blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
a357f9ead60456ab5a7e9d939b363b35d728a205
1dec4f8f58202b3ebabcb12816811d22a8b7da3c
/test/scanner.py
d300ce1d50a3569256666a359fd39d53558fd36a
[ "MIT" ]
permissive
lsst-sqre/rubin-jupyter-hub
51df5d3590635009479732247c3c19333ea39ff5
162abe9422332aa60ef089af2862b7a0b0417fa1
refs/heads/master
2023-04-17T09:16:10.893045
2021-05-05T17:41:45
2021-05-05T17:41:45
287,143,775
0
0
NOASSERTION
2021-05-05T17:41:45
2020-08-13T00:33:31
Python
UTF-8
Python
false
false
280
py
#!/usr/bin/env python3 import rubin_jupyter_utils.hub as rh q = rh.SingletonScanner( name="sciplat-lab", owner="lsstsqre", debug=True, experimentals=2, dailies=3, weeklies=4, releases=3, cachefile="/tmp/reposcan.json", ) q.scan() q.get_all_tags()
e2810a18610a785f47a2d469dc933a538a438a11
b4b0e2979d3342449bd7847e619896a7f3878f2f
/day02/bathroom.py
396d3e9c53dcdcf71a2d0337c68f939dc29ad9eb
[ "MIT" ]
permissive
ecly/adventofcode2016
ebbfa39e0932488d930e286321d73e0cb59d24b5
d08411a887cb2bf6b53785b9b6c193a69f78ba87
refs/heads/master
2018-10-20T23:23:07.113189
2018-07-20T17:37:53
2018-07-20T17:37:53
114,026,630
0
0
null
null
null
null
UTF-8
Python
false
false
1,201
py
def first(instructions): code = "" x, y = 1, 1 keypad = ((1,2,3),(4,5,6),(7,8,9)) for instruction in instructions: for c in instruction: if c == 'U'and y > 0: y-=1 if c == 'D'and y < 2: y+=1 if c == 'L'and x > 0: x-=1 if c == 'R'and x < 2: x+=1 code += str(keypad[y][x]) return code def second(instructions): code = "" x, y = 0, 2 keypad = ((None,None,1 ,None,None), (None,2 ,3 ,4 ,None), (5 ,6 ,7 ,8 ,9 ), (None,'A' ,'B' ,'C' ,None), (None,None,'D' ,None,None)) for instruction in instructions: for c in instruction: if c == 'U'and y > 0: if(keypad[y-1][x] != None): y-=1 if c == 'D'and y < 4: if(keypad[y+1][x] != None): y+=1 if c == 'L'and x > 0: if(keypad[y][x-1] != None): x-=1 if c == 'R'and x < 4: if(keypad[y][x+1] != None): x+=1 code += str(keypad[y][x]) return code with open('input.in', 'r') as file: lines = file.readlines() print(first(lines)) print(second(lines))
c2a01c5648c2e7f6f5fbaef3915cdf3dae6ded4b
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2183/60895/250649.py
2ac41841d2853fb7b23c742a376c03a26de7de4b
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
287
py
t=int(input()) while t>0: n=int(input()) temp=n start=0 sum=0 if n==1: sum=3 else: temp=temp-1 while temp>0: start=start+2*temp temp=temp-1 for i in range(0,2*n): sum=sum+start+i+1 print(sum)
15bbb5b5d25a476591ac3f22a66ddeba6418df73
e71b6d14fbdbc57c7234ca45a47329d7d02fc6f7
/flask_api/venv/lib/python3.7/site-packages/vsts/task_agent/v4_1/models/endpoint_url.py
6ac3ef6470b0974e3a1bbc74eb73896987dc48b9
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
u-blavins/secret_sasquatch_society
c36993c738ab29a6a4879bfbeb78a5803f4f2a57
0214eadcdfa9b40254e331a6617c50b422212f4c
refs/heads/master
2020-08-14T00:39:52.948272
2020-01-22T13:54:58
2020-01-22T13:54:58
215,058,646
1
0
null
null
null
null
UTF-8
Python
false
false
1,875
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class EndpointUrl(Model): """EndpointUrl. :param depends_on: Gets or sets the dependency bindings. :type depends_on: :class:`DependsOn <task-agent.v4_1.models.DependsOn>` :param display_name: Gets or sets the display name of service endpoint url. :type display_name: str :param help_text: Gets or sets the help text of service endpoint url. :type help_text: str :param is_visible: Gets or sets the visibility of service endpoint url. :type is_visible: str :param value: Gets or sets the value of service endpoint url. :type value: str """ _attribute_map = { 'depends_on': {'key': 'dependsOn', 'type': 'DependsOn'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'help_text': {'key': 'helpText', 'type': 'str'}, 'is_visible': {'key': 'isVisible', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, depends_on=None, display_name=None, help_text=None, is_visible=None, value=None): super(EndpointUrl, self).__init__() self.depends_on = depends_on self.display_name = display_name self.help_text = help_text self.is_visible = is_visible self.value = value
9bb9fa1995a4ad19d223a45f59b6a2586b015ae6
00db9cdb3cf82306c0de9de1aac0f7514192f1d7
/dataset/SUN.py
61af030add5b5c574858bbecf4fffa3c461152a7
[]
no_license
lijiunderstand/BiSeNet-CCP
039b4aad6a20ed848141e09a265f50e204d0a28c
61023e13fed18fc58737194f1de8639b82382605
refs/heads/master
2020-04-24T22:19:47.595380
2019-01-22T01:30:40
2019-01-22T01:30:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,450
py
import torch import glob import os from torchvision import transforms from torchvision.transforms import functional as F import cv2 from PIL import Image import pandas as pd import numpy as np from imgaug import augmenters as iaa import imgaug as ia from utils import get_label_info, one_hot_it import random def augmentation(): # augment images with spatial transformation: Flip, Affine, Rotation, etc... # see https://github.com/aleju/imgaug for more details pass def augmentation_pixel(): # augment images with pixel intensity transformation: GaussianBlur, Multiply, etc... pass class SUN(torch.utils.data.Dataset): def __init__(self, image_path, depth_path, label_path, csv_path, scale, mode='train'): super().__init__() self.mode = mode self.image_list = glob.glob(os.path.join(image_path, '*.jpg')) self.image_name = [x.split('/')[-1].split('.')[0] for x in self.image_list] self.depth_list = [os.path.join(depth_path, x + '.png') for x in self.image_name] self.label_list = [os.path.join(label_path, x + '.png') for x in self.image_name] self.fliplr = iaa.Fliplr(0.5) self.label_info = get_label_info(csv_path) # resize self.resize_img = transforms.Resize(scale, Image.BILINEAR) self.resize_depth = transforms.Resize(scale, Image.NEAREST) self.resize_label = transforms.Resize(scale, Image.NEAREST) # normalization self.to_tensor = transforms.ToTensor() def __getitem__(self, index): # load image and resize img = Image.open(self.image_list[index]) img = self.resize_img(img) img = np.array(img) # load depth and resize depth = Image.open(self.depth_list[index]) depth = self.resize_depth(depth) depth = np.array(depth) depth = depth[:, :, np.newaxis] # add axis (480,640,1) # load label and resize label = Image.open(self.label_list[index]) label = self.resize_label(label) label = np.array(label) # convert label to one-hot graph label = one_hot_it(label, self.label_info).astype(np.uint8) # augment image and label if self.mode == 'train': seq_det = self.fliplr.to_deterministic() img = seq_det.augment_image(img) depth = seq_det.augment_image(depth) label = seq_det.augment_image(label) # image -> to_tensor [3, H, W] img = Image.fromarray(img).convert('RGB') img = self.to_tensor(img).float() # depth -> to_tensor [1, H, W] depth = depth / 65535 depth = self.to_tensor(depth).float() # image + depth = RGBD rgbd = torch.cat((img, depth), 0) # label -> [num_classes, H, W] label = np.transpose(label, [2, 0, 1]).astype(np.float32) label = torch.from_numpy(label) return rgbd, label def __len__(self): return len(self.image_list) if __name__ == '__main__': data = SUN('/temp_disk/xs/sun/train/image', '/temp_disk/xs/sun/train/label_img', '/temp_disk/xs/sun/seg37_class_dict.csv', (480, 640)) from utils import reverse_one_hot, get_label_info, colour_code_segmentation, compute_global_accuracy label_info = get_label_info('/temp_disk/xs/sun/seg37_class_dict.csv') for i, (img, label) in enumerate(data): print(img.shape) print(label.shape) print()
efb453efca3b2188dcbc78500bd62e2a8122ab1d
1ed536ef1527e6655217e731f622d643ece49c2b
/CGATPipelines/pipeline_docs/pipeline_chipseq/trackers/Intervals.py
600487d473929b2f4042e2b2f8076266a7629344
[]
no_license
siping/cgat
de0f7af124eb38c72d7dece78fff83ff92ddbf96
aa4cc85ffdc53998ea1a5ac5516df2d16c254d2e
refs/heads/master
2021-01-22T13:03:18.060139
2013-10-07T15:53:55
2013-10-07T15:53:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,737
py
from ChipseqReport import * import IOTools class FoldChangeTracker( TrackerSQL ): '''the fold change tracker ignores unstimulated tracks.''' def __init__(self, *args, **kwargs ): TrackerSQL.__init__(self, *args, backend = DATABASE, **kwargs ) def getTracks( self, subset = None ): tracks = TrackerSQL.getTracks( self, subset = subset ) return [ x for x in tracks if TAG_UNSTIM not in x ] ################################################################################## ################################################################################## ################################################################################## ## Annotation of bases with SNPs ################################################################################## class IntervalsSummary( DefaultTracker ): """Summary stats of intervals called by the peak finder. """ mPattern = "_intervals$" def __call__(self, track, slice = None): data = self.getFirstRow( "SELECT COUNT(*), AVG(length), SUM(nprobes) FROM %(track)s_intervals" % locals() ) return odict( zip( ("nintervals", "<length>", "nprobes" ), data) ) ################################################################################## ################################################################################## ################################################################################## ## Distribution of interval lengths ################################################################################## class IntervalLengths( DefaultTracker ): """Distribution of interval sizes. """ mPattern = "_intervals$" def __call__(self, track, slice = None): data = self.getValues( "SELECT length FROM %(track)s_intervals" % locals() ) return { "length" : data } ################################################################################## ################################################################################## ################################################################################## ## Distribution of peak values ################################################################################## class IntervalPeakValues( DefaultTracker ): """Distribution of peak values (the number of reads at peak). """ mPattern = "_intervals$" def __call__(self, track, slice = None): data = self.getValues( "SELECT peakval FROM %(track)s_intervals" % locals() ) return { "peakval" : data } ################################################################################## ################################################################################## ################################################################################## ## Distribution of peak values ################################################################################## class EnrichmentOverUnstim( DefaultTracker ): """For each peakval, present the fold enrichment of a track compared to the Unstim set. Useful for diagnosing cutoffs. """ mPattern = "_intervals$" def __call__(self, track, slice = None): cellline, condition, replicate = splitTrack( track ) if condition == "Unstim": return [] if replicate == None: replicate = "" other_track = "run" + cellline + "Unstim" + replicate data_fg = self.getValues( "SELECT peakval FROM %(track)s_intervals ORDER BY peakval DESC" % locals() ) data_bg = self.getValues( "SELECT peakval FROM %(other_track)s_intervals ORDER BY peakval DESC" % locals() ) mi = min( data_bg + data_fg ) ma = max( data_bg + data_fg ) n_fg = len(data_fg) n_bg = len(data_bg) hist_fg, bin_edges = numpy.histogram( data_fg, bins = numpy.arange( mi, ma + 1.0, 1.0 ) ) hist_bg, bin_edges = numpy.histogram( data_bg, bins = numpy.arange( mi, ma + 1.0, 1.0 ) ) hist_fg = hist_fg[::-1].cumsum()[::-1] hist_bg = hist_bg[::-1].cumsum()[::-1] fold = [] for fg, bg in zip( hist_fg, hist_bg ): fold.append( float(bg) / fg ) return odict( ( ( "peakval" , bin_edges[:-1]), ( "fold" , fold ) ) ) ################################################################################## ################################################################################## ################################################################################## ## Distribution of average values ################################################################################## class IntervalAverageValues( DefaultTracker ): """Distribution of average values (the average number of reads within the interval) """ mPattern = "_intervals$" def __call__(self, track, slice = None): data = self.getValues( "SELECT avgval FROM %(track)s_intervals" % locals() ) return { "avgval" : data } ################################################################################## ################################################################################## ################################################################################## ## Distribution of average values ################################################################################## class IntervalLengthVsAverageValue( DefaultTracker ): """Length vs average value. """ mPattern = "_intervals$" def __call__(self, track, slice = None): data = self.get( "SELECT length, avgval FROM %(track)s_intervals" % locals() ) return odict( zip( ("length", "avgval"), zip(*data) ) ) ################################################################################## ################################################################################## ################################################################################## ## Distribution of average values ################################################################################## class IntervalLengthVsPeakValue( DefaultTracker ): """Length vs peak value """ mPattern = "_intervals$" def __call__(self, track, slice = None): data = self.get( "SELECT length, peakval FROM %(track)s_intervals" % locals() ) return odict( zip( ("length", "peakval"), zip(*data) ) ) ################################################################################## ################################################################################## ################################################################################## ## peak location within interval ################################################################################## class PeakLocation( DefaultTracker ): mPattern = "_intervals$" def __call__(self, track, slice = None): data1 = self.getValues( "SELECT (PeakCenter - start) / CAST( Length as FLOAT) - 0.5 FROM %(track)s_intervals" % locals() ) data2 = self.getValues( "SELECT (end - PeakCenter) / CAST( Length as FLOAT) - 0.5 FROM %(track)s_intervals" % locals() ) return { "distance" : data1 + data2 } ################################################################################## ################################################################################## ################################################################################## ## distance of peak to end of interval ################################################################################## class PeakDistance( DefaultTracker ): mPattern = "_intervals$" def __call__(self, track, slice = None): data1 = self.getValues( "SELECT PeakCenter - start FROM %(track)s_intervals" % locals() ) data2 = self.getValues( "SELECT end - PeakCenter FROM %(track)s_intervals" % locals() ) return { "distance" : data1 + data2 } ################################################################################## ################################################################################## ################################################################################## ## ################################################################################## class IntervalList( DefaultTracker ): '''list of intervals.''' nresults = 10 mColumnsFixed = ("pos", "length" ) mColumnsVariable= ( "peakval", "avgval" ) mPattern = "_intervals$" def getSQLStatement( self, track, slice = None ): statement = ''' SELECT i.interval_id, i.contig, i.start, i.end, i.peakval, i.avgval FROM %(track)s_intervals AS i ORDER BY i.peakval DESC''' % locals() if self.nresults: statement += " LIMIT %i" % self.nresults return statement def __call__(self, track, slice = None ): statement = self.getSQLStatement( track, slice ) data = self.get( statement ) ucsc_genome = UCSC_GENOME n = odict() for d in data: id, contig, start, end = d[:4] pos = "`%(contig)s:%(start)i..%(end)i <http://genome.ucsc.edu/cgi-bin/hgTracks?db=%(ucsc_genome)s&position=%(contig)s:%(start)i..%(end)i>`_" \ % locals() n[str(id)] = odict( zip(self.mColumnsFixed + self.mColumnsVariable, (pos, end-start,) + d[4:])) return n ################################################################################## ################################################################################## ################################################################################## ## ################################################################################## class IntervalListFull( DefaultTracker ): '''list of all intervals. Table for export. ''' nresults = None mPattern = "_intervals$" def __call__(self, track, slice = None ): statement = ''' SELECT i.contig, i.start, i.end, i.peakval, i.avgval FROM %(track)s_intervals AS i ORDER BY i.peakval DESC''' % locals() data = self.get( statement ) return odict( zip( ("contig", "start", "end", "peakval", "avgval"), zip(*data ) )) ################################################################################## ################################################################################## ################################################################################## ## ################################################################################## class IntervalListPeakval( IntervalList ): '''list of intervals.''' def getSQLStatement( self, track, slice = None ): nresults = self.nresults statement = ''' SELECT i.interval_id, i.contig, i.start, i.end, i.peakval, i.avgval, i.length FROM %(track)s_intervals AS i ORDER BY i.peakval DESC LIMIT %(nresults)s''' % locals() return statement ################################################################################## ################################################################################## ################################################################################## ## ################################################################################## class IntervalListFoldChange( FoldChangeTracker, IntervalList ): '''list of intervals.''' mColumnsVariable= ( "fg_anysense_mean", "bg_anysense_mean", "fold_mean", "fg_anysense_max", "bg_anysense_max", "fold_max" ) mMinFold = 1.5 mPattern = "_readcounts$" def getSQLStatement( self, track, slice = None ): nresults = self.nresults minfold = self.mMinFold statement = ''' SELECT i.interval_id, i.contig, i.start, i.end, fg_anysense_mean, bg_anysense_mean, fg_anysense_mean / bg_anysense_mean AS fold_mean, fg_anysense_max, bg_anysense_max, cast(fg_anysense_max as float)/ bg_anysense_max AS fold_max FROM %(track)s_intervals AS i, %(track)s_readcounts AS c WHERE i.interval_id = c.gene_id AND cast(fg_anysense_max as float)/ bg_anysense_max > %(minfold)f ORDER BY fold_max DESC LIMIT %(nresults)s''' % locals() return statement ################################################################################## ################################################################################## ################################################################################## ## correlations ################################################################################## class Correlations( ChipseqTracker ): """Correlation between all sets. """ pattern = "(.*)_annotations$" def __call__(self, track, slice = None ): table = "%s_correlation" % self.field return self.getValues( "SELECT %s AS %s FROM %s ORDER BY id" % (track, self.field, table)) class CorrelationsPeakval( Correlations ): field = "peakval" class CorrelationsAvgval( Correlations ): field = "avgval" class CorrelationsLength( Correlations ): field = "length" ################################################################################## ################################################################################## ################################################################################## ## fold change ################################################################################## class FoldChange( FoldChangeTracker ): """return fold changes for all intervals. """ pattern = "(.*)_readcounts$" def __call__(self, track ): return self.getValues( "SELECT CAST(fg_anysense_max AS float)/ bg_anysense_max AS fold FROM %(track)s_readcounts" % locals() ) ################################################################################## ################################################################################## ################################################################################## ## fold change ################################################################################## class FoldChangeCounts( FoldChangeTracker ): """Correlation between all sets. """ pattern = "(.*)_readcounts$" mMinFoldChange = 2.0 def __call__(self, track ): data = [] upfold = self.mMinFoldChange downfold = 1.0 / upfold data.append( ("> %5.2f fold" % upfold, self.getValue( "SELECT COUNT(*) FROM %(track)s_readcounts WHERE CAST(fg_anysense_max AS float)/ bg_anysense_max > %(upfold)f " % locals() )) ) data.append( ("unchanged", self.getValue( "SELECT COUNT(*) FROM %(track)s_readcounts WHERE CAST(fg_anysense_max AS float)/ bg_anysense_max between %(downfold)f and %(upfold)f" % locals() )) ) data.append( ("< %5.2f fold" % downfold, self.getValue( "SELECT COUNT(*) FROM %(track)s_readcounts WHERE CAST(fg_anysense_max AS float)/ bg_anysense_max < %(downfold)f " % locals() )) ) return odict(data) ################################################################################## ################################################################################## ################################################################################## ## peak shape ################################################################################## class PeakShapeTracker( Tracker ): '''return peakshape data. Only 1000 rows are returned. ''' tracks = [ os.path.basename( x )[:-len(".peakshape.tsv.gz")] for x in glob.glob( os.path.join( DATADIR , "*.peakshape.tsv.gz" )) ] slices = ["peak_height", "peak_width" ] def __call__(self, track, slice = None): fn = os.path.join( DATADIR, "%(track)s.peakshape.tsv.gz.matrix_%(slice)s.gz" % locals() ) if not os.path.exists( fn ): return matrix, rownames, colnames = IOTools.readMatrix( IOTools.openFile( fn )) nrows = len(rownames) if nrows == 0: return if nrows > 1000: take = numpy.array( numpy.floor( numpy.arange( 0, nrows, nrows / 1000 ) ), dtype = int ) rownames = [ rownames[x] for x in take ] matrix = matrix[ take ] return odict( (('matrix', matrix), ('rows', rownames), ('columns', colnames)) )
85d1641bef7fd5909e21ca349f509fdd3421cc41
0987f31e64bcacb41ba3a1e20054d7b8ac0d7346
/contests/ABC062/C_correct.py
c036e7a61ea6e88afb42487b1449da2c480884d5
[]
no_license
masakiaota/kyoupuro
81ae52ab3014fb2b1e10472994afa4caa9ea463b
74915a40ac157f89fe400e3f98e9bf3c10012cd7
refs/heads/master
2021-06-27T04:13:52.152582
2020-09-20T03:21:17
2020-09-20T03:21:17
147,049,195
1
0
null
null
null
null
UTF-8
Python
false
false
743
py
# メインアイデア # T分割と||分割で差が小さい方を探す # 90度回転させた場合も考える # 総合的に小さい方を採用する # 図的な解説は別のPDFをアップロードしてある H, W = list(map(int, input().split())) # 3の倍数の場合は即座に0とわかる if (H * W) % 3 == 0: print(0) exit() def try_divi(W, H): # パターン1 err = W # パターン2 w2, w3 = W // 2, W // 2 if W % 2: w2 += 1 for h1 in range(1, H // 2 + 1): h2 = H-h1 S1, S2, S3 = h1*W, w2*h2, w3*h2 new_err = max(S1, S2, S3) - min(S1, S2, S3) if new_err < err: err = new_err return err print(min(try_divi(W, H), try_divi(H, W)))
399d8f1ccae0a90aaadd43bbb8361fc501069da4
34652a47355a8dbe9200db229a1bbc62619de364
/Maths/Euler Sum_for.py
d2db391244ef070127e556456b9ec176533aed0a
[]
no_license
btrif/Python_dev_repo
df34ab7066eab662a5c11467d390e067ab5bf0f8
b4c81010a1476721cabc2621b17d92fead9314b4
refs/heads/master
2020-04-02T13:34:11.655162
2019-11-10T11:08:23
2019-11-10T11:08:23
154,487,015
0
1
null
null
null
null
UTF-8
Python
false
false
213
py
import math N=int(input("Number of terms you want to sum up : \n")) sum = 0 for x in range(1, N+1, 1): sum = sum + 1/x**2 print("The result is : ", sum, "\n") print("The EXACT result is : ", math.pi**2/6)
ec58eda1e6caea7793bb434bbf060c242815ae28
3cbf4a9d14cd487520f2bd05db10542705a37baf
/h2o-py/tests/testdir_algos/deeplearning/pyunit_weights_and_biases_deeplearning.py
76f2f8903d02c8119cc64a31daddf0f61973f02b
[ "Apache-2.0" ]
permissive
KendraFabric/h2o-3
733ff021553ff2c2d8f0c3336450d886d029cf15
c75bc5d2dc644cc8c09df755185a4cc6e34e0d1a
refs/heads/master
2023-03-15T12:32:02.852026
2016-08-26T14:01:07
2016-08-26T14:27:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,413
py
import sys, os sys.path.insert(1, os.path.join("..","..")) import h2o from tests import pyunit_utils def weights_and_biases(): print "Test checks if Deep Learning weights and biases are accessible from R" covtype = h2o.upload_file(pyunit_utils.locate("smalldata/covtype/covtype.20k.data")) covtype[54] = covtype[54].asfactor() from h2o.estimators.deeplearning import H2ODeepLearningEstimator dlmodel = H2ODeepLearningEstimator(hidden=[17,191], epochs=1, balance_classes=False, reproducible=True, seed=1234, export_weights_and_biases=True) dlmodel.train(x=range(54),y=54,training_frame=covtype) print dlmodel weights1 = dlmodel.weights(0) weights2 = dlmodel.weights(1) weights3 = dlmodel.weights(2) biases1 = dlmodel.biases(0) biases2 = dlmodel.biases(1) biases3 = dlmodel.biases(2) w1c = weights1.ncol w1r = weights1.nrow assert w1c == 52, "wrong dimensionality! expected {0}, but got {1}.".format(52, w1c) assert w1r == 17, "wrong dimensionality! expected {0}, but got {1}.".format(17, w1r) w2c = weights2.ncol w2r = weights2.nrow assert w2c == 17, "wrong dimensionality! expected {0}, but got {1}.".format(17, w2c) assert w2r == 191, "wrong dimensionality! expected {0}, but got {1}.".format(191, w2r) w3c = weights3.ncol w3r = weights3.nrow assert w3c == 191, "wrong dimensionality! expected {0}, but got {1}.".format(191, w3c) assert w3r == 7, "wrong dimensionality! expected {0}, but got {1}.".format(7, w3r) b1c = biases1.ncol b1r = biases1.nrow assert b1c == 1, "wrong dimensionality! expected {0}, but got {1}.".format(1, b1c) assert b1r == 17, "wrong dimensionality! expected {0}, but got {1}.".format(17, b1r) b2c = biases2.ncol b2r = biases2.nrow assert b2c == 1, "wrong dimensionality! expected {0}, but got {1}.".format(1, b2c) assert b2r == 191, "wrong dimensionality! expected {0}, but got {1}.".format(191, b2r) b3c = biases3.ncol b3r = biases3.nrow assert b3c == 1, "wrong dimensionality! expected {0}, but got {1}.".format(1, b3c) assert b3r == 7, "wrong dimensionality! expected {0}, but got {1}.".format(7, b3r) if __name__ == "__main__": pyunit_utils.standalone_test(weights_and_biases) else: weights_and_biases()
e8858b1d17db014e60ff494d1957a7e6b40abea3
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/group_and_right_life/have_group/point/long_point_or_next_place.py
353072ad6581aa82d34c921d2190fd9605b2db54
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
#! /usr/bin/env python def person_or_next_work(str_arg): problem(str_arg) print('fact') def problem(str_arg): print(str_arg) if __name__ == '__main__': person_or_next_work('last_place')
9997b4b6559fd1d70162f2a3a4866a702f635c0f
55591cff4b4dbfec91ac8e498652c2ad60bfdffe
/datahub/dataset/core/views.py
b8c2f58a8861f7ede2eddf27716026aace8c11eb
[ "MIT" ]
permissive
alixedi/data-hub-api-cd-poc
2caf6575cced33f0b2b22582d8bdcd60e99ba7d8
a5e5ea45bb496c0d2a06635864514af0c7d4291a
refs/heads/develop
2020-12-26T05:52:39.575158
2020-01-30T15:27:27
2020-01-30T15:27:27
237,407,350
0
0
MIT
2020-02-07T12:38:47
2020-01-31T10:25:34
null
UTF-8
Python
false
false
1,150
py
from rest_framework.views import APIView from config.settings.types import HawkScope from datahub.core.auth import PaaSIPAuthentication from datahub.core.hawk_receiver import ( HawkAuthentication, HawkResponseSigningMixin, HawkScopePermission, ) from datahub.dataset.core.pagination import DatasetCursorPagination class BaseDatasetView(HawkResponseSigningMixin, APIView): """ Base API view to be used for creating endpoints for consumption by Data Flow and insertion into Data Workspace. """ authentication_classes = (PaaSIPAuthentication, HawkAuthentication) permission_classes = (HawkScopePermission, ) required_hawk_scope = HawkScope.data_flow_api pagination_class = DatasetCursorPagination def get(self, request): """Endpoint which serves all records for a specific Dataset""" dataset = self.get_dataset() paginator = self.pagination_class() page = paginator.paginate_queryset(dataset, request, view=self) return paginator.get_paginated_response(page) def get_dataset(self): """Return a list of records""" raise NotImplementedError
54be352c9be4e5ee113aa84590c71e535dc20a78
21a7969bea3e4fb4b4734443aa1702000c26336b
/009-Guessing-Game-One.py
57b5a45057dda0866b8a9730d4d8a0efa3f39ef9
[]
no_license
jaapdejong/python-challenges
635823e7c67c6b5d769c22298d385cfa40cc9f9d
04fbb009d6c017bdb17a2a6cc45c543a13494fe0
refs/heads/master
2021-01-15T22:47:23.882155
2017-08-10T11:18:08
2017-08-10T11:18:08
99,915,001
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
#!/usr/bin/python3 # # Exercise 9 # Generate a random number between 1 and 9 (including 1 and 9). # Ask the user to guess the number, then tell them whether they guessed too low, too high, or exactly right. # (Hint: remember to use the user input lessons from the very first exercise) # from random import randint computer = randint(1, 9) while True: player = int(input("Please enter a number between 1 and 9: ")) if player == computer: print("Found!!") break elif player < computer: print("Too low") else: print("Too high")
ab5b9ad96148fb17c93b3a77ac81f34e18a0861f
612325535126eaddebc230d8c27af095c8e5cc2f
/depot_tools/ENV/lib/python2.7/site-packages/pip/_vendor/html5lib/serializer/htmlserializer.py
033ec69f85594ccdd459e1609798e7af65464cb6
[ "BSD-3-Clause" ]
permissive
TrellixVulnTeam/proto-quic_1V94
1a3a03ac7a08a494b3d4e9857b24bb8f2c2cd673
feee14d96ee95313f236e0f0e3ff7719246c84f7
refs/heads/master
2023-04-01T14:36:53.888576
2019-10-17T02:23:04
2019-10-17T02:23:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,229
py
from __future__ import absolute_import, division, unicode_literals from pip._vendor.six import text_type import gettext _ = gettext.gettext try: from functools import reduce except ImportError: pass from ..constants import voidElements, booleanAttributes, spaceCharacters from ..constants import rcdataElements, entities, xmlEntities from .. import utils from xml.sax.saxutils import escape spaceCharacters = "".join(spaceCharacters) try: from codecs import register_error, xmlcharrefreplace_errors except ImportError: unicode_encode_errors = "strict" else: unicode_encode_errors = "htmlentityreplace" encode_entity_map = {} is_ucs4 = len("\U0010FFFF") == 1 for k, v in list(entities.items()): # skip multi-character entities if ((is_ucs4 and len(v) > 1) or (not is_ucs4 and len(v) > 2)): continue if v != "&": if len(v) == 2: v = utils.surrogatePairToCodepoint(v) else: v = ord(v) if not v in encode_entity_map or k.islower(): # prefer &lt; over &LT; and similarly for &amp;, &gt;, etc. encode_entity_map[v] = k def htmlentityreplace_errors(exc): if isinstance(exc, (UnicodeEncodeError, UnicodeTranslateError)): res = [] codepoints = [] skip = False for i, c in enumerate(exc.object[exc.start:exc.end]): if skip: skip = False continue index = i + exc.start if utils.isSurrogatePair(exc.object[index:min([exc.end, index + 2])]): codepoint = utils.surrogatePairToCodepoint(exc.object[index:index + 2]) skip = True else: codepoint = ord(c) codepoints.append(codepoint) for cp in codepoints: e = encode_entity_map.get(cp) if e: res.append("&") res.append(e) if not e.endswith(";"): res.append(";") else: res.append("&#x%s;" % (hex(cp)[2:])) return ("".join(res), exc.end) else: return xmlcharrefreplace_errors(exc) register_error(unicode_encode_errors, htmlentityreplace_errors) del register_error class HTMLSerializer(object): # attribute quoting options quote_attr_values = False quote_char = '"' use_best_quote_char = True # tag syntax options omit_optional_tags = True minimize_boolean_attributes = True use_trailing_solidus = False space_before_trailing_solidus = True # escaping options escape_lt_in_attrs = False escape_rcdata = False resolve_entities = True # miscellaneous options alphabetical_attributes = False inject_meta_charset = True strip_whitespace = False sanitize = False options = ("quote_attr_values", "quote_char", "use_best_quote_char", "omit_optional_tags", "minimize_boolean_attributes", "use_trailing_solidus", "space_before_trailing_solidus", "escape_lt_in_attrs", "escape_rcdata", "resolve_entities", "alphabetical_attributes", "inject_meta_charset", "strip_whitespace", "sanitize") def __init__(self, **kwargs): """Initialize HTMLSerializer. Keyword options (default given first unless specified) include: inject_meta_charset=True|False Whether it insert a meta element to define the character set of the document. quote_attr_values=True|False Whether to quote attribute values that don't require quoting per HTML5 parsing rules. quote_char=u'"'|u"'" Use given quote character for attribute quoting. Default is to use double quote unless attribute value contains a double quote, in which case single quotes are used instead. escape_lt_in_attrs=False|True Whether to escape < in attribute values. escape_rcdata=False|True Whether to escape characters that need to be escaped within normal elements within rcdata elements such as style. resolve_entities=True|False Whether to resolve named character entities that appear in the source tree. The XML predefined entities &lt; &gt; &amp; &quot; &apos; are unaffected by this setting. strip_whitespace=False|True Whether to remove semantically meaningless whitespace. (This compresses all whitespace to a single space except within pre.) minimize_boolean_attributes=True|False Shortens boolean attributes to give just the attribute value, for example <input disabled="disabled"> becomes <input disabled>. use_trailing_solidus=False|True Includes a close-tag slash at the end of the start tag of void elements (empty elements whose end tag is forbidden). E.g. <hr/>. space_before_trailing_solidus=True|False Places a space immediately before the closing slash in a tag using a trailing solidus. E.g. <hr />. Requires use_trailing_solidus. sanitize=False|True Strip all unsafe or unknown constructs from output. See `html5lib user documentation`_ omit_optional_tags=True|False Omit start/end tags that are optional. alphabetical_attributes=False|True Reorder attributes to be in alphabetical order. .. _html5lib user documentation: http://code.google.com/p/html5lib/wiki/UserDocumentation """ if 'quote_char' in kwargs: self.use_best_quote_char = False for attr in self.options: setattr(self, attr, kwargs.get(attr, getattr(self, attr))) self.errors = [] self.strict = False def encode(self, string): assert(isinstance(string, text_type)) if self.encoding: return string.encode(self.encoding, unicode_encode_errors) else: return string def encodeStrict(self, string): assert(isinstance(string, text_type)) if self.encoding: return string.encode(self.encoding, "strict") else: return string def serialize(self, treewalker, encoding=None): self.encoding = encoding in_cdata = False self.errors = [] if encoding and self.inject_meta_charset: from ..filters.inject_meta_charset import Filter treewalker = Filter(treewalker, encoding) # WhitespaceFilter should be used before OptionalTagFilter # for maximum efficiently of this latter filter if self.strip_whitespace: from ..filters.whitespace import Filter treewalker = Filter(treewalker) if self.sanitize: from ..filters.sanitizer import Filter treewalker = Filter(treewalker) if self.omit_optional_tags: from ..filters.optionaltags import Filter treewalker = Filter(treewalker) # Alphabetical attributes must be last, as other filters # could add attributes and alter the order if self.alphabetical_attributes: from ..filters.alphabeticalattributes import Filter treewalker = Filter(treewalker) for token in treewalker: type = token["type"] if type == "Doctype": doctype = "<!DOCTYPE %s" % token["name"] if token["publicId"]: doctype += ' PUBLIC "%s"' % token["publicId"] elif token["systemId"]: doctype += " SYSTEM" if token["systemId"]: if token["systemId"].find('"') >= 0: if token["systemId"].find("'") >= 0: self.serializeError(_("System identifer contains both single and double quote characters")) quote_char = "'" else: quote_char = '"' doctype += " %s%s%s" % (quote_char, token["systemId"], quote_char) doctype += ">" yield self.encodeStrict(doctype) elif type in ("Characters", "SpaceCharacters"): if type == "SpaceCharacters" or in_cdata: if in_cdata and token["data"].find("</") >= 0: self.serializeError(_("Unexpected </ in CDATA")) yield self.encode(token["data"]) else: yield self.encode(escape(token["data"])) elif type in ("StartTag", "EmptyTag"): name = token["name"] yield self.encodeStrict("<%s" % name) if name in rcdataElements and not self.escape_rcdata: in_cdata = True elif in_cdata: self.serializeError(_("Unexpected child element of a CDATA element")) for (attr_namespace, attr_name), attr_value in token["data"].items(): # TODO: Add namespace support here k = attr_name v = attr_value yield self.encodeStrict(' ') yield self.encodeStrict(k) if not self.minimize_boolean_attributes or \ (k not in booleanAttributes.get(name, tuple()) and k not in booleanAttributes.get("", tuple())): yield self.encodeStrict("=") if self.quote_attr_values or not v: quote_attr = True else: quote_attr = reduce(lambda x, y: x or (y in v), spaceCharacters + ">\"'=", False) v = v.replace("&", "&amp;") if self.escape_lt_in_attrs: v = v.replace("<", "&lt;") if quote_attr: quote_char = self.quote_char if self.use_best_quote_char: if "'" in v and '"' not in v: quote_char = '"' elif '"' in v and "'" not in v: quote_char = "'" if quote_char == "'": v = v.replace("'", "&#39;") else: v = v.replace('"', "&quot;") yield self.encodeStrict(quote_char) yield self.encode(v) yield self.encodeStrict(quote_char) else: yield self.encode(v) if name in voidElements and self.use_trailing_solidus: if self.space_before_trailing_solidus: yield self.encodeStrict(" /") else: yield self.encodeStrict("/") yield self.encode(">") elif type == "EndTag": name = token["name"] if name in rcdataElements: in_cdata = False elif in_cdata: self.serializeError(_("Unexpected child element of a CDATA element")) yield self.encodeStrict("</%s>" % name) elif type == "Comment": data = token["data"] if data.find("--") >= 0: self.serializeError(_("Comment contains --")) yield self.encodeStrict("<!--%s-->" % token["data"]) elif type == "Entity": name = token["name"] key = name + ";" if not key in entities: self.serializeError(_("Entity %s not recognized" % name)) if self.resolve_entities and key not in xmlEntities: data = entities[key] else: data = "&%s;" % name yield self.encodeStrict(data) else: self.serializeError(token["data"]) def render(self, treewalker, encoding=None): if encoding: return b"".join(list(self.serialize(treewalker, encoding))) else: return "".join(list(self.serialize(treewalker))) def serializeError(self, data="XXX ERROR MESSAGE NEEDED"): # XXX The idea is to make data mandatory. self.errors.append(data) if self.strict: raise SerializeError def SerializeError(Exception): """Error in serialized tree""" pass
736d50cd559b4a440abd688caf3c6c50d476faaa
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry/code_version/delete.py
3e012305c57cb4acd3c379e49fb0e9f5eebf2636
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,683
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-machinelearningservices # USAGE python delete.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = MachineLearningServicesMgmtClient( credential=DefaultAzureCredential(), subscription_id="00000000-1111-2222-3333-444444444444", ) client.registry_code_versions.begin_delete( resource_group_name="test-rg", registry_name="my-aml-registry", code_name="string", version="string", ).result() # x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeVersion/delete.json if __name__ == "__main__": main()
6dd679509464d24a600eedfe687833818a76add8
54aeeae3c4258e2312028ecd2a38242dd3f4f34d
/examples/BLE_Alerts_Secure_2/main.py
3bea866358ed00335b014cf3690356f44e0e374c
[]
no_license
zerynth/lib-espressif-esp32ble
09f4f9ae28056d49d4062c19c0a330bff61396f3
17ab2a1fbd80e99420cd988c8fc148b8f366e379
refs/heads/master
2021-06-08T04:12:22.808499
2020-09-24T15:31:45
2020-09-24T15:31:45
167,332,727
0
0
null
null
null
null
UTF-8
Python
false
false
4,832
py
################################################################################ # BLE Alerts with Security 2 # # Created by Zerynth Team 2019 CC # Author: G. Baldi ############################################################################### import streams #import the ESP32 BLE driver: a BLE capable VM is also needed! from espressif.esp32ble import esp32ble as bledrv # then import the BLE modue from wireless import ble streams.serial() notifications_enabled = True connected = False # Let's define some callbacks def value_cb(status,val): # check incoming commands and enable/disable notifications global notifications_enabled print("Value changed to",val[0],val[1]) if val[0]==0: print("Notifications enabled") notifications_enabled = True elif val[0]==2: notifications_enabled = False print("Notifications disabled") else: print("Notifications unchanged") def connection_cb(address): global connected print("Connected to",ble.btos(address)) connected = True def disconnection_cb(address): global connected print("Disconnected from",ble.btos(address)) # let's start advertising again ble.start_advertising() connected = False # Let's define some security callbacks def match_key_cb(passkey): print("MASTER KEY IS:",passkey,"CAN WE PROCEED? PRESS BUTTON FOR YES") pinMode(BTN0,INPUT) for i in range(5): if digitalRead(BTN0)!=0: ble.confirm_passkey(1) print("Confirmed!") return sleep(1000) ble.confirm_passkey(0) print("Not confirmed!") try: # initialize BLE driver bledrv.init() # Set GAP name and LEVEL 2 security # !!! If security is not set, no secure connection will be possible ble.gap("ZNotifier",security=(ble.SECURITY_MODE_1,ble.SECURITY_LEVEL_2)) # add some GAP callbacks ble.add_callback(ble.EVT_CONNECTED,connection_cb) ble.add_callback(ble.EVT_DISCONNECTED,disconnection_cb) # Create a GATT Service: let's try an Alert Notification Service # (here are the specs: https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.alert_notification.xml) s = ble.Service(0x1811) # The Alert Notification service has multiple characteristics. Let's add them one by one # Create a GATT Characteristic for counting new alerts. # specs: https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.supported_new_alert_category.xml cn = ble.Characteristic(0x2A47, ble.NOTIFY | ble.READ,16,"New Alerts",ble.BYTES) # Add the GATT Characteristic to the Service s.add_characteristic(cn) # Create anothr GATT Characteristic for enabling/disabling alerts # specs: https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.alert_notification_control_point.xml cc = ble.Characteristic(0x2A44, ble.WRITE ,2,"Alerts control",ble.BYTES) # Add the GATT Characteristic to the Service s.add_characteristic(cc) # Add a callback to be notified of changes cc.set_callback(value_cb) # Add the Service. You can create additional services and add them one by one ble.add_service(s) # Configure security. BLE security is very flexible. # In this case we declare that the device has only an output capability with yes o or no input (CAP_DISPLAY_YES_NO), # that we require a bonding (storage of the keys after pairing) # and that we want both secure connection and main in the middle protection. ble.security( capabilities=ble.CAP_DISPLAY_YES_NO, bonding=ble.AUTH_BOND, scheme=ble.AUTH_SC|ble.AUTH_MITM, key_size=16) # To do so, we need a callback to accept the passkey when needed ble.add_callback(ble.EVT_MATCH_PASSKEY,match_key_cb) # Setup advertising to 50ms ble.advertising(50) # Start the BLE stack ble.start() # Now start advertising ble.start_advertising() except Exception as e: print(e) # Uncomment the following lines to delte bonded devices! for bond in ble.bonded(): print("Removing bonded:",ble.btos(bond)) ble.remove_bonded(bond) # loop forever while True: print(".") if random(0,100)<50 and notifications_enabled and connected: value = bytearray(cn.get_value()) value[0]=0 # simple alert type if value[1]<255: value[1]=value[1]+1 # add a notification print("Adding a new notification, total of",value[1]) # the remaining 14 bytes can be some text value[2:10] = "Zerynth!" # set the new value. If ble notifications are enabled, the connected device will receive the change cn.set_value(value) sleep(5000)
cc525d1d2d9552b17bd4b2818466de9dc2db4e33
f359c953ef823cc44f7d87a3736c3e4fb1817c0b
/EDBRCommon/python/simulation/RunIIDR74X/RSGravToZZToLLQQ_M-4500.py
f8823971e11ccf67430c5a39efff4e49bce8f793
[]
no_license
jruizvar/ExoDiBosonResonancesRun2
aa613200725cf6cd825d7bcbde60d2e39ba84e39
b407ab36504d0e04e6bddba4e57856f9f8c0ec66
refs/heads/Analysis76X
2021-01-18T20:00:57.358494
2016-05-30T21:30:19
2016-05-30T21:30:19
23,619,682
1
1
null
2016-04-22T18:38:45
2014-09-03T12:41:07
Python
UTF-8
Python
false
false
879
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ '/store/mc/RunIISpring15DR74/RSGravToZZToLLQQ_kMpl01_M-4500_TuneCUETP8M1_13TeV-pythia8/MINIAODSIM/Asympt25ns_MCRUN2_74_V9-v1/50000/0E6BC100-2608-E511-81FE-B083FED7685B.root', '/store/mc/RunIISpring15DR74/RSGravToZZToLLQQ_kMpl01_M-4500_TuneCUETP8M1_13TeV-pythia8/MINIAODSIM/Asympt25ns_MCRUN2_74_V9-v1/50000/2C69D809-2608-E511-9F6F-AC853DA06A1A.root', '/store/mc/RunIISpring15DR74/RSGravToZZToLLQQ_kMpl01_M-4500_TuneCUETP8M1_13TeV-pythia8/MINIAODSIM/Asympt25ns_MCRUN2_74_V9-v1/50000/96B4A5FF-2508-E511-8C7A-AC853D9DACD7.root' ] ); secFiles.extend( [ ] )
6bddda677ffc28c03d53706a15295b771ca75757
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02594/s262687394.py
fe06f875311bd6773825bd1fa129ec75658d119b
