File size: 2,494 Bytes
94e28b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dad0c28
 
 
 
 
 
 
 
 
d95e03a
 
 
bc12849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95e03a
 
 
 
bc12849
 
 
 
 
d95e03a
bc12849
 
 
 
d95e03a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: Surah
    dtype: string
  - name: Aya
    dtype: string
  - name: duration_ms
    dtype: int64
  - name: create_date
    dtype: string
  - name: golden
    dtype: bool
  - name: final_label
    dtype: string
  - name: reciter_id
    dtype: string
  - name: reciter_country
    dtype: string
  - name: reciter_gender
    dtype: string
  - name: reciter_age
    dtype: string
  - name: reciter_qiraah
    dtype: string
  - name: judgments_num
    dtype: int64
  - name: annotation_metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 1290351809.656
    num_examples: 6828
  download_size: 1258070687
  dataset_size: 1290351809.656
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- automatic-speech-recognition
- audio-classification
language:
- ar
tags:
- Crowdsourcing
- Quranic recitation
- Non-Arabic Speakers
pretty_name: Quranic Audio Dataset - Crowdsourced and Labeled Recitation from Non-Arabic Speakers
---

# Dataset Card for Quranic Audio Dataset : Crowdsourced and Labeled Recitation from Non-Arabic Speakers

### Dataset Summary

We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process.
In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets.
We developed a crowdsourcing platform called Quran Voice for annotating the gathered audio assets.
As a result, we have collected around 7000 Quranic recitations from a pool of 1287 participants across more than 11 non-Arabic countries, and we have annotated 1166 recitations from the dataset in six categories.
We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments.

## How to use

## Dataset Structure

### Data Instances

### Data Fields

### Citation Information

```
@inproceedings{commonvoice:2020,
  author      = {Salameh, R., Mdfaa, M. A., Askarbekuly, N., & Mazzara, M.},
  title       = {Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers},
  year        = 2024,
  eprint      = {2405.02675},
  eprinttype  = {arxiv},
  eprintclass = {cs.SD},
  url         = {https://arxiv.org/abs/2405.02675},
  language    = {english},
  booktitle   = {},
  pages       = {}
}
```