind, findItem) self.Bind(wx.EVT_MENU, self.OnFindNext, findNextItem) self.Bind(wx.EVT_FIND, self.OnFind) self.Bind(wx.EVT_FIND_NEXT, self.OnFind) self.Bind(wx.EVT_FIND_CLOSE, self.OnFindClose) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateFindItems, findItem) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateFindItems, findNextItem) self.mainmenu.Append(menu, '&Help') self.SetMenuBar(self.mainmenu) if False: # This is another way to set Accelerators, in addition to # using the '\t<key>' syntax in the menu items. aTable = wx.AcceleratorTable([(wx.ACCEL_ALT, ord('X'), exitItem.GetId()), (wx.ACCEL_CTRL, ord('H'), helpItem.GetId()), (wx.ACCEL_CTRL, ord('F'), findItem.GetId()), (wx.ACCEL_NORMAL, wx.WXK_F3, findnextItem.GetId()), (wx.ACCEL_NORMAL, wx.WXK_F9, shellItem.GetId()), ]) self.SetAcceleratorTable(aTable) #--------------------------------------------- def RecreateTree(self, evt=None): # Catch the search type (name or content) searchMenu = self.filter.GetMenu().GetMenuItems() fullSearch = searchMenu[1].IsChecked() if evt: if fullSearch: # Do not`scan all the demo files for every char # the user input, use wx.EVT_TEXT_ENTER instead return expansionState = self.tree.GetExpansionState() current = None item = self.tree.GetSelection() if item: prnt = self.tree.GetItemParent(item) if prnt: current = (self.tree.GetItemText(item), self.tree.GetItemText(prnt)) self.tree.Freeze() self.tree.DeleteAllItems() self.root = self.tree.AddRoot("wxPython Overview") self.tree.SetItemImage(self.root, 0) self.tree.SetItemPyData(self.root, 0) treeFont = self.tree.GetFont() catFont = self.tree.GetFont() # The old native treectrl on MSW has a bug where it doesn't # draw all of the text for an item if the font is larger than # the default. It seems to be clipping the item's label as if # it was the size of the same label in the default font. if 'wxMSW' not in wx.PlatformInfo or wx.GetApp().GetComCtl32Version() >= 600: treeFont.SetPointSize(treeFont.GetPointSize()+2) treeFont.SetWeight(wx.BOLD) catFont.SetWeight(wx.BOLD) self.tree.SetItemFont(self.root, treeFont) firstChild = None selectItem = None filter = self.filter.GetValue() count = 0 for category, items in _treeList: count += 1 if filter: if fullSearch: items = self.searchItems[category] else: items = [item for item in items if filter.lower() in item.lower()] if items: child = self.tree.AppendItem(self.root, category, image=count) self.tree.SetItemFont(child, catFont) self.tree.SetItemPyData(child, count) if not firstChild: firstChild = child for childItem in items: image = count if DoesModifiedExist(childItem): image = len(_demoPngs) theDemo = self.tree.AppendItem(child, childItem, image=image) self.tree.SetItemPyData(theDemo, count) self.treeMap[childItem] = theDemo if current and (childItem, category) == current: selectItem = theDemo self.tree.Expand(self.root) if firstChild: self.tree.Expand(firstChild) if filter: self.tree.ExpandAll() elif expansionState: self.tree.SetExpansionState(expansionState) if selectItem: self.skipLoad = True self.tree.SelectItem(selectItem) self.skipLoad = False self.tree.Thaw() self.searchItems = {} def OnSearchMenu(self, event): # Catch the search type (name or content) searchMenu = self.filter.GetMenu().GetMenuItems() fullSearch = searchMenu[1].IsChecked() if fullSearch: self.OnSearch() else: self.RecreateTree() def OnSearch(self, event=None): value = self.filter.GetValue() if not value: self.RecreateTree() return wx.BeginBusyCursor() for category, items in _treeList: self.searchItems[category] = [] for childItem in items: if SearchDemo(childItem, value): self.searchItems[category].append(childItem) wx.EndBusyCursor() self.RecreateTree() def OnSearchCancelBtn(self, event): self.filter.SetValue('') self.OnSearch() def SetTreeModified(self, modified): item = self.tree.GetSelection() if modified: image = len(_demoPngs) else: image = self.tree.GetItemPyData(item) self.tree.SetItemImage(item, image) def WriteText(self, text): if text[-1:] == '\n': text = text[:-1] wx.LogMessage(text) def write(self, txt): self.WriteText(txt) #--------------------------------------------- def OnItemExpanded(self, event): item = event.GetItem() wx.LogMessage("OnItemExpanded: %s" % self.tree.GetItemText(item)) event.Skip() #--------------------------------------------- def OnItemCollapsed(self, event): item = event.GetItem() wx.LogMessage("OnItemCollapsed: %s" % self.tree.GetItemText(item)) event.Skip() #--------------------------------------------- def OnTreeLeftDown(self, event): # reset the overview text if the tree item is clicked on again pt = event.GetPosition(); item, flags = self.tree.HitTest(pt) if item == self.tree.GetSelection(): self.SetOverview(self.tree.GetItemText(item)+" Overview", self.curOverview) event.Skip() #--------------------------------------------- def OnSelChanged(self, event): if self.dying or not self.loaded or self.skipLoad: return item = event.GetItem() itemText = self.tree.GetItemText(item) self.LoadDemo(itemText) #--------------------------------------------- def LoadDemo(self, demoName): try: wx.BeginBusyCursor() self.pnl.Freeze() os.chdir(self.cwd) self.ShutdownDemoModule() if demoName == self.overviewText: # User selected the "wxPython Overview" node # ie: _this_ module # Changing the main window at runtime not yet supported... self.demoModules = DemoModules(__name__) self.SetOverview(self.overviewText, mainOverview) self.LoadDemoSource() self.UpdateNotebook(0) else: if os.path.exists(GetOriginalFilename(demoName)): wx.LogMessage("Loading demo %s.py..." % demoName) self.demoModules = DemoModules(demoName) self.LoadDemoSource() else: self.SetOverview("wxPython", mainOverview) self.codePage = None self.UpdateNotebook(0) finally: wx.EndBusyCursor() self.pnl.Thaw() #--------------------------------------------- def LoadDemoSource(self): self.codePage = None self.codePage = DemoCodePanel(self.nb, self) self.codePage.LoadDemo(self.demoModules) #--------------------------------------------- def RunModule(self): """Runs the active module""" module = self.demoModules.GetActive() self.ShutdownDemoModule() overviewText = "" # o The RunTest() for all samples must now return a window that can # be palced in a tab in the main notebook. # o If an error occurs (or has occurred before) an error tab is created. if module is not None: wx.LogMessage("Running demo module...") if hasattr(module, "overview"): overviewText = module.overview try: self.demoPage = module.runTest(self, self.nb, self) except: self.demoPage = DemoErrorPanel(self.nb, self.codePage, DemoError(sys.exc_info()), self) bg = self.nb.GetThemeBackgroundColour() if bg: self.demoPage.SetBackgroundColour(bg) assert self.demoPage is not None, "runTest must return a window!" else: # There was a previous error in compiling or exec-ing self.demoPage = DemoErrorPanel(self.nb, self.codePage, self.demoModules.GetErrorInfo(), self) self.SetOverview(self.demoModules.name + " Overview", overviewText) if self.firstTime: # change to the demo page the first time a module is run self.UpdateNotebook(2) self.firstTime = False else: # otherwise just stay on the same tab in case the user has changed to another one self.UpdateNotebook() #--------------------------------------------- def ShutdownDemoModule(self): if self.demoPage: # inform the window that it's time to quit if it cares if hasattr(self.demoPage, "ShutdownDemo"): self.demoPage.ShutdownDemo() wx.YieldIfNeeded() # in case the page has pending events self.demoPage = None #--------------------------------------------- def UpdateNotebook(self, select = -1): nb = self.nb debug = False self.pnl.Freeze() def UpdatePage(page, pageText): pageExists = False pagePos = -1 for i in range(nb.GetPageCount()): if nb.GetPageText(i) == pageText: pageExists = True pagePos = i break if page: if not pageExists: # Add a new page nb.AddPage(page, pageText, imageId=nb.GetPageCount()) if debug: wx.LogMessage("DBG: ADDED %s" % pageText) else: if nb.GetPage(pagePos) != page: # Reload an existing page nb.DeletePage(pagePos) nb.InsertPage(pagePos, page, pageText, imageId=pagePos) if debug: wx.LogMessage("DBG: RELOADED %s" % pageText) else: # Excellent! No redraw/flicker if debug: wx.LogMessage("DBG: SAVED from reloading %s" % pageText) elif pageExists: # Delete a page nb.DeletePage(pagePos) if debug: wx.LogMessage("DBG: DELETED %s" % pageText) else: if debug: wx.LogMessage("DBG: STILL GONE - %s" % pageText) if select == -1: select = nb.GetSelection() UpdatePage(self.codePage, "Demo Code") UpdatePage(self.demoPage, "Demo") if select >= 0 and select < nb.GetPageCount(): nb.SetSelection(select) self.pnl.Thaw() #--------------------------------------------- def SetOverview(self, name, text): self.curOverview = text lead = text[:6] if lead != '<html>' and lead != '<HTML>': text = '<br>'.join(text.split('\n')) if wx.USE_UNICODE: text = text.decode('iso8859_1') self.ovr.SetPage(text) self.nb.SetPageText(0, name) #--------------------------------------------- # Menu methods def OnFileExit(self, *event): self.Close() def OnToggleRedirect(self, event): app = wx.GetApp() if event.Checked(): app.RedirectStdio() print "Print statements and other standard output will now be directed to this window." else: app.RestoreStdio() print "Print statements and other standard output will now be sent to the usual location." def OnAUIPerspectives(self, event): perspective = self.perspectives_menu.GetLabel(event.GetId()) self.mgr.LoadPerspective(self.auiConfigurations[perspective]) self.mgr.Update() def OnSavePerspective(self, event): dlg = wx.TextEntryDialog(self, "Enter a name for the new perspective:", "AUI Configuration") dlg.SetValue(("Perspective %d")%(len(self.auiConfigurations)+1)) if dlg.ShowModal() != wx.ID_OK: return perspectiveName = dlg.GetValue() menuItems = self.perspectives_menu.GetMenuItems() for item in menuItems: if item.GetLabel() == perspectiveName: wx.MessageBox("The selected perspective name:\n\n%s\n\nAlready exists."%perspectiveName, "Error", style=wx.ICON_ERROR) return item = wx.MenuItem(self.perspectives_menu, -1, dlg.GetValue(), "Load user perspective %d"%(len(self.auiConfigurations)+1), wx.ITEM_RADIO) self.Bind(wx.EVT_MENU, self.OnAUIPerspectives, item) self.perspectives_menu.AppendItem(item) item.Check(True) self.auiConfigurations.update({dlg.GetValue(): self.mgr.SavePerspective()}) def OnDeletePerspective(self, event): menuItems = self.perspectives_menu.GetMenuItems()[1:] lst = [] loadDefault = False for item in menuItems: lst.append(item.GetLabel()) dlg = wx.MultiChoiceDialog(self, "Please select the perspectives\nyou would like to delete:", "Delete AUI Perspectives", lst) if dlg.ShowModal() == wx.ID_OK: selections = dlg.GetSelections() strings = [lst[x] for x in selections] for sel in strings: self.auiConfigurations.pop(sel) item = menuItems[lst.index(sel)] if item.IsChecked(): loadDefault = True self.perspectives_menu.GetMenuItems()[0].Check(True) self.perspectives_menu.DeleteItem(item) lst.remove(sel) if loadDefault: self.mgr.LoadPerspective(self.auiConfigurations[DEFAULT_PERSPECTIVE]) self.mgr.Update() def OnTreeExpansion(self, event): self.tree.SetExpansionState(self.expansionState) def OnHelpAbout(self, event): from About import MyAboutBox about = MyAboutBox(self) about.ShowModal() about.Destroy() def OnHelpFind(self, event): if self.finddlg != None: return self.nb.SetSelection(1) self.finddlg = wx.FindReplaceDialog(self, self.finddata, "Find", wx.FR_NOMATCHCASE | wx.FR_NOWHOLEWORD) self.finddlg.Show(True) def OnUpdateFindItems(self, evt): evt.Enable(self.finddlg == None) def OnFind(self, event): editor = self.codePage.editor self.nb.SetSelection(1) end = editor.GetLastPosition() textstring = editor.GetRange(0, end).lower() findstring = self.finddata.GetFindString().lower() backward = not (self.finddata.GetFlags() & wx.FR_DOWN) if backward: start = editor.GetSelection()[0] loc = textstring.rfind(findstring, 0, start) else: start = editor.GetSelection()[1] loc = textstring.find(findstring, start) if loc == -1 and start != 0: # string not found, start at beginning if backward: start = end loc = textstring.rfind(findstring, 0, start) else: start = 0 loc = textstring.find(findstring, start) if loc == -1: dlg = wx.MessageDialog(self, 'Find String Not Found', 'Find String Not Found in Demo File', wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() if self.finddlg: if loc == -1: self.finddlg.SetFocus() return else: self.finddlg.Destroy() self.finddlg = None editor.ShowPosition(loc) editor.SetSelection(loc, loc + len(findstring)) def OnFindNext(self, event): if self.finddata.GetFindString(): self.OnFind(event) else: self.OnHelpFind(event) def OnFindClose(self, event): event.GetDialog().Destroy() self.finddlg = None def OnOpenShellWindow(self, evt): if self.shell: # if it already exists then just make sure it's visible s = self.shell if s.IsIconized(): s.Iconize(False) s.Raise() else: # Make a PyShell window from wx import py namespace = { 'wx' : wx, 'app' : wx.GetApp(), 'frame' : self, } self.shell = py.shell.ShellFrame(None, locals=namespace) self.shell.SetSize((640,480)) self.shell.Show() # Hook the close event of the main frame window so that we # close the shell at the same time if it still exists def CloseShell(evt): if self.shell: self.shell.Close() evt.Skip() self.Bind(wx.EVT_CLOSE, CloseShell) def OnOpenWidgetInspector(self, evt): # Activate the widget inspection tool from wx.lib.inspection import InspectionTool if not InspectionTool().initialized: InspectionTool().Init() # Find a widget to be selected in the tree. Use either the # one under the cursor, if any, or this frame. wnd = wx.FindWindowAtPointer() if not wnd: wnd = self InspectionTool().Show(wnd, True) #--------------------------------------------- def OnCloseWindow(self, event): self.dying = True self.demoPage = None self.codePage = None self.mainmenu = None if self.tbicon is not None: self.tbicon.Destroy() config = GetConfig() config.Write('ExpansionState', str(self.tree.GetExpansionState())) config.Write('AUIPerspectives', str(self.auiConfigurations)) config.Flush() self.Destroy() #--------------------------------------------- def OnIdle(self, event): if self.otherWin: self.otherWin.Raise() self.demoPage = self.otherWin self.otherWin = None #--------------------------------------------- def ShowTip(self): config = GetConfig() showTipText = config.Read("tips") if showTipText: showTip, index = eval(showTipText) else: showTip, index = (1, 0) if showTip: tp = wx.CreateFileTipProvider(opj("data/tips.txt"), index) ##tp = MyTP(0) showTip = wx.ShowTip(self, tp) index = tp.GetCurrentTip() config.Write("tips", str( (showTip, index) )) config.Flush() #--------------------------------------------- def OnDemoMenu(self, event): try: selectedDemo = self.treeMap[self.mainmenu.GetLabel(event.GetId())] except: selectedDemo = None if selectedDemo: self.tree.SelectItem(selectedDemo) self.tree.EnsureVisible(selectedDemo) #--------------------------------------------- def OnIconfiy(self, evt): wx.LogMessage("OnIconfiy: %s" % evt.Iconized()) evt.Skip() #--------------------------------------------- def OnMaximize(self, evt): wx.LogMessage("OnMaximize") evt.Skip() #--------------------------------------------- def OnActivate(self, evt): wx.LogMessage("OnActivate: %s" % evt.GetActive()) evt.Skip() #--------------------------------------------- def OnAppActivate(self, evt): wx.LogMessage("OnAppActivate: %s" % evt.GetActive()) evt.Skip() #--------------------------------------------------------------------------- #--------------------------------------------------------------------------- class MySplashScreen(wx.SplashScreen): def __init__(self): bmp = wx.Image(opj("bitmaps/splash.png")).ConvertToBitmap() wx.SplashScreen.__init__(self, bmp, wx.SPLASH_CENTRE_ON_SCREEN | wx.SPLASH_TIMEOUT, 5000, None, -1) self.Bind(wx.EVT_CLOSE, self.OnClose) self.fc = wx.FutureCall(2000, self.ShowMain) def OnClose(self, evt): # Make sure the default handler runs too so this window gets # destroyed evt.Skip() self.Hide() # if the timer is still running then go ahead and show the # main frame now if self.fc.IsRunning(): self.fc.Stop() self.ShowMain() def ShowMain(self): frame = wxPythonDemo(None, "wxPython: (A Demonstration)") frame.Show() if self.fc.IsRunning(): self.Raise() wx.CallAfter(frame.ShowTip) #--------------------------------------------------------------------------- from wx.lib.mixins.treemixin import ExpansionState if USE_CUSTOMTREECTRL: import wx.lib.customtreectrl as CT TreeBaseClass = CT.CustomTreeCtrl else: TreeBaseClass = wx.TreeCtrl class wxPythonDemoTree(ExpansionState, TreeBaseClass): def __init__(self, parent): TreeBaseClass.__init__(self, parent, style=wx.TR_DEFAULT_STYLE| wx.TR_HAS_VARIABLE_ROW_HEIGHT) self.BuildTreeImageList() if USE_CUSTOMTREECTRL: self.SetSpacing(10) self.SetWindowStyle(self.GetWindowStyle() & ~wx.TR_LINES_AT_ROOT) def AppendItem(self, parent, text, image=-1, wnd=None): if USE_CUSTOMTREECTRL: item = TreeBaseClass.AppendItem(self, parent, text, image=image, wnd=wnd) else: item = TreeBaseClass.AppendItem(self, parent, text, image=image) return item def BuildTreeImageList(self): imgList = wx.ImageList(16, 16) for png in _demoPngs: imgList.Add(images.catalog[png].getBitmap()) # add the image for modified demos. imgList.Add(images.catalog["custom"].getBitmap()) self.AssignImageList(imgList) def GetItemIdentity(self, item): return self.GetPyData(item) #--------------------------------------------------------------------------- class MyApp(wx.App): def OnInit(self): """ Create and show the splash screen. It will then create and show the main frame when it is time to do so. """ wx.SystemOptions.SetOptionInt("mac.window-plain-transition", 1) self.SetAppName("wxPyDemo") # For debugging #self.SetAssertMode(wx.PYAPP_ASSERT_DIALOG) # Normally when using a SplashScreen you would create it, show # it and then continue on with the applicaiton's # initialization, finally creating and showing the main # application window(s). In this case we have nothing else to # do so we'll delay showing the main frame until later (see # ShowMain above) so the users can see the SplashScreen effect. splash = MySplashScreen() splash.Show() return True #--------------------------------------------------------------------------- def main(): try: demoPath = os.path.dirname(__file__) os.chdir(demoPath) except: pass app = MyApp(False) app.MainLoop() #--------------------------------------------------------------------------- mainOverview = """<html><body> <h2>wxPython</h2> <p> wxPython is a <b>GUI toolkit</b> for the Python programming language. It allows Python programmers to create programs with a robust, highly functional graphical user interface, simply and easily. It is implemented as a Python extension module (native code) that wraps the popular wxWindows cross platform GUI library, which is written in C++. <p> Like Python and wxWindows, wxPython is <b>Open Source</b> which means that it is free for anyone to use and the source code is available for anyone to look at and modify. Or anyone can contribute fixes or enhancements to the project. <p> wxPython is a <b>cross-platform</b> toolkit. This means that the same program will run on multiple platforms without modification. Currently supported platforms are 32-bit Microsoft Windows, most Unix or unix-like systems, and Macintosh OS X. Since the language is Python, wxPython programs are <b>simple, easy</b> to write and easy to understand. <p> <b>This demo</b> is not only a collection of test cases for wxPython, but is also designed to help you learn about and how to use wxPython. Each sample is listed in the tree control on the left. When a sample is selected in the tree then a module is loaded and run (usually in a tab of this notebook,) and the source code of the module is loaded in another tab for you to browse and learn from. """ #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- if __name__ == '__main__': __name__ = 'Main' main() #----------------------------------------------------------------------------
[ "RD@c3d73ce0-8a6f-49c7-b76d-6d57e0e08775" ]
RD@c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
be0ea72d88b880a4422662c70a42cd30c368ac6d
12a5b72982291ac7c074210afc2c9dfe2c389709
/online_judges/Codeforces/271/B/code.py
186d8f4e41e3bac292297f62acafa3f9103c1638
[]
no_license
krantirk/Algorithms-and-code-for-competitive-programming.