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
x = int(input().rstrip()) if x >= 30: print("Yes") else: print("No")
7f755f14fed2076d30afd43d52d84419ec2c5011
5af5fa981a0a8598b2b031aaf10c6ba6d2f5c28c
/manage.py
b9a5ea2ec851beef60a088a13b233c88c2ace45c
[]
no_license
FMularski/image-house
d15b2fe7d0379cd237c5aef3336a0ad2ee5a136c
968e7c6a566090d0cf25246e506820dd955b34c0
refs/heads/main
2023-07-31T18:49:25.705577
2021-09-13T18:56:10
2021-09-13T18:56:10
404,382,258
0
1
null
null
null
null
UTF-8
Python
false
false
667
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'image_house.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
a9fc27c1b63235d582097a3ea144208589f0880d
b3b066a566618f49ae83c81e963543a9b956a00a
/Supervised Learning with scikit-learn/01_Classification/05_k-Nearest Neighbors Predict.py
96614384e3f708dc1e9787ed95b2a117a9ba84a8
[]
no_license
ahmed-gharib89/DataCamp_Data_Scientist_with_Python_2020
666c4129c3f0b5d759b511529a365dfd36c12f1a
f3d20b788c8ef766e7c86c817e6c2ef7b69520b8
refs/heads/master
2022-12-22T21:09:13.955273
2020-09-30T01:16:05
2020-09-30T01:16:05
289,991,534
2
0
null
2020-08-24T17:15:43
2020-08-24T17:15:42
null
UTF-8
Python
false
false
2,183
py
''' k-Nearest Neighbors: Predict Having fit a k-NN classifier, you can now use it to predict the label of a new data point. However, there is no unlabeled data available since all of it was used to fit the model! You can still use the .predict() method on the X that was used to fit the model, but it is not a good indicator of the model's ability to generalize to new, unseen data. In the next video, Hugo will discuss a solution to this problem. For now, a random unlabeled data point has been generated and is available to you as X_new. You will use your classifier to predict the label for this new data point, as well as on the training data X that the model has already seen. Using .predict() on X_new will generate 1 prediction, while using it on X will generate 435 predictions: 1 for each sample. The DataFrame has been pre-loaded as df. This time, you will create the feature array X and target variable array y yourself. INSTRUCTIONS 100XP Create arrays for the features and the target variable from df. As a reminder, the target variable is 'party'. Instantiate a KNeighborsClassifier with 6 neighbors. Fit the classifier to the data. Predict the labels of the training data, X. Predict the label of the new data point X_new. ''' # Import KNeighborsClassifier from sklearn.neighbors from sklearn.neighbors import KNeighborsClassifier # Create arrays for the features and the response variable y = df['party'].values X = df.drop('party', axis=1).values # Create a k-NN classifier with 6 neighbors: knn knn = knn = KNeighborsClassifier(n_neighbors=6) # Fit the classifier to the data knn.fit(X,y) # Predict the labels for the training data X y_pred = knn.predict(X) # Predict and print the label for the new data point X_new new_prediction = knn.predict(X_new) print("Prediction: {}".format(new_prediction)) #========================================================# # DEVELOPER # # BasitAminBhatti # # Github # # https://github.com/basitaminbhatti # #========================================================#
[ "Your-Email" ]
Your-Email
2ff172e2e6211730ddf823e829aa16698fff35b2
2f2667682bb78578445b9e3aac7cc62cfba83d5a
/googlenet/nets/cnn_model/CNN_MODEL.py
cb42ca784f10d89d88a49599ffdab9680d78e45d
[]
no_license
Yorwxue/trt_experence
9c770c2a1cb7c48c9d7f21c46be0107de91f1c41
778a6cef019dd8afdae6b608b3cbacb56480c7b1
refs/heads/master
2022-12-21T12:38:13.108402
2019-08-01T08:11:10
2019-08-01T08:11:10
195,760,238
0
0
null
2022-12-08T05:57:26
2019-07-08T07:36:12
Python
UTF-8
Python
false
false
4,407
py
import tensorflow as tf class cnn_model(object): def __init__(self, input_placeholder, num_classes): self.inputs = input_placeholder self.num_classes = num_classes self._build_model() self.labels = None def build_graph(self, label_place_holder): self.labels = label_place_holder self._build_train_op() return def _build_model(self): with tf.variable_scope('cnn'): with tf.variable_scope('unit-1'): x = self._conv2d(self.inputs, name='cnn-1', filter_size=3, in_channels=3, out_channels=64, strides=1) # x = self._leaky_relu(x, 0.01) x = self._max_pool(x, 2, strides=2) with tf.variable_scope('unit-2'): x = self._conv2d(x, name='cnn-2', filter_size=3, in_channels=64, out_channels=128, strides=1) # x = self._leaky_relu(x, 0.01) x = self._max_pool(x, 2, strides=2) with tf.variable_scope('unit-3'): x = self._conv2d(x, name='cnn-3', filter_size=3, in_channels=128, out_channels=128, strides=1) # x = self._leaky_relu(x, 0.01) x = self._max_pool(x, 2, strides=2) with tf.variable_scope('unit-4'): x = self._conv2d(x, name='cnn-4', filter_size=3, in_channels=128, out_channels=256, strides=1) # x = self._leaky_relu(x, 0.01) x = self._max_pool(x, 2, strides=2) with tf.variable_scope('fc'): # [batch_size, max_stepsize, num_features] batch_size, height, width, channels = x.get_shape().as_list() x = tf.reshape(x, [-1, height * width *channels]) outputs = self._fc(x, input_shape=height * width *channels, output_shape=64, name="fc-1") outputs = self._fc(outputs, input_shape=64, output_shape=self.num_classes, name="fc-2") self.logits = tf.identity(outputs, name="logits") def _build_train_op(self): self.global_step = tf.Variable(0, trainable=False) self.loss = tf.nn.softmax_cross_entropy_with_logits( labels=self.labels, logits=self.logits, ) self.optimizer = tf.train.AdamOptimizer().minimize( self.loss, global_step=self.global_step ) train_ops = [self.optimizer] self.train_op = tf.group(*train_ops) self.cost = tf.reduce_mean(self.loss) self.acc, self.acc_op = tf.metrics.accuracy( tf.argmax(self.labels, 1), tf.argmax(self.logits, 1), name="metrics" ) def _conv2d(self, x, name, filter_size, in_channels, out_channels, strides): with tf.variable_scope(name): kernel = tf.get_variable(name='conv', shape=[filter_size, filter_size, in_channels, out_channels], dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable(name='bais', shape=[out_channels], dtype=tf.float32, initializer=tf.constant_initializer()) con2d_op = tf.nn.conv2d(x, kernel, [1, strides, strides, 1], padding='SAME') return tf.nn.bias_add(con2d_op, b) def _leaky_relu(self, x, leakiness=0.0): return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu') def _max_pool(self, x, ksize, strides): return tf.nn.max_pool(x, ksize=[1, ksize, ksize, 1], strides=[1, strides, strides, 1], padding='SAME', name='max_pool') def _fc(self, x, input_shape, output_shape, name): with tf.variable_scope(name): W = tf.get_variable(name='w', shape=[input_shape, output_shape], dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable(name='b', shape=[output_shape], dtype=tf.float32, initializer=tf.constant_initializer()) return tf.matmul(x, W) + b
2a129138b050a28bf745e50795dcbd843554f7d3
d7f45fac46598da9825a404d7511df7474237e4a
/ex.071.py
ae90bc20c6a1a345fd4295374d5d35af552c7539
[]
no_license
MarceloBCS/Exercicios_Curso_em_video
b4a8cbc8573e1303065c0cf1baad25c47d5a2fd8
a90fd67d83cf154f3554f962815fb791d3508d0c
refs/heads/master
2022-12-29T19:15:50.007022
2020-10-13T05:09:28
2020-10-13T05:09:28
303,592,782
0
0
null
null
null
null
UTF-8
Python
false
false
728
py
cor = {'amarelo':'\033[1;33m', 'red':'\033[1;31m', 'limp':'\033[m'} print(cor['red'], '='*22) print(f' Bhering Bank') print('='*24, cor['limp']) n = int(input('Valor do Saque: R$ ')) nota50 = n // 50 resto50 = n % 50 nota20 = (resto50) // 20 resto20 = resto50 % 20 nota10 = (resto20) // 10 resto10 = resto20 % 10 nota1 = resto10 print('{1}{0:>3} nota(s){2} R$50'.format(nota50, cor['amarelo'], cor['limp'])) print('{1}{0:>3} nota(s){2} R$20'.format(nota20, cor['amarelo'], cor['limp'])) print('{1}{0:>3} nota(s){2} R$10'.format(nota10, cor['amarelo'], cor['limp'])) print('{1}{0:>3} nota(s){2} R$ 1'.format(nota1, cor['amarelo'], cor['limp'])) from datetime import date print(f'\nProcessado em {date.today()}')
1517091c99791653d0cab3474d9bab53eab31f3b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_neglect.py
a50f6e279fa4b54dc4dbd0054f3c11b55146c2f7
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
#calss header class _NEGLECT(): def __init__(self,): self.name = "NEGLECT" self.definitions = [u'to not give enough care or attention to people or things that are your responsibility: ', u'to not do something, often because you forget: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'verbs' def run(self, obj1 = [], obj2 = []): return self.jsondata
73139227eba251932205e3dbb90771cec1951790
92993cff825da80a8ff601572a0c52b0b7d3cbde
/algorithms/Svm/APG/L2/APG_L2_m22.py
a2277a8abdf5a9f18704027fccf9cf7bcdc2e1f7
[]
no_license
yingzhuoy/MRs-of-linear-models
06e8b1f84b08c6aa77553813824cf35c1806c5a7
c3df8299e039a12613f2022b370b8c3e9c2dd822
refs/heads/master
2023-04-07T23:09:37.736952
2021-04-04T05:33:37
2021-04-04T05:33:37
265,124,549
0
0
null
null
null
null
UTF-8
Python
false
false
2,845
py
import numpy as np from numpy import linalg import cvxopt from cvxopt import matrix,solvers from algorithms.clf import Clf def backtracking(l0, x0, p, q, low, up): # update x beta = 0.5 l = l0 L0 = 0.5*x0.T*(p*x0) + q.T*x0 g0 = p*x0 + q for k in range(128): #xp = x0 - l * g0 #----bug---- xp = x0 - l *g0+2.4710787568352073 xp[xp < low] = low xp[xp > up] = up Lx = 0.5*xp.T*(p*xp) + q.T*xp gt = (x0-xp) / l if Lx > L0 - l *(g0.T*gt) + 0.5*l*gt.T*(gt): l = beta * l else: break return xp, l def projected_apg(p, q, bounds, step_size=0.1, max_iter=1000): m = p.shape[0] low, up = bounds x = np.ones((m, 1), np.float64) y = x v, w = np.linalg.eigh(p) # v[v<=0] = 1e-10 # p = w*np.diag(v)*w.T l = 1/v[-1] - 1e-10 for k in range(max_iter): # heavy on matrix operations # saving previous x y = x # compute loss and its gradient # gradient = p*x + q # proximal mapping # x = x - l * gradient # x[x < low] = low # x[x > up] = up x, l = backtracking(l, y, p, q, low, up) # if(np.linalg.norm(x1-x)): # print('error', np.linalg.norm(x1-x)) # t1 = (1+np.sqrt(1+4*np.square(t0)))/2 # y = x + (t0-1)/t1* (x - y) # t0 = t1 # stop criteria rnormw = np.linalg.norm(y-x) if k > 1 and rnormw < 1e-6: #print('convergence!') break #print(rnormw) return y #L2-svm class APG_L2_m22(): def fit(self, X, y): m, n = X.shape X = np.column_stack((X, np.ones((m, 1)))) y = y.astype(np.float64) data_num = len(y) C = 1.0 kernel = np.dot(X, np.transpose(X)) p = np.matrix(np.multiply(kernel,np.outer(y, y))) + np.diag(np.ones(data_num, np.float64)) * .5/C q = np.matrix(-np.ones([data_num, 1], np.float64)) bounds = (0, np.inf) alpha_svs = projected_apg(p, q, bounds) # p = matrix(p) # q = matrix(q) # g = matrix(-np.eye(data_num)) # h = matrix(np.zeros([data_num, 1], np.float64)) # solvers.options['show_progress'] = False # sol = solvers.qp(p, q, g, h) # alpha_svs1 = np.array(sol['x']) # print(np.linalg.norm(alpha_svs1 - alpha_svs)) # # alpha_svs = alpha_svs1 y1 = np.reshape(y, (-1, 1)) alpha1 = alpha_svs lambda1 = np.multiply(y1,alpha1) w = np.dot(X.T, lambda1) w = np.array(w).reshape(-1) # b = np.mean(y1-np.reshape(np.dot(w, np.transpose(X)), [-1, 1])) b = w[n] w = w[0:n] clf = Clf(w, b) return clf
2bd4c287bd784c2d446c13521de35f4dc46bdb33
e6c65e2e354336a4bea5b6a4ccbccd3682915fe2
/out-bin/py/google/fhir/models/model_test.runfiles/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/python/ops/embedding_ops.py
e640b65c6359932536475c67f0a4333dc2a73b54
[ "Apache-2.0" ]
permissive
rasalt/fhir-datalab
c30ab773d84983dd04a37e9d0ddec8bf2824b8a4
3e329fc8b4226d3e3a4a7c23c306a86e7a9ea0de
refs/heads/master
2021-10-09T05:51:04.593416
2018-12-21T18:11:03
2018-12-22T05:38:32
162,744,237
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
/home/rkharwar/.cache/bazel/_bazel_rkharwar/0ddaa3627472ad9d1367a008236ce2f5/external/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/python/ops/embedding_ops.py
1b4e72269db5cacbd411ce69d585d1981dee4c84
3449140c29d292c910527cc7163689d215d2f22d
/delivery/urls.py
edddc5b0d4461c75abdbf2a5259fa5461fd3ed6c
[]
no_license
gayatrishivani/ichoose-ead-project-sem6
89afeda33261bb18b3848e9171865409d0cf6b44
ae0f59769950656683bc72d1e76cec2bcfa7fd07
refs/heads/master
2023-03-08T18:43:02.970287
2021-02-25T19:06:25
2021-02-25T19:06:25
342,350,918
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
from django.contrib.auth import views from django.urls import path from .views import * urlpatterns = [ path('order/', OrderAPIView.as_view(), name="order"), path('deliver/', deliver_verify,name ="deliver"), ]
971536fe0a24d6e56e72428cf6577eb03a601f75
76133934b1dd287273a9bfa0c801d10d08a21b21
/test/functional/walletbackup.py
3734f2cfc1a6af61d4e6020705c5022fe3698f71
[ "MIT" ]
permissive
kenfmcoin/kenfmcoin
d8783b34fcb3ae01067e8d1b33e3a73e3b82b1f9
1fa48487593233f2066757dc54f48b2349e2d9db
refs/heads/master
2020-03-10T17:53:31.569229
2018-04-14T12:28:55
2018-04-14T12:28:55
129,511,375
0
0
null
null
null
null
UTF-8
Python
false
false
7,275
py
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The KenFMcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet backup features. Test case is: 4 nodes. 1 2 and 3 send transactions between each other, fourth node is a miner. 1 2 3 each mine a block to start, then Miner creates 100 blocks so 1 2 3 each have 50 mature coins to spend. Then 5 iterations of 1/2/3 sending coins amongst themselves to get transactions in the wallets, and the miner mining one block. Wallets are backed up using dumpwallet/backupwallet. Then 5 more iterations of transactions and mining a block. Miner then generates 101 more blocks, so any transaction fees paid mature. Sanity check: Sum(1,2,3,4 balances) == 114*50 1/2/3 are shutdown, and their wallets erased. Then restore using wallet.dat backup. And confirm 1/2/3/4 balances are same as before. Shutdown again, restore using importwallet, and confirm again balances are correct. """ from random import randint import shutil from test_framework.test_framework import KenFMcoinTestFramework from test_framework.util import * class WalletBackupTest(KenFMcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True # nodes 1, 2,3 are spenders, let's give them a keypool=100 self.extra_args = [["-keypool=100"], ["-keypool=100"], ["-keypool=100"], []] def setup_network(self, split=False): self.setup_nodes() connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) self.sync_all() def one_send(self, from_node, to_address): if (randint(1,2) == 1): amount = Decimal(randint(1,10)) / Decimal(10) self.nodes[from_node].sendtoaddress(to_address, amount) def do_one_round(self): a0 = self.nodes[0].getnewaddress() a1 = self.nodes[1].getnewaddress() a2 = self.nodes[2].getnewaddress() self.one_send(0, a1) self.one_send(0, a2) self.one_send(1, a0) self.one_send(1, a2) self.one_send(2, a0) self.one_send(2, a1) # Have the miner (node3) mine a block. # Must sync mempools before mining. sync_mempools(self.nodes) self.nodes[3].generate(1) sync_blocks(self.nodes) # As above, this mirrors the original bash test. def start_three(self): self.start_node(0) self.start_node(1) self.start_node(2) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) def stop_three(self): self.stop_node(0) self.stop_node(1) self.stop_node(2) def erase_three(self): os.remove(self.options.tmpdir + "/node0/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node1/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node2/regtest/wallet.dat") def run_test(self): self.log.info("Generating initial blockchain") self.nodes[0].generate(1) sync_blocks(self.nodes) self.nodes[1].generate(1) sync_blocks(self.nodes) self.nodes[2].generate(1) sync_blocks(self.nodes) self.nodes[3].generate(100) sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 50) assert_equal(self.nodes[3].getbalance(), 0) self.log.info("Creating transactions") # Five rounds of sending each other transactions. for i in range(5): self.do_one_round() self.log.info("Backing up") tmpdir = self.options.tmpdir self.nodes[0].backupwallet(tmpdir + "/node0/wallet.bak") self.nodes[0].dumpwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].backupwallet(tmpdir + "/node1/wallet.bak") self.nodes[1].dumpwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].backupwallet(tmpdir + "/node2/wallet.bak") self.nodes[2].dumpwallet(tmpdir + "/node2/wallet.dump") self.log.info("More transactions") for i in range(5): self.do_one_round() # Generate 101 more blocks, so any fees paid mature self.nodes[3].generate(101) self.sync_all() balance0 = self.nodes[0].getbalance() balance1 = self.nodes[1].getbalance() balance2 = self.nodes[2].getbalance() balance3 = self.nodes[3].getbalance() total = balance0 + balance1 + balance2 + balance3 # At this point, there are 214 blocks (103 for setup, then 10 rounds, then 101.) # 114 are mature, so the sum of all wallets should be 114 * 50 = 5700. assert_equal(total, 5700) ## # Test restoring spender wallets from backups ## self.log.info("Restoring using wallet.dat") self.stop_three() self.erase_three() # Start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") # Restore wallets from backup shutil.copyfile(tmpdir + "/node0/wallet.bak", tmpdir + "/node0/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node1/wallet.bak", tmpdir + "/node1/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node2/wallet.bak", tmpdir + "/node2/regtest/wallet.dat") self.log.info("Re-starting nodes") self.start_three() sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) self.log.info("Restoring using dumped wallet") self.stop_three() self.erase_three() #start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") self.start_three() assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[1].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 0) self.nodes[0].importwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].importwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].importwallet(tmpdir + "/node2/wallet.dump") sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) # Backup to source wallet file must fail sourcePaths = [ tmpdir + "/node0/regtest/wallet.dat", tmpdir + "/node0/./regtest/wallet.dat", tmpdir + "/node0/regtest/", tmpdir + "/node0/regtest"] for sourcePath in sourcePaths: assert_raises_rpc_error(-4, "backup failed", self.nodes[0].backupwallet, sourcePath) if __name__ == '__main__': WalletBackupTest().main()
48ca686bf130382adbb3b325a6410896e709b516
b68aa1559ffc1228ef11b9dfe49434d618bb6d90
/src/config.py
e06f9131ea1fcb5f4e1e3749378ea0b5a5df3dc2
[]
no_license
rady1337/TelegramStatisticBot
c72c67c88aa98ce03d1f6402b5f13bc8a3a34cab
b62c042498185cb2ef5e6f40e13bbb9d4545446d
refs/heads/master
2022-11-21T06:27:36.421048
2020-07-18T11:05:27
2020-07-18T11:05:27
269,916,495
1
0
null
null
null
null
UTF-8
Python
false
false
55
py
# -*- coding: utf-8 -*- BOT_TOKEN = '' ADMIN_ID = ''
6c41e3ac04ff6a47be5e08a8078f8d709e321df1
c8b39acfd4a857dc15ed3375e0d93e75fa3f1f64
/Engine/Extras/Maya_AnimationRiggingTools/ArtToolsOSX/MayaTools/General/Scripts/Modules/ART_Core.py
876e0d7da21db78bba104005d49ddef2a26a3200
[ "MIT", "LicenseRef-scancode-proprietary-license" ]
permissive
windystrife/UnrealEngine_NVIDIAGameWorks
c3c7863083653caf1bc67d3ef104fb4b9f302e2a
b50e6338a7c5b26374d66306ebc7807541ff815e
refs/heads/4.18-GameWorks
2023-03-11T02:50:08.471040
2022-01-13T20:50:29
2022-01-13T20:50:29
124,100,479
262
179
MIT
2022-12-16T05:36:38
2018-03-06T15:44:09
C++
UTF-8
Python
false
false
6,469
py
import maya.cmds as cmds import maya.mel as mel import os import ART_rigUtils as utils reload(utils) class RigCore(): #RigCore builds up our core components needed to start the rig build. This includes setting up the driver skeleton and building things like the rig settings, and master rig grps #These are components that will be needed for every rig def __init__(self): #create the rig settings node self.rigSettings = cmds.group(empty = True, name = "Rig_Settings") cmds.setAttr(self.rigSettings + ".tx", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".ty", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".tz", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".rx", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".ry", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".rz", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".sx", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".sy", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".sz", lock = True, keyable = False) cmds.setAttr(self.rigSettings + ".v", lock = True, keyable = False) #Setup the driver skeleton self.createDriverSkeleton() #build the core rig components self.buildCoreComponents() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def createDriverSkeleton(self): #there will always be a root bone, so let's duplicate that dupe = cmds.duplicate("root", rc = True)[0] cmds.select("root", hi = True) joints = cmds.ls(sl = True) cmds.select(dupe, hi = True) dupeJoints = cmds.ls(sl = True) driverJoints = [] for i in range(int(len(dupeJoints))): if cmds.objExists(dupeJoints[i]): driverJoint = cmds.rename(dupeJoints[i], "driver_" + joints[i]) driverJoints.append(driverJoint) #create a direct connection between the driver and the export joints for joint in driverJoints: exportJoint = joint.partition("_")[2] cmds.connectAttr(joint + ".translate", exportJoint + ".translate") cmds.orientConstraint(joint, exportJoint) cmds.connectAttr(joint + ".scale", exportJoint + ".scale") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def buildCoreComponents(self): #builds the master, the root, and the core rig groups #MASTER CONTROL masterControl = utils.createControl("circle", 150, "master_anim") constraint = cmds.pointConstraint("root", masterControl)[0] cmds.delete(constraint) cmds.makeIdentity(masterControl, apply = True) cmds.setAttr(masterControl + ".overrideEnabled", 1) cmds.setAttr(masterControl + ".overrideColor", 18) spaceSwitchFollow = cmds.group(empty = True, name = masterControl + "_space_switcher_follow") constraint = cmds.parentConstraint("root", spaceSwitchFollow)[0] cmds.delete(constraint) spaceSwitcher = cmds.group(empty = True, name = masterControl + "_space_switcher") constraint = cmds.parentConstraint("root", spaceSwitcher)[0] cmds.delete(constraint) cmds.parent(spaceSwitcher, spaceSwitchFollow) cmds.parent(masterControl, spaceSwitcher) cmds.makeIdentity(masterControl, apply = True) #OFFSET CONTROL offsetControl = utils.createControl("square", 140, "offset_anim") constraint = cmds.pointConstraint("root", offsetControl)[0] cmds.delete(constraint) cmds.parent(offsetControl, masterControl) cmds.makeIdentity(offsetControl, apply = True) cmds.setAttr(offsetControl + ".overrideEnabled", 1) cmds.setAttr(offsetControl + ".overrideColor", 17) #ROOT ANIM rootControl = utils.createControl("sphere", 10, "root_anim") constraint = cmds.parentConstraint("driver_root", rootControl)[0] cmds.delete(constraint) cmds.parent(rootControl, masterControl) cmds.makeIdentity(rootControl, apply = True) cmds.parentConstraint(rootControl, "driver_root") cmds.setAttr(rootControl + ".overrideEnabled", 1) cmds.setAttr(rootControl + ".overrideColor", 30) for attr in [".sx", ".sy", ".sz", ".v"]: cmds.setAttr(masterControl + attr, lock = True, keyable = False) cmds.setAttr(offsetControl + attr, lock = True, keyable = False) cmds.setAttr(rootControl + attr, lock = True, keyable = False) #Create the group that will hold all of the control rig components rigGrp = cmds.group(empty = True, name = "ctrl_rig") cmds.parent(rigGrp, "offset_anim") #finish grouping everything under 1 character grp controlRigGrp = cmds.group(empty = True, name = "rig_grp") cmds.parent(["driver_root", "master_anim_space_switcher_follow"], controlRigGrp) cmds.parent("Rig_Settings", controlRigGrp) if cmds.objExists("Proxy_Geo_Skin_Grp"): cmds.parent("Proxy_Geo_Skin_Grp", controlRigGrp) returnNodes = [rigGrp, offsetControl] return returnNodes
eb307b0b3d4c0305cf1ec3ffde93f182d60448a4
66b1f3c3e57f53e1404d6e17c4acc850173a531d
/Python/Fundamentals/Objects and Classes/04. Exercises.py
c63352f1eab3c72ca9d0b9b6bde644bfae6dd9ba
[]
no_license
bMedarski/SoftUni
ca4d6891b3bbe7b03aad5960d2f4af5479fd8bbd
62cd9cb84b0826e3381c991882a4cdc27d94f8ab
refs/heads/master
2021-06-08T17:32:39.282975
2020-02-04T11:57:08
2020-02-04T11:57:08
67,947,148
6
3
null
2021-05-06T20:35:42
2016-09-11T18:31:02
Python
UTF-8
Python
false
false
1,149
py
class Exercise: def __init__(self,topic,course_name,judge_contest_link,): self.topic = topic self.course_name = course_name self.judge_contest_link = judge_contest_link self.problems = [] def add_problems(self,list_of_problems): for problem in list_of_problems: self.problems.append(problem) def print_problem(self): print(f"Exercises: {self.topic}") print(f"Problems for exercises and homework for the \"{self.course_name}\" course @ SoftUni.") print(f"Check your solutions here: {self.judge_contest_link}") problem_count = len(self.problems) for i in range(0,problem_count): print(f"{i+1}. {self.problems[i]}") list_of_exercises = [] while True: user_input = input() if user_input == "go go go": break exercise_args = user_input.split(" -> ") problems = exercise_args[3].split(", ") exercise = Exercise(exercise_args[0],exercise_args[1],exercise_args[2]) exercise.add_problems(problems) list_of_exercises.append(exercise) for exercise in list_of_exercises: exercise.print_problem()
77d363126291b572790991bb8207eda8fe0559c8
a149044762566830b4356343c062ee84c8056471
/healthid/apps/orders/migrations/0019_auto_20191118_1908.py
cb35272d4db1312cee84af4026cfee38c1046a7f
[]
no_license
malep2007/healtid-web-api
23fbe8b34a3c5256cbb60cf15205f65cc035df13
d9e88b4d8fe1dbc297b61bb007d4182928e515d4
refs/heads/dev
2022-12-12T03:24:37.537569
2019-12-17T16:26:59
2019-12-17T16:26:59
228,655,076
0
1
null
2022-12-08T05:25:00
2019-12-17T16:17:27
Python
UTF-8
Python
false
false
521
py
# Generated by Django 2.2 on 2019-11-18 18:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0018_supplierrating'), ] operations = [ migrations.AlterField( model_name='supplierorderdetails', name='status', field=models.CharField(choices=[('pending', 'Pending Approval'), ('open', 'Open'), ('closed', 'Closed'), ('approved', 'Approved')], default='pending', max_length=10), ), ]
6e1c053097e229c6fd3c3bb3d6e367ae5d464e29
c231bdc8d01465c9dda429be2d6535f8e8ea5ece
/Complete Python Masterclass/Source_Codes/lesson_192_pigen.py
7cd19f181a3a2e3f01176230fb3bdbda2765cf2a
[ "MIT" ]
permissive
jessequinn/Udemy
1634049711eb888f59b697d883555767e38598a3
e3d652c8144660ae155149d897b6364416106c7c
refs/heads/master
2021-08-18T09:58:57.274897
2018-10-26T22:50:26
2018-10-26T22:50:26
142,214,616
0
1
null
null
null
null
UTF-8
Python
false
false
374
py
def oddnumbers(): n = 1 while True: yield n n += 2 def pi_series(): odds = oddnumbers() approximation = 0 while True: approximation += (4 / next(odds)) yield approximation approximation -= (4 / next(odds)) yield approximation approx_pi = pi_series() for x in range(10000): print(next(approx_pi))
4a8fa681a8b0aae3c3b191b3e2b4ec7019a401fc
f40e5c91a18fc5c7e0b4d96fe964a493f924e958
/supervised_learning/0x0F-word_embeddings/4-fasttext.py
949c893776a76d2dde5174ec730529b71a0fd9e2
[]
no_license
jgadelugo/holbertonschool-machine_learning
ab46f71477998371ca5e3623455d61fe334ab221
e20b284d5f1841952104d7d9a0274cff80eb304d
refs/heads/master
2023-02-01T03:52:43.723569
2020-12-10T19:28:57
2020-12-10T19:28:57
256,043,170
1
0
null
null
null
null
UTF-8
Python
false
false
1,216
py
#!/usr/bin/env python3 """creates and trains a genism fastText model""" from gensim.models import FastText def fasttext_model(sentences, size=100, min_count=5, negative=5, window=5, cbow=True, iterations=5, seed=0, workers=1): """creates and trains a genism fastText model @sentences: list of sentences to be trained on @size: dimensionality of the embedding layer @min_count: minimum number of occurrences of a word for use in training @window: maximum distance between the current and predicted word within a sentence @negative: size of negative sampling @cbow: boolean to determine the training type True is for CBOW False is for Skip-gram @iterations: number of iterations to train over @seed: seed for the random number generator @workers: number of worker threads to train the model Return: trained model """ model = FastText(sentences=sentences, size=size, window=window, min_count=min_count, workers=workers, sg=cbow, negative=negative, seed=seed) model.train(sentences=sentences, total_examples=model.corpus_count, epochs=iterations) return model
a7041cf991e52b763f3cd3bc1245544d989aa779
33836016ea99776d31f7ad8f2140c39f7b43b5fe
/fip_collab/2014_11_06_composite_test/microstructure_function.py
40648669fbe68bcc57b24375b06e393199591580
[]
no_license
earthexploration/MKS-Experimentation
92a2aea83e041bfe741048d662d28ff593077551
9b9ff3b468767b235e7c4884b0ed56c127328a5f
refs/heads/master
2023-03-17T23:11:11.313693
2017-04-24T19:24:35
2017-04-24T19:24:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,441
py
# -*- coding: utf-8 -*- """ Created on Fri May 23 14:25:50 2014 This script reads a set of microstructures designated by the set-ID and saves the microstructure function in real and frequency space. @author: nhpnp3 """ import time import numpy as np import functions_composite as rr import scipy.io as sio def msf(el,ns,H,set_id,wrt_file): start = time.time() ## import microstructures tmp = np.zeros([H,ns,el**3]) microstructure = sio.loadmat('M_%s%s.mat' %(ns,set_id))['M'] microstructure = microstructure.swapaxes(0,1) for h in xrange(H): tmp[h,...] = (microstructure == h).astype(int) del microstructure tmp = tmp.swapaxes(0,1) micr = tmp.reshape([ns,H,el,el,el]) del tmp np.save('msf_%s%s' %(ns,set_id),micr) end = time.time() timeE = np.round((end - start),3) msg = "generate real-space microstructure function from GSH-coefficients: %s seconds" %timeE rr.WP(msg,wrt_file) ## Microstructure functions in frequency space start = time.time() M = np.fft.fftn(micr, axes = [2,3,4]) del micr size = M.nbytes np.save('M_%s%s' %(ns,set_id),M) end = time.time() timeE = np.round((end - start),3) msg = "FFT3 conversion of micr to M_%s%s: %s seconds" %(ns,set_id,timeE) rr.WP(msg,wrt_file) msg = 'Size of M_%s%s: %s bytes' %(ns,set_id,size) rr.WP(msg,wrt_file)
3c15ad74bdae4f5394409a54f52da75f6dfa9934
6fff0893ef43f1018d65f2e8e1bf27d9f8accf5b
/pw_stm32cube_build/py/setup.py
4a4f3b3318d0244b9e89d087778c77c813a96b56
[ "Apache-2.0" ]
permissive
isabella232/pigweed
eeb68a4eda6f0a9b5ef0b8145d0204bc9f85bfdc
53c2f3e2569d7e582d3dd3056ceb9b2c3b8197b2
refs/heads/main
2023-06-03T10:32:29.498066
2021-06-17T06:38:15
2021-06-17T20:44:55
378,165,913
0
0
Apache-2.0
2021-06-18T13:54:37
2021-06-18T13:53:40
null
UTF-8
Python
false
false
1,131
py
# Copyright 2021 The Pigweed Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """pw_stm32cube_build""" import setuptools # type: ignore setuptools.setup( name='pw_stm32cube_build', version='0.0.1', author='Pigweed Authors', author_email='[email protected]', description='Python scripts for stm32cube targets', packages=setuptools.find_packages(), package_data={'pw_stm32cube_build': ['py.typed']}, zip_safe=False, entry_points={ 'console_scripts': [ 'stm32cube_builder = pw_stm32cube_build.__main__:main', ] }, install_requires=[])
c2eea179b5c79d97d0acbbad1ce516c307302d5c
1819b161df921a0a7c4da89244e1cd4f4da18be4
/WhatsApp_FarmEasy/env/lib/python3.6/site-packages/cytoolz/_version.py
700c05c3519cb3546209ef31207f8d98793ce9e5
[ "MIT" ]
permissive
sanchaymittal/FarmEasy
889b290d376d940d9b3ae2fa0620a573b0fd62a0
5b931a4287d56d8ac73c170a6349bdaae71bf439
refs/heads/master
2023-01-07T21:45:15.532142
2020-07-18T14:15:08
2020-07-18T14:15:08
216,203,351
3
2
MIT
2023-01-04T12:35:40
2019-10-19T12:32:15
JavaScript
UTF-8
Python
false
false
52
py
__version__ = '0.10.0' __toolz_version__ = '0.10.0'
de18343ee3eb88b08ceb551823642e31ba91135a
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_118/1777.py
0029905c5b8fadd6cd1b84c5cdcbc74c89c48176
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
974
py
# /usr/bin/python import sys import math def dbg(s): sys.stderr.write(str(s) +"\n") def reads(t): return map(t, input().split(" ")) def read(t) : return t(input()) palss = { 0: [], 1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 2: [11, 22, 33, 44, 55, 66, 77, 88, 99], } pals = palss[1] + palss[2] fsq = [] def gen_pals(n): ps = palss.get(n) if ps != None: return ps p_list = gen_pals(n-2) ps = [] for i in range(1, 10): for p in p_list: np = int(str(i) + str(p) + str(i)) ps.append(np) pals.append(np) palss[n] = ps return ps def gen_fsq(max_fsq): for p in pals: maybe_fsq = p**2 if maybe_fsq > max_fsq: return if maybe_fsq in pals_set: fsq.append(maybe_fsq) G = 3 for i in range(1, G+1): gen_pals(i) pals.remove(0) max_pal = pals[-1] pals_set = set(pals) gen_fsq(max_pal) T = read(int) for t in range(1, T+1): [A, B] = reads(int) cnt = 0 for f in fsq: if f >= A and f <= B: cnt += 1 print("Case #%d: %d" % (t, cnt))
39c0ddf7ea3e1e79086c341e5bb886df70d3c00f
990f6df58da264e8c35d5889a63c16ed9a9ba4c2
/kvirt/common/__init__.py
32510dae8b407d6f00883c04ce0d3b404622abad
[ "Apache-2.0" ]
permissive
aelejota/kcli
0079662591e781345aed2096f9cedc896bb5462f
0c1e1756b4af6b7dccd2f759382adf79f4a7050f
refs/heads/master
2021-01-20T09:16:03.835141
2017-05-03T15:28:58
2017-05-03T15:28:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,355
py
#!/usr/bin/env python from distutils.spawn import find_executable import socket import urllib2 import json import os def symlinks(user, repo): mappings = [] url1 = 'https://api.github.com/repos/%s/%s/git/refs/heads/master' % (user, repo) r = urllib2.urlopen(url1) base = json.load(r) sha = base['object']['sha'] url2 = 'https://api.github.com/repos/%s/%s/git/trees/%s?recursive=1' % (user, repo, sha) r = urllib2.urlopen(url2) try: base = json.load(r) except: return [] for e in base['tree']: if e['mode'] == '120000': mappings.append(e['path']) return mappings def download(url, path): filename = os.path.basename(url) print("Fetching %s" % filename) url = urllib2.urlopen(url) with open("%s/%s" % (path, filename), 'wb') as output: output.write(url.read()) def makelink(url, path): filename = os.path.basename(url) url = urllib2.urlopen(url) target = url.read() print("Creating symlink for %s pointing to %s" % (filename, target)) os.symlink(target, "%s/%s" % (path, filename)) def fetch(url, path, syms=None): if not url.startswith('http'): url = "https://%s" % url if 'github.com' not in url or 'raw.githubusercontent.com' in url: download(url, path) return elif 'api.github.com' not in url: # url = url.replace('github.com/', 'api.github.com/repos/').replace('tree/master', 'contents') url = url.replace('github.com/', 'api.github.com/repos/').replace('tree/master', '') url = url.replace('blob/master', '') if 'contents' not in url: tempurl = url.replace('https://api.github.com/repos/', '') user = tempurl.split('/')[0] repo = tempurl.split('/')[1] syms = symlinks(user, repo) url = url.replace("%s/%s" % (user, repo), "%s/%s/contents" % (user, repo)) if not os.path.exists(path): os.mkdir(path) r = urllib2.urlopen(url) try: base = json.load(r) except: print("Invalid url.Leaving...") os._exit(1) for b in base: if 'name' not in b or 'type' not in b or 'download_url' not in b: print("Invalid url.Leaving...") os._exit(1) filename = b['name'] filetype = b['type'] filepath = b['path'] download_url = b['download_url'] if filepath in syms: makelink(download_url, path) elif filetype == 'file': download(download_url, path) elif filetype == 'dir': fetch("%s/%s" % (url, filename), "%s/%s" % (path, filename), syms=syms) def cloudinit(name, keys=[], cmds=[], nets=[], gateway=None, dns=None, domain=None, reserveip=False, files=[]): default_gateway = gateway with open('/tmp/meta-data', 'w') as metadatafile: if domain is not None: localhostname = "%s.%s" % (name, domain) else: localhostname = name metadatafile.write('instance-id: XXX\nlocal-hostname: %s\n' % localhostname) metadata = '' if nets: for index, net in enumerate(nets): if isinstance(net, str): if index == 0: continue nicname = "eth%d" % index ip = None netmask = None elif isinstance(net, dict): nicname = net.get('nic', "eth%d" % index) ip = net.get('ip') netmask = net.get('mask') metadata += " auto %s\n" % nicname if ip is not None and netmask is not None and not reserveip: metadata += " iface %s inet static\n" % nicname metadata += " address %s\n" % ip metadata += " netmask %s\n" % netmask gateway = net.get('gateway') if index == 0 and default_gateway is not None: metadata += " gateway %s\n" % default_gateway elif gateway is not None: metadata += " gateway %s\n" % gateway dns = net.get('dns') if dns is not None: metadata += " dns-nameservers %s\n" % dns domain = net.get('domain') if domain is not None: metadatafile.write(" dns-search %s\n" % domain) else: metadata += " iface %s inet dhcp\n" % nicname if metadata: metadatafile.write("network-interfaces: |\n") metadatafile.write(metadata) # if dns is not None: # metadatafile.write(" dns-nameservers %s\n" % dns) # if domain is not None: # metadatafile.write(" dns-search %s\n" % domain) with open('/tmp/user-data', 'w') as userdata: userdata.write('#cloud-config\nhostname: %s\n' % name) userdata.write("ssh_pwauth: True\ndisable_root: false\n") if domain is not None: userdata.write("fqdn: %s.%s\n" % (name, domain)) if keys or os.path.exists("%s/.ssh/id_rsa.pub" % os.environ['HOME']) or os.path.exists("%s/.ssh/id_dsa.pub" % os.environ['HOME']): userdata.write("ssh_authorized_keys:\n") else: print("neither id_rsa.pub or id_dsa public keys found in your .ssh directory, you might have trouble accessing the vm") if keys: for key in keys: userdata.write("- %s\n" % key) if os.path.exists("%s/.ssh/id_rsa.pub" % os.environ['HOME']): publickeyfile = "%s/.ssh/id_rsa.pub" % os.environ['HOME'] with open(publickeyfile, 'r') as ssh: key = ssh.read().rstrip() userdata.write("- %s\n" % key) if os.path.exists("%s/.ssh/id_dsa.pub" % os.environ['HOME']): publickeyfile = "%s/.ssh/id_dsa.pub" % os.environ['HOME'] with open(publickeyfile, 'r') as ssh: key = ssh.read().rstrip() userdata.write("- %s\n" % key) if cmds: userdata.write("runcmd:\n") for cmd in cmds: if cmd.startswith('#'): continue else: userdata.write("- %s\n" % cmd) if files: userdata.write('ssh_pwauth: True\n') userdata.write('disable_root: false\n') userdata.write("write_files:\n") for fil in files: if not isinstance(fil, dict): continue origin = fil.get('origin') content = fil.get('content') if origin is not None: origin = os.path.expanduser(origin) if not os.path.exists(origin): print("Skipping file %s as not found" % origin) continue # if origin.endswith('j2'): # origin = open(origin, 'r').read() # content = Environment().from_string(origin).render(name=name, gateway=gateway, dns=dns, domain=domain) # else: # content = open(origin, 'r').readlines() content = open(origin, 'r').readlines() elif content is None: continue path = fil.get('path') owner = fil.get('owner', 'root') permissions = fil.get('permissions', '0600') userdata.write("- owner: %s:%s\n" % (owner, owner)) userdata.write(" path: %s\n" % path) userdata.write(" permissions: '%s'\n" % (permissions)) userdata.write(" content: | \n") if isinstance(content, str): content = content.split('\n') for line in content: userdata.write(" %s\n" % line.strip()) isocmd = 'mkisofs' if find_executable('genisoimage') is not None: isocmd = 'genisoimage' os.system("%s --quiet -o /tmp/%s.iso --volid cidata --joliet --rock /tmp/user-data /tmp/meta-data" % (isocmd, name)) def get_free_port(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('localhost', 0)) addr, port = s.getsockname() s.close() return port def pprint(text, color=None): colors = {'blue': '34', 'red': '31', 'green': '32', 'yellow': '33', 'white': '37'} if color is not None and color in colors: color = colors[color] print('\033[1;%sm%s\033[0;0m' % (color, text)) else: print(text) def handle_response(result, name, quiet=False, element='', action='deployed'): if result['result'] == 'success': if not quiet: pprint("%s%s %s!" % (element, name, action), color='green') return 0 else: if not quiet: reason = result['reason'] pprint("%s%s not %s because %s" % (element, name, action, reason), color='red') return 1 def confirm(message): message = "%s [y/N]: " % message input = raw_input(message) if input.lower() != 'y': pprint("Leaving...", color='red') os._exit(1) return
db41ab0764713f49b58abe113aa3b99dfbace9db
a3139097d228a89255422fbfc5ee9b10992aeca1
/day_02/transcripts/trans_sets.py
2dc2e76eabc38d3dec809e54772d4dd68d597b90
[]
no_license
Code360In/07122020PYLVC
4d8e88163a00c56004d3920d5802a6c945e4af89
a0e4dd708c973ff333930191a77f289091969a3d
refs/heads/main
2023-01-29T09:03:41.375978
2020-12-11T14:00:09
2020-12-11T14:00:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,515
py
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license()" for more information. >>> s1 = {'a', 'a', 'b', 'b', 'c' ,'d', 'e', 'f', 'g' } >>> type(s1) <class 'set'> >>> s1 {'f', 'c', 'a', 'g', 'b', 'd', 'e'} >>> s1[2] Traceback (most recent call last): File "<pyshell#3>", line 1, in <module> s1[2] TypeError: 'set' object is not subscriptable >>> 'a' in s1 True >>> s2 = set("defghijk") >>> s2 {'f', 'g', 'h', 'i', 'j', 'k', 'd', 'e'} >>> # ----------------------------- operators >>> >>> s1 ^ s2 {'c', 'b', 'a', 'h', 'i', 'j', 'k'} >>> s1 & s2 {'e', 'd', 'g', 'f'} >>> s1 | s2 {'i', 'f', 'c', 'g', 'a', 'h', 'b', 'j', 'k', 'd', 'e'} >>> >>> # ---------------------------- adding and removing >>> >>> s1.add("x") >>> s1 {'f', 'c', 'a', 'g', 'x', 'b', 'd', 'e'} >>> s3 = {'y', 'z'} >>> s1.update(s3) >>> s1 {'f', 'c', 'y', 'a', 'g', 'x', 'z', 'b', 'd', 'e'} >>> >>> s1.remove('g') >>> s1 {'f', 'c', 'y', 'a', 'x', 'z', 'b', 'd', 'e'} >>> >>> # ---------------------------- functions >>> >>> s1.union(s2) {'i', 'f', 'y', 'e', 'a', 'x', 'g', 'z', 'b', 'h', 'k', 'j', 'd', 'c'} >>> s1.intersection(s2) {'d', 'e', 'f'} >>> >>> >>> # -------------------------------- interconversion >>> >>> s1 {'f', 'c', 'y', 'a', 'x', 'z', 'b', 'd', 'e'} >>> list(s1) ['f', 'c', 'y', 'a', 'x', 'z', 'b', 'd', 'e'] >>> tuple(s1) ('f', 'c', 'y', 'a', 'x', 'z', 'b', 'd', 'e') >>>
82e64f85567565fee068b5888b54eba2a79ab18e
f569978afb27e72bf6a88438aa622b8c50cbc61b
/douyin_open/EnterpriseGrouponGrouponCodeCodeDeposit/models/inline_response200.py
12e39d0314ab86197d71e68b691b7582b16b95da
[]
no_license
strangebank/swagger-petstore-perl
4834409d6225b8a09b8195128d74a9b10ef1484a
49dfc229e2e897cdb15cbf969121713162154f28
refs/heads/master
2023-01-05T10:21:33.518937
2020-11-05T04:33:16
2020-11-05T04:33:16
310,189,316
1
0
null
null
null
null
UTF-8
Python
false
false
3,756
py
# coding: utf-8 """ 自定义卷码预存 No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class InlineResponse200(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'extra': 'ExtraBody', 'data': 'InlineResponse200Data' } attribute_map = { 'extra': 'extra', 'data': 'data' } def __init__(self, extra=None, data=None): # noqa: E501 """InlineResponse200 - a model defined in Swagger""" # noqa: E501 self._extra = None self._data = None self.discriminator = None if extra is not None: self.extra = extra if data is not None: self.data = data @property def extra(self): """Gets the extra of this InlineResponse200. # noqa: E501 :return: The extra of this InlineResponse200. # noqa: E501 :rtype: ExtraBody """ return self._extra @extra.setter def extra(self, extra): """Sets the extra of this InlineResponse200. :param extra: The extra of this InlineResponse200. # noqa: E501 :type: ExtraBody """ self._extra = extra @property def data(self): """Gets the data of this InlineResponse200. # noqa: E501 :return: The data of this InlineResponse200. # noqa: E501 :rtype: InlineResponse200Data """ return self._data @data.setter def data(self, data): """Sets the data of this InlineResponse200. :param data: The data of this InlineResponse200. # noqa: E501 :type: InlineResponse200Data """ self._data = data def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(InlineResponse200, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InlineResponse200): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
eb99088385dfeba2cc4eaf7cfc1cec214ff6f8a1
db4add5587fbcb24bd6147a5f2cc161743553429
/venv/lib/python3.6/site-packages/sqlalchemy/dialects/mssql/pymssql.py
cfcfb4afc306ea8222d264b2f34b031b8c470614
[ "MIT" ]
permissive
DiptoChakrabarty/FlaskKube-api
38dedb5695f00f1fa0ee58af1f4b595c37f3ba0f
50bf4c226ce2ed0d544cb2eb16f5279e0fe25ca1
refs/heads/master
2022-12-25T04:08:52.669305
2020-10-01T08:42:39
2020-10-01T08:42:39
259,813,586
4
5
MIT
2020-10-01T08:42:41
2020-04-29T03:20:59
Python
UTF-8
Python
false
false
4,677
py