9b8c214758024daa246a1203e8f863fc76cfe847
dcf29bf976024a9d1873eadc192ed59d25db968d
refs/heads/master
2020-09-22T08:35:19.352751
2019-05-21T11:56:39
2019-05-21T11:56:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
def bin_search(x, lista): meio = (len(lista))/2 inicio = 0 fim = len(lista) while inicio < fim: if lista[meio] < x: inicio = meio + 1 elif lista[meio] > x: fim = meio else: return meio meio = (inicio + fim) / 2 return fim n = int(raw_input()) a = map(int,raw_input().split()) m = int(raw_input()) q = map(int,raw_input().split()) aux = [] soma_ac = 0 for e in a: soma_ac += e aux.append(soma_ac) for e in q: print bin_search(e,aux) + 1
56af6b193a092ebfd4f16874bd4ad48af30c534d
f92486e7a546112e9f783a612724463d60de33b8
/line/bin/easy_install
8ea5fd711863e1254b4048dae009777e2ed05a7a
[]
no_license
omatsu0/chatbot
4f0a2bc3093f37068da7ffe685bfdb242b3535ad
dad854d40a0494300897376a22d0c123cada8a60
refs/heads/master
2022-12-20T15:51:58.457332
2020-09-12T08:58:20
2020-09-12T08:58:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
260
#!/Users/sss/Desktop/chatbot/line/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
3e58da2d6dd384b3d47fb8eba862f3472aae4e64
4aa6b7c3a5ae3817007e09ad1289c1e9f7a355c0
/剑指offer/superJumpFloor.py
a4fe01802a8158a111a6560953ab7e0e854d2e99
[]
no_license
liuhuipy/Algorithm-python
8f5143e06cf5fa2de2c178e3ba9e5fd12b9bcdf7
4e92a0b874f956d1df84d1493f870a5d1f06cde2
refs/heads/master
2021-06-03T04:19:01.946149
2021-01-08T07:44:40
2021-01-08T07:44:40
99,838,105
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'liuhui' ''' 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。 ''' class Solution: def jumpFloorII(self, number): # write code here ans = 1 if number >= 2: for i in range(number-1): ans = ans * 2 return ans if __name__ == '__main__': solut = Solution() res = solut.jumpFloorII(10) print(res)
81464fa1fbd45533b5eca02d118798b2f058e87a
54fdaa05078261180cbd7cc94c132527725b189d
/test/crab_ElectronPlots_newskim_eraF_70110.py
6738548559045b4ba874512b81343c4f103a78bd
[]
no_license
psiddire/ZeeAnalyzer
e488d3b65108ca923bd459cda41e61f3bd746a5b
d94b1fd4f4de19f5cdeaf405e4c0d6629b889888
refs/heads/master
2021-09-07T12:20:36.554253
2018-02-22T18:31:52
2018-02-22T18:31:52
113,574,372
0
0
null
null
null
null
UTF-8
Python
false
false
1,110
py
# from https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCRAB3Tutorial from CRABClient.UserUtilities import config, getUsernameFromSiteDB config = config() config.General.requestName = 'plots_Zee_newskim_eraF_70110' config.General.workArea = 'crab_projects' config.General.transferOutputs = True config.General.transferLogs = True config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'runElectronPlots_newSkim_eraF.py' config.Data.inputDataset = '/DoubleEG/Run2017F-PromptReco-v1/MINIAOD' config.Data.inputDBS = 'global' config.Data.splitting = 'LumiBased' config.Data.unitsPerJob = 1000 config.Data.lumiMask = 'eraF.txt' config.Data.runRange = '305044-306126' #config.Data.totalUnits = 1 config.Data.outLFNDirBase = '/store/user/%s/' % (getUsernameFromSiteDB()) config.Data.publication = True config.Data.outputDatasetTag = 'Zee_ElectronPlots_newskim_eraF_70110' config.Site.storageSite = 'T2_CH_CERN' #all the configuration parameters https://twiki.cern.ch/twiki/bin/view/CMSPublic/CRAB3ConfigurationFile #all crab commands https://twiki.cern.ch/twiki/bin/view/CMSPublic/CRAB3Commands
10b1c6ebba927444ab24d8082e2cd7350b1d7db2
6abc9b7e59aa2bc77d16bf0579bc2319db4fa20c
/miniverse/dataset/models.py
8a5b1134e6babae592efd06546ed04c4a3163e1a
[ "MIT" ]
permissive
IQSS/old-miniverse
b05823891fafd40a5b12f18894f3dff19404fe37
daabcad2fbd6cc29cc05f0091f51157e4fe9e46a
refs/heads/master
2021-01-21T03:15:54.392430
2014-06-27T16:05:55
2014-06-27T16:05:55
19,803,423
0
2
null
null
null
null
UTF-8
Python
false
false
5,210
py
import os from hashlib import md5 from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.db import models from django.template.defaultfilters import slugify from dataverse.models import Dataverse from core.models import TimeStampedModel class DatasetState(models.Model): """ Version states for the DatasetVersion object DRAFT, IN REVIEW, RELEASED, ARCHIVED, DEACCESSIONED """ name = models.CharField(max_length=70) sort_order = models.IntegerField() slug = models.SlugField(blank=True) def save(self, *args, **kwargs): self.slug = slugify(self.name) super(DatasetState, self).save(*args, **kwargs) def __unicode__(self): return self.name class Meta: ordering = ('sort_order', 'name',) class Dataset(TimeStampedModel): """Expects a .zip file upload Modify in the future for shapefiles loaded separately """ name = models.CharField(max_length=255) dataverse = models.ForeignKey(Dataverse) version_state = models.ForeignKey(DatasetState) version_number = models.IntegerField(default=1) minor_version_number = models.IntegerField(default=0) description = models.TextField(blank=True) md5 = models.CharField(max_length=40, blank=True, db_index=True, help_text='auto-filled on save') #def get_geographic_metadata(self): #GeographicMetadata.objects.select_related('datafile').all() def get_dv_api_params(self): if not self.id: return {} p = { 'dataset_id' : self.id\ , 'dataset_version_id' : self.version_number\ , 'dataset_name' : self.name\ , 'dataset_description' : self.description\ } p.update(self.dataverse.get_dv_api_params()) return p def save(self, *args, **kwargs): if not self.id: super(Dataset, self).save(*args, **kwargs) self.md5 = md5('%s%s' % (self.id, self.name)).hexdigest() super(Dataset, self).save(*args, **kwargs) def natural_key(self): return '%s-%s' % (self.name, self.dataverse) def view_dataset_list(self): lnk = reverse('view_dataset_list', kwargs={}) return '<a href="%s">view dataset</a>' % lnk view_dataset_list.allow_tags = True def get_files(self): return self.datafile_set.all() def __unicode__(self): return self.name class Meta: ordering = ('name', ) #verbose_name = 'COA File Load Log' class DataFile(TimeStampedModel): """Used for working with a selected shapefile, specifically using the extensions specified in WORLDMAP_MANDATORY_IMPORT_EXTENSIONS """ dataset_file = models.FileField(upload_to='datafile/%Y/%m/%d')# max_length=255) dataset = models.ForeignKey(Dataset) has_gis_data = models.BooleanField(default=False) file_checksum = models.CharField(max_length=40, blank=True, db_index=True, help_text='auto-filled on save') #mime_type = models.CharField(max_length=255, blank=True) md5 = models.CharField(max_length=40, blank=True, db_index=True, help_text='auto-filled on save') def get_geographic_metadata(self): return self.geographicmetadata_set.filter(links_working=True) def get_dv_api_params(self, request=None): """ Params to respond to API call from GeoConnect """ if not self.id: return {} # Params from Datafile p = { 'datafile_id' : self.id\ , 'datafile_label': self.get_basename()\ #, 'has_gis_data' : self.has_gis_data ,'filename' : self.get_basename()\ ,'filesize' : self.dataset_file.size\ ,'created' : str(self.created)\ ,'datafile_type': '--file-type--'\ ,'datafile_expected_md5_checksum': self.file_checksum\ } # Full url to file, if available if request: p['datafile_download_url'] = request.build_absolute_uri(self.dataset_file.url) # Add params from owning Dataset and Dataverse p.update(self.dataset.get_dv_api_params()) return p def get_mapit_link(self): return 'http://127.0.0.1:8000/shapefile/examine-dvn-file/%s/%s' % (self.dataset.id, self.id) def dataverse_name(self): return self.dataset.dataverse.name dataverse_name.allow_tags = True def get_basename(self): return os.path.basename(self.dataset_file.name) def save(self, *args, **kwargs): if not self.id: super(DataFile, self).save(*args, **kwargs) self.md5 = md5('%s%s' % (self.id, self.dataset_file)).hexdigest() self.file_checksum = self.md5 # fake, need to add real md5 super(DataFile, self).save(*args, **kwargs) def __unicode__(self): return self.get_basename() class Meta: ordering = ('dataset_file',)
81955d510e5da2c20cc455a0595ac502556be959
d402525075cec8d8b1564eadf03024bcc45ada57
/map_api/app.py
82162354a9dad36de96f5d9e316d705302a8b7bd
[]
no_license
DevHerles/mapa_telesalud_api
3d5e0589b88e7178d10edeb798e13d1745d33062
de361f9857500b594cc16abffed7987777911673
refs/heads/master
2023-06-26T00:16:05.174034
2021-07-20T20:03:51
2021-07-20T22:37:15
387,901,562
0
0
null
null
null
null
UTF-8
Python
false
false
4,924
py
"""APP FastAPI app definition, initialization and definition of routes """ # # Installed # # import uvicorn from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from fastapi import status as statuscode # # Package # # from .models import * from .exceptions import * from .repositories import PeopleRepository, SymptomsRepository from .middlewares import request_handler from .settings import api_settings as settings from .middlewares import request_handler __all__ = ("app", "run") app = FastAPI(title=settings.title) app.middleware("http")(request_handler) origins = [ "http://localhost", "http://localhost:8080", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/imei/{imei}", response_model=PersonRead, description="Get a single person by its unique IMEI", responses=get_exception_responses(PersonNotFoundException), tags=["people"]) def _get_person(imei: str): return PeopleRepository.getByImei(imei) @app.get("/people", response_model=PeopleRead, description="List all the available persons", tags=["people"]) def _list_people(): # TODO Filters return PeopleRepository.list() @app.get("/people/{person_id}", response_model=PersonRead, description="Get a single person by its unique ID", responses=get_exception_responses(PersonNotFoundException), tags=["people"]) def _get_person(person_id: str): return PeopleRepository.get(person_id) @app.post("/people", description="Create a new person", response_model=PersonRead, status_code=statuscode.HTTP_201_CREATED, responses=get_exception_responses(PersonAlreadyExistsException), tags=["people"]) def _create_person(create: PersonCreate): return PeopleRepository.create(create) @app.patch( "/people/{person_id}", description="Update a single person by its unique ID, providing the fields to update", status_code=statuscode.HTTP_204_NO_CONTENT, responses=get_exception_responses(PersonNotFoundException, PersonAlreadyExistsException), tags=["people"]) def _update_person(person_id: str, update: PersonUpdate): PeopleRepository.update(person_id, update) # Symtoms @app.get("/person-symptoms/{person_id}", response_model=SymptomsRead, description="List all the available symptoms", tags=["symptoms"]) def _list_person_symptoms(person_id: str): # TODO Filters print(person_id) return SymptomsRepository.list(person_id) @app.get("/symptoms", response_model=SymptomsRead, description="List all the available symptoms", tags=["symptoms"]) def _list_symptoms(): # TODO Filters return SymptomsRepository.list() @app.get("/symptoms/{symptom_id}", response_model=SymptomRead, description="Get a single symptom by its unique ID", responses=get_exception_responses(SymptomNotFoundException), tags=["symptoms"]) def _get_symptom(symptom_id: str): return SymptomRepository.get(symptom_id) @app.post("/symptoms", description="Create a new symptom", response_model=SymptomRead, status_code=statuscode.HTTP_201_CREATED, responses=get_exception_responses(SymptomAlreadyExistsException), tags=["symptoms"]) def _create_symptom(create: SymptomCreate): return SymptomsRepository.create(create) @app.patch( "/symptoms/{symptoms_id}", description="Update a single symptom by its unique ID, providing the fields to update", status_code=statuscode.HTTP_204_NO_CONTENT, responses=get_exception_responses(SymptomNotFoundException, SymptomAlreadyExistsException), tags=["symptoms"]) def _update_symptom(symptom_id: str, update: SymptomUpdate): SymptomRepository.update(symptom_id, update) @app.delete("/symptoms/{symptom_id}", description="Delete a single symptom by its unique ID", status_code=statuscode.HTTP_204_NO_CONTENT, responses=get_exception_responses(SymptomNotFoundException), tags=["symptoms"]) def _delete_symptom(symptom_id: str): SymptomsRepository.delete(symptom_id) @app.delete("/people/{person_id}", description="Delete a single person by its unique ID", status_code=statuscode.HTTP_204_NO_CONTENT, responses=get_exception_responses(PersonNotFoundException), tags=["people"]) def _delete_person(person_id: str): PeopleRepository.delete(person_id) def run(): """Run the API using Uvicorn""" uvicorn.run(app, host=settings.host, port=settings.port, log_level=settings.log_level.lower())
1c4ffdb96e1a0dc36fd40511b6292b9147273e6f
d8b93e08fdf884ebed89a38831e26e3753efea72
/recalculation.py
5aaa0153de63bce8736dbec8ec35e696db6b8732
[]
no_license
wolfbolin/Everyclass-Occam
68398ece9f5812aa1a0a31946e98181d559cc7ec
de347014c4237c88e99207fa05cb7fecb5325d1d
refs/heads/master
2022-12-14T08:25:30.484056
2020-04-27T07:30:26
2020-04-27T07:30:26
156,236,558
2
1
null
2022-12-08T03:37:45
2018-11-05T15:08:01
Python
UTF-8
Python
false
false
768
py
# coding=utf-8 import Util import Room import Config import Course import Student import Teacher import Preprocess if __name__ == "__main__": config = Config.load_config("./Config") # 重新计算所有学期数据 for semester in config["schedule"]: Util.print_blue("当前计算学期: %s" % semester) # 重新计算对象信息 Room.update(config, semester, config["schedule"][semester]) Course.update(config, semester, config["schedule"][semester]) Student.update(config, semester, config["schedule"][semester]) Teacher.update(config, semester, config["schedule"][semester]) # 重新完成数据预处理 Preprocess.lesson_data_oc(config, semester) Preprocess.search_data(config)
7d77d28bee25dffd3bf67e2bbdf27ef676d79359
7d5075610b6358dd9fd57132c8876d533813807c
/bigtempo/processors/tests/simple_task_tests.py
cfe810b0931571c775d7c144cde8515c3a29a7ed
[ "MIT" ]
permissive
rhlobo/bigtempo3
152e1f76c94939e0a2d69e264e0b66f24f007731
848eda5f07f7e61f7659bac335726c567b41083e
refs/heads/main
2023-07-05T02:08:15.749854
2021-08-11T21:35:38
2021-08-11T21:35:38
394,079,060
0
0
null
null
null
null
UTF-8
Python
false
false
1,986
py
# -*- coding: utf-8 -*- import unittest from mockito import mock, when, any as anyx, verify import bigtempo.processors.simple_task as task class TestModuleFunctions(unittest.TestCase): def test_processingtask_factory_should_return_processing_task(self): instance = mock() registration = mock() dependencies = mock() result = task.factory(instance, registration, dependencies) assert isinstance(result, task.SimpleDatasourceTask) class TestSimpleDatasourceTask(unittest.TestCase): def test_process_should_process_dependencies(self): instance = mock() registration = mock() dependencies = { 'a': mock(task.SimpleDatasourceTask), 'b': mock(task.SimpleDatasourceTask), 'c': mock(task.SimpleDatasourceTask), } when(dependencies['a']).process(...).thenReturn(None) when(dependencies['b']).process(...).thenReturn(None) when(dependencies['c']).process(...).thenReturn(None) task.SimpleDatasourceTask(instance, registration, dependencies).process() verify(dependencies['a'], times=1).process() verify(dependencies['b'], times=1).process() verify(dependencies['c'], times=1).process() verify(instance, times=1).evaluate(anyx(dict)) def test_process_should_receive_dependencies_process_results_as_context(self): class DatasourceMock(): def evaluate(self, context): assert isinstance(context, dict) assert len(context) == 2 assert context['a'] == '1' assert context['b'] == '2' dependencies = { 'a': mock(task.SimpleDatasourceTask), 'b': mock(task.SimpleDatasourceTask), } when(dependencies['a']).process().thenReturn('1') when(dependencies['b']).process().thenReturn('2') task.SimpleDatasourceTask(DatasourceMock(), mock(), dependencies).process()
43fc2fd2befd914500fcf5023d14f97c2716dcb8
083373c1cb0a78bb0a9a2879c65f6079035cb5e9
/django_env/bin/django-admin
d196305a5710761171142c474e0b401219ebb208
[]
no_license
swadhikar/django
ae407ac2dc02739cf35d5eabad89ea7fc26d25fd
9f2c3cb88ef42af65f4f3a230e34346fe7100c73
refs/heads/master
2020-04-21T09:08:58.131848
2019-05-01T10:46:21
2019-05-01T10:46:21
169,439,735
1
0
null
null
null
null
UTF-8
Python
false
false
292
#!/home/swadhi/django/django_env/bin/python3 # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
86e215f91e3353583812af8653c235bb5db5369c
aafba3346120db47cf87ba67dee21848576c337f
/tests/block_tools.py
1bc6e256219f8866d8bd71df7f25f5befba26fea
[ "Apache-2.0" ]
permissive
beetseeds/beet-blockchain
9f7fa9e221364bb865a8b9f60455afc82b4a022b
e5d93f1f9041c48dd0c38416d845c8675bf22738
refs/heads/main
2023-07-14T21:30:18.089664
2021-09-10T01:40:00
2021-09-10T01:40:00
401,708,903
5
3
Apache-2.0
2021-09-05T09:26:51
2021-08-31T13:14:50
Python
UTF-8
Python
false
false
80,044
py
import copy import logging import os import random import shutil import sys import tempfile import time from argparse import Namespace from dataclasses import replace from pathlib import Path from typing import Callable, Dict, List, Optional, Tuple, Any from blspy import AugSchemeMPL, G1Element, G2Element, PrivateKey from chiabip158 import PyBIP158 from beet.cmds.init_funcs import create_all_ssl, create_default_beet_config from beet.full_node.bundle_tools import ( best_solution_generator_from_template, detect_potential_template_generator, simple_solution_generator, ) from beet.util.errors import Err from beet.full_node.generator import setup_generator_args from beet.full_node.mempool_check_conditions import GENERATOR_MOD from beet.plotting.create_plots import create_plots from beet.consensus.block_creation import unfinished_block_to_full_block from beet.consensus.block_record import BlockRecord from beet.consensus.block_rewards import calculate_base_farmer_reward, calculate_pool_reward from beet.consensus.blockchain_interface import BlockchainInterface from beet.consensus.coinbase import create_puzzlehash_for_pk, create_farmer_coin, create_pool_coin from beet.consensus.constants import ConsensusConstants from beet.consensus.default_constants import DEFAULT_CONSTANTS from beet.consensus.deficit import calculate_deficit from beet.consensus.full_block_to_block_record import block_to_block_record from beet.consensus.make_sub_epoch_summary import next_sub_epoch_summary from beet.consensus.cost_calculator import NPCResult, calculate_cost_of_program from beet.consensus.pot_iterations import ( calculate_ip_iters, calculate_iterations_quality, calculate_sp_interval_iters, calculate_sp_iters, is_overflow_block, ) from beet.consensus.vdf_info_computation import get_signage_point_vdf_info from beet.full_node.signage_point import SignagePoint from beet.plotting.plot_tools import PlotInfo, load_plots, parse_plot_info from beet.types.blockchain_format.classgroup import ClassgroupElement from beet.types.blockchain_format.coin import Coin, hash_coin_list from beet.types.blockchain_format.foliage import Foliage, FoliageBlockData, FoliageTransactionBlock, TransactionsInfo from beet.types.blockchain_format.pool_target import PoolTarget from beet.types.blockchain_format.proof_of_space import ProofOfSpace from beet.types.blockchain_format.reward_chain_block import RewardChainBlockUnfinished from beet.types.blockchain_format.sized_bytes import bytes32 from beet.types.blockchain_format.slots import ( ChallengeChainSubSlot, InfusedChallengeChainSubSlot, RewardChainSubSlot, SubSlotProofs, ) from beet.types.blockchain_format.sub_epoch_summary import SubEpochSummary from beet.types.blockchain_format.vdf import VDFInfo, VDFProof from beet.types.condition_with_args import ConditionWithArgs from beet.types.end_of_slot_bundle import EndOfSubSlotBundle from beet.types.full_block import FullBlock from beet.types.generator_types import BlockGenerator, CompressorArg from beet.types.spend_bundle import SpendBundle from beet.types.unfinished_block import UnfinishedBlock from beet.types.name_puzzle_condition import NPC from beet.util.bech32m import encode_puzzle_hash from beet.util.block_cache import BlockCache from beet.util.condition_tools import ConditionOpcode, conditions_by_opcode from beet.util.config import load_config, save_config from beet.util.hash import std_hash from beet.util.ints import uint8, uint16, uint32, uint64, uint128 from beet.util.keychain import Keychain, bytes_to_mnemonic from beet.util.merkle_set import MerkleSet from beet.util.prev_transaction_block import get_prev_transaction_block from beet.util.path import mkdir from beet.util.vdf_prover import get_vdf_info_and_proof from tests.wallet_tools import WalletTool from beet.wallet.derive_keys import ( master_sk_to_farmer_sk, master_sk_to_local_sk, master_sk_to_pool_sk, master_sk_to_wallet_sk, ) test_constants = DEFAULT_CONSTANTS.replace( **{ "MIN_PLOT_SIZE": 18, "MIN_BLOCKS_PER_CHALLENGE_BLOCK": 12, "DIFFICULTY_STARTING": 2 ** 12, "DISCRIMINANT_SIZE_BITS": 16, "SUB_EPOCH_BLOCKS": 170, "WEIGHT_PROOF_THRESHOLD": 2, "WEIGHT_PROOF_RECENT_BLOCKS": 380, "DIFFICULTY_CONSTANT_FACTOR": 33554432, "NUM_SPS_SUB_SLOT": 16, # Must be a power of 2 "MAX_SUB_SLOT_BLOCKS": 50, "EPOCH_BLOCKS": 340, "BLOCKS_CACHE_SIZE": 340 + 3 * 50, # Coordinate with the above values "SUB_SLOT_TIME_TARGET": 600, # The target number of seconds per slot, mainnet 600 "SUB_SLOT_ITERS_STARTING": 2 ** 10, # Must be a multiple of 64 "NUMBER_ZERO_BITS_PLOT_FILTER": 1, # H(plot signature of the challenge) must start with these many zeroes "MAX_FUTURE_TIME": 3600 * 24 * 10, # Allows creating blockchains with timestamps up to 10 days in the future, for testing "COST_PER_BYTE": 1337, "MEMPOOL_BLOCK_BUFFER": 6, "INITIAL_FREEZE_END_TIMESTAMP": 1000, "NETWORK_TYPE": 1, } ) log = logging.getLogger(__name__) class BlockTools: """ Tools to generate blocks for testing. """ def __init__( self, constants: ConsensusConstants = test_constants, root_path: Optional[Path] = None, const_dict=None ): self._tempdir = None if root_path is None: self._tempdir = tempfile.TemporaryDirectory() root_path = Path(self._tempdir.name) self.root_path = root_path create_default_beet_config(root_path) self.keychain = Keychain("testing-1.8.0", True) self.keychain.delete_all_keys() self.farmer_master_sk_entropy = std_hash(b"block_tools farmer key") self.pool_master_sk_entropy = std_hash(b"block_tools pool key") self.farmer_master_sk = self.keychain.add_private_key(bytes_to_mnemonic(self.farmer_master_sk_entropy), "") self.pool_master_sk = self.keychain.add_private_key(bytes_to_mnemonic(self.pool_master_sk_entropy), "") self.farmer_pk = master_sk_to_farmer_sk(self.farmer_master_sk).get_g1() self.pool_pk = master_sk_to_pool_sk(self.pool_master_sk).get_g1() self.farmer_ph: bytes32 = create_puzzlehash_for_pk( master_sk_to_wallet_sk(self.farmer_master_sk, uint32(0)).get_g1() ) self.pool_ph: bytes32 = create_puzzlehash_for_pk( master_sk_to_wallet_sk(self.pool_master_sk, uint32(0)).get_g1() ) self.init_plots(root_path) create_all_ssl(root_path) self.all_sks: List[PrivateKey] = [sk for sk, _ in self.keychain.get_all_private_keys()] self.pool_pubkeys: List[G1Element] = [master_sk_to_pool_sk(sk).get_g1() for sk in self.all_sks] self.farmer_pubkeys: List[G1Element] = [master_sk_to_farmer_sk(sk).get_g1() for sk in self.all_sks] if len(self.pool_pubkeys) == 0 or len(self.farmer_pubkeys) == 0: raise RuntimeError("Keys not generated. Run `beet generate keys`") self.load_plots() self.local_sk_cache: Dict[bytes32, Tuple[PrivateKey, Any]] = {} self._config = load_config(self.root_path, "config.yaml") self._config["logging"]["log_stdout"] = True self._config["selected_network"] = "testnet0" for service in ["harvester", "farmer", "full_node", "wallet", "introducer", "timelord", "pool"]: self._config[service]["selected_network"] = "testnet0" save_config(self.root_path, "config.yaml", self._config) overrides = self._config["network_overrides"]["constants"][self._config["selected_network"]] updated_constants = constants.replace_str_to_bytes(**overrides) if const_dict is not None: updated_constants = updated_constants.replace(**const_dict) self.constants = updated_constants def change_config(self, new_config: Dict): self._config = new_config overrides = self._config["network_overrides"]["constants"][self._config["selected_network"]] updated_constants = self.constants.replace_str_to_bytes(**overrides) self.constants = updated_constants save_config(self.root_path, "config.yaml", self._config) def load_plots(self): _, loaded_plots, _, _ = load_plots({}, {}, self.farmer_pubkeys, self.pool_pubkeys, None, False, self.root_path) self.plots: Dict[Path, PlotInfo] = loaded_plots def init_plots(self, root_path: Path): plot_dir = get_plot_dir() mkdir(plot_dir) temp_dir = get_plot_tmp_dir() mkdir(temp_dir) num_pool_public_key_plots = 15 num_pool_address_plots = 5 args = Namespace() # Can't go much lower than 20, since plots start having no solutions and more buggy args.size = 22 # Uses many plots for testing, in order to guarantee proofs of space at every height args.num = num_pool_public_key_plots # Some plots created to a pool public key, and some to a pool puzzle hash args.buffer = 100 args.farmer_public_key = bytes(self.farmer_pk).hex() args.pool_public_key = bytes(self.pool_pk).hex() args.pool_contract_address = None args.tmp_dir = temp_dir args.tmp2_dir = plot_dir args.final_dir = plot_dir args.plotid = None args.memo = None args.buckets = 0 args.stripe_size = 2000 args.num_threads = 0 args.nobitfield = False args.exclude_final_dir = False args.list_duplicates = False test_private_keys = [ AugSchemeMPL.key_gen(std_hash(i.to_bytes(2, "big"))) for i in range(num_pool_public_key_plots + num_pool_address_plots) ] try: # No datetime in the filename, to get deterministic filenames and not re-plot create_plots( args, root_path, use_datetime=False, test_private_keys=test_private_keys[:num_pool_public_key_plots], ) # Create more plots, but to a pool address instead of public key args.pool_public_key = None args.pool_contract_address = encode_puzzle_hash(self.pool_ph, "xbt") args.num = num_pool_address_plots create_plots( args, root_path, use_datetime=False, test_private_keys=test_private_keys[num_pool_public_key_plots:], ) except KeyboardInterrupt: shutil.rmtree(plot_dir, ignore_errors=True) sys.exit(1) @property def config(self) -> Dict: return copy.deepcopy(self._config) def get_plot_signature(self, m: bytes32, plot_pk: G1Element) -> G2Element: """ Returns the plot signature of the header data. """ farmer_sk = master_sk_to_farmer_sk(self.all_sks[0]) for _, plot_info in self.plots.items(): if plot_pk == plot_info.plot_public_key: # Look up local_sk from plot to save locked memory if plot_info.prover.get_id() in self.local_sk_cache: local_master_sk, pool_pk_or_ph = self.local_sk_cache[plot_info.prover.get_id()] else: pool_pk_or_ph, _, local_master_sk = parse_plot_info(plot_info.prover.get_memo()) self.local_sk_cache[plot_info.prover.get_id()] = (local_master_sk, pool_pk_or_ph) if isinstance(pool_pk_or_ph, G1Element): include_taproot = False else: assert isinstance(pool_pk_or_ph, bytes32) include_taproot = True local_sk = master_sk_to_local_sk(local_master_sk) agg_pk = ProofOfSpace.generate_plot_public_key(local_sk.get_g1(), farmer_sk.get_g1(), include_taproot) assert agg_pk == plot_pk harv_share = AugSchemeMPL.sign(local_sk, m, agg_pk) farm_share = AugSchemeMPL.sign(farmer_sk, m, agg_pk) if include_taproot: taproot_sk: PrivateKey = ProofOfSpace.generate_taproot_sk(local_sk.get_g1(), farmer_sk.get_g1()) taproot_share: G2Element = AugSchemeMPL.sign(taproot_sk, m, agg_pk) else: taproot_share = G2Element() return AugSchemeMPL.aggregate([harv_share, farm_share, taproot_share]) raise ValueError(f"Do not have key {plot_pk}") def get_pool_key_signature(self, pool_target: PoolTarget, pool_pk: Optional[G1Element]) -> Optional[G2Element]: # Returns the pool signature for the corresponding pk. If no pk is provided, returns None. if pool_pk is None: return None for sk in self.all_sks: sk_child = master_sk_to_pool_sk(sk) if sk_child.get_g1() == pool_pk: return AugSchemeMPL.sign(sk_child, bytes(pool_target)) raise ValueError(f"Do not have key {pool_pk}") def get_farmer_wallet_tool(self) -> WalletTool: return WalletTool(self.constants, self.farmer_master_sk) def get_pool_wallet_tool(self) -> WalletTool: return WalletTool(self.constants, self.pool_master_sk) def get_consecutive_blocks( self, num_blocks: int, block_list_input: List[FullBlock] = None, farmer_reward_puzzle_hash: Optional[bytes32] = None, pool_reward_puzzle_hash: Optional[bytes32] = None, transaction_data: Optional[SpendBundle] = None, seed: bytes = b"", time_per_block: Optional[float] = None, force_overflow: bool = False, skip_slots: int = 0, # Force at least this number of empty slots before the first SB guarantee_transaction_block: bool = False, # Force that this block must be a tx block normalized_to_identity_cc_eos: bool = False, normalized_to_identity_icc_eos: bool = False, normalized_to_identity_cc_sp: bool = False, normalized_to_identity_cc_ip: bool = False, current_time: bool = False, previous_generator: CompressorArg = None, genesis_timestamp: Optional[uint64] = None, force_plot_id: Optional[bytes32] = None, ) -> List[FullBlock]: assert num_blocks > 0 if block_list_input is not None: block_list = block_list_input.copy() else: block_list = [] constants = self.constants transaction_data_included = False if time_per_block is None: time_per_block = float(constants.SUB_SLOT_TIME_TARGET) / float(constants.SLOT_BLOCKS_TARGET) if farmer_reward_puzzle_hash is None: farmer_reward_puzzle_hash = self.farmer_ph if len(block_list) == 0: if force_plot_id is not None: raise ValueError("Cannot specify plot_id for genesis block") initial_block_list_len = 0 genesis = self.create_genesis_block( constants, seed, force_overflow=force_overflow, skip_slots=skip_slots, timestamp=(uint64(int(time.time())) if genesis_timestamp is None else genesis_timestamp), ) log.info(f"Created block 0 iters: {genesis.total_iters}") num_empty_slots_added = skip_slots block_list = [genesis] num_blocks -= 1 else: initial_block_list_len = len(block_list) num_empty_slots_added = uint32(0) # Allows forcing empty slots in the beginning, for testing purposes if num_blocks == 0: return block_list height_to_hash, difficulty, blocks = load_block_list(block_list, constants) latest_block: BlockRecord = blocks[block_list[-1].header_hash] curr = latest_block while not curr.is_transaction_block: curr = blocks[curr.prev_hash] start_timestamp = curr.timestamp start_height = curr.height curr = latest_block blocks_added_this_sub_slot = 1 while not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] blocks_added_this_sub_slot += 1 finished_sub_slots_at_sp: List[EndOfSubSlotBundle] = [] # Sub-slots since last block, up to signage point finished_sub_slots_at_ip: List[EndOfSubSlotBundle] = [] # Sub-slots since last block, up to infusion point sub_slot_iters: uint64 = latest_block.sub_slot_iters # The number of iterations in one sub-slot same_slot_as_last = True # Only applies to first slot, to prevent old blocks from being added sub_slot_start_total_iters: uint128 = latest_block.ip_sub_slot_total_iters(constants) sub_slots_finished = 0 pending_ses: bool = False # Start at the last block in block list # Get the challenge for that slot while True: slot_cc_challenge, slot_rc_challenge = get_challenges( constants, blocks, finished_sub_slots_at_sp, latest_block.header_hash, ) prev_num_of_blocks = num_blocks if num_empty_slots_added < skip_slots: # If did not reach the target slots to skip, don't make any proofs for this sub-slot num_empty_slots_added += 1 else: # Loop over every signage point (Except for the last ones, which are used for overflows) for signage_point_index in range(0, constants.NUM_SPS_SUB_SLOT - constants.NUM_SP_INTERVALS_EXTRA): curr = latest_block while curr.total_iters > sub_slot_start_total_iters + calculate_sp_iters( constants, sub_slot_iters, uint8(signage_point_index) ): if curr.height == 0: break curr = blocks[curr.prev_hash] if curr.total_iters > sub_slot_start_total_iters: finished_sub_slots_at_sp = [] if same_slot_as_last: if signage_point_index < latest_block.signage_point_index: # Ignore this signage_point because it's in the past continue signage_point: SignagePoint = get_signage_point( constants, BlockCache(blocks), latest_block, sub_slot_start_total_iters, uint8(signage_point_index), finished_sub_slots_at_sp, sub_slot_iters, normalized_to_identity_cc_sp, ) if signage_point_index == 0: cc_sp_output_hash: bytes32 = slot_cc_challenge else: assert signage_point.cc_vdf is not None cc_sp_output_hash = signage_point.cc_vdf.output.get_hash() qualified_proofs: List[Tuple[uint64, ProofOfSpace]] = self.get_pospaces_for_challenge( constants, slot_cc_challenge, cc_sp_output_hash, seed, difficulty, sub_slot_iters, force_plot_id=force_plot_id, ) for required_iters, proof_of_space in sorted(qualified_proofs, key=lambda t: t[0]): if blocks_added_this_sub_slot == constants.MAX_SUB_SLOT_BLOCKS or force_overflow: break if same_slot_as_last: if signage_point_index == latest_block.signage_point_index: # Ignore this block because it's in the past if required_iters <= latest_block.required_iters: continue assert latest_block.header_hash in blocks additions = None removals = None if transaction_data_included: transaction_data = None if transaction_data is not None and not transaction_data_included: additions = transaction_data.additions() removals = transaction_data.removals() assert start_timestamp is not None if proof_of_space.pool_contract_puzzle_hash is not None: if pool_reward_puzzle_hash is not None: # The caller wants to be paid to a specific address, but this PoSpace is tied to an # address, so continue until a proof of space tied to a pk is found continue pool_target = PoolTarget(proof_of_space.pool_contract_puzzle_hash, uint32(0)) else: if pool_reward_puzzle_hash is not None: pool_target = PoolTarget(pool_reward_puzzle_hash, uint32(0)) else: pool_target = PoolTarget(self.pool_ph, uint32(0)) if transaction_data is not None: if previous_generator is not None: block_generator: Optional[BlockGenerator] = best_solution_generator_from_template( previous_generator, transaction_data ) else: block_generator = simple_solution_generator(transaction_data) aggregate_signature = transaction_data.aggregated_signature else: block_generator = None aggregate_signature = G2Element() full_block, block_record = get_full_block_and_block_record( constants, blocks, sub_slot_start_total_iters, uint8(signage_point_index), proof_of_space, slot_cc_challenge, slot_rc_challenge, farmer_reward_puzzle_hash, pool_target, start_timestamp, start_height, time_per_block, block_generator, aggregate_signature, additions, removals, height_to_hash, difficulty, required_iters, sub_slot_iters, self.get_plot_signature, self.get_pool_key_signature, finished_sub_slots_at_ip, signage_point, latest_block, seed, normalized_to_identity_cc_ip, current_time=current_time, ) if block_record.is_transaction_block: transaction_data_included = True else: if guarantee_transaction_block: continue if pending_ses: pending_ses = False block_list.append(full_block) if full_block.transactions_generator is not None: compressor_arg = detect_potential_template_generator( full_block.height, full_block.transactions_generator ) if compressor_arg is not None: previous_generator = compressor_arg blocks_added_this_sub_slot += 1 blocks[full_block.header_hash] = block_record log.info(f"Created block {block_record.height} ove=False, iters " f"{block_record.total_iters}") height_to_hash[uint32(full_block.height)] = full_block.header_hash latest_block = blocks[full_block.header_hash] finished_sub_slots_at_ip = [] num_blocks -= 1 if num_blocks == 0: return block_list # Finish the end of sub-slot and try again next sub-slot # End of sub-slot logic if len(finished_sub_slots_at_ip) == 0: # Block has been created within this sub-slot eos_iters: uint64 = uint64(sub_slot_iters - (latest_block.total_iters - sub_slot_start_total_iters)) cc_input: ClassgroupElement = latest_block.challenge_vdf_output rc_challenge: bytes32 = latest_block.reward_infusion_new_challenge else: # No blocks were successfully created within this sub-slot eos_iters = sub_slot_iters cc_input = ClassgroupElement.get_default_element() rc_challenge = slot_rc_challenge cc_vdf, cc_proof = get_vdf_info_and_proof( constants, cc_input, slot_cc_challenge, eos_iters, ) rc_vdf, rc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_challenge, eos_iters, ) eos_deficit: uint8 = ( latest_block.deficit if latest_block.deficit > 0 else constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK ) icc_eos_vdf, icc_ip_proof = get_icc( constants, uint128(sub_slot_start_total_iters + sub_slot_iters), finished_sub_slots_at_ip, latest_block, blocks, sub_slot_start_total_iters, eos_deficit, ) # End of slot vdf info for icc and cc have to be from challenge block or start of slot, respectively, # in order for light clients to validate. cc_vdf = VDFInfo(cc_vdf.challenge, sub_slot_iters, cc_vdf.output) if normalized_to_identity_cc_eos: _, cc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_vdf.challenge, sub_slot_iters, True, ) if pending_ses: sub_epoch_summary: Optional[SubEpochSummary] = None else: sub_epoch_summary = next_sub_epoch_summary( constants, BlockCache(blocks, height_to_hash), latest_block.required_iters, block_list[-1], False, ) pending_ses = True if sub_epoch_summary is not None: ses_hash = sub_epoch_summary.get_hash() new_sub_slot_iters: Optional[uint64] = sub_epoch_summary.new_sub_slot_iters new_difficulty: Optional[uint64] = sub_epoch_summary.new_difficulty log.info(f"Sub epoch summary: {sub_epoch_summary}") else: ses_hash = None new_sub_slot_iters = None new_difficulty = None if icc_eos_vdf is not None: # Icc vdf (Deficit of latest block is <= 4) if len(finished_sub_slots_at_ip) == 0: # This means there are blocks in this sub-slot curr = latest_block while not curr.is_challenge_block(constants) and not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] if curr.is_challenge_block(constants): icc_eos_iters = uint64(sub_slot_start_total_iters + sub_slot_iters - curr.total_iters) else: icc_eos_iters = sub_slot_iters else: # This means there are no blocks in this sub-slot icc_eos_iters = sub_slot_iters icc_eos_vdf = VDFInfo( icc_eos_vdf.challenge, icc_eos_iters, icc_eos_vdf.output, ) if normalized_to_identity_icc_eos: _, icc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), icc_eos_vdf.challenge, icc_eos_iters, True, ) icc_sub_slot: Optional[InfusedChallengeChainSubSlot] = InfusedChallengeChainSubSlot(icc_eos_vdf) assert icc_sub_slot is not None icc_sub_slot_hash = icc_sub_slot.get_hash() if latest_block.deficit == 0 else None cc_sub_slot = ChallengeChainSubSlot( cc_vdf, icc_sub_slot_hash, ses_hash, new_sub_slot_iters, new_difficulty, ) else: # No icc icc_sub_slot = None cc_sub_slot = ChallengeChainSubSlot(cc_vdf, None, ses_hash, new_sub_slot_iters, new_difficulty) finished_sub_slots_at_ip.append( EndOfSubSlotBundle( cc_sub_slot, icc_sub_slot, RewardChainSubSlot( rc_vdf, cc_sub_slot.get_hash(), icc_sub_slot.get_hash() if icc_sub_slot is not None else None, eos_deficit, ), SubSlotProofs(cc_proof, icc_ip_proof, rc_proof), ) ) finished_sub_slots_eos = finished_sub_slots_at_ip.copy() latest_block_eos = latest_block overflow_cc_challenge = finished_sub_slots_at_ip[-1].challenge_chain.get_hash() overflow_rc_challenge = finished_sub_slots_at_ip[-1].reward_chain.get_hash() additions = None removals = None if transaction_data_included: transaction_data = None if transaction_data is not None and not transaction_data_included: additions = transaction_data.additions() removals = transaction_data.removals() sub_slots_finished += 1 log.info( f"Sub slot finished. blocks included: {blocks_added_this_sub_slot} blocks_per_slot: " f"{(len(block_list) - initial_block_list_len)/sub_slots_finished}" ) blocks_added_this_sub_slot = 0 # Sub slot ended, overflows are in next sub slot # Handle overflows: No overflows on new epoch if new_sub_slot_iters is None and num_empty_slots_added >= skip_slots and new_difficulty is None: for signage_point_index in range( constants.NUM_SPS_SUB_SLOT - constants.NUM_SP_INTERVALS_EXTRA, constants.NUM_SPS_SUB_SLOT, ): # note that we are passing in the finished slots which include the last slot signage_point = get_signage_point( constants, BlockCache(blocks), latest_block_eos, sub_slot_start_total_iters, uint8(signage_point_index), finished_sub_slots_eos, sub_slot_iters, normalized_to_identity_cc_sp, ) if signage_point_index == 0: cc_sp_output_hash = slot_cc_challenge else: assert signage_point is not None assert signage_point.cc_vdf is not None cc_sp_output_hash = signage_point.cc_vdf.output.get_hash() # If did not reach the target slots to skip, don't make any proofs for this sub-slot qualified_proofs = self.get_pospaces_for_challenge( constants, slot_cc_challenge, cc_sp_output_hash, seed, difficulty, sub_slot_iters, force_plot_id=force_plot_id, ) for required_iters, proof_of_space in sorted(qualified_proofs, key=lambda t: t[0]): if blocks_added_this_sub_slot == constants.MAX_SUB_SLOT_BLOCKS: break assert start_timestamp is not None if proof_of_space.pool_contract_puzzle_hash is not None: if pool_reward_puzzle_hash is not None: # The caller wants to be paid to a specific address, but this PoSpace is tied to an # address, so continue until a proof of space tied to a pk is found continue pool_target = PoolTarget(proof_of_space.pool_contract_puzzle_hash, uint32(0)) else: if pool_reward_puzzle_hash is not None: pool_target = PoolTarget(pool_reward_puzzle_hash, uint32(0)) else: pool_target = PoolTarget(self.pool_ph, uint32(0)) if transaction_data is not None: if previous_generator is not None: block_generator = best_solution_generator_from_template( previous_generator, transaction_data ) else: block_generator = simple_solution_generator(transaction_data) aggregate_signature = transaction_data.aggregated_signature else: block_generator = None aggregate_signature = G2Element() full_block, block_record = get_full_block_and_block_record( constants, blocks, sub_slot_start_total_iters, uint8(signage_point_index), proof_of_space, slot_cc_challenge, slot_rc_challenge, farmer_reward_puzzle_hash, pool_target, start_timestamp, start_height, time_per_block, block_generator, aggregate_signature, additions, removals, height_to_hash, difficulty, required_iters, sub_slot_iters, self.get_plot_signature, self.get_pool_key_signature, finished_sub_slots_at_ip, signage_point, latest_block, seed, overflow_cc_challenge=overflow_cc_challenge, overflow_rc_challenge=overflow_rc_challenge, normalized_to_identity_cc_ip=normalized_to_identity_cc_ip, current_time=current_time, ) if block_record.is_transaction_block: transaction_data_included = True elif guarantee_transaction_block: continue if pending_ses: pending_ses = False block_list.append(full_block) if full_block.transactions_generator is not None: compressor_arg = detect_potential_template_generator( full_block.height, full_block.transactions_generator ) if compressor_arg is not None: previous_generator = compressor_arg blocks_added_this_sub_slot += 1 log.info(f"Created block {block_record.height } ov=True, iters " f"{block_record.total_iters}") num_blocks -= 1 if num_blocks == 0: return block_list blocks[full_block.header_hash] = block_record height_to_hash[uint32(full_block.height)] = full_block.header_hash latest_block = blocks[full_block.header_hash] finished_sub_slots_at_ip = [] finished_sub_slots_at_sp = finished_sub_slots_eos.copy() same_slot_as_last = False sub_slot_start_total_iters = uint128(sub_slot_start_total_iters + sub_slot_iters) if num_blocks < prev_num_of_blocks: num_empty_slots_added += 1 if new_sub_slot_iters is not None: assert new_difficulty is not None sub_slot_iters = new_sub_slot_iters difficulty = new_difficulty def create_genesis_block( self, constants: ConsensusConstants, seed: bytes32 = b"", timestamp: Optional[uint64] = None, force_overflow: bool = False, skip_slots: int = 0, ) -> FullBlock: if timestamp is None: timestamp = uint64(int(time.time())) finished_sub_slots: List[EndOfSubSlotBundle] = [] unfinished_block: Optional[UnfinishedBlock] = None ip_iters: uint64 = uint64(0) sub_slot_total_iters: uint128 = uint128(0) # Keep trying until we get a good proof of space that also passes sp filter while True: cc_challenge, rc_challenge = get_challenges(constants, {}, finished_sub_slots, None) for signage_point_index in range(0, constants.NUM_SPS_SUB_SLOT): signage_point: SignagePoint = get_signage_point( constants, BlockCache({}, {}), None, sub_slot_total_iters, uint8(signage_point_index), finished_sub_slots, constants.SUB_SLOT_ITERS_STARTING, ) if signage_point_index == 0: cc_sp_output_hash: bytes32 = cc_challenge else: assert signage_point is not None assert signage_point.cc_vdf is not None cc_sp_output_hash = signage_point.cc_vdf.output.get_hash() # If did not reach the target slots to skip, don't make any proofs for this sub-slot qualified_proofs: List[Tuple[uint64, ProofOfSpace]] = self.get_pospaces_for_challenge( constants, cc_challenge, cc_sp_output_hash, seed, constants.DIFFICULTY_STARTING, constants.SUB_SLOT_ITERS_STARTING, ) # Try each of the proofs of space for required_iters, proof_of_space in qualified_proofs: sp_iters: uint64 = calculate_sp_iters( constants, uint64(constants.SUB_SLOT_ITERS_STARTING), uint8(signage_point_index), ) ip_iters = calculate_ip_iters( constants, uint64(constants.SUB_SLOT_ITERS_STARTING), uint8(signage_point_index), required_iters, ) is_overflow = is_overflow_block(constants, uint8(signage_point_index)) if force_overflow and not is_overflow: continue if len(finished_sub_slots) < skip_slots: continue unfinished_block = create_test_unfinished_block( constants, sub_slot_total_iters, constants.SUB_SLOT_ITERS_STARTING, uint8(signage_point_index), sp_iters, ip_iters, proof_of_space, cc_challenge, constants.GENESIS_PRE_FARM_FARMER_PUZZLE_HASH, PoolTarget(constants.GENESIS_PRE_FARM_POOL_PUZZLE_HASH, uint32(0)), self.get_plot_signature, self.get_pool_key_signature, signage_point, timestamp, BlockCache({}), seed=seed, finished_sub_slots_input=finished_sub_slots, ) assert unfinished_block is not None if not is_overflow: cc_ip_vdf, cc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_challenge, ip_iters, ) cc_ip_vdf = replace(cc_ip_vdf, number_of_iterations=ip_iters) rc_ip_vdf, rc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_challenge, ip_iters, ) assert unfinished_block is not None total_iters_sp = uint128(sub_slot_total_iters + sp_iters) return unfinished_block_to_full_block( unfinished_block, cc_ip_vdf, cc_ip_proof, rc_ip_vdf, rc_ip_proof, None, None, finished_sub_slots, None, BlockCache({}), total_iters_sp, constants.DIFFICULTY_STARTING, ) if signage_point_index == constants.NUM_SPS_SUB_SLOT - constants.NUM_SP_INTERVALS_EXTRA - 1: # Finish the end of sub-slot and try again next sub-slot cc_vdf, cc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_challenge, constants.SUB_SLOT_ITERS_STARTING, ) rc_vdf, rc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_challenge, constants.SUB_SLOT_ITERS_STARTING, ) cc_slot = ChallengeChainSubSlot(cc_vdf, None, None, None, None) finished_sub_slots.append( EndOfSubSlotBundle( cc_slot, None, RewardChainSubSlot( rc_vdf, cc_slot.get_hash(), None, uint8(constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK), ), SubSlotProofs(cc_proof, None, rc_proof), ) ) if unfinished_block is not None: cc_ip_vdf, cc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), finished_sub_slots[-1].challenge_chain.get_hash(), ip_iters, ) rc_ip_vdf, rc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), finished_sub_slots[-1].reward_chain.get_hash(), ip_iters, ) total_iters_sp = uint128( sub_slot_total_iters + calculate_sp_iters( self.constants, self.constants.SUB_SLOT_ITERS_STARTING, unfinished_block.reward_chain_block.signage_point_index, ) ) return unfinished_block_to_full_block( unfinished_block, cc_ip_vdf, cc_ip_proof, rc_ip_vdf, rc_ip_proof, None, None, finished_sub_slots, None, BlockCache({}), total_iters_sp, constants.DIFFICULTY_STARTING, ) sub_slot_total_iters = uint128(sub_slot_total_iters + constants.SUB_SLOT_ITERS_STARTING) def get_pospaces_for_challenge( self, constants: ConsensusConstants, challenge_hash: bytes32, signage_point: bytes32, seed: bytes, difficulty: uint64, sub_slot_iters: uint64, force_plot_id: Optional[bytes32] = None, ) -> List[Tuple[uint64, ProofOfSpace]]: found_proofs: List[Tuple[uint64, ProofOfSpace]] = [] plots: List[PlotInfo] = [ plot_info for _, plot_info in sorted(list(self.plots.items()), key=lambda x: str(x[0])) ] random.seed(seed) for plot_info in plots: plot_id: bytes32 = plot_info.prover.get_id() if force_plot_id is not None and plot_id != force_plot_id: continue if ProofOfSpace.passes_plot_filter(constants, plot_id, challenge_hash, signage_point): new_challenge: bytes32 = ProofOfSpace.calculate_pos_challenge(plot_id, challenge_hash, signage_point) qualities = plot_info.prover.get_qualities_for_challenge(new_challenge) for proof_index, quality_str in enumerate(qualities): required_iters = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, quality_str, plot_info.prover.get_size(), difficulty, signage_point, ) if required_iters < calculate_sp_interval_iters(constants, sub_slot_iters): proof_xs: bytes = plot_info.prover.get_full_proof(new_challenge, proof_index) # Look up local_sk from plot to save locked memory ( pool_public_key_or_puzzle_hash, farmer_public_key, local_master_sk, ) = parse_plot_info(plot_info.prover.get_memo()) local_sk = master_sk_to_local_sk(local_master_sk) if isinstance(pool_public_key_or_puzzle_hash, G1Element): include_taproot = False else: assert isinstance(pool_public_key_or_puzzle_hash, bytes32) include_taproot = True plot_pk = ProofOfSpace.generate_plot_public_key( local_sk.get_g1(), farmer_public_key, include_taproot ) proof_of_space: ProofOfSpace = ProofOfSpace( new_challenge, plot_info.pool_public_key, plot_info.pool_contract_puzzle_hash, plot_pk, plot_info.prover.get_size(), proof_xs, ) found_proofs.append((required_iters, proof_of_space)) random_sample = found_proofs if len(found_proofs) >= 1: if random.random() < 0.1: # Removes some proofs of space to create "random" chains, based on the seed random_sample = random.sample(found_proofs, len(found_proofs) - 1) return random_sample def get_signage_point( constants: ConsensusConstants, blocks: BlockchainInterface, latest_block: Optional[BlockRecord], sub_slot_start_total_iters: uint128, signage_point_index: uint8, finished_sub_slots: List[EndOfSubSlotBundle], sub_slot_iters: uint64, normalized_to_identity_cc_sp: bool = False, ) -> SignagePoint: if signage_point_index == 0: return SignagePoint(None, None, None, None) sp_iters = calculate_sp_iters(constants, sub_slot_iters, signage_point_index) overflow = is_overflow_block(constants, signage_point_index) sp_total_iters = uint128( sub_slot_start_total_iters + calculate_sp_iters(constants, sub_slot_iters, signage_point_index) ) ( cc_vdf_challenge, rc_vdf_challenge, cc_vdf_input, rc_vdf_input, cc_vdf_iters, rc_vdf_iters, ) = get_signage_point_vdf_info( constants, finished_sub_slots, overflow, latest_block, blocks, sp_total_iters, sp_iters, ) cc_sp_vdf, cc_sp_proof = get_vdf_info_and_proof( constants, cc_vdf_input, cc_vdf_challenge, cc_vdf_iters, ) rc_sp_vdf, rc_sp_proof = get_vdf_info_and_proof( constants, rc_vdf_input, rc_vdf_challenge, rc_vdf_iters, ) cc_sp_vdf = replace(cc_sp_vdf, number_of_iterations=sp_iters) if normalized_to_identity_cc_sp: _, cc_sp_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_sp_vdf.challenge, sp_iters, True, ) return SignagePoint(cc_sp_vdf, cc_sp_proof, rc_sp_vdf, rc_sp_proof) def finish_block( constants: ConsensusConstants, blocks: Dict[bytes32, BlockRecord], height_to_hash: Dict[uint32, bytes32], finished_sub_slots: List[EndOfSubSlotBundle], sub_slot_start_total_iters: uint128, signage_point_index: uint8, unfinished_block: UnfinishedBlock, required_iters: uint64, ip_iters: uint64, slot_cc_challenge: bytes32, slot_rc_challenge: bytes32, latest_block: BlockRecord, sub_slot_iters: uint64, difficulty: uint64, normalized_to_identity_cc_ip: bool = False, ) -> Tuple[FullBlock, BlockRecord]: is_overflow = is_overflow_block(constants, signage_point_index) cc_vdf_challenge = slot_cc_challenge if len(finished_sub_slots) == 0: new_ip_iters = unfinished_block.total_iters - latest_block.total_iters cc_vdf_input = latest_block.challenge_vdf_output rc_vdf_challenge = latest_block.reward_infusion_new_challenge else: new_ip_iters = ip_iters cc_vdf_input = ClassgroupElement.get_default_element() rc_vdf_challenge = slot_rc_challenge cc_ip_vdf, cc_ip_proof = get_vdf_info_and_proof( constants, cc_vdf_input, cc_vdf_challenge, new_ip_iters, ) cc_ip_vdf = replace(cc_ip_vdf, number_of_iterations=ip_iters) if normalized_to_identity_cc_ip: _, cc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_ip_vdf.challenge, ip_iters, True, ) deficit = calculate_deficit( constants, uint32(latest_block.height + 1), latest_block, is_overflow, len(finished_sub_slots), ) icc_ip_vdf, icc_ip_proof = get_icc( constants, unfinished_block.total_iters, finished_sub_slots, latest_block, blocks, uint128(sub_slot_start_total_iters + sub_slot_iters) if is_overflow else sub_slot_start_total_iters, deficit, ) rc_ip_vdf, rc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_vdf_challenge, new_ip_iters, ) assert unfinished_block is not None sp_total_iters = uint128( sub_slot_start_total_iters + calculate_sp_iters(constants, sub_slot_iters, signage_point_index) ) full_block: FullBlock = unfinished_block_to_full_block( unfinished_block, cc_ip_vdf, cc_ip_proof, rc_ip_vdf, rc_ip_proof, icc_ip_vdf, icc_ip_proof, finished_sub_slots, latest_block, BlockCache(blocks), sp_total_iters, difficulty, ) block_record = block_to_block_record(constants, BlockCache(blocks), required_iters, full_block, None) return full_block, block_record def get_challenges( constants: ConsensusConstants, blocks: Dict[uint32, BlockRecord], finished_sub_slots: List[EndOfSubSlotBundle], prev_header_hash: Optional[bytes32], ) -> Tuple[bytes32, bytes32]: if len(finished_sub_slots) == 0: if prev_header_hash is None: return constants.GENESIS_CHALLENGE, constants.GENESIS_CHALLENGE curr: BlockRecord = blocks[prev_header_hash] while not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] assert curr.finished_challenge_slot_hashes is not None assert curr.finished_reward_slot_hashes is not None cc_challenge = curr.finished_challenge_slot_hashes[-1] rc_challenge = curr.finished_reward_slot_hashes[-1] else: cc_challenge = finished_sub_slots[-1].challenge_chain.get_hash() rc_challenge = finished_sub_slots[-1].reward_chain.get_hash() return cc_challenge, rc_challenge def get_plot_dir() -> Path: cache_path = Path(os.path.expanduser(os.getenv("beet_ROOT", "~/.beet/"))) / "test-plots" mkdir(cache_path) return cache_path def get_plot_tmp_dir(): return get_plot_dir() / "tmp" def load_block_list( block_list: List[FullBlock], constants: ConsensusConstants ) -> Tuple[Dict[uint32, bytes32], uint64, Dict[uint32, BlockRecord]]: difficulty = 0 height_to_hash: Dict[uint32, bytes32] = {} blocks: Dict[uint32, BlockRecord] = {} for full_block in block_list: if full_block.height == 0: difficulty = uint64(constants.DIFFICULTY_STARTING) else: difficulty = full_block.weight - block_list[full_block.height - 1].weight if full_block.reward_chain_block.signage_point_index == 0: challenge = full_block.reward_chain_block.pos_ss_cc_challenge_hash sp_hash = challenge else: assert full_block.reward_chain_block.challenge_chain_sp_vdf is not None challenge = full_block.reward_chain_block.challenge_chain_sp_vdf.challenge sp_hash = full_block.reward_chain_block.challenge_chain_sp_vdf.output.get_hash() quality_str = full_block.reward_chain_block.proof_of_space.verify_and_get_quality_string( constants, challenge, sp_hash ) required_iters: uint64 = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, quality_str, full_block.reward_chain_block.proof_of_space.size, uint64(difficulty), sp_hash, ) blocks[full_block.header_hash] = block_to_block_record( constants, BlockCache(blocks), required_iters, full_block, None, ) height_to_hash[uint32(full_block.height)] = full_block.header_hash return height_to_hash, uint64(difficulty), blocks def get_icc( constants: ConsensusConstants, vdf_end_total_iters: uint128, finished_sub_slots: List[EndOfSubSlotBundle], latest_block: BlockRecord, blocks: Dict[bytes32, BlockRecord], sub_slot_start_total_iters: uint128, deficit: uint8, ) -> Tuple[Optional[VDFInfo], Optional[VDFProof]]: if len(finished_sub_slots) == 0: prev_deficit = latest_block.deficit else: prev_deficit = finished_sub_slots[-1].reward_chain.deficit if deficit == prev_deficit == constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK: # new slot / overflow sb to new slot / overflow sb return None, None if deficit == (prev_deficit - 1) == (constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK - 1): # new slot / overflow sb to challenge sb return None, None if len(finished_sub_slots) != 0: last_ss = finished_sub_slots[-1] assert last_ss.infused_challenge_chain is not None assert finished_sub_slots[-1].reward_chain.deficit <= (constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK - 1) return get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), last_ss.infused_challenge_chain.get_hash(), uint64(vdf_end_total_iters - sub_slot_start_total_iters), ) curr = latest_block # curr deficit is 0, 1, 2, 3, or 4 while not curr.is_challenge_block(constants) and not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] icc_iters = uint64(vdf_end_total_iters - latest_block.total_iters) if latest_block.is_challenge_block(constants): icc_input: Optional[ClassgroupElement] = ClassgroupElement.get_default_element() else: icc_input = latest_block.infused_challenge_vdf_output assert icc_input is not None if curr.is_challenge_block(constants): # Deficit 4 icc_challenge_hash = curr.challenge_block_info_hash else: assert curr.finished_infused_challenge_slot_hashes is not None # First block in sub slot has deficit 0,1,2 or 3 icc_challenge_hash = curr.finished_infused_challenge_slot_hashes[-1] return get_vdf_info_and_proof( constants, icc_input, icc_challenge_hash, icc_iters, ) def get_full_block_and_block_record( constants: ConsensusConstants, blocks: Dict[uint32, BlockRecord], sub_slot_start_total_iters: uint128, signage_point_index: uint8, proof_of_space: ProofOfSpace, slot_cc_challenge: bytes32, slot_rc_challenge: bytes32, farmer_reward_puzzle_hash: bytes32, pool_target: PoolTarget, start_timestamp: uint64, start_height: uint32, time_per_block: float, block_generator: Optional[BlockGenerator], aggregate_signature: G2Element, additions: Optional[List[Coin]], removals: Optional[List[Coin]], height_to_hash: Dict[uint32, bytes32], difficulty: uint64, required_iters: uint64, sub_slot_iters: uint64, get_plot_signature: Callable[[bytes32, G1Element], G2Element], get_pool_signature: Callable[[PoolTarget, Optional[G1Element]], Optional[G2Element]], finished_sub_slots: List[EndOfSubSlotBundle], signage_point: SignagePoint, prev_block: BlockRecord, seed: bytes = b"", overflow_cc_challenge: bytes32 = None, overflow_rc_challenge: bytes32 = None, normalized_to_identity_cc_ip: bool = False, current_time: bool = False, ) -> Tuple[FullBlock, BlockRecord]: if current_time is True: if prev_block.timestamp is not None: timestamp = uint64(max(int(time.time()), prev_block.timestamp + int(time_per_block))) else: timestamp = uint64(int(time.time())) else: timestamp = uint64(start_timestamp + int((prev_block.height + 1 - start_height) * time_per_block)) sp_iters = calculate_sp_iters(constants, sub_slot_iters, signage_point_index) ip_iters = calculate_ip_iters(constants, sub_slot_iters, signage_point_index, required_iters) unfinished_block = create_test_unfinished_block( constants, sub_slot_start_total_iters, sub_slot_iters, signage_point_index, sp_iters, ip_iters, proof_of_space, slot_cc_challenge, farmer_reward_puzzle_hash, pool_target, get_plot_signature, get_pool_signature, signage_point, timestamp, BlockCache(blocks), seed, block_generator, aggregate_signature, additions, removals, prev_block, finished_sub_slots, ) if (overflow_cc_challenge is not None) and (overflow_rc_challenge is not None): slot_cc_challenge = overflow_cc_challenge slot_rc_challenge = overflow_rc_challenge full_block, block_record = finish_block( constants, blocks, height_to_hash, finished_sub_slots, sub_slot_start_total_iters, signage_point_index, unfinished_block, required_iters, ip_iters, slot_cc_challenge, slot_rc_challenge, prev_block, sub_slot_iters, difficulty, normalized_to_identity_cc_ip, ) return full_block, block_record def get_name_puzzle_conditions_test(generator: BlockGenerator, max_cost: int) -> NPCResult: """ This is similar to get_name_puzzle_conditions(), but it doesn't validate the conditions. We rely on this in tests to create invalid blocks. safe_mode is implicitly True in this call """ try: block_program, block_program_args = setup_generator_args(generator) clvm_cost, result = GENERATOR_MOD.run_safe_with_cost(max_cost, block_program, block_program_args) npc_list: List[NPC] = [] for res in result.first().as_iter(): conditions_list: List[ConditionWithArgs] = [] spent_coin_parent_id: bytes32 = res.first().as_atom() res = res.rest() spent_coin_puzzle_hash: bytes32 = res.first().as_atom() res = res.rest() spent_coin_amount: uint64 = uint64(res.first().as_int()) res = res.rest() spent_coin: Coin = Coin(spent_coin_parent_id, spent_coin_puzzle_hash, spent_coin_amount) for cond in res.first().as_iter(): condition = cond.first().as_atom() cvl = ConditionWithArgs(ConditionOpcode(condition), cond.rest().as_atom_list()) conditions_list.append(cvl) conditions_dict = conditions_by_opcode(conditions_list) if conditions_dict is None: conditions_dict = {} npc_list.append( NPC(spent_coin.name(), spent_coin.puzzle_hash, [(a, b) for a, b in conditions_dict.items()]) ) return NPCResult(None, npc_list, uint64(clvm_cost)) except Exception: return NPCResult(uint16(Err.GENERATOR_RUNTIME_ERROR.value), [], uint64(0)) def create_test_foliage( constants: ConsensusConstants, reward_block_unfinished: RewardChainBlockUnfinished, block_generator: Optional[BlockGenerator], aggregate_sig: G2Element, additions: List[Coin], removals: List[Coin], prev_block: Optional[BlockRecord], blocks: BlockchainInterface, total_iters_sp: uint128, timestamp: uint64, farmer_reward_puzzlehash: bytes32, pool_target: PoolTarget, get_plot_signature: Callable[[bytes32, G1Element], G2Element], get_pool_signature: Callable[[PoolTarget, Optional[G1Element]], Optional[G2Element]], seed: bytes32 = b"", ) -> Tuple[Foliage, Optional[FoliageTransactionBlock], Optional[TransactionsInfo]]: """ Creates a foliage for a given reward chain block. This may or may not be a tx block. In the case of a tx block, the return values are not None. This is called at the signage point, so some of this information may be tweaked at the infusion point. Args: constants: consensus constants being used for this chain reward_block_unfinished: the reward block to look at, potentially at the signage point block_generator: transactions to add to the foliage block, if created aggregate_sig: aggregate of all transctions (or infinity element) prev_block: the previous block at the signage point blocks: dict from header hash to blocks, of all ancestor blocks total_iters_sp: total iters at the signage point timestamp: timestamp to put into the foliage block farmer_reward_puzzlehash: where to pay out farming reward pool_target: where to pay out pool reward get_plot_signature: retrieve the signature corresponding to the plot public key get_pool_signature: retrieve the signature corresponding to the pool public key seed: seed to randomize block """ if prev_block is not None: res = get_prev_transaction_block(prev_block, blocks, total_iters_sp) is_transaction_block: bool = res[0] prev_transaction_block: Optional[BlockRecord] = res[1] else: # Genesis is a transaction block prev_transaction_block = None is_transaction_block = True random.seed(seed) # Use the extension data to create different blocks based on header hash extension_data: bytes32 = random.randint(0, 100000000).to_bytes(32, "big") if prev_block is None: height: uint32 = uint32(0) else: height = uint32(prev_block.height + 1) # Create filter byte_array_tx: List[bytes32] = [] tx_additions: List[Coin] = [] tx_removals: List[bytes32] = [] pool_target_signature: Optional[G2Element] = get_pool_signature( pool_target, reward_block_unfinished.proof_of_space.pool_public_key ) foliage_data = FoliageBlockData( reward_block_unfinished.get_hash(), pool_target, pool_target_signature, farmer_reward_puzzlehash, extension_data, ) foliage_block_data_signature: G2Element = get_plot_signature( foliage_data.get_hash(), reward_block_unfinished.proof_of_space.plot_public_key, ) prev_block_hash: bytes32 = constants.GENESIS_CHALLENGE if height != 0: assert prev_block is not None prev_block_hash = prev_block.header_hash generator_block_heights_list: List[uint32] = [] if is_transaction_block: cost = uint64(0) # Calculate the cost of transactions if block_generator is not None: generator_block_heights_list = block_generator.block_height_list() result: NPCResult = get_name_puzzle_conditions_test(block_generator, constants.MAX_BLOCK_COST_CLVM) cost = calculate_cost_of_program(block_generator.program, result, constants.COST_PER_BYTE) removal_amount = 0 addition_amount = 0 for coin in removals: removal_amount += coin.amount for coin in additions: addition_amount += coin.amount spend_bundle_fees = removal_amount - addition_amount # in order to allow creating blocks that mint coins, clamp the fee # to 0, if it ends up being negative if spend_bundle_fees < 0: spend_bundle_fees = 0 else: spend_bundle_fees = 0 reward_claims_incorporated = [] if height > 0: assert prev_transaction_block is not None assert prev_block is not None curr: BlockRecord = prev_block while not curr.is_transaction_block: curr = blocks.block_record(curr.prev_hash) assert curr.fees is not None pool_coin = create_pool_coin( curr.height, curr.pool_puzzle_hash, calculate_pool_reward(curr.height), constants.GENESIS_CHALLENGE ) farmer_coin = create_farmer_coin( curr.height, curr.farmer_puzzle_hash, uint64(calculate_base_farmer_reward(curr.height) + curr.fees), constants.GENESIS_CHALLENGE, ) assert curr.header_hash == prev_transaction_block.header_hash reward_claims_incorporated += [pool_coin, farmer_coin] if curr.height > 0: curr = blocks.block_record(curr.prev_hash) # Prev block is not genesis while not curr.is_transaction_block: pool_coin = create_pool_coin( curr.height, curr.pool_puzzle_hash, calculate_pool_reward(curr.height), constants.GENESIS_CHALLENGE, ) farmer_coin = create_farmer_coin( curr.height, curr.farmer_puzzle_hash, calculate_base_farmer_reward(curr.height), constants.GENESIS_CHALLENGE, ) reward_claims_incorporated += [pool_coin, farmer_coin] curr = blocks.block_record(curr.prev_hash) additions.extend(reward_claims_incorporated.copy()) for coin in additions: tx_additions.append(coin) byte_array_tx.append(bytearray(coin.puzzle_hash)) for coin in removals: tx_removals.append(coin.name()) byte_array_tx.append(bytearray(coin.name())) bip158: PyBIP158 = PyBIP158(byte_array_tx) encoded = bytes(bip158.GetEncoded()) removal_merkle_set = MerkleSet() addition_merkle_set = MerkleSet() # Create removal Merkle set for coin_name in tx_removals: removal_merkle_set.add_already_hashed(coin_name) # Create addition Merkle set puzzlehash_coin_map: Dict[bytes32, List[Coin]] = {} for coin in tx_additions: if coin.puzzle_hash in puzzlehash_coin_map: puzzlehash_coin_map[coin.puzzle_hash].append(coin) else: puzzlehash_coin_map[coin.puzzle_hash] = [coin] # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle, coins in puzzlehash_coin_map.items(): addition_merkle_set.add_already_hashed(puzzle) addition_merkle_set.add_already_hashed(hash_coin_list(coins)) additions_root = addition_merkle_set.get_root() removals_root = removal_merkle_set.get_root() generator_hash = bytes32([0] * 32) if block_generator is not None: generator_hash = std_hash(block_generator.program) generator_refs_hash = bytes32([1] * 32) if generator_block_heights_list not in (None, []): generator_ref_list_bytes = b"".join([bytes(i) for i in generator_block_heights_list]) generator_refs_hash = std_hash(generator_ref_list_bytes) filter_hash: bytes32 = std_hash(encoded) transactions_info: Optional[TransactionsInfo] = TransactionsInfo( generator_hash, generator_refs_hash, aggregate_sig, uint64(spend_bundle_fees), cost, reward_claims_incorporated, ) if prev_transaction_block is None: prev_transaction_block_hash: bytes32 = constants.GENESIS_CHALLENGE else: prev_transaction_block_hash = prev_transaction_block.header_hash assert transactions_info is not None foliage_transaction_block: Optional[FoliageTransactionBlock] = FoliageTransactionBlock( prev_transaction_block_hash, timestamp, filter_hash, additions_root, removals_root, transactions_info.get_hash(), ) assert foliage_transaction_block is not None foliage_transaction_block_hash: Optional[bytes32] = foliage_transaction_block.get_hash() foliage_transaction_block_signature: Optional[G2Element] = get_plot_signature( foliage_transaction_block_hash, reward_block_unfinished.proof_of_space.plot_public_key ) assert foliage_transaction_block_signature is not None else: foliage_transaction_block_hash = None foliage_transaction_block_signature = None foliage_transaction_block = None transactions_info = None assert (foliage_transaction_block_hash is None) == (foliage_transaction_block_signature is None) foliage = Foliage( prev_block_hash, reward_block_unfinished.get_hash(), foliage_data, foliage_block_data_signature, foliage_transaction_block_hash, foliage_transaction_block_signature, ) return foliage, foliage_transaction_block, transactions_info def create_test_unfinished_block( constants: ConsensusConstants, sub_slot_start_total_iters: uint128, sub_slot_iters: uint64, signage_point_index: uint8, sp_iters: uint64, ip_iters: uint64, proof_of_space: ProofOfSpace, slot_cc_challenge: bytes32, farmer_reward_puzzle_hash: bytes32, pool_target: PoolTarget, get_plot_signature: Callable[[bytes32, G1Element], G2Element], get_pool_signature: Callable[[PoolTarget, Optional[G1Element]], Optional[G2Element]], signage_point: SignagePoint, timestamp: uint64, blocks: BlockchainInterface, seed: bytes32 = b"", block_generator: Optional[BlockGenerator] = None, aggregate_sig: G2Element = G2Element(), additions: Optional[List[Coin]] = None, removals: Optional[List[Coin]] = None, prev_block: Optional[BlockRecord] = None, finished_sub_slots_input: List[EndOfSubSlotBundle] = None, ) -> UnfinishedBlock: """ Creates a new unfinished block using all the information available at the signage point. This will have to be modified using information from the infusion point. Args: constants: consensus constants being used for this chain sub_slot_start_total_iters: the starting sub-slot iters at the signage point sub-slot sub_slot_iters: sub-slot-iters at the infusion point epoch signage_point_index: signage point index of the block to create sp_iters: sp_iters of the block to create ip_iters: ip_iters of the block to create proof_of_space: proof of space of the block to create slot_cc_challenge: challenge hash at the sp sub-slot farmer_reward_puzzle_hash: where to pay out farmer rewards pool_target: where to pay out pool rewards get_plot_signature: function that returns signature corresponding to plot public key get_pool_signature: function that returns signature corresponding to pool public key signage_point: signage point information (VDFs) timestamp: timestamp to add to the foliage block, if created seed: seed to randomize chain block_generator: transactions to add to the foliage block, if created aggregate_sig: aggregate of all transctions (or infinity element) additions: Coins added in spend_bundle removals: Coins removed in spend_bundle prev_block: previous block (already in chain) from the signage point blocks: dictionary from header hash to SBR of all included SBR finished_sub_slots_input: finished_sub_slots at the signage point Returns: """ if finished_sub_slots_input is None: finished_sub_slots: List[EndOfSubSlotBundle] = [] else: finished_sub_slots = finished_sub_slots_input.copy() overflow: bool = sp_iters > ip_iters total_iters_sp: uint128 = uint128(sub_slot_start_total_iters + sp_iters) is_genesis: bool = prev_block is None new_sub_slot: bool = len(finished_sub_slots) > 0 cc_sp_hash: Optional[bytes32] = slot_cc_challenge # Only enters this if statement if we are in testing mode (making VDF proofs here) if signage_point.cc_vdf is not None: assert signage_point.rc_vdf is not None cc_sp_hash = signage_point.cc_vdf.output.get_hash() rc_sp_hash = signage_point.rc_vdf.output.get_hash() else: if new_sub_slot: rc_sp_hash = finished_sub_slots[-1].reward_chain.get_hash() else: if is_genesis: rc_sp_hash = constants.GENESIS_CHALLENGE else: assert prev_block is not None assert blocks is not None curr = prev_block while not curr.first_in_sub_slot: curr = blocks.block_record(curr.prev_hash) assert curr.finished_reward_slot_hashes is not None rc_sp_hash = curr.finished_reward_slot_hashes[-1] signage_point = SignagePoint(None, None, None, None) cc_sp_signature: Optional[G2Element] = get_plot_signature(cc_sp_hash, proof_of_space.plot_public_key) rc_sp_signature: Optional[G2Element] = get_plot_signature(rc_sp_hash, proof_of_space.plot_public_key) assert cc_sp_signature is not None assert rc_sp_signature is not None assert AugSchemeMPL.verify(proof_of_space.plot_public_key, cc_sp_hash, cc_sp_signature) total_iters = uint128(sub_slot_start_total_iters + ip_iters + (sub_slot_iters if overflow else 0)) rc_block = RewardChainBlockUnfinished( total_iters, signage_point_index, slot_cc_challenge, proof_of_space, signage_point.cc_vdf, cc_sp_signature, signage_point.rc_vdf, rc_sp_signature, ) if additions is None: additions = [] if removals is None: removals = [] (foliage, foliage_transaction_block, transactions_info,) = create_test_foliage( constants, rc_block, block_generator, aggregate_sig, additions, removals, prev_block, blocks, total_iters_sp, timestamp, farmer_reward_puzzle_hash, pool_target, get_plot_signature, get_pool_signature, seed, ) return UnfinishedBlock( finished_sub_slots, rc_block, signage_point.cc_proof, signage_point.rc_proof, foliage, foliage_transaction_block, transactions_info, block_generator.program if block_generator else None, block_generator.block_height_list() if block_generator else [], )
d03b33dff1747f43c63760a1a272b4708f3aca49
c5c56d7c14b4518e53bcde2527b9cc6e53a7e1b9
/custom_assert/tennis.py
5df7831abac8b0ca8585aea91cdde3d40996ccc3
[]
no_license
lancelote/pluralsight-unit-testing-python
0402a39e3800eec49f2be529e684d028689d3b47
fd5ce8264bc95ed66109c4fa575a177248c3d49a
refs/heads/master
2021-01-10T08:06:39.605195
2016-03-23T08:15:25
2016-03-23T08:15:25
51,952,064
4
6
null
null
null
null
UTF-8
Python
false
false
245
py
SCORE_NAMES = ('Love', 'Fifteen', 'Thirty', 'Forty') def tennis_score(player1, player2): if player1 == player2: return '%s-All' % SCORE_NAMES[player1] else: return '%s-%s' % (SCORE_NAMES[player1], SCORE_NAMES[player2])
bf9470c3ab98fc4a2ed3b629dd2537ada28fcb7e
6cad5c613306789b9bd6387c2e7af02515b1c0ad
/django_document/inheritance/models/abstract_base_class.py
a42ba4fde37800e90813d8caad6d4f2461dfe01b
[]
no_license
Isaccchoi/django_document_project
ead5eb7b2e932ae5401d5a3cdb3672d3dfd8f9f5
980f25c98f99994e6148af16ed82ae4f12d50870
refs/heads/master
2021-05-08T06:12:51.261138
2017-10-13T05:14:58
2017-10-13T05:14:58
106,355,936
0
0
null
null
null
null
UTF-8
Python
false
false
985
py
from django.db import models __all__ = ( 'School', 'CommonInfo', 'Student', 'Teacher', ) class School(models.Model): name = models.CharField(max_length=30) def __str__(self): return self.name class CommonInfo(models.Model): # abstractBaseClass에서 상송진행시 ForeignKey의 related_name을 지정하면 오류 발생 - 역참조 이름이 같게됨 # 그렇기때문에 같지 않게 하기 위해 $(app_label)s 및 %(class)s를 사용해 충돌 제거 school = models.ForeignKey(School, blank=True, null=True, related_name='%(app_label)s_%(class)s_set') name = models.CharField(max_length=100) age = models.PositiveIntegerField() class Meta: abstract = True class Student(CommonInfo): home_group = models.CharField(max_length=5) def __str__(self): return self.name class Teacher(CommonInfo): subject = models.CharField(max_length=30) def __str__(self): return self.name
6d1a08093446a147d751a66587036a6df1e2ebde
142e8dbcd065e689dd7599f1f2b7ee23f2ae9616
/validation_numeric_or_not.py
59ce90e46cb34fe3fe57b6b83078bc38af6c18dd
[]
no_license
shanthivimalanataraajan01/Beginner
f62ef7ba9b4c99591ca61f5f68a75d542c4adeb1
0b45d623ae24b0896a1d3f91e01fc497c31edc1d
refs/heads/master
2020-04-26T22:19:12.549521
2019-01-25T10:30:02
2019-01-25T10:30:02
173,869,297
0
0
null
2019-03-05T03:51:53
2019-03-05T03:51:53
null
UTF-8
Python
false
false
64
py
a=int(input()) if a.isalpha(): print("No") else: print("Yes")
adf1a0335935312323435fd90f890423097b9fad
e1fac9437a480e5d1ab9527a28c28f6ee3d7af6e
/skyrock/migrations/0014_auto_20190822_0913.py
db8d986ed406f1fb4ac05d1783a3beab3225eef2
[]
no_license
LuLue7775/Skyrock-Backend-Training
3e4c41bcc78fbfabb8a8c1114dd15ca94bc1055e
3b6d3d697be1875442eeba5127c8798de1ca6499
refs/heads/master
2022-06-19T04:26:10.129558
2019-09-12T06:41:58
2019-09-12T06:41:58
207,708,169
1
1
null
2022-05-25T02:24:55
2019-09-11T02:45:41
Python
UTF-8
Python
false
false
564
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2019-08-22 09:13 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('skyrock', '0013_auto_20190822_0909'), ] operations = [ migrations.RemoveField( model_name='student', name='age', ), migrations.AddField( model_name='student', name='birth_date', field=models.DateTimeField(blank=True, null=True), ), ]
e2e1180c912988844c5fe890a9b70135731ea883
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/pQavNkBbdmvSMmx5x_2.py
3582e4157098df37fe07a238039d40ead9325681
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
""" Create a function that returns the **majority vote** in a list. A majority vote is an element that occurs **> N/2** times in a list (where **N** is the length of the list). ### Examples majority_vote(["A", "A", "B"]) ➞ "A" majority_vote(["A", "A", "A", "B", "C", "A"]) ➞ "A" majority_vote(["A", "B", "B", "A", "C", "C"]) ➞ None ### Notes * The frequency of the majority element must be **strictly greater** than 1/2. * If there is no majority element, return `None`. * If the list is empty, return `None`. """ def majority_vote(lst): for i in lst: if lst.count(i) > len(lst)/2: return i
b55d40212c755128e12ddd2efb8d0f9d653c8573
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Projects/sphinx/venv/Lib/site-packages/setuptools/msvc.py
467c8192bd17c3c14a577e9b90a44ffaec5dc861
[ "LicenseRef-scancode-other-permissive", "BSD-3-Clause" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:1df5ddb5b9a19b10195da6054f634166b5d3f12771ddf66587cc886e594b199d size 51126
359f5287850dad160771b45c8dccdd1bd9ad768b
59381d3e69e4a288cdeb4aeecc2e9c84a28759b2
/selvbetjening/sadmin2/tests/ui/dashboard.py
56194920cccb403216b896dfd25cd46000b0f2ab
[ "MIT" ]
permissive
animekita/selvbetjening
88cb75164f8ab0b3341a6ba4dd85d425c601ee4d
fee63d178fbd5ce2976c04d3a4b2dde6d8691892
refs/heads/master
2021-07-05T01:10:59.900369
2015-09-17T15:15:29
2015-09-17T15:15:29
4,826,342
0
1
MIT
2021-06-10T17:35:22
2012-06-28T22:17:15
Python
UTF-8
Python
false
false
347
py
from django.core.urlresolvers import reverse from common import UITestCase class DashboardTestCase(UITestCase): fixtures = ['sdemo-example-site.json'] def test_load(self): self.login_admin() # Check that the dashboard is the first page we see after login self.assertTrue(self.wd.is_text_present('Dashboard'))
271de39a148eac6bca2cf614057de6f6b38f1002
8cf427b0574e8e41e5201cc02c3e736f264a2000
/original/yolo3_auto_label/FLIR_ws/build/catkin_generated/order_packages.py
34f5c1ed3463d16400524b16c632308592765db4
[]
no_license
Lin1225/Data_amplification_all
a88561b9cae481561683b32b6cede35461fa0e3e
e988990ea8dd53b28ed2da6046ea7aeeda6a01b6
refs/heads/master
2023-05-06T03:41:00.002786
2021-05-28T02:48:38
2021-05-28T02:48:38
296,257,819
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
# generated from catkin/cmake/template/order_packages.context.py.in source_root_dir = "/home/lab/Documents/Data_reforement_code/yolo3_auto_label/FLIR_ws/src" whitelisted_packages = "".split(';') if "" != "" else [] blacklisted_packages = "".split(';') if "" != "" else [] underlay_workspaces = "/home/lab/Desktop/NEW_hiwin_control/devel;/opt/ros/kinetic".split(';') if "/home/lab/Desktop/NEW_hiwin_control/devel;/opt/ros/kinetic" != "" else []
b80b2f3fb6d3d9ea31fe7f2a79ebb0112b4efb2a
54ed8b1e0f9d0ae2d67cd86067fd920e82a4d441
/litex_boards/platforms/gsd_butterstick.py
c1c2849cc2f012f8b4294bd7e6a8f1e8d075b2a5
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
doraemoncito/litex-boards
88588260371666f23d17b3709794a020084dd7ff
55ea71bd0199226e3e993fb7bd224b9c6d5d10ef
refs/heads/master
2023-07-18T19:35:07.831531
2021-09-01T17:21:16
2021-09-01T17:21:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,072
py
# # This file is part of LiteX-Boards. # # Copyright (c) 2021 Greg Davill <[email protected]> # Copyright (c) 2021 Florent Kermarrec <[email protected]> # SPDX-License-Identifier: BSD-2-Clause from litex.build.generic_platform import * from litex.build.lattice import LatticePlatform from litex.build.lattice.programmer import OpenOCDJTAGProgrammer # IOs ---------------------------------------------------------------------------------------------- _io_r1_0 = [ # Clk ("clk30", 0, Pins("B12"), IOStandard("LVCMOS33")), # Leds ("user_led", 0, Pins("C13"), IOStandard("LVCMOS33")), ("user_led", 1, Pins("D12"), IOStandard("LVCMOS33")), ("user_led", 2, Pins(" U2"), IOStandard("LVCMOS33")), ("user_led", 3, Pins(" T3"), IOStandard("LVCMOS33")), ("user_led", 4, Pins("D13"), IOStandard("LVCMOS33")), ("user_led", 5, Pins("E13"), IOStandard("LVCMOS33")), ("user_led", 6, Pins("C16"), IOStandard("LVCMOS33")), ("user_led_color", 0, Pins("T1 R1 U1"), IOStandard("LVCMOS33")), # Buttons ("user_btn", 0, Pins("U16"), IOStandard("SSTL135_I")), ("user_btn", 1, Pins("T17"), IOStandard("SSTL135_I")), # DDR3 SDRAM ("ddram", 0, Subsignal("a", Pins( "G16 E19 E20 F16 F19 E16 F17 L20 " "M20 E18 G18 D18 H18 C18 D17 G20 "), IOStandard("SSTL135_I")), Subsignal("ba", Pins("H16 F20 H20"), IOStandard("SSTL135_I")), Subsignal("ras_n", Pins("K18"), IOStandard("SSTL135_I")), Subsignal("cas_n", Pins("J17"), IOStandard("SSTL135_I")), Subsignal("we_n", Pins("G19"), IOStandard("SSTL135_I")), Subsignal("cs_n", Pins("J20 J16"), IOStandard("SSTL135_I")), Subsignal("dm", Pins("U20 L18"), IOStandard("SSTL135_I")), Subsignal("dq", Pins( "U19 T18 U18 R20 P18 P19 P20 N20", "L19 L17 L16 R16 N18 R17 N17 P17"), IOStandard("SSTL135_I"), Misc("TERMINATION=75")), Subsignal("dqs_p", Pins("T19 N16"), IOStandard("SSTL135D_I"), Misc("TERMINATION=OFF"), Misc("DIFFRESISTOR=100")), Subsignal("clk_p", Pins("C20 J19"), IOStandard("SSTL135D_I")), Subsignal("cke", Pins("F18 J18"), IOStandard("SSTL135_I")), Subsignal("odt", Pins("K20 H17"), IOStandard("SSTL135_I")), Subsignal("reset_n", Pins("E17"), IOStandard("SSTL135_I")), Misc("SLEWRATE=FAST") ), # RGMII Ethernet ("eth_clocks", 0, Subsignal("tx", Pins("E15")), Subsignal("rx", Pins("D11")), IOStandard("LVCMOS33"), Misc("SLEWRATE=FAST"), ), ("eth", 0, Subsignal("rst_n", Pins("B20")), Subsignal("mdio", Pins("D16")), Subsignal("mdc", Pins("A19")), Subsignal("rx_data", Pins("A16 C17 B17 A17")), Subsignal("tx_ctl", Pins("D15")), Subsignal("rx_ctl", Pins("B18")), Subsignal("tx_data", Pins("C15 B16 A18 B19")), IOStandard("LVCMOS33"), Misc("SLEWRATE=FAST") ), ] # Connectors --------------------------------------------------------------------------------------- _connectors_r1_0 = [] # Platform ----------------------------------------------------------------------------------------- class Platform(LatticePlatform): default_clk_name = "clk30" default_clk_period = 1e9/30e6 def __init__(self, revision="1.0", device="85F", toolchain="trellis", **kwargs): assert revision in ["1.0"] self.revision = revision io = {"1.0": _io_r1_0}[revision] connectors = {"1.0": _connectors_r1_0}[revision] LatticePlatform.__init__(self, f"LFE5UM5G-{device}-8BG381C", io, connectors, toolchain=toolchain, **kwargs) def create_programmer(self): return OpenOCDJTAGProgrammer("openocd_butterstick.cfg") def do_finalize(self, fragment): LatticePlatform.do_finalize(self, fragment) self.add_period_constraint(self.lookup_request("clk30", loose=True), 1e9/30e6)
70d99d01332ce75b3a408d0d03328a3232c04d66
340b5d95c9dd0cfc3ff487a7bb927944ac40aa51
/ch_3 (functions)/005_brote_force.py
16d537d9bea57e70fa30621463bddcc0ce8d83bf
[]
no_license
sc-199/199
200970fb8bf0662755cda9c50599504392b3882f
618d8e1136c188276135f9a685a878984c3ea644
refs/heads/master
2020-05-04T18:33:34.722852
2019-03-22T08:13:32
2019-03-22T08:13:32
167,672,935
0
0
null
null
null
null
UTF-8
Python
false
false
2,375
py
''' ალგორითმები ==================== უხეში ძალის მეთოდი (Brute force) გვაქვს განსაზღვრის არე და მნიშვნელობათა არე. მაგალითად: მოცემულია კონკრეტული რიცხვი. ამ რიცხვისთვის გვაქვს ამონახსნთა სიმრავლე. გარკვეული პროცედურების გავლის შემდეგ ამონასხნთა სიმრავლიდან ამონახსნს ვარჩევთ სათითაოდ, რომელიც მოერგება ამ კონკრეტულ რიცხვს. ამას ეწოდება უხეში ძალის მეთოდი. ცხადია, მნიშვნელობათა არიდან მოიძებნება ერთი ამონახსნი. ''' # ---------------------- def is_simple_number(x): ''' ფუნქცია განსაზღვრავს x რიცხვი მარტივია თუ შედგენილი. x – მთელი, დადებითი (ნატურალური) რიცხვია. რიცხვი თუ მარტივია დაბრუნდება True, წინააღმდეგ შემთხვევაში – False ''' divizor = 2 while divizor <= x**0.5: if x % divizor == 0: return False divizor += 1 return True # ----------------------- def factorize_number(x): ''' x რიცხვის მარტივ მამრავლებად დაშლა. მამრავლებს ბეჭდავს ეკრანზე. x – მთელი, დადებითი (ნატურალური) რიცხვია. ''' divizor = 2 while x > 1: if x % divizor == 0: print(divizor, end =' ') x //= divizor else: divizor += 1 # ======================== print("Is simple number:", is_simple_number(19)) print() factorize_number(1024) print() factorize_number(999) print() # ------------------------ input("\nDone!..")