# mssql/pymssql.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ .. dialect:: mssql+pymssql :name: pymssql :dbapi: pymssql :connectstring: mssql+pymssql://<username>:<password>@<freetds_name>/?charset=utf8 pymssql is a Python module that provides a Python DBAPI interface around `FreeTDS <http://www.freetds.org/>`_. Modern versions of this driver worked very well with SQL Server and FreeTDS from Linux and were highly recommended. However, pymssql is currently unmaintained and has fallen behind the progress of the Microsoft ODBC driver in its support for newer features of SQL Server. The latest official release of pymssql at the time of this document is version 2.1.4 (August, 2018) and it lacks support for: 1. table-valued parameters (TVPs), 2. ``datetimeoffset`` columns using timezone-aware ``datetime`` objects (values are sent and retrieved as strings), and 3. encrypted connections (e.g., to Azure SQL), when pymssql is installed from the pre-built wheels. Support for encrypted connections requires building pymssql from source, which can be a nuisance, especially under Windows. The above features are all supported by mssql+pyodbc when using Microsoft's ODBC Driver for SQL Server (msodbcsql), which is now available for Windows, (several flavors of) Linux, and macOS. """ # noqa import re from .base import MSDialect from .base import MSIdentifierPreparer from ... import processors from ... import types as sqltypes from ... import util class _MSNumeric_pymssql(sqltypes.Numeric): def result_processor(self, dialect, type_): if not self.asdecimal: return processors.to_float else: return sqltypes.Numeric.result_processor(self, dialect, type_) class MSIdentifierPreparer_pymssql(MSIdentifierPreparer): def __init__(self, dialect): super(MSIdentifierPreparer_pymssql, self).__init__(dialect) # pymssql has the very unusual behavior that it uses pyformat # yet does not require that percent signs be doubled self._double_percents = False class MSDialect_pymssql(MSDialect): supports_native_decimal = True driver = "pymssql" preparer = MSIdentifierPreparer_pymssql colspecs = util.update_copy( MSDialect.colspecs, {sqltypes.Numeric: _MSNumeric_pymssql, sqltypes.Float: sqltypes.Float}, ) @classmethod def dbapi(cls): module = __import__("pymssql") # pymmsql < 2.1.1 doesn't have a Binary method. we use string client_ver = tuple(int(x) for x in module.__version__.split(".")) if client_ver < (2, 1, 1): # TODO: monkeypatching here is less than ideal module.Binary = lambda x: x if hasattr(x, "decode") else str(x) if client_ver < (1,): util.warn( "The pymssql dialect expects at least " "the 1.0 series of the pymssql DBAPI." ) return module def _get_server_version_info(self, connection): vers = connection.scalar("select @@version") m = re.match(r"Microsoft .*? - (\d+).(\d+).(\d+).(\d+)", vers) if m: return tuple(int(x) for x in m.group(1, 2, 3, 4)) else: return None def create_connect_args(self, url): opts = url.translate_connect_args(username="user") opts.update(url.query) port = opts.pop("port", None) if port and "host" in opts: opts["host"] = "%s:%s" % (opts["host"], port) return [[], opts] def is_disconnect(self, e, connection, cursor): for msg in ( "Adaptive Server connection timed out", "Net-Lib error during Connection reset by peer", "message 20003", # connection timeout "Error 10054", "Not connected to any MS SQL server", "Connection is closed", "message 20006", # Write to the server failed "message 20017", # Unexpected EOF from the server "message 20047", # DBPROCESS is dead or not enabled ): if msg in str(e): return True else: return False def set_isolation_level(self, connection, level): if level == "AUTOCOMMIT": connection.autocommit(True) else: connection.autocommit(False) super(MSDialect_pymssql, self).set_isolation_level( connection, level ) dialect = MSDialect_pymssql
976b1f612310075478e65e12b9776472bcf16ee0
a6c48d5d697cd0ba48bc7c6bd64e871326ce6458
/server/libs/pyticas_noaa/test/stations.py
14a4d003b74a916682190216840fbd9e27984dac
[]
no_license
lakshmanamettu/tetres
873a878cf06b313ee26537504e63f5efdecdc98f
1acf985f378106953cbff34fb99147cac5104328
refs/heads/master
2020-06-30T19:33:44.044090
2019-08-06T16:21:18
2019-08-06T16:21:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,154
py
# -*- coding: utf-8 -*- __author__ = 'Chongmyung Park ([email protected])' import csv import datetime class ISDStation(object): def __init__(self, row): """ :type row: list[str] """ self.usaf = None self.wban = None self.station_name = None self.city = None self.state = None self.icao = None self.lat = None self.lon = None self.elev = None self.begin = None self.end = None attrs = ['usaf', 'wban', 'station_name', 'city', 'state', 'icao', 'lat', 'lon', 'elev', 'begin', 'end'] for idx, aname in enumerate(attrs): setattr(self, aname, row[idx]) def get_date_range(self): """ :rtype: (datetime.date, datetime.date) """ return (datetime.datetime.strptime(self.begin, "%Y%m%d").date(), datetime.datetime.strptime(self.end, "%Y%m%d").date()) def is_valid(self, dt): """ :type dt: datetime.date :rtype: bool """ begin, end = self.get_date_range() return (begin <= dt <= end) def __str__(self): return '<ISDStation usaf="%s" wban="%s" name="%s" begin="%s" end="%s">' % ( self.usaf, self.wban, self.station_name, self.begin, self.end ) def load_isd_stations(filepath, state='MN', station_filter=None): """ :type filepath: str :type state: str :type station_filter: function :rtype: list[ISDStation] """ stations = [] with open(filepath, 'r') as f: cr = csv.reader(f) for idx, row in enumerate(cr): if not idx: continue if row[4] != state: continue st = ISDStation(row) if not station_filter or station_filter(st): stations.append(st) return stations DATA_FILE = 'isd-history.csv' stations = load_isd_stations(DATA_FILE, 'MN', lambda st: st.is_valid(datetime.date(2017, 1, 31))) for idx, st in enumerate(stations): print(idx, ':', st)
49582b8c6a9f659561e39a6385394b3b6f3d86f8
e23a4f57ce5474d468258e5e63b9e23fb6011188
/333_nuke/__exercises/Nuke_Scripting_for_Pipeline_TD/003_Dopolnitelnue_mareialu/module_nukescripts.py
2f0806e2df8e5772e47a542b87ed98158954dad2
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
624
py
import nuke import os import nukescripts nukescripts.autoBackdrop() def clearNodeSelection(): for n in nuke.selectedNodes(): # n['selected'].setValue(False) n.setSelected(False) nukescripts.clear_selection_recursive() nukescripts.declone(node) nukescripts.declone(nuke.selectedNode()) nukescripts.swapAB(nuke.selectedNode()) nukescripts.color_nodes() nukescripts.search_replace() nukescripts.getNukeUserFolder() # nukescripts.findNextNodeName('Read') # nuke.nodes.Read() # nuke.nodes.Read(name=nukescripts.findNextNodeName('Read')) # nuke.createNode('Read') # t = nuke.toNode('Read3') # t.setSelected(1)
33d7882c955e9858ee8e5d4ad0d2b2178ee13693
4c432a555bc3932880b201e0686d75bc2abd80b9
/lib/core_preprocessor.py
56b4d092df896b8852f2055515ceb0d566155b86
[ "BSD-3-Clause" ]
permissive
lmdalessio/aTRAM
3a14f08994d3ce7de692df3b90d5d7f99e8af9a8
807f43d83887dd80dea158b9a22ecb2a4e1aa220
refs/heads/master
2021-03-05T11:17:02.324817
2020-03-06T16:58:56
2020-03-06T16:58:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,987
py
""" Format the data so that atram can use it later in atram itself. It takes sequence read archive (SRA) files and converts them into coordinated blast and sqlite3 databases. """ from os.path import join, basename, splitext import sys import multiprocessing import numpy as np from Bio.SeqIO.QualityIO import FastqGeneralIterator from Bio.SeqIO.FastaIO import SimpleFastaParser from . import db from . import db_preprocessor from . import log from . import util from . import blast def preprocess(args): """Build the databases required by atram.""" log.setup(args['log_file'], args['blast_db']) with util.make_temp_dir( where=args['temp_dir'], prefix='atram_preprocessor_', keep=args['keep_temp_dir']) as temp_dir: util.update_temp_dir(temp_dir, args) with db.connect(args['blast_db'], clean=True) as cxn: db_preprocessor.create_metadata_table(cxn, args) db_preprocessor.create_sequences_table(cxn) load_seqs(args, cxn) log.info('Creating an index for the sequence table') db_preprocessor.create_sequences_index(cxn) shard_list = assign_seqs_to_shards(cxn, args['shard_count']) create_all_blast_shards(args, shard_list) def load_seqs(args, cxn): """Load sequences from a fasta/fastq files into the atram database.""" # We have to clamp the end suffix depending on the file type. for (ends, clamp) in [('mixed_ends', ''), ('end_1', '1'), ('end_2', '2'), ('single_ends', '')]: if args.get(ends): for file_name in args[ends]: load_one_file(args, cxn, file_name, ends, clamp) def load_one_file(args, cxn, file_name, ends, seq_end_clamp=''): """Load sequences from a fasta/fastq file into the atram database.""" log.info('Loading "{}" into sqlite database'.format(file_name)) parser = get_parser(args, file_name) with util.open_file(args, file_name) as sra_file: batch = [] for rec in parser(sra_file): title = rec[0].strip() seq = rec[1] seq_name, seq_end = blast.parse_fasta_title( title, ends, seq_end_clamp) batch.append((seq_name, seq_end, seq)) if len(batch) >= db.BATCH_SIZE: db_preprocessor.insert_sequences_batch(cxn, batch) batch = [] db_preprocessor.insert_sequences_batch(cxn, batch) def get_parser(args, file_name): """Get either a fasta or fastq file parser.""" is_fastq = util.is_fastq_file(args, file_name) return FastqGeneralIterator if is_fastq else SimpleFastaParser def assign_seqs_to_shards(cxn, shard_count): """Assign sequences to blast DB shards.""" log.info('Assigning sequences to shards') total = db_preprocessor.get_sequence_count(cxn) offsets = np.linspace(0, total - 1, dtype=int, num=shard_count + 1) cuts = [db_preprocessor.get_shard_cut(cxn, offset) for offset in offsets] # Make sure the last sequence gets included cuts[-1] = cuts[-1] + 'z' # Now organize the list into pairs of sequence names pairs = [(cuts[i - 1], cuts[i]) for i in range(1, len(cuts))] return pairs def create_all_blast_shards(args, shard_list): """ Assign processes to make the blast DBs. One process for each blast DB shard. """ log.info('Making blast DBs') with multiprocessing.Pool(processes=args['cpus']) as pool: results = [] for idx, shard_params in enumerate(shard_list, 1): results.append(pool.apply_async( create_one_blast_shard, (args, shard_params, idx))) all_results = [result.get() for result in results] log.info('Finished making blast all {} DBs'.format(len(all_results))) def create_one_blast_shard(args, shard_params, shard_index): """ Create a blast DB from the shard. We fill a fasta file with the appropriate sequences and hand things off to the makeblastdb program. """ shard = '{}.{:03d}.blast'.format(args['blast_db'], shard_index) exe_name, _ = splitext(basename(sys.argv[0])) fasta_name = '{}_{:03d}.fasta'.format(exe_name, shard_index) fasta_path = join(args['temp_dir'], fasta_name) fill_blast_fasta(args['blast_db'], fasta_path, shard_params) blast.create_db(args['temp_dir'], fasta_path, shard) def fill_blast_fasta(blast_db, fasta_path, shard_params): """ Fill the fasta file used as input into blast. Use sequences from the sqlite3 DB. We use the shard partitions passed in to determine which sequences to get for this shard. """ with db.connect(blast_db) as cxn: limit, offset = shard_params with open(fasta_path, 'w') as fasta_file: for row in db_preprocessor.get_sequences_in_shard( cxn, limit, offset): util.write_fasta_record(fasta_file, row[0], row[2], row[1])
3092a3b0b103669277fb6168d38c7712550116c8
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03611/s849629257.py
c22112651ffbef820aae30f404b80b8e6c08dc60
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
n = int(input()) a = list(map(int, input().split())) count = [0]*(max(a)+1) for i in a: count[i]+=1 if len(count) <= 2: print(sum(count)) exit() ans = 0 for i in range(2,max(a)): if count[i-1]+count[i]+count[i+1] > ans: ans = count[i-1]+count[i]+count[i+1] print(ans)
dafbe5e66dfcb61cad1999bdba519ec439021ce9
8d2c37a19076690dbe0f1b6c64467eeb7475b4ae
/kikoha/apps/voting/models.py
d958372da246c1e1c1c78cc1adb74b981448be92
[]
no_license
siolag161/kikoha
39fbdbc6f27337b8b84661165448d0e4a23a79d4
e8af8c7b0019faa6cc3a6821e2c04f6d8142fd08
refs/heads/master
2016-09-03T06:44:57.088649
2014-12-25T03:10:07
2014-12-25T03:10:07
25,884,164
0
0
null
null
null
null
UTF-8
Python
false
false
2,179
py
# coding: utf-8 from __future__ import unicode_literals from django.utils.encoding import python_2_unicode_compatible from django.contrib.contenttypes import generic from django.contrib.contenttypes.models import ContentType from django.dispatch import receiver from django.db import models from core.models import OwnedModel, TimeStampedModel from .managers import VoteManager POINTS = ( (+1, '+1'), (-1, '-1'), ) ## todo: define maybe a contenttype base class @python_2_unicode_compatible class Vote(OwnedModel, TimeStampedModel, models.Model): content_type = models.ForeignKey(ContentType) object_id = models.PositiveIntegerField() object = generic.GenericForeignKey('content_type', 'object_id') vote = models.SmallIntegerField(choices = POINTS ) objects = VoteManager() class Meta: db_table = 'votes' unique_together = (('author', 'content_type', 'object_id'),) def __str__(self): return '%s: %s on %s' % (self.author, self.vote, self.object) def is_upvote(self): return self.vote == 1 def is_downvote(self): return self.vote == -1 TOTAL_CHANGES = { 'CLEARED': -1, 'UPGRADED': 0, 'DOWNGRADED': 0, 'CREATED': +1 } UPVOTES_CHANGES = { 'CLEARED': 0, 'UPGRADED': +1, 'DOWNGRADED': -1, 'CREATED': +1 } import logging logger = logging.getLogger("werkzeug") class VotedModel(models.Model): upvotes = models.PositiveIntegerField(default=1) totalvotes = models.IntegerField(default=1) @property def downvotes(self): return totalvotes - upvotes @property def point(self): return 2*self.upvotes - self.totalvotes # upvotes - downvotes class Meta: abstract = True def get_point(self): return { 'point': self.point, 'num_votes': self.totalvotes } def update_vote(self, update_type, vote): if update_type and vote: self.totalvotes += TOTAL_CHANGES[update_type] self.upvotes += UPVOTES_CHANGES[update_type] if update_type == 'CLEARED' and vote.vote > 0: self.upvotes -= vote.vote if update_type == 'CREATED' and vote.vote < 0: self.upvotes += vote.vote self.save()
a5c7e9f7952089395270e27d81634bb006a7830d
0133d8d56ee611a0c65ef80693ae263692557b96
/spira/yevon/filters/layer_filter.py
4ff08772238a31e9cf4202378a362503d9cfb6d0
[ "MIT" ]
permissive
JCoetzee123/spira
e77380df2e79333b0c48953faae2d3dae50a8d27
dae08feba1578ecc8745b45109f4fb7bef374546
refs/heads/master
2021-06-25T23:32:52.289382
2019-07-17T13:25:50
2019-07-17T13:25:50
198,605,222
1
0
MIT
2019-07-24T09:42:07
2019-07-24T09:42:06
null
UTF-8
Python
false
false
1,112
py
from spira.log import SPIRA_LOG as LOG from spira.yevon.filters.filter import Filter # from spira.yevon.process.layer_list import LayerList, LayerListParameter from spira.yevon.process.gdsii_layer import LayerList, LayerListParameter __all__ = ['LayerFilterAllow', 'LayerFilterDelete'] class __LayerFilter__(Filter): layers = LayerListParameter() class LayerFilterAllow(__LayerFilter__): def __filter___LayerElement____(self, item): if item.layer in self.layers: return [item] else: LOG.debug("LayerFilterAllow is filtering out item %s" %item) return [] def __repr__(self): return "[SPiRA: LayerFilterDelete] (layer count {})".format(len(self.layers)) class LayerFilterDelete(__LayerFilter__): def __filter___LayerElement____(self, item): if item.layer in self.layers: LOG.debug("LayerFilterDelete is filtering out item %s" %item) return [] else: return [item] def __repr__(self): return "[SPiRA: LayerFilterDelete] (layer count {})".format(len(self.layers))
2b4c1b5b88e67aa6787b4704564067ebd2403069
938a496fe78d5538af94017c78a11615a8498682
/SwordRefersToOffer/11.NumberOf1.py
55ed4a03ad52b60ceb6e7472bafa3fd959ffa8fe
[]
no_license
huilizhou/Leetcode-pyhton
261280044d15d0baeb227248ade675177efdb297
6ae85bf79c5a21735e3c245c0c256f29c1c60926
refs/heads/master
2020-03-28T15:57:52.762162
2019-11-26T06:14:13
2019-11-26T06:14:13
148,644,059
8
1
null
null
null
null
UTF-8
Python
false
false
309
py
# -*- coding:utf-8 -*- # 二进制中1的个数 class Solution: def NumberOf1(self, n): # write code here count = 0 if n < 0: n = n & 0xffffffff while n: count += 1 n = n & (n - 1) return count print(Solution().NumberOf1(3))
34a7acd539aa930a26936a914f4e663c21da9000
73978c38ef18dd87b75d6af706de58f5633ee157
/trunk/zkomm_multiserver/src/modelo_lista_nodos.py
44435e9e08934dc9b4060a6c58be21ffdfa36e65
[]
no_license
BGCX261/zkomm-multiserv-svn-to-git
1702f2bc9ef8764dd9a35c301e9dbb362b4e2d12
830ccd1ec3a617f30450ad6d038107bf9aafa6a2
refs/heads/master
2021-01-19T08:53:11.428916
2015-08-25T15:43:46
2015-08-25T15:43:46
41,488,688
0
0
null
null
null
null
UTF-8
Python
false
false
1,116
py
#ZKOMM Multiserver #Modelos de vistas from PyQt4 import * class modelo_lista_nodos: def __init__(self, padre, lista = []): self.m = QtGui.QStandardItemModel(0, 5, padre) encabezados = QtCore.QStringList() encabezados << "Nodo (ID)" << "Nombre" << "IP" << "Puerto" << "Capacidad" << "Carga" << "Sobrecarga" << "Penalizacion" self.m.setHorizontalHeaderLabels(encabezados) self.lista_nodos = lista self.actualizar_lista(self.lista_nodos) def actualizar_lista(self,lista): self.lista_nodos=lista row = 0 self.m.setRowCount(len(self.lista_nodos)) for i in self.lista_nodos: self.m.setItem(row, 0, QtGui.QStandardItem(str(i.ident))) self.m.setItem(row, 1, QtGui.QStandardItem(str(i.nombre))) self.m.setItem(row, 2, QtGui.QStandardItem(str(i.ip))) self.m.setItem(row, 3, QtGui.QStandardItem(str(i.puerto))) self.m.setItem(row, 4, QtGui.QStandardItem(str(i.capacidad))) self.m.setItem(row, 5, QtGui.QStandardItem(str(i.carga))) self.m.setItem(row, 6, QtGui.QStandardItem(str(i.sobrecarga))) self.m.setItem(row, 7, QtGui.QStandardItem(str(i.penalizacion))) row = row + 1
9ba8b32ba254af1cf723aab25c9a85110c4f54b6
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/438/usersdata/348/94998/submittedfiles/pico.py
8c6e09f062dd15ec153e26731839b488ba972b38
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
617
py
# -*- coding: utf-8 -*- #funçoes def crescente(lista): for i in range (n,-1,-1): if lista[0] > lista[1]: return 'N' elif (lista[i-1] < lista[i-2]) and (lista[0] < lista[1]) : return 'S' elif (lista[0] < lista[1]): return 'S' elif lista[0] < lista[1]: return 'S' i = i+1 #codigo geral n = int(input('Digite a quantidade de elementos da lista: ')) l1 = [] for i in range (0,n,1): l1.append(int(input( 'informe o %d° elemento da lista: ' %(i+1)))) print(crescente(l1))
ea1f782a1427aa290425642443e58bfbbed6a50a
b144c5142226de4e6254e0044a1ca0fcd4c8bbc6
/ixnetwork_restpy/testplatform/sessions/ixnetwork/quicktest/l2tpratecpf_783f5a0ed938906c9d7aa8783627a802.py
2e67204c153bbd1a243fc6bbfb26728068fbcdcc
[ "MIT" ]
permissive
iwanb/ixnetwork_restpy
fa8b885ea7a4179048ef2636c37ef7d3f6692e31
c2cb68fee9f2cc2f86660760e9e07bd06c0013c2
refs/heads/master
2021-01-02T17:27:37.096268
2020-02-11T09:28:15
2020-02-11T09:28:15
239,721,780
0
0
NOASSERTION
2020-02-11T09:20:22
2020-02-11T09:20:21
null
UTF-8
Python
false
false
12,520
py
# MIT LICENSE # # Copyright 1997 - 2019 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class L2tpRateCpf(Base): """ The L2tpRateCpf class encapsulates a list of l2tpRateCpf resources that is be managed by the user. A list of resources can be retrieved from the server using the L2tpRateCpf.find() method. The list can be managed by the user by using the L2tpRateCpf.add() and L2tpRateCpf.remove() methods. """ __slots__ = () _SDM_NAME = 'l2tpRateCpf' def __init__(self, parent): super(L2tpRateCpf, self).__init__(parent) @property def Results(self): """An instance of the Results class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.results_09c332531ff8a5316dba4ebcc7b6109f.Results) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.results_09c332531ff8a5316dba4ebcc7b6109f import Results return Results(self)._select() @property def TestConfig(self): """An instance of the TestConfig class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.testconfig_210b52cb283940b311e5a57340ec017f.TestConfig) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.testconfig_210b52cb283940b311e5a57340ec017f import TestConfig return TestConfig(self)._select() @property def ForceApplyQTConfig(self): """Apply QT config Returns: bool """ return self._get_attribute('forceApplyQTConfig') @ForceApplyQTConfig.setter def ForceApplyQTConfig(self, value): self._set_attribute('forceApplyQTConfig', value) @property def InputParameters(self): """Input Parameters Returns: str """ return self._get_attribute('inputParameters') @InputParameters.setter def InputParameters(self, value): self._set_attribute('inputParameters', value) @property def Mode(self): """Test mode Returns: str(existingMode|newMode) """ return self._get_attribute('mode') @Mode.setter def Mode(self, value): self._set_attribute('mode', value) @property def Name(self): """Test name Returns: str """ return self._get_attribute('name') @Name.setter def Name(self, value): self._set_attribute('name', value) def update(self, ForceApplyQTConfig=None, InputParameters=None, Mode=None, Name=None): """Updates a child instance of l2tpRateCpf on the server. Args: ForceApplyQTConfig (bool): Apply QT config InputParameters (str): Input Parameters Mode (str(existingMode|newMode)): Test mode Name (str): Test name Raises: ServerError: The server has encountered an uncategorized error condition """ self._update(locals()) def add(self, ForceApplyQTConfig=None, InputParameters=None, Mode=None, Name=None): """Adds a new l2tpRateCpf node on the server and retrieves it in this instance. Args: ForceApplyQTConfig (bool): Apply QT config InputParameters (str): Input Parameters Mode (str(existingMode|newMode)): Test mode Name (str): Test name Returns: self: This instance with all currently retrieved l2tpRateCpf data using find and the newly added l2tpRateCpf data available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._create(locals()) def remove(self): """Deletes all the l2tpRateCpf data in this instance from server. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, ForceApplyQTConfig=None, InputParameters=None, Mode=None, Name=None): """Finds and retrieves l2tpRateCpf data from the server. All named parameters support regex and can be used to selectively retrieve l2tpRateCpf data from the server. By default the find method takes no parameters and will retrieve all l2tpRateCpf data from the server. Args: ForceApplyQTConfig (bool): Apply QT config InputParameters (str): Input Parameters Mode (str(existingMode|newMode)): Test mode Name (str): Test name Returns: self: This instance with matching l2tpRateCpf data retrieved from the server available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._select(locals()) def read(self, href): """Retrieves a single instance of l2tpRateCpf data from the server. Args: href (str): An href to the instance to be retrieved Returns: self: This instance with the l2tpRateCpf data from the server available through an iterator or index Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def Apply(self): """Executes the apply operation on the server. Applies the specified Quick Test. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('apply', payload=payload, response_object=None) def ApplyAsync(self): """Executes the applyAsync operation on the server. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyAsync', payload=payload, response_object=None) def ApplyAsyncResult(self): """Executes the applyAsyncResult operation on the server. Returns: bool: Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyAsyncResult', payload=payload, response_object=None) def ApplyITWizardConfiguration(self): """Executes the applyITWizardConfiguration operation on the server. Applies the specified Quick Test. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyITWizardConfiguration', payload=payload, response_object=None) def GenerateReport(self): """Executes the generateReport operation on the server. Generate a PDF report for the last succesfull test run. Returns: str: This method is asynchronous and has no return value. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('generateReport', payload=payload, response_object=None) def Run(self, *args, **kwargs): """Executes the run operation on the server. Starts the specified Quick Test and waits for its execution to finish. The IxNetwork modeling infrastructure allows for multiple method Signatures with the same name while python does not. The following correlates the modeling Signatures to the python *args variable length list: run()list Returns: list(str): This method is synchronous and returns the result of the test. run(InputParameters:string)list Args: args[0] is InputParameters (str): The input arguments of the test. Returns: list(str): This method is synchronous and returns the result of the test. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('run', payload=payload, response_object=None) def Start(self, *args, **kwargs): """Executes the start operation on the server. Starts the specified Quick Test. The IxNetwork modeling infrastructure allows for multiple method Signatures with the same name while python does not. The following correlates the modeling Signatures to the python *args variable length list: start() start(InputParameters:string) Args: args[0] is InputParameters (str): The input arguments of the test. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None) def Stop(self): """Executes the stop operation on the server. Stops the currently running Quick Test. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('stop', payload=payload, response_object=None) def WaitForTest(self): """Executes the waitForTest operation on the server. Waits for the execution of the specified Quick Test to be completed. Returns: list(str): This method is synchronous and returns the result of the test. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('waitForTest', payload=payload, response_object=None)
0355e904e902fa6f33f696424157267e37861148
491235d50ab27bb871d58a5dfff74d6a4aa9bbe6
/pong-client/gui/__init__.py
4ac6e8ce43257509a2ebdc0c6c8e5d0bacc29e8f
[]
no_license
elgrandt/Pong-Network
768bb861757d1fb98be3b761a66ad14e632f7932
204e1c5d9fbd53eece906d56df394602bdc269b6
refs/heads/master
2022-12-06T16:12:01.506699
2020-08-18T03:27:47
2020-08-18T03:27:47
288,315,589
1
0
null
null
null
null
UTF-8
Python
false
false
281
py
from add_border import * from input_text import * from moving_bar import * from area_movil import * from server_list import * from server_connect_menu import * from surface_gf import * import add_border import input_text import moving_bar import area_movil from status_cur import *
17d29257f02a4cbd86e726dd708d33d09015e44d
e1e5ffef1eeadd886651c7eaa814f7da1d2ade0a
/Systest/tests/ip_slowpath.py
6d6a6823d1c190bbc1ff7525420e8459c4038e33
[]
no_license
muttu2244/MyPython
1ddf1958e5a3514f9605d1f83c0930b24b856391
984ca763feae49a44c271342dbc15fde935174cf
refs/heads/master
2021-06-09T02:21:09.801103
2017-10-10T07:30:04
2017-10-10T07:30:04
13,803,605
0
0
null
null
null
null
UTF-8
Python
false
false
38,689
py
#!/usr/bin/env python2.5 ####################################################################### # # Copyright (c) Stoke, Inc. # All Rights Reserved. # # This code is confidential and proprietary to Stoke, Inc. and may only # be used under a license from Stoke. # ####################################################################### """ DESCRIPTION : This Script contains following ip_slowpath APIs which has been used in the Slowpath Testcases TEST PLAN : IP_SLOWPATH Test plan V0.3 AUTHOR : Ganapathi; email : [email protected] REVIEWER : DEPENDENCIES : Linux.py,device.py """ import sys, os mydir = os.path.dirname(__file__) qa_lib_dir = mydir if qa_lib_dir not in sys.path: sys.path.insert(1,qa_lib_dir) import pexpect import time import string import sys import re from logging import getLogger log = getLogger() from StokeTest import test_case #from ip_slowpath_config import * def ip_verify_ip_counters_icmp(self,total_tx='none',echo_request='none',total='none',echo_reply='none', unreachable='none',mask_request='none',mask_reply='none', source_quench='none',param_problem='none',timestamp='none', redirects='none',info_reply='none',ttl_expired='none', other='none',format='none',rate_limit='none',out_str='none'): """ Description: - This API verify the "show ip conters icmp" with passing differnt combinations of transmitted ICMP packet statastics such as echo request etc with output when the command run. CLI Used- CLI.s that are used for the API <show ip counters icmp>. Input: - List of differnt ICMP packet statastics Inputs such as no of Echo Request packets transmitted etc. Output: - Returns to the calling function ,i.e Pass or Fail . Author: - Ganapathi, [email protected] . Reviewer: - """ expected={'icmp_echo_request':echo_request,'icmp_echo_reply':echo_reply, 'icmp_total':total_tx,'icmp_unreachable':unreachable, 'icmp_mask_request':mask_request,'icmp_mask_reply':mask_reply, 'icmp_source_quench':source_quench,'icmp_param_problem':param_problem, 'icmp_timestamp':timestamp,'icmp_redirects':redirects, 'icmp_info_reply':info_reply,'icmp_ttl_expired':ttl_expired, 'icmp_other':other,'icmp_format':format,'icmp_rate_limit':rate_limit} cli="show ip counters icmp" ret_str=self.cmd(cli) regex_list=['\s*Rx:\s+Total\s+(?P<rx_total>\d+)\s+Tx:\s+Total\s+(?P<icmp_total>\d+)', '\s+Echo\s+Request\s+(?P<rx_echo_request>\d+)\s+Echo\s+Request\s+(?P<icmp_echo_request>\d+)', '\s+Echo\s+Reply\s+(?P<rx_echo_reply>\d+)\s+Echo\s+Reply\s+(?P<icmp_echo_reply>\d+)', '\s+Unreachable\s+(?P<rx_unreachable>\d+)\s+Unreachable\s+(?P<icmp_unreachable>\d+)', '\s+Param\s+Problem\s+(?P<rx_param_problem>\d+)\s+Param\s+Problem\s+(?P<icmp_param_problem>\d+)', '\s+Redirects\s+(?P<rx_redirects>\d+)\s+redirects\s+(?P<icmp_redirects>\d+)', '\s+TTL\s+Expired\s+(?P<rx_ttl_expired>\d+)\s+TTL\s+Expired\s+(?P<icmp_ttl_expired>\d+)', '\s+Mask\s+Request\s+(?P<rx_mask_request>\d+)\s+Mask\s+Request\s+(?P<icmp_mask_request>\d+)', '\s+Mask\s+Reply\s+(?P<rx_mask_reply>\d+)\s+Mask\s+Reply\s+(?P<icmp_mask_reply>\d+)', '\s+Source\s+Quench\s+(?P<rx_source_quench>\d+)\s+Source\s+Quench\s+(?P<icmp_source_quench>\d+)', '\s+Timestamp\s+(?P<rx_timestamp>\d+)\s+Timestamp\s+(?P<icmp_timestamp>\d+)', '\s+Info\s+Request\s+(?P<rx_info_request>\d+)\s+Info\s+Reply\s+(?P<icmp_info_reply>\d+)', '\s+Other\s+(?P<rx_other>\d+)\s+Other\s+(?P<icmp_other>\d+)', '\s+Error:\s+Checksum\s+(?P<chksum_error>\d+)\s+Format\s+(?P<format_error>\d+)', '\s+Length\s+(?P<length_error>\d+)\s+Rate\s+Limit\s+(?P<rate_limit_error>\d+)'] actual={} for regex in regex_list: obj=re.compile(regex,re.I) m=obj.search(ret_str) if m: dict=m.groupdict() for key in dict.keys(): actual[key]=dict[key] for keys in expected.keys(): if expected[keys] != 'none': if expected[keys] != actual[keys]: return 0 return 1 def telnet_glc(self,telnet_to_glc='none'): """ Description: - This API will establish a telnet session with GLC from an IMC CLI Used- No CLI used Input: - Slot no to which we want to telnet Output: - Author: - Ganapathi, [email protected] . Reviewer: - """ cmd_str="SOCK=/nv telnet 192.168.200.20"+telnet_to_glc self.ses.sendline(cmd_str) self.ses.expect("login:") self.ses.sendline("root") return def ip_verify_ip_counters_general(self,checksum='none',no_resource='none', source='none',ttl_expired='none', bad_version='none',option='none', frag_dropped='none',frag_malformed='none', acl_in_dropped='none',unreachable='none', length='none',runt='none', destination='none', arp_unresolved='none',other='none', frag_timeout='none',could_not_frag='none', acl_out_dropped='none',local_delivery='none',local_out='none', fragments='none',express='none',reassembled='none',exception='none', options_present='none',fragmented='none',ike_packets='none' ): """ Description: - This API verify whether the packets are recieved on the line card by observing the o/p stats of the command "show ip counters general" o/p ,the source counter statastics CLI Used- CLI.s that are used for the API <show ip counters general>. Input: - source counter as a parameter Output: - Returns to the calling function ,i.e Pass or Fail . Author: - Ganapathi, [email protected] . Reviewer: - """ expected={'checksum':checksum,'no_resource':no_resource, 'source':source,'ttl_expired':ttl_expired, 'bad_version': bad_version,'option':option, 'frag_dropped':frag_dropped,'frag_malformed':frag_malformed, 'acl_in_dropped': acl_in_dropped,'unreachable':unreachable, 'length':length,'runt':runt,'destination':destination, 'arp_unresolved':arp_unresolved,'other': other , 'frag_timeout':frag_timeout, 'could_not_frag':could_not_frag, 'acl_out_dropped':acl_out_dropped, 'local_delivery':local_delivery, 'local_out':local_out, 'fragments':fragments, 'express' :express, 'reassembled':reassembled, 'exception':exception, 'options_present':options_present, 'fragmented':fragmented, 'ike_packets':ike_packets} regex_list=['\s+Rx:\s+Local\s+Delivery\s+(?P<local_delivery>\d+)\s+Tx:\s+Local\s+Out\s+(?P<local_out>\d+)', '\s+Fragments\s(?P<fragments>\d+)\s+Express\s+(?P<express>\d+)', '\s+Reassembled\s+(?P<reassembled>\d+)\s+Exception\s+(?P<exception>\d+)', '\s+Options\s+Present\s+(?P<options_present>\d+)\s+Fragmented\s+(?P<fragmented>\d+)', '\s+IKE\s+Packets\s+(?P<ike_packets>\d+)', '\s+Error:\s+Checksum\s+(?P<checksum>\d+)\s+Unreachable\s+(?P<unreachable>\d+)', '\s+No\s+Resource\s+(?P<no_resource>\d+)\s+length\s+(?P<length>\d+)', '\s+Source\s+(?P<source>\d+)\s+Runt\s+(?P<runt>\d+)', '\s+TTL\s+Expired\s+(?P<ttl_expired>\d+)\s+Destination\s+(?P<destination>\d+)', '\s+Bad\s+Version\s+(?P<bad_version>\d+)\s+ARP\s+Unresolved\s+(?P<arp_unresolved>\d+)', '\s+Option\s+(?P<option>\d+)\s+Other\s+(?P<other>\d+)', '\s+Frag\s+Dropped\s+(?P<frag_dropped>\d+)\s+Frag\s+Timeout\s+(?P<frag_timeout>\d+)', '\s+Frag\s+Malformed\s+(?P<frag_malformed>\d+)\s+Couldn\'t\s+Frag\s+(?P<could_not_frag>\d+)', '\s+ACL-In\s+Dropped\s+(?P<acl_in_dropped>\d+)\s+ACL-Out\s+Dropped\s+(?P<acl_out_dropped>\d+)'] actual={} cli="show ip counters general" ret_str=self.cmd(cli) for regex in regex_list: obj=re.compile(regex,re.I) m=obj.search(ret_str) if m: dict=m.groupdict() for key in dict.keys(): actual[key]=dict[key] for keys in expected.keys(): if expected[keys] != 'none': if expected[keys] != actual[keys]: return 0 return 1 def ip_verify_ipv6_counters_general(self,too_many_ext_hdrs='none',no_resource='none', bad_address_scope="none",hoplimit_expired='none', bad_version='none',option='none', frag_dropped='none',frag_malformed='none', reassembled='none',unreachable='none',could_not_forward="none", acl_in_dropped="none", frag_overflow='none',esp_ah="none", other='none',error_ike_pkt="none", frag_timeout='none',could_not_frag='none',reassembly="none", acl_out_dropped='none',local_delivery='none',local_out='none', fragments='none',express='none',slowpath="none",router_header_out="none", runt='none',neighbour_unresolved="none",length="none", fragmented='none',ike_packets='none',express_forward='none' ): """ Description: - This API verify whether the packets are recieved on the line card by observing the o/p stats of the command "show ipv6 counters general" o/p ,the source counter statastics CLI Used- CLI.s that are used for the API <show ipv6 counters general>. Input: - source counter as a parameter Output: - Returns to the calling function ,i.e Pass or Fail . Author: - Ganapathi, [email protected] . Reviewer: - """ expected={'too_many_ext_hdrs':too_many_ext_hdrs,'no_resource':no_resource, 'hoplimit_expired':hoplimit_expired,'bad_address_scope':bad_address_scope, 'bad_version': bad_version,'option':option, 'frag_dropped':frag_dropped,'frag_malformed':frag_malformed, 'acl_in_dropped': acl_in_dropped,'unreachable':unreachable, 'could_not_forward':could_not_forward, 'length':length,'other': other , 'frag_timeout':frag_timeout, 'could_not_frag':could_not_frag,'slowpath':slowpath,'router_header_out':router_header_out, 'acl_out_dropped':acl_out_dropped, 'local_delivery':local_delivery, 'local_out':local_out, 'fragments':fragments,'esp_ah':esp_ah,'frag_overflow':frag_overflow, 'express' :express,'runt':runt, 'reassembled':reassembled,'reassembly':reassembly, 'fragmented':fragmented,'error_ike_pkt':error_ike_pkt, 'ike_packets':ike_packets,'express_forward':express_forward} regex_list=['\s*Rx:\s+Total\s+(?P<rx_total>\d+)\s+Tx:\s+Total\s+(?P<tx_total>\d+)', '\s+Local\s+Delivery\s+(?P<local_delivery>\d+)\s+Local\s+Out\s+(?P<local_out>\d+)', '\s+Fragments\s(?P<fragments>\d+)\s+Express\s+Forward\s+(?P<express_forward>\d+)', '\s+Reassembled\s+(?P<reassembled>\d+)\s+Slowpath\s+Forward\s+(?P<slowpath_forward>\d+)', '\s+IKE\s+Packets\s+(?P<rx_ike_packets>\d+)\s+Fragmented\s+(?P<fragmented>\d+)', '\s+Route\s+Header\s+Out\s+(?P<route_hdr_out>\d+)', '\s+Error:\s+Too\s+many\s+Ext\s+Hdrs\s+(?P<too_many_ext_hdrs>\d+)\s+Unreachable\s+(?P<unreachable>\d+)', '\s+No\s+Resource\s+(?P<no_resource>\d+)\s+length\s+(?P<length>\d+)', '\s+Bad\s+Address\s+Scope\s+(?P<bad_address_scope>\d+)\s+Runt\s+(?P<runt>\d+)', '\s+Hoplimit\s+Expired\s+(?P<hoplimit_expired>\d+)\s+Can\'t\s+Forward\s+(?P<could_not_forward>\d+)', '\s+Bad\s+Version\s+(?P<bad_version>\d+)\s+Neighbor\s+Unresolved\s+(?P<neighbor_unresolved>\d+)', '\s+Option\s+(?P<option>\d+)\s+Other\s+(?P<other>\d+)', '\s+Frag\s+Dropped\s+(?P<frag_dropped>\d+)\s+Frag\s+Timeout\s+(?P<frag_timeout>\d+)', '\s+Reassembly\s+(?P<reassembly>\d+)\s+Fragment\s+Overflow\s+(?P<frag_overflow>\d+)', '\s+Frag\s+Malformed\s+(?P<frag_malformed>\d+)\s+Couldn\'t\s+Frag\s+(?P<could_not_frag>\d+)', '\s+ACL-In\s+Dropped\s+(?P<acl_in_dropped>\d+)\s+ACL-Out\s+Dropped\s+(?P<acl_out_dropped>\d+)', '\s+IKE\s+packet\s+(?P<error_ike_packet>\d+)\s+ESP\/AH\s+(?P<esp_ah>\d+)'] actual={} flag=0 cli="show ipv6 counters general" ret_str=self.cmd(cli) for regex in regex_list: obj=re.compile(regex,re.I) m=obj.search(ret_str) if m: dict=m.groupdict() for key in dict.keys(): actual[key]=dict[key] for keys in expected.keys(): if expected[keys] != 'none': if expected[keys] != actual[keys]: return 0 return 1 def ip_verify_ip_counters_udp(self,checksum='none',no_port='none', rx_total='none',tx_total='none', short_pkt='none',short_hdr='none', full='none',no_port_bcast='none' ): """ Description: - This API verify whether the UDP packets are recieved on the line card by observing the o/p stats of the command "show ip counters udp" o/p ,the source counter statastics CLI Used- CLI.s that are used for the API <show ip counters udp>. Input: - the stats of the o/p of the command Output: - Returns to the calling function ,i.e Pass or Fail . Author: - Ganapathi, [email protected] . Reviewer: - """ expected={'checksum':checksum,'no_port':no_port, 'rx_total':rx_total,'tx_total':tx_total, 'short_pkt':short_pkt,'short_hdr':short_hdr, 'full':full,'no_port_bcast':no_port_bcast} regex_list=['\s+Rx:\s+Total\s+(?P<rx_total>\d+)', '\s+Tx:\s+Total\s+(?P<tx_total>\d+)', '\s+Error:\s+Checksum\s+(?P<checksum>\d+)', '\s+No\s+Port\s+(?P<no_port>\d+)', '\s+Short\s+packet\s+(?P<short_pkt>\d+)', '\s+Short\s+header\s+(?P<short_hdr>\d+)', '\s+Full\s+(?P<full>\d+)', '\s+No\s+port\s+bcast\s+(?P<no_port_bcast>\d+)'] actual={} cli="show ip counters udp" ret_str=self.cmd(cli) for regex in regex_list: obj=re.compile(regex,re.I) m=obj.search(ret_str) if m: dict=m.groupdict() for key in dict.keys(): actual[key]=dict[key] for keys in expected.keys(): if expected[keys] != 'none': if expected[keys] != actual[keys]: return 0 return 1 def get_mac_address(self,port='none'): """ Description: - This API will return the mac_adress of the port which is directly connected to the linux machine CLI Used- "show port" Input: - slot and port as a parameter format slot/port Output: - Returns returns the mac address of the required port Author: - Ganapathi, [email protected] . Reviewer: - """ out_str=self.cmd("show port") split_list=out_str.split("\n") for line in split_list: if (re.compile(port)).search(line): ret_list=line.split() return ret_list[(len(ret_list))-1].strip("\n") def get_cli_passwd(self,day='none',level='none'): """ Description: - This API will return the password to enable required hidden level in SSX box of a particular day today,tommorrow or yesterday CLI Used- runs the cli-pwd command on linux m/c Input: - day,level number Output: - Returns the password Author: - Ganapathi, [email protected] . Reviewer: - """ flag=0 count=7 os.system("cli-pwd >> pwd.txt") fileptr=file("pwd.txt","r") lvl_str= "level %s"%(level) for line in fileptr: if (re.compile(day,re.I)).search(line) or flag==1: if (re.compile(lvl_str,re.I)).search(line): var=line.partition(((re.compile("enable",re.I)).search(line)).group()) list1=var[2].split(',') fileptr.close() os.system("rm pwd.txt") return list1[0].strip() flag=1 count = count - 1 if count == 0: flag=0 return "not found" def generic_get_slot_and_port(self,slot_port='none'): """ Description: - This API will splits the i/p parameter string into slot and port and place these values into a dictionary CLI Used- no CLI used Input: - string as parameter Output: - Returns the dictionary with slot and parameter Author: - Ganapathi, [email protected] . Reviewer: - """ dict={} regex=(re.compile(r'(\d+)/(\d+)').search(slot_port)) dict['slot']=regex.group(1) dict['port']=regex.group(2) return dict def get_hex_ip_addr(self,dot_ip='none'): """ Description: - This API will return the Hex format of the IP which takes dotted format of IP as input parameter. CLI Used- no CLI used Input: - Dotted format of IP address Output: - Hex format of IP address Author: - Ganapathi, [email protected] . Reviewer: - """ regex=(re.compile(r'(\d+).(\d+).(\d+).(\d+)').search(dot_ip)) if int(regex.group(1))>15: first_octet=(str(hex(int(regex.group(1))))).replace("0x","") else: first_octet=(str(hex(int(regex.group(1))))).replace("x","") if int(regex.group(2))>15: second_octet=(str(hex(int(regex.group(2))))).replace("0x","") else: second_octet=(str(hex(int(regex.group(2))))).replace("x","") if int(regex.group(3))>15: third_octet=(str(hex(int(regex.group(3))))).replace("0x","") else: third_octet=(str(hex(int(regex.group(3))))).replace("x","") if int(regex.group(4))>15: fourth_octet=(str(hex(int(regex.group(4))))).replace("0x","") else: fourth_octet=(str(hex(int(regex.group(4))))).replace("x","") return first_octet+second_octet+third_octet+fourth_octet #LINUX .py def invoke_scapy(self,proto='none',sudo_passwd='none',dst_mac_adr='ff:ff:ff:ff:ff:ff',dst_ip_adr='127.0.0.1',src_ip_adr='127.0.0.1',ip_checksum='none',ip_hdr_len='none',ip_pkt_len='none',ip_ttl='none',ip_flags='none',ip_options='none',from_interface='eth1',large_pkt=0,udp='none',udp_checksum='none',ip_tos='none',ip6_plen=0,log="none",count = 5): """ Description: This API will invoke scapy tool which works in python ,in interpreter mode and sends 4 ip packets on required interface to required destiantion with our required fields populated CLI used :sudo python Input :The fields which we require to fill the IP packets Output :Sends 4 IP packets to SSX Author :Ganapathi,[email protected] """ dict={'chksum':ip_checksum,'ihl':ip_hdr_len,'len':ip_pkt_len, 'ttl':ip_ttl,'flags':ip_flags,'tos':ip_tos} str1=dst_mac_adr.strip() payload = 'X' if large_pkt==1: for i in range(1200): payload+='X' if ip_options == 'none': for key in dict.keys(): if dict[key] != 'none': value=int(dict[key]) scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s",%s=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,key,value,payload,from_interface) break else: scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s")/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,payload,from_interface) else: if ip_ttl == 'none' and ip_flags == 'none': scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s",options="%s")/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,ip_options,payload,from_interface) elif ip_flags != 'none': scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s",flags=%d,options="%s")/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,ip_flags,ip_options,payload,from_interface) else: value=int(ip_ttl) scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s",options="%s",ttl=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,ip_options,value,payload,from_interface) if udp != 'none': if udp_checksum != 'none': value2=int(udp_checksum) scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s")/UDP(dport=500,chksum=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,value2,payload,from_interface) if ip_checksum != 'none': value1=int(ip_checksum) scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s",chksum=%d)/UDP(dport=500,chksum=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,value1,value2,payload,from_interface) if ip_flags != 'none': value1=int(ip_flags) scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s",flags=%d)/UDP(dport=500,chksum=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,value1,value2,payload,from_interface) if ip_options != 'none': scapy_cmd='sendp(Ether(dst="%s")/IP(src="%s",dst="%s",flags=%d,options="%s")/UDP(dport=500,chksum=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,value1,ip_options,value2,payload,from_interface) if proto=="ipv6": if ip6_plen != 0: chksum=int(udp_checksum) scapy_cmd='sendp(Ether(dst="%s")/IPv6(src="%s",dst="%s",plen=%d)/UDP(dport=500,chksum=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,ip6_plen,chksum,payload,from_interface) else: scapy_cmd='sendp(Ether(dst="%s")/IPv6(src="%s",dst="%s",hlim=%d)/"%s",iface="%s")' %(str1,src_ip_adr,dst_ip_adr,ip_ttl,payload,from_interface) self.ses.sendline("sudo python2.5") retstr=self.ses.before which=self.ses.expect(["Password:",">>>"]) if which != 0: self.ses.sendline("from scapy import *") if proto == "ipv6": self.ses.sendline("from scapy6 import *") retstr=self.ses.before self.ses.expect(">>>") retstr=self.ses.before while count > 0: self.ses.sendline(scapy_cmd) retstr =self.ses.before log.output("scapy_cmd::%s" %(retstr)) self.ses.expect(">>>") retstr =self.ses.before count = count - 1 self.ses.sendline("%c" %(0x04)) return else: self.ses.sendline(sudo_passwd) self.ses.expect(">>>",20) retstr += self.ses.before self.ses.sendline("from scapy import *") if proto == "ipv6": self.ses.sendline("from scapy6 import *") self.ses.expect(">>>",20) while count > 0: self.ses.sendline(scapy_cmd) retstr = self.ses.before log.output("scapy_cmd::%s" %(retstr)) self.ses.expect(">>>",5) count = count - 1 self.ses.sendline("%c" %(0x04)) return def ip_ip4_pktgen(self,card='none',slot='none',port='none',src_addr='01010101',options='0',bad_option='0', dst_addr='none',pkt_len="500",bad_len='0', bad_checksum='0',ttl='32',df='0', no_of_pkts=0,cli_pwd="none",from_glc='1'): """Description:This API invo es the tool ip4_pktgen tool and generates packets within the SSX box CLI :CLI used is <ip4_pktgen> Input :Input parameters to the API are different fields in the IP header.argument(range) slot(0-4),port(0-3),src_addr(hex),dst_addr(hex) pktlen(28-2000),ttl(0-255),df(0 or 1),bad_len(0 or 1) bad_checksum(0 or 1) Output :Generates required no of IP packets with in the SSX box Author :Ganapathi,[email protected] Reviewer : """ passwd_prompt=re.compile("password:",re.I) enable_prompt_regex = "[\r\n]*\S+\[\S+\]#" #enabling level 2 to start shell self.ses.sendline("hidden enable 2") self.ses.expect(passwd_prompt) self.ses.sendline(cli_pwd+'\n') if no_of_pkts > 0: #running the command start shell self.ses.sendline("start shell") self.ses.expect('#') if card=="GLC": telnet_glc(self,telnet_to_glc=from_glc) #invoking the tool ip4_pktgen in self.ses.sendline("ip4_pktgen") self.ses.expect("\r\n(.*)\r\nDo you want to generate packet with optional header fields:\r\n(.*): ") self.ses.sendline(options) if options == '1': self.ses.expect("\r\nGenerate with bad option:\r\n(.*): ") self.ses.sendline(bad_option) self.ses.expect("Enter the slot number of LC \(0\-4\): ") self.ses.sendline(slot) self.ses.expect("Enter the port number \(0\-3\): ") self.ses.sendline(port) self.ses.expect("Enter IPv4 source address in hex:") self.ses.sendline(src_addr) self.ses.expect("Enter IPv4 destination address in hex:") self.ses.sendline(dst_addr) self.ses.expect("Enter total packet length \(32\-1792\):") self.ses.sendline(pkt_len) self.ses.expect("\r\nDo you want to generate packet with bad total length:\r\n(.*): ") self.ses.sendline(bad_len) self.ses.expect("Enter TTL \(0\-255\): ") self.ses.sendline(ttl) self.ses.expect("DF bit \(0\-1\): ") self.ses.sendline(df) self.ses.expect("\r\nDo you want to generate packet with bad checksum:\r\n(.*): ") self.ses.sendline(bad_checksum) while no_of_pkts > 1: self.ses.expect("\r\n(.*)\r\n(.*)\r\nDo you want to send the same packet again:\r\n(.*): ") self.ses.sendline("1") no_of_pkts = no_of_pkts - 1 self.ses.sendline("%c" % 0x3) self.ses.expect("#") self.ses.sendline("exit") if card == "GLC": self.ses.expect("Connection closed by foreign host.") self.ses.expect("#") self.ses.sendline("exit") self.ses.expect(enable_prompt_regex) return 1 else: self.ses.sendline("%c" % 0x3) return 0 def get_mgmt_addr(ssx_name="none"): """ This API will return management port address of a given SSX . CLI: "nslookup "ssx_name" input: ssx-name as a parameter output:returns the ip address of mgmt port Author:[email protected] Reviewer: """ cmd="nslookup %s >> mgmt.txt" %(ssx_name) os.system(cmd) fileptr=file("mgmt.txt","r") outputstr=fileptr.read() regex=re.compile('\nAddress:(\s+)(\d+).(\d+).(\d+).(\d+)\n') regex1=re.compile('(\d+)..(\d+).(\d+).(\d+)') found=regex.search(outputstr) found1=regex1.search(found.group()) return found1.group() def ip_verify_ipv6_counters_icmp(self,total_tx='none',echo_request='none',echo_reply='none', unreachable='none',param_problem='none', redirects='none', ttl_expired='none',too_big='none',other='none',format='none', rate_limit='none',router_solicit='none', router_advertise='none',neighbor_solicit='none',neighbor_advertise="none"): """ Description: - This API verify the "show ip conters icmp" with passing differnt combinations of transmitted ICMP packet statastics such as echo request etc with output when the command run. CLI Used- CLI.s that are used for the API <show ip counters icmp>. Input: - List of differnt ICMP packet statastics Inputs such as no of Echo Request packets transmitted etc. Output: - Returns to the calling function ,i.e Pass or Fail . Author: - Ganapathi, [email protected] . Reviewer: - """ expected={'icmp_echo_request':echo_request,'icmp_echo_reply':echo_reply, 'icmp_total':total_tx,'icmp_unreachable':unreachable, 'icmp_too_big':too_big,'icmp_param_problem':param_problem, 'icmp_router_solicit':router_solicit,'icmp_redirects':redirects, 'icmp_router_advertise':router_advertise,'icmp_ttl_expired':ttl_expired, 'icmp_other':other,'icmp_format':format,'icmp_rate_limit':rate_limit, 'icmp_neighbor_solicit':neighbor_solicit,'icmp_neighbor_advertise':neighbor_advertise} cli="show ipv6 counters icmp" ret_str=self.cmd(cli) #splitted_icmp_list=icmplist.split('\n') actual={} regex_list=['\s*Rx:\s+Total\s+(?P<rx_total>\d+)\s+Tx:\s+Total\s+(?P<icmp_total>\d+)', '\s+Echo\s+Request\s+(?P<rx_echo_request>\d+)\s+Echo\s+Request\s+(?P<icmp_echo_request>\d+)', '\s+Echo\s+Reply\s+(?P<rx_echo_reply>\d+)\s+Echo\s+Reply\s+(?P<icmp_echo_reply>\d+)', '\s+Unreachable\s+(?P<rx_unreachable>\d+)\s+Unreachable\s+(?P<icmp_unreachable>\d+)', '\s+Param\s+Problem\s+(?P<rx_param_problem>\d+)\s+Param\s+Problem\s+(?P<icmp_param_problem>\d+)', '\s+Redirects\s+(?P<rx_redirects>\d+)\s+redirects\s+(?P<icmp_redirects>\d+)', '\s+TTL\s+Expired\s+(?P<rx_ttl_expired>\d+)\s+TTL\s+Expired\s+(?P<icmp_ttl_expired>\d+)', '\s+Too\s+Big\s+(?P<rx_too_big>\d+)\s+Too\s+Big\s+(?P<icmp_too_big>\d+)', '\s+Router\s+Solicit\s+(?P<rx_router_solicit>\d+)\s+Router\s+Solicit\s+(?P<icmp_router_solicit>\d+)', '\s+Router\s+Advertise\s+(?P<rx_router_advertise>\d+)\s+Router\s+Advertise\s+(?P<icmp_router_advertise>\d+)', '\s+Neighbor\s+Solicit\s+(?P<rx_neighbor_solicit>\d+)\s+Neighbor\s+Solicit\s+(?P<icmp_neighbor_solicit>\d+)', '\s+Neighbor\s+Advertise\s+(?P<rx_neighbor_advertise>\d+)\s+Neighbor\s+Advertise\s+(?P<icmp_neighbor_advertise>\d+)', '\s+Other\s+(?P<rx_other>\d+)\s+Other\s+(?P<icmp_other>\d+)', '\s+Error:\s+Checksum\s+(?P<chksum_error>\d+)\s+Format\s+(?P<format_error>\d+)', '\s+Length\s+(?P<length_error>\d+)\s+Rate\s+Limit\s+(?P<rate_limit_error>\d+)', '\s+Tx\s+Redirect\s+(?P<redirect_error>\d+)'] for regex in regex_list: obj=re.compile(regex,re.I) m=obj.search(ret_str) if m: dict=m.groupdict() for key in dict.keys(): actual[key]=dict[key] for keys in expected.keys(): if expected[keys] != 'none': if expected[keys] != actual[keys]: return 0 return 1 def verify_port_drop_counters(self,port='none',disabled_port='none', lookup_failed='none',nitrox_drop='none', known_acl='none',drop_adjacency='none', invalid_fib='none',invalid_channel='none', buff_invalid='none',xscale_ring_full='none', invalid_circuit='none',arp_drop='none', ip6_port_drop='none',invalid_service='none', v4_chksum_drop='none',v4_hdr_drop='none',v4_scr_drop='none'): """ Description: - This API will verify the o/p stats of packet drops at a particular port CLI Used- "show port slot/port counters drop" ---->to catch the name of the particular interface Input: - slot and port as a parameter format slot/port Output: - verifies the output stats of the command Author: - Ganapathi, [email protected] . Reviewer: - """ expected={'disabled_port':disabled_port, 'lookup_failed':lookup_failed, 'nitrox_drop' :nitrox_drop, 'known_acl' :known_acl, 'drop_adjacency':drop_adjacency, 'invalid_fib':invalid_fib, 'invalid_channel':invalid_channel, 'buff_invalid':buff_invalid, 'xscale_ring_full':xscale_ring_full, 'invalid_circuit':invalid_circuit, 'arp_drop':arp_drop, 'ip6_port_drop':ip6_port_drop, 'invalid_service':invalid_service, 'v4_chksum_drop':v4_chksum_drop, 'v4_hdr_drop':v4_hdr_drop, 'v4_scr_drop': v4_scr_drop } actual={} ret_str=self.cmd("show port %s counters drop" %(port)) regex_list=['\d+/\d+\s+Disabled\s+Port:\s+(?P<disabled_port>\d+)', '\s+Lookup\s+Failed:\s+(?P<lookup_failed>\d+)', '\s+Nitrox\s+Drop:\s+(?P<nitrox_drop>\d+)', '\s+Known\s+Acl:\s+(?P<known_acl>\d+)', '\s+Drop\s+Adjacency:\s+(?P<drop_adjacency>\d+)', '\s+Invalid\s+Fib:\s+(?P<invalid_fib>\d+)', '\s+Invalid\s+Channel:\s+(?P<invalid_channel>\d+)' '\s+Buff\s+Invalid:\s+(?P<buff_invalid>\d+)' '\s+Xscale\s+Ring\s+Full:\s+(?P<xscale_ring_full>\d+)', '\s+Invalid\s+Circuit:\s+(?P<invalid_circuit>\d+)', '\s+Arp\s+Drop:\s+(?P<arp_drop>\d+)', '\s+Ip6\s+Port\s+Drop:\s+(?P<ip6_port_drop>\d+)', '\s+Invalid\s+Service:\s+(?P<invalid_service>\d+)', '\s+V4\s+Chksum\s+Drop:\s+(?P<v4_chksum_drop>\d+)', '\s+V4\s+Hdr\s+Invalid:\s+(?P<v4_hdr_drop>\d+)', '\s+V4\s+Scr\s+Invalid:\s+(?P<v4_scr_drop>\d+)'] for regex in regex_list: obj=re.compile(regex,re.I) m=obj.search(ret_str) if m: dict=m.groupdict() for key in dict.keys(): actual[key]=dict[key] for keys in expected.keys(): if expected[keys] != 'none': if expected[keys] != actual[keys]: return 0 return 1 def verify_tunnel_counters(self,tunnel_name="none",in_pkts='none',out_pkts='none'): ret_str=self.cmd("show tunnel counters " ) split_list=ret_str.split('\n') ret_str=self.cmd("show tunnel counters | grep %s " %(tunnel_name)) str2 ='\s*\w+\s+\w+\s+(\d+)\s+(\d)+\s+\d+\s+\d+' obj=re.compile(str2) found=obj.search(ret_str) actual_in_pkts=found.group(1) actual_out_pkts=found.group(2) if actual_in_pkts == in_pkts and actual_out_pkts == out_pkts: return 1 else: return 0 def get_circuit_handle(self,tunnel="none"): ret_str=self.cmd("show tunnel name %s" %(tunnel)) obj=re.compile('\s*Tunnel\s+Circuit\s+Handle\s+(\w+)') m=obj.search(ret_str) return m.group()
0d608ca99a5df062161a727ba15e6c5d0d860cfa
d55f3f715c00bcbd60badb3a31696a1a629600e2
/students/maks/9/site2/page/migrations/0002_category.py
ee732793b384633ecbbe6c4b58bbd67a5b4d787d
[]
no_license
zdimon/wezom-python-course
ea0adaa54444f6deaca81ce54ee8334297f2cd1a
5b87892102e4eb77a4c12924d2d71716b9cce721
refs/heads/master
2023-01-29T02:22:54.220880
2020-12-05T11:27:48
2020-12-05T11:27:48
302,864,112
0
0
null
null
null
null
UTF-8
Python
false
false
502
py
# Generated by Django 3.1.2 on 2020-11-14 10:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('page', '0001_initial'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=250)), ], ), ]
205794e0f345bd8c88dca18a2b82e9f5364d5430
168556624401cd884fe0bfdac5a312adf51286a1
/CS1430/homework4_sceneclassification-Enmin/code/trial.py
ce43e58f440332e775d1492ab4a36598380a3a3c
[]
no_license
Enmin/Coursework
f39dc7b54a07b901491fbd809187fd54e96fa5a4
a17d216c37e70a8073602389924af10019cfe7de
refs/heads/master
2021-12-28T02:53:15.949547
2021-12-21T22:45:19
2021-12-21T22:45:19
179,909,211
0
0
null
null
null
null
UTF-8
Python
false
false
909
py
import numpy as np import matplotlib import time from matplotlib import pyplot as plt from helpers import progressbar from skimage import io from skimage.io import imread from skimage.color import rgb2grey from skimage.feature import hog from skimage.transform import resize from scipy.spatial.distance import cdist def get_tiny_images(image_paths): #TODO: Implement this function! output = [] for image_path in image_paths: image = imread(image_path) if len(image.shape) > 2: image = rgb2grey(image) image = resize(image, output_shape=(64, 64), anti_aliasing=True) output.append(image) return np.array(output) # res = get_tiny_images([r'..\data\train\Bedroom\image_0002.jpg']) # io.imshow(res[0]) # plt.show() def build_vocab(): num_imgs = 1000 for i in progressbar(range(num_imgs), "Loading ...", num_imgs): pass build_vocab()
8526bf590577cee22e9f84d173c847d4b9407e14
824f19d20cdfa26c607db1ff3cdc91f69509e590
/Array-101/5-Merge-Sorted-Array.py
e028a6ec47e16b2bddb04b2c0dac066cac1c70c2
[]
no_license
almamuncsit/LeetCode
01d7e32300eebf92ab54c983de6e183242b3c985
17aa340649574c37067ec170ceea8d9326be2d6a
refs/heads/master
2021-07-07T09:48:18.069020
2021-03-28T11:26:47
2021-03-28T11:26:47
230,956,634
4
0
null
null
null
null
UTF-8
Python
false
false
390
py
from typing import List class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: i, j, k = m - 1, n - 1, m + n - 1 while j >= 0: if nums1[i] >= nums2[j] and i >= 0: nums1[k] = nums1[i] i -= 1 else: nums1[k] = nums2[j] j -= 1 k -= 1
9ab60f6818d611b38e5a018aab0b282e5e417ec6
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_bobbling.py
5754a833bc3c73ef4d8503d781013e85cd1c3248
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from xai.brain.wordbase.nouns._bobble import _BOBBLE #calss header class _BOBBLING(_BOBBLE, ): def __init__(self,): _BOBBLE.__init__(self) self.name = "BOBBLING" self.specie = 'nouns' self.basic = "bobble" self.jsondata = {}
541ff8209cf419cbd7c780213cf1f0c62b91a4d7
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_313/ch75_2020_04_07_18_04_40_887750.py
39e6ed3c06555b5fc1e686140dc5d782dadd9b6c
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
def verifica_primos(l1): dicionario = {} for i in l1: if i == 0 or i == 1 or i == -1: dicionario[i] = True elif i == 2: dicionario[i] = True elif i % 2 == 0: dicionario[i] = False else: a = 3 for a in range(3,17,2): print (a) if i % a == 0: dicionario[i] = False dicionario[i] = True return dicionario
04b60bf68bf3570d0bc85f8a5ffe962f4f658aa1
2635c2e2c31a7badb8b188306c3cdfc61dc1ecc8
/ihm_add_fields_productos/models/add_fields_product.py
71ba7678d0edaea18b210f7f577c718ee38a5872
[]
no_license
rosalesdc/ihm_testing
ec4ebf26c3c7602267a04fd183de4064f9d16bc1
d91ebeac5504c9f29a21b2b0f05bc16ed240ff48
refs/heads/master
2020-04-17T01:21:03.214595
2019-10-29T23:05:52
2019-10-29T23:05:52
166,088,611
0
0
null
null
null
null
UTF-8
Python
false
false
7,791
py
# -*- coding: utf-8 -*- from odoo import api from odoo import fields from odoo import models from odoo.exceptions import UserError from odoo.exceptions import ValidationError import smtplib class AddProductFields(models.Model): _inherit = 'product.template' name = fields.Char('Name', index=True, required=True, translate=False) #Antes de crear un producto checa que el usuario no esté restringido @api.model def create(self, vals): producto_creado=super(AddProductFields, self).create(vals) if producto_creado.is_group_restr == True: raise ValidationError('Usuario actual no puede crear inmuebles') else: return producto_creado #Antes de actualizar el producto se verifica si el usuario es administrador # @api.multi # def write(self, vals): # print(vals) # if self.es_inmueble == True and self.is_group_admin == False: # keys=vals.keys() # if ('invoice_policy' in keys) or ('service_type' in keys) or ('estatus' in keys) or ('sale_order' in keys): # return super(AddProductFields, self).write(vals) # else: # raise ValidationError('Usuario actual no puede actualizar inmuebles') # else: # return super(AddProductFields, self).write(vals) #Antes de eliminar el producto se verifica si el usuario es administrador @api.multi def unlink(self): if self.es_inmueble == True and self.is_group_admin == False: raise ValidationError('Usuario actual no puede eliminar inmuebles') else: return super(AddProductFields, self).unlink() @api.one @api.depends('x_asignacion_ids.importe') def _compute_total_elementos(self): self.importe_total_elementos = sum(line.importe for line in self.x_asignacion_ids) @api.one def asignar_precio_inmueble(self): precio_calculado = float(self.importe_total_elementos) self.write({'list_price': precio_calculado}) @api.model def get_default_estatus(self): default_estatus = 'Disponible' return default_estatus @api.one @api.depends('estatus') def _compute_copy_estatus(self): if self.estatus != False: if self.estatus == "Disponible": self.estatus_ordenado = "01-Disponible" elif self.estatus == "Apartado": self.estatus_ordenado = "02-Apartado" elif self.estatus == "Vendido": self.estatus_ordenado = "03-Vendido" elif self.estatus == "Escriturado": self.estatus_ordenado = "04-Escriturado" elif self.estatus == "Preparacion": self.estatus_ordenado = "05-Liberado" elif self.estatus == "Entregado": self.estatus_ordenado = "06-Entregado" @api.one @api.model @api.depends('sale_order') def _obtener_referencia(self): orden = self.env['sale.order'].search([('id', '=', self.sale_order.id)]) #self.xreferencia=orden.name self.xreferencia = orden.id_numero_referencia.name #Funcion que busca al usuario en el grupo de administradores @api.one def _compute_is_group_admin(self): self.is_group_admin = self.env['res.users'].has_group('ihm_ocultar_validar.group_director') #Funcion que busca que el usuario no pertenezca al campo que puede editar/crear productos @api.one def _compute_is_group_restringido(self): self.is_group_restr = self.env['res.users'].has_group('ihm_ocultar_validar.group_no_editarcrear') #Campo para revisar si el usuario actual es un administrador is_group_admin = fields.Boolean( string='Is Admin', compute="_compute_is_group_admin", ) is_group_restr = fields.Boolean( string='Is Restringido', compute="_compute_is_group_restringido", ) #características para los productos que son inmuebles y su proyecto relacionado es_inmueble = fields.Boolean(string="Es un inmueble") caracteristicas = fields.Text(string="Características") numero = fields.Char(string="Número") estatus = fields.Selection( selection=[ ('Disponible', '01 Disponible'), ('Apartado', '02 Apartado'), ('Vendido', '03 Vendido'), ('Escriturado', '04 Escriturado'), ('Preparacion', '05 Liberado'), ('Entregado', '06 Entregado'), ], string="Estatus", copy=False, readonly=True, default=get_default_estatus, ) estatus_ordenado = fields.Char(string="Estatus ordenado", readonly=True, store=True, compute='_compute_copy_estatus', ) x_proyecto_id = fields.Many2one('project.project', string='Proyecto') x_asignacion_ids = fields.One2many( 'asignacion.elementos', #modelo al que se hace referencia 'inmueble_id', #un campo de regreso string="Asignacion elementos" ) #CAMPO PARA EL CALCULO DE TOTAL DE LOS ELEMENTOS importe_total_elementos = fields.Float(string='Importe total elementos', #store=True, readonly=True, compute='_compute_total_elementos', ) oportunidades_ids = fields.One2many( 'crm.lead', #modelo al que se hace referencia 'id_producto_inmueble', #un campo de regreso string="Oportunidad" )# cantidad_enganche = fields.Float( string="Cantidad Contrato" ) garantia_id = fields.Many2one( 'tipo.garantia', string="Tipo de garantia" ) sale_order = fields.Many2one( 'sale.order', copy=False, string="Orden de venta del" ) xreferencia = fields.Char( string='Referencia', #store=True, compute='_obtener_referencia', ) #campo que muestra la referencia en el listado de inmuebles xreferencia_texto = fields.Char( string='Referencia', #store=True, ) #https://fundamentos-de-desarrollo-en-odoo.readthedocs.io/es/latest/capitulos/modelos-estructura-datos-aplicacion.html
9df29fc50a42863f005cbf20a869b2a23268e334
fe93e14d6508ac45679d2ef8a5c7876d77edbc05
/src/python/commands/MCMCImpl.py
281103c3ea66f5999e8eb918344c14fdf52cf576
[ "MIT" ]
permissive
Linhua-Sun/phycas
d216bedb08ef2fb0f05db2e5691b3d410cd7313a
8fc283abd4b6add492908f7f54abceff62fc0036
refs/heads/master
2020-12-26T18:54:33.461954
2015-09-12T18:23:40
2015-09-12T18:23:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
90,992
py
import os,sys,math,random from phycas import * from phycas.utilities.PhycasCommand import * from phycas.utilities.CommonFunctions import CommonFunctions from MCMCManager import MCMCManager from phycas.probdist import StopWatch from phycas.readnexus import NexusReader class MCMCImpl(CommonFunctions): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Needs to be written. """ def __init__(self, opts): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Initializes MCMCImpl object by assigning supplied phycas object to a data member variable. """ CommonFunctions.__init__(self, opts) self.models = None # This variable is set in setup # These copied over from Phycas.py - many are not used and should be weeded out self.data_matrix = None self.file_name_trees_stored = None self.do_marginal_like = False self.mcmc_manager = MCMCManager(self) self.heat_vector = None # Leave set to None unless you are implementing some ad hoc heating scheme. This vector ordinarily computed using nchains and self.heating_lambda self.stopwatch = StopWatch() self.sim_model_tree = None # Will hold the model tree used by simulateDNA self.starting_tree = [] # starting_tree[i] will contain reference to phylogeny.Tree object for chain i self.warn_tip_numbers = False # True only if tip numbers were not able to be created using the tip names in the tree description (always False if starting_tree_source == 'random' because BuildTreeFromString is not called in this case) self.ntax = 0 # Will hold the actual number of taxa after data file read self.nchar = 0 # Will hold the actual number of characters after data file has been read self.npatterns = [] # Will hold the actual number of patterns for each subset after data file has been read self.taxon_labels = [] # Will hold taxon labels from data file or default names if self.data_source equals None #self.sssf = None self.paramf = None self.treef = None self.sitelikef = None #self.tree_file_name = '' # Will hold tree file name (see openParameterAndTreeFiles) #self.param_file_name = '' # Will hold parameter file name (see openParameterAndTreeFiles) #self.tmp_simdata = SimData() self.gg_Pm = 0.0 # Penalty component (same for all k) self.gg_Gm = [] # Vector of goodness-of-fit components (one for each k in gg_kvect) self.gg_Dm = [] # Vector of overall measures (one for each k in gg_kvect) self.reader = NexusReader() #self._logFileName = None self.addition_sequence = [] # List of taxon numbers for addition sequence self.ref_tree = None # a reference tree against which the current MCMC tree can be compared (user specifies with, e.g., "mcmc.reference_tree_source = TreeCollection(file='hkyml.tre')") self.stored_tree_defs = None self.psf = None self.pdf_splits_to_plot = None #self.param_file_name = None #self.tree_file_name = None self.burnin = 0 # same as self.opts.burnin except for path sampling, when it drops to 0 after first beta value self.ncycles = 0 self.cycle_start = None # used in path sampling to avoid starting over the cycle count for each beta value self.cycle_stop = None # total number of cycles (used for computing time remaining) self.last_adaptation = 0 #POLTMP self.next_adaptation = 0 self.ss_beta = 1.0 self.ss_beta_index = 0 self.ss_sampled_betas = None self.ss_sampled_likes = None self.siteIndicesForPatternIndex = None def setSiteLikeFile(self, sitelikef): if sitelikef is not None: self.sitelikef = sitelikef def siteLikeFileSetup(self, coldchain): if self.sitelikef is not None: # Set up the siteIndicesForPatternIndex, which holds a list of sites for each pattern index # This allows us to spit out site likelihoods for each site, even though site likelihoods # are stored for patterns, many of which represent numerous sites v = coldchain.likelihood.getCharIndexToPatternIndex() nexcluded = 0 self.phycassert(len(v) == self.nchar,'Number of sites returned by coldchain.likelihood.getCharIndexToPatternIndex (%d) differs from MCMCImpl.nchar (%d) in MCMCImpl.siteLikeFileSetup()' % (len(v), self.nchar)) npatterns = coldchain.likelihood.getNPatterns() self.siteIndicesForPatternIndex = [] for i in range(npatterns): self.siteIndicesForPatternIndex.append([]) for i,p in enumerate(v): if p < npatterns: self.siteIndicesForPatternIndex[p].append(i) else: nexcluded += 1; def unsetSiteLikeFile(self): self.sitelikef = None self.siteIndicesForPatternIndex = None def adaptSliceSamplers(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Cycle through all slice samplers and adapt each one. Adaptation adjusts the slice unit width of each slice sampler in an attempt to bring it closer to the optimum width using experience from past sampling attempts. Non-slice-sampling updaters are also tuned so that eventually they hover around the target acceptance rate. """ cold_chain_manager = self.mcmc_manager.getColdChainManager() for p in cold_chain_manager.getAllUpdaters(): if p.hasSliceSampler(): s = p.getSliceSampler() if s.getNumSamples() > 0: s.adaptSimple(self.opts.adapt_simple_param) def resetUpdaterDiagnostics(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Calls resetDiagnostics() for all slice-samplers and Metropolis-Hastings updaters. """ cold_chain_manager = self.mcmc_manager.getColdChainManager() for p in cold_chain_manager.getAllUpdaters(): if p.hasSliceSampler(): s = p.getSliceSampler() s.resetDiagnostics() else: p.resetDiagnostics() def debugShowTuningParameters(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Shows value of tuning parameter for each Metropolis-Hastings updater that can be tuned. """ s = '\n\nTuning parameter values for all tunable Metropolis-Hastings updaters:' for k in range(self.opts.nchains): c = self.mcmc_manager.chains[k] chain_manager = c.chain_manager s += '\n Chain %d (power = %.3f):' % (k+1, c.heating_power) for p in chain_manager.getAllUpdaters(): if not p.hasSliceSampler(): nm = p.getName() tp = p.getTuningParameter() s += '\n %12.5f <-- %s' % (tp, nm) print s def reportUpdaterEfficiency(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ If not in the burnin period (cycle negative), cycle through all slice samplers and adapt each one. Adaptation adjusts the slice unit width of each slice sampler in an attempt to bring it closer to the optimum width using experience from past sampling attempts. Non-slice-sampling updaters are also tuned so that eventually they hover around the target acceptance rate. """ summary = '' # need to adapt all chains, not just the cold one! cold_chain_manager = self.mcmc_manager.getColdChainManager() for p in cold_chain_manager.getAllUpdaters(): p_summary = '' nm = p.getName() #print '~POL~ nm =',nm if p.hasSliceSampler(): s = p.getSliceSampler() if s.getNumSamples() > 0: # s.adaptSimple(self.opts.adapt_simple_param) mode = s.getMode() accept_pct = 100.0*float(s.getNumSamples())/float(s.getNumFuncEvals()) p_summary += ' * efficiency = %.1f%%, mode=%.5f (%s)\n' % (accept_pct, mode, nm) else: naccepts = p.getNumAccepts() nattempts = p.getNumAttempts() if nattempts > 0: accept_pct = 100.0*float(naccepts)/float(nattempts) if nattempts == 1: p_summary += ' accepted %.1f%% of 1 attempt (%s)\n' % (accept_pct, nm) else: p_summary += ' accepted %.1f%% of %d attempts (%s)\n' % (accept_pct, nattempts, nm) else: accept_pct = 0.0 summary += p_summary if self.opts.verbose and summary != '': self.output('\nUpdater diagnostics (* = slice sampler):') self.output(summary) if self.opts.verbose and self.opts.nchains > 1: self.output('Chain swaps (upper: attempted swaps, lower: accepted swaps):') row = '%20s' % 'heating power -->' row += ' '.join(['%12.2f' % self.mcmc_manager.chains[k].heating_power for k in range(self.opts.nchains)]) self.output(row) for ii in range(self.opts.nchains): row = '%20.2f' % (self.mcmc_manager.chains[ii].heating_power,) row += ' '.join(['%12d' % self.mcmc_manager.swap_table[ii][jj] for jj in range(self.opts.nchains)]) self.output(row) self.output() def obsoleteUpdateAllUpdaters(self, chain, chain_index, cycle): # This function abandoned; functionality moved to C++ side # for speed reasons: see MCMCChainManager::updateAllUpdaters #import gc #gc.enable() assert False, 'NOT SUPPOSED TO BE HERE' if self.opts.debugging: tmpf = file('debug_info.txt', 'a') tmpf.write('************** cycle=%d, chain=%d\n' % (cycle,chain_index)) if chain.all_updaters_list is None: chain.all_updaters_list = [(m, m.getWeight()) for m in chain.chain_manager.getAllUpdaters()] chain.all_updaters_list.extend(chain.python_only_moves) for t in chain.all_updaters_list: p, w = t #print "param = %s (weight = %f), chain = %d" % (p.getName(), w, chain_index) for x in range(w): if self.opts.debugging: p.setSaveDebugInfo(True) p.update() #if p.getName() == 'Bush move': # print ' counts after bush move =',gc.get_count() # print ' thresholds =',gc.get_threshold() if self.opts.debugging: tmpf.write('%s | %s\n' % (p.getName(), p.getDebugInfo())) if self.opts.debugging: tmpf.close() def showTopoPriorInfo(self): m = self.mcmc_manager.getColdChain() self.output('\nTopology prior:') if not self.opts.allow_polytomies: self.output(' flat across all fully-resolved tree topologies (polytomies not allowed)') else: if self.opts.polytomy_prior: self.output(' Prior type: polytomy prior') else: self.output(' Prior type: resolution class prior') self.output(' Prior strength (C): %s' % self.opts.topo_prior_C) self.output(' Prior probability for each resolution class:') self.output(' Note: 0.00000000 does *not* mean that the prior is zero! It simply') self.output(' indicates that the prior is less than 0.000000005\n') self.output('%20s %20s' % ('internal nodes', 'prior probability')) self.output('%20s %20s' % ('--------------', '-----------------')) jpm = self.mcmc_manager.getColdChainManager().getJointPriorManager() topo_prior_calculator = jpm.getTopoProbCalculator() topo_priors = topo_prior_calculator.getRealizedResClassPriorsVect() for i,v in enumerate(topo_priors): if i == 0: denom = v # first element of vector is log of normalization constant (sum of all other elements) else: topo_prior = math.exp(v - denom) self.output('%20d %20.8f' % (i,topo_prior)) self.output() def showParamInfo(self, p): if p.computesUnivariatePrior() or p.computesMultivariatePrior() or p.computesTreeLengthPrior(): self.output(' Parameter name: %s' % p.getName()) self.output(' Prior distribution: %s' % p.getPriorDescr()) if p.isMasterParameter(): self.output(' Master parameter (no current value)') else: if p.computesUnivariatePrior(): v = p.getCurrValueFromModel() self.output(' Current value: %s' % v) else: v = p.listCurrValuesFromModel() self.output(' Current value: %s' % ','.join(['%.5f' % x for x in v])) self.output(' Prior log-density: %s' % p.getLnPrior()) self.output() def siteLikeFileOpen(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Opens the site log-likelihood file. """ self.phycassert(self.sitelikef is None, 'Attempt made to open MCMCImpl.sitelikef, but it is already open!') sitelnl_file_spec = self.opts.out.sitelikes try: self.sitelikef = sitelnl_file_spec.open(self.stdout) except: print '*** Attempt to open site log-likelihood file (%s) failed.' % self.opts.out.sitelike.filename if self.sitelikef: print 'Site log-likelihood file was opened successfully' #mcmc.sitelikef = self.sitelikef def siteLikeFileClose(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Closes the site log-likelihood file. """ self.phycassert(self.sitelikef is not None, 'Attempt made to close MCMCImpl.sitelikef, but it is not open!') self.sitelikef.close() self.sitelikef = None def treeFileOpen(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Opens the tree file and writes a translate table. """ tree_file_spec = self.opts.out.trees self.treef = None try: self.treef = tree_file_spec.open(self.stdout) except: print '*** Attempt to open tree file (%s) failed.' % self.opts.out.trees.filename if self.treef: self.mcmc_manager.treeFileHeader(self.treef) def treeFileClose(self): self.treef.write('end;\n') self.treef.close() def paramFileOpen(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Opens the parameter file and writes a header line. """ param_file_spec = self.opts.out.params self.paramf = None try: self.paramf = param_file_spec.open(self.stdout) except: print '*** Attempt to open parameter file (%s) failed.' % self.opts.out.params.filename if self.paramf: self.mcmc_manager.paramFileHeader(self.paramf) self.paramf.write('\n') def paramFileClose(self): if self.paramf is not None: self.paramf.close() def openParameterAndTreeFiles(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Creates parameter and tree file names based on the data file name or the user-supplied prefix and opens the files """ #prefix = self.getPrefix() #self.param_file_name = prefix + '.p' #self.tree_file_name = prefix + '.t' self.paramFileOpen() self.treeFileOpen() def _loadData(self, matrix): self.phycassert(matrix is not None, 'Tried to load data from a non-existant matrix') self.data_matrix = matrix self.taxon_labels = matrix.getTaxLabels() self.ntax = self.data_matrix.getNTax() self.nchar = self.data_matrix.getNChar() # used for Gelfand-Ghosh simulations only self.phycassert(len(self.taxon_labels) == self.ntax, "Number of taxon labels does not match number of taxa.") def cumLagrange(self, which, x, y): xx = x[which] term1 = (xx - x[0])*(y[0] + (xx - x[0])*(y[1] - y[0])/(2.0*(x[1] - x[0]))) term2a = 2.0*(xx**2.0) - xx*x[0] - (x[0]**2.0) + 2.0*x[0]*x[1] - 3.0*xx*x[1] term2b = (y[2] - y[1])/(x[2] - x[1]) - (y[1] - y[0])/(x[1] - x[0]) term2c = (xx - x[0])/(x[2] - x[0]) term2 = term2a*term2b*term2c/6.0 cum = term1 + term2 return cum def getStartingTree(self): # if self.starting_tree is None: # if False: # if self.opts.starting_tree_source == 'file': # self.phycassert(self.data_source, "Specified starting_tree_source to be 'file' when data_source was None (file was not read)") # tree_defs = self.reader.getTrees() # self.phycassert(len(tree_defs) > 0, 'a trees block defining at least one tree must be stored in the nexus data file') # # Grab first tree description in the data file # # TODO allow some other tree than the first # self.starting_tree = tree_defs[0] # elif self.opts.starting_tree_source == 'usertree': # self.starting_tree = Newick(self.opts.tree_topology) # elif self.opts.starting_tree_source == 'random': # self.phycassert(self.ntax > 0, 'expecting ntax to be greater than 0') # self.starting_tree = None # else: # self.phycassert(False, "starting_tree_source should equal 'random', 'file', or 'usertree', but instead it was this: %s" % self.starting_tree_source) # else: # If user failed to specify starting_tree_source, get starting tree from randomtree object # as it is currently configured tr_source = self.opts.starting_tree_source if tr_source is None: tr_source = randomtree() try: tr_source.setActiveTaxonLabels(self.taxon_labels) i = iter(tr_source) # self.starting_tree = i.next() self.starting_tree.append(i.next()) except: self.stdout.error("A starting tree could not be obtained from the starting_tree_source") raise t = self.starting_tree[-1] num_degree_two_nodes = t.deroot() if num_degree_two_nodes > 0: self.stdout.warning("A total of %d degree-2 nodes were removed from tree defined in starting_tree_source" % num_degree_two_nodes) return t def storeRefTreeIfSupplied(self): cold_chain = self.mcmc_manager.getColdChain() # If a reference tree was specified, create that tree now tr_source = self.opts.reference_tree_source if tr_source is not None: try: tr_source.setActiveTaxonLabels(self.taxon_labels) i = iter(tr_source) self.ref_tree = i.next() except: self.stdout.error("A reference tree could not be obtained from the specified reference_tree_source") if self.ref_tree is not None: cold_chain.chain_manager.setRefTree(self.ref_tree) def setup(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ This function is for parts of the setup that should occur right before run() is called. Setup is deferred until this point to give the user a chance to change the default settings before the call to run(). This function does these things: 1) reads the data and ensures that the taxon_labels list is filled with the correct number of taxon labels; 2) creates a starting tree description; 3) creates an appropriate heat_vector 4) calls MCMCManager's createChains function to handle setup for each individual chain; 5) opens the parameter and tree files; and 6) establishes an output log file name if requested """ ds = self.opts.data_source if ds is None: # User apparently wants to run without data self.data_matrix = None self.ntax = self.opts.ntax self.nchar = 0 # used for Gelfand-Ghosh simulations only self.phycassert(self.ntax > 0, 'Number of taxa (mcmc.ntax) should be > 0 if mcmc.data_source is None') self.taxon_labels = ['taxon%d' % (i+1,) for i in range(self.ntax)] else: mat = ds.getMatrix() self.phycassert(mat is not None, 'Data matrix could not be input') self._loadData(mat) self.phycassert(self.ntax > 0, 'Number of taxa in data matrix was 0') #print 'In MCMCImpl.py, function setup():' #print ' mat =', mat #print ' self.nchar = %d' % self.nchar # Next line creates a default partition if a partition was not defined by the user self.opts.partition.validate(self.nchar) # Ask for a partition report, passing self as the reporter (object that has an output function) #self.opts.partition.partitionReport(self) # delayed now until after all_missing has been determined self.models = [m for (n,s,m) in self.opts.partition.subset] self.model_names = [n for (n,s,m) in self.opts.partition.subset] # Perform sanity checks on models for m,n in zip(self.models, self.model_names): #print '==> checking model %s' % n bad_priors = m.checkPriorSupport() self.phycassert(len(bad_priors) == 0, 'In model %s, prior support is incorrect for these parameters:\n%s' % (n,' \n'.join([p for p in bad_priors]))) if m.edgelen_prior is not None: # set both internal and external edge length priors to edgelen_prior m.internal_edgelen_prior = m.edgelen_prior m.external_edgelen_prior = m.edgelen_prior else: # Ensure that user has specified both internal and external edge length priors, or has specified a tree length prior if m.tree_length_prior is None: self.phycassert(m.internal_edgelen_prior is not None, 'In model %s, internal_edgelen_prior cannot be None if edgelen_prior and tree_length_prior are both None' % n) self.phycassert(m.external_edgelen_prior is not None, 'In model %s, external_edgelen_prior cannot be None if edgelen_prior and tree_length_prior are both None' % n) if m.edgelen_hyperprior is not None: # Ensure that both internal and external edgelen priors are Exponential if m.internal_edgelen_prior.getDistName() != 'Exponential': m.internal_edgelen_prior = Exponential(1.0) self.warning('In model %s, internal_edgelen_prior reset to Exponential because edgelen_hyperprior was specified' % n) if m.external_edgelen_prior.getDistName() != 'Exponential': m.external_edgelen_prior = Exponential(1.0) self.warning('In model %s, external_edgelen_prior reset to Exponential because edgelen_hyperprior was specified' % n) # Determine heating levels if multiple chains if self.opts.heat_vector == None: if self.opts.nchains == 1: self.heat_vector = [1.0] else: # Determine vector of powers for each chain self.heat_vector = [] for i in range(self.opts.nchains): # For n=5 chains (1 cold, 4 heated), min_heat_power = 0.5, we have: # lambda = (1 - min_heat_power)/(min_heat_power*(n-1)) # = (1 - 0.5)/(0.5*4) # = 0.25 # 0 1.000 = 1/1.0 cold chain explores posterior # 1 0.800 = 1/1.25 # 2 0.667 = 1/1.50 # 3 0.571 = 1/1.75 # 4 0.500 = 1/2.00 z = self.opts.min_heat_power n = self.opts.nchains lamda = (1.0 - z)/(z*(n - 1.0)) temp = 1.0/(1.0 + float(i)*lamda) self.heat_vector.append(temp) else: # User supplied his/her own heat_vector; perform sanity checks self.heat_vector = self.opts.heat_vector if not self.opts.debug_allow_arbitrary_heating_powers: self.phycassert(1.0 in self.heat_vector, 'user-supplied heat_vector does not allow for a cold chain (one power must be 1.0)') h = list(self.heat_vector) h.sort(reverse=True) if h != self.heat_vector: self.phycassert(False, 'chain heating powers must be in decreasing order') self.phycassert(h[-1] > 0.0, 'all chain heating powers must be positive') self.mcmc_manager.createChains() self.storeRefTreeIfSupplied() self.openParameterAndTreeFiles() cold_chain = self.mcmc_manager.getColdChain() all_missing = cold_chain.likelihood.getListOfAllMissingSites() partition.handleAllMissingSites(all_missing) # Ask for a partition report, passing self as the reporter (object that has an output function) self.opts.partition.partitionReport(self) # If all-missing sites found, need to revise the subset proportions supplied to the # cold chain's subset_relrates_move when the cold chain was created # BETTER IDEA is to give subset_relrates_move a shared pointer to the partition model object # so we don't have multiple copies of the subset proportions in the first place #if partition.getNumSubsets() > 1: # subset_proportions = partition.getSubsetProportions() # cold_chain.subset_relrates_move.setSubsetProportions(subset_proportions) if self.opts.doing_steppingstone_sampling: # start with posterior (ss_beta = 1) and work toward the prior (ss_beta = 0) self.ss_beta = 1.0 cc = self.mcmc_manager.getColdChain() cc.setPower(self.ss_beta) self.siteLikeFileSetup(self.mcmc_manager.getColdChain()) def beyondBurnin(self, cycle): c = cycle + 1 #POLTMP return (c > self.burnin) return (c > 0) def doThisCycle(self, cycle, burnin, mod): if cycle < 0: c = cycle - burnin + 1 else: c = cycle + 1 return ((c % mod) == 0) def getModelIndex(self, name): """ If an updater has name like 'k_rAC', this function will return the model index k-1. If an updater has name like 'rAC_k', this function will return the model index k-1. <-- deprecated If an updater has name 'rAC', returns model index 0. <-- deprecated """ import re mo = re.search('^([0-9]+)_',name) if mo is not None: return int(mo.group(1)) - 1 else: mo = re.search('_([0-9]+)$',name) if mo is not None: return int(mo.group(1)) - 1 else: return 0 ############################ exploreWorkingPrior ############################ def exploreWorkingPrior(self, cycle): # GENERALIZED-STEPPING-STONE chain_index = 0 cold_chain = self.mcmc_manager.getColdChain() tm = phylogeny.TreeManip(cold_chain.tree) jpm = cold_chain.chain_manager.getJointPriorManager() nmodels = cold_chain.partition_model.getNumSubsets() unpartitioned = (nmodels == 1) tree_length_prior_specified = (cold_chain.likelihood.getTreeLengthPrior() is not None) #new_edge_lens = [] #new_internal_edge_lens = None #new_external_edge_lens = None all_updaters = cold_chain.chain_manager.getAllUpdaters() edge_lens_need_updating = True for u in all_updaters: # good candidate for moving into C++ if u.isFixed() or not u.isPriorSteward(): continue name = u.getName() if name.find('edgelen_hyper') > -1: # draw an edge length hyperparameter value that applies to all edges edgelen_hyperparam = u.sampleWorkingPrior() m = cold_chain.partition_model.getModel(0) cold_chain.chain_manager.setEdgeLenHyperparam(0, edgelen_hyperparam) m.getInternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions m.getExternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions jpm.edgeLenHyperparamModified(name, cold_chain.tree, edgelen_hyperparam) elif name.find('external_hyper') > -1: # draw an edge length hyperparameter value for external edges edgelen_hyperparam = u.sampleWorkingPrior() cold_chain.chain_manager.setEdgeLenHyperparam(0, edgelen_hyperparam) m = cold_chain.partition_model.getModel(0) self.phycassert(m.isSeparateInternalExternalEdgeLenPriors(), "found updater named 'external_hyper' but isSeparateInternalExternalEdgeLenPriors returns False") m.getExternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions jpm.edgeLenHyperparamModified(name, cold_chain.tree, edgelen_hyperparam) elif name.find('internal_hyper') > -1: # draw an edge length hyperparameter value for external edges edgelen_hyperparam = u.sampleWorkingPrior() cold_chain.chain_manager.setEdgeLenHyperparam(1, edgelen_hyperparam) m = cold_chain.partition_model.getModel(0) self.phycassert(m.isSeparateInternalExternalEdgeLenPriors(), "found updater named 'internal_hyper' but isSeparateInternalExternalEdgeLenPriors returns False") m.getInternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions jpm.edgeLenHyperparamModified(name, cold_chain.tree, edgelen_hyperparam) elif name.find('subset_relrates') > -1: # C++ class SubsetRelRatesMove rates_vector = u.sampleMultivariateWorkingPrior() cold_chain.partition_model.setSubsetRelRatesVect(rates_vector) jpm.multivariateModified(name, rates_vector) elif name.find('relrates') > -1: # C++ class RelRatesMove i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) rate_vector = u.sampleMultivariateWorkingPrior() m.setRelRates(rate_vector) jpm.multivariateModified(name, rate_vector) elif name.find('state_freqs') > -1: # C++ class StateFreqMove i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) freq_vector = u.sampleMultivariateWorkingPrior() m.setStateFreqsUnnorm(freq_vector) jpm.multivariateModified(name, freq_vector) elif name.find('gamma_shape') > -1: # C++ class DiscreteGammaShapeParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) new_gamma_shape = u.sampleWorkingPrior() m.setShape(new_gamma_shape) jpm.univariateModified(name, new_gamma_shape) elif name.find('pinvar') > -1: # C++ class PinvarParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) new_pinvar = u.sampleWorkingPrior() m.setPinvar(new_pinvar) jpm.univariateModified(name, new_pinvar) elif name.find('kappa') > -1: # C++ class KappaParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) new_kappa = u.sampleWorkingPrior() m.setKappa(new_kappa) jpm.univariateModified(name, new_kappa) elif name.find('rAC') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) rr = list(m.getRelRates()) new_rAC = u.sampleWorkingPrior() rr[0] = new_rAC m.setRelRates(rr) jpm.univariateModified(name, new_rAC) elif name.find('rAG') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) rr = list(m.getRelRates()) new_rAG = u.sampleWorkingPrior() rr[1] = new_rAG m.setRelRates(rr) jpm.univariateModified(name, new_rAG) elif name.find('rAT') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) rr = list(m.getRelRates()) new_rAT = u.sampleWorkingPrior() rr[2] = new_rAT m.setRelRates(rr) jpm.univariateModified(name, new_rAT) elif name.find('rCG') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) rr = list(m.getRelRates()) new_rCG = u.sampleWorkingPrior() rr[3] = new_rCG m.setRelRates(rr) jpm.univariateModified(name, new_rCG) elif name.find('rCT') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) rr = list(m.getRelRates()) new_rCT = u.sampleWorkingPrior() rr[4] = new_rCT m.setRelRates(rr) jpm.univariateModified(name, new_rCT) elif name.find('rGT') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) rr = list(m.getRelRates()) new_rGT = u.sampleWorkingPrior() rr[5] = new_rGT m.setRelRates(rr) jpm.univariateModified(name, new_rGT) elif name.find('freqA') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) new_freqA = u.sampleWorkingPrior() m.setStateFreqUnnorm(0, new_freqA) jpm.univariateModified(name, new_freqA) elif name.find('freqC') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) new_freqC = u.sampleWorkingPrior() m.setStateFreqUnnorm(1, new_freqC) jpm.univariateModified(name, new_freqC) elif name.find('freqG') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) new_freqG = u.sampleWorkingPrior() m.setStateFreqUnnorm(2, new_freqG) jpm.univariateModified(name, new_freqG) elif name.find('freqT') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = cold_chain.partition_model.getModel(i) new_freqT = u.sampleWorkingPrior() m.setStateFreqUnnorm(3, new_freqT) jpm.univariateModified(name, new_freqT) elif (name.find('extedge') > -1) or (name.find('intedge') > -1): # C++ class EdgeLenParam self.phycassert(self.opts.fix_topology, 'There is an EdgeLenParam updater but mcmc.fix_topology is False. This is a bug: please report it to [email protected]') edgelen = u.sampleWorkingPrior() u.sendCurrValueToModel(edgelen) jpm.univariateModified(name, edgelen) edge_lens_need_updating = False #elif name.find('master_edgelen') > -1: # C++ class EdgeLenMasterParam # num_edge_lens = cold_chain.tree.getNNodes() - 1 # new_edge_lens = [u.sampleWorkingPrior() for j in range(num_edge_lens)] #elif name.find('external_edgelen') > -1: # C++ class EdgeLenMasterParam # num_edge_lens = cold_chain.tree.getNTips() - 1 # new_external_edge_lens = [u.sampleWorkingPrior() for j in range(num_edge_lens)] #elif name.find('internal_edgelen') > -1: # C++ class EdgeLenMasterParam # num_edge_lens = cold_chain.tree.getNInternals() # new_internal_edge_lens = [u.sampleWorkingPrior() for j in range(num_edge_lens)] elif name == 'larget_simon_local': # Sample