a1aec67ad9d26544e5297012f6c5d18c0ac75576
80225526644fa583e90e9bd319f2ed6666587515
/grading/assign2/assign2_sol.py
57663a0f470ed1485df6c7e0ba8a07aec603400d
[ "BSD-3-Clause" ]
permissive
ChenQiang-CN/a301_2020
249776f46ebcb781e328805ac162642040300bff
4bcb4a0181ea2d94207ede2536af51d671ba4930
refs/heads/master
2023-02-22T03:18:25.690639
2021-01-27T18:34:53
2021-01-27T18:34:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,600
py
# --- # jupyter: # jupytext: # notebook_metadata_filter: all,-language_info,-toc,-latex_envs # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.6.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # ## Assignment 2 - solutions # # Chapter 2: A23, A24, A25, A26 # Chapter 8: A2, A4 # %% import numpy as np import string # %% [markdown] # # 2-A23 # # What product of number density times absorption cross section is needed in order for 50% of the incident radiation to be absorbed by airborne volcanic ash over the following path length (km)? # # Given Equation 2.31a: # # $$ # \begin{align} # E_{\text {transmitted}}&=E_{\text {incident}} \cdot \mathrm{e}^{-n \cdot b \cdot \Delta s}\\ # t &= 0.5 = \mathrm{e}^{-n \cdot b \cdot \Delta s} # \end{align} # $$ # What product of number density $n$ times absorption cross section $b$ is needed in order for 50% of the incident radiation $E_{\text {incident}}$ to be absorbed by airborne volcanic ash over the following path length (km)? # # (Note how I use the zip function to zip together 3 lists, then unzip them in the for loop # one at a time) # %% # path length in km # 14 values delta_s = (0.2,0.4,0.6,0.8,1.0,1.5,2.0, 2.5,3.0,3.5,4.0,4.5,5.0,7.0) letters = string.ascii_lowercase[:len(delta_s)] # unpack the product of n x b # n_b= [] for the_delta in delta_s: the_prod = -np.log(0.5)/the_delta n_b.append(the_prod) the_answer = zip(letters,delta_s,n_b) for the_letter, the_delta, the_val in the_answer: print(f"{the_letter}) delta_s={the_delta} km," f" --- nxb={the_val:5.3f} km^-1") # %% [markdown] # ## 2-A24 # # Given optical depth $\tau$ in the equation 2.31c # # \$$E_{\text {transmitted}}=E_{\text {incident}} \cdot \mathrm{e}^{-\tau}$$ # # What fraction of incident radiation is transmitted through a volcanic ash cloud of optical depth: # %% tau =(0.2,0.5,0.7,1.0,1.5,3.0, 4.0,5.0,6.0,7.0,10.0,15.0,20.0) letters = string.ascii_lowercase[:len(tau)] frac_list=[] for the_tau in tau: the_frac = np.exp(-the_tau) frac_list.append(the_frac) the_answer = zip(letters,tau,frac_list) for the_letter, the_tau, the_frac in the_answer: print(f"{the_letter}) tau={the_tau}," f" --- transmissivity={the_frac:5.3f}") # %% [markdown] # ## 2-A25 # # given $\gamma = n \cdot b = k \cdot \rho$ # # Find the visial range $\Delta s$ such that the tranmissivity = # # # $$ # \begin{align} # t &= 0.02 = \exp ( -\gamma \cdot \Delta s) \\ # \Delta s &= -\log(0.02)/\gamma\ (meters) # \end{align} # $$ # %% gamma = (0.00001,0.00002,0.00005,0.0001, 0.0002,0.0005,0.001,0.002,0.005, 0.01,0.02,0.05) gamma_km = np.array(gamma)*1.e3 #km^{-1} letters = string.ascii_lowercase[:len(gamma_km)] delta_list= [] for the_gamma in gamma_km: delta_s = -np.log(0.02)/the_gamma delta_list.append(delta_s) the_answer = zip(letters,gamma_km,delta_list) for the_letter, the_gamma, delta_s in the_answer: print(f"{the_letter}) gamma ={the_gamma} km^{-1}," f" --- Delta s={delta_s:5.3f} km") # %% [markdown] # ## 2-A26 # # (i) What is the value of solar downward direct radiative flux reaching the surface at the city from exercise A5 at noon on 4 July, given 20% coverage of cumulus (low) clouds. # %% [markdown] # Eq. 2.5 # # $$ # \delta_{S} \approx \Phi_{r} \cdot \cos \left[\frac{C \cdot\left(d-d_{r}\right)}{d_{y}}\right] # $$ # # # Eq. 2.6: # # # $$ # \begin{aligned} # \sin (\Psi)=& \sin (\phi) \cdot \sin \left(\delta_{S}\right)-\\ # & \cos (\phi) \cdot \cos \left(\delta_{S}\right) \cdot \cos \left[\frac{C \cdot t_{U T C}}{t_{d}}+\lambda_{e}\right] # \end{aligned} # $$ # %% [markdown] # ## Timezones/leap years/daylight savings time make dates/times complicated # # For example, look at [this headache for daylight savings time folding](https://www.python.org/dev/peps/pep-0495/) # I would use the [arrow package](https://github.com/arrow-py/arrow) for real work # %% import datetime as dt from math import asin,sin,cos,pi import numpy as np try: # # use the ephem package to find exact summer solstice # import ephem except ModuleNotFoundError: pass deg2rad=pi/180. rad2deg=1./deg2rad def find_deltas(the_date): """given a python datetime object (UTC) find the solar declination angle in degrees using Stull equation 2.5 Parameters ---------- the_date: datetime object with UTC timezone Returns ------- deltas: solar declination angle in degrees """ the_year=the_date.year # # find the length of the year (leap or regular) in days by subtracting # two datetimes exactly 1 year apart -- jan 1, 0 hours, 0 minutes, 0 seconds # year_start=dt.datetime(the_year,1,1,0,0,0,tzinfo=dt.timezone.utc) year_end=dt.datetime(the_year+1,1,1,0,0,0,tzinfo=dt.timezone.utc) year_length=(year_end - year_start).days print(f"this year has {year_length:6.3f} days") phir=23.44 #axis tilt in degrees from stull # # run the following if you have the ephem package # to get the exact solstice. Make sure you get the # summer solstice by specifying solstice after May 31 # try: approx_solstice = dt.datetime(2020,5,31) solstice=ephem.next_solstice(approx_solstice).datetime() solstice = solstice.astimezone(dt.timezone.utc) except: # # otherwise use june 21 # solstice = dt.datetime(2020,6,21,0,0,0,tzinfo=dt.timezone.utc) #number of days since the new year the_day=(the_date - year_start).days jan1=dt.datetime(the_date.year,1,1,0,0,0,tzinfo=dt.timezone.utc) solstice_day=(solstice - jan1).days #print('solstice has {} days'.format(solstice_day)) fraction=(the_day - solstice_day)/year_length deltas=phir*cos(2*pi*fraction) return deltas # %% def find_elevation(the_date,the_lat,the_lon): """find the solar elevation for a location in degrees datetime object with a UTC timezone representing local time, using Stull eqn. 2.6 Parameters ---------- the_date: datetime object time in UTC the_lat: float degrees North the_lon: float degrees East Returns ------- elevation: float solar elevation in degrees """ deltas=find_deltas(the_date) deltas=deltas*deg2rad phi= the_lat*deg2rad # latitude deg N lambda_e = the_lon*deg2rad #longitude, deg E # # turn minutes into fractions of an hour # t_utc=the_date.hour + the_date.minute/60. print(f"the longitude: {the_lon:5.2f} deg E, hour in utc {t_utc}") #stull eqn 2.6 sin_psi=sin(phi)*sin(deltas) - cos(phi)*cos(deltas)*cos(2*pi*t_utc/24. + lambda_e) elevation=asin(sin_psi)*rad2deg #write 0 if under the horizon if elevation < 0: elevation=0. return elevation # %% [markdown] # Start accumulating results in a dictionary for each part of A26. We will key on the city # and each city will have its own dictionary. # %% # # these time offsets are all standard time # credit: Marjolein Ribberink # coords={ "Seattle":(47.6062, -122.3321,-8), "Corvallis":(44.5646, -123.2620,-8), "Boulder":(40.0150, -105.2705,-7), "Norman":(35.2226, -97.4395,-6), "Madison":(43.0731, -89.4012,-6), "Toronto":(43.6532, -79.3832,-5), "Montreal":(45.5017, -73.5673,-5), "Boston":(42.3601, -71.0589,-5), "NYC":(40.7128, -74.0060,-5), "University Park":(40.8148, -77.8653,-5), "Princeton":(40.3431, -74.6551,-5), "Washington DC":(38.9072, -77.0369,-5), "Raleigh":(35.7796, -78.6382,-5), "Tallahassee":(30.4383, -84.2807,-5), "Reading":(51.4543, -0.9781,0), "Toulouse":(43.6047, 1.4442,1), "Munchen":(48.1351, 11.5820,1), "Bergen":(60.3913, 5.3221,1), "Uppsala":(59.8586, 17.6389,1), "DeBilt":(52.1093, 5.1810,1), "Paris":(48.8566, 2.3522,1), "Tokyo":(35.6804, 139.7690,8), "Beijing":(39.9042, 116.4074,7), "Warsaw":(52.2297, 21.0122,1), "Madrid":(40.4168, 3.7038,1), "Melbourne":(-37.8136, 144.9631,10), "Vancouver":(49.2827, -123.1207,-8) } city_list = ['Vancouver','Reading','Norman'] results=dict() for the_city in city_list: print(f"\n{the_city}\n") geocoords = coords[the_city] the_lat, the_lon, tz_offset = geocoords hour = 12 - tz_offset the_date = dt.datetime(2020,6,21,hour,0,0,tzinfo=dt.timezone.utc) elev=find_elevation(the_date,the_lat,the_lon) print(f"lat {the_lat:5.2f} deg N, solar elev {elev:5.2f} deg") results[the_city]={'elevation':elev} print(f"\n{results}\n") # %% [markdown] # ### 2-A26a # # find the flux at the surface given Stull 2.35 # # $$ # T_{r}=(0.6+0.2 \sin \Psi)\left(1-0.4 \sigma_{H}\right)\left(1-0.7 \sigma_{M}\right)\left(1-0.4 \sigma_{L}\right) # $$ # # with $\sigma_L=0.2$ # %% def find_Tr(elevation,sigma_h,sigma_m,sigma_l): """ given a solar elevation and cloud fractions for 3 layers find the effective solar flux transmission Parameters ---------- elevation: float solar elevation in degrees sigma_h, sigma_m,sigma_l: floats high, middle and low cloud fractions, 0 to 1 Returns ------- Tr: float the diffuse and direct flux transmission, 0 to 1 """ import numpy as np deg2rad = np.pi/180. elevation = elevation*deg2rad S0 = 1361 Tr = (0.6 + 0.2*np.sin(elevation))*(1-0.4*sigma_h)*(1-0.7*sigma_m)*(1-0.4*sigma_l) print(f"cos(theta) factor is {np.sin(elevation):5.2f}") return Tr # %% for the_city, results_dict in results.items(): print(f"\n{the_city}\n") geocoords = coords[the_city] the_lat, the_lon, tz_offset = geocoords hour = 12 - tz_offset the_date = dt.datetime(2020,6,21,hour,0,0,tzinfo=dt.timezone.utc) elev=find_elevation(the_date,the_lat,the_lon) sigma_h, sigma_m, sigma_l = 0, 0, 0.2 Tr = find_Tr(elev,sigma_h,sigma_m,sigma_l) S0= -1361 #W/m^2 downward_flux = S0*Tr print(f"high, middle, low cloud fractions: {sigma_h,sigma_m,sigma_l}") print(f"the diffuse/direct transmissin is {Tr:5.3f}") print(f"downward flux at the surface is {downward_flux:5.2f} W/m^2" ) results[the_city]['downward_flux'] = downward_flux results[the_city]['high_med_low'] = (sigma_h,sigma_m,sigma_l) print(f"\n{results}\n") # %% [markdown] # ## 2-A26b # # If the albedo is 0.5 in your town, what is the reflected solar flux at that same time # # Stull 2.36 # $$K_{\uparrow} = -A \cdot K_{\downarrow}$$ # %% for the_city, results_dict in results.items(): flux = results_dict['downward_flux'] albedo = 0.5 upward_flux = -albedo*flux print(f"{the_city}: {upward_flux:5.2f} W/m^2") results[the_city]['upward_sw'] = upward_flux results[the_city]['albedo'] = albedo print(f"\n{results}\n") # %% [markdown] # ### 2-A26c # # What is the approx net longwave flux at the surface, according to Stull 2.39? # # $$I^{*}=b \cdot\left(1-0.1 \sigma_{H}-0.3 \sigma_{M}-0.6 \sigma_{L}\right)$$ # %% b = 98.5 #W/m^2 for the_city,results_dict in results.items(): sigma_h, sigma_m, sigma_l = results_dict['high_med_low'] Istar = b*(1 - 0.1*sigma_h -0.3*sigma_m - 0.6*sigma_l) results[the_city]['Istar']=Istar print(f"{the_city}: {Istar:5.2f} W/m^2") print(f"\n{results}\n") # %% [markdown] # ### 2-A26d # # What is the net surface radiation according to Stull 2.40a # # $$\mathbb{F}^{*}=-(1-A) \cdot S \cdot T_{r} \cdot \sin (\Psi)+I^{*}$$ # # Note that in the loop below I can add things to `results_dict`, and the changes "stick" # i.e. the for loop is giving me a reference to the original `results_dict` # not a copy # %% for the_city, results_dict in results.items(): A = results_dict['albedo'] downward_flux = results_dict['downward_flux'] Istar = results_dict['Istar'] net_sfc_flux = -(1 - A)*downward_flux + Istar print(f"{the_city}: {net_sfc_flux:5.2f} W/m^2") results_dict['net_sfc_flux'] = net_sfc_flux print(f"\n{results}\n") # %% [markdown] # ### 8-A2 # # Find the blackbody radiance for the following sets of wavelength, temperature # %% from scipy.constants import c, h, k # # get Stull's c_1 and c_2 from fundamental constants # # c=2.99792458e+08 #m/s -- speed of light in vacuum # h=6.62606876e-34 #J s -- Planck's constant # k=1.3806503e-23 # J/K -- Boltzman's constant c1 = 2. * h * c**2. c2 = h * c / k sigma = 2. * np.pi**5. * k**4. / (15 * h**3. * c**2.) def calc_radiance(wavel, Temp): """ Calculate the blackbody radiance Parameters ---------- wavel: float or array wavelength (meters) Temp: float temperature (K) Returns ------- Llambda: float or arr monochromatic radiance (W/m^2/m/sr) """ Llambda_val = c1 / (wavel**5. * (np.exp(c2 / (wavel * Temp)) - 1)) return Llambda_val def planck_invert(wavel, Lstar): """ Calculate the brightness temperature Parameters ---------- wavel: float wavelength (meters) Lstar: float or array Blackbody radiance (W/m^2/m/sr) Returns ------- Tbright: float or arr brightness temperature (K) """ Tbright = c2 / (wavel * np.log(c1 / (wavel**5. * Lstar) + 1.)) return Tbright # %% probset={ "a":{'wavelen':14.7,'Tc':-60}, "b":{'wavelen':14.4,'Tc':-60}, "c":{'wavelen':14.0,'Tc':-30}, "d":{'wavelen':13.7,'Tc':0}, "e":{'wavelen':13.4,'Tc':5}, "f":{'wavelen':12.7,'Tc':15}, "g":{'wavelen':12.0,'Tc':25}, "h":{'wavelen':11.0,'Tc':-5}, "i":{'wavelen':9.7,'Tc':-15} } for letter, prob_vals in probset.items(): Tk = prob_vals['Tc'] + 273.15 wavelen = prob_vals['wavelen']*1.e-6 Lbb = calc_radiance(wavelen,Tk) print(f"{letter}) Tk={Tk:5.2f} K, Lbb={Lbb*1.e-6:5.2f} W/m^2/sr/micron") # %% [markdown] # ### 8-A4 # # Find the brightness temperature for the following wavelengths given a radiance of $10^{-15}$ W/m^2/sr/micron. # %% wavelen = (0.6,3.8,4.0,4.1,4.4,4.5,4.6,6.5,7.0,7.5) letters = string.ascii_lowercase[:len(wavelen)] Lstar=(10**(-15))*1.e6 #W/m^2/sr/micron for letter,wavel in zip(letters,wavelen): wavel_meters=wavel*1.e-6 Tbright = planck_invert(wavel_meters,Lstar) print(f"{letter}) Wavelength = {wavel:5.2f} microns, Tbright = {Tbright:5.2f} K")
4919d2fe56f781fbadaf6d51a0998a84e7c5aa3c
491d2fd36f2ca26975b3eb302a3d5600415bf7c4
/TensorFlow/computer_vision/Resnets/utils/logs/hooks_helper.py
89b28ade2ae8aeaccd57914ccadefd223d2479c4
[ "Apache-2.0" ]
permissive
kmanchella-habana/Model-References
9fa42654d57a867d82f417e9fff668946f9105f6
460d3b23ce75f30561e8f725ebcb21298897d163
refs/heads/master
2023-08-28T17:42:48.866251
2021-09-18T21:38:04
2021-09-18T21:38:04
411,371,667
0
0
null
2021-09-28T17:08:13
2021-09-28T17:08:13
null
UTF-8
Python
false
false
6,251
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Hooks helper to return a list of TensorFlow hooks for training by name. More hooks can be added to this set. To add a new hook, 1) add the new hook to the registry in HOOKS, 2) add a corresponding function that parses out necessary parameters. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order from TensorFlow.computer_vision.Resnets.utils.logs import hooks from TensorFlow.computer_vision.Resnets.utils.logs import logger from TensorFlow.computer_vision.Resnets.utils.logs import metric_hook _TENSORS_TO_LOG = dict((x, x) for x in ['learning_rate_1', 'cross_entropy_1', 'accuracy_1']) PROFILE = False def get_train_hooks(name_list, use_tpu=False, **kwargs): """Factory for getting a list of TensorFlow hooks for training by name. Args: name_list: a list of strings to name desired hook classes. Allowed: LoggingTensorHook, ProfilerHook, ExamplesPerSecondHook, which are defined as keys in HOOKS use_tpu: Boolean of whether computation occurs on a TPU. This will disable hooks altogether. **kwargs: a dictionary of arguments to the hooks. Returns: list of instantiated hooks, ready to be used in a classifier.train call. Raises: ValueError: if an unrecognized name is passed. """ if not name_list: return [] if use_tpu: tf.compat.v1.logging.warning('hooks_helper received name_list `{}`, but a ' 'TPU is specified. No hooks will be used.' .format(name_list)) return [] train_hooks = [ tf.estimator.ProfilerHook(save_steps=50, output_dir=".") ] if PROFILE else [] for name in name_list: hook_name = HOOKS.get(name.strip().lower()) if hook_name is None: raise ValueError('Unrecognized training hook requested: {}'.format(name)) else: train_hooks.append(hook_name(**kwargs)) return train_hooks def get_logging_tensor_hook(every_n_iter=100, tensors_to_log=None, **kwargs): # pylint: disable=unused-argument """Function to get LoggingTensorHook. Args: every_n_iter: `int`, print the values of `tensors` once every N local steps taken on the current worker. tensors_to_log: List of tensor names or dictionary mapping labels to tensor names. If not set, log _TENSORS_TO_LOG by default. **kwargs: a dictionary of arguments to LoggingTensorHook. Returns: Returns a LoggingTensorHook with a standard set of tensors that will be printed to stdout. """ if tensors_to_log is None: tensors_to_log = _TENSORS_TO_LOG return tf.estimator.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=every_n_iter) def get_profiler_hook(model_dir, save_steps=10, **kwargs): # pylint: disable=unused-argument """Function to get ProfilerHook. Args: model_dir: The directory to save the profile traces to. save_steps: `int`, print profile traces every N steps. **kwargs: a dictionary of arguments to ProfilerHook. Returns: Returns a ProfilerHook that writes out timelines that can be loaded into profiling tools like chrome://tracing. """ return tf.estimator.ProfilerHook(save_steps=save_steps, output_dir=model_dir) def get_examples_per_second_hook(every_n_steps=100, batch_size=128, warm_steps=5, **kwargs): # pylint: disable=unused-argument """Function to get ExamplesPerSecondHook. Args: every_n_steps: `int`, print current and average examples per second every N steps. batch_size: `int`, total batch size used to calculate examples/second from global time. warm_steps: skip this number of steps before logging and running average. **kwargs: a dictionary of arguments to ExamplesPerSecondHook. Returns: Returns a ProfilerHook that writes out timelines that can be loaded into profiling tools like chrome://tracing. """ return hooks.ExamplesPerSecondHook( batch_size=batch_size, every_n_steps=every_n_steps, warm_steps=warm_steps, metric_logger=logger.get_benchmark_logger()) def get_logging_metric_hook(tensors_to_log=None, every_n_secs=600, **kwargs): # pylint: disable=unused-argument """Function to get LoggingMetricHook. Args: tensors_to_log: List of tensor names or dictionary mapping labels to tensor names. If not set, log _TENSORS_TO_LOG by default. every_n_secs: `int`, the frequency for logging the metric. Default to every 10 mins. **kwargs: a dictionary of arguments. Returns: Returns a LoggingMetricHook that saves tensor values in a JSON format. """ if tensors_to_log is None: tensors_to_log = _TENSORS_TO_LOG return metric_hook.LoggingMetricHook( tensors=tensors_to_log, metric_logger=logger.get_benchmark_logger(), every_n_secs=every_n_secs) def get_step_counter_hook(**kwargs): """Function to get StepCounterHook.""" del kwargs return tf.estimator.StepCounterHook() # A dictionary to map one hook name and its corresponding function HOOKS = { 'loggingtensorhook': get_logging_tensor_hook, 'profilerhook': get_profiler_hook, 'examplespersecondhook': get_examples_per_second_hook, 'loggingmetrichook': get_logging_metric_hook, 'stepcounterhook': get_step_counter_hook }
adf629c13d106ceb433534d50425de94aee5c25f
6c2ddf52efccdfa15ce073da0e74d3352d5108c4
/idact/detail/config/validation/validate_bool.py
f5e1aea27bb8050ac7dc15bc157df871549484c8
[ "MIT" ]
permissive
intdata-bsc/idact
4bff248e644629b7ec634b282d790c305fc6703d
54cb65a711c145351e205970c27c83e6393cccf5
refs/heads/develop
2020-05-17T20:33:52.890970
2019-12-26T00:03:58
2019-12-26T00:03:58
183,949,088
0
0
MIT
2019-12-26T00:03:59
2019-04-28T19:18:58
Python
UTF-8
Python
false
false
658
py
"""This module contains a function for validating a boolean config entry.""" from typing import Optional from idact.detail.config.validation.validation_error_message import \ validation_error_message def validate_bool(value, label: Optional[str] = None) -> bool: """Returns the parameter, if it's a :class:`bool`, otherwise raises an exception. :param value: Object to validate. :param label: Object label for error message. :raises TypeError: On wrong type. """ if isinstance(value, bool): return value raise TypeError(validation_error_message( label=label, value=value))
d102b7d9ef0861fbbb91042145d024d4eedb4eab
9adc810b07f7172a7d0341f0b38088b4f5829cf4
/experiments/references/discern/pusher.py
43f5bb6436960491846009eeeb34fb37c8416c8e
[ "MIT" ]
permissive
Asap7772/railrl_evalsawyer
7ee9358b5277b9ddf2468f0c6d28beb92a5a0879
baba8ce634d32a48c7dfe4dc03b123e18e96e0a3
refs/heads/main
2023-05-29T10:00:50.126508
2021-06-18T03:08:12
2021-06-18T03:08:12
375,810,557
1
0
null
null
null
null
UTF-8
Python
false
false
6,797
py
import rlkit.misc.hyperparameter as hyp from experiments.murtaza.multiworld.skew_fit.reacher.generate_uniform_dataset import generate_uniform_dataset_reacher from multiworld.envs.mujoco.cameras import sawyer_init_camera_zoomed_in from rlkit.launchers.launcher_util import run_experiment from rlkit.torch.grill.launcher import grill_her_twin_sac_online_vae_full_experiment import rlkit.torch.vae.vae_schedules as vae_schedules from rlkit.torch.vae.conv_vae import imsize48_default_architecture if __name__ == "__main__": variant = dict( double_algo=False, online_vae_exploration=False, imsize=48, init_camera=sawyer_init_camera_zoomed_in, env_id='SawyerPushNIPSEasy-v0', grill_variant=dict( use_discern_sampling=True, save_video=True, online_vae_beta=20, save_video_period=50, qf_kwargs=dict( hidden_sizes=[400, 300], ), policy_kwargs=dict( hidden_sizes=[400, 300], ), vf_kwargs=dict( hidden_sizes=[400, 300], ), algo_kwargs=dict( base_kwargs=dict( num_epochs=1000, num_steps_per_epoch=500, num_steps_per_eval=500, min_num_steps_before_training=10000, batch_size=256, max_path_length=50, discount=0.99, num_updates_per_env_step=2, # collection_mode='online-parallel', parallel_env_params=dict( num_workers=1, ), reward_scale=1, ), her_kwargs=dict( ), twin_sac_kwargs=dict( train_policy_with_reparameterization=True, soft_target_tau=1e-3, # 1e-2 policy_update_period=1, target_update_period=1, # 1 use_automatic_entropy_tuning=True, ), online_vae_kwargs=dict( vae_training_schedule=vae_schedules.custom_schedule_2, oracle_data=False, vae_save_period=50, parallel_vae_train=False, ), diverse_kwargs=dict( p_replace=.05, p_add_non_diverse=.05, goal_buffer_size=1024, ), ), replay_buffer_kwargs=dict( start_skew_epoch=10, max_size=int(100000), fraction_goals_rollout_goals=0.2, fraction_goals_env_goals=0.5, exploration_rewards_type='None', vae_priority_type='vae_prob', priority_function_kwargs=dict( sampling_method='importance_sampling', decoder_distribution='gaussian_identity_variance', # decoder_distribution='bernoulli', num_latents_to_sample=10, ), power=.1, ), normalize=False, render=False, exploration_noise=0.0, exploration_type='ou', training_mode='train', testing_mode='test', reward_params=dict( type='latent_distance', ), observation_key='latent_observation', desired_goal_key='latent_desired_goal', vae_wrapped_env_kwargs=dict( sample_from_true_prior=True, ), algorithm='ONLINE-VAE-SAC-BERNOULLI', # generate_uniform_dataset_kwargs=dict( # init_camera=sawyer_init_camera_zoomed_in, # env_id='SawyerPushNIPS-v0', # num_imgs=1000, # use_cached_dataset=False, # show=False, # save_file_prefix='pusher', # ), # generate_uniform_dataset_fn=generate_uniform_dataset_reacher, ), train_vae_variant=dict( representation_size=4, beta=20, num_epochs=0, dump_skew_debug_plots=False, decoder_activation='gaussian', # decoder_activation='sigmoid', generate_vae_dataset_kwargs=dict( N=40, test_p=.9, use_cached=True, show=False, oracle_dataset=True, oracle_dataset_using_set_to_goal=True, n_random_steps=100, non_presampled_goal_img_is_garbage=True, ), vae_kwargs=dict( input_channels=3, architecture=imsize48_default_architecture, decoder_distribution='gaussian_identity_variance', ), algo_kwargs=dict( start_skew_epoch=5000, is_auto_encoder=False, batch_size=64, lr=1e-3, skew_config=dict( method='vae_prob', power=0, ), skew_dataset=True, priority_function_kwargs=dict( decoder_distribution='gaussian_identity_variance', sampling_method='importance_sampling', # sampling_method='true_prior_sampling', num_latents_to_sample=10, ), use_parallel_dataloading=False, ), save_period=25, ), version='no force', ) search_space = { 'grill_variant.algo_kwargs.diverse_kwargs.p_replace': [.01] } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) # n_seeds = 1 # mode = 'local' # exp_prefix = 'test' n_seeds = 2 mode = 'gcp' exp_prefix = 'steven-door-discern-new-visuals-comp' for exp_id, variant in enumerate(sweeper.iterate_hyperparameters()): for _ in range(n_seeds): run_experiment( grill_her_twin_sac_online_vae_full_experiment, exp_prefix=exp_prefix, mode=mode, variant=variant, use_gpu=True, snapshot_gap=50, snapshot_mode='gap_and_last', num_exps_per_instance=3, gcp_kwargs=dict( zone='us-east1-c', gpu_kwargs=dict( gpu_model='nvidia-tesla-k80', num_gpu=1, ) ) )
f6495eb9f687d1146f820c4e46e6dcc9b4e71e7e
f64ac4dfdf43d5535c30fd7b58f9e80d45b884db
/GAN/conditional_gan/cifar100_cgan.py
4a6f02fa7a5ab6843cc19a17df9baa77a8436d30
[ "Unlicense" ]
permissive
beckybai/generative-models
e13fe109d2a589e90cedba35c1c1614eaef12d03
dc057e788b8b65ff2dfa7510cb717de6c1bd0b75
refs/heads/master
2021-01-20T01:50:03.585856
2017-07-08T17:43:03
2017-07-08T17:43:03
89,329,854
1
0
null
2017-04-25T07:18:31
2017-04-25T07:18:31
null
UTF-8
Python
false
false
4,191
py