a new tree and edge lengths from the topology reference distribution # Note: this really has nothing to do with the Larget-Simon move, but if there # is a larget_simon_local updater present, it means that the topology is being # updated and is not fixed self.phycassert(not self.opts.fix_topology, 'There is a larget_simon_local move updater but mcmc.fix_topology is True. This is a bug: please report it to [email protected]') u.sampleWorkingPrior() edge_lens_need_updating = False jpm.allEdgeLensModified(cold_chain.tree) jpm.topologyModified("tree_topology", cold_chain.tree) else: self.phycassert(0, 'model uses an updater (%s) that has not yet been added to MCMCImpl.exploreWorkingPrior (workaround: specify mcmc.draw_directly_from_prior = False)' % name) if edge_lens_need_updating and tree_length_prior_specified and cold_chain.likelihood.getTreeLengthRefDist(): # all edge lengths must be drawn from the tree length working prior tm.setRandomEdgeLensFromTreeLengthDist(cold_chain.likelihood.getTreeLengthRefDist()) jpm.treeLengthModified('tree_length', cold_chain.tree) #if new_internal_edge_lens is not None: # # Case of a separate master edge length parameter for internals and tips # self.phycassert(new_external_edge_lens is not None, 'not expecting new_external_edge_lens to be None in MCMCImpl.exploreWorkingPrior') # i = 0 # indexes internals # j = 0 # indexes tips # for nd in cold_chain.tree: # if nd.isRoot(): # continue # elif nd.isInternal(): # nd.setEdgeLen(new_internal_edge_lens[i]) # i += 1 # elif nd.isTip(): # nd.setEdgeLen(new_external_edge_lens[j]) # j += 1 # else: # self.phycassert(0, 'nd is neither a tip nor an internal node in MCMCImpl.exploreWorkingPrior') #if cold_chain.likelihood.getTreeLengthRefDist(): # # all edge lengths must be drawn from the tree length working prior # tm.setRandomEdgeLensFromTreeLengthDist(cold_chain.likelihood.getTreeLengthRefDist()) # jpm.treeLengthModified('tree_length', cold_chain.tree) # # #tl_ref_dist = cold_chain.likelihood.getTreeLengthRefDist() # #num_taxa = cold_chain.tree.getNTips() # #new_edge_lens = tl_ref_dist.sample(num_taxa) # #new_external_edge_lens = new_edge_lens[:num_taxa] # #new_internal_edge_lens = new_edge_lens[num_taxa:] # #iInternal = 0 # #iExternal = 0 # #for nd in cold_chain.tree: # # if nd.isRoot(): # # continue # # if nd.isTip() or nd.getParent().isTip(): # # nd.setEdgeLen(new_external_edge_lens[iExternal]) # # iExternal += 1 # # else: # # nd.setEdgeLen(new_internal_edge_lens[iInternal]) # # iInternal += 1 #elif edge_lens_need_updating: # # fixed topology (and hence each edge has its own length parameter) # self.phycassert(len(new_edge_lens) == cold_chain.tree.getNNodes() - 1, 'new_edge_lens has %d elements but expecting %d in MCMCImpl.exploreWorkingPrior' % (len(new_edge_lens), cold_chain.tree.getNNodes() - 1)) # i = 0 # for nd in cold_chain.tree: # if nd.isRoot(): # continue # nd.setEdgeLen(new_edge_lens[i]) # i += 1 # replace the model cold_chain.prepareForLikelihood() cold_chain.likelihood.replaceModel(cold_chain.partition_model) # recalculate the likelihood cold_chain_manager = self.mcmc_manager.getColdChainManager() cold_chain_manager.refreshLastLnLike() #TODO what about polytomies? ############################ end exploreWorkingPrior ############################ def explorePrior(self, cycle): chain_index = 0 chain = self.mcmc_manager.getColdChain() tm = phylogeny.TreeManip(chain.tree) if self.opts.debugging: tmpf = file('debug_info.txt', 'a') tmpf.write('************** cycle=%d, chain=%d\n' % (cycle,chain_index)) edgelens_generated = False nmodels = chain.partition_model.getNumSubsets() unpartitioned = (nmodels == 1) tree_length_prior_specified = (chain.likelihood.getTreeLengthPrior() is not None) jpm = chain.chain_manager.getJointPriorManager() for p in chain.chain_manager.getAllUpdaters(): if p.isFixed(): continue w = p.getWeight() name = p.getName() if (name.find('edgelen_hyper') > -1) or (name.find('external_hyper') > -1) or (name.find('internal_hyper') > -1): # C++ class HyperPriorParam self.phycassert(not tree_length_prior_specified, 'Cannot specify edge length hyperpriors and tree length prior simultaneously') if not edgelens_generated: # Choose hyperparam, then use it to choose new edge lengths for a newly-created tree m = chain.partition_model.getModel(0) if m.isSeparateInternalExternalEdgeLenPriors(): # draw an edge length hyperparameter value for external edges edgelen_hyperparam = m.getEdgeLenHyperPrior().sample() chain.chain_manager.setEdgeLenHyperparam(0, edgelen_hyperparam) m.getExternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions jpm.edgeLenHyperparamModified('external_hyper', chain.tree, edgelen_hyperparam) # draw an edge length hyperparameter value for internal edges edgelen_hyperparam = m.getEdgeLenHyperPrior().sample() chain.chain_manager.setEdgeLenHyperparam(1, edgelen_hyperparam) m.getInternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions jpm.edgeLenHyperparamModified('internal_hyper', chain.tree, edgelen_hyperparam) else: # draw an edge length hyperparameter value that applies to all edges edgelen_hyperparam = m.getEdgeLenHyperPrior().sample() chain.chain_manager.setEdgeLenHyperparam(0, edgelen_hyperparam) m.getInternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions m.getExternalEdgeLenPrior().setMeanAndVariance(1.0/edgelen_hyperparam, 0.0) # 2nd arg. (variance) ignored for exponential distributions jpm.edgeLenHyperparamModified('edgelen_hyper', chain.tree, edgelen_hyperparam) if self.opts.fix_topology: tm.setRandomInternalExternalEdgeLengths(m.getInternalEdgeLenPrior(), m.getExternalEdgeLenPrior()) else: tm.equiprobTree(chain.tree.getNTips(), chain.r, m.getInternalEdgeLenPrior(), m.getExternalEdgeLenPrior()) edgelens_generated = True elif name.find('master_edgelen') > -1: pass elif name.find('external_edgelen') > -1: pass elif name.find('internal_edgelen') > -1: pass elif name.find('intedge_') > -1: pass elif name.find('extedge_') > -1: pass elif name.find('subset_relrates') > -1: new_subset_relrate_vector = chain.partition_model.getSubsetRelRatePrior().sample() chain.partition_model.setSubsetRelRatesVect(new_subset_relrate_vector) jpm.multivariateModified(name, new_subset_relrate_vector) elif name.find('kappa') > -1: # C++ class KappaParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_kappa = m.getKappaPrior().sample() m.setKappa(new_kappa) jpm.univariateModified(name, new_kappa) elif name.find('omega') > -1: # C++ class OmegaParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_omega = m.getOmegaPrior().sample() m.setOmega(new_omega) jpm.univariateModified(name, new_omega) elif name.find('rAC') > -1: # C++ class GTRRateParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_rAC = m.getRelRateParamPrior().sample() m.setRelRateUnnorm(0, new_rAC) jpm.univariateModified(name, new_rAC) elif name.find('rAG') > -1: # C++ class GTRRateParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_rAG = m.getRelRateParamPrior().sample() m.setRelRateUnnorm(1, new_rAG) jpm.univariateModified(name, new_rAG) elif name.find('rAT') > -1: # C++ class GTRRateParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_rAT = m.getRelRateParamPrior().sample() m.setRelRateUnnorm(2, new_rAT) jpm.univariateModified(name, new_rAT) elif name.find('rCG') > -1: # C++ class GTRRateParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_rCG = m.getRelRateParamPrior().sample() m.setRelRateUnnorm(3, new_rCG) jpm.univariateModified(name, new_rCG) elif name.find('rCT') > -1: # C++ class GTRRateParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_rCT = m.getRelRateParamPrior().sample() m.setRelRateUnnorm(4, new_rCT) jpm.univariateModified(name, new_rCT) elif name.find('rGT') > -1: # C++ class GTRRateParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_rGT = m.getRelRateParamPrior().sample() m.setRelRateUnnorm(5, new_rGT) jpm.univariateModified(name, new_rGT) elif name.find('freqA') > -1: # C++ class StateFreqParam new_freq_param_A = m.getStateFreqParamPrior().sample() m.setStateFreqParam(0, new_freq_param_A) jpm.univariateModified(name, new_freq_param_A) elif name.find('freqC') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_freq_param_C = m.getStateFreqParamPrior().sample() m.setStateFreqParam(1, new_freq_param_C) jpm.univariateModified(name, new_freq_param_C) elif name.find('freqG') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_freq_param_G = m.getStateFreqParamPrior().sample() m.setStateFreqParam(2, new_freq_param_G) jpm.univariateModified(name, new_freq_param_G) elif name.find('freqT') > -1: # C++ class StateFreqParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_freq_param_T = m.getStateFreqParamPrior().sample() m.setStateFreqParam(3, new_freq_param_T) jpm.univariateModified(name, new_freq_param_T) elif name.find('gamma_shape') > -1: # C++ class DiscreteGammaShapeParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_gamma_shape = m.getDiscreteGammaShapePrior().sample() m.setShape(new_gamma_shape) jpm.univariateModified(name, new_gamma_shape) elif name.find('pinvar') > -1: # C++ class PinvarParam i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) new_pinvar = m.getPinvarPrior().sample() m.setPinvar(new_pinvar) jpm.univariateModified(name, new_pinvar) elif name.find('relrates') > -1: # C++ class RelRatesMove i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) rate_vector = m.getRelRatePrior().sample() # Drawing values from a Dirichlet prior, but relative rates should have mean 1, not sum 1, # so multiply each by the value nmodels to correct this. m.setRelRates([6.0*x for x in rate_vector]) jpm.multivariateModified(name, rate_vector) elif name.find('state_freqs') > -1: # C++ class StateFreqMove i = unpartitioned and 0 or self.getModelIndex(name) m = chain.partition_model.getModel(i) freq_vector = m.getStateFreqPrior().sample() m.setStateFreqsUnnorm(freq_vector) jpm.multivariateModified(name, freq_vector) elif name.find('edge_move') > -1: # C++ class EdgeMove pass elif name.find('larget_simon_local') > -1: # C++ class LargetSimonMove pass elif name.find('tree_scaler') > -1: # C++ class TreeScalerMove pass elif name.find('bush_move') > -1: # C++ class BushMove pass # polytomies handled further down (by randomly pruning fully-resolved equiprobable tree) else: self.phycassert(0, 'model uses an updater (%s) that has not yet been added to MCMCImpl.explorePrior (workaround: specify mcmc.draw_directly_from_prior = False)' % name) # If no edge length hyperprior was specified, then build the tree with edge lengths now if tree_length_prior_specified: if not edgelens_generated: m = chain.partition_model.getModel(0) if self.opts.fix_topology: tm.setRandomEdgeLensFromTreeLengthDist(chain.likelihood.getTreeLengthPrior()) else: tm.buildEquiprobTree(chain.tree.getNTips(), chain.r) if self.opts.allow_polytomies and not self.opts.fix_topology: # Choose number of internal nodes jpm = self.mcmc_manager.getColdChainManager().getJointPriorManager() topo_prior_calculator = jpm.getTopoProbCalculator() num_internal_nodes = topo_prior_calculator.sample(chain.r) # Delete edges at random from tree to achieve chosen number of internal nodes orig_num_internal_nodes = chain.tree.getNInternals() num_internals_to_delete = orig_num_internal_nodes - num_internal_nodes for i in range(num_internals_to_delete): tm.deleteRandomInternalEdge(chain.r) if not self.opts.fix_topology: tm.setRandomEdgeLensFromTreeLengthDist(chain.likelihood.getTreeLengthPrior()) jpm.treeLengthModified('tree_length', chain.tree) else: if not edgelens_generated: m = chain.partition_model.getModel(0) if self.opts.fix_topology: tm.setRandomInternalExternalEdgeLengths(m.getInternalEdgeLenPrior(), m.getExternalEdgeLenPrior()) else: tm.equiprobTree(chain.tree.getNTips(), chain.r, m.getInternalEdgeLenPrior(), m.getExternalEdgeLenPrior()) if self.opts.allow_polytomies: # Choose number of internal nodes jpm = self.mcmc_manager.getColdChainManager().getJointPriorManager() topo_prior_calculator = jpm.getTopoProbCalculator() num_internal_nodes = topo_prior_calculator.sample(chain.r) # Delete nodes at random from tree to achieve chosen number of internal nodes orig_num_internal_nodes = chain.tree.getNInternals() num_internals_to_delete = orig_num_internal_nodes - num_internal_nodes for i in range(num_internals_to_delete): tm.deleteRandomInternalEdge(chain.r) jpm.allEdgeLensModified(chain.tree) #jpm.externalEdgeLensModified('external_edgelen', chain.tree) #jpm.internalEdgeLensModified('internal_edgelen', chain.tree) if not self.opts.fix_topology: jpm.topologyModified('tree_topology', chain.tree) chain.prepareForLikelihood() chain.likelihood.replaceModel(chain.partition_model) if False: # debugging code chain.likelihood.storeSiteLikelihoods(True) from phycas.Utilities.kappa2tratio import convert f = chain.model.getStateFreqs() k = convert(chain.model.getKappa(), f[0], f[1], f[2], f[3]) print 'cycle = %d, model = %s' % (cycle + 1, chain.model.getModelName()) print ' lset tratio=%.5f basefreq=(%.5f %.5f %.5f) rates=gamma ncat=4 shape=%.5f;' % (k, f[0], f[1], f[2], chain.model.getShape()) print 'taxon names:', self.opts.data_source.taxon_labels chain.tree.rectifyNames(self.opts.data_source.taxon_labels) print ' utree one = %s;' % chain.tree.makeNewick() print ' sum of edge lengths = %.5f' % chain.tree.edgeLenSum() # recalculate the likelihood cold_chain_manager = self.mcmc_manager.getColdChainManager() cold_chain_manager.refreshLastLnLike() if False: # debugging code counts = chain.likelihood.getPatternCounts() sitelikes = chain.likelihood.getSiteLikelihoods() print ' lnL = %.6f' % cold_chain_manager.getLastLnLike() sumlikes = 0.0 for sitelike,count in zip(sitelikes, counts): if count > 100: print '%6.0f -> %12.5f' % (count, sitelike) sumlikes += count*sitelike if self.opts.debugging: tmpf.close() #POLTMP def computeTimeRemaining(self, secs, ndone, ntotal): def computeTimeRemaining(self, secs, cycle_start, cycle_stop, cycle): if self.opts.doing_steppingstone_sampling: num_betas_completed = self.ss_sampled_betas.index(self.ss_beta) num_betas_total = len(self.ss_sampled_betas) else: num_betas_completed = 0 num_betas_total = 1 ndone = (cycle_stop - cycle_start)*num_betas_completed + (cycle - cycle_start) ntotal = (cycle_stop - cycle_start)*num_betas_total if ndone < 1: return '' days_remaining = 0 hours_remaining = 0 secs_remaining = float(secs)*(float(ntotal)/float(ndone) - 1.0) #print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' #print '~~~ secs =',secs #print '~~~ cycle_start =',cycle_start #print '~~~ cycle_stop =',cycle_stop #print '~~~ cycle =',cycle #print '~~~ num_betas_completed =',num_betas_completed #print '~~~ num_betas_total =',num_betas_total #print '~~~ ndone =',ndone #print '~~~ ntotal =',ntotal #print '~~~ ntotal/ndone =',(float(ntotal)/float(ndone)) #print '~~~ secs_remaining =',secs_remaining #print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' time_left = [] if secs_remaining > 86400.0: days_remaining = math.floor(secs_remaining/86400.0) secs_remaining -= 86400.0*days_remaining if days_remaining > 0: if days_remaining == 1: time_left.append('1 day') else: time_left.append('%d days' % days_remaining) if secs_remaining > 3600.0: hours_remaining = math.floor(secs_remaining/3600.0) secs_remaining -= 3600.0*hours_remaining if hours_remaining > 0: if hours_remaining == 1: time_left.append('1 hour') else: time_left.append('%d hours' % hours_remaining) if secs_remaining > 60.0: minutes_remaining = math.floor(secs_remaining/60.0) secs_remaining -= 60.0*minutes_remaining if minutes_remaining > 0: if minutes_remaining == 1 and (days_remaining + hours_remaining) == 0: time_left.append('less than 2 minutes') else: time_left.append('%d minutes' % minutes_remaining) if len(time_left) > 0: return ', '.join(time_left) + ' remaining' elif math.floor(secs_remaining) == 1: return '1 second remaining' else: return '%d seconds remaining' % math.floor(secs_remaining) def mainMCMCLoop(self, explore_prior = False): levels_file_created = False #temp! nchains = len(self.mcmc_manager.chains) # print '******** nchains =',nchains self.last_adaptation = 0 #POLTMP self.next_adaptation = self.opts.adapt_first CPP_UPDATER = True # if False, uses python obsoleteUpdateAllUpdaters # self.debugShowTuningParameters() #POLTMP for cycle in xrange(self.burnin + self.ncycles): cycle = self.cycle_start done = False burning_in = True while not done: if cycle == 0: # switching from burnin to sampling, tell chains to stop adapting themselves burning_in = False for c in self.mcmc_manager.chains: c.chain_manager.setAdapting(False) #POLTMP assert cycle < 0 or burning_in == False, 'should not be adapting chains during sampling phases' # Update all updaters if explore_prior and self.opts.draw_directly_from_prior: if self.opts.ss_heating_likelihood or not self.opts.doing_steppingstone_sampling: # MCMC without data, TI, or specific SS self.explorePrior(cycle) else: # generalized SS self.exploreWorkingPrior(cycle) else: for i,c in enumerate(self.mcmc_manager.chains): if CPP_UPDATER: c.chain_manager.updateAllUpdaters() else: self.obsoleteUpdateAllUpdaters(c, i, cycle) # Attempt to swap two random chains if nchains > 1: self.mcmc_manager.attemptChainSwap(cycle) # Provide progress report to user if it is time if self.opts.verbose and self.doThisCycle(cycle, self.burnin, self.opts.report_every): # Refresh log-likelihood of cold chain if necessary if self.ss_beta == 0.0: self.mcmc_manager.getColdChainManager().refreshLastLnLike() self.stopwatch.normalize() secs = self.stopwatch.elapsedSeconds() #POLTMP time_remaining = self.computeTimeRemaining(secs, self.cycle_start + cycle + 1, self.cycle_stop) time_remaining = self.computeTimeRemaining(secs, self.cycle_start, self.cycle_stop, cycle) if time_remaining != '': time_remaining = '(' + time_remaining + ')' if self.opts.doing_steppingstone_sampling: cold_chain_manager = self.mcmc_manager.getColdChainManager() msg = 'beta = %.5f, cycle = %d, lnL = %.5f %s' % (self.ss_beta, cycle + 1, cold_chain_manager.getLastLnLike(), time_remaining) else: if nchains == 1: cold_chain_manager = self.mcmc_manager.getColdChainManager() msg = 'cycle = %d, lnL = %.5f %s' % (cycle + 1, cold_chain_manager.getLastLnLike(), time_remaining) else: msg = 'cycle = %d, ' % (cycle + 1) for k in range(nchains): c = self.mcmc_manager.chains[k] msg += 'lnL(%.3f) = %.5f, ' % (c.heating_power, c.chain_manager.getLastLnLike()) msg += '%s' % time_remaining self.output(msg) # Sample chain if it is time #POLTMP if self.beyondBurnin(cycle) and self.doThisCycle(cycle - self.burnin, self.opts.sample_every): if self.beyondBurnin(cycle) and self.doThisCycle(cycle, self.burnin, self.opts.sample_every): # Refresh log-likelihood(s) if necessary if self.ss_beta == 0.0: for i,c in enumerate(self.mcmc_manager.chains): # is this necessary? c.chain_manager.refreshLastLnLike() #POLTMP self.mcmc_manager.recordSample(self.cycle_start + cycle) self.mcmc_manager.recordSample(cycle) cold_chain_manager = self.mcmc_manager.getColdChainManager() sampled_lnL = cold_chain_manager.getLastLnLike() self.ss_sampled_likes[self.ss_beta_index].append(sampled_lnL) self.stopwatch.normalize() # Adapt slice samplers if it is time #POLTMP if self.doThisCycle(cycle, self.burnin, self.next_adaptation): #POLTMP self.adaptSliceSamplers() #POLTMP self.next_adaptation += 2*(self.next_adaptation - self.last_adaptation) #POLTMP self.last_adaptation = cycle + 1 if cycle < 0: self.adaptSliceSamplers() if self.doThisCycle(cycle, self.burnin, self.opts.report_efficiency_every): self.reportUpdaterEfficiency() # self.debugShowTuningParameters() # Recalculate joint prior to avoid creeping round-off error jpm = self.mcmc_manager.getColdChainManager().getJointPriorManager() jpm.recalcLogJointPrior() cycle += 1 #POLTMP if cycle == self.cycle_stop: done = True #POLTMP self.cycle_start += self.burnin + self.ncycles #POLTMP self.cycle_start = self.cycle_stop #POLTMP self.cycle_stop = self.cycle_start + self.ncycles #def _isTreeLengthPriorBeingUsed(self): # #---+----|----+----|----+----|----+----|----+----|----+----|----+----| # """ # Returns True if tree length prior is defined, False otherwise. # """ # cold_chain = self.mcmc_manager.getColdChain() # m0 = cold_chain.partition_model.getModel(0) # return bool(m0.getTreeLengthPrior()) def _createRefDistMap(self, fn): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Takes a file name and from the contents of the file creates a focal tree and an associative array that matches reference distributions (values) with parameter names (keys). The first line is a tree definition with embedded clade posteriors. Lines following the first are reference distribution definitions, one per line. The file fn looks like this: (1:1.00000,3:1.00000,((2:1.00000,(8:1.00000,5:1.00000):1.00000):1.00000,((9:1.00000,6:1.00000):1.00000,(4:1.00000,(10:1.00000,7:1.00000):1.00000):1.00000):1.00000):1.00000) split_-----*--*- = Gamma(10.6102,0.00119215) split_-********* = Gamma(154.718,0.000845338) split_-----*---- = Gamma(112.402,0.000775574) split_------*--- = Gamma(74.0985,0.000784768) split_-------*-- = Gamma(138.733,0.000884312) split_------*--* = Gamma(29.9702,0.00115743) split_--*------- = Gamma(87.8519,0.000947885) split_--------*- = Gamma(101.101,0.000771077) split_-*--*--*-- = Gamma(2.27518,0.00139715) split_---------* = Gamma(87.2539,0.00083153) split_---*------ = Gamma(125.99,0.000793145) split_----*----- = Gamma(76.5084,0.000925474) split_-*-******* = Gamma(14.437,0.00150977) split_---*-**-** = Gamma(24.95,0.00127126) split_---*--*--* = Gamma(0.977012,0.00117438) split_----*--*-- = Gamma(32.8486,0.00113388) split_-*-------- = Gamma(106.928,0.000846824) split_NA = Gamma(2.37343,0.0256837) tree_length = TreeLengthDist(1226.6,1183.64,12.6972,0.227628) 1_state_freqs = Dirichlet((559.71489, 531.95324, 507.49159, 685.90371)) 1_kappa = Gamma(249.30762, 0.01510) """ cold_chain = self.mcmc_manager.getColdChain() m0 = cold_chain.partition_model.getModel(0) is_tree_length_prior = bool(m0.getTreeLengthPrior()) ref_dist_map = {} lines = open(fn, 'r').readlines() for line in lines[1:]: stripped = line.strip() if len(stripped) == 0 or stripped[0] == '#': continue # skip blank lines and comment lines k,v = line.split('=') #print '_createRefDistMap: k = |%s|' % k.strip() if k.strip() == 'tree_length' and not is_tree_length_prior: # Don't create a reference distribution for tree length if not using the tree length prior pass else: # Create reference distribution object and add to map name = k.strip() dist = eval(v.strip()) ref_dist_map[name] = dist ref_dist_tree_newick = lines[0] # this is just the tree definition string, not a tree object return (ref_dist_tree_newick,ref_dist_map) def _addRefDistsToJointPriorManager(self, ref_dist_map): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Adds all reference distributions stored in supplied ref_dist_map to the joint prior manager. """ cold_chain = self.mcmc_manager.getColdChain() jpm = cold_chain.chain_manager.getJointPriorManager() for k in ref_dist_map.keys(): key_name = k + '_ref' distr = ref_dist_map[k] distr_name = distr.__class__.__name__ if distr_name in ['Normal', 'InverseGamma', 'Gamma', 'Beta', 'BetaPrime']: jpm.addUnivariateDistribution(key_name, distr, distr.sample()) elif distr_name in ['Dirichlet', 'RelativeRateDistribution']: jpm.addMultivariateDistribution(key_name, distr, distr.sample()) elif distr_name == 'TreeLengthDist': jpm.addTreeLengthDistribution(key_name, distr, cold_chain.tree) else: self.phycassert(False, 'MCMCImpl._addRefDistsToJointPriorManager: Need to add "%s" case' % distr_name) def _loadReferenceDistribution(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ User has specified a file containing the reference distribution definitions. Read this file and call _createRefDistMap to instantiate and store the reference distributions. The reference tree newick string is parsed and a reference tree created. Edge lengths in the newick tree description are assumed to be posterior clade probabilities. """ ref_dist_tree,ref_dist_map = self._createRefDistMap(self.opts.ssobj.refdistfile) #self._addRefDistsToJointPriorManager(ref_dist_map) # Build the reference tree from the description in ref_dist_tree focal_tree = TreeCollection(newick=ref_dist_tree).trees[0] ntips = focal_tree.getNObservables() focal_tree.recalcAllSplits(ntips) nd = focal_tree.getFirstPreorder() assert nd.isRoot(), 'the first preorder node should be the root' focal_root_number = nd.getNodeNumber() self.phycassert(focal_tree.hasEdgeLens(), 'focal tree from reference distribution must have edge lengths (which will be interpreted as split posteriors)') nd = nd.getNextPreorder() while nd: # Determine whether this split represents an internal or tip node if not (nd.isTip() or nd.getParent().isRoot()): split_prob = nd.getEdgeLen() if split_prob == 0.0: split_prob = 0.001 nd.setEdgeLen(split_prob) if split_prob == 1.0: split_prob = 0.999 nd.setEdgeLen(split_prob) self.phycassert(split_prob > 0.0 and split_prob < 1.0, 'Split probabilities must be in the range (0, 1)') s = nd.getSplit() if s.isBitSet(0): s.invertSplit() nd = nd.getNextPreorder() # Be sure trees for all chains are rooted with the same taxon as the reference tree # but only if fix_topology is False (if fix_topology is True, the reference tree is # irrelevant and rerooting the tree will cause problems because edge-specific updaters # have already been created based on the current rooting) if not self.opts.fix_topology: for i,chain in enumerate(self.mcmc_manager.chains): t = chain.getTree() t.rerootAtTip(focal_root_number) # Instantiate tree topology probability calculator, which is used to generate trees # from the topology reference distribution topo_ref_dist_calculator = likelihood.FocalTreeTopoProbCalculatorBase(focal_tree) # Inform tree topology probability calculator of edge length reference distributions prefix = 'split_' default_edge_len = None for k, v in ref_dist_map.iteritems(): if k.lower().startswith(prefix): split_rep = k[len(prefix):] # get back end of name (part after prefix) v.setLot(self._getLot()) if split_rep.lower() == 'na': assert(default_edge_len is None) topo_ref_dist_calculator.setDefaultEdgeLenDist(v) else: s = phylogeny.SplitBase() s.createFromPattern(split_rep) #print split_rep, v, s.createPatternRepresentation() topo_ref_dist_calculator.setEdgeLenDist(s, v) return topo_ref_dist_calculator, ref_dist_map def _provideRefDistToUpdaters(self, cold_chain, topo_ref_dist_calculator, ref_dist_map): #print '#@#@#@#@#@#@# ref_dist_map.keys() -->',ref_dist_map.keys() if self.opts.fix_topology and 'tree_length' in ref_dist_map.keys(): cold_chain.likelihood.setTreeLengthRefDist(ref_dist_map['tree_length'].cloneAndSetLot(self._getLot())) all_updaters = cold_chain.chain_manager.getAllUpdaters() for u in all_updaters: if u.isFixed(): continue else: u.setUseWorkingPrior(True) updater_name = u.getName() #print '~o~o~o~o~o~o~o~o~ updater_name =',updater_name if updater_name in ['master_edgelen','external_edgelen','internal_edgelen'] and not self.opts.fix_topology: # larget_simon_local takes over this role for variable topology steppingstone analyses u.setUseWorkingPrior(False) u.setPrior(None); u.setMultivarPrior(None); if u.useWorkingPrior(): if u.computesUnivariatePrior(): try: d = ref_dist_map[updater_name].cloneAndSetLot(self._getLot()) except KeyError: # Probably an edge length updater with name like 'intedge_1001' (whereas keys in ref_dist_map have names like 'split_-**-') self.phycassert(u.__class__.__name__ == "EdgeLenParam", 'Expecting updater to be an EdgeLenParam. This is a bug: please report this to Paul Lewis ([email protected])') split_key = 'split_%s' % u.getSplitReprAsString() d = ref_dist_map[split_key].cloneAndSetLot(self._getLot()) u.setWorkingPrior(d) #self.output(' %s = %s' % (updater_name, u.getWorkingPriorDescr())) elif u.computesMultivariatePrior(): u.setMultivariateWorkingPrior(ref_dist_map[updater_name].cloneAndSetLot(self._getLot())) #self.output(' %s = %s' % (updater_name, u.getWorkingPriorDescr())) elif u.computesTopologyPrior(): u.setReferenceDistribution(topo_ref_dist_calculator) def steppingstoneMCMC(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Performs a Steppingstone MCMC analysis. """ nchains = len(self.mcmc_manager.chains) self.phycassert(self.data_matrix is not None, 'steppingstone sampling requires data') self.phycassert(nchains == 1, 'steppingstone sampling currently requires nchains = 1') chain = self.mcmc_manager.getColdChain() if not self.opts.ssobj.refdist_is_prior: topo_ref_dist_calculator, ref_dist_map = self._loadReferenceDistribution() self._provideRefDistToUpdaters(chain, topo_ref_dist_calculator, ref_dist_map) # Compute the current log-likelihood and log-prior in case first updater # is a move and will thus depend on these quantities being accurate for c in self.mcmc_manager.chains: c.chain_manager.setTargetAcceptanceRate(self.opts.target_accept_rate) #POLTMP c.chain_manager.setAdapting(True) #POLTMP c.chain_manager.refreshLastLnLike() if c.heating_power == 1.0: self.output('Starting log-likelihood = %s' % c.chain_manager.getLastLnLike()) self.output('Starting log-prior = %s' % c.chain_manager.getJointPriorManager().getLogJointPrior()) self.mcmc_manager.recordSample() if self.opts.ssobj.nstones > 1: # Set up the list ss_sampled_betas # Beta distribution will be divided into nstones intervals, each of which has an equal area # # Example: nstones = 5, Beta(a,1), a = 1/4 # # quantile ------- beta ------- # 0/5 (0/5)^(1/a) = 0.0 <-- 0 # 1/5 (1/5)^(1/a) = 0.0016 <-- 1 # 2/5 (2/5)^(1/a) = 0.0256 <-- 2 # 3/5 (3/5)^(1/a) = 0.1296 <-- 3 # 4/5 (4/5)^(1/a) = 0.4096 <-- 4 # 5/5 (5/5)^(1/a) = 1.0 <-- not used # segment_area = 1.0/float(self.opts.ssobj.nstones) cum_area = 0.0 lower_boundary = 0.0 self.ss_sampled_betas = [0.0] betadist = probdist.Beta(self.opts.ssobj.shape1, self.opts.ssobj.shape2) for i in range(self.opts.ssobj.nstones - 1): cum_area += segment_area upper_boundary = betadist.getQuantile(cum_area) self.ss_sampled_betas.append(upper_boundary) lower_boundary = upper_boundary # Reverse ss_sampled_betas so that sampled beta values start high and decrease toward 0.0 self.ss_sampled_betas.reverse() # Output the beta values that will be used self.output('%d %s chosen from a discrete\nBeta(%.5f, %.5f) distribution:' % (self.opts.ssobj.nstones, (self.opts.ssobj.nstones == 1 and 'value was' or 'values were'), self.opts.ssobj.shape1, self.opts.ssobj.shape2)) for i,x in enumerate(self.ss_sampled_betas): self.output('%6d %12.5f' % (i+1,x)) self.output('MCMC will be used to sample from each of the') self.output('power posteriors defined by these values.') self.output() else: self.ss_sampled_betas = [0.0] # Run the main MCMC loop for each beta value in ss_sampled_betas self.ss_sampled_likes = [] ref_dist_calculated = False for self.ss_beta_index, self.ss_beta in enumerate(self.ss_sampled_betas): self.ss_sampled_likes.append([]) chain.setPower(self.ss_beta) #POLTMP2 boldness = 100.0*(1.0 - self.ss_beta) #POLTMP2 chain.setBoldness(boldness) #POLTMP2 self.output('Setting chain boldness to %g based on beta = %g' % (boldness,self.ss_beta)) #POLTMP self.cycle_stop = self.opts.burnin + len(self.ss_sampled_betas)*self.opts.ssobj.ncycles self.ncycles = self.opts.ssobj.ncycles self.burnin = self.opts.ssobj.burnin chain.chain_manager.setTargetAcceptanceRate(self.opts.target_accept_rate) #POLTMP chain.chain_manager.setAdapting(True) #POLTMP #POLTMP if self.ss_beta_index > 0: #POLTMP self.burnin = 0 #POLTMP else: #POLTMP self.burnin = self.opts.burnin #POLTMP self.cycle_start = 0 #self.burnin = self.opts.burnin self.cycle_start = -self.burnin #POLTMP self.cycle_stop = len(self.ss_sampled_betas)*self.opts.ssobj.ncycles self.cycle_stop = self.opts.ssobj.ncycles if self.ss_beta == 0.0: self.mainMCMCLoop(explore_prior=True) else: self.mainMCMCLoop() def standardMCMC(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Performs a standard MCMC analysis. """ # Compute the current log-likelihood and log-prior in case first updater # is a move and will thus depend on these quantities being accurate for c in self.mcmc_manager.chains: c.chain_manager.setTargetAcceptanceRate(self.opts.target_accept_rate) #POLTMP c.chain_manager.setAdapting(True) #POLTMP c.chain_manager.refreshLastLnLike() if c.heating_power == 1.0: self.output('Starting log-likelihood = %s' % c.chain_manager.getLastLnLike()) self.output('Starting log-prior = %s' % c.chain_manager.getJointPriorManager().getLogJointPrior()) self.mcmc_manager.recordSample() self.ss_sampled_likes = [] self.ss_sampled_likes.append([]) self.ss_beta_index = 0 #POLTMP self.cycle_start = 0 #POLTMP self.cycle_stop = self.opts.burnin + self.opts.ncycles self.cycle_start = -self.opts.burnin self.cycle_stop = self.opts.ncycles self.burnin = self.opts.burnin self.ncycles = self.opts.ncycles if self.data_matrix is None: self.mainMCMCLoop(explore_prior=True) else: self.mainMCMCLoop() def run(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Performs the MCMC analysis. """ self.setup() # If user has set quiet to True, then phycas.output calls will have no effect self.quiet = self.opts.quiet nchains = len(self.mcmc_manager.chains) cold_chain = self.mcmc_manager.getColdChain() if self.opts.verbose: if self.data_matrix == None: self.output('Data source: None (running MCMC with no data to explore prior)') else: self.output('Data source: %s' % str_value_for_user(self.opts.data_source)) self.output(' No. taxa: %d' % self.ntax) self.output(' No. included characters: %d' % cold_chain.likelihood.sumPatternCounts()) all_missing = cold_chain.likelihood.getListOfAllMissingSites() num_excluded = len(all_missing) if num_excluded > 0: self.output(' *** Note: the following %d sites were automatically excluded because' % num_excluded) self.output(' *** they exhibited completely missing data for all taxa:') while len(all_missing) > 0: tmp = all_missing[:10] all_missing = all_missing[10:] self.output(' *** '+','.join([str(i+1) for i in tmp])) if nchains > 1: for c in range(nchains): self.output('Starting tree for chain %d: %s' % (c, self.starting_tree[c])) else: self.output('Starting tree: %s' % str(self.starting_tree[0])) if self.opts.fix_topology: self.output('\nTree topology fixed.\n') else: self.output('\nTree topology free to vary.\n') if self.opts.doing_steppingstone_sampling: nsamples_per_step = self.opts.ssobj.ncycles//self.opts.sample_every if self.opts.ss_heating_likelihood: self.output('\nPerforming steppingstone sampling and thermodynamic integration to estimate marginal likelihood.') else: self.output('\nPerforming generalized steppingstone sampling to estimate marginal likelihood.') self.output('Likelihood will be raised to the power beta, and beta will be') self.output('decremented from 1.0 to 0.0 in a series of steps.') self.output(' No. stones: %s' % self.opts.ssobj.nstones) self.output(' No. cycles per step: %s' % self.opts.ssobj.ncycles) self.output(' Sample every: %s' % self.opts.sample_every) self.output(' No. samples per step: %s' % nsamples_per_step) self.output('\n') else: nsamples_per_step = self.opts.ncycles//self.opts.sample_every self.output('No. cycles: %s' % self.opts.ncycles) self.output('Sample every: %s' % self.opts.sample_every) self.output('No. samples: %s' % nsamples_per_step) self.output('Sampled trees will be saved in %s' % str_value_for_user(self.opts.out.trees)) self.output('Sampled parameters will be saved in %s' % str_value_for_user(self.opts.out.params)) self.output('Using standard MCMC (i.e. no uniformized mapping)') if not self.warn_tip_numbers: self.output('Tip node numbers were set using the names in the tree description') else: self.output('Warning: tip node numbers were NOT set using the names in the tree description') if nchains == 1: self.output('Creating one chain (i.e. not using heated chains to improve mixing)') else: self.output('Creating %d chains with these temperatures:' % (nchains)) for t in self.heat_vector: self.output(' %.5f %s' % (t, t == 1.0 and '(cold chain)' or '')) # Show starting parameter info self.output('\nParameter starting values and prior densities:') cold_chain_manager = self.mcmc_manager.getColdChainManager() for p in cold_chain_manager.getAllUpdaters(): self.showParamInfo(p) # Show updater names self.output('\nHere is a list of all updaters that will be used for this analysis:') for p in cold_chain_manager.getAllUpdaters(): if p.getWeight() > 0: p.setUseWorkingPrior(False) if p.isMove(): self.output(' %s (Metropolis-Hastings)' % p.getName()) elif p.hasSliceSampler(): self.output(' %s (slice sampler)' % p.getName()) else: self.output(' %s (computes prior but does not update)' % p.getName()) # Debugging: show data patterns if self.opts.debugging and not cold_chain.likelihood.getNoData(): #cold_chain = self.mcmc_manager.getColdChain() s = cold_chain.likelihood.listPatterns() print '\nDebug Info: List of data patterns and their frequencies (see TreeLikelihood::listPatterns):' print s cold_chain.likelihood.debugUncompressedDataInfo("all-site-patterns.txt"); # Show information about topology prior to be used self.showTopoPriorInfo() self.stopwatch.start() self.mcmc_manager.resetNumLikelihoodEvals() if self.opts.doing_steppingstone_sampling: self.output('\nSampling (%d cycles for each of the %d values of beta)...' % (self.opts.ssobj.ncycles, self.opts.ssobj.nstones)) else: self.output('\nSampling (%d cycles)...' % self.opts.ncycles) if self.opts.verbose: print # Lay down first line in params file (recorded as cycle 0) containing starting values of parameters if self.opts.doing_steppingstone_sampling: self.steppingstoneMCMC() else: self.standardMCMC() #POLTMP self.adaptSliceSamplers() self.resetUpdaterDiagnostics() total_evals = self.mcmc_manager.getTotalEvals() #self.likelihood.getNumLikelihoodEvals() total_secs = self.stopwatch.elapsedSeconds() self.output('%d likelihood evaluations in %.5f seconds' % (total_evals, total_secs)) if (total_secs > 0.0): self.output(' = %.5f likelihood evaluations/sec' % (total_evals/total_secs)) if self.treef: self.treeFileClose() if self.paramf: self.paramFileClose()
3690de3d521be3542a0c4bafc7ca2f7cdc71a149
36bdbbf1be53ba5f09b9a2b1dd15e91f8f6b0da1
/house/migrations/0004_auto_20180920_2003.py
2c799c963093e1889c416fe8249beab35804299e
[]
no_license
phufoxy/fotourNew
801ab2518424118020dc6e5f31a7ba90a654e56a
6048c24f5256c8c5a0d18dc7b38c106a7c92a29c
refs/heads/master
2023-04-13T01:34:22.510717
2018-12-26T03:46:09
2018-12-26T03:46:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
791
py
# Generated by Django 2.1 on 2018-09-20 13:03 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('house', '0003_auto_20180920_2002'), ] operations = [ migrations.RenameField( model_name='house', old_name='city', new_name='location', ), migrations.AlterField( model_name='comment_house', name='date', field=models.DateTimeField(default=datetime.datetime(2018, 9, 20, 20, 3, 15, 282441)), ), migrations.AlterField( model_name='house_tour', name='date', field=models.DateTimeField(default=datetime.datetime(2018, 9, 20, 20, 3, 15, 283439)), ), ]
2e2066e619ccc7d33ad5a3115a5f2d7b25804acc
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_206/1619.py
627355a3f0c5448f6788990546a6563e13a4e9b3
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
809
py
for Pr in xrange(1, input()+1): D, N=[int(x) for x in raw_input().split()] d, v=[], [] for i in xrange(N): c=[int(x) for x in raw_input().split()] d.append(c[0]) v.append(c[1]) d_sort=[k for k in d] d_sort.sort() v_sort=[] for k in d_sort: v_sort.append(v[d.index(k)]) d,v=d_sort, v_sort curv=v[0] d_ok, v_ok=[d[0]], [v[0]] for i in xrange(1, N): if v[i]<curv: d_ok.append(d[i]) v_ok.append(v[i]) curv=v[i] d, v=d_ok, v_ok N=len(d) d1, v1=d[0], v[0] T=0 for i in xrange(1, N): t=float(d1-d[i])/(v[i]-v1) dd=d1+v1*t if D<=dd: break else: d1=dd v1=v[i] T+= t T+= (D-d1)/float(v1) solve=D/T print 'Case #%d: %f'%(Pr, solve)
36890bb9f1effdf8395b81675dd2e0393e4a1f10
a3b0e7acb6e0d7e73f5e369a17f367ac7caf83fb
/python/Udemy/Learn_Python_Programming_StepByStep/16_Database_SQLite/pulling data.py
a908c75deb59e48146df2835e10bc32a6420b7ed
[]
no_license
jadedocelot/Bin2rong
f9d35731ca7df50cfba36141d249db2858121826
314b509f7b3b3a6a5d6ce589dbc57a2c6212b3d7
refs/heads/master
2023-03-24T14:03:32.374633
2021-03-19T00:05:24
2021-03-19T00:05:24
285,387,043
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
import sqlite3 conct = sqlite3.connect("database/mydatabase.db") try: cur = conct.cursor() for records in cur.execute("SELECT * FROM student"): print(records) # cur.execute("SELECT name FROM student") # print(cur.fetchmany(3)) # print(cur.fetchall()) # print(cur.fetchone()) except Exception as err: print(err) finally: conct.close() # See CHAPTER README for notes
b4cc31ff92eb9ed40614c2fd26c025ec9077120f
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/387/usersdata/273/107669/submittedfiles/ep2.py
33033fb09115fd60503b0008b74f07c92d2e70db
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,536
py
# -*- coding: utf-8 -*- ''' /**********************************************************/ /* Equipe: Fulano de Tal:Leandro Pedro de Freitas e Gustavo henrique */ /* N ́umero de matriculas:381420 e */ /* Exercicio-Programa 2 -- TEMA *Razao aurea /* ECI0007 ou EM0006 (EC/EM) -- 2017 -- Professor: Rafael perazzo */ /* Interpretador: Python vers~ao 3 */ /********************************************************** ''' #COMECE SEU CODIGO NA LINHA ABAIXO. def calcula_valor_absoluto (x): x=((x**2)**0.5) def calcula_pi(m): for i in range(1,m,1): pi0=0 a=2 b=3 c=4 if ((i%2)==0): pi=pi0-(4/(a*b*c)) else: pi=pi0+(4/(a*b*c)) a=a+2 b=b+2 c=c+2 valordopi=pi+3 return(valordopi) def calcula_co_seno(z): for z in range(1,z,1): a=2 deno=2 cosseno=0 if (z%2)==0: while (deno>0): produto=((calcula_valor_absoluto)/(deno)) deno=deno-1 cosseno=cosseno-produto else: while (deno>0): produto=((calcula_valor_absoluto)/(deno)) deno=deno-1 cosseno=cosseno+produto deno=deno+2 a=a+2 cosseno_real=cosseno+1 return(cosseno_real)
fbf3c62c164a93fa9c4828bcb8325e94ed813e75
9e65e409106aad6339424a1afac3e75e15b4f488
/0x11-python-network_1/6-post_email.py
69b2654e635444013e91f5cd6642ffd28af4f413
[]
no_license
jfbm74/holbertonschool-higher_level_programming
63fe8e35c94454896324791585fe7b8e01e1c67d
609f18ef7a479fb5dcf1825333df542fc99cec7b
refs/heads/master
2023-03-05T20:44:05.700354
2021-02-10T00:21:54
2021-02-10T00:21:54
259,452,209
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
#!/usr/bin/python3 """ Python script that takes in a URL and an email address, sends a POST request to the passed URL with the email as a parameter """ import requests from sys import argv if __name__ == '__main__': url = argv[1] email = {'email': argv[2]} req = requests.post(url, email) print(req.text)
9151b1b46f2c5b5e9581951a8af9df5a3f4f1f95
b844c72c394b13d9ed4f73222a934f962d6ff187
/src/matching_counts.py
118790fdedcd4c34ee60aad44942be3563c04bce
[]
no_license
curtisbright/sagesat
b9b4c9180c75ce8574217058ffa4e121163ccf36
8fe52609ab6479d9b98a1e6cf2199a4f12c27777
refs/heads/master
2021-01-01T17:52:01.288449
2015-08-19T18:14:26
2015-08-19T18:14:26
41,425,883
0
0
null
null
null
null
UTF-8
Python
false
false
762
py
''' Created on Sep 20, 2014 @author: ezulkosk ''' from common.common import Options from main import run if __name__ == '__main__': TEST_DIR = "../test/matching_counts/" options = Options() options.SHARPSAT=True print("Obtaining counts for hypercube matchings.") for d in range(2,6): d_dir = TEST_DIR + "d" + str(d) + "/" print("Dimension "+ str(d)) spec = d_dir + "matchings" print("\tmatchings: " + str(run(spec, options))) spec = d_dir + "forbidden_matchings" print("\tforbidden matchings: " + str(run(spec, options))) spec = d_dir + "maximal_forbidden_matchings" print("\tmaximal forbidden matchings: " + str(run(spec, options)))
e598bbc2a1a04dda520a9ae42d5eb12de22c2eea
78980891d3137810bf3a3c1bb229966b7f49f0dd
/interestings/asyncio_demos/coro10.py
6c8cc07ed8e8518539a71a7fd1e9aa82e39641db
[]
no_license
miniyk2012/leetcode
204927d3aefc9746070c1bf13abde517c6c16dc0
91ca9cd0df3c88fc7ef3c829dacd4d13f6b71ab1
refs/heads/master
2021-06-17T21:50:31.001111
2021-03-10T11:36:23
2021-03-10T11:36:23
185,042,818
1
0
null
null
null
null
UTF-8
Python
false
false
476
py
import asyncio import time from contextlib import contextmanager async def a(): await asyncio.sleep(3) return 'A' async def b(): await asyncio.sleep(1) return 'B' async def s1(): return await asyncio.gather(a(), b()) @contextmanager def timed(func): start = time.perf_counter() yield asyncio.run(func()) print(f'Cost: {time.perf_counter() - start}') if __name__ == '__main__': with timed(s1) as rv: print(f'Result: {rv}')
14cfc235ea57ad8c87158c3a105277b32dd89e0b
f3b233e5053e28fa95c549017bd75a30456eb50c
/p38a_input/L3FN/3FN-2I_wat_20Abox/set_1.py
a66fca767f59717be304bfaf4b0ba3facedc7df3
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
import os dir = '/mnt/scratch/songlin3/run/p38a/L3FN/wat_20Abox/ti_one-step/3FN_2I/' filesdir = dir + 'files/' temp_prodin = filesdir + 'temp_prod_1.in' temp_pbs = filesdir + 'temp_1.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.chdir("%6.5f" %(j)) workdir = dir + "%6.5f" %(j) + '/' #prodin prodin = workdir + "%6.5f_prod_1.in" %(j) os.system("cp %s %s" %(temp_prodin, prodin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, prodin)) #PBS pbs = workdir + "%6.5f_1.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #submit pbs #os.system("qsub %s" %(pbs)) os.chdir(dir)
b964a72f0dbb3381a2b723bbe70654e1d5ab14b1
8ca19f1a31070738b376c0370c4bebf6b7efcb43
/office365/directory/protection/riskyusers/activity.py
f84b5aacfd83351b65aacf60389d622975b7a493
[ "MIT" ]
permissive
vgrem/Office365-REST-Python-Client
2ef153d737c6ed5445ba1e446aeaec39c4ef4ed3
cbd245d1af8d69e013c469cfc2a9851f51c91417
refs/heads/master
2023-09-02T14:20:40.109462
2023-08-31T19:14:05
2023-08-31T19:14:05
51,305,798
1,006
326
MIT
2023-08-28T05:38:02
2016-02-08T15:24:51
Python
UTF-8
Python
false
false
201
py
from office365.runtime.client_value import ClientValue class RiskUserActivity(ClientValue): """Represents the risk activites of an Azure AD user as determined by Azure AD Identity Protection."""
af6acf69a5f749171c212ccadb2286cebe501086
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/Examples/bokeh/plotting/file/bollinger.py
95cb41a56fde8c6e8db94b100473937ab032ef56
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
591
py
import numpy as np from bokeh.plotting import figure, show, output_file # Define Bollinger Bands. upperband = np.random.random_integers(100, 150, size=100) lowerband = upperband - 100 x_data = np.arange(1, 101) # Bollinger shading glyph: band_x = np.append(x_data, x_data[::-1]) band_y = np.append(lowerband, upperband[::-1]) output_file('bollinger.html', title='Bollinger bands (file)') p = figure(x_axis_type='datetime') p.patch(band_x, band_y, color='#7570B3', fill_alpha=0.2) p.title = 'Bollinger Bands' p.plot_height = 600 p.plot_width = 800 p.grid.grid_line_alpha = 0.4 show(p)
7b2b78d7ba55a651c167d3dc9d0da45dd5fb4a9f
12fa783b25175407440657173447b774b6151430
/synthesizer/preprocess.py
83a777c4dc3ec3378a5e5484e37387869c52d1e4
[ "MIT" ]
permissive
Ramstein/voice-mimicking
8e91241c414a1b2e4ae77bc0cf3f70b3295d8a37
75c4e75fb34d111071e33cea34c282a0e4b01b4d
refs/heads/master
2023-07-21T22:59:37.956103
2021-09-07T18:06:15
2021-09-07T18:06:15
404,076,950
0
0
null
null
null
null
UTF-8
Python
false
false
10,403
py
from multiprocessing.pool import Pool from synthesizer import audio from functools import partial from itertools import chain from encoder import inference as encoder from pathlib import Path from utils import logmmse from tqdm import tqdm import numpy as np import librosa def preprocess_librispeech(datasets_root: Path, out_dir: Path, n_processes: int, skip_existing: bool, hparams): # Gather the input directories dataset_root = datasets_root.joinpath("LibriSpeech") input_dirs = [dataset_root.joinpath("train-clean-100"), dataset_root.joinpath("train-clean-360")] print("\n ".join(map(str, ["Using data from:"] + input_dirs))) assert all(input_dir.exists() for input_dir in input_dirs) # Create the output directories for each output file type out_dir.joinpath("mels").mkdir(exist_ok=True) out_dir.joinpath("audio").mkdir(exist_ok=True) # Create a metadata file metadata_fpath = out_dir.joinpath("train.txt") metadata_file = metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8") # Preprocess the dataset speaker_dirs = list(chain.from_iterable(input_dir.glob("*") for input_dir in input_dirs)) func = partial(preprocess_speaker, out_dir=out_dir, skip_existing=skip_existing, hparams=hparams) job = Pool(n_processes).imap(func, speaker_dirs) for speaker_metadata in tqdm(job, "LibriSpeech", len(speaker_dirs), unit="speakers"): for metadatum in speaker_metadata: metadata_file.write("|".join(str(x) for x in metadatum) + "\n") metadata_file.close() # Verify the contents of the metadata file with metadata_fpath.open("r", encoding="utf-8") as metadata_file: metadata = [line.split("|") for line in metadata_file] mel_frames = sum([int(m[4]) for m in metadata]) timesteps = sum([int(m[3]) for m in metadata]) sample_rate = hparams.sample_rate hours = (timesteps / sample_rate) / 3600 print("The dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." % (len(metadata), mel_frames, timesteps, hours)) print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata)) print("Max mel frames length: %d" % max(int(m[4]) for m in metadata)) print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata)) def preprocess_speaker(speaker_dir, out_dir: Path, skip_existing: bool, hparams): metadata = [] for book_dir in speaker_dir.glob("*"): # Gather the utterance audios and texts try: alignments_fpath = next(book_dir.glob("*.alignment.txt")) with alignments_fpath.open("r") as alignments_file: alignments = [line.rstrip().split(" ") for line in alignments_file] except StopIteration: # A few alignment files will be missing continue # Iterate over each entry in the alignments file for wav_fname, words, end_times in alignments: wav_fpath = book_dir.joinpath(wav_fname + ".flac") assert wav_fpath.exists() words = words.replace("\"", "").split(",") end_times = list(map(float, end_times.replace("\"", "").split(","))) # Process each sub-utterance wavs, texts = split_on_silences(wav_fpath, words, end_times, hparams) for i, (wav, text) in enumerate(zip(wavs, texts)): sub_basename = "%s_%02d" % (wav_fname, i) metadata.append(process_utterance(wav, text, out_dir, sub_basename, skip_existing, hparams)) return [m for m in metadata if m is not None] def split_on_silences(wav_fpath, words, end_times, hparams): # Load the audio waveform wav, _ = librosa.load(wav_fpath, hparams.sample_rate) if hparams.rescale: wav = wav / np.abs(wav).max() * hparams.rescaling_max words = np.array(words) start_times = np.array([0.0] + end_times[:-1]) end_times = np.array(end_times) assert len(words) == len(end_times) == len(start_times) assert words[0] == "" and words[-1] == "" # Find pauses that are too long mask = (words == "") & (end_times - start_times >= hparams.silence_min_duration_split) mask[0] = mask[-1] = True breaks = np.where(mask)[0] # Profile the noise from the silences and perform noise reduction on the waveform silence_times = [[start_times[i], end_times[i]] for i in breaks] silence_times = (np.array(silence_times) * hparams.sample_rate).astype(np.int) noisy_wav = np.concatenate([wav[stime[0]:stime[1]] for stime in silence_times]) if len(noisy_wav) > hparams.sample_rate * 0.02: profile = logmmse.profile_noise(noisy_wav, hparams.sample_rate) wav = logmmse.denoise(wav, profile, eta=0) # Re-attach segments that are too short segments = list(zip(breaks[:-1], breaks[1:])) segment_durations = [start_times[end] - end_times[start] for start, end in segments] i = 0 while i < len(segments) and len(segments) > 1: if segment_durations[i] < hparams.utterance_min_duration: # See if the segment can be re-attached with the right or the left segment left_duration = float("inf") if i == 0 else segment_durations[i - 1] right_duration = float("inf") if i == len(segments) - 1 else segment_durations[i + 1] joined_duration = segment_durations[i] + min(left_duration, right_duration) # Do not re-attach if it causes the joined utterance to be too long if joined_duration > hparams.hop_size * hparams.max_mel_frames / hparams.sample_rate: i += 1 continue # Re-attach the segment with the neighbour of shortest duration j = i - 1 if left_duration <= right_duration else i segments[j] = (segments[j][0], segments[j + 1][1]) segment_durations[j] = joined_duration del segments[j + 1], segment_durations[j + 1] else: i += 1 # Split the utterance segment_times = [[end_times[start], start_times[end]] for start, end in segments] segment_times = (np.array(segment_times) * hparams.sample_rate).astype(np.int) wavs = [wav[segment_time[0]:segment_time[1]] for segment_time in segment_times] texts = [" ".join(words[start + 1:end]).replace(" ", " ") for start, end in segments] # # DEBUG: play the audio segments (run with -n=1) # import sounddevice as sd # if len(wavs) > 1: # print("This sentence was split in %d segments:" % len(wavs)) # else: # print("There are no silences long enough for this sentence to be split:") # for wav, text in zip(wavs, texts): # # Pad the waveform with 1 second of silence because sounddevice tends to cut them early # # when playing them. You shouldn't need to do that in your parsers. # wav = np.concatenate((wav, [0] * 16000)) # print("\t%s" % text) # sd.play(wav, 16000, blocking=True) # print("") return wavs, texts def process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str, skip_existing: bool, hparams): ## FOR REFERENCE: # For you not to lose your head if you ever wish to change things here or implement your own # synthesizer. # - Both the audios and the mel spectrograms are saved as numpy arrays # - There is no processing done to the audios that will be saved to disk beyond volume # normalization (in split_on_silences) # - However, pre-emphasis is applied to the audios before computing the mel spectrogram. This # is why we re-apply it on the audio on the side of the vocoder. # - Librosa pads the waveform before computing the mel spectrogram. Here, the waveform is saved # without extra padding. This means that you won't have an exact relation between the length # of the wav and of the mel spectrogram. See the vocoder data loader. # Skip existing utterances if needed mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename) wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename) if skip_existing and mel_fpath.exists() and wav_fpath.exists(): return None # Skip utterances that are too short if len(wav) < hparams.utterance_min_duration * hparams.sample_rate: return None # Compute the mel spectrogram mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32) mel_frames = mel_spectrogram.shape[1] # Skip utterances that are too long if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length: return None # Write the spectrogram, embed and audio to disk np.save(mel_fpath, mel_spectrogram.T, allow_pickle=False) np.save(wav_fpath, wav, allow_pickle=False) # Return a tuple describing this training example return wav_fpath.name, mel_fpath.name, "embed-%s.npy" % basename, len(wav), mel_frames, text def embed_utterance(fpaths, encoder_model_fpath): if not encoder.is_loaded(): encoder.load_model(encoder_model_fpath) # Compute the speaker embedding of the utterance wav_fpath, embed_fpath = fpaths wav = np.load(wav_fpath) wav = encoder.preprocess_wav(wav) embed = encoder.embed_utterance(wav) np.save(embed_fpath, embed, allow_pickle=False) def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int): wav_dir = synthesizer_root.joinpath("audio") metadata_fpath = synthesizer_root.joinpath("train.txt") assert wav_dir.exists() and metadata_fpath.exists() embed_dir = synthesizer_root.joinpath("embeds") embed_dir.mkdir(exist_ok=True) # Gather the input wave filepath and the target output embed filepath with metadata_fpath.open("r") as metadata_file: metadata = [line.split("|") for line in metadata_file] fpaths = [(wav_dir.joinpath(m[0]), embed_dir.joinpath(m[2])) for m in metadata] # TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here. # Embed the utterances in separate threads func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath) job = Pool(n_processes).imap(func, fpaths) list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
3dc9c0e03163ba648da6dd6492a03da3e5d66cb0
824ccee9f5c27f5b3fec0dff710e9c4a181a9747
/atlas_coords/all_sky_phot.py
71562becbd41c1ca68d871cc16caa871a6a2114f
[]
no_license
yoachim/ScratchStuff
1450a2a785c28c209121600072e7ccb2ba47af08
10c490dd1f3c574738ff4ecb71e135180df4724e
refs/heads/master
2020-04-04T07:31:17.017542
2019-07-02T16:51:12
2019-07-02T16:51:12
35,652,984
1
3
null
null
null
null
UTF-8
Python
false
false
2,223
py
import numpy as np import astropy from astropy.io import fits import matplotlib.pylab as plt from astropy.stats import sigma_clipped_stats from photutils import DAOStarFinder, aperture_photometry, CircularAperture, CircularAnnulus # Need to pick up photutils # conda install -c astropy photutils # Following example from http://photutils.readthedocs.io/en/stable/photutils/aperture.html # Let's do an example of generating a catalog of stars from an all-sky image # Collect relevant kwargs # FWHM of stars fwhm = 1.5 # how many sigma above background threshold = 5. # Radius for stellar aperture r_star = 4. # For sky anulus r_in = 6. r_out = 8. # Load up an image and a few header values hdulist = fits.open('02k57699o0526w.fits.fz') mjd = hdulist[1].header['MJD-OBS'] + 0 exptime = hdulist[1].header['EXPTIME'] + 0 image = hdulist[1].data + 0. try: hdulist.close() except: hdulist.close() # crop down image for easy example image = image[500:1000, 1000:1500] # Simple stats of the image maskval = image[0, 0] good = np.where(image != maskval) mean, median, std = sigma_clipped_stats(image[good], sigma=3.0, iters=5) # include a mask mask = np.zeros_like(image, dtype=bool) mask[np.where(image == maskval)] = True # fwhm in pixels, find sources daofind = DAOStarFinder(fwhm=fwhm, threshold=threshold*std) sources = daofind(image - median) # Do aperature phot positions = (sources['xcentroid'], sources['ycentroid']) # aperture for stars apertures = CircularAperture(positions, r=r_star) # sky background anulus annulus_apertures = CircularAnnulus(positions, r_in=r_in, r_out=r_out) apers = [apertures, annulus_apertures] phot_table = aperture_photometry(image, apers, mask=mask) bkg_mean = phot_table['aperture_sum_1'] / annulus_apertures.area() bkg_sum = bkg_mean * apertures.area() final_sum = phot_table['aperture_sum_0'] - bkg_sum phot_table['residual_aperture_sum'] = final_sum from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize norm = ImageNormalize(stretch=SqrtStretch(), vmin=0, vmax=100) plt.imshow(image, cmap='Greys', origin='lower', norm=norm) apertures.plot(color='blue', lw=1.5, alpha=0.5) plt.savefig('phot_example.png')
ce0c15a0ad0f852b7ae51ff9ad8119b7ad6c0b84
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2737/8160/259430.py
84b3baed41127949fbe85e854b03ddcffde98b5d
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
183
py
import collections def majorityElement(nums): return [key for key, val in collections.Counter(nums).items() if val > len(nums) // 3] nums = input() print(majorityElement(nums))
f895c9359552253b5b8147d97aa07c1c39c028c4
fb28175748fdb497f23e71e9a11c89fdf41b8a11
/level.py
99b3afb2cfe14c3e237dd56e741ad2fd48a74604
[]
no_license
daeken/ygritte
40f571505a7a77769a98c18c45f8793cf87faa4d
0f8bf75f761b40a6c863d589dfe44f189d22ea7e
refs/heads/master
2020-05-20T02:08:31.671031
2011-04-10T21:45:42
2011-04-10T21:45:42
1,563,991
3
1
null
null
null
null
UTF-8
Python
false
false
788
py
from asset import Asset grid = Asset.load('layer0') stars = Asset.load('layer1') class Level(object): levels = {} def __init__(self, game): self.game = game self.bg = Asset.load('layer2_outline', mask='layer2_mask')# % self.levelNumber) stars.maskOff(self.bg) self.i = 0 @staticmethod def spawn(game, number, *args, **kwargs): return Level.levels[number](game, *args, **kwargs) @staticmethod def register(level): Level.levels[level.levelNumber] = level def draw(self, surface): grid.draw(surface, (0, 0), center=False) stars.draw(surface, self.game.worldOff, center=True) self.bg.draw(surface, self.game.worldOff, center=True) self.i += 1 @Level.register class LevelZero(Level): levelNumber = 0 def __init__(self, game): Level.__init__(self, game)
7cd0a6131a02f20edef1352a07bec29cbd8a381e
0c98ca0ca250d0dc815813287d732c48c70aa12a
/EXP/run_bar_framed_rectangle_from_scratch.py
becb6e7809018ef3e95c4275f7f7fd715685c547
[]
no_license
AswinVasudevan21/perception
8f00479870ee767963767fc621325c1a96249196
7a6522fdfbb26ec56a682a4cdf41102cbfd6731a
refs/heads/master
2020-07-14T13:54:10.923781
2019-07-23T11:21:23
2019-07-23T11:21:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,937
py
from keras import models from keras import layers from keras import optimizers import keras.applications import keras.callbacks from keras import backend as K from keras.utils.np_utils import to_categorical import sklearn.metrics import cPickle as pickle import numpy as np import os import sys import time import ClevelandMcGill as C EXPERIMENT = sys.argv[1] # f.e. C.Figure12.data_to_framed_rectangles CLASSIFIER = sys.argv[2] # 'LeNet' NOISE = sys.argv[3] # True JOB_INDEX = int(sys.argv[4]) # # # print 'Running', EXPERIMENT, 'with', CLASSIFIER, 'Noise:', NOISE, 'Job Index', JOB_INDEX # # # PROCESS SOME FLAGS # # SUFFIX = '.' if NOISE == 'True': NOISE = True SUFFIX = '_noise.' else: NOISE = False DATATYPE = eval(EXPERIMENT) if os.path.abspath('~').startswith('/n/'): # we are on the cluster PREFIX = '/n/regal/pfister_lab/PERCEPTION/' else: PREFIX = '/home/d/PERCEPTION/' RESULTS_DIR = PREFIX + 'RESULTS_FROM_SCRATCH/' OUTPUT_DIR = RESULTS_DIR + EXPERIMENT + '/' + CLASSIFIER + '/' if not os.path.exists(OUTPUT_DIR): # here can be a race condition try: os.makedirs(OUTPUT_DIR) except: print 'Race condition!', os.path.exists(OUTPUT_DIR) STATSFILE = OUTPUT_DIR + str(JOB_INDEX).zfill(2) + SUFFIX + 'p' MODELFILE = OUTPUT_DIR + str(JOB_INDEX).zfill(2) + SUFFIX + 'h5' print 'Working in', OUTPUT_DIR print 'Storing', STATSFILE print 'Storing', MODELFILE if os.path.exists(STATSFILE) and os.path.exists(MODELFILE): print 'WAIT A MINUTE!! WE HAVE DONE THIS ONE BEFORE!' sys.exit(0) # # # DATA GENERATION # # train_counter = 0 val_counter = 0 test_counter = 0 train_target = 60000 val_target = 20000 test_target = 20000 train_labels = [] val_labels = [] test_labels = [] X_train = np.zeros((train_target, 100, 100), dtype=np.float32) y_train = np.zeros((train_target, 2), dtype=np.float32) X_val = np.zeros((val_target, 100, 100), dtype=np.float32) y_val = np.zeros((val_target, 2), dtype=np.float32) X_test = np.zeros((test_target, 100, 100), dtype=np.float32) y_test = np.zeros((test_target, 2), dtype=np.float32) t0 = time.time() all_counter = 0 while train_counter < train_target or val_counter < val_target or test_counter < test_target: all_counter += 1 data, label, parameters = C.Figure12.generate_datapoint() pot = np.random.choice(3) # sometimes we know which pot is right if label in train_labels: pot = 0 if label in val_labels: pot = 1 if label in test_labels: pot = 2 if pot == 0 and train_counter < train_target: if label not in train_labels: train_labels.append(label) # image = DATATYPE(data) image = image.astype(np.float32) # add noise? if NOISE: image += np.random.uniform(0, 0.05,(100,100)) # safe to add to training X_train[train_counter] = image y_train[train_counter] = label train_counter += 1 elif pot == 1 and val_counter < val_target: if label not in val_labels: val_labels.append(label) image = DATATYPE(data) image = image.astype(np.float32) # add noise? if NOISE: image += np.random.uniform(0, 0.05,(100,100)) # safe to add to training X_val[val_counter] = image y_val[val_counter] = label val_counter += 1 elif pot == 2 and test_counter < test_target: if label not in test_labels: test_labels.append(label) image = DATATYPE(data) image = image.astype(np.float32) # add noise? if NOISE: image += np.random.uniform(0, 0.05,(100,100)) # safe to add to training X_test[test_counter] = image y_test[test_counter] = label test_counter += 1 print 'Done', time.time()-t0, 'seconds (', all_counter, 'iterations)' # # # # # # NORMALIZE DATA IN-PLACE (BUT SEPERATELY) # # X_min = X_train.min() X_max = X_train.max() y_min = y_train.min() y_max = y_train.max() # scale in place X_train -= X_min X_train /= (X_max - X_min) y_train -= y_min y_train /= (y_max - y_min) X_val -= X_min X_val /= (X_max - X_min) y_val -= y_min y_val /= (y_max - y_min) X_test -= X_min X_test /= (X_max - X_min) y_test -= y_min y_test /= (y_max - y_min) # normalize to -.5 .. .5 X_train -= .5 X_val -= .5 X_test -= .5 print 'memory usage', (X_train.nbytes + X_val.nbytes + X_test.nbytes + y_train.nbytes + y_val.nbytes + y_test.nbytes) / 1000000., 'MB' # # # # # # FEATURE GENERATION # # feature_time = 0 if CLASSIFIER == 'VGG19' or CLASSIFIER == 'XCEPTION': X_train_3D = np.stack((X_train,)*3, -1) X_val_3D = np.stack((X_val,)*3, -1) X_test_3D = np.stack((X_test,)*3, -1) print 'memory usage', (X_train_3D.nbytes + X_val_3D.nbytes + X_test_3D.nbytes) / 1000000., 'MB' if CLASSIFIER == 'VGG19': feature_generator = keras.applications.VGG19(include_top=False, input_shape=(100,100,3)) elif CLASSIFIER == 'XCEPTION': feature_generator = keras.applications.Xception(include_top=False, input_shape=(100,100,3)) elif CLASSIFIER == 'RESNET50': print 'Not yet - we need some padding and so on!!!' sys.exit(1) t0 = time.time() # # THE MLP # # MLP = models.Sequential() MLP.add(layers.Flatten(input_shape=feature_generator.output_shape[1:])) MLP.add(layers.Dense(256, activation='relu', input_dim=(100,100,3))) MLP.add(layers.Dropout(0.5)) MLP.add(layers.Dense(2, activation='linear')) # REGRESSION model = keras.Model(inputs=feature_generator.input, outputs=MLP(feature_generator.output)) sgd = optimizers.SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mean_squared_error', optimizer=sgd, metrics=['mse', 'mae']) # MSE for regression # # # TRAINING # # t0 = time.time() callbacks = [keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=0, mode='auto'), \ keras.callbacks.ModelCheckpoint(MODELFILE, monitor='val_loss', verbose=1, save_best_only=True, mode='min')] history = model.fit(X_train_3D, \ y_train, \ epochs=1000, \ batch_size=32, \ validation_data=(X_val_3D, y_val), callbacks=callbacks, verbose=True) fit_time = time.time()-t0 print 'Fitting done', time.time()-t0 # # # PREDICTION # # y_pred = model.predict(X_test_3D) # # # CLEVELAND MCGILL ERROR # MEANS OF LOG ABSOLUTE ERRORS (MLAEs) # MLAE = np.log2(sklearn.metrics.mean_absolute_error(y_pred*100, y_test*100)+.125) # # # STORE # (THE NETWORK IS ALREADY STORED BASED ON THE CALLBACK FROM ABOVE!) # stats = dict(history.history) # 1. the training history # 2. the y_pred and y_test values # 3. the MLAE stats['time'] = feature_time + fit_time stats['y_test'] = y_test stats['y_pred'] = y_pred stats['MLAE'] = MLAE with open(STATSFILE, 'w') as f: pickle.dump(stats, f) print 'MLAE', MLAE print 'Written', STATSFILE print 'Written', MODELFILE print 'Sayonara! All done here.'
06d60305b023671e68cfce3af716ffa147a882e4
c934e7c27f0e72385218a14b4e2a7e94a747a360
/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/kubernetesedge/v1alpha1/kubernetesedge_v1alpha1_client.py
23a8fa7854e9c71a4bec490a3f84ac77e3adee16
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
PrateekKhatri/gcloud_cli
5f74b97494df4f61816026af9460b9c4d8e89431
849d09dd7863efecbdf4072a504e1554e119f6ae
refs/heads/master
2023-03-27T05:53:53.796695
2021-03-10T04:08:14
2021-03-10T04:08:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
46,509
py
"""Generated client library for kubernetesedge version v1alpha1.""" # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.py import base_api from googlecloudsdk.third_party.apis.kubernetesedge.v1alpha1 import kubernetesedge_v1alpha1_messages as messages class KubernetesedgeV1alpha1(base_api.BaseApiClient): """Generated client library for service kubernetesedge version v1alpha1.""" MESSAGES_MODULE = messages BASE_URL = 'https://kubernetesedge.googleapis.com/' MTLS_BASE_URL = 'https://kubernetesedge.mtls.googleapis.com/' _PACKAGE = 'kubernetesedge' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform'] _VERSION = 'v1alpha1' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'KubernetesedgeV1alpha1' _URL_VERSION = 'v1alpha1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new kubernetesedge handle.""" url = url or self.BASE_URL super(KubernetesedgeV1alpha1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.projects_locations_clusters_nodePools_nodes = self.ProjectsLocationsClustersNodePoolsNodesService(self) self.projects_locations_clusters_nodePools = self.ProjectsLocationsClustersNodePoolsService(self) self.projects_locations_clusters = self.ProjectsLocationsClustersService(self) self.projects_locations_machines = self.ProjectsLocationsMachinesService(self) self.projects_locations_nodePools = self.ProjectsLocationsNodePoolsService(self) self.projects_locations_operations = self.ProjectsLocationsOperationsService(self) self.projects_locations_sites_machines = self.ProjectsLocationsSitesMachinesService(self) self.projects_locations_sites = self.ProjectsLocationsSitesService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects = self.ProjectsService(self) class ProjectsLocationsClustersNodePoolsNodesService(base_api.BaseApiService): """Service class for the projects_locations_clusters_nodePools_nodes resource.""" _NAME = 'projects_locations_clusters_nodePools_nodes' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsClustersNodePoolsNodesService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets details of a single Node. Args: request: (KubernetesedgeProjectsLocationsClustersNodePoolsNodesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Node) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}/nodePools/{nodePoolsId}/nodes/{nodesId}', http_method='GET', method_id='kubernetesedge.projects.locations.clusters.nodePools.nodes.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersNodePoolsNodesGetRequest', response_type_name='Node', supports_download=False, ) class ProjectsLocationsClustersNodePoolsService(base_api.BaseApiService): """Service class for the projects_locations_clusters_nodePools resource.""" _NAME = 'projects_locations_clusters_nodePools' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsClustersNodePoolsService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a new NodePool in a given project and location. Args: request: (KubernetesedgeProjectsLocationsClustersNodePoolsCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}/nodePools', http_method='POST', method_id='kubernetesedge.projects.locations.clusters.nodePools.create', ordered_params=['parent'], path_params=['parent'], query_params=['nodePoolId', 'requestId'], relative_path='v1alpha1/{+parent}/nodePools', request_field='nodePool', request_type_name='KubernetesedgeProjectsLocationsClustersNodePoolsCreateRequest', response_type_name='Operation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a single NodePool. Args: request: (KubernetesedgeProjectsLocationsClustersNodePoolsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}/nodePools/{nodePoolsId}', http_method='DELETE', method_id='kubernetesedge.projects.locations.clusters.nodePools.delete', ordered_params=['name'], path_params=['name'], query_params=['requestId'], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersNodePoolsDeleteRequest', response_type_name='Operation', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets details of a single NodePool. Args: request: (KubernetesedgeProjectsLocationsClustersNodePoolsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (NodePool) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}/nodePools/{nodePoolsId}', http_method='GET', method_id='kubernetesedge.projects.locations.clusters.nodePools.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersNodePoolsGetRequest', response_type_name='NodePool', supports_download=False, ) def List(self, request, global_params=None): r"""Lists NodePools in a given project and location. Args: request: (KubernetesedgeProjectsLocationsClustersNodePoolsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListNodePoolsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}/nodePools', http_method='GET', method_id='kubernetesedge.projects.locations.clusters.nodePools.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'orderBy', 'pageSize', 'pageToken'], relative_path='v1alpha1/{+parent}/nodePools', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersNodePoolsListRequest', response_type_name='ListNodePoolsResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates the parameters of a single NodePool. Args: request: (KubernetesedgeProjectsLocationsClustersNodePoolsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}/nodePools/{nodePoolsId}', http_method='PATCH', method_id='kubernetesedge.projects.locations.clusters.nodePools.patch', ordered_params=['name'], path_params=['name'], query_params=['requestId', 'updateMask'], relative_path='v1alpha1/{+name}', request_field='nodePool', request_type_name='KubernetesedgeProjectsLocationsClustersNodePoolsPatchRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsClustersService(base_api.BaseApiService): """Service class for the projects_locations_clusters resource.""" _NAME = 'projects_locations_clusters' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsClustersService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a new Cluster in a given project and location. Args: request: (KubernetesedgeProjectsLocationsClustersCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters', http_method='POST', method_id='kubernetesedge.projects.locations.clusters.create', ordered_params=['parent'], path_params=['parent'], query_params=['clusterId', 'requestId'], relative_path='v1alpha1/{+parent}/clusters', request_field='cluster', request_type_name='KubernetesedgeProjectsLocationsClustersCreateRequest', response_type_name='Operation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a single Cluster. Args: request: (KubernetesedgeProjectsLocationsClustersDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}', http_method='DELETE', method_id='kubernetesedge.projects.locations.clusters.delete', ordered_params=['name'], path_params=['name'], query_params=['requestId'], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersDeleteRequest', response_type_name='Operation', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets details of a single Cluster. Args: request: (KubernetesedgeProjectsLocationsClustersGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Cluster) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}', http_method='GET', method_id='kubernetesedge.projects.locations.clusters.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersGetRequest', response_type_name='Cluster', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (KubernetesedgeProjectsLocationsClustersGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}:getIamPolicy', http_method='GET', method_id='kubernetesedge.projects.locations.clusters.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=['options_requestedPolicyVersion'], relative_path='v1alpha1/{+resource}:getIamPolicy', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def List(self, request, global_params=None): r"""Lists Clusters in a given project and location. Args: request: (KubernetesedgeProjectsLocationsClustersListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListClustersResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters', http_method='GET', method_id='kubernetesedge.projects.locations.clusters.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'orderBy', 'pageSize', 'pageToken'], relative_path='v1alpha1/{+parent}/clusters', request_field='', request_type_name='KubernetesedgeProjectsLocationsClustersListRequest', response_type_name='ListClustersResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates the parameters of a single Cluster. Args: request: (KubernetesedgeProjectsLocationsClustersPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}', http_method='PATCH', method_id='kubernetesedge.projects.locations.clusters.patch', ordered_params=['name'], path_params=['name'], query_params=['requestId', 'updateMask'], relative_path='v1alpha1/{+name}', request_field='cluster', request_type_name='KubernetesedgeProjectsLocationsClustersPatchRequest', response_type_name='Operation', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors. Args: request: (KubernetesedgeProjectsLocationsClustersSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}:setIamPolicy', http_method='POST', method_id='kubernetesedge.projects.locations.clusters.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='KubernetesedgeProjectsLocationsClustersSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a `NOT_FOUND` error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (KubernetesedgeProjectsLocationsClustersTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/clusters/{clustersId}:testIamPermissions', http_method='POST', method_id='kubernetesedge.projects.locations.clusters.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='KubernetesedgeProjectsLocationsClustersTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) class ProjectsLocationsMachinesService(base_api.BaseApiService): """Service class for the projects_locations_machines resource.""" _NAME = 'projects_locations_machines' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsMachinesService, self).__init__(client) self._upload_configs = { } def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (KubernetesedgeProjectsLocationsMachinesGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/machines/{machinesId}:getIamPolicy', http_method='GET', method_id='kubernetesedge.projects.locations.machines.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=['options_requestedPolicyVersion'], relative_path='v1alpha1/{+resource}:getIamPolicy', request_field='', request_type_name='KubernetesedgeProjectsLocationsMachinesGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors. Args: request: (KubernetesedgeProjectsLocationsMachinesSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/machines/{machinesId}:setIamPolicy', http_method='POST', method_id='kubernetesedge.projects.locations.machines.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='KubernetesedgeProjectsLocationsMachinesSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a `NOT_FOUND` error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (KubernetesedgeProjectsLocationsMachinesTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/machines/{machinesId}:testIamPermissions', http_method='POST', method_id='kubernetesedge.projects.locations.machines.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='KubernetesedgeProjectsLocationsMachinesTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) class ProjectsLocationsNodePoolsService(base_api.BaseApiService): """Service class for the projects_locations_nodePools resource.""" _NAME = 'projects_locations_nodePools' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsNodePoolsService, self).__init__(client) self._upload_configs = { } def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (KubernetesedgeProjectsLocationsNodePoolsGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/nodePools/{nodePoolsId}:getIamPolicy', http_method='GET', method_id='kubernetesedge.projects.locations.nodePools.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=['options_requestedPolicyVersion'], relative_path='v1alpha1/{+resource}:getIamPolicy', request_field='', request_type_name='KubernetesedgeProjectsLocationsNodePoolsGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors. Args: request: (KubernetesedgeProjectsLocationsNodePoolsSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/nodePools/{nodePoolsId}:setIamPolicy', http_method='POST', method_id='kubernetesedge.projects.locations.nodePools.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='KubernetesedgeProjectsLocationsNodePoolsSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a `NOT_FOUND` error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (KubernetesedgeProjectsLocationsNodePoolsTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/nodePools/{nodePoolsId}:testIamPermissions', http_method='POST', method_id='kubernetesedge.projects.locations.nodePools.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='KubernetesedgeProjectsLocationsNodePoolsTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) class ProjectsLocationsOperationsService(base_api.BaseApiService): """Service class for the projects_locations_operations resource.""" _NAME = 'projects_locations_operations' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsOperationsService, self).__init__(client) self._upload_configs = { } def Cancel(self, request, global_params=None): r"""Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to `Code.CANCELLED`. Args: request: (KubernetesedgeProjectsLocationsOperationsCancelRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Cancel') return self._RunMethod( config, request, global_params=global_params) Cancel.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}:cancel', http_method='POST', method_id='kubernetesedge.projects.locations.operations.cancel', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}:cancel', request_field='cancelOperationRequest', request_type_name='KubernetesedgeProjectsLocationsOperationsCancelRequest', response_type_name='Empty', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request: (KubernetesedgeProjectsLocationsOperationsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}', http_method='DELETE', method_id='kubernetesedge.projects.locations.operations.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsOperationsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service. Args: request: (KubernetesedgeProjectsLocationsOperationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}', http_method='GET', method_id='kubernetesedge.projects.locations.operations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsOperationsGetRequest', response_type_name='Operation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists operations that match the specified filter in the request. If the server doesn't support this method, it returns `UNIMPLEMENTED`. NOTE: the `name` binding allows API services to override the binding to use different resource name schemes, such as `users/*/operations`. To override the binding, API services can add a binding such as `"/v1/{name=users/*}/operations"` to their service configuration. For backwards compatibility, the default name includes the operations collection id, however overriding users must ensure the name binding is the parent resource, without the operations collection id. Args: request: (KubernetesedgeProjectsLocationsOperationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListOperationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/operations', http_method='GET', method_id='kubernetesedge.projects.locations.operations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1alpha1/{+name}/operations', request_field='', request_type_name='KubernetesedgeProjectsLocationsOperationsListRequest', response_type_name='ListOperationsResponse', supports_download=False, ) class ProjectsLocationsSitesMachinesService(base_api.BaseApiService): """Service class for the projects_locations_sites_machines resource.""" _NAME = 'projects_locations_sites_machines' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsSitesMachinesService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets details of a single Machine. Args: request: (KubernetesedgeProjectsLocationsSitesMachinesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Machine) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/sites/{sitesId}/machines/{machinesId}', http_method='GET', method_id='kubernetesedge.projects.locations.sites.machines.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsSitesMachinesGetRequest', response_type_name='Machine', supports_download=False, ) def List(self, request, global_params=None): r"""Lists Machines in a given project and location. Args: request: (KubernetesedgeProjectsLocationsSitesMachinesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListMachinesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/sites/{sitesId}/machines', http_method='GET', method_id='kubernetesedge.projects.locations.sites.machines.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'orderBy', 'pageSize', 'pageToken'], relative_path='v1alpha1/{+parent}/machines', request_field='', request_type_name='KubernetesedgeProjectsLocationsSitesMachinesListRequest', response_type_name='ListMachinesResponse', supports_download=False, ) class ProjectsLocationsSitesService(base_api.BaseApiService): """Service class for the projects_locations_sites resource.""" _NAME = 'projects_locations_sites' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsSitesService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets details of a single Site. Args: request: (KubernetesedgeProjectsLocationsSitesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Site) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/sites/{sitesId}', http_method='GET', method_id='kubernetesedge.projects.locations.sites.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsSitesGetRequest', response_type_name='Site', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (KubernetesedgeProjectsLocationsSitesGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/sites/{sitesId}:getIamPolicy', http_method='GET', method_id='kubernetesedge.projects.locations.sites.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=['options_requestedPolicyVersion'], relative_path='v1alpha1/{+resource}:getIamPolicy', request_field='', request_type_name='KubernetesedgeProjectsLocationsSitesGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def List(self, request, global_params=None): r"""Lists Sites in a given project and location. Args: request: (KubernetesedgeProjectsLocationsSitesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListSitesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/sites', http_method='GET', method_id='kubernetesedge.projects.locations.sites.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'orderBy', 'pageSize', 'pageToken'], relative_path='v1alpha1/{+parent}/sites', request_field='', request_type_name='KubernetesedgeProjectsLocationsSitesListRequest', response_type_name='ListSitesResponse', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors. Args: request: (KubernetesedgeProjectsLocationsSitesSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/sites/{sitesId}:setIamPolicy', http_method='POST', method_id='kubernetesedge.projects.locations.sites.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='KubernetesedgeProjectsLocationsSitesSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a `NOT_FOUND` error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (KubernetesedgeProjectsLocationsSitesTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/sites/{sitesId}:testIamPermissions', http_method='POST', method_id='kubernetesedge.projects.locations.sites.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1alpha1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='KubernetesedgeProjectsLocationsSitesTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) class ProjectsLocationsService(base_api.BaseApiService): """Service class for the projects_locations resource.""" _NAME = 'projects_locations' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsLocationsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets information about a location. Args: request: (KubernetesedgeProjectsLocationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Location) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}', http_method='GET', method_id='kubernetesedge.projects.locations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='KubernetesedgeProjectsLocationsGetRequest', response_type_name='Location', supports_download=False, ) def List(self, request, global_params=None): r"""Lists information about the supported locations for this service. Args: request: (KubernetesedgeProjectsLocationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListLocationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations', http_method='GET', method_id='kubernetesedge.projects.locations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1alpha1/{+name}/locations', request_field='', request_type_name='KubernetesedgeProjectsLocationsListRequest', response_type_name='ListLocationsResponse', supports_download=False, ) class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(KubernetesedgeV1alpha1.ProjectsService, self).__init__(client) self._upload_configs = { }
ad8d2f89fbfbfa9db5342a0c79f661cc9644b2d1
bbcaed21db23d08ebf11fabe0c6b8d0ee551a749
/q2_dummy_types/__init__.py
ccc172e8439e27f14d38fa77465ecbed5345f16f
[]
no_license
ebolyen/q2-dummy-types
c34707e2a3e7ef1ad6abf76b1b9fabbf9c7d7222
3ac8f643e5f88a6de2413bebf8fb16c1b3168e4b
refs/heads/master
2021-01-10T22:47:04.455265
2016-10-08T19:20:40
2016-10-08T19:20:40
70,352,411
0
0
null
2016-10-08T19:17:24
2016-10-08T19:17:23
null
UTF-8
Python
false
false
667
py
# ---------------------------------------------------------------------------- # Copyright (c) 2016--, QIIME development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- __version__ = "0.0.1" # noqa # Make the types defined in this plugin importable from the top-level package # so they can be easily imported by other plugins relying on these types. from ._int_sequence import IntSequence1, IntSequence2 from ._mapping import Mapping __all__ = ['IntSequence1', 'IntSequence2', 'Mapping']
55275eba43f18555f947ab6986f6a7ba8440046f
ae376963049fdff111d0f844b25d7a907acb27f5
/Python/Fundamentals/0.8-Text-Processing/Lab/reverse_strings.py
2a98b6cd6ae2c93c0179292403280e14bf908480
[]
no_license
Pittor052/SoftUni-Courses
bdc5968244de497f1aaaff7c6c6879c624791ad8
43216ee69e7eec59c9f14377f57ae1ef8d9cce8d
refs/heads/main
2023-08-14T05:12:11.966927
2021-09-28T13:33:30
2021-09-28T13:33:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
word = input() while word != "end": print(f"{word} = {word[::-1]}") word = input()
f797180c6e34873f308b5114f2ce5068da8416ee
6f0f40a1d60fecb9c1516e8119e9aade3587659d
/tensorflow/python/distribute/input_lib_test.py
2ca11024e431262d534fa92f5516615fa2d4ee31
[ "Apache-2.0" ]
permissive
gdwangh/tensorflow
65d3019ec8e385db7640b313a48f218ec14839e0
71eb168f453bd035df4d8ba27383ef53527e3aaa
refs/heads/master
2020-05-09T17:30:11.243619
2019-04-14T09:02:24
2019-04-14T09:08:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,496