import torch import torch.autograd as autograd import torch.optim as optim import numpy as np from datetime import datetime import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import os from torch.autograd import Variable from tensorflow.examples.tutorials.mnist import input_data import torch.nn as nn import torch.nn.functional as F import shutil,sys import mutil import model import data_convert import owntool gpu = 2 ngpu = 2 torch.cuda.set_device(gpu) # mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) cifar_d = data_convert.cifar100() mb_size = 100 # mini-batch_size Z_dim = 100 label_dim = 100 X_dim = 32 y_dim = 1 cnt = 0 num = '0' out_dir = './cifar100_result/basic_{}_{}/'.format(datetime.now(),num) out_dir.replace(" ","_") if not os.path.exists(out_dir): os.makedirs(out_dir) shutil.copyfile(sys.argv[0], out_dir + '/training_script.py') sys.stdout = mutil.Logger(out_dir) in_channel=4 d_num = 3 G = model.G_Net_conv_32(ngpu,in_channel = Z_dim+label_dim, out_channel = 3).cuda() D = model.D_Net_conv(ngpu,in_channel).cuda() """Weight Initialization""" # def weights_init(m): # classname = m.__class__.__name__ # if classname.find('Conv') != -1: # m.weight.data.normal_(0.0, 0.02) """ ===================== TRAINING ======================== """ d_num = 3 # avd_num = 1/d_num G_solver = optim.Adam(G.parameters(), lr=1e-4) D_solver = optim.Adam(D.parameters(), lr=1e-4) ones_label = Variable(torch.ones(mb_size)).cuda() zeros_label = Variable(torch.zeros(mb_size)).cuda() criterion = nn.BCELoss() c_label = np.array(range(100)) def reset_d_grad(): D.zero_grad() def step_d_optim(): D_solver.step() for it in range(100000): # Sample data z = Variable(torch.randn(mb_size, Z_dim)).cuda() X, c = cifar_d.batch_next(mb_size) X = Variable(torch.from_numpy(X)).cuda() # label_m = np.nonzero(c)[1] c_v = Variable(torch.from_numpy(model.set_label_ve_ma(c,100).astype('float32'))).cuda() # for the conditon of the generator label_m = model.set_label_cifar(c.astype('int'),mb_size,X_dim) c = Variable(label_m).cuda() # Dicriminator forward-loss-backward-update D.zero_grad() G.zero_grad() x_g = torch.cat([z,c_v],1).t() x_g.data.resize_(mb_size, Z_dim+label_dim, 1, 1) G_sample = G(x_g).detach() # X.data.resize_(mb_size, 1, X_dim, X_dim) D_real = D(torch.cat([X,c],1)) D_fake = D(torch.cat([G_sample,c],1)) D_loss_fake = criterion(D_fake, zeros_label) D_loss_real = criterion(D_real, ones_label) D_loss_real.backward() D_loss_fake.backward() D_solver.step() # step_d_optim() # Housekeeping - reset gradient D.zero_grad() G.zero_grad() # Generator forward-loss-backward-update z = Variable(torch.randn(mb_size, Z_dim)).cuda() x_g = torch.cat([z,c_v],1).t() x_g.data.resize_(mb_size, Z_dim+ label_dim, 1, 1) G_sample = G(x_g) DG_loss = D(torch.cat([G_sample, c],1)) G_loss = criterion(DG_loss, ones_label) G_loss.backward() G_solver.step() # Housekeeping - reset gradient D.zero_grad() G.zero_grad() # Print and plot every now and then if it % 500 == 0: print('Iter-{}; D_loss_real/fake: {}/{}; G_loss: {}'.format(it, D_loss_real.data.tolist(), D_loss_fake.data.tolist(), G_loss.data.tolist())) c = c_label c_v = Variable(torch.from_numpy(model.set_label_ve_ma(c,100).astype('float32'))).cuda() x_g = torch.cat([z, c_v], 1).t() x_g.data.resize_(mb_size, Z_dim + label_dim, 1, 1) samples = G(x_g) samples = samples.data.tolist()[:100] output_path = out_dir + "{}.png".format(it) owntool.save_color_picture_pixel(samples,output_path) if it % 10000==0: torch.save(G.state_dict(),'{}/G_{}.model'.format(out_dir,str(it))) torch.save(D.state_dict(),'{}/D_{}.model'.format(out_dir,str(it)))
3670ebd37aad77b33e512dbf343658f1219a3ec3
7ce076dd764fe4b5c7881734f157bc6f77a99ead
/tests/providers/google/ads/hooks/test_ads.py
a2c1a4f06188115057442b3817c57f2dd2819315
[ "Apache-2.0", "BSD-3-Clause", "MIT", "Python-2.0" ]
permissive
kaxil/airflow
db31c98e23f2e0d869d857484e56a7c58acef231
42f1da179db00491610946a0b089dd82269adc74
refs/heads/master
2023-04-28T04:46:38.478352
2020-09-28T20:51:16
2020-09-28T20:51:16
112,322,392
1
1
Apache-2.0
2020-08-27T20:15:22
2017-11-28T10:42:19
Python
UTF-8
Python
false
false
3,482
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mock import pytest from airflow.providers.google.ads.hooks.ads import GoogleAdsHook API_VERSION = "api_version" ADS_CLIENT = {"key": "value"} SECRET = "secret" EXTRAS = { "extra__google_cloud_platform__keyfile_dict": SECRET, "google_ads_client": ADS_CLIENT, } @pytest.fixture() def mock_hook(): with mock.patch("airflow.hooks.base_hook.BaseHook.get_connection") as conn: hook = GoogleAdsHook(api_version=API_VERSION) conn.return_value.extra_dejson = EXTRAS yield hook class TestGoogleAdsHook: @mock.patch("airflow.providers.google.ads.hooks.ads.GoogleAdsClient") def test_get_customer_service(self, mock_client, mock_hook): mock_hook._get_customer_service() client = mock_client.load_from_dict client.assert_called_once_with(mock_hook.google_ads_config) client.return_value.get_service.assert_called_once_with("CustomerService", version=API_VERSION) @mock.patch("airflow.providers.google.ads.hooks.ads.GoogleAdsClient") def test_get_service(self, mock_client, mock_hook): mock_hook._get_service() client = mock_client.load_from_dict client.assert_called_once_with(mock_hook.google_ads_config) client.return_value.get_service.assert_called_once_with("GoogleAdsService", version=API_VERSION) @mock.patch("airflow.providers.google.ads.hooks.ads.GoogleAdsClient") def test_search(self, mock_client, mock_hook): service = mock_client.load_from_dict.return_value.get_service.return_value rows = ["row1", "row2"] service.search.side_effects = rows # Here we mock _extract_rows to assert calls and # avoid additional __iter__ calls mock_hook._extract_rows = list query = "QUERY" client_ids = ["1", "2"] mock_hook.search(client_ids=client_ids, query="QUERY", page_size=2) expected_calls = [mock.call(c, query=query, page_size=2) for c in client_ids] service.search.assert_has_calls(expected_calls) def test_extract_rows(self, mock_hook): iterators = [[1, 2, 3], [4, 5, 6]] assert mock_hook._extract_rows(iterators) == sum(iterators, []) @mock.patch("airflow.providers.google.ads.hooks.ads.GoogleAdsClient") def test_list_accessible_customers(self, mock_client, mock_hook): accounts = ["a", "b", "c"] service = mock_client.load_from_dict.return_value.get_service.return_value service.list_accessible_customers.return_value = mock.MagicMock(resource_names=accounts) result = mock_hook.list_accessible_customers() service.list_accessible_customers.assert_called_once_with() assert accounts == result
78fbb20b7e5c786eecdbb8bd9b07159de59b5096
75169b83f2b975bff8baf61f0cf1264cf4b71a28
/learnpy/basis/module.py
fa8e2d00029a2f6399f12cf00ac497782c1fe7fe
[]
no_license
Pangpang2/Python
a27024587ae51923954deefaaff304a26e5a944f
0b3bcfbdcaa71253c798090713c052fd397bff3f
refs/heads/master
2022-12-01T10:03:23.214443
2020-08-26T00:21:15
2020-08-26T00:21:15
290,171,195
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
from collections import Iterable isinstance('abc', Iterable)
68c38083ec1433c5550eab57e134154610ed105b
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/metapose/inference_time_optimization.py
0944c4df83cb4b4fa70f165ee5f48dbd359db1eb
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
25,628
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for performing inference time optimization.""" # pylint: disable=invalid-name import inspect from typing import Sequence, Tuple, Callable, Mapping, Optional, Any # pylint: disable=g-importing-member,g-multiple-import import tensorflow as tf import tensorflow_probability as tfp def procrustes(a, b): """Computes rotation that aligns mean-centered `a` to mean-centered `b`.""" tf.debugging.assert_shapes([ (a, ('joints', 'dim')), (b, ('joints', 'dim')) ]) a_m = tf.reduce_mean(a, axis=0) b_m = tf.reduce_mean(b, axis=0) a_c = a - a_m b_c = b - b_m A = tf.tensordot(a_c, b_c, axes=(0, 0)) _, U, V = tf.linalg.svd(A) R = tf.tensordot(U, V, axes=(1, 1)) return R, a_m, b_m def align_aba( a, b, rescale = True ): """Produces `a` after optimal alignment to `b` and vice-versa.""" R, a_m, b_m = procrustes(a, b) scale = tf.reduce_mean((tf.linalg.norm(b - b_m)) / tf.linalg.norm(a - a_m)) scale = scale if rescale else 1.0 a2b = (a - a_m) @ R * scale + b_m b2a = (b - b_m) @ tf.transpose(R) / scale + a_m return a2b, b2a, (a_m, b_m, R, scale) # [batch, 6] -> [batch, 3, 3] # see “On the Continuity of Rotation Representations in Neural Networks” # by Zhou et al. 2019 def vec6d_to_rot_mat(vec): """Converts a batch of 6D parameterized rots to rotation matrices.""" x, y = vec[:, :3], vec[:, 3:] xn = tf.linalg.normalize(x, axis=-1)[0] z = tf.linalg.cross(xn, y) zn = tf.linalg.normalize(z, axis=-1)[0] yn = tf.linalg.cross(zn, xn) mat = tf.stack([xn, yn, zn], axis=1) return mat def minimize_step_fn(func, opt, opt_arg_names, args, kwargs ): """Minimizes the scalar-valued `func` using `opt` wrt `opt_arg_names`. Produces a step_fn function that when called performs a single step of minimizes a function `func` Arguments: func: a scalar-valued callable opt: an instance of a tf.keras.optimizers.Optimizer opt_arg_names: names of arguments to optimize with respect to args: function argument list kwargs: function argument dict Returns: A dict of variables corresponding to opt_arg_names. The func must be such that `func(*args, **kwargs)` succeeds. For names in in `opt_arg_names` corresponding arguments are used as starting values. Example: def func(a, b, c): return a + b * c opt = tf.keras.optimizers.Adam(...) step_fn, var_dict = minimize_step_fn( func, opt, ['b'], [1.0, 3.0], {'c': 5.0}) step_fn() # evaluates d func(a, b, c) / d b at (1.0, 3.0, 5.0) print(var_dict['b']) # updated value """ full_kwargs = inspect.signature(func).bind(*args, **kwargs).arguments extra_keys = set(opt_arg_names) - full_kwargs.keys() if extra_keys: raise ValueError('args %s are not in the original func' % extra_keys) var_dict = {n: tf.Variable(full_kwargs[n], name=n) for n in opt_arg_names} full_kwargs.update(var_dict) loss_fn = lambda: func(**full_kwargs) # pylint: disable=unnecessary-lambda def step_fn(): pre_loss = loss_fn() opt.minimize(loss_fn, list(var_dict.values())) return pre_loss return step_fn, var_dict def reparam(R, scale): """Reparameterize rotation (as 6D) and scale (as inv_softplus(scale)).""" R_reparam = R[:, :2, :] scales_reparam = tf.math.log(tf.math.exp(scale) - 1.0) # inv softmax return R_reparam, scales_reparam def unreparam(R_re, scale_re): """Un-reparameterize rotation (as 6D) and scale (as inv_softplus(scale)).""" R = vec6d_to_rot_mat(tf.reshape(R_re, (-1, 6))) scale = tf.math.softplus(scale_re) return R, scale def initial_epi_estimate( multi_view_pose3d_preds ): """(Stage 1) Estimate initial pose and cameras from per-view monocular 3D. Assumes that the zero's camera frame is canonical (R=I, scale=1, shift=(0,0)). Procrustes aligns each pose to the pose in zero's camera frame. Arguments: multi_view_pose3d_preds: (n_cam, n_joints, n_dim) monocular Returns: mean_pose3d_centered: (n_joints, n_dim) initial pose R: (n_cam, 3, 3) initial camera rots scale: (n_cam, ) initial camera scales shift: (n_cam, 2) initial camera shifts """ all_aligned_preds = [] params = [] for view_id in tf.range(1, tf.shape(multi_view_pose3d_preds)[0]): pred = multi_view_pose3d_preds[view_id] _, aligned_pred, view_params = align_aba(multi_view_pose3d_preds[0], pred) all_aligned_preds.append(aligned_pred) params.append(view_params) view0_mean = params[0][0] mean_pose3d_centered = tf.reduce_mean(all_aligned_preds, axis=0) - view0_mean first_view_params = [tf.zeros(3), view0_mean, tf.eye(3), 1.0] all_view_params = [first_view_params] + params _, shift, R, scale = map(tf.stack, zip(*all_view_params)) return mean_pose3d_centered, (R, scale, shift) def project3d_weak(pose_pred, R, scale, shift): """Performs true weak projection of poses using given camera params.""" tf.debugging.assert_shapes([ (pose_pred, ('joints', 3)), (shift, ('cams', 3)), (R, ('cams', 3, 3)), (scale, ('cams',)), ]) rot_views = tf.einsum('jd,kdo->kjo', pose_pred, R) # (k=4, j=17, d=o=3) back_rot_preds = rot_views * scale[:, None, None] + shift[:, None, :] # > (4, 17, 3) return back_rot_preds # [batch, 2], [batch, n_comp, 4] -> [batch, ] def gaussian_mixture_log_prob(points, params, eps): """Computes the likelihood of `points` given GMM `params`.""" tf.debugging.assert_shapes([ (points, ('batch_size', 2)), (params, ('batch_size', 'n_comp', 4)), # [comp_weight, mu_x, mu_y, cov] (eps, ()) ]) mix_probs = params[:, :, 0] # [b, c] mu_s = params[:, :, 1:3] # [b, c, 2] covs = tf.sqrt(params[:, :, 3]) # [b, c] diag_s = tf.repeat(covs[:, :, None], repeats=2, axis=2) # [b, c, 2] norm = tfp.distributions.MultivariateNormalDiag(loc=mu_s, scale_diag=diag_s) test_points = tf.repeat(points[:, None, :], params.shape[1], 1) gauss_log_probs = norm.log_prob(tf.cast(test_points, tf.float64)) # [b, c] log_gauss_plus_mix = gauss_log_probs + tf.math.log(mix_probs + eps) # [b, c] final_log_probs = tf.reduce_logsumexp(log_gauss_plus_mix, axis=1) # [b, ] return tf.cast(final_log_probs, tf.float32) def total_frame_loss(pose_pred, R, scale, shift, mv_heatmaps_mixture): """The objective optimized by the full probabilistic iterative solver.""" tf.debugging.assert_shapes([ (pose_pred, ('joints', 3)), (shift, ('cams', 3)), (R, ('cams', 3, 3)), (scale, ('cams',)), (mv_heatmaps_mixture, ('cams', 'joints', 4, 4)) ]) n_cam = mv_heatmaps_mixture.shape[0] n_joint = pose_pred.shape[0] views_preds = project3d_weak(pose_pred, R, scale, shift) views_preds_2d_flat = tf.reshape(views_preds[:, :, :2], (n_cam * n_joint, 2)) mv_heatmap_flat = tf.reshape(mv_heatmaps_mixture, (n_cam * n_joint, 4, 4)) logp = gaussian_mixture_log_prob(views_preds_2d_flat, mv_heatmap_flat, 1e-8) return -1 * tf.reduce_mean(logp) h36m_edges = tf.convert_to_tensor( [[0, 7], [7, 8], [8, 9], [9, 10], [8, 11], [8, 14], [14, 15], [15, 16], [11, 12], [12, 13], [0, 4], [0, 1], [1, 2], [2, 3], [4, 5], [5, 6]]) def get_h36m_edge_lens(pose3d): """Computes an array of bone lenghts.""" flat_joints = tf.gather(pose3d, tf.reshape(h36m_edges, (-1,))) edge_coords = tf.reshape(flat_joints, (-1, 2, 3)) edge_vecs = edge_coords[:, 0, :] - edge_coords[:, 1, :] return tf.linalg.norm(edge_vecs, axis=-1) def get_edge_len_loss(gt_edge_lens, pose_pred): """Computes the scale-invariant bone length distance.""" pred_edge_lens = get_h36m_edge_lens(pose_pred) norm_gt_edge_lens = gt_edge_lens / tf.reduce_mean(gt_edge_lens) norm_pred_edge_lens = pred_edge_lens / tf.reduce_mean(pred_edge_lens) len_err = tf.linalg.norm(norm_gt_edge_lens - norm_pred_edge_lens) return len_err def optimize_heatmap_logp(init_pose, init_params, heatmap_mix_arr, gt_edge_lens, edge_lens_lambda, opt_steps, report_n_results, opt ): """Performs the full probabilistic iterative bundle adjustment. Arguments: init_pose: (n_joints, n_dim) initial human pose init_params: a list or tuple of tensors [R, scale, shift] as returned by `initial_epi_estimate` heatmap_mix_arr: (n_cam, n_comp, 4) a tensor of GMM parameters gt_edge_lens: (n_bones, ) the lenghts of all bones edge_lens_lambda: the weight of the bone length loss opt_steps: how many GD steps to take report_n_results: how many steps to report opt: an instance of a tf.keras.optimizers.Optimizer Returns: A tuple of six tensors: steps_i: (report_n_results,) losses: (report_n_results,) pose_preds: (report_n_results, n_joints, 3) Rs: (report_n_results, 3, 3) scales: (report_n_results, 1) shifts: (report_n_results, 2) """ def objective(pose_pred, R_re, scale_re, shift, heatmaps): R, scale = unreparam(R_re, scale_re) logp_loss = total_frame_loss(pose_pred, R, scale, shift, heatmaps) losses = [logp_loss] if gt_edge_lens is not None: edge_len_loss = get_edge_len_loss(gt_edge_lens, pose_pred) losses.append(edge_lens_lambda * edge_len_loss) loss = sum(losses) return loss re_params_init = [*reparam(*init_params[:2]), init_params[2]] opt_args = ['pose_pred', 'R_re', 'scale_re', 'shift'] init_argv = [init_pose] + re_params_init + [heatmap_mix_arr] step_fn, var_dict = minimize_step_fn(objective, opt, opt_args, init_argv, {}) collect_every_n = opt_steps // (report_n_results - 1) results = [] loss = objective(*init_argv) for step_i in range(opt_steps): if step_i % collect_every_n == 0 or step_i == (opt_steps - 1): cur_re_params = [tf.identity(var_dict[v]) for v in opt_args] cur_params = [cur_re_params[0], *unreparam(*cur_re_params[1:3]), cur_re_params[3]] results.append([step_i, loss, *cur_params]) loss = step_fn() result_arrs = list(map(tf.stack, zip(*results))) return result_arrs def convert_rec_pose2d_to_bbox_axis( input_rec): """Converts coordinates / mixture params in a record from pixels to [0, 1].""" # full keys list: # 'pose3d', 'cam_pose3d', 'cam_rot', 'cam_intr', 'cam_kd', 'pose2d_gt', # 'pose2d_repr', 'heatmaps', 'pose2d_pred', 'keys', # 'bboxes', 'pose3d_epi_pred' bboxes, pose2d_gt, pose2d_repr, mix_params, mean_pred2d = [ input_rec[x] for x in ['bboxes', 'pose2d_gt', 'pose2d_repr', 'heatmaps', 'pose2d_pred']] sizes = tf.math.maximum( bboxes[:, 1] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 2]) origins = tf.stack([bboxes[:, 2], bboxes[:, 0]], axis=-1) sizes, origins = [tf.cast(x, tf.float64) for x in [sizes, origins]] shifted_mixture_means = mix_params[:, :, :, 1:3] - origins[:, None, None, :] mix_params_new = tf.concat([ mix_params[:, :, :, 0, None], (shifted_mixture_means / sizes[:, None, None, None]), mix_params[:, :, :, 3, None] / sizes[:, None, None, None]**2 ], axis=-1) pose2d_gt_new = (pose2d_gt - origins[:, None, :]) / sizes[:, None, None] pose2d_repr_new = (pose2d_repr - origins[:, None, :]) / sizes[:, None, None] mean_pred_new = (mean_pred2d - origins[:, None, :]) / sizes[:, None, None] override_rec = { 'pose2d_gt': pose2d_gt_new, 'pose2d_repr': pose2d_repr_new, 'heatmaps': mix_params_new, 'pose2d_pred': mean_pred_new, } assert not(override_rec.keys() - input_rec.keys()), 'override has new keys' return {**input_rec, **override_rec} def take_camera_subset(input_rec, subset = None ): """Returns a record with a subset of cameras.""" subset_idx = tf.convert_to_tensor(subset or list(range(4))) subset_keys = ['cam_pose3d', 'cam_rot', 'cam_intr', 'cam_kd', 'pose2d_gt', 'pose2d_repr', 'heatmaps', 'pose2d_pred', 'keys', 'bboxes', 'pose3d_epi_pred'] override_rec = { k: tf.gather(input_rec[k], subset_idx, axis=0) for k in subset_keys } assert not(override_rec.keys() - input_rec.keys()), 'override has new keys' return {**input_rec, **override_rec, 'cam_subset': subset_idx} def mean_norm(tensor, norm_axis, mean_axis): return tf.reduce_mean(tf.linalg.norm(tensor, axis=norm_axis), axis=mean_axis) def batch_pmpjpe(poses3d, pose3d_gt): """Batch procrustes aligned mean per joint position error.""" aligned_poses = [align_aba(pose, pose3d_gt)[0] for pose in poses3d] aligned_poses = tf.convert_to_tensor(aligned_poses) pose_err_norms = mean_norm(aligned_poses - pose3d_gt[None], -1, -1) return pose_err_norms def compute_opt_stats(input_rec, iter_opt_results ): """Computes per-step metrics for the output of `optimize_heatmap_logp`. See `run_inference_optimization` for the full spec of inputs and outputs. Args: input_rec: an input dict of heatmaps, monocular 3D poses, etc. iter_opt_results: an output dict produced by optimize_heatmap_logp. Returns: A dict of tensors combining input record with predictions and metrics. """ pose3d_gt, pose2d_gt, mean_posenet_pred2d = [ tf.cast(input_rec[x], tf.float32) for x in ['pose3d', 'pose2d_gt', 'pose2d_pred'] ] iters, losses, *opt_results = iter_opt_results n_report = losses.shape[0] # [n_report, 4, 17, 2] opt_pose2d_preds = tf.convert_to_tensor([ project3d_weak(*[x[viz_id] for x in opt_results])[Ellipsis, :2] for viz_id in range(n_report) ]) gt_aligned_projected2d = [] for viz_id in range(n_report): gt_aligned_pose = align_aba(pose3d_gt, opt_results[0][viz_id])[0] other_opt_params = [x[viz_id] for x in opt_results[1:]] projected2d = project3d_weak(gt_aligned_pose, *other_opt_params) gt_aligned_projected2d.append(projected2d[Ellipsis, :2]) gt_aligned_projected2d = tf.convert_to_tensor( gt_aligned_projected2d, dtype=tf.float32) iter_pmpjpe = batch_pmpjpe(opt_results[0], pose3d_gt) iter_pose2d_err = mean_norm(opt_pose2d_preds - pose2d_gt, 3, (1, 2)) mean_posenet_gt_err = mean_norm(pose2d_gt - mean_posenet_pred2d, -1, None) iter_mean_posenet_err = mean_norm( opt_pose2d_preds - mean_posenet_pred2d, 3, (1, 2)) iter_gt2d_gt_aligned_proj_err = mean_norm( gt_aligned_projected2d - pose2d_gt, 3, (1, 2)) augment_rec = { 'loss': losses, 'iters': iters, 'pose3d_opt_preds': opt_results[0], 'cam_rot_opt_preds': opt_results[1], 'scale_opt_preds': opt_results[2], 'shift_opt_preds': opt_results[3], 'pose2d_opt_preds': opt_pose2d_preds, 'pose3d_gt_aligned_pred_3d_proj': gt_aligned_projected2d, 'pose3d_pred_pmpjpe': iter_pmpjpe, 'pose2d_pred_err': iter_pose2d_err, 'pose2d_pred_vs_posenet_err': iter_mean_posenet_err, 'pose2d_gt_posenet_err_mean': mean_posenet_gt_err, 'pose3d_gt_backaligned_pose2d_gt_err': iter_gt2d_gt_aligned_proj_err, } assert not(augment_rec.keys() & input_rec.keys()), 'augment overrides keys' return {**augment_rec, **input_rec} def apply_distortion(xy, kd): """Apply full-perspective radial distortion.""" xx, yy = xy[:, 0], xy[:, 1] k1, k2, p1, p2, k3 = [kd[i] for i in range(5)] r_sq = xx**2 + yy**2 # r^2 c_radial = (1 + k1 * r_sq + k2 * r_sq**2 + k3 * r_sq**3) x_kd = xx*c_radial + 2*p1*xx*yy + p2*(r_sq + 2*(xx**2)) y_kd = yy*c_radial + 2*p2*xx*yy + p1*(r_sq + 2*(yy**2)) xy = tf.stack([x_kd, y_kd], axis=1) return xy def project_3d_tf( points, cam_pose, cam_rot, ffpp, kd, weak = False, eps = 1e-8): """Apply full-perspective projection. Use mean depth if weak=True.""" points_cent = (points - cam_pose[None]) cam_rot_mat_t = tf.transpose(cam_rot) cam_frame_points = points_cent @ cam_rot_mat_t xy_3d, zz = cam_frame_points[:, 0:2], cam_frame_points[:, 2, None] zz_div = tf.reduce_mean(zz, keepdims=True) if weak else zz k_mat = tf.cast(tf.convert_to_tensor([ffpp[:2]]), points.dtype) pp = tf.cast(tf.convert_to_tensor([ffpp[2:]]), points.dtype) # order of application as in: # http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html xy = xy_3d / (zz_div + eps) xy = apply_distortion(xy, kd) xy = xy * k_mat xy = xy + pp return xy, zz[:, 0] def get_fake_gt_heatmaps( input_rec, gt_err_std = 0.0): """Get "fake" GMM parameters corresponding to (GT + normal(0, std)).""" pose_gt = input_rec['pose2d_repr'] # ('cams', 'joints', 2) n_cams, n_joints = pose_gt.shape[:2] gt_noise = tf.random.normal(pose_gt.shape, 0, gt_err_std, dtype=pose_gt.dtype) pose_gt_noisy = pose_gt + gt_noise mix_params_new = tf.concat([ 0.25 * tf.ones((n_cams, n_joints, 4, 1), dtype=pose_gt.dtype), tf.repeat(pose_gt_noisy[:, :, None, :], repeats=4, axis=2), 0.0003 * tf.ones((n_cams, n_joints, 4, 1), dtype=pose_gt.dtype), ], axis=-1) return mix_params_new def recompute_repr_with_weak_proj( data_rec): """Estimate what 2D GT would have been if the true camera model was weak.""" new_repr = [] for i in range(data_rec['cam_pose3d'].shape[0]): new_repr.append( project_3d_tf( data_rec['pose3d'], data_rec['cam_pose3d'][i], data_rec['cam_rot'][i], data_rec['cam_intr'][i], data_rec['cam_kd'][i], weak=True)) dt = data_rec['pose2d_repr'].dtype return tf.convert_to_tensor([x[0] for x in new_repr], dtype=dt) def get_single_fake_perfect_epi_init( data_rec, cam_id): """Estimate what a perfect monocular 3D prediction would have been.""" cams = [data_rec[k][cam_id] for k in ['cam_pose3d', 'cam_rot', 'cam_intr', 'cam_kd']] bbox = data_rec['bboxes'][cam_id] f_mean = cams[2][:2].numpy().mean() proj_weak, zz = project_3d_tf(data_rec['pose3d'], *cams, weak=True) mean_z = zz.numpy().mean() proj_weak = proj_weak.numpy() z_scaled = zz[:, None].numpy() / mean_z * f_mean cam_frame_xyz = tf.concat([proj_weak, z_scaled], axis=1) cam_frame_xyz = tf.cast(cam_frame_xyz, tf.float32) size = tf.math.maximum(bbox[1] - bbox[0], bbox[3] - bbox[2]) origin = tf.stack([bbox[2], bbox[0], 0], axis=-1) size, origin = [tf.cast(x, tf.float32) for x in [size, origin]] unit_xyz = (cam_frame_xyz - origin) / size return unit_xyz def get_full_fake_gt_init(data_rec): n_cam = data_rec['pose3d_epi_pred'].shape[0] epi_init = [get_single_fake_perfect_epi_init(data_rec, cam_id) for cam_id in range(n_cam)] dt = data_rec['pose3d_epi_pred'].dtype return tf.convert_to_tensor(epi_init, dtype=dt) def run_inference_optimization(data_rec, opt_steps = 100, report_n_results = 50, cam_subset = None, edge_lens_lambda = 0.0, fake_gt_heatmaps = False, fake_gt_ht_std = 0.0, recompute_weak_repr = False, learning_rate = 1e-2, fake_gt_init = False, random_init = False ): """Perform full probabilistic bundle adjustment with ablations. Arguments: data_rec: a dict with the following signature * heatmaps (4, 17, 4, 4) float64 - pre-view (4) per-joint (17) pixel coordinates with uncertainties in the format {(mean_x, mean_y, sigma, pi)}_k^K; obtained by fitting a K-component (for K=4) spherical GMMs to join location heatmaps predicted by a stacked hourglass 2D pose estimation net * pose2d_pred (4, 17, 2) float64 - pre-view per-joint pixel location (x,y) predictions estimated from these heatmaps by computing the expected value of each GMM * keys (4,) string - corresponding frames of the original H36M dataset in the format 's%07d_f%07d_c%02d' % (sequence, frame, camera) * bboxes (4, 4) int32 - human bounding box used to estimate 2D pose heatmaps * pose3d_epi_pred (4, 17, 3) float32 - per-view predictions of a pre-trained monocular 3D pose estimation network * pose3d (17, 3) float64 - GT 3D pose in the reference frame (RF) attached to the center of mass of the subject, rotated to align the y-axis with the hip line, and re-scaled to meters * cam_pose3d (4, 3) float64 - GT 3D camera poses in the same RF * cam_rot (4, 3, 3) float64 - GT 3D camera rotations in the same RF * cam_intr (4, 4) float64 - GT 3D camera intrinsic parameters * cam_kd (4, 5) float64 - GT 3D camera distortion parameters * pose2d_gt (4, 17, 2) float64 - GT 2D per-frame human pose * pose2d_repr (4, 17, 2) float64 - reprojected GT poses opt_steps: the number of gradient decent steps to take report_n_results: the number of optimizer steps to report cam_subset: None (all cameras) or a tuple of cam_ids to use, e.g. (2, 3) edge_lens_lambda: the weight of the (personalized) bone lengths loss fake_gt_heatmaps: whether to replace GMM parameters with GT GMM with noise fake_gt_ht_std: if `fake_gt_heatmaps=True`, the std of the noise added to GT recompute_weak_repr: whether to replace GT used to compute "fake GT GMMs" with GT one would have had if the true camera model was weak learning_rate: Adam learning rate fake_gt_init: whether to use perfect (GT) initialization random_init: whether to use completely random initialization Returns: A dict with the same keys as in data_rec and following additional keys: * loss (51,) float32 - probabilistic bundle adjustment losses * iters (51,) int32 - iteration numbers * pose3d_opt_preds (51, 17, 3) float32 - 3D pose predictions * cam_rot_opt_preds (51, 4, 3, 3) float32 - camera rotation predictions * scale_opt_preds (51, 4) float32 - predictions for the scale weak camera parameter * shift_opt_preds (51, 4, 3) float32 - predictions for the shift weak camera parameter * pose2d_opt_preds (51, 4, 17, 2) float32 - predicted 3D pose reprojected using predicted camera parameters * pose3d_gt_aligned_pred_3d_proj (51, 4, 17, 2) float32 - predicted 3D pose reprojected using predicted camera parameters and aligned to GT 3D using Procrustes alignment * pose3d_pred_pmpjpe (51,) float32 - Procrustes-aligned Mean Per Joint Position Error * pose2d_pred_err (51,) float32 - 2D reprojection error wrt GT * pose2d_pred_vs_posenet_err (51,) float32 - 2D error of the stack hourglass network * pose2d_gt_posenet_err_mean () float32 - final 2D error * pose3d_gt_backaligned_pose2d_gt_err (51,) float32 - 2D error of the predicted 3D projected using GT camera parameters * cam_subset (4,) int32 - a subset of cameras used for inference """ if recompute_weak_repr: # in case we want to train with "ground truth" weak projections # to _simulate_ zero camera model error; never use in production data_rec['pose2d_repr'] = recompute_repr_with_weak_proj(data_rec) if fake_gt_init: # project ground truth to get perfect mono 3d estimates data_rec['pose3d_epi_pred'] = get_full_fake_gt_init(data_rec) if random_init: data_init = data_rec['pose3d_epi_pred'] data_rec['pose3d_epi_pred'] = tf.random.normal( data_init.shape, dtype=data_init.dtype) data_rec = convert_rec_pose2d_to_bbox_axis(data_rec) data_rec = take_camera_subset(data_rec, cam_subset) cn_mean_pred, init_cam = initial_epi_estimate(data_rec['pose3d_epi_pred']) if fake_gt_heatmaps: # replace real predicted joint heatmaps with gaussians around ground truth data_rec['heatmaps'] = get_fake_gt_heatmaps(data_rec, fake_gt_ht_std) if edge_lens_lambda > 0: gt_edge_lens = tf.cast(get_h36m_edge_lens(data_rec['pose3d']), tf.float32) else: gt_edge_lens = None opt = tf.keras.optimizers.Adam(learning_rate) iter_opt_results = optimize_heatmap_logp( cn_mean_pred, init_cam, data_rec['heatmaps'], gt_edge_lens, edge_lens_lambda, report_n_results=report_n_results, opt=opt, opt_steps=opt_steps) opt_stats = compute_opt_stats(data_rec, iter_opt_results) opt_stats = {k: tf.convert_to_tensor(v).numpy() for k, v in opt_stats.items()} # for k, v in opt_stats.items(): # print(k, v.dtype) return opt_stats
5d9a50036af925c52e137946772a68b72ec1bfc2
f62fd455e593a7ad203a5c268e23129473d968b6
/vitrage-1.5.2/vitrage/datasources/neutron/port/__init__.py
ba3d53285a9c3d37c9cc95bffce2f122fa6717ec
[ "Apache-2.0" ]
permissive
MinbinGong/OpenStack-Ocata
5d17bcd47a46d48ff9e71e2055f667836174242f
8b7650128cfd2fdf5d6c8bc4613ac2e396fb2fb3
refs/heads/master
2021-06-23T05:24:37.799927
2017-08-14T04:33:05
2017-08-14T04:33:05
99,709,985
0
2
null
2020-07-22T22:06:22
2017-08-08T15:48:44
Python
UTF-8
Python
false
false
1,487
py
# Copyright 2016 - Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from vitrage.common.constants import UpdateMethod NEUTRON_PORT_DATASOURCE = 'neutron.port' OPTS = [ cfg.StrOpt('transformer', default='vitrage.datasources.neutron.port.' 'transformer.PortTransformer', help='Neutron port transformer class path', required=True), cfg.StrOpt('driver', default='vitrage.datasources.neutron.port.driver.PortDriver', help='Neutron port driver class path', required=True), cfg.StrOpt('update_method', default=UpdateMethod.PUSH, help='None: updates only via Vitrage periodic snapshots.' 'Pull: updates every [changes_interval] seconds.' 'Push: updates by getting notifications from the' ' datasource itself.', required=True), ]
213dd540eb8864eec2bd1888ba1fac73949e86c7
8200e9869cae6699d186a4cf9172800f95bede50
/rainman/testing.py
3158b7e3ba15826b2b6982e7f0379b854aa1e8d0
[]
no_license
wickman/rainman
d3684f0b4fa834b8800650036caf69093ff0504a
14dec93c76f8c3f902fe769f5e9d7a0ee1db95ca
refs/heads/master
2016-09-05T12:57:25.794351
2014-08-13T22:27:19
2014-08-13T22:27:19
16,630,229
5
0
null
null
null
null
UTF-8
Python
false
false
3,986
py
from __future__ import print_function import os import random import socket from .client import Client from .fileset import FileSet, Fileslice from .fs import DISK from .metainfo import MetaInfoBuilder from .peer_id import PeerId from .torrent import Torrent from .scheduler import Scheduler from tornado.testing import bind_unused_port from twitter.common.dirutil import safe_mkdtemp, safe_mkdir from twitter.common.quantity import Amount, Data, Time class SocketClient(Client): def __init__(self, sock, port, io_loop, peer_id=None, **kw): self.__sock = sock self.__port = port super(SocketClient, self).__init__(peer_id or PeerId.generate(), io_loop=io_loop, **kw) def listen(self): self._port = self.__port self.add_sockets([self.__sock]) def make_fileset(filelist, piece_size, fs=DISK): "Given (filename, contents) list, return dir, FileSet pair." td = safe_mkdtemp() for filename, contents in filelist: sl = Fileslice(os.path.join(td, filename), slice(0, len(contents))) fs.fill(sl) fs.write(sl, contents) filelist = [(filename, len(contents)) for (filename, contents) in filelist] return td, FileSet(filelist, piece_size) def make_metainfo(filelist, piece_size, fs=DISK): td, fileset = make_fileset(filelist, piece_size, fs=fs) mib = MetaInfoBuilder(fileset.rooted_at(td), relpath=td) return td, fileset, mib.build(fs) def make_torrent(filelist, piece_size, tracker, fs=DISK): td, fileset, metainfo = make_metainfo(filelist, piece_size, fs=fs) torrent = Torrent() torrent.info = metainfo torrent.announce = tracker return td, fileset, torrent def random_stream(N): return os.urandom(N) def make_ensemble( io_loop, num_seeders=1, num_leechers=1, piece_size=16384, max_filesize=32768, total_filesize=1048576, seed=31337, scheduler_impl=Scheduler, fs=DISK): root = safe_mkdtemp() seeder_sockets = [(PeerId.generate(), bind_unused_port()) for _ in range(num_seeders)] leecher_sockets = [(PeerId.generate(), bind_unused_port()) for _ in range(num_leechers)] tracker_info = os.path.join(root, 'tracker_info.txt') with open(tracker_info, 'w') as fp: for peer_id, (_, port) in seeder_sockets + leecher_sockets: print('%s 127.0.0.1 %d' % (peer_id, port), file=fp) tracker_info = 'file://' + tracker_info random.seed(seed) filelist = [] files = 0 while total_filesize > 0: filesize = min(total_filesize, random.randrange(0, max_filesize)) total_filesize -= filesize filename = '%x.txt' % files filelist.append((filename, filesize)) content = random_stream(filesize) for replica in ['dataset'] + ['seeder%d' % k for k in range(num_seeders)]: safe_mkdir(os.path.join(root, replica)) real_path = os.path.join(root, replica, filename) slice_ = Fileslice(real_path, slice(0, filesize)) fs.fill(slice_) fs.write(slice_, content) files += 1 fileset = FileSet(filelist, piece_size) mib = MetaInfoBuilder( fileset.rooted_at(os.path.join(root, 'dataset')), relpath=os.path.join(root, 'dataset'), piece_size=piece_size) torrent = Torrent() torrent.info = mib.build(fs) torrent.announce = tracker_info seeder_clients = [] leecher_clients = [] def make_peer(peer_id, listener, port, chroot): client = SocketClient(listener, port, io_loop, peer_id, fs=fs) scheduler = scheduler_impl(client, request_size=Amount(piece_size // 4, Data.BYTES)) client.listen() client.register_torrent(torrent, root=chroot) return scheduler for index, (peer_id, (listener, port)) in enumerate(seeder_sockets): seeder_clients.append( make_peer(peer_id, listener, port, os.path.join(root, 'seeder%d' % index))) for index, (peer_id, (listener, port)) in enumerate(leecher_sockets): leecher_clients.append( make_peer(peer_id, listener, port, os.path.join(root, 'leecher%d' % index))) return torrent, seeder_clients, leecher_clients
dcee632cb5018883a234ec0cd01f4f23bcc5dca7
448c533feb888fd2b64d0d4f130ca4bc1c82e6c2
/juparc/cli/select_cmd.py
2f1e52e4d5465b1118e619e2e321a474887eaab1
[]
no_license
gems-uff/jupyter-archaeology
e2433f745c70cbcc502cfc762127e75e3762ecb4
3bf3d6fdf672d2123c599fefa65292de3c3dc1c9
refs/heads/main
2023-03-24T21:23:06.999836
2021-03-12T00:40:50
2021-03-12T00:40:50
304,041,226
4
0
null
null
null
null
UTF-8
Python
false
false
2,936
py
"""Select command: select notebooks""" import json import sys import re from ..extract import load, create_default def value(original): """Convert value to int, float, tuple or str""" if isinstance(original, (float, int, tuple)): return original if isinstance(original, str): try: return int(original) except ValueError: try: return float(original) except ValueError: if "." in original: try: return tuple(int(x) for x in original.split('.')) except ValueError: pass return original return json.dumps(original) def compare(notebook_arg, attr): """Compare argument to notebook value""" if attr == "null": return notebook_arg is None nval = value(notebook_arg) if attr.startswith(">"): if attr.startswith(">="): return nval >= value(attr[2:]) return nval > value(attr[1:]) if attr.startswith("<"): if attr.startswith("<="): return nval <= value(attr[2:]) return nval < value(attr[1:]) if attr.startswith("=="): return nval == value(attr[2:].lstrip()) if attr.startswith("!="): return nval != value(attr[2:].lstrip()) return re.match(attr, str(nval)) is not None def select_cmd(args, _): """select cmd""" if not args.notebooks: lines = list(sys.stdin) notebooks = json.loads("\n".join(lines)) else: notebooks = [load(notebook) for notebook in args.notebooks] attributes = create_default() result = [] for notebook in notebooks: add = True for arg in attributes: attr = getattr(args, arg, None) if attr is None: continue attr = attr.strip() if not compare(notebook[arg], attr): add = False continue if add: result.append(notebook) if args.count: print(len(result)) else: print(json.dumps(result, indent=2)) def create_subparsers( subparsers, cmd='select', helper='Select notebooks that match condition', **defaults ): """create subcommands""" parser = subparsers.add_parser(cmd, help=helper) parser.set_defaults(func=select_cmd, command=parser) parser.add_argument( "-n", "--notebooks", default=None, nargs="*", help="List of notebooks. If empty, it will read json from input" ) parser.add_argument( "-c", "--count", action="store_true", help="Show count instead of notebooks" ) attributes = create_default() for attr in attributes: default = defaults.get(attr, None) parser.add_argument( "--" + attr.replace('_', '-'), default=default, help="Select " + attr )
2a4a35023e91fbd52dc123b0da9b6c1f6dfcc06d
1a2adb80f326435ec4f60bacfcc812566e687f12
/unit_tests/bigquery/test_schema.py
44cd8816e277b3a63a12bedf819d6675150fa099
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
runt18/gcloud-python
66d92095c2b9541cffcb18531f5f5ad3d1adf37f
3f836eb728488d78793f7aecaa573bd37f1f2d3c
refs/heads/master
2021-01-23T15:41:53.642420
2016-09-06T20:36:13
2016-09-06T20:36:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,745
py
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest class TestSchemaField(unittest.TestCase): def _getTargetClass(self): from gcloud.bigquery.schema import SchemaField return SchemaField def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_ctor_defaults(self): field = self._makeOne('test', 'STRING') self.assertEqual(field.name, 'test') self.assertEqual(field.field_type, 'STRING') self.assertEqual(field.mode, 'NULLABLE') self.assertEqual(field.description, None) self.assertEqual(field.fields, None) def test_ctor_explicit(self): field = self._makeOne('test', 'STRING', mode='REQUIRED', description='Testing') self.assertEqual(field.name, 'test') self.assertEqual(field.field_type, 'STRING') self.assertEqual(field.mode, 'REQUIRED') self.assertEqual(field.description, 'Testing') self.assertEqual(field.fields, None) def test_ctor_subfields(self): field = self._makeOne('phone_number', 'RECORD', fields=[self._makeOne('area_code', 'STRING'), self._makeOne('local_number', 'STRING')]) self.assertEqual(field.name, 'phone_number') self.assertEqual(field.field_type, 'RECORD') self.assertEqual(field.mode, 'NULLABLE') self.assertEqual(field.description, None) self.assertEqual(len(field.fields), 2) self.assertEqual(field.fields[0].name, 'area_code') self.assertEqual(field.fields[0].field_type, 'STRING') self.assertEqual(field.fields[0].mode, 'NULLABLE') self.assertEqual(field.fields[0].description, None) self.assertEqual(field.fields[0].fields, None) self.assertEqual(field.fields[1].name, 'local_number') self.assertEqual(field.fields[1].field_type, 'STRING') self.assertEqual(field.fields[1].mode, 'NULLABLE') self.assertEqual(field.fields[1].description, None) self.assertEqual(field.fields[1].fields, None) def test___eq___name_mismatch(self): field = self._makeOne('test', 'STRING') other = self._makeOne('other', 'STRING') self.assertNotEqual(field, other) def test___eq___field_type_mismatch(self): field = self._makeOne('test', 'STRING') other = self._makeOne('test', 'INTEGER') self.assertNotEqual(field, other) def test___eq___mode_mismatch(self): field = self._makeOne('test', 'STRING', mode='REQUIRED') other = self._makeOne('test', 'STRING', mode='NULLABLE') self.assertNotEqual(field, other) def test___eq___description_mismatch(self): field = self._makeOne('test', 'STRING', description='Testing') other = self._makeOne('test', 'STRING', description='Other') self.assertNotEqual(field, other) def test___eq___fields_mismatch(self): sub1 = self._makeOne('sub1', 'STRING') sub2 = self._makeOne('sub2', 'STRING') field = self._makeOne('test', 'RECORD', fields=[sub1]) other = self._makeOne('test', 'RECORD', fields=[sub2]) self.assertNotEqual(field, other) def test___eq___hit(self): field = self._makeOne('test', 'STRING', mode='REQUIRED', description='Testing') other = self._makeOne('test', 'STRING', mode='REQUIRED', description='Testing') self.assertEqual(field, other) def test___eq___hit_case_diff_on_type(self): field = self._makeOne('test', 'STRING', mode='REQUIRED', description='Testing') other = self._makeOne('test', 'string', mode='REQUIRED', description='Testing') self.assertEqual(field, other) def test___eq___hit_w_fields(self): sub1 = self._makeOne('sub1', 'STRING') sub2 = self._makeOne('sub2', 'STRING') field = self._makeOne('test', 'RECORD', fields=[sub1, sub2]) other = self._makeOne('test', 'RECORD', fields=[sub1, sub2]) self.assertEqual(field, other)
291e27fa3dca7be5618fa79c258cbc506a56be91
4c535d2c7b76955b014ed87f06f5a9f078730fa7
/10008_2.py
20590de890ded052a6f4f8fdd8ae246f9e3df8de
[]
no_license
jennyChing/onlineJudge
cf750b5b68456f8949bed0429c3b4a328ca2eeea
0d317db29c21a9faec7a7cf43de5fa03fda50b3e
refs/heads/master
2020-04-06T06:56:34.850903
2016-08-21T23:38:08
2016-08-21T23:38:08
52,972,907
1
0
null
null
null
null
UTF-8
Python
false
false
223
py
import re from collections import Counter n = int(input()) line = [] for i in range(n): line += re.findall('[a-zA-Z]', input().strip()) c = Counter(c.upper() for c in line) for k, v in c.most_common(): print(k, v)
de5ce76ee7e89d5a5155a27cb0dd2b9425b6015a
b18fb2f2f7955e8830ec1c615ab82c14cd52c8f5
/server/src/app/http/mods/admin/admin_tools.py
aa5906344bb4426eb3e4a256528544d7997c31fa
[]
no_license
xyzmyall/spff_public
260492c6ee917093ba3e54364d61e989d184c810
9a9a0973bce715de8767e4991ad24515311752c9
refs/heads/master
2022-10-13T20:47:08.467510
2020-06-10T09:25:30
2020-06-10T09:25:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,903
py
import time from werkzeug.security import check_password_hash, generate_password_hash from app.http.http_tools.tools import http_tools from data.server import Data from common.common import common_tools as common, common_tools class admin_tool(): @staticmethod def upload_case(data,user_base): content = common.get_base64(data['content'].encode('utf-8')) content_md5 = common.get_md5(content) user_id = user_base['id'] ctime = int(time.time()) event_time = common.str_to_time(data['event_time'] + ' 00:00:00') title = common.get_base64(data['title'].encode('utf-8')) if Data.find('case_info', [('title', '=', title)]) != None: # self.send_faild(error.ERROR_CASE_EXIST) return params = { 'user_id': user_id, 'c_time': ctime, # 'content': content, 'content_md5': content_md5, 'event_time': event_time, 'title': title, } Data.insert('case_info', params) # 插入主体内容 cond = [ ('user_id', '=', user_id), ('c_time', '=', ctime), ('content_md5', '=', content_md5) ] res = Data.find('case_info', cond) params = { 'case_id': res['id'], 'content': content } Data.insert('case_content',params) # 取得id,插入内容到表中 res['content'] = content http_tools.split_case_info(res) return res @staticmethod def update_case(self): # id = case_id return @staticmethod def check_pw(user_base,pw): pw_md5 = common_tools.get_md5(pw) return check_password_hash(user_base['pwhash'], pw_md5) @staticmethod def create_pw(pw): pw_md5 = common_tools.get_md5(pw) return generate_password_hash(pw_md5)
4b441cd8eaaa31d69a152fb2fafbe683a2a2aac3
dbf7910f178ff895516c5df286c3cf13e1dd48ca
/dashboard/urls.py
771e1e715e42ef2b30e0afc8c6b1f5e8ba8114fa
[]
no_license
nimadorostkar/crop_stocks
df5b5ef42e746c4fe66416d33534685eb2d33053
b382f3d912ad4276882eb7bb47a6147f335e4faa
refs/heads/master
2023-05-15T00:48:46.889463
2021-06-10T08:26:58
2021-06-10T08:26:58
353,626,010
1
0
null
2021-04-25T07:08:59
2021-04-01T08:16:16
HTML
UTF-8
Python
false
false
280
py
from django.urls import path from . import views urlpatterns = [ path('', views.dashboard, name='dashboard'), #path('payment/', views.payment, name='payment'), path('ticket/', views.ticket, name='ticket'), path('money_req/', views.money_req, name='money_req'), ]
bf4a161f80efb1db0526dcffe7eb8a5ff38a2e0c
d41a7e63204b66b3d3b27dbf1e1a3266080c8396
/customers/models.py
32243ad6316aac73f2807db3cd38549951c7a132
[]
no_license
SimonOkello/salesapp
552aa3c607a90ad9fea19aa08194750dccda1eca
3480965fed58c214177f56231e6bd835e47bb201
refs/heads/main
2023-03-23T12:08:08.354434
2021-03-23T12:48:19
2021-03-23T12:48:19
350,634,113
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
from django.db import models # Create your models here. class Customer(models.Model): name = models.CharField(max_length=120) logo = models.ImageField(upload_to='customers', default='default.png') def __str__(self): return self.name
d19f42f3b942444cd6f0918191526326b5240ab2
18631e9a657324ef1f83da58f4346e9f2c368d28
/test/functional/rpc_spentindex.py
d0528a1eb21af3a8430c831774faf5aa8af868f7
[ "MIT" ]
permissive
thehomosapien/AMLBitcoin
1e68bf6621d9ee055385ef420b45c9dc289b4f8c
f097ca52c2e8039761f1927d83a9fe0b4c355b1c
refs/heads/master
2020-05-26T08:27:40.095034
2019-05-24T07:31:43
2019-05-24T07:31:43
188,166,902
0
0
null
null
null
null
UTF-8
Python
false
false
6,158
py
#!/usr/bin/env python3 # Copyright (c) 2014-2015 The Bitcoin Core developers # Copyright (c) 2017-2018 The AmlBitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test RPC addressindex generation and fetching # import time from test_framework.test_framework import AmlBitcoinTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * import binascii class SpentIndexTest(AmlBitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 4 def setup_network(self): self.add_nodes(4, [ # Nodes 0/1 are "wallet" nodes ["-debug"], ["-debug", "-spentindex"], # Nodes 2/3 are used for testing ["-debug", "-spentindex"], ["-debug", "-spentindex", "-txindex"]]) self.start_nodes() connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 0, 2) connect_nodes_bi(self.nodes, 0, 3) self.sync_all() def run_test(self): print("Mining blocks...") self.nodes[0].generate(105) self.sync_all() chain_height = self.nodes[1].getblockcount() assert_equal(chain_height, 105) # Check that print("Testing spent index...") feeAmlBits = 10000 privkey = "cSdkPxkAjA4HDr5VHgsebAPDEh9Gyub4HK8UJr2DFGGqKKy4K5sG" address = "mgY65WSfEmsyYaYPQaXhmXMeBhwp4EcsQW" addressHash = bytes([11,47,10,12,49,191,224,64,107,12,204,19,129,253,190,49,25,70,218,220]) scriptPubKey = CScript([OP_DUP, OP_HASH160, addressHash, OP_EQUALVERIFY, OP_CHECKSIG]) unspent = self.nodes[0].listunspent() tx = CTransaction() amount = int(unspent[0]["amount"] * 100000000 - feeAmlBits) tx.vin = [CTxIn(COutPoint(int(unspent[0]["txid"], 16), unspent[0]["vout"]))] tx.vout = [CTxOut(amount, scriptPubKey)] tx.rehash() signed_tx = self.nodes[0].signrawtransaction(binascii.hexlify(tx.serialize()).decode("utf-8")) txid = self.nodes[0].sendrawtransaction(signed_tx["hex"], True) self.nodes[0].generate(1) self.sync_all() print("Testing getspentinfo method...") # Check that the spentinfo works standalone info = self.nodes[1].getspentinfo({"txid": unspent[0]["txid"], "index": unspent[0]["vout"]}) assert_equal(info["txid"], txid) assert_equal(info["index"], 0) assert_equal(info["height"], 106) print("Testing getrawtransaction method...") # Check that verbose raw transaction includes spent info txVerbose = self.nodes[3].getrawtransaction(unspent[0]["txid"], 1) assert_equal(txVerbose["vout"][unspent[0]["vout"]]["spentTxId"], txid) assert_equal(txVerbose["vout"][unspent[0]["vout"]]["spentIndex"], 0) assert_equal(txVerbose["vout"][unspent[0]["vout"]]["spentHeight"], 106) # Check that verbose raw transaction includes input values txVerbose2 = self.nodes[3].getrawtransaction(txid, 1) assert_equal(float(txVerbose2["vin"][0]["value"]), (amount + feeAmlBits) / 100000000) assert_equal(txVerbose2["vin"][0]["valueSat"], amount + feeAmlBits) # Check that verbose raw transaction includes address values and input values privkey2 = "cSdkPxkAjA4HDr5VHgsebAPDEh9Gyub4HK8UJr2DFGGqKKy4K5sG" address2 = "mgY65WSfEmsyYaYPQaXhmXMeBhwp4EcsQW" addressHash2 = bytes([11,47,10,12,49,191,224,64,107,12,204,19,129,253,190,49,25,70,218,220]) scriptPubKey2 = CScript([OP_DUP, OP_HASH160, addressHash2, OP_EQUALVERIFY, OP_CHECKSIG]) tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(int(txid, 16), 0))] amount = int(amount - feeAmlBits); tx2.vout = [CTxOut(amount, scriptPubKey2)] tx.rehash() self.nodes[0].importprivkey(privkey) signed_tx2 = self.nodes[0].signrawtransaction(binascii.hexlify(tx2.serialize()).decode("utf-8")) txid2 = self.nodes[0].sendrawtransaction(signed_tx2["hex"], True) # Check the mempool index self.sync_all() txVerbose3 = self.nodes[1].getrawtransaction(txid2, 1) assert_equal(txVerbose3["vin"][0]["address"], address2) assert_equal(txVerbose3["vin"][0]["valueSat"], amount + feeAmlBits) assert_equal(float(txVerbose3["vin"][0]["value"]), (amount + feeAmlBits) / 100000000) # Check the database index block_hash = self.nodes[0].generate(1) self.sync_all() txVerbose4 = self.nodes[3].getrawtransaction(txid2, 1) assert_equal(txVerbose4["vin"][0]["address"], address2) assert_equal(txVerbose4["vin"][0]["valueSat"], amount + feeAmlBits) assert_equal(float(txVerbose4["vin"][0]["value"]), (amount + feeAmlBits) / 100000000) # Check block deltas print("Testing getblockdeltas...") block = self.nodes[3].getblockdeltas(block_hash[0]) assert_equal(len(block["deltas"]), 2) assert_equal(block["deltas"][0]["index"], 0) assert_equal(len(block["deltas"][0]["inputs"]), 0) assert_equal(len(block["deltas"][0]["outputs"]), 0) assert_equal(block["deltas"][1]["index"], 1) assert_equal(block["deltas"][1]["txid"], txid2) assert_equal(block["deltas"][1]["inputs"][0]["index"], 0) assert_equal(block["deltas"][1]["inputs"][0]["address"], "mgY65WSfEmsyYaYPQaXhmXMeBhwp4EcsQW") assert_equal(block["deltas"][1]["inputs"][0]["AmlBits"], (amount + feeAmlBits) * -1) assert_equal(block["deltas"][1]["inputs"][0]["prevtxid"], txid) assert_equal(block["deltas"][1]["inputs"][0]["prevout"], 0) assert_equal(block["deltas"][1]["outputs"][0]["index"], 0) assert_equal(block["deltas"][1]["outputs"][0]["address"], "mgY65WSfEmsyYaYPQaXhmXMeBhwp4EcsQW") assert_equal(block["deltas"][1]["outputs"][0]["AmlBits"], amount) print("Passed\n") if __name__ == '__main__': SpentIndexTest().main()
63e68fda343dd77d5274e64276af8f9dbe8a4cf3
18219d0fc95936ded56fe44f9a65ecb27f015232
/195 processor function.py
1bb14d07ad6b1b96ff846c371a8b2dc8eb157242
[]
no_license
JDavid121/Script-Curso-Cisco-Python
20a61b91b09376dcaef54f8ae5f86fe252de5c33
6d68c17ff3c3826e9fc609d110ce9d0e6ebf718b
refs/heads/master
2021-05-18T04:54:59.948970
2020-03-29T20:19:53
2020-03-29T20:19:53
251,120,139
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
# -*- coding: utf-8 -*- """ Created on Sat Mar 14 12:07:52 2020 processor fucntion @author: David """ from platform import processor # The processor() function returns a string filled with # the real processor name (if possible). print(processor())
5685f50ae8b3fe947479b8d83eeb57c297189aed
584db1be8b6bdedaa56d186692ad72da5ee07164
/patron/api/openstack/compute/contrib/floating_ip_dns.py
eb00f561cb048803c371d2722e3da287b968e117
[ "Apache-2.0" ]
permissive
casbin/openstack-patron
66006f57725cf1c3d735cd5529d3459fd77384c8
b41b1262f3a52c8cc9f6b6bdf87be5a1abcf6d25
refs/heads/master
2023-05-31T05:23:37.721768
2015-12-31T12:18:17
2015-12-31T12:18:17
382,054,546
0
0
null
null
null
null
UTF-8
Python
false
false
9,958
py
# Copyright 2011 Andrew Bogott for the Wikimedia Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import urllib from oslo_utils import netutils import webob from patron.api.openstack import extensions from patron.api.openstack import wsgi from patron import exception from patron.i18n import _ from patron import network authorize = extensions.extension_authorizer('compute', 'floating_ip_dns') def _translate_dns_entry_view(dns_entry): result = {} result['ip'] = dns_entry.get('ip') result['id'] = dns_entry.get('id') result['type'] = dns_entry.get('type') result['domain'] = dns_entry.get('domain') result['name'] = dns_entry.get('name') return {'dns_entry': result} def _translate_dns_entries_view(dns_entries): return {'dns_entries': [_translate_dns_entry_view(entry)['dns_entry'] for entry in dns_entries]} def _translate_domain_entry_view(domain_entry): result = {} result['domain'] = domain_entry.get('domain') result['scope'] = domain_entry.get('scope') result['project'] = domain_entry.get('project') result['availability_zone'] = domain_entry.get('availability_zone') return {'domain_entry': result} def _translate_domain_entries_view(domain_entries): return {'domain_entries': [_translate_domain_entry_view(entry)['domain_entry'] for entry in domain_entries]} def _unquote_domain(domain): """Unquoting function for receiving a domain name in a URL. Domain names tend to have .'s in them. Urllib doesn't quote dots, but Routes tends to choke on them, so we need an extra level of by-hand quoting here. """ return urllib.unquote(domain).replace('%2E', '.') def _create_dns_entry(ip, name, domain): return {'ip': ip, 'name': name, 'domain': domain} def _create_domain_entry(domain, scope=None, project=None, av_zone=None): return {'domain': domain, 'scope': scope, 'project': project, 'availability_zone': av_zone} class FloatingIPDNSDomainController(object): """DNS domain controller for OpenStack API.""" def __init__(self): self.network_api = network.API() super(FloatingIPDNSDomainController, self).__init__() def index(self, req): """Return a list of available DNS domains.""" context = req.environ['patron.context'] authorize(context) try: domains = self.network_api.get_dns_domains(context) except NotImplementedError: msg = _("Unable to get dns domain") raise webob.exc.HTTPNotImplemented(explanation=msg) domainlist = [_create_domain_entry(domain['domain'], domain.get('scope'), domain.get('project'), domain.get('availability_zone')) for domain in domains] return _translate_domain_entries_view(domainlist) def update(self, req, id, body): """Add or modify domain entry.""" context = req.environ['patron.context'] authorize(context) fqdomain = _unquote_domain(id) try: entry = body['domain_entry'] scope = entry['scope'] except (TypeError, KeyError): raise webob.exc.HTTPUnprocessableEntity() project = entry.get('project', None) av_zone = entry.get('availability_zone', None) if (scope not in ('private', 'public') or project and av_zone or scope == 'private' and project or scope == 'public' and av_zone): raise webob.exc.HTTPUnprocessableEntity() if scope == 'private': create_dns_domain = self.network_api.create_private_dns_domain area_name, area = 'availability_zone', av_zone else: create_dns_domain = self.network_api.create_public_dns_domain area_name, area = 'project', project try: create_dns_domain(context, fqdomain, area) except NotImplementedError: msg = _("Unable to create dns domain") raise webob.exc.HTTPNotImplemented(explanation=msg) return _translate_domain_entry_view({'domain': fqdomain, 'scope': scope, area_name: area}) def delete(self, req, id): """Delete the domain identified by id.""" context = req.environ['patron.context'] authorize(context) domain = _unquote_domain(id) # Delete the whole domain try: self.network_api.delete_dns_domain(context, domain) except exception.NotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) except NotImplementedError: msg = _("Unable to delete dns domain") raise webob.exc.HTTPNotImplemented(explanation=msg) return webob.Response(status_int=202) class FloatingIPDNSEntryController(object): """DNS Entry controller for OpenStack API.""" def __init__(self): self.network_api = network.API() super(FloatingIPDNSEntryController, self).__init__() def show(self, req, domain_id, id): """Return the DNS entry that corresponds to domain_id and id.""" context = req.environ['patron.context'] authorize(context) domain = _unquote_domain(domain_id) floating_ip = None # Check whether id is a valid ipv4/ipv6 address. if netutils.is_valid_ip(id): floating_ip = id try: if floating_ip: entries = self.network_api.get_dns_entries_by_address( context, floating_ip, domain) else: entries = self.network_api.get_dns_entries_by_name( context, id, domain) except NotImplementedError: msg = _("Unable to get dns entry") raise webob.exc.HTTPNotImplemented(explanation=msg) if not entries: explanation = _("DNS entries not found.") raise webob.exc.HTTPNotFound(explanation=explanation) if floating_ip: entrylist = [_create_dns_entry(floating_ip, entry, domain) for entry in entries] dns_entries = _translate_dns_entries_view(entrylist) return wsgi.ResponseObject(dns_entries) entry = _create_dns_entry(entries[0], id, domain) return _translate_dns_entry_view(entry) def update(self, req, domain_id, id, body): """Add or modify dns entry.""" context = req.environ['patron.context'] authorize(context) domain = _unquote_domain(domain_id) name = id try: entry = body['dns_entry'] address = entry['ip'] dns_type = entry['dns_type'] except (TypeError, KeyError): raise webob.exc.HTTPUnprocessableEntity() try: entries = self.network_api.get_dns_entries_by_name( context, name, domain) if not entries: # create! self.network_api.add_dns_entry(context, address, name, dns_type, domain) else: # modify! self.network_api.modify_dns_entry(context, name, address, domain) except NotImplementedError: msg = _("Unable to create dns entry") raise webob.exc.HTTPNotImplemented(explanation=msg) return _translate_dns_entry_view({'ip': address, 'name': name, 'type': dns_type, 'domain': domain}) def delete(self, req, domain_id, id): """Delete the entry identified by req and id.""" context = req.environ['patron.context'] authorize(context) domain = _unquote_domain(domain_id) name = id try: self.network_api.delete_dns_entry(context, name, domain) except exception.NotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) except NotImplementedError: msg = _("Unable to delete dns entry") raise webob.exc.HTTPNotImplemented(explanation=msg) return webob.Response(status_int=202) class Floating_ip_dns(extensions.ExtensionDescriptor): """Floating IP DNS support.""" name = "FloatingIpDns" alias = "os-floating-ip-dns" namespace = "http://docs.openstack.org/ext/floating_ip_dns/api/v1.1" updated = "2011-12-23T00:00:00Z" def __init__(self, ext_mgr): self.network_api = network.API() super(Floating_ip_dns, self).__init__(ext_mgr) def get_resources(self): resources = [] res = extensions.ResourceExtension('os-floating-ip-dns', FloatingIPDNSDomainController()) resources.append(res) res = extensions.ResourceExtension('entries', FloatingIPDNSEntryController(), parent={'member_name': 'domain', 'collection_name': 'os-floating-ip-dns'}) resources.append(res) return resources
f7c57842ae91adfdfd01bc187383d66e8676dec1
7c038e1d1309620bccbc6dc8c83434488b478d5b
/tests/test_rules_manager.py
cc4cb456e5e0142a853e960e34d88872c24f0635
[ "CC0-1.0", "BSD-3-Clause", "MIT", "Apache-2.0", "LicenseRef-scancode-public-domain", "LicenseRef-scancode-unknown-license-reference" ]
permissive
boschresearch/pcg_gazebo
7d2c9a44c840a4f5c27474316c24ebaadbc0d82c
346394cdb720c9df5ca1d1df6dac7ad0b6e436fc
refs/heads/master
2022-11-22T09:40:01.197416
2022-11-21T07:22:10
2022-11-21T07:22:10
227,847,711
61
24
Apache-2.0
2022-11-21T07:18:24
2019-12-13T13:36:24
Python
UTF-8
Python
false
false
9,735
py
#!/usr/bin/env python # # Copyright (c) 2020 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import random from pcg_gazebo.generators.rules import create_rule, get_rule_parameters from pcg_gazebo.collection_managers import ConstraintsManager, RulesManager from pcg_gazebo.utils import generate_random_string import numpy as np WORKSPACE_CONSTRAINT = dict( name='cool_workspace', type='workspace', frame='world', geometry_type='area', points=[ [-6, -4, 0], [-3, -4, 0], [-3, 0, 0], [-6, 0, 0] ], holes=[ dict( type='circle', center=[-5, 0, 0], radius=0.2 ) ] ) DOF_TAGS = ['x', 'y', 'z', 'roll', 'pitch', 'yaw'] UNIFORM_RULE_SAMPLE = dict( type='uniform', dofs=dict(x=True, y=True), mean=random.random(), min=-10, max=10 ) FIXED_VALUE_RULE_SAMPLE = dict( type='value', dofs=dict(x=True, y=True), value=random.random() ) FROM_SET_RULE_SAMPLE = dict( type='from_set', dofs=dict(x=True, y=True, z=True), values=[random.random() for _ in range(5)] ) RANDOM_RULE_SAMPLE = dict( type='random', dofs=dict(x=True, y=True, z=True), scaling_factor=random.random(), offset=random.random() ) WORKSPACE_RULE_SAMPLE = dict( type='workspace', dofs=dict(x=True, y=True), workspace=WORKSPACE_CONSTRAINT['name'] ) class TestRulesManager(unittest.TestCase): def test_examples(self): sample = get_rule_parameters('value') self.assertIn('tag', sample) self.assertIn('dofs', sample) self.assertIn('value', sample) sample = get_rule_parameters('from_set') self.assertIn('tag', sample) self.assertIn('dofs', sample) self.assertIn('values', sample) sample = get_rule_parameters('random') self.assertIn('tag', sample) self.assertIn('dofs', sample) self.assertIn('scaling_factor', sample) self.assertIn('offset', sample) sample = get_rule_parameters('uniform') self.assertIn('tag', sample) self.assertIn('dofs', sample) self.assertIn('mean', sample) self.assertIn('min', sample) self.assertIn('max', sample) sample = get_rule_parameters('workspace') self.assertIn('tag', sample) self.assertIn('dofs', sample) self.assertIn('workspace', sample) def test_fixed_value_rule(self): value = random.random() rule = create_rule('value', value=value) self.assertIsNotNone(rule) self.assertEqual(rule.value, value) for tag in rule.dofs: self.assertFalse(rule.dofs[tag]) for tag in DOF_TAGS: dofs = dict() for t in DOF_TAGS: dofs[t] = t == tag rule.dofs = dofs pose = rule.get_pose() for t in DOF_TAGS: if t == tag: self.assertTrue(np.isclose(getattr(pose, t), value)) else: if t in ['x', 'y', 'z']: self.assertEqual(getattr(pose, t), 0) def test_from_set_rule(self): values = [random.random() for _ in range(5)] rule = create_rule('from_set', values=values) self.assertIsNotNone(rule) self.assertEqual(rule.values, values) for tag in rule.dofs: self.assertFalse(rule.dofs[tag]) for tag in DOF_TAGS: dofs = dict() for t in DOF_TAGS: dofs[t] = t == tag rule.dofs = dofs pose = rule.get_pose() for t in DOF_TAGS: if t == tag: found_value = False for v in values: if np.isclose(v, getattr(pose, t)): found_value = True break self.assertTrue(found_value) else: if t in ['x', 'y', 'z']: self.assertEqual(getattr(pose, t), 0) def test_random_rule(self): scaling_factor = random.random() offset = random.random() rule = create_rule( 'random', scaling_factor=scaling_factor, offset=offset) self.assertIsNotNone(rule) self.assertEqual(rule.scaling_factor, scaling_factor) self.assertEqual(rule.offset, offset) for tag in rule.dofs: self.assertFalse(rule.dofs[tag]) for tag in DOF_TAGS: dofs = dict() for t in DOF_TAGS: dofs[t] = t == tag rule.dofs = dofs pose = rule.get_pose() for t in DOF_TAGS: if t == tag: self.assertNotEqual(getattr(pose, t), 0) else: if t in ['x', 'y', 'z']: self.assertEqual(getattr(pose, t), 0) def test_uniform_rule(self): mean = random.random() min = mean - 1 max = mean + 1 rule = create_rule( 'uniform', mean=mean, min=min, max=max) self.assertIsNotNone(rule) self.assertEqual(rule.mean, mean) self.assertEqual(rule.min, min), self.assertEqual(rule.max, max) for tag in rule.dofs: self.assertFalse(rule.dofs[tag]) for tag in DOF_TAGS: dofs = dict() for t in DOF_TAGS: dofs[t] = t == tag rule.dofs = dofs pose = rule.get_pose() for t in DOF_TAGS: if t == tag: self.assertGreaterEqual(getattr(pose, t), min) self.assertLessEqual(getattr(pose, t), max) else: if t in ['x', 'y', 'z']: self.assertEqual(getattr(pose, t), 0) def test_within_workspace_rule(self): cm = ConstraintsManager.get_instance() self.assertTrue(cm.add(**WORKSPACE_CONSTRAINT)) self.assertIn(WORKSPACE_CONSTRAINT['name'], cm.tags) rule = create_rule( 'workspace', workspace=WORKSPACE_CONSTRAINT['name']) self.assertIsNotNone(rule) pose = rule.get_pose() constraint = cm.get(WORKSPACE_CONSTRAINT['name']) self.assertTrue(constraint.contains_point([pose.x, pose.y])) rule.dofs = dict(x=True, y=True, z=True) pose = rule.get_pose() constraint = cm.get(WORKSPACE_CONSTRAINT['name']) self.assertTrue(constraint.contains_point([pose.x, pose.y])) def test_add_rule_to_manager(self): rm = RulesManager.get_instance() rules = [ UNIFORM_RULE_SAMPLE, FIXED_VALUE_RULE_SAMPLE, FROM_SET_RULE_SAMPLE, RANDOM_RULE_SAMPLE, WORKSPACE_RULE_SAMPLE ] for rule in rules: name = generate_random_string(5) rm.add(name=name, **rule) self.assertIn(name, rm.tags) self.assertEqual(len(rm.tags), len(rules)) def test_deprecated_rules_args(self): DOFS = dict(x=True, y=True, z=True) rule = create_rule( policy=dict( name='workspace', args='my_workspace' ), dofs=DOFS ) self.assertIsNotNone(rule) self.assertEqual(rule.name, 'workspace') self.assertEqual(rule._workspace_tag, 'my_workspace') rule = create_rule( policy=dict( name='uniform', args=dict( min=-1, max=1 ) ), dofs=DOFS ) self.assertIsNotNone(rule) self.assertEqual(rule.name, 'uniform') self.assertEqual(rule._min, -1) self.assertEqual(rule._max, 1) self.assertEqual(rule._mean, 0) rule = create_rule( policy=dict( name='uniform', args=dict( min=3, max=5, mean=4 ) ), dofs=DOFS ) self.assertIsNotNone(rule) self.assertEqual(rule.name, 'uniform') self.assertEqual(rule._min, 3) self.assertEqual(rule._max, 5) self.assertEqual(rule._mean, 4) rule = create_rule( policy=dict( name='choice', args=dict( values=[1, 2, 3] ) ), dofs=DOFS ) self.assertIsNotNone(rule) self.assertEqual(rule.name, 'from_set') self.assertEqual(rule._values, [1, 2, 3]) rule = create_rule( policy=dict( name='value', args=10 ), dofs=DOFS ) self.assertIsNotNone(rule) self.assertEqual(rule.name, 'value') self.assertEqual(rule._value, 10) if __name__ == '__main__': unittest.main()
5054169d18b37fb296780346c9a5cbbc2117a629
bf683eb4a6080cf67669de90d1afdad53fccb738
/Lib/site-packages/django/db/migrations/loader.py
a6fe1afc15fb2e3670895b845a8b39c414222fbf
[ "MIT" ]
permissive
mspgeek/Client_Portal
cd513308840aa4203554ebc1160f17f0dd4b17cf
0267168bb90e8e9c85aecdd715972b9622b82384
refs/heads/master
2023-03-07T21:33:22.767108
2020-04-08T01:43:19
2020-04-08T01:43:19
253,946,635
6
0
MIT
2022-12-31T07:01:43
2020-04-08T00:43:07
HTML
UTF-8
Python
false
false
14,863
py
import os import sys from importlib import import_module, reload from django.apps import apps from django.conf import settings from django.db.migrations.graph import MigrationGraph from django.db.migrations.recorder import MigrationRecorder from .exceptions import ( AmbiguityError, BadMigrationError, InconsistentMigrationHistory, NodeNotFoundError, ) MIGRATIONS_MODULE_NAME = 'migrations' class MigrationLoader: """ Load migration files from disk and their status from the database. Migration files are expected to live in the "migrations" directory of an app. Their names are entirely unimportant from a code perspective, but will probably follow the 1234_name.py convention. On initialization, this class will scan those directories, and open and read the python files, looking for a class called Migration, which should inherit from django.db.migrations.Migration. See django.db.migrations.migration for what that looks like. Some migrations will be marked as "replacing" another set of migrations. These are loaded into a separate set of migrations away from the main ones. If all the migrations they replace are either unapplied or missing from disk, then they are injected into the main set, replacing the named migrations. Any dependency pointers to the replaced migrations are re-pointed to the new migration. This does mean that this class MUST also talk to the database as well as to disk, but this is probably fine. We're already not just operating in memory. """ def __init__(self, connection, load=True, ignore_no_migrations=False): self.connection = connection self.disk_migrations = None self.applied_migrations = None self.ignore_no_migrations = ignore_no_migrations if load: self.build_graph() @classmethod def migrations_module(cls, app_label): """ Return the path to the migrations module for the specified app_label and a boolean indicating if the module is specified in settings.MIGRATION_MODULE. """ if app_label in settings.MIGRATION_MODULES: return settings.MIGRATION_MODULES[app_label], True else: app_package_name = apps.get_app_config(app_label).name return '%s.%s' % (app_package_name, MIGRATIONS_MODULE_NAME), False def load_disk(self): """Load the migrations from all INSTALLED_APPS from disk.""" self.disk_migrations = {} self.unmigrated_apps = set() self.migrated_apps = set() for app_config in apps.get_app_configs(): # Get the migrations module directory module_name, explicit = self.migrations_module(app_config.label) if module_name is None: self.unmigrated_apps.add(app_config.label) continue was_loaded = module_name in sys.modules try: module = import_module(module_name) except ImportError as e: # I hate doing this, but I don't want to squash other import errors. # Might be better to try a directory check directly. if ((explicit and self.ignore_no_migrations) or ( not explicit and "No module named" in str(e) and MIGRATIONS_MODULE_NAME in str(e))): self.unmigrated_apps.add(app_config.label) continue raise else: # Empty directories are namespaces. # getattr() needed on PY36 and older (replace w/attribute access). if getattr(module, '__file__', None) is None: self.unmigrated_apps.add(app_config.label) continue # Module is not a package (e.g. migrations.py). if not hasattr(module, '__path__'): self.unmigrated_apps.add(app_config.label) continue # Force a reload if it's already loaded (tests need this) if was_loaded: reload(module) self.migrated_apps.add(app_config.label) directory = os.path.dirname(module.__file__) # Scan for .py files migration_names = set() for name in os.listdir(directory): if name.endswith(".py"): import_name = name.rsplit(".", 1)[0] if import_name[0] not in "_.~": migration_names.add(import_name) # Load them for migration_name in migration_names: migration_module = import_module("%s.%s" % (module_name, migration_name)) if not hasattr(migration_module, "Migration"): raise BadMigrationError( "Migration %s in app %s has no Migration class" % (migration_name, app_config.label) ) self.disk_migrations[app_config.label, migration_name] = migration_module.Migration( migration_name, app_config.label, ) def get_migration(self, app_label, name_prefix): """Return the named migration or raise NodeNotFoundError.""" return self.graph.nodes[app_label, name_prefix] def get_migration_by_prefix(self, app_label, name_prefix): """ Return the migration(s) which match the given app label and name_prefix. """ # Do the search results = [] for migration_app_label, migration_name in self.disk_migrations: if migration_app_label == app_label and migration_name.startswith(name_prefix): results.append((migration_app_label, migration_name)) if len(results) > 1: raise AmbiguityError( "There is more than one migration for '%s' with the prefix '%s'" % (app_label, name_prefix) ) elif len(results) == 0: raise KeyError("There no migrations for '%s' with the prefix '%s'" % (app_label, name_prefix)) else: return self.disk_migrations[results[0]] def check_key(self, key, current_app): if (key[1] != "__first__" and key[1] != "__latest__") or key in self.graph: return key # Special-case __first__, which means "the first migration" for # migrated apps, and is ignored for unmigrated apps. It allows # makemigrations to declare dependencies on apps before they even have # migrations. if key[0] == current_app: # Ignore __first__ references to the same app (#22325) return if key[0] in self.unmigrated_apps: # This app isn't migrated, but something depends on it. # The models will get auto-added into the state, though # so we're fine. return if key[0] in self.migrated_apps: try: if key[1] == "__first__": return self.graph.root_nodes(key[0])[0] else: # "__latest__" return self.graph.leaf_nodes(key[0])[0] except IndexError: if self.ignore_no_migrations: return None else: raise ValueError("Dependency on app with no migrations: %s" % key[0]) raise ValueError("Dependency on unknown app: %s" % key[0]) def add_internal_dependencies(self, key, migration): """ Internal dependencies need to be added first to ensure `__first__` dependencies find the correct root node. """ for parent in migration.dependencies: if parent[0] != key[0] or parent[1] == '__first__': # Ignore __first__ references to the same app (#22325). continue self.graph.add_dependency(migration, key, parent, skip_validation=True) def add_external_dependencies(self, key, migration): for parent in migration.dependencies: # Skip internal dependencies if key[0] == parent[0]: continue parent = self.check_key(parent, key[0]) if parent is not None: self.graph.add_dependency(migration, key, parent, skip_validation=True) for child in migration.run_before: child = self.check_key(child, key[0]) if child is not None: self.graph.add_dependency(migration, child, key, skip_validation=True) def build_graph(self): """ Build a migration dependency graph using both the disk and database. You'll need to rebuild the graph if you apply migrations. This isn't usually a problem as generally migration stuff runs in a one-shot process. """ # Load disk data self.load_disk() # Load database data if self.connection is None: self.applied_migrations = set() else: recorder = MigrationRecorder(self.connection) self.applied_migrations = recorder.applied_migrations() # To start, populate the migration graph with nodes for ALL migrations # and their dependencies. Also make note of replacing migrations at this step. self.graph = MigrationGraph() self.replacements = {} for key, migration in self.disk_migrations.items(): self.graph.add_node(key, migration) # Internal (aka same-app) dependencies. self.add_internal_dependencies(key, migration) # Replacing migrations. if migration.replaces: self.replacements[key] = migration # Add external dependencies now that the internal ones have been resolved. for key, migration in self.disk_migrations.items(): self.add_external_dependencies(key, migration) # Carry out replacements where possible. for key, migration in self.replacements.items(): # Get applied status of each of this migration's replacement targets. applied_statuses = [(target in self.applied_migrations) for target in migration.replaces] # Ensure the replacing migration is only marked as applied if all of # its replacement targets are. if all(applied_statuses): self.applied_migrations.add(key) else: self.applied_migrations.discard(key) # A replacing migration can be used if either all or none of its # replacement targets have been applied. if all(applied_statuses) or (not any(applied_statuses)): self.graph.remove_replaced_nodes(key, migration.replaces) else: # This replacing migration cannot be used because it is partially applied. # Remove it from the graph and remap dependencies to it (#25945). self.graph.remove_replacement_node(key, migration.replaces) # Ensure the graph is consistent. try: self.graph.validate_consistency() except NodeNotFoundError as exc: # Check if the missing node could have been replaced by any squash # migration but wasn't because the squash migration was partially # applied before. In that case raise a more understandable exception # (#23556). # Get reverse replacements. reverse_replacements = {} for key, migration in self.replacements.items(): for replaced in migration.replaces: reverse_replacements.setdefault(replaced, set()).add(key) # Try to reraise exception with more detail. if exc.node in reverse_replacements: candidates = reverse_replacements.get(exc.node, set()) is_replaced = any(candidate in self.graph.nodes for candidate in candidates) if not is_replaced: tries = ', '.join('%s.%s' % c for c in candidates) raise NodeNotFoundError( "Migration {0} depends on nonexistent node ('{1}', '{2}'). " "Django tried to replace migration {1}.{2} with any of [{3}] " "but wasn't able to because some of the replaced migrations " "are already applied.".format( exc.origin, exc.node[0], exc.node[1], tries ), exc.node ) from exc raise exc def check_consistent_history(self, connection): """ Raise InconsistentMigrationHistory if any applied migrations have unapplied dependencies. """ recorder = MigrationRecorder(connection) applied = recorder.applied_migrations() for migration in applied: # If the migration is unknown, skip it. if migration not in self.graph.nodes: continue for parent in self.graph.node_map[migration].parents: if parent not in applied: # Skip unapplied squashed migrations that have all of their # `replaces` applied. if parent in self.replacements: if all(m in applied for m in self.replacements[parent].replaces): continue raise InconsistentMigrationHistory( "Migration {}.{} is applied before its dependency " "{}.{} on database '{}'.".format( migration[0], migration[1], parent[0], parent[1], connection.alias, ) ) def detect_conflicts(self): """ Look through the loaded graph and detect any conflicts - apps with more than one leaf migration. Return a dict of the app labels that conflict with the migration names that conflict. """ seen_apps = {} conflicting_apps = set() for app_label, migration_name in self.graph.leaf_nodes(): if app_label in seen_apps: conflicting_apps.add(app_label) seen_apps.setdefault(app_label, set()).add(migration_name) return {app_label: seen_apps[app_label] for app_label in conflicting_apps} def project_state(self, nodes=None, at_end=True): """ Return a ProjectState object representing the most recent state that the loaded migrations represent. See graph.make_state() for the meaning of "nodes" and "at_end". """ return self.graph.make_state(nodes=nodes, at_end=at_end, real_apps=list(self.unmigrated_apps))
e241a958e88c7024a4e560a2e58089f989f61381
c7b11c24c15baf12451868e3dc62ff75301d85db
/orders/templatetags/orders_tags.py
1168531aaf2fc585d1231c6fe2012fe022321a74
[]
no_license
sunny10031982/Foodie
91632aa62bdcad1eb1311b8277a12c610cedae89
5d5a163e2e271d7d9c30e43210a64c6c0e43ea72
refs/heads/master
2021-06-01T19:18:10.315872
2016-08-31T04:00:30
2016-08-31T04:00:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
from django import template register = template.Library() @register.filter def get_total_price(obj): return obj.get_cost()