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the input_lib library.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from tensorflow.python import tf2 from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import combinations from tensorflow.python.distribute import distribute_lib from tensorflow.python.distribute import input_lib from tensorflow.python.distribute import multi_worker_test_base from tensorflow.python.distribute import values from tensorflow.python.eager import context from tensorflow.python.eager import test from tensorflow.python.framework import errors from tensorflow.python.ops import control_flow_ops from tensorflow.python.util import nest class DistributedIteratorTestBase(test.TestCase): def _wrap_iterator(self, input_type, dataset_fn, input_workers, devices, split_batch_by, enable_get_next_as_optional): if input_type == "input_fn": input_contexts = [] for i in range(input_workers.num_workers): input_contexts.append( distribute_lib.InputContext( num_input_pipelines=input_workers.num_workers, input_pipeline_id=i, num_replicas_in_sync=len(devices))) iterator = input_lib.InputFunctionIterator( dataset_fn, input_workers, input_contexts, _enable_get_next_as_optional=enable_get_next_as_optional) else: iterator = input_lib.DatasetIterator( dataset_fn(distribute_lib.InputContext()), input_workers, split_batch_by, _enable_get_next_as_optional=enable_get_next_as_optional) return iterator def _wrap_dataset(self, input_type, dataset, input_workers, split_batch_by, enable_get_next_as_optional): if isinstance(dataset, dataset_ops.Dataset): return input_lib.DistributedDatasetV1( dataset, input_workers, split_batch_by, _enable_get_next_as_optional=enable_get_next_as_optional) else: return input_lib.DistributedDataset( dataset, input_workers, split_batch_by, _enable_get_next_as_optional=enable_get_next_as_optional) def _test_input_iteration(self, input_type, api_type, iteration_type, dataset_fn, worker_device_pairs, expected_values, sess=None, split_batch_by=None, enable_get_next_as_optional=False): if iteration_type == "for_loop" and not context.executing_eagerly(): self.skipTest("unsupported test combination.") if api_type == "wrap_into_iterator" and iteration_type == "for_loop": self.skipTest("unsupported test combination.") if api_type == "wrap_into_dataset" and input_type == "input_fn": self.skipTest("unsupported test combination.") devices = nest.flatten([ds for _, ds in worker_device_pairs]) device_map = values.ReplicaDeviceMap(devices) input_workers = input_lib.InputWorkers(device_map, worker_device_pairs) if api_type == "wrap_into_iterator": iterator = self._wrap_iterator( input_type, dataset_fn, input_workers, devices, split_batch_by, enable_get_next_as_optional) else: # wrapping into a dataset: given_dataset = dataset_fn(distribute_lib.InputContext()) dataset = self._wrap_dataset(input_type, given_dataset, input_workers, split_batch_by, enable_get_next_as_optional) if context.executing_eagerly(): iterator = iter(dataset) else: # In graph mode currently we only have support for creating iterators # for datasetV1 instances. if not isinstance(dataset, dataset_ops.DatasetV1): self.skipTest("unsupported test combination") iterator = dataset.make_one_shot_iterator() if iteration_type == "get_next": evaluate = lambda x: sess.run(x) if sess else self.evaluate(x) if isinstance(iterator, input_lib.DistributedIteratorV1): evaluate(control_flow_ops.group(iterator.initialize())) else: evaluate(control_flow_ops.group(iterator._initializer)) for expected_value in expected_values: next_element = iterator.get_next() computed_value = evaluate( [values.select_replica(r, next_element) for r in range(len(devices))]) self.assertEqual(len(expected_value), len(computed_value)) for i in range(len(expected_value)): self.assertAllEqual(expected_value[i], computed_value[i]) with self.assertRaises(errors.OutOfRangeError): next_element = iterator.get_next() evaluate( [values.select_replica(r, next_element) for r in range(len(devices))]) # After re-initializing the iterator, should be able to iterate again. if isinstance(iterator, input_lib.DistributedIteratorV1): evaluate(control_flow_ops.group(iterator.initialize())) else: evaluate(control_flow_ops.group(iterator._initializer)) for expected_value in expected_values: next_element = iterator.get_next() computed_value = evaluate( [values.select_replica(r, next_element) for r in range(len(devices))]) self.assertEqual(len(expected_value), len(computed_value)) for i in range(len(expected_value)): self.assertAllEqual(expected_value[i], computed_value[i]) if iteration_type == "for_loop" and context.executing_eagerly(): actual_values = [] for x in dataset: computed_value = self.evaluate( [values.select_replica(r, x) for r in range(len(devices))]) actual_values.append(computed_value) for i, expected_value in enumerate(expected_values): self.assertEqual(len(expected_value), len(actual_values[i])) for j in range(len(expected_value)): self.assertAllEqual(expected_value[j], actual_values[i][j]) class DistributedIteratorSingleWorkerTest(DistributedIteratorTestBase, parameterized.TestCase): def testGraphModeError(self): with context.graph_mode(): worker_device_pairs = [("", ["/device:CPU:0"])] devices = nest.flatten([ds for _, ds in worker_device_pairs]) device_map = values.ReplicaDeviceMap(devices) input_workers = input_lib.InputWorkers(device_map, worker_device_pairs) dataset = dataset_ops.Dataset.range(10).batch(2) with self.assertRaisesRegexp(RuntimeError, "__iter__ is only " "supported when eager execution is " "enabled."): dist_dataset = input_lib.DistributedDatasetV1(dataset, input_workers) iter(dist_dataset) @combinations.generate(combinations.combine( mode=["graph", "eager"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"])) def testOneDeviceCPU(self, input_type, api_type, iteration_type): worker_device_pairs = [("", ["/device:CPU:0"])] if tf2.enabled(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(10) else: dataset_fn = lambda _: dataset_ops.Dataset.range(10) expected_values = [[i] for i in range(10)] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_device_pairs, expected_values) @combinations.generate(combinations.combine( mode=["graph", "eager"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"], required_gpus=1)) def testTwoDevicesOneGPUOneCPU(self, input_type, api_type, iteration_type): worker_device_pairs = [("", ["/device:GPU:0", "/device:CPU:0"])] if tf2.enabled(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(10) else: dataset_fn = lambda _: dataset_ops.Dataset.range(10) expected_values = [[i, i+1] for i in range(0, 10, 2)] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_device_pairs, expected_values) @combinations.generate(combinations.combine( mode=["graph", "eager"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"], required_gpus=1)) def testTupleDataset(self, input_type, api_type, iteration_type): worker_device_pairs = [("", ["/device:GPU:0", "/device:CPU:0"])] def dataset_fn(ctx): del ctx if tf2.enabled(): dataset1 = dataset_ops.Dataset.range(10) dataset2 = dataset_ops.Dataset.range(10).map(lambda x: x**2) return dataset_ops.Dataset.zip((dataset1, dataset2)) else: dataset1 = dataset_ops.DatasetV2.range(10) dataset2 = dataset_ops.DatasetV2.range(10).map(lambda x: x**2) return dataset_ops.DatasetV2.zip((dataset1, dataset2)) expected_values = [[(i, i**2), (i+1, (i+1)**2)] for i in range(0, 10, 2)] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_device_pairs, expected_values) @combinations.generate( combinations.combine( mode=["graph", "eager"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"], required_gpus=1)) def testUnevenDatasetBatches(self, input_type, api_type, iteration_type): worker_device_pairs = [("", ["/device:GPU:0", "/device:CPU:0"])] if tf2.enabled(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(9).batch(2) else: dataset_fn = lambda _: dataset_ops.Dataset.range(9).batch(2) # The last global batch only contains data for one replica. expected_values = [[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8], []]] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_device_pairs, expected_values, enable_get_next_as_optional=True) @combinations.generate(combinations.combine( mode=["graph", "eager"], input_type=["dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"], split_batch_by=[None, 2], required_gpus=1)) def testBatchSplitting(self, input_type, api_type, iteration_type, split_batch_by): worker_device_pairs = [("", ["/device:GPU:0", "/device:CPU:0"])] batch_size = 10 if tf2.enabled(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(100).batch(batch_size) else: dataset_fn = lambda _: dataset_ops.Dataset.range(100).batch(batch_size) updated_batch_size = ( batch_size // split_batch_by if split_batch_by else batch_size) expected_values = [[range(i, i+updated_batch_size), range(i+updated_batch_size, i+2*updated_batch_size)] for i in range(0, 100, updated_batch_size*2)] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_device_pairs, expected_values, sess=None, split_batch_by=split_batch_by) class DistributedIteratorMultiWorkerTest( multi_worker_test_base.MultiWorkerTestBase, DistributedIteratorTestBase, parameterized.TestCase): def _cpu_devices(self): return [ ("/job:worker/replica:0/task:0", ["/job:worker/replica:0/task:0/device:CPU:0"]), ("/job:worker/replica:0/task:1", ["/job:worker/replica:0/task:1/device:CPU:0"])] def _cpu_and_one_gpu_devices(self): return [ ("/job:worker/replica:0/task:0", [ "/job:worker/replica:0/task:0/device:GPU:0", "/job:worker/replica:0/task:0/device:CPU:0" ]), ("/job:worker/replica:0/task:1", [ "/job:worker/replica:0/task:1/device:GPU:0", "/job:worker/replica:0/task:1/device:CPU:0" ]) ] @combinations.generate(combinations.combine( mode=["graph"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"])) def testOneDevicePerWorker(self, input_type, api_type, iteration_type): worker_devices = self._cpu_devices() with context.graph_mode(), self.cached_session() as sess: if tf2.enabled(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(4) else: dataset_fn = lambda _: dataset_ops.Dataset.range(4) if input_type == "dataset": # Autosharded expected_values = [[0, 1], [2, 3]] else: expected_values = [[0, 0], [1, 1], [2, 2], [3, 3]] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_devices, expected_values, sess) @combinations.generate(combinations.combine( mode=["graph"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"], required_gpus=1)) def testTwoDevicesPerWorker(self, input_type, api_type, iteration_type): worker_devices = self._cpu_and_one_gpu_devices() with context.graph_mode(), self.cached_session() as sess: if tf2.enabled(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(4) else: dataset_fn = lambda _: dataset_ops.Dataset.range(4) if input_type == "dataset": # Autosharded expected_values = [[0, 2, 1, 3]] else: expected_values = [[0, 1, 0, 1], [2, 3, 2, 3]] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_devices, expected_values, sess) @combinations.generate(combinations.combine( mode=["graph"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"])) def testTupleDataset(self, input_type, api_type, iteration_type): worker_devices = self._cpu_devices() with context.graph_mode(), self.cached_session() as sess: def dataset_fn(ctx): del ctx if tf2.enabled(): dataset1 = dataset_ops.DatasetV2.range(4) dataset2 = dataset_ops.DatasetV2.range(4).map(lambda x: x**2) return dataset_ops.DatasetV2.zip((dataset1, dataset2)) else: dataset1 = dataset_ops.Dataset.range(4) dataset2 = dataset_ops.Dataset.range(4).map(lambda x: x**2) return dataset_ops.Dataset.zip((dataset1, dataset2)) if input_type == "dataset": # Autosharded expected_values = [[(0, 0), (1, 1)], [(2, 4), (3, 9)]] else: expected_values = [[(i, i**2), (i, i**2)] for i in range(0, 4)] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_devices, expected_values, sess) @combinations.generate( combinations.combine( mode=["graph"], input_type=["input_fn", "dataset"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"], required_gpus=1)) def testUnevenDatasetBatches(self, input_type, api_type, iteration_type): worker_devices = self._cpu_and_one_gpu_devices() with context.graph_mode(), self.cached_session() as sess: if tf2.enabled(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(9).batch(2) else: dataset_fn = lambda _: dataset_ops.Dataset.range(9).batch(2) if input_type == "dataset": # Autosharded expected_values = [[[0, 1], [4, 5], [2, 3], [6, 7]], [[8], [], [], []]] else: expected_values = [[[0, 1], [2, 3], [0, 1], [2, 3]], [[4, 5], [6, 7], [4, 5], [6, 7]], [[8], [], [8], []]] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_devices, expected_values, sess, enable_get_next_as_optional=True) @combinations.generate( combinations.combine( mode=["graph"], input_type=["input_fn"], api_type=["wrap_into_iterator", "wrap_into_dataset"], iteration_type=["get_next", "for_loop"], required_gpus=1)) def testDifferentDatasets(self, input_type, api_type, iteration_type): worker_devices = self._cpu_and_one_gpu_devices() with context.graph_mode(), self.cached_session() as sess: def dataset_fn(ctx): if ctx.input_pipeline_id == 0: return dataset_ops.Dataset.range(8).batch(2) else: return dataset_ops.Dataset.range(9).batch(2) expected_values = [[[0, 1], [2, 3], [0, 1], [2, 3]], [[4, 5], [6, 7], [4, 5], [6, 7]], [[], [], [8], []]] self._test_input_iteration(input_type, api_type, iteration_type, dataset_fn, worker_devices, expected_values, sess, enable_get_next_as_optional=True) if __name__ == "__main__": test.main()
d39b69be8e6d36394558c1b41133aa034318b78c
9d735842aa4ae0d65b33cd71994142ea80792af5
/scrape_ebi_iedb_input.py
54acc58345dc44c5eb8ac2e69a7d2fc6e40df78b
[]
no_license
saketkc/scrape_ebi
9b5179c9cc45f6e4519732feec9bfaa34126538c
ffe451453bedd9b1aced1bd515bfe3993283809a
refs/heads/master
2021-01-15T12:16:09.599217
2012-05-25T09:13:03
2012-05-25T09:13:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,562
py
from mechanize import Browser, _http from BeautifulSoup import BeautifulSoup import sys import os def get_data_from_ebi(*arg): br = Browser() args = arg[0] filename = args[0] br.set_handle_robots(False) br.addheaders = [('User-agent', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-1.fc9 Firefox/3.0.1')] br.open('http://iedb.ebi.ac.uk/tools/ElliPro/iedb_input') br.select_form(name='predictionForm') br.form['protein_type'] = ['structure',] if os.path.exists(filename): br.form.add_file(open(filename), 'text/plain', filename) else: br.form['pdbId'] = filename.split('.')[0] submit_response = br.submit(name='Submit', label='Submit') html = submit_response.read() soup = BeautifulSoup(html) all_tables = soup.findAll("table",cellspacing=1) if len(all_tables) == 1: table = soup.find("table",cellspacing=1) all_protein_chains = {} for row in table.findAll('tr')[1:-1]: columns = row.findAll('td') number = columns[1] chain = columns[2] number_of_residues = columns[3] all_protein_chains[number.string] = chain.string br.select_form(name='selectChainForm') br.form['chainIndex'] = [None] * (len(args)-1) for index,seqchoice in enumerate(args[1:]): for k,v in all_protein_chains.iteritems(): if str(v) == str(seqchoice): choice = k br.form['chainIndex'][index] = (str(int(choice)-1)) submit_response = br.submit().read() soup = BeautifulSoup(submit_response) for index,tables in enumerate(soup.findAll("table",cellspacing=1)[1:3]): if index == 0: print "Predicted Linear Epitope(s): " for row in tables.findAll('tr'): columns = row.findAll('td') output = "" for column in columns[:-1]: output += column.string + " " print output if index == 1: print "Predicted Discontinous Epitope(s): " for row in tables.findAll('tr')[1:]: columns = row.findAll('td') output = "" for column in columns[:-1]: if column.string == None: column = column.find('div') output += column.string + " " print output if __name__ == "__main__": get_data_from_ebi(sys.argv[1:])
832bfaeda0f2312dfbb3cf401c494edf8c4f3f34
8c11084d9d55e7ee602695629beba646a7c9fbc6
/torch/ao/quantization/pt2e/utils.py
e9a2ae783292a8180694581aa8418ebcb164c55a
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
SamuelMarks/pytorch
201995d5d0ed72813a72c4c51ddbc6125c4fc5e7
71632d4d24616ddad6685814aae4ae54c981c0d2
refs/heads/main
2023-08-31T14:30:33.523459
2023-08-19T16:14:37
2023-08-20T08:56:21
323,614,969
0
0
NOASSERTION
2020-12-22T12:07:42
2020-12-22T12:07:41
null
UTF-8
Python
false
false
16,437
py
import torch from torch.fx import ( Graph, GraphModule, Node, ) from torch.fx.subgraph_rewriter import replace_pattern_with_filters import torch.nn.functional as F from torch.nn.utils.fusion import fuse_conv_bn_weights import copy import operator from typing import Any, Callable, Dict, Optional, Tuple, List, Union from torch.utils._pytree import LeafSpec __all__ = [ "fold_bn_weights_into_conv_node", "get_aten_graph_module", "remove_tensor_overload_for_qdq_ops", ] def _get_tensor_constant_from_node(node, m): if node is None: return None assert node.op == "get_attr" return getattr(m, node.target) def _get_all_arguments(orig_args, orig_kwargs, args_schema): all_args = [] for i, schema in enumerate(args_schema): if schema.name in orig_kwargs: all_args.append(orig_kwargs[schema.name]) elif not schema.kwarg_only and i < len(orig_args): all_args.append(orig_args[i]) else: all_args.append(schema.default_value) return all_args def fold_bn_weights_into_conv_node( conv_node: Node, conv_weight_node: Node, conv_bias_node: Optional[Node], bn_node: Node, m: GraphModule ) -> None: # conv args: input, weight, bias, stride, padding, dilation, transposed, ... conv_w = _get_tensor_constant_from_node(conv_weight_node, m) conv_b = _get_tensor_constant_from_node(conv_bias_node, m) transpose = conv_node.args[6] # eval bn args: input, weight, bias, running mean, running var, momentum, eps # train bn args: input, weight, bias, running mean, running var, training, momentum, eps bn_args_schema = bn_node.target._schema.arguments # type: ignore[union-attr] bn_args = _get_all_arguments(bn_node.args, bn_node.kwargs, bn_args_schema) bn_w = _get_tensor_constant_from_node(bn_args[1], m) bn_b = _get_tensor_constant_from_node(bn_args[2], m) bn_rm = _get_tensor_constant_from_node(bn_args[3], m) bn_rv = _get_tensor_constant_from_node(bn_args[4], m) if bn_node.target == torch.ops.aten._native_batch_norm_legit_no_training.default: eps_arg_index = 6 elif bn_node.target == torch.ops.aten._native_batch_norm_legit.default: eps_arg_index = 7 else: raise ValueError("BN node target is unexpected ", bn_node.target) bn_eps = bn_args[eps_arg_index] fused_weight, fused_bias = fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b, transpose=transpose) # update the weight and bias for conv conv_args = list(conv_node.args) # calling data since the fused_weight and fused_bias are nn.Parameter weight_attr_name = conv_weight_node.target assert isinstance(weight_attr_name, str) setattr(m, weight_attr_name, fused_weight) if conv_bias_node is not None: bias_attr_name = conv_bias_node.target else: bias_attr_name = weight_attr_name + "_bias" with m.graph.inserting_before(conv_node): get_bias_node = m.graph.get_attr(bias_attr_name) # NOTE: here we assume the bias of conv is not quantized! conv_args[2] = get_bias_node setattr(m, bias_attr_name, fused_bias) # type: ignore[arg-type] conv_node.args = tuple(conv_args) # native_batch_norm has 3 outputs, we expect getitem calls on the output # and we want to replace the uses of getitem 0 with the output of conv # # Before: # conv -> bn - (first output) -> users1 # \ - (second output) -> users2 # \ - (third output) -> users3 # After: # conv -> (first output) -> users1 # bn - # \ - (second output) -> users2 # \ - (third output) -> users3 # if users2 and users3 are empty then bn will be removed through dead code elimination for user in bn_node.users: if user.op != "call_function" or user.target != operator.getitem or user.args[1] != 0: continue user.replace_all_uses_with(conv_node) # fuse conv bn weights, inplace modification of the graph_module and graph def _fuse_conv_bn_(m: GraphModule) -> None: for n in m.graph.nodes: if n.op != "call_function" or n.target != torch.ops.aten._native_batch_norm_legit_no_training.default: continue bn_node = n n = bn_node.args[0] if n.op != "call_function" or n.target != torch.ops.aten.convolution.default: continue conv_node = n conv_weight_node = conv_node.args[1] conv_bias_node = conv_node.args[2] fold_bn_weights_into_conv_node(conv_node, conv_weight_node, conv_bias_node, bn_node, m) m.graph.eliminate_dead_code() m.recompile() def _get_node_name_to_scope(model: GraphModule) -> Dict[str, Tuple[str, type]]: # TODO: move this information to fx node itself node_name_to_scope: Dict[str, Tuple[str, type]] = {} for n in model.graph.nodes: nn_module_stack = n.meta.get("nn_module_stack", None) current_scope = ("", type(None)) if nn_module_stack: bt = list(nn_module_stack.values())[-1] current_scope = (bt[0].split(".")[-1], bt[1]) node_name_to_scope[n.name] = current_scope return node_name_to_scope def get_aten_graph_module( pattern: Callable, example_inputs: Tuple[Any, ...], **kwargs, ) -> GraphModule: """ Convert the pattern to an FX graph with decomposed aten ops. """ # Avoid circular imports import torch._dynamo aten_pattern, _ = torch._dynamo.export( pattern, aten_graph=True, tracing_mode="real", )( *copy.deepcopy(example_inputs), **kwargs, ) aten_pattern.graph.eliminate_dead_code() aten_pattern.recompile() return aten_pattern def remove_tensor_overload_for_qdq_ops(match_pattern: GraphModule) -> None: """ Remove .tensor overload for quantize/dequantize ops so that we can use the match_pattern that we get from torchdynamo export to match the output of convert_pt2e """ _MAP = { torch.ops.quantized_decomposed.quantize_per_tensor.default: torch.ops.quantized_decomposed.quantize_per_tensor, torch.ops.quantized_decomposed.dequantize_per_tensor.default: torch.ops.quantized_decomposed.dequantize_per_tensor, torch.ops.quantized_decomposed.quantize_per_tensor.tensor: torch.ops.quantized_decomposed.quantize_per_tensor, torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: torch.ops.quantized_decomposed.dequantize_per_tensor, torch.ops.quantized_decomposed.quantize_per_tensor.tensor2: torch.ops.quantized_decomposed.quantize_per_tensor, torch.ops.quantized_decomposed.dequantize_per_tensor.tensor2: torch.ops.quantized_decomposed.dequantize_per_tensor, torch.ops.quantized_decomposed.quantize_per_channel.default: torch.ops.quantized_decomposed.quantize_per_channel, torch.ops.quantized_decomposed.dequantize_per_channel.default: torch.ops.quantized_decomposed.dequantize_per_channel, torch.ops.aten.clamp.Tensor: torch.ops.aten.clamp, } for n in match_pattern.graph.nodes: if n.op != "call_function": continue if n.target in _MAP: n.target = _MAP[n.target] def _is_dropout_filter( match: "InternalMatch", # type: ignore[name-defined] original_graph: Graph, pattern_graph: Graph, ) -> bool: """ Match filter for the subgraph rewriter that returns True if the matched graph includes all the ops used in the aten dropout pattern. """ ops_to_match = { torch.ops.aten.empty_like.default, torch.ops.aten.bernoulli_.float, torch.ops.aten.div_.Scalar, torch.ops.aten.mul.Tensor, } for n in match.nodes_map.values(): if n.target in ops_to_match: ops_to_match.remove(n.target) return len(ops_to_match) == 0 def _replace_dropout_for_eval(m: GraphModule): """ Replace the aten training dropout pattern with a noop, intended for eval. For models with dropout torch ops (nn.Dropout, F.dropout), calling model.eval() effectively turns these dropout ops into noops. For exported models, however, this is not done automatically, since the aten dropout patterns previously generated for training remain in the graph. Here we rewrite these dropout patterns with noops to avoid incorrectly applying further dropout during eval. See https://github.com/pytorch/pytorch/issues/103681. """ def dropout_train(x): return F.dropout(x, p=0.5, training=True) def dropout_eval(x): return F.dropout(x, p=0.5, training=False) example_inputs = (torch.randn(1),) match_pattern = get_aten_graph_module(dropout_train, example_inputs) replacement_pattern = get_aten_graph_module(dropout_eval, example_inputs) # Note: The match pattern looks like: # # empty_like_default = torch.ops.aten.empty_like.default(x) # bernoulli__float = torch.ops.aten.bernoulli_.float(empty_like_default) # div__scalar = torch.ops.aten.div_.Scalar(bernoulli__float, 0.5) # mul_tensor = torch.ops.aten.mul.Tensor(x, div__scalar) # # We need to use `ignore_literals=True` here to handle arbitrary dropout # probability (not just 0.5). However, without a match filter, this would # also match any mul op, since `div__scalar` is also a literal, e.g.: # # mul_tensor = torch.ops.aten.mul.Tensor(x, 0.8) # # Therefore, we need both `ignore_literals=True` and `_is_dropout_filter` # to make sure we are in fact replacing the dropout pattern. replace_pattern_with_filters( m, match_pattern, replacement_pattern, match_filters=[_is_dropout_filter], ignore_literals=True, ) m.recompile() def _is_literal(arg): if isinstance(arg, (int, float)): return True if isinstance(arg, (tuple, list)): return all(map(_is_literal, arg)) return False def _replace_literals_with_new_placeholders( gm: torch.fx.GraphModule, merge_dup: bool = False, exclude_literals: Optional[List[Any]] = None ): """Replace the literals in the graph with placeholder nodes that's created on the fly while we traverse the graph, so that the literal arguments in the graph can be matched and replaced To use this, the pattern and replacement graph should have the exact same number of literal args and they should be used in the exact same order in the pattern and replacement graph. If the literal arguments are not used in the same order in pattern and replacement graph, please use `_replace_literals_with_existing_placeholders` instead Args: `gm`: input GraphModule that we'll transform `merge_dup`: boolean flag to indicate that if the same literal appears multiple times in the graph, whether they should correspond to the same placeholder or not `exclude_literals`: a list of literals that will not be replaced with placeholders Example: # 1. Original Graph def pattern(self, x): return x + 3 def replacement(self, x): return x - 3 example_inputs = (torch.randn(1, 3, 3, 3),) pattern_gm = get_aten_graph_module(pattern, example_inputs) replacement_gm = get_aten_graph_module(pattern, example_inptus) # 2. Before calling replace literals we'll see the following graph: def pattern(self, x): return x + 3 def replacement(self, x): return x - 3 pattern_gm = _replace_literals_with_new_placeholders(pattern_gm) replacement_gm = _replace_literals_with_new_placeholders(replacement_gm) # 3. After replacing literals with new placeholder nodes def pattern(self, x, new_ph): return x + new_ph def pattern(self, x, new_ph): return x - new_ph """ last_ph = None cnt = 0 literal_to_ph: Dict[Union[float, bool, int, torch.dtype], Node] = {} if exclude_literals is None: exclude_literals = [] for node in gm.graph.nodes: if node.op == "placeholder": last_ph = node cnt += 1 continue with gm.graph.inserting_after(last_ph): new_args = [] for arg in node.args: if _is_literal(arg) and arg not in exclude_literals: if merge_dup and arg in literal_to_ph: new_args.append(literal_to_ph[arg]) else: ph_node = gm.graph.placeholder("arg" + str(cnt)) new_args.append(ph_node) gm._in_spec.children_specs[0].children_specs.append(LeafSpec()) cnt += 1 if merge_dup: literal_to_ph[arg] = ph_node else: new_args.append(arg) new_args = tuple(new_args) node.args = new_args return gm def _replace_literals_with_existing_placeholders( gm: torch.fx.GraphModule, exclude_literals: Optional[List[Any]] = None, literal_to_ph_idx: Optional[Dict[Union[float, int, bool, torch.dtype], int]] = None ): """Replace the literals in the graph with **existing** placeholder nodes, so that the literal arguments in the graph can be matched and replaced To use this, all literal args in the graph should be unique and each of them should correspond to exactly one placeholder node # 1. Original Graph def pattern(self, x_i8, scale, zero_point, quant_min, quant_max): return torch.dequantize_per_tensor(x_i8, scale, zero_point, quant_min, quant_max) def replacement(x_i8, scale, zero_point, quant_min, quant_max): x_i8 = torch.clamp(x_i8, quant_min, quant_max) return ((x_i8.to(torch.float32) - zero_point) * scale).to(dtype=torch.float32) example_inputs = ( torch.randn(1, 3, 3, 3), 1.0, 0, -128, 127, ) pattern_gm = get_aten_graph_module(pattern, example_inputs) replacement_gm = get_aten_graph_module(pattern, example_inptus) # 2. Before calling replace literals we'll see the following graph: def pattern(self, x_i8, scale, zero_point, quant_min, quant_max): # scale/zero_point/quant_min/quant_max are burnt in since they are scalar values return torch.dequantize_per_tensor(x_i8, 1.0, 0, -128, 127) def replacement(x_i8, scale, zero_point, quant_min, quant_max): # scale/zero_point/quant_min/quant_max are burnt in since they are scalar values x_i8 = torch.clamp(x_i8, -128, 127) return ((x_i8.to(torch.float32) - 0) * 1.0).to(dtype=torch.float32) # Note that literal args appear in different order in pattern and replacement graph, so # we can't use _replace_literals_with_new_placeholders literal_to_ph_idx = {1.0: 1, 0: 2, -128: 3, 127: 4} pattern_gm = _replace_literals_with_existing_placeholders(pattern_gm, literal_to_ph_idx) replacement_gm = _replace_literals_with_existing_placeholders(replacement_gm, literal_to_ph_idx) # 3. After replacing literals with existing placeholder nodes def pattern(self, x_i8, scale, zero_point, quant_min, quant_max): # scale/zero_point/quant_min/quant_max are burnt in since they are scalar values return torch.dequantize_per_tensor(x_i8, scale, zero_point, quant_min, quant_max) def replacement(x_i8, scale, zero_point, quant_min, quant_max): # scale/zero_point/quant_min/quant_max are burnt in since they are scalar values x_i8 = torch.clamp(x_i8, quant_min, quant_max) return ((x_i8.to(torch.float32) - zero_point) * scale).to(dtype=torch.float32) """ if exclude_literals is None: exclude_literals = [] if literal_to_ph_idx is None: literal_to_ph_idx = {} phs = [node for node in gm.graph.nodes if node.op == "placeholder"] for node in gm.graph.nodes: if node.op != "call_function": continue new_args = [] for arg in node.args: if _is_literal(arg) and arg not in exclude_literals and arg in literal_to_ph_idx: ph_idx = literal_to_ph_idx[arg] ph_node = phs[ph_idx] new_args.append(ph_node) else: new_args.append(arg) new_args = tuple(new_args) node.args = new_args return gm
eca34ed79166d90c4f7930589dd15091b5634f63
863de8490c758435388e7328880b28fdb432a8e5
/01-MASTER/main.py
db781ed3979dcade024c94b9b7991676497f642d
[]
no_license
bopopescu/2017-2018_EMG_senior_project
46aa57c28119db34bd86ecc54e36dca9546232b0
77544e2a0afa8a75c979eb09f70d64c25e753d52
refs/heads/master
2022-11-20T01:45:05.476457
2018-05-01T19:49:56
2018-05-01T19:49:56
281,037,132
0
0
null
2020-07-20T06:48:33
2020-07-20T06:48:32
null
UTF-8
Python
false
false
27,742
py
''' AUTHOR: Aditya Patel and Jim Ramsay DATE CREATED: 2018-03-01 LAST MODIFIED: 2018-04-12 PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 PROJECT: EMG Human Machine Interface ORGANIZATION: Bradley University, School of Electrical and Computer Engineering FILENAME: main.py DESCRIPTION: Main script that: - initializes/executes bluetooth protocol (not written by Aditya/Jim -- see note below) - starts reading emg data. - detects gestures - commands two slave raspberry pi's to rotate servo motors - switches between displaying video feed from each of the slaves Gestures (right hand only, have not tested on left hand): rest -- do nothing, arm relaxed fist -- tight fist piwo -- palm in, wrist out (wave outward) piwi -- palm in, wrist in (wave inward) Master: emgPi_3 -- [email protected] password is "ee00" Slaves: ssh commands recognize the defined names for the slaves using ssh_keys. Using the defined names and saved keys bypasses password requirements. emgPi_1 -- [email protected] password is "ee00" emgPi_2 -- [email protected] password is "ee00" NOTE: Original by dzhu https://github.com/dzhu/myo-raw Edited by Fernando Cosentino http://www.fernandocosentino.net/pyoconnect Edited further by Aditya Patel and Jim Ramsay There are a lot of global variables used to function like constants. This is likely not good practice but had to be done to meet deadlines. ''' from __future__ import print_function import enum import re import struct import sys import threading import time import string import serial from serial.tools.list_ports import comports from common import * ''' Additional Imports ''' import os import numpy as np import csv import datetime from ringBuffer import ringBuffer import displayControl as display from calibrate import Calibrate from guppy import hpy ''' GLOBAL VARIABLES note: a lot of these are meant to function like a "DEFINE" in C. They are never written to. ''' ''' ARRAYS ''' global emg_data emg_data = [] global duty duty = [50, 50] # initial duty cycle for each motor ''' INTEGERS ''' global GETTINGCALDATA; global CALIBRATING; global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL GETTINGCALDATA = 0 CALIBRATING = 1 SLEEP = 2 WAITING = 3 DISPLAYCONTROL = 4 MOTORCONTROL = 5 global REST; global FIST; global PIWI; global PIWO REST = 0 FIST = 1 PIWI = 2 PIWO = 3 global calMode calMode = REST global EMGPI_1; global EMGPI_2 EMGPI_1 = 0 EMGPI_2 = 1 global fistCalData; global piwiCalData; global piwoCalData; fistCalData = [] piwiCalData = [] piwoCalData = [] global curPi curPi = 0 t0 = time.time() global t_endWaiting gestureString = ["fist", "piwi", "piwo", ""] modeString = ["", "", "SLEEP", "WAITING","DISPLAY CONTROL","MOTOR CONTROL"] def multichr(ords): if sys.version_info[0] >= 3: return bytes(ords) else: return ''.join(map(chr, ords)) def multiord(b): if sys.version_info[0] >= 3: return list(b) else: return map(ord, b) class Arm(enum.Enum): UNKNOWN = 0 RIGHT = 1 LEFT = 2 class XDirection(enum.Enum): UNKNOWN = 0 X_TOWARD_WRIST = 1 X_TOWARD_ELBOW = 2 class Pose(enum.Enum): RESTT = 0 FIST = 1 WAVE_IN = 2 WAVE_OUT = 3 FINGERS_SPREAD = 4 THUMB_TO_PINKY = 5 UNKNOWN = 255 class Packet(object): def __init__(self, ords): self.typ = ords[0] self.cls = ords[2] self.cmd = ords[3] self.payload = multichr(ords[4:]) def __repr__(self): return 'Packet(%02X, %02X, %02X, [%s])' % \ (self.typ, self.cls, self.cmd, ' '.join('%02X' % b for b in multiord(self.payload))) class BT(object): '''Implements the non-Myo-specific details of the Bluetooth protocol.''' def __init__(self, tty): self.ser = serial.Serial(port=tty, baudrate=9600, dsrdtr=1) self.buf = [] self.lock = threading.Lock() self.handlers = [] ## internal data-handling methods def recv_packet(self, timeout=None): t0 = time.time() self.ser.timeout = None while timeout is None or time.time() < t0 + timeout: if timeout is not None: self.ser.timeout = t0 + timeout - time.time() c = self.ser.read() if not c: return None ret = self.proc_byte(ord(c)) if ret: if ret.typ == 0x80: self.handle_event(ret) return ret def recv_packets(self, timeout=.5): res = [] t0 = time.time() while time.time() < t0 + timeout: p = self.recv_packet(t0 + timeout - time.time()) if not p: return res res.append(p) return res def proc_byte(self, c): if not self.buf: if c in [0x00, 0x80, 0x08, 0x88]: self.buf.append(c) return None elif len(self.buf) == 1: self.buf.append(c) self.packet_len = 4 + (self.buf[0] & 0x07) + self.buf[1] return None else: self.buf.append(c) if self.packet_len and len(self.buf) == self.packet_len: p = Packet(self.buf) self.buf = [] return p return None def handle_event(self, p): for h in self.handlers: h(p) def add_handler(self, h): self.handlers.append(h) def remove_handler(self, h): try: self.handlers.remove(h) except ValueError: pass def wait_event(self, cls, cmd): res = [None] def h(p): if p.cls == cls and p.cmd == cmd: res[0] = p self.add_handler(h) while res[0] is None: self.recv_packet() self.remove_handler(h) return res[0] ## specific BLE commands def connect(self, addr): return self.send_command(6, 3, pack('6sBHHHH', multichr(addr), 0, 6, 6, 64, 0)) def get_connections(self): return self.send_command(0, 6) def discover(self): return self.send_command(6, 2, b'\x01') def end_scan(self): return self.send_command(6, 4) def disconnect(self, h): return self.send_command(3, 0, pack('B', h)) def read_attr(self, con, attr): self.send_command(4, 4, pack('BH', con, attr)) return self.wait_event(4, 5) def write_attr(self, con, attr, val): self.send_command(4, 5, pack('BHB', con, attr, len(val)) + val) return self.wait_event(4, 1) def send_command(self, cls, cmd, payload=b'', wait_resp=True): s = pack('4B', 0, len(payload), cls, cmd) + payload self.ser.write(s) while True: p = self.recv_packet() ## no timeout, so p won't be None if p.typ == 0: return p ## not a response: must be an event self.handle_event(p) class MyoRaw(object): '''Implements the Myo-specific communication protocol.''' def __init__(self, tty=None): if tty is None: tty = self.detect_tty() if tty is None: raise ValueError('Myo dongle not found!') self.bt = BT(tty) self.conn = None self.emg_handlers = [] self.imu_handlers = [] self.arm_handlers = [] self.pose_handlers = [] def detect_tty(self): for p in comports(): if re.search(r'PID=2458:0*1', p[2]): print('using device:', p[0]) return p[0] return None def run(self, timeout=None): self.bt.recv_packet(timeout) def connect(self): ## stop everything from before self.bt.end_scan() self.bt.disconnect(0) self.bt.disconnect(1) self.bt.disconnect(2) ## start scanning print('scanning for bluetooth devices...') self.bt.discover() while True: p = self.bt.recv_packet() print('scan response:', p) if p.payload.endswith(b'\x06\x42\x48\x12\x4A\x7F\x2C\x48\x47\xB9\xDE\x04\xA9\x01\x00\x06\xD5'): addr = list(multiord(p.payload[2:8])) break self.bt.end_scan() ## connect and wait for status event conn_pkt = self.bt.connect(addr) self.conn = multiord(conn_pkt.payload)[-1] self.bt.wait_event(3, 0) ## get firmware version fw = self.read_attr(0x17) _, _, _, _, v0, v1, v2, v3 = unpack('BHBBHHHH', fw.payload) print('firmware version: %d.%d.%d.%d' % (v0, v1, v2, v3)) self.old = (v0 == 0) if self.old: # if the firmware is 0.x.xxxx.x ## don't know what these do; Myo Connect sends them, though we get data ## fine without them self.write_attr(0x19, b'\x01\x02\x00\x00') self.write_attr(0x2f, b'\x01\x00') self.write_attr(0x2c, b'\x01\x00') self.write_attr(0x32, b'\x01\x00') self.write_attr(0x35, b'\x01\x00') ## enable EMG data self.write_attr(0x28, b'\x01\x00') ## enable IMU data self.write_attr(0x1d, b'\x01\x00') ## Sampling rate of the underlying EMG sensor, capped to 1000. If it's ## less than 1000, emg_hz is correct. If it is greater, the actual ## framerate starts dropping inversely. Also, if this is much less than ## 1000, EMG data becomes slower to respond to changes. In conclusion, ## 1000 is probably a good value. C = 1000 emg_hz = 50 ## strength of low-pass filtering of EMG data emg_smooth = 100 imu_hz = 50 ## send sensor parameters, or we don't get any data self.write_attr(0x19, pack('BBBBHBBBBB', 2, 9, 2, 1, C, emg_smooth, C // emg_hz, imu_hz, 0, 0)) else: #normal operation name = self.read_attr(0x03) print('device name: %s' % name.payload) ## enable IMU data self.write_attr(0x1d, b'\x01\x00') ## enable vibrations self.write_attr(0x24, b'\x02\x00') # Failed attempt to disable vibrations: # self.write_attr(0x24, b'\x00\x00') # self.write_attr(0x19, b'\x01\x03\x00\x01\x01') self.start_raw() ## add data handlers def handle_data(p): if (p.cls, p.cmd) != (4, 5): return c, attr, typ = unpack('BHB', p.payload[:4]) # unpack unsigned char, unsigned short, unsigned char pay = p.payload[5:] if attr == 0x27: vals = unpack('8HB', pay) # unpack 8 unsigned shorts, and one unsigned char https://docs.python.org/2/library/struct.html ## not entirely sure what the last byte is, but it's a bitmask that ## seems to indicate which sensors think they're being moved around or ## something emg = vals[:8] moving = vals[8] self.on_emg(emg, moving) elif attr == 0x1c: vals = unpack('10h', pay) quat = vals[:4] acc = vals[4:7] gyro = vals[7:10] self.on_imu(quat, acc, gyro) elif attr == 0x23: typ, val, xdir, _,_,_ = unpack('6B', pay) if typ == 1: # on arm self.on_arm(Arm(val), XDirection(xdir)) print("on arm") elif typ == 2: # removed from arm self.on_arm(Arm.UNKNOWN, XDirection.UNKNOWN) print("NOT on arm") elif typ == 3: # pose self.on_pose(Pose(val)) else: print('data with unknown attr: %02X %s' % (attr, p)) self.bt.add_handler(handle_data) def write_attr(self, attr, val): if self.conn is not None: self.bt.write_attr(self.conn, attr, val) def read_attr(self, attr): if self.conn is not None: return self.bt.read_attr(self.conn, attr) return None def disconnect(self): if self.conn is not None: self.bt.disconnect(self.conn) def start_raw(self): '''Sending this sequence for v1.0 firmware seems to enable both raw data and pose notifications. ''' self.write_attr(0x28, b'\x01\x00') #self.write_attr(0x19, b'\x01\x03\x01\x01\x00') self.write_attr(0x19, b'\x01\x03\x01\x01\x01') def mc_start_collection(self): '''Myo Connect sends this sequence (or a reordering) when starting data collection for v1.0 firmware; this enables raw data but disables arm and pose notifications. ''' self.write_attr(0x28, b'\x01\x00') self.write_attr(0x1d, b'\x01\x00') self.write_attr(0x24, b'\x02\x00') self.write_attr(0x19, b'\x01\x03\x01\x01\x01') self.write_attr(0x28, b'\x01\x00') self.write_attr(0x1d, b'\x01\x00') self.write_attr(0x19, b'\x09\x01\x01\x00\x00') self.write_attr(0x1d, b'\x01\x00') self.write_attr(0x19, b'\x01\x03\x00\x01\x00') self.write_attr(0x28, b'\x01\x00') self.write_attr(0x1d, b'\x01\x00') self.write_attr(0x19, b'\x01\x03\x01\x01\x00') def mc_end_collection(self): '''Myo Connect sends this sequence (or a reordering) when ending data collection for v1.0 firmware; this reenables arm and pose notifications, but doesn't disable raw data. ''' self.write_attr(0x28, b'\x01\x00') self.write_attr(0x1d, b'\x01\x00') self.write_attr(0x24, b'\x02\x00') self.write_attr(0x19, b'\x01\x03\x01\x01\x01') self.write_attr(0x19, b'\x09\x01\x00\x00\x00') self.write_attr(0x1d, b'\x01\x00') self.write_attr(0x24, b'\x02\x00') self.write_attr(0x19, b'\x01\x03\x00\x01\x01') self.write_attr(0x28, b'\x01\x00') self.write_attr(0x1d, b'\x01\x00') self.write_attr(0x24, b'\x02\x00') self.write_attr(0x19, b'\x01\x03\x01\x01\x01') def vibrate(self, length): if length in xrange(1, 4): ## first byte tells it to vibrate; purpose of second byte is unknown self.write_attr(0x19, pack('3B', 3, 1, length)) def add_emg_handler(self, h): self.emg_handlers.append(h) def add_imu_handler(self, h): self.imu_handlers.append(h) def add_pose_handler(self, h): self.pose_handlers.append(h) def add_arm_handler(self, h): self.arm_handlers.append(h) def on_emg(self, emg, moving): for h in self.emg_handlers: h(emg, moving) def on_imu(self, quat, acc, gyro): for h in self.imu_handlers: h(quat, acc, gyro) def on_pose(self, p): for h in self.pose_handlers: h(p) def on_arm(self, arm, xdir): for h in self.arm_handlers: h(arm, xdir) def controlLogic(mode, gesture, confidence): global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL; global REST; global FIST; global PIWI; global PIWO global duty; global curPi; global t_endWaiting; global t_30_SLEEP if ( mode == SLEEP ): if ( gesture == FIST ): mode = WAITING t_endWaiting = time.time() + 1 # Reset the sleep timer once you leave SLEEP print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ", confidence) t_30_SLEEP = time.time() + 30 if ( mode == WAITING ): if ( time.time() >= t_30_SLEEP ): mode = SLEEP print("SWITCHING MODE: SLEEP") else: # print("MODE = WAITING") if ( time.time() > t_endWaiting ): if ( gesture == FIST ): mode = SLEEP print("SWITCHING MODE: SLEEP\t\t\t\tConfidence Level: ",confidence) elif ( gesture == PIWI ): mode = DISPLAYCONTROL print("SWITCHING MODE: DISPLAYCONTROL\t\t\t\tConfidence Level: ",confidence) t_endWaiting = time.time() + 1 t_30_SLEEP = time.time() + 30 elif ( gesture == PIWO ): mode = MOTORCONTROL print("SWITCHING MODE: MOTORCONTROL\t\t\tConfidence Level: ",confidence) t_endWaiting = time.time() + 1 t_30_SLEEP = time.time() + 30 if ( mode == DISPLAYCONTROL ): if ( time.time() >= t_30_SLEEP ): mode = SLEEP print("SWITCHING MODE: SLEEP") else: if ( time.time() > t_endWaiting ): if ( gesture == FIST ): mode = WAITING print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ",confidence) t_endWaiting = time.time() + 1 t_30_SLEEP = time.time() + 30 elif ( ( curPi == 0 ) and ( gesture == PIWI ) ): curPi = display.switchDisplay() print("Switching to Camera 2") t_endWaiting = time.time() + 1 t_30_SLEEP = time.time() + 30 elif ( ( curPi == 1 ) and ( gesture == PIWO ) ): curPi = display.switchDisplay() print("Switching to Camera 1") t_endWaiting = time.time() + 1 t_30_SLEEP = time.time() + 30 if ( mode == MOTORCONTROL ): if ( time.time() >= t_30_SLEEP ): mode = SLEEP print("SWITCHING MODE: SLEEP") else: if ( time.time() > t_endWaiting ): ''' Select which slave to control ''' if ( curPi == 0 ): curPi_name = "emgPi_1" currentMotor = 0 elif ( curPi == 1 ): curPi_name = "emgPi_2" currentMotor = 1 ''' Check Gesture ''' if ( gesture == PIWI ): # Pan Clockwise if (duty[curPi] <= 70): duty[curPi] += 10 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 0 0' &" os.system(ssh_string) elif ( ( duty[curPi] > 70 ) and ( duty[curPi] < 80 ) ): duty[curPi] = 80 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 0 0' &" os.system(ssh_string) print("Motor is at limit.") t_endWaiting = time.time() + 1 t_30_SLEEP = time.time() + 30 elif ( gesture == PIWO ): # Pan Counter Clockwise if ( duty[curPi] >= 30 ): duty[curPi] -= 10 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 1 0' &" os.system(ssh_string) elif ( ( duty[curPi] < 30 ) and ( duty[curPi] > 20 ) ): duty[curPi] = 20 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 1 0' &" os.system(ssh_string) print("Motor is at limit.") else: print("Motor is out of range. Cannot rotate CCW") t_endWaiting = time.time() + 1 t_30_SLEEP = time.time() + 30 elif ( gesture == FIST ): mode = WAITING print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ", confidence) t_endWaiting = time.time() + 1 return mode def getConfidence(realTimeData, calData): matchCounter = 0 ''' calibrated: 823 actual: 832 result: 10 + 2 + 3 = 15 calibrated: 781 actual: 832 result: 7 calibrated: 231 actual: 832 result: 1 + 6 + = 7 ''' if (realTimeData[0] == calData[0]): matchCounter += 10 if (realTimeData[0] == calData[1]): matchCounter += 7 if (realTimeData[0] == calData[2]): matchCounter += 3 if (realTimeData[1] == calData[0]): matchCounter += 4 if (realTimeData[1] == calData[1]): matchCounter += 6 if (realTimeData[1] == calData[2]): matchCounter += 2 if (realTimeData[2] == calData[0]): matchCounter += 2 if (realTimeData[2] == calData[1]): matchCounter += 3 if (realTimeData[2] == calData[2]): matchCounter += 4 return matchCounter ''' If the gesture is the same as the last one, increment the counter. If the gesture is different from the last gesture, update the variable, lastGesture, and reset the counter. This allows us to wait for n counts of the same gesture before considering a gesture valid. ''' def confirmGesture(gesture): global CONFIRM_COUNTER if ( confirmGesture.lastGesture != gesture ): confirmGesture.flag = False if ( confirmGesture.counter < CONFIRM_COUNTER ): confirmGesture.counter += 1 confirmGesture.flag = False else: confirmGesture.lastGesture = gesture confirmGesture.counter = 0 confirmGesture.flag = True return confirmGesture.flag confirmGesture.flag = False # static variable initialization for the above function confirmGesture.counter = 0 confirmGesture.lastGesture = REST if __name__ == '__main__': m = MyoRaw(sys.argv[1] if len(sys.argv) >= 2 else None) # this has to come first, and proc_emg() second (see below) def proc_emg(emg, moving, times = []): # data is sent in packets of two samples at a time. I *think* we only save half of these global calMode; global emg_data global fistCalData; global piwiCalData; global piwoCalData; emg = list(emg) # convert tuple to list emg_data = emg if ( mode == GETTINGCALDATA ): # write calibration data to a global array if (calMode == FIST): fistCalData.append(emg_data) if (calMode == PIWI): piwiCalData.append(emg_data) if (calMode == PIWO): piwoCalData.append(emg_data) ''' INITIALIZATION this code is only executed once ''' m.add_emg_handler(proc_emg) m.connect() global GETTINGCALDATA; global CALIBRATING; global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL; global REST; global FIST; global PIWI; global PIWO; global calMode; global curPi; global CONFIRM_COUNTER; os.system("python displayControl.py &") # initializes the display on every run confidenceArray = [] curPi = 0 gesture = REST isResting = 0 BUFFER_SIZE = 100 # size of circular buffer emg_buffer = ringBuffer(BUFFER_SIZE) counter = 0 # counter CONFIDENCE_LEVEL = 10 # allows for tuning. Max = 20. Min = 0. See getConfidence() CONFIRM_COUNTER = 150 # number of samples of same gesture required to confirm a gesture SENSITIVITY = 75 # upper and lower threshold = minValueFromCal +/- SENSITIVITY NUM_CALS = 4 # this is always 1 greater than the number of calibrations CALIBRATION_SIZE = 500 n = CALIBRATION_SIZE CSVFILE = "./adityaCal.csv" # file to write/read calibration data from minValueFromCal = 9999 # initially an arbitrarily large value iWantToCal = 0 # set to '1' when switching users or when recalibration is needed calibrateFlag = 1 if ( iWantToCal == 1 ): mode = GETTINGCALDATA else: mode = SLEEP # skip GETTINGCALDATA and CALIBRATING states os.system("ssh emgPi_1 'python /home/pi/scripts/initMotor.py 50' &") # The ampersand is essential here. If this does not run in the background ... os.system("ssh emgPi_2 'python /home/pi/scripts/initMotor.py 50' &") # the bluetooth protocol fails and the system is frozen. print("MOTORS INITIALIZED") os.system("clear") while True: # run the program indefinitely, or until user interruption m.run() emg_buffer.append(emg_data) if (counter >= BUFFER_SIZE * 2): # there was an undiagnosed issue with 7 null data points causing havoc. # this ensures that those are gone before proceeding average = emg_buffer.getAvg() # average value of each sensor in the buffer. [ 1 x 8 ] bufferAvg = np.mean(np.array(average)) # average value of the whole buffer. type: float, [1 x 1] maxGrouping = emg_buffer.getMaxGrouping() if ( mode >= SLEEP ): # where the main gesture detection and control happens if ( calibrateFlag == 1 ): # load saved cal data with open(CSVFILE, 'rb') as csvfile: # Example: [ 7, 6, 1]; [ 4, 2, 5]; [ 0, 2, 7]; [ 157.6, 157.6, 157.6] CalReader = csv.reader(csvfile, delimiter=',') i = 0 for row in CalReader: savedCalData = np.genfromtxt(CSVFILE, delimiter=',') print("Calibration Data: \n", savedCalData) print("MODE = SLEEP") calibrateFlag = 0 fistGrouping = savedCalData[0] piwiGrouping = savedCalData[1] piwoGrouping = savedCalData[2] minValueFromCal = savedCalData[3,1] fistConfidence = getConfidence(maxGrouping, fistGrouping) piwiConfidence = getConfidence(maxGrouping, piwiGrouping) piwoConfidence = getConfidence(maxGrouping, piwoGrouping) confidenceArray = [fistConfidence, piwiConfidence, piwoConfidence] maxMatch = np.argmax(confidenceArray) # index of the gesture that returned the most confidence maxConfidence = confidenceArray[maxMatch] # confidence level of the most confident gesture if ( ( bufferAvg >= ( minValueFromCal + SENSITIVITY ) ) ): if ( maxMatch == 0 ) and ( fistConfidence >= CONFIDENCE_LEVEL) : if ( confirmGesture(FIST) ): # if we saw FIST for n times gesture = FIST print("\tFIST CONFIRMED\t\t\t\tConfidence Level: ", fistConfidence) isResting = 0 elif ( maxMatch == 1 ) and ( piwiConfidence >= CONFIDENCE_LEVEL ): if ( confirmGesture(PIWI) ): # if we saw PIWI for n times gesture = PIWI print("\tPIWI CONFIRMED\t\t\t\tConfidence Level: ", piwiConfidence) isResting = 0 elif ( maxMatch == 2 ) and ( piwoConfidence >= CONFIDENCE_LEVEL ): if ( confirmGesture(PIWO) ): # if we saw PIWO for n times gesture = PIWO print("\tPIWO CONFIRMED\t\t\t\tConfidence Level: ", piwoConfidence) isResting = 0 else: if ( confirmGesture(REST) ): # if we saw REST for n times gesture = REST print("\n\n\tMOTION DETECTED BUT NO GESTURE MATCH: REST ASSUMED") print("\n\tMinimum Accepted Confidence: ", CONFIDENCE_LEVEL) print("\tFIST Confidence: ",fistConfidence, "\tPIWI Confidence: ",piwiConfidence, "\tPIWO Confidence: ",piwoConfidence) print("\tStill in mode: ", modeString[mode]) print("\n\n") elif ( (bufferAvg < (minValueFromCal - SENSITIVITY)) ): #isResting or #print("REST CONFIRMED") gesture = REST isResting = 1 #else: # print("UNKNOWN") # print("Sensitivity: ", SENSITIVITY) # print("minValueFromCal: ", minValueFromCal) # print("Buffer average: ", bufferAvg) mode = controlLogic(mode, gesture, maxConfidence) # get new mode ''' CALIBRATION note: this can probably be put into a function later. Maybe not all of it, but enough that it becomes a little easier to follow ''' if ( ( mode == GETTINGCALDATA ) and ( calMode < NUM_CALS ) ): if (n >= CALIBRATION_SIZE): n = 0 # reset calibration timer print("Cal Mode = " + gestureString[calMode]) print("Hold a " + gestureString[calMode] + " until told otherwise") calMode += 1 # time.sleep(2) # WARNING: THIS BREAKS THE CODE! # sleep to give user time to switch to next gesture n += 1 if (bufferAvg < minValueFromCal): # this gets the minimum 8-sensor average from the time that calibration was run minValueFromCal = bufferAvg # it sets the threshold that separates gestures from resting. else: if ( calibrateFlag == 1 ): mode = CALIBRATING gesture = REST mode = controlLogic(mode, gesture, 0) if ( mode == CALIBRATING ) : print("mode = CALIBRATING") fistCal = Calibrate() fistGrouping = fistCal.getMaxGrouping(fistCalData) piwiCal = Calibrate() piwiGrouping = piwiCal.getMaxGrouping(piwiCalData) piwoCal = Calibrate() piwoGrouping = piwoCal.getMaxGrouping(piwoCalData) minValueFromCalArray = [minValueFromCal,minValueFromCal,minValueFromCal] with open(CSVFILE, 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(fistGrouping) writer.writerow(piwiGrouping) writer.writerow(piwoGrouping) writer.writerow(minValueFromCalArray) calibrateFlag = 0 mode = SLEEP print("Fist Group: ", fistGrouping) # print(fistCalData) print("Piwi Group: ", piwiGrouping) # print(piwiCalData) print("Piwo Group: ", piwoGrouping) else: # Runs until data is guaranteed to be good counter += 1 # print(counter, "Data contains null values\n")
76f987a556f889a22ab85458df2b31d53eed1ef0
51d602577affebc8d91ffe234f926469d389dc75
/lis/specimen/lab_receive/models/__init__.py
ba84a225c445689edf2c1adcd3ea012ec62b08af
[]
no_license
botswana-harvard/lis
5ac491373f74eaf3855f173580b000539d7f4740
48dc601ae05e420e8f3ebb5ea398f44f02b2e5e7
refs/heads/master
2020-12-29T01:31:07.821681
2018-06-24T06:06:57
2018-06-24T06:06:57
35,820,860
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
from .base_receive import BaseReceive from .receive import Receive from .receive_identifier import ReceiveIdentifier
ff4d51fae8a38111bc47df0a15cfa915e98ddaff
02e23da0431623db86c8138bda350a1d526d4185
/Archivos Python Documentos/Graficas/.history/TRABAJO_SPT_v3_20200223200731.py
e172ba3b981e7ffe2cd9bfa36a01f100e4a315d1
[]
no_license
Jaamunozr/Archivos-python
d9996d3d10ff8429cd1b4c2b396016a3a5482889
1f0af9ba08f12ac27e111fcceed49bbcf3b39657
refs/heads/master
2022-08-05T14:49:45.178561
2022-07-13T13:44:39
2022-07-13T13:44:39
244,073,267
0
0
null
null
null
null
UTF-8
Python
false
false
5,247
py
import os import pylab as pl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import numpy as np #------------ #from mpl_toolkits.mplot3d.axes3d import get_test_data #------------- os.system("clear") fig = pl.figure() axx = Axes3D(fig) raiz=np.sqrt ln=np.log puntoX=float(0) puntoY=float(0) #puntoX=float(input("Seleccione la coordenada en X donde desea calcular el potencial: ")) #puntoY=float(input("Seleccione la coordenada en Y donde desea calcular el potencial: ")) print("Calculando ...") #------------------------------------------------------------------------------ Xa = np.arange(-10, 10, 0.1) #Rango de coordenadas de X Ya = np.arange(-10, 10, 0.1) #Rango de coordenadas de Y l = 2 #Longitud del electrodo [m] rho= 100 #Resistividad de terrreno [Ohm/m] Ik=200 #Corriente de falla [A] (Total) Rad=0.01 #Radio del electrodo [m] Electrodos=8 #Número de electrodos Pos1=4 #Posición 1 en Y para analisis de grafica 2D Pos2=0 #Posición 2 en Y para analisis de grafica 2D #Posición de los electrodos P=np.array([ [-4,-4], #Electrodo A [0,-4], #Electrodo B [4,-4], #Electrodo C [-4,0], #Electrodo D [4,0], #Electrodo E [-4,4], #Electrodo F [0,4], #Electrodo G [4,4] #Electrodo H ]) #------------------------------------------------------------------------------ E=Electrodos-1 ik=Ik/Electrodos Vt=np.zeros((np.count_nonzero(Xa),np.count_nonzero(Ya))) m=np.zeros((Electrodos,1)) V=np.zeros((Electrodos,1)) k=0 m2=np.zeros((Electrodos,1)) V2=np.zeros((Electrodos,1)) #------------------------------------------------------------------------------ #Cálculo del punto ingresado i=0 while i<=E: m2[i][0] =round(raiz((((P[i][0])-puntoX)**2)+(((P[i][1])-puntoY)**2)),4) o,u=((P[i][0])-puntoX),((P[i][1])-puntoY) if ((o ==0) and (u==0)) or (m2[i][0]==0): #print("Elementos de matriz",k,t, "x,y",P[i][0],P[i][1],"punto de eje",X,Y ) m2[i][0]=Rad V2[i][0] =ln((l+raiz((m2[i][0])**2+l**2))/(m2[i][0])) i += 1 Vt2=(np.sum(V2)*(rho*ik))/(2*np.pi*l) print("El potencial en el punto (",puntoX,",",puntoY,"), es de",round(Vt2,3),"[V]") print("Calculando el resto de operaciones..") #------------------------------------------------------------------------------ #Cálculo de la mall Vxy = [0] * (np.count_nonzero(Ya)) while k<np.count_nonzero(Ya): Y=round(Ya[k],3) t=0 while t<np.count_nonzero(Xa): X=round(Xa[t],3) i=0 while i<=E: m[i][0] =round(raiz((((P[i][0])-X)**2)+(((P[i][1])-Y)**2)),4) o,u=((P[i][0])-X),((P[i][1])-Y) if ((o ==0) and (u==0)) or (m[i][0]==0): #print("Elementos de matriz",k,t, "x,y",P[i][0],P[i][1],"punto de eje",X,Y ) m[i][0]=Rad V[i][0] =ln((l+raiz((m[i][0])**2+l**2))/(m[i][0])) i += 1 Vt[k][t]=np.sum(V) if Y==Pos1: Vxa=Vt[k] if Y==Pos2: Vxb=Vt[k] if Y==X: Vxy.insert(k,Vt[k][t]) t +=1 k +=1 Vtt=(Vt*(rho*ik))/(2*np.pi*l) Vxa=(Vxa*(rho*ik))/(2*np.pi*l) Vxb=(Vxb*(rho*ik))/(2*np.pi*l) print ("Número de elementos por eje:",np.count_nonzero(Xa)) aa=np.where(np.amax(Vtt) == Vtt) print ("Valor máximo de tensión:",round(Vtt[::].max(),3),"[V], en posición: (",round(Xa[aa[0][0]],2),",",round(Ya[aa[1][0]],2),")") bb=np.where(np.amin(Vtt) == Vtt) print ("Valor mínimo de tensión:",round(Vtt[::].min(),3),"[V], en posición: (",round(Xa[bb[0][0]],2),",",round(Ya[bb[1][0]],2),")") print ("Número de elemmentos de Vt:",np.count_nonzero(Vtt)) print ("Elementos de Xa al cuadrado:",np.count_nonzero(Xa)**2) X, Y = np.meshgrid(Xa, Ya) print ("Nuevo número de elementos de X y Y:",np.count_nonzero(X)) #------------------------------------------------------------------------------ # GRAFICAS # configurar una figura dos veces más alta que ancha fig = plt.figure(figsize=plt.figaspect(0.5)) # Primera imagen a imprimir ax1 = fig.add_subplot(1, 2, 1, projection='3d') surf = ax1.plot_surface(X, Y, Vtt, cmap = cm.get_cmap("Spectral"))#, antialiased=False) # Customize the z axis. ax1.set_zlim(300, 1800) fig.colorbar(surf) #------------------------------------------------------------------------------ #Graficas en 2D #------------------------------------------------------------------------------ #Eje X1: # Second subplot ax2 = fig.add_subplot(1, 2, 2) x1=Xa ax2.title.set_text('Curvas de Nivel.') ax2.plot(x1, Vxa, color="blue", linewidth=1.0, linestyle="-") ax2.plot(x1, Vxb, color="red", linewidth=1.0, linestyle="-") ax2.plot(x1, Vxy, color="green", linewidth=1.0, linestyle="-") plt.show() """ pl.figure(figsize=(16, 8), dpi=100) pl.subplot(1, 1, 1) pl.plot(x1, Vxa, color="blue", linewidth=1.0, linestyle="-") pl.plot(x1, Vxb, color="green", linewidth=1.0, linestyle="-") pl.xlim(-10, 10) pl.xticks(np.linspace(-10, 10, 17, endpoint=True)) pl.ylim(200.0, 1700.0) pl.yticks(np.linspace(200, 1700, 5, endpoint=True)) #pl.pause(100) """
938f1654252a9fbc25a0c686035dd7efd7cbc660
2d4380518d9c591b6b6c09ea51e28a34381fc80c
/CIM16/IEC61970/Protection/RecloseSequence.py
549c094a7cdff30fe983ecb50cfff2a768e9c918
[ "MIT" ]
permissive
fran-jo/PyCIM
355e36ae14d1b64b01e752c5acd5395bf88cd949
de942633d966bdf2bd76d680ecb20517fc873281
refs/heads/master
2021-01-20T03:00:41.186556
2017-09-19T14:15:33
2017-09-19T14:15:33
89,480,767
0
1
null
2017-04-26T12:57:44
2017-04-26T12:57:44
null
UTF-8
Python
false
false
3,250
py
# Copyright (C) 2010-2011 Richard Lincoln # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from CIM16.IEC61970.Core.IdentifiedObject import IdentifiedObject class RecloseSequence(IdentifiedObject): """A reclose sequence (open and close) is defined for each possible reclosure of a breaker.A reclose sequence (open and close) is defined for each possible reclosure of a breaker. """ def __init__(self, recloseStep=0, recloseDelay=0.0, ProtectedSwitch=None, *args, **kw_args): """Initialises a new 'RecloseSequence' instance. @param recloseStep: Indicates the ordinal position of the reclose step relative to other steps in the sequence. @param recloseDelay: Indicates the time lapse before the reclose step will execute a reclose. @param ProtectedSwitch: A breaker may have zero or more automatic reclosures after a trip occurs. """ #: Indicates the ordinal position of the reclose step relative to other steps in the sequence. self.recloseStep = recloseStep #: Indicates the time lapse before the reclose step will execute a reclose. self.recloseDelay = recloseDelay self._ProtectedSwitch = None self.ProtectedSwitch = ProtectedSwitch super(RecloseSequence, self).__init__(*args, **kw_args) _attrs = ["recloseStep", "recloseDelay"] _attr_types = {"recloseStep": int, "recloseDelay": float} _defaults = {"recloseStep": 0, "recloseDelay": 0.0} _enums = {} _refs = ["ProtectedSwitch"] _many_refs = [] def getProtectedSwitch(self): """A breaker may have zero or more automatic reclosures after a trip occurs. """ return self._ProtectedSwitch def setProtectedSwitch(self, value): if self._ProtectedSwitch is not None: filtered = [x for x in self.ProtectedSwitch.RecloseSequences if x != self] self._ProtectedSwitch._RecloseSequences = filtered self._ProtectedSwitch = value if self._ProtectedSwitch is not None: if self not in self._ProtectedSwitch._RecloseSequences: self._ProtectedSwitch._RecloseSequences.append(self) ProtectedSwitch = property(getProtectedSwitch, setProtectedSwitch)
5c132a7c5a5c2219a7172b0390e26e3c0c6df9b1
aaa762ce46fa0347cdff67464f56678ea932066d
/AppServer/lib/django-1.5/django/utils/timezone.py
a56ff0b6ab03a1662f1958daf56110b7e41e7f3e
[ "Apache-2.0", "BSD-3-Clause", "LGPL-2.1-or-later", "MIT", "GPL-2.0-or-later", "MPL-1.1" ]
permissive
obino/appscale
3c8a9d8b45a6c889f7f44ef307a627c9a79794f8
be17e5f658d7b42b5aa7eeb7a5ddd4962f3ea82f
refs/heads/master
2022-10-01T05:23:00.836840
2019-10-15T18:19:38
2019-10-15T18:19:38
16,622,826
1
0
Apache-2.0
2022-09-23T22:56:17
2014-02-07T18:04:12
Python
UTF-8
Python
false
false
8,344
py
"""Timezone helper functions. This module uses pytz when it's available and fallbacks when it isn't. """ from datetime import datetime, timedelta, tzinfo from threading import local import time as _time try: import pytz except ImportError: pytz = None from django.conf import settings from django.utils import six __all__ = [ 'utc', 'get_default_timezone', 'get_current_timezone', 'activate', 'deactivate', 'override', 'is_naive', 'is_aware', 'make_aware', 'make_naive', ] # UTC and local time zones ZERO = timedelta(0) class UTC(tzinfo): """ UTC implementation taken from Python's docs. Used only when pytz isn't available. """ def __repr__(self): return "<UTC>" def utcoffset(self, dt): return ZERO def tzname(self, dt): return "UTC" def dst(self, dt): return ZERO class LocalTimezone(tzinfo): """ Local time implementation taken from Python's docs. Used only when pytz isn't available, and most likely inaccurate. If you're having trouble with this class, don't waste your time, just install pytz. """ def __init__(self): # This code is moved in __init__ to execute it as late as possible # See get_default_timezone(). self.STDOFFSET = timedelta(seconds=-_time.timezone) if _time.daylight: self.DSTOFFSET = timedelta(seconds=-_time.altzone) else: self.DSTOFFSET = self.STDOFFSET self.DSTDIFF = self.DSTOFFSET - self.STDOFFSET tzinfo.__init__(self) def __repr__(self): return "<LocalTimezone>" def utcoffset(self, dt): if self._isdst(dt): return self.DSTOFFSET else: return self.STDOFFSET def dst(self, dt): if self._isdst(dt): return self.DSTDIFF else: return ZERO def tzname(self, dt): return _time.tzname[self._isdst(dt)] def _isdst(self, dt): tt = (dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.weekday(), 0, 0) stamp = _time.mktime(tt) tt = _time.localtime(stamp) return tt.tm_isdst > 0 utc = pytz.utc if pytz else UTC() """UTC time zone as a tzinfo instance.""" # In order to avoid accessing the settings at compile time, # wrap the expression in a function and cache the result. _localtime = None def get_default_timezone(): """ Returns the default time zone as a tzinfo instance. This is the time zone defined by settings.TIME_ZONE. See also :func:`get_current_timezone`. """ global _localtime if _localtime is None: if isinstance(settings.TIME_ZONE, six.string_types) and pytz is not None: _localtime = pytz.timezone(settings.TIME_ZONE) else: # This relies on os.environ['TZ'] being set to settings.TIME_ZONE. _localtime = LocalTimezone() return _localtime # This function exists for consistency with get_current_timezone_name def get_default_timezone_name(): """ Returns the name of the default time zone. """ return _get_timezone_name(get_default_timezone()) _active = local() def get_current_timezone(): """ Returns the currently active time zone as a tzinfo instance. """ return getattr(_active, "value", get_default_timezone()) def get_current_timezone_name(): """ Returns the name of the currently active time zone. """ return _get_timezone_name(get_current_timezone()) def _get_timezone_name(timezone): """ Returns the name of ``timezone``. """ try: # for pytz timezones return timezone.zone except AttributeError: # for regular tzinfo objects local_now = datetime.now(timezone) return timezone.tzname(local_now) # Timezone selection functions. # These functions don't change os.environ['TZ'] and call time.tzset() # because it isn't thread safe. def activate(timezone): """ Sets the time zone for the current thread. The ``timezone`` argument must be an instance of a tzinfo subclass or a time zone name. If it is a time zone name, pytz is required. """ if isinstance(timezone, tzinfo): _active.value = timezone elif isinstance(timezone, six.string_types) and pytz is not None: _active.value = pytz.timezone(timezone) else: raise ValueError("Invalid timezone: %r" % timezone) def deactivate(): """ Unsets the time zone for the current thread. Django will then use the time zone defined by settings.TIME_ZONE. """ if hasattr(_active, "value"): del _active.value class override(object): """ Temporarily set the time zone for the current thread. This is a context manager that uses ``~django.utils.timezone.activate()`` to set the timezone on entry, and restores the previously active timezone on exit. The ``timezone`` argument must be an instance of a ``tzinfo`` subclass, a time zone name, or ``None``. If is it a time zone name, pytz is required. If it is ``None``, Django enables the default time zone. """ def __init__(self, timezone): self.timezone = timezone self.old_timezone = getattr(_active, 'value', None) def __enter__(self): if self.timezone is None: deactivate() else: activate(self.timezone) def __exit__(self, exc_type, exc_value, traceback): if self.old_timezone is None: deactivate() else: _active.value = self.old_timezone # Templates def template_localtime(value, use_tz=None): """ Checks if value is a datetime and converts it to local time if necessary. If use_tz is provided and is not None, that will force the value to be converted (or not), overriding the value of settings.USE_TZ. This function is designed for use by the template engine. """ should_convert = (isinstance(value, datetime) and (settings.USE_TZ if use_tz is None else use_tz) and not is_naive(value) and getattr(value, 'convert_to_local_time', True)) return localtime(value) if should_convert else value # Utilities def localtime(value, timezone=None): """ Converts an aware datetime.datetime to local time. Local time is defined by the current time zone, unless another time zone is specified. """ if timezone is None: timezone = get_current_timezone() value = value.astimezone(timezone) if hasattr(timezone, 'normalize'): # available for pytz time zones value = timezone.normalize(value) return value def now(): """ Returns an aware or naive datetime.datetime, depending on settings.USE_TZ. """ if settings.USE_TZ: # timeit shows that datetime.now(tz=utc) is 24% slower return datetime.utcnow().replace(tzinfo=utc) else: return datetime.now() # By design, these four functions don't perform any checks on their arguments. # The caller should ensure that they don't receive an invalid value like None. def is_aware(value): """ Determines if a given datetime.datetime is aware. The logic is described in Python's docs: http://docs.python.org/library/datetime.html#datetime.tzinfo """ return value.tzinfo is not None and value.tzinfo.utcoffset(value) is not None def is_naive(value): """ Determines if a given datetime.datetime is naive. The logic is described in Python's docs: http://docs.python.org/library/datetime.html#datetime.tzinfo """ return value.tzinfo is None or value.tzinfo.utcoffset(value) is None def make_aware(value, timezone): """ Makes a naive datetime.datetime in a given time zone aware. """ if hasattr(timezone, 'localize'): # available for pytz time zones return timezone.localize(value, is_dst=None) else: # may be wrong around DST changes return value.replace(tzinfo=timezone) def make_naive(value, timezone): """ Makes an aware datetime.datetime naive in a given time zone. """ value = value.astimezone(timezone) if hasattr(timezone, 'normalize'): # available for pytz time zones value = timezone.normalize(value) return value.replace(tzinfo=None)
0aa2a6a5d89aa348a47de4346965acb29112a90e
0dcce6da7adc3df08038fba39ec663aa2d6d62ab
/ch2-library-app-and-api/api/views.py
128114ffe645895bd9ad2f34635d9ae726974476
[ "MIT" ]
permissive
anectto/apidjangostudy
1e82e1dc8a7775ad18841372cfdad8d0408ad83f
c8636d54b65e3fbd74e4b3949951cc8a5d681870
refs/heads/master
2023-05-29T04:58:54.884817
2023-03-15T23:06:48
2023-03-15T23:06:48
167,802,649
0
0
MIT
2023-05-22T21:47:50
2019-01-27T11:47:31
Python
UTF-8
Python
false
false
221
py
from rest_framework import generics from books.models import Book from .serializers import BookSerializer class BookAPIView(generics.ListAPIView): queryset = Book.objects.all() serializer_class = BookSerializer
f4f635b18dc05411dfc2d9abc7e11b209f9c777c
ef998914b19f34f8f85cd784b6470147d73a93e0
/job_task/Value_Pitch_Assingment/scrapy-selenium-splash-python/SCI/spiders/scrapy_sel.py
95feaebe678a6566ab3909da624ae97e22af5941
[]
no_license
dilipksahu/Web_Scraping_Using_Python
9f586704a779fda551c5e3d15902591648663870
e6d3031f89b1b5d4bfa0377c11e87037772c460d
refs/heads/master
2023-01-30T14:36:00.702440
2020-12-17T16:10:25
2020-12-17T16:10:25
316,200,913
1
0
null
null
null
null
UTF-8
Python
false
false
2,433
py
# -*- coding: utf-8 -*- import scrapy from scrapy.selector import Selector from selenium import webdriver from selenium.webdriver.chrome.options import Options from shutil import which class CoinSpiderSelenium(scrapy.Spider): name = 'case_status' allowed_domains = ['www.main.sci.gov.in'] start_urls = [ 'http://main.sci.gov.in/case-status' ] def __init__(self): chrome_options = Options() chrome_options.add_argument('--headless') chrome_path = which("chromedriver") driver = webdriver.Chrome(executable_path=chrome_path, options=chrome_options) driver.set_window_size(1920, 1080) driver.implicitly_wait(0.5) driver.get("https://main.sci.gov.in/case-status") captcha_text = driver.find_element_by_xpath("(//font)[4]").text print("Captcha===========>",captcha_text) captcha_input = driver.find_element_by_id("ansCaptcha") captcha_input.send_keys(captcha_text) diary_input = driver.find_element_by_xpath("//input[@id='CaseDiaryNumber']") diary_input.send_keys("1") year_input = driver.find_element_by_xpath("//select[@id='CaseDiaryYear']") year_input.send_keys(f"2020") submit_btn = driver.find_element_by_xpath("//input[@id='getCaseDiary']") submit_btn.click() self.html = driver.page_source driver.close() def parse(self, response): resp = Selector(text=self.html) print(resp) case_details = resp.xpath("(//table)[3]/tbody/tr") for case_detail in case_details: print(case_detail) yield { 'Diary No.': case_detail.xpath(".//td[2]/div/font/text()").get(), 'Case No.': case_detail.xpath(".//td[2]/div/text()").get(), 'Present/Last Listed On': case_detail.xpath(".//td[2]/b/font/text()").get(), 'Status/Stage': case_detail.xpath(".//td[2]/font/text()").get(), 'Category': case_detail.xpath(".//td[2]/text()").get(), 'Act': case_detail.xpath(".//td[2]/text()").get(), 'Petitioner(s)': case_detail.xpath(".//td[2]/p/text()").get(), 'Respondent(s)': case_detail.xpath(".//td[2]/p/text()").get(), 'Pet. Advocate(s)': case_detail.xpath(".//td[2]/p/text()").get(), }
2c6e39a7ee4093454d57327e3b3e54a5024a56b0
c34cd98b9126cc3b03add40bd6464a7a76270088
/PythonTutorial/77PythonRegEx.py
fc53970f18d24d81fe19d49afa97f75a2b49d081
[]
no_license
riyadhswe/pythonw3schools
749e1e53e55c35cbd36f0eb08dcbbab80d40b245
35f4008a612c931784fb9d5fef1262f7d41e9764
refs/heads/master
2023-03-05T11:24:16.304462
2021-02-14T16:01:36
2021-02-14T16:01:36
324,746,990
2
0
null
null
null
null
UTF-8
Python
false
false
80
py
import re txt = "The rain in Spain" x = re.search("^The.*Spain$", txt) print(x)
ff10e9f2710cb3dc53121976e7b8d53856854d66
3784495ba55d26e22302a803861c4ba197fd82c7
/venv/lib/python3.6/site-packages/nltk/ccg/logic.py
b89bea9d8a08b7fccd7c58dfcdcb431f27dcecea
[ "MIT" ]
permissive
databill86/HyperFoods
cf7c31f5a6eb5c0d0ddb250fd045ca68eb5e0789
9267937c8c70fd84017c0f153c241d2686a356dd
refs/heads/master
2021-01-06T17:08:48.736498
2020-02-11T05:02:18
2020-02-11T05:02:18
241,407,659
3
0
MIT
2020-02-18T16:15:48
2020-02-18T16:15:47
null
UTF-8
Python
false
false
1,806
py
# Natural Language Toolkit: Combinatory Categorial Grammar # # Copyright (C) 2001-2019 NLTK Project # Author: Tanin Na Nakorn (@tanin) # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ Helper functions for CCG semantics computation """ from nltk.sem.logic import * def compute_type_raised_semantics(semantics): core = semantics parent = None while isinstance(core, LambdaExpression): parent = core core = core.term var = Variable("F") while var in core.free(): var = unique_variable(pattern=var) core = ApplicationExpression(FunctionVariableExpression(var), core) if parent is not None: parent.term = core else: semantics = core return LambdaExpression(var, semantics) def compute_function_semantics(function, argument): return ApplicationExpression(function, argument).simplify() def compute_composition_semantics(function, argument): assert isinstance(argument, LambdaExpression), ( "`" + str(argument) + "` must be a lambda expression" ) return LambdaExpression( argument.variable, ApplicationExpression(function, argument.term).simplify() ) def compute_substitution_semantics(function, argument): assert isinstance(function, LambdaExpression) and isinstance( function.term, LambdaExpression ), ("`" + str(function) + "` must be a lambda expression with 2 arguments") assert isinstance(argument, LambdaExpression), ( "`" + str(argument) + "` must be a lambda expression" ) new_argument = ApplicationExpression( argument, VariableExpression(function.variable) ).simplify() new_term = ApplicationExpression(function.term, new_argument).simplify() return LambdaExpression(function.variable, new_term)
c128b869ed0e8a8ddf5844d2ad95701ad963f881
8090fe014aad86878636a6d8a1ccc59a81d5d6d0
/EPROM_Emulator/directory_node.py
7ecec3164461e4eaf8db92ae08b089e586c381d8
[ "MIT" ]
permissive
hubs2545/Adafruit_Learning_System_Guides
ad5593027a9403f48c3b9fc820ba73e7ea2bd5af
1f743401b2dc18724d867a31aaf49273abd5ec0d
refs/heads/master
2020-03-18T17:11:40.107775
2018-05-25T20:14:02
2018-05-25T20:14:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,330
py
""" The MIT License (MIT) Copyright (c) 2018 Dave Astels Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -------------------------------------------------------------------------------- Manage a directory in the file system. """ import os class DirectoryNode(object): """Display and navigate the SD card contents""" def __init__(self, display, parent=None, name="/"): """Initialize a new instance. :param adafruit_ssd1306.SSD1306 on: the OLED instance to display on :param DirectoryNode below: optional parent directory node :param string named: the optional name of the new node """ self.display = display self.parent = parent self.name = name self.files = [] self.top_offset = 0 self.old_top_offset = -1 self.selected_offset = 0 self.old_selected_offset = -1 def __cleanup(self): """Dereference things for speedy gc.""" self.display = None self.parent = None self.name = None self.files = None return self def __is_dir(self, path): """Determine whether a path identifies a machine code bin file. :param string path: path of the file to check """ if path[-2:] == "..": return False try: os.listdir(path) return True except OSError: return False def __sanitize(self, name): """Nondestructively strip off a trailing slash, if any, and return the result. :param string name: the filename """ if name[-1] == "/": return name[:-1] return name def __path(self): """Return the result of recursively follow the parent links, building a full path to this directory.""" if self.parent: return self.parent.__path() + os.sep + self.__sanitize(self.name) return self.__sanitize(self.name) def __make_path(self, filename): """Return a full path to the specified file in this directory. :param string filename: the name of the file in this directory """ return self.__path() + os.sep + filename def __number_of_files(self): """The number of files in this directory, including the ".." for the parent directory if this isn't the top directory on the SD card.""" self.__get_files() return len(self.files) def __get_files(self): """Return a list of the files in this directory. If this is not the top directory on the SD card, a ".." entry is the first element. Any directories have a slash appended to their name.""" if len(self.files) == 0: self.files = os.listdir(self.__path()) self.files.sort() if self.parent: self.files.insert(0, "..") for index, name in enumerate(self.files, start=1): if self.__is_dir(self.__make_path(name)): self.files[index] = name + "/" def __update_display(self): """Update the displayed list of files if required.""" if self.top_offset != self.old_top_offset: self.__get_files() self.display.fill(0) for i in range(self.top_offset, min(self.top_offset + 4, self.__number_of_files())): self.display.text(self.files[i], 10, (i - self.top_offset) * 8) self.display.show() self.old_top_offset = self.top_offset def __update_selection(self): """Update the selected file lighlight if required.""" if self.selected_offset != self.old_selected_offset: if self.old_selected_offset > -1: self.display.text(">", 0, (self.old_selected_offset - self.top_offset) * 8, 0) self.display.text(">", 0, (self.selected_offset - self.top_offset) * 8, 1) self.display.show() self.old_selected_offset = self.selected_offset def __is_directory_name(self, filename): """Is a filename the name of a directory. :param string filename: the name of the file """ return filename[-1] == '/' @property def selected_filename(self): """The name of the currently selected file in this directory.""" self.__get_files() return self.files[self.selected_offset] @property def selected_filepath(self): """The full path of the currently selected file in this directory.""" return self.__make_path(self.selected_filename) def force_update(self): """Force an update of the file list and selected file highlight.""" self.old_selected_offset = -1 self.old_top_offset = -1 self.__update_display() self.__update_selection() def down(self): """Move down in the file list if possible, adjusting the selected file indicator and scrolling the display as required.""" if self.selected_offset < self.__number_of_files() - 1: self.selected_offset += 1 if self.selected_offset == self.top_offset + 4: self.top_offset += 1 self.__update_display() self.__update_selection() def up(self): """Move up in the file list if possible, adjusting the selected file indicator and scrolling the display as required.""" if self.selected_offset > 0: self.selected_offset -= 1 if self.selected_offset < self.top_offset: self.top_offset -= 1 self.__update_display() self.__update_selection() def click(self): """Handle a selection and return the new current directory. If the selected file is the parent, i.e. "..", return to the parent directory. If the selected file is a directory, go into it.""" if self.selected_filename == "..": if self.parent: p = self.parent p.force_update() self.__cleanup() return p elif self.__is_directory_name(self.selected_filename): new_node = DirectoryNode(self.display, self, self.selected_filename) new_node.force_update() return new_node return self
7ec35b7afd7de673969f2d0e09a32e4e2ed7e5be
ceead28beb1ea6cb56a2bb4472bc1d2396b39e6f
/gen_basis_helpers/lammps_interface/unit_tests/utests_misc_objs.py
3b444bb7d9e73c210ba707c582f3bce01cb96999
[]
no_license
RFogarty1/plato_gen_basis_helpers
9df975d4198bff7bef80316527a8086b6819d8ab
8469a51c1580b923ca35a56811e92c065b424d68
refs/heads/master
2022-06-02T11:01:37.759276
2022-05-11T12:57:40
2022-05-11T12:57:40
192,934,403
3
0
null
null
null
null
UTF-8
Python
false
false
5,448
py
import collections import unittest import unittest.mock as mock import gen_basis_helpers.lammps_interface.misc_objs as tCode class TestNVTEnsemble(unittest.TestCase): def setUp(self): self.startTemp = 300 self.finalTemp = 500 self.dampTime = 200 self.thermostat = "Nose-Hoover" self.numbFmt = "{:.1f}" self.createTestObjs() def createTestObjs(self): currKwargs = {"thermostat":self.thermostat, "endTemp":self.finalTemp, "dampTime":self.dampTime, "numbFmt":self.numbFmt} self.testObjA = tCode.NVTEnsemble(self.startTemp, **currKwargs) def testExpStrFromSimpleOptsA(self): expStr = "all nvt temp 300.0 500.0 200.0" actStr = self.testObjA.fixStr self.assertEqual(expStr, actStr) def testRaisesIfDampTimeNotSet(self): self.dampTime = None self.createTestObjs() with self.assertRaises(ValueError): self.testObjA.fixStr class TestNPTEnsemble(unittest.TestCase): def setUp(self): self.startTemp = 300 self.finalTemp = 500 self.dampTimeTemp = 200 self.pressureDims = "z" self.startPressure = 10 self.endPressure = 20 self.dampTimePressure = 2000 self.numbFmtTemp = "{:.2f}" self.numbFmtPressure = "{:.2f}" self.numbFmtTime = "{:.2f}" self.numbFmtAll = "{:.2f}" self.createTestObjs() def createTestObjs(self): kwargDict = {"pressureDims":self.pressureDims, "endTemp":self.finalTemp, "endPressure":self.endPressure, "dampTimeTemp":self.dampTimeTemp, "dampTimePressure":self.dampTimePressure, "numbFmtTime":self.numbFmtTime, "numbFmtPressure":self.numbFmtPressure, "numbFmtTemp":self.numbFmtTemp} self.testObjA = tCode.NPTEnsembleNoseHooverStandard(self.startTemp, self.startPressure, **kwargDict) def testExpStrFromSimpleOptsA(self): expStr = "all npt temp 300.00 500.00 200.00 z 10.00 20.00 2000.00" actStr = self.testObjA.fixStr self.assertEqual(expStr, actStr) def testRaiseIfPressureDampTimeNotSet(self): self.dampTimePressure = None self.createTestObjs() with self.assertRaises(ValueError): self.testObjA.fixStr def testRaisesIfTempDampTimeNotSet(self): self.dampTimeTemp = None self.createTestObjs() with self.assertRaises(ValueError): self.testObjA.fixStr class TestVelocityRescalingObj(unittest.TestCase): def setUp(self): self.groupId = "groupA" self.nEvery = 5 self.tempStart = 340 self.tempEnd = None self.maxDeviation = 50 self.fraction = 1 self.createTestObjs() def createTestObjs(self): currKwargs = {"groupId":self.groupId, "nEvery":self.nEvery, "tempStart":self.tempStart, "tempEnd":self.tempEnd, "maxDeviation":self.maxDeviation, "fraction":self.fraction} self.testObjA = tCode.RescaleVelocitiesSimple(**currKwargs) def testExpectedA(self): expStr = "groupA temp/rescale 5 340.00 340.00 50.00 1.00" actStr = self.testObjA.fixStr self.assertEqual(expStr, actStr) class TestCombChargeEquilibrationObj(unittest.TestCase): def setUp(self): self.groupId = "Mg" self.nEvery = 75 self.precision = 1e-3 self.createTestObjs() def createTestObjs(self): kwargDict = {"groupId":self.groupId, "nEvery":self.nEvery, "precision":self.precision} self.testObjA = tCode.CombChargeNeutralisationOpts(**kwargDict) def testExpStrFromSimpleOptsA(self): expStr = "Mg qeq/comb 75 0.00100" actStr = self.testObjA.fixStr self.assertEqual(expStr,actStr) class TestAtomGroupByTypesObj(unittest.TestCase): def setUp(self): self.groupId = "water" self.atomTypes = [1,2] self.createTestObjs() def createTestObjs(self): currArgs = [self.groupId, self.atomTypes] self.testObjA = tCode.AtomGroupByType(*currArgs) def testExpStrFromSimpleOptsA(self): expStr = "water type 1 2" actStr = self.testObjA.groupStr self.assertEqual(expStr,actStr) class TestCreateVelocityObj(unittest.TestCase): def setUp(self): self.temp = 400 self.seed = 300 self.dist = "fake_dist" self.group = "fake_group" self.createTestObjs() def createTestObjs(self): currKwargs = {"seed":self.seed, "group":self.group, "dist":self.dist} self.testObjA = tCode.VelocityCreateCommObj(self.temp, **currKwargs) def testExpectedStrFromSimpleOptsA(self): expStr = "fake_group create 400.0 300 dist fake_dist" actStr = self.testObjA.commandStr self.assertEqual(expStr,actStr) class TestDumpObjStandard(unittest.TestCase): def setUp(self): self.everyNSteps = 30 self.groupId = "fake_group" self.dumpType = "atom" self.fileExt = "lammpstrj" self.scale = True self.createTestObjs() def createTestObjs(self): currKwargs = {"groupId":self.groupId, "dumpType":self.dumpType, "fileExt":self.fileExt, "scale":self.scale} self.testObjA = tCode.DumpCommObjStandard(self.everyNSteps, **currKwargs) def testExpectedDictFromSimpleOptsA(self): currArgs = [ ["dump","myDump fake_group atom 30 dump.lammpstrj"], ["dump_modify", "myDump scale yes"] ] expDict = collections.OrderedDict(currArgs) actDict = self.testObjA.commandDict self.assertEqual(expDict,actDict) class TestReflectiveWallFaceObj(unittest.TestCase): def setUp(self): self.face = "xlo" self.groupId = "fake_group" self.createTestObjs() def createTestObjs(self): self.testObjA = tCode.ReflectiveWallFace(self.face, groupId=self.groupId) def testExpectedFixCommandFromDictA(self): expStr = "fake_group wall/reflect xlo EDGE" actStr = self.testObjA.fixStr self.assertEqual(expStr,actStr)
6aab3ee55ffd45abd7f2608eec839c1371b7d460
a702fb476539272b78328f64a3a49c1012ac3ed4
/django_slack/utils.py
ee02e313e45081ff2fab63a801ba9d3356d3ca78
[ "BSD-3-Clause" ]
permissive
lamby/django-slack
7f8dea40e5b3cad93f2e207b2815327993743774
5b92410fadc1a91b9415c0991f0ff2547cd633c7
refs/heads/master
2023-03-10T23:54:17.789584
2023-03-02T08:07:43
2023-03-02T08:07:43
27,838,503
250
88
BSD-3-Clause
2023-03-01T15:08:41
2014-12-10T20:34:18
Python
UTF-8
Python
false
false
1,626
py
import json from django.utils.module_loading import import_string from .exceptions import LABEL_TO_EXCEPTION, SlackException from .app_settings import app_settings class Backend(object): def send(self, url, message_data): raise NotImplementedError() def validate(self, content_type, content, message_data): if content_type.startswith('application/json'): result = json.loads(content) if not result['ok']: klass = LABEL_TO_EXCEPTION.get(result['error'], SlackException) raise klass(result['error'], message_data) return result elif content != 'ok': raise SlackException(content, message_data) return content def get_backend(name=None): """ Wrap the backend in a function to not load it at import time. ``get_backend()`` caches the backend on first call. :param name: optional string name for backend, otherwise take from settings :type name: str or unicode or None """ # Function's backend is initially NoneType on module import (see below) loaded_backend = get_backend.backend # Load the backend if we have a provided name, or if this function's # backend is still NoneType if name or not loaded_backend: loaded_backend = import_string(name or app_settings.BACKEND)() # If the backend hasn't been cached yet, and we didn't get a custom # name passed in, cache the backend if not (get_backend.backend or name): get_backend.backend = loaded_backend return loaded_backend get_backend.backend = None
4b921124dd541cdc0e677d64df53898e563848b5
00fe1823bbadc9300e4fec42ca1d12dfbd4bcde9
/Dictionary/11.py
d7986a4e30747730ee497810d2d9c9568de2029b
[]
no_license
monteua/Python
6b36eb01959f34ccaa2bb9044e2e660383ed7695
64b6154d9f59e1e2dbe033e5b9f246734b7d4064
refs/heads/master
2020-07-05T07:29:51.250343
2018-02-09T11:09:51
2018-02-09T11:09:51
74,122,698
3
0
null
null
null
null
UTF-8
Python
false
false
258
py
''' Write a Python program to multiply all the items in a dictionary. ''' dict1 = {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49} print ("Old dictionary:", dict1) for key, value in dict1.items(): dict1[key] = value * 10 print ("New dictionary:", dict1)
ce50ec568accdb678d6f38382a3e15cb9984e4ee
fc678a0a5ede80f593a29ea8f43911236ed1b862
/380-InsertDeleteGetRandomO(1).py
7f654b9e925fa8143a6b015241c31f51b8b8f50a
[]
no_license
dq-code/leetcode
4be0b1b154f8467aa0c07e08b5e0b6bd93863e62
14dcf9029486283b5e4685d95ebfe9979ade03c3
refs/heads/master
2020-12-13T15:57:30.171516
2017-11-07T17:43:19
2017-11-07T17:43:19
35,846,262
0
0
null
null
null
null
UTF-8
Python
false
false
1,224
py
import random class RandomizedSet(object): def __init__(self): """ Initialize your data structure here. """ self.map = dict() self.size = 0 def insert(self, val): """ Inserts a value to the set. Returns true if the set did not already contain the specified element. :type val: int :rtype: bool """ if val not in self.map: self.size += 1 map[val] = self.size return True return False def remove(self, val): """ Removes a value from the set. Returns true if the set contained the specified element. :type val: int :rtype: bool """ if val in self.map: del self.map[val] self.size -= 1 return True return False def getRandom(self): """ Get a random element from the set. :rtype: int """ return random.choice(self.map.keys()) # Your RandomizedSet object will be instantiated and called as such: # obj = RandomizedSet() # param_1 = obj.insert(val) # param_2 = obj.remove(val) # param_3 = obj.getRandom()
766be0bacab93658e605892e12eb75d5ac244ee7
0c656371d4d38b435afb7e870c719fe8bed63764
/levels/migrations/0003_space_variety.py
1efda5ef876ba0f4c06e864425969a5e529e9b6e
[]
no_license
enias-oliveira/parking-lot
cfbe5ca91dcb949e60f04cd26137260f5a9dba36
a54f5ca7b7d78bfc1a9b3c389729da14899d4048
refs/heads/master
2023-05-07T08:48:59.288672
2021-05-18T19:52:46
2021-05-18T19:52:46
369,363,475
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
# Generated by Django 3.2.2 on 2021-05-13 21:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('levels', '0002_rename_motorcylce_spaces_level_motorcycle_spaces'), ] operations = [ migrations.AddField( model_name='space', name='variety', field=models.CharField(choices=[('car', 'car'), ('motorcycle', 'motorcycle')], default='car', max_length=255), preserve_default=False, ), ]
424ca5b9877e60a4512eeca85195255714fa43eb
bc6b561958649c391c159d4dd3363c60eeabc7e4
/mayan/apps/documents/migrations/0051_documentpage_enabled.py
5835be769bcd26e022c28f01b95c5af6790dcfc5
[ "Apache-2.0" ]
permissive
chrisranjana/Mayan-EDMS
37deb105cda268768fea502491ae875ff905e0e9
34b414ce49a2eb156e27dc1a2915e52121c9d1b7
refs/heads/master
2020-12-22T13:50:41.263625
2020-01-28T18:45:24
2020-01-28T18:45:24
236,804,825
0
1
NOASSERTION
2020-01-28T18:12:53
2020-01-28T18:12:52
null
UTF-8
Python
false
false
411
py
from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('documents', '0050_auto_20190725_0451'), ] operations = [ migrations.AddField( model_name='documentpage', name='enabled', field=models.BooleanField(default=True, verbose_name='Enabled'), ), ]
277ea298bd69c7999327b07b0015aa1e11d93b0e
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03402/s642521958.py
7fcbd198121b2c295ef6f8a6e34080150121ad63
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
a,b = map(int, input().split()) ans = [['.' for i in range(50)]+['#' for i in range(50)]for j in range(100)] x,y = 0,51 while a>1: ans[x][y] = '.' y+=2 if y>99: x+=2 y=51 a-=1 x,y = 0,0 while b>1: ans[x][y] = '#' y+=2 if y>48: x+=2 y=0 b-=1 print(100,100) for i in range(100): print(''.join(ans[i]))
840e0ebac008e76101216598b6ca7a9eb40a58eb
76f59c245744e468577a293a0b9b078f064acf07
/287.find-the-duplicate-number.py
0d410826d8b60f50737d2b511468b0a6a9a88f79
[]
no_license
satoshun-algorithm-example/leetcode
c3774f07e653cf58640a6e7239705e58c5abde82
16b39e903755dea86f9a4f16df187bb8bbf835c5
refs/heads/master
2020-07-01T10:24:05.343283
2020-01-13T03:27:27
2020-01-13T03:27:27
201,144,558
0
0
null
null
null
null
UTF-8
Python
false
false
566
py
# # @lc app=leetcode id=287 lang=python3 # # [287] Find the Duplicate Number # from typing import List class Solution: def findDuplicate(self, nums: List[int]) -> int: low = 0 high = len(nums) - 1 mid = (high + low) // 2 while high - low > 1: count = 0 for num in nums: if mid < num <= high: count += 1 if high - mid >= count: high = mid else: low = mid mid = (high + low) // 2 return high
05cd52ca349b42d73c8bb6552629c6c5a911bb15
20044db9ab2c773cc80caa4a5a1175ee8148269d
/test/test_rma_nb.py
3498e98c2a687e11e0ac02e8076670280d7038cf
[]
no_license
senganal/mpi4py
a4e5dbf2d7e6cf9b6eb783f1e5f1c523326d667f
28a2e95506844a32efb6b14238ca60173fe7c5a2
refs/heads/master
2021-01-13T08:02:43.439643
2017-06-16T15:03:44
2017-06-16T15:03:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,219
py
from mpi4py import MPI import mpiunittest as unittest import arrayimpl def mkzeros(n): import sys if not hasattr(sys, 'pypy_version_info'): return bytearray(n) return b'\0' * n def memzero(m): try: m[:] = 0 except IndexError: # cffi buffer m[0:len(m)] = b'\0'*len(m) class BaseTestRMA(object): COMM = MPI.COMM_NULL INFO = MPI.INFO_NULL COUNT_MIN = 0 def setUp(self): nbytes = 100*MPI.DOUBLE.size try: self.mpi_memory = MPI.Alloc_mem(nbytes) self.memory = self.mpi_memory memzero(self.memory) except MPI.Exception: from array import array self.mpi_memory = None self.memory = array('B',[0]*nbytes) self.WIN = MPI.Win.Create(self.memory, 1, self.INFO, self.COMM) def tearDown(self): self.WIN.Free() if self.mpi_memory: MPI.Free_mem(self.mpi_memory) def testPutGet(self): group = self.WIN.Get_group() size = group.Get_size() group.Free() for array in arrayimpl.ArrayTypes: for typecode in arrayimpl.TypeMap: for count in range(self.COUNT_MIN, 10): for rank in range(size): sbuf = array([rank]*count, typecode) rbuf = array(-1, typecode, count+1) self.WIN.Fence() self.WIN.Lock(rank) r = self.WIN.Rput(sbuf.as_mpi(), rank) r.Wait() self.WIN.Flush(rank) r = self.WIN.Rget(rbuf.as_mpi_c(count), rank) r.Wait() self.WIN.Unlock(rank) for i in range(count): self.assertEqual(sbuf[i], rank) self.assertEqual(rbuf[i], rank) self.assertEqual(rbuf[-1], -1) def testAccumulate(self): group = self.WIN.Get_group() size = group.Get_size() group.Free() for array in arrayimpl.ArrayTypes: for typecode in arrayimpl.TypeMap: for count in range(self.COUNT_MIN, 10): for rank in range(size): ones = array([1]*count, typecode) sbuf = array(range(count), typecode) rbuf = array(-1, typecode, count+1) for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN, MPI.REPLACE): self.WIN.Lock(rank) self.WIN.Put(ones.as_mpi(), rank) self.WIN.Flush(rank) r = self.WIN.Raccumulate(sbuf.as_mpi(), rank, op=op) r.Wait() self.WIN.Flush(rank) r = self.WIN.Rget(rbuf.as_mpi_c(count), rank) r.Wait() self.WIN.Unlock(rank) # for i in range(count): self.assertEqual(sbuf[i], i) self.assertEqual(rbuf[i], op(1, i)) self.assertEqual(rbuf[-1], -1) def testGetAccumulate(self): group = self.WIN.Get_group() size = group.Get_size() group.Free() for array in arrayimpl.ArrayTypes: for typecode in arrayimpl.TypeMap: for count in range(self.COUNT_MIN, 10): for rank in range(size): ones = array([1]*count, typecode) sbuf = array(range(count), typecode) rbuf = array(-1, typecode, count+1) gbuf = array(-1, typecode, count+1) for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN, MPI.REPLACE, MPI.NO_OP): self.WIN.Lock(rank) self.WIN.Put(ones.as_mpi(), rank) self.WIN.Flush(rank) r = self.WIN.Rget_accumulate(sbuf.as_mpi(), rbuf.as_mpi_c(count), rank, op=op) r.Wait() self.WIN.Flush(rank) r = self.WIN.Rget(gbuf.as_mpi_c(count), rank) r.Wait() self.WIN.Unlock(rank) # for i in range(count): self.assertEqual(sbuf[i], i) self.assertEqual(rbuf[i], 1) self.assertEqual(gbuf[i], op(1, i)) self.assertEqual(rbuf[-1], -1) self.assertEqual(gbuf[-1], -1) def testPutProcNull(self): rank = self.COMM.Get_rank() self.WIN.Lock(rank) r = self.WIN.Rput(None, MPI.PROC_NULL, None) r.Wait() self.WIN.Unlock(rank) def testGetProcNull(self): rank = self.COMM.Get_rank() self.WIN.Lock(rank) r = self.WIN.Rget(None, MPI.PROC_NULL, None) r.Wait() self.WIN.Unlock(rank) def testAccumulateProcNullReplace(self): rank = self.COMM.Get_rank() zeros = mkzeros(8) self.WIN.Lock(rank) r = self.WIN.Raccumulate([zeros, MPI.INT], MPI.PROC_NULL, None, MPI.REPLACE) r.Wait() r = self.WIN.Raccumulate([zeros, MPI.INT], MPI.PROC_NULL, None, MPI.REPLACE) r.Wait() self.WIN.Unlock(rank) def testAccumulateProcNullSum(self): rank = self.COMM.Get_rank() zeros = mkzeros(8) self.WIN.Lock(rank) r = self.WIN.Raccumulate([zeros, MPI.INT], MPI.PROC_NULL, None, MPI.SUM) r.Wait() r = self.WIN.Raccumulate([None, MPI.INT], MPI.PROC_NULL, None, MPI.SUM) r.Wait() self.WIN.Unlock(rank) class TestRMASelf(BaseTestRMA, unittest.TestCase): COMM = MPI.COMM_SELF class TestRMAWorld(BaseTestRMA, unittest.TestCase): COMM = MPI.COMM_WORLD try: MPI.Win.Create(None, 1, MPI.INFO_NULL, MPI.COMM_SELF).Free() except NotImplementedError: del TestRMASelf, TestRMAWorld else: name, version = MPI.get_vendor() if name == 'Open MPI': if version[:2] == (1,10): def SKIP(*t, **k): pass TestRMAWorld.testAccumulate = SKIP TestRMAWorld.testGetAccumulate = SKIP if version < (1,8,1): del TestRMASelf, TestRMAWorld elif name == 'MPICH2': if version < (1,5,0): del TestRMASelf, TestRMAWorld elif version >= (2,0,0) and MPI.VERSION < 3: # Intel MPI del TestRMASelf, TestRMAWorld elif MPI.Get_version() < (3,0): del TestRMASelf, TestRMAWorld if __name__ == '__main__': unittest.main()
df01f0fb63ebfc8068c07b21de2c887bd683c017
d697c1d45e96bd440be9c17ab14243a5882b1f52
/qianfeng/常用模块/urllib/4-goujianheader.py
3b39a5b80031109ac0fc8fb0b27c5a333fcabcab
[]
no_license
ithjl521/python
9eeda2e60dda97ee36e8764c06400eb12818689f
f4fe50799501c483cb64445fd05ee0f30f56576c
refs/heads/master
2020-07-12T23:10:53.608276
2019-11-08T08:59:35
2019-11-08T08:59:35
204,931,359
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
import urllib.request import urllib.parse url = 'http://www.baidu.com' # response = urllib.request.urlopen(url) # print(response.read().decode()) # 自己伪装头部 headers = { "User-Agnet":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36" } # 构建请求对象 request = urllib.request.Request(url=url,headers=headers) # 发送请求 response = urllib.request.urlopen(request) print(response.